1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. 4 * Copyright 2016-2019 NXP 5 * 6 */ 7 8 #include <asm/cacheflush.h> 9 #include <linux/io.h> 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <soc/fsl/dpaa2-global.h> 13 14 #include "qbman-portal.h" 15 16 /* All QBMan command and result structures use this "valid bit" encoding */ 17 #define QB_VALID_BIT ((u32)0x80) 18 19 /* QBMan portal management command codes */ 20 #define QBMAN_MC_ACQUIRE 0x30 21 #define QBMAN_WQCHAN_CONFIGURE 0x46 22 23 /* CINH register offsets */ 24 #define QBMAN_CINH_SWP_EQCR_PI 0x800 25 #define QBMAN_CINH_SWP_EQCR_CI 0x840 26 #define QBMAN_CINH_SWP_EQAR 0x8c0 27 #define QBMAN_CINH_SWP_CR_RT 0x900 28 #define QBMAN_CINH_SWP_VDQCR_RT 0x940 29 #define QBMAN_CINH_SWP_EQCR_AM_RT 0x980 30 #define QBMAN_CINH_SWP_RCR_AM_RT 0x9c0 31 #define QBMAN_CINH_SWP_DQPI 0xa00 32 #define QBMAN_CINH_SWP_DCAP 0xac0 33 #define QBMAN_CINH_SWP_SDQCR 0xb00 34 #define QBMAN_CINH_SWP_EQCR_AM_RT2 0xb40 35 #define QBMAN_CINH_SWP_RCR_PI 0xc00 36 #define QBMAN_CINH_SWP_RAR 0xcc0 37 #define QBMAN_CINH_SWP_ISR 0xe00 38 #define QBMAN_CINH_SWP_IER 0xe40 39 #define QBMAN_CINH_SWP_ISDR 0xe80 40 #define QBMAN_CINH_SWP_IIR 0xec0 41 42 /* CENA register offsets */ 43 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6)) 44 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6)) 45 #define QBMAN_CENA_SWP_RCR(n) (0x400 + ((u32)(n) << 6)) 46 #define QBMAN_CENA_SWP_CR 0x600 47 #define QBMAN_CENA_SWP_RR(vb) (0x700 + ((u32)(vb) >> 1)) 48 #define QBMAN_CENA_SWP_VDQCR 0x780 49 #define QBMAN_CENA_SWP_EQCR_CI 0x840 50 #define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840 51 52 /* CENA register offsets in memory-backed mode */ 53 #define QBMAN_CENA_SWP_DQRR_MEM(n) (0x800 + ((u32)(n) << 6)) 54 #define QBMAN_CENA_SWP_RCR_MEM(n) (0x1400 + ((u32)(n) << 6)) 55 #define QBMAN_CENA_SWP_CR_MEM 0x1600 56 #define QBMAN_CENA_SWP_RR_MEM 0x1680 57 #define QBMAN_CENA_SWP_VDQCR_MEM 0x1780 58 59 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */ 60 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6) 61 62 /* Define token used to determine if response written to memory is valid */ 63 #define QMAN_DQ_TOKEN_VALID 1 64 65 /* SDQCR attribute codes */ 66 #define QB_SDQCR_FC_SHIFT 29 67 #define QB_SDQCR_FC_MASK 0x1 68 #define QB_SDQCR_DCT_SHIFT 24 69 #define QB_SDQCR_DCT_MASK 0x3 70 #define QB_SDQCR_TOK_SHIFT 16 71 #define QB_SDQCR_TOK_MASK 0xff 72 #define QB_SDQCR_SRC_SHIFT 0 73 #define QB_SDQCR_SRC_MASK 0xffff 74 75 /* opaque token for static dequeues */ 76 #define QMAN_SDQCR_TOKEN 0xbb 77 78 #define QBMAN_EQCR_DCA_IDXMASK 0x0f 79 #define QBMAN_ENQUEUE_FLAG_DCA (1ULL << 31) 80 81 #define EQ_DESC_SIZE_WITHOUT_FD 29 82 #define EQ_DESC_SIZE_FD_START 32 83 84 enum qbman_sdqcr_dct { 85 qbman_sdqcr_dct_null = 0, 86 qbman_sdqcr_dct_prio_ics, 87 qbman_sdqcr_dct_active_ics, 88 qbman_sdqcr_dct_active 89 }; 90 91 enum qbman_sdqcr_fc { 92 qbman_sdqcr_fc_one = 0, 93 qbman_sdqcr_fc_up_to_3 = 1 94 }; 95 96 /* Internal Function declaration */ 97 static int qbman_swp_enqueue_direct(struct qbman_swp *s, 98 const struct qbman_eq_desc *d, 99 const struct dpaa2_fd *fd); 100 static int qbman_swp_enqueue_mem_back(struct qbman_swp *s, 101 const struct qbman_eq_desc *d, 102 const struct dpaa2_fd *fd); 103 static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s, 104 const struct qbman_eq_desc *d, 105 const struct dpaa2_fd *fd, 106 uint32_t *flags, 107 int num_frames); 108 static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s, 109 const struct qbman_eq_desc *d, 110 const struct dpaa2_fd *fd, 111 uint32_t *flags, 112 int num_frames); 113 static int 114 qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s, 115 const struct qbman_eq_desc *d, 116 const struct dpaa2_fd *fd, 117 int num_frames); 118 static 119 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s, 120 const struct qbman_eq_desc *d, 121 const struct dpaa2_fd *fd, 122 int num_frames); 123 static int qbman_swp_pull_direct(struct qbman_swp *s, 124 struct qbman_pull_desc *d); 125 static int qbman_swp_pull_mem_back(struct qbman_swp *s, 126 struct qbman_pull_desc *d); 127 128 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s); 129 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s); 130 131 static int qbman_swp_release_direct(struct qbman_swp *s, 132 const struct qbman_release_desc *d, 133 const u64 *buffers, 134 unsigned int num_buffers); 135 static int qbman_swp_release_mem_back(struct qbman_swp *s, 136 const struct qbman_release_desc *d, 137 const u64 *buffers, 138 unsigned int num_buffers); 139 140 /* Function pointers */ 141 int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s, 142 const struct qbman_eq_desc *d, 143 const struct dpaa2_fd *fd) 144 = qbman_swp_enqueue_direct; 145 146 int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s, 147 const struct qbman_eq_desc *d, 148 const struct dpaa2_fd *fd, 149 uint32_t *flags, 150 int num_frames) 151 = qbman_swp_enqueue_multiple_direct; 152 153 int 154 (*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s, 155 const struct qbman_eq_desc *d, 156 const struct dpaa2_fd *fd, 157 int num_frames) 158 = qbman_swp_enqueue_multiple_desc_direct; 159 160 int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d) 161 = qbman_swp_pull_direct; 162 163 const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s) 164 = qbman_swp_dqrr_next_direct; 165 166 int (*qbman_swp_release_ptr)(struct qbman_swp *s, 167 const struct qbman_release_desc *d, 168 const u64 *buffers, 169 unsigned int num_buffers) 170 = qbman_swp_release_direct; 171 172 /* Portal Access */ 173 174 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset) 175 { 176 return readl_relaxed(p->addr_cinh + offset); 177 } 178 179 static inline void qbman_write_register(struct qbman_swp *p, u32 offset, 180 u32 value) 181 { 182 writel_relaxed(value, p->addr_cinh + offset); 183 } 184 185 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset) 186 { 187 return p->addr_cena + offset; 188 } 189 190 #define QBMAN_CINH_SWP_CFG 0xd00 191 192 #define SWP_CFG_DQRR_MF_SHIFT 20 193 #define SWP_CFG_EST_SHIFT 16 194 #define SWP_CFG_CPBS_SHIFT 15 195 #define SWP_CFG_WN_SHIFT 14 196 #define SWP_CFG_RPM_SHIFT 12 197 #define SWP_CFG_DCM_SHIFT 10 198 #define SWP_CFG_EPM_SHIFT 8 199 #define SWP_CFG_VPM_SHIFT 7 200 #define SWP_CFG_CPM_SHIFT 6 201 #define SWP_CFG_SD_SHIFT 5 202 #define SWP_CFG_SP_SHIFT 4 203 #define SWP_CFG_SE_SHIFT 3 204 #define SWP_CFG_DP_SHIFT 2 205 #define SWP_CFG_DE_SHIFT 1 206 #define SWP_CFG_EP_SHIFT 0 207 208 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm, 209 u8 epm, int sd, int sp, int se, 210 int dp, int de, int ep) 211 { 212 return (max_fill << SWP_CFG_DQRR_MF_SHIFT | 213 est << SWP_CFG_EST_SHIFT | 214 wn << SWP_CFG_WN_SHIFT | 215 rpm << SWP_CFG_RPM_SHIFT | 216 dcm << SWP_CFG_DCM_SHIFT | 217 epm << SWP_CFG_EPM_SHIFT | 218 sd << SWP_CFG_SD_SHIFT | 219 sp << SWP_CFG_SP_SHIFT | 220 se << SWP_CFG_SE_SHIFT | 221 dp << SWP_CFG_DP_SHIFT | 222 de << SWP_CFG_DE_SHIFT | 223 ep << SWP_CFG_EP_SHIFT); 224 } 225 226 #define QMAN_RT_MODE 0x00000100 227 228 static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last) 229 { 230 /* 'first' is included, 'last' is excluded */ 231 if (first <= last) 232 return last - first; 233 else 234 return (2 * ringsize) - (first - last); 235 } 236 237 /** 238 * qbman_swp_init() - Create a functional object representing the given 239 * QBMan portal descriptor. 240 * @d: the given qbman swp descriptor 241 * 242 * Return qbman_swp portal for success, NULL if the object cannot 243 * be created. 244 */ 245 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d) 246 { 247 struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL); 248 u32 reg; 249 u32 mask_size; 250 u32 eqcr_pi; 251 252 if (!p) 253 return NULL; 254 255 spin_lock_init(&p->access_spinlock); 256 257 p->desc = d; 258 p->mc.valid_bit = QB_VALID_BIT; 259 p->sdq = 0; 260 p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT; 261 p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT; 262 p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT; 263 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) 264 p->mr.valid_bit = QB_VALID_BIT; 265 266 atomic_set(&p->vdq.available, 1); 267 p->vdq.valid_bit = QB_VALID_BIT; 268 p->dqrr.next_idx = 0; 269 p->dqrr.valid_bit = QB_VALID_BIT; 270 271 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) { 272 p->dqrr.dqrr_size = 4; 273 p->dqrr.reset_bug = 1; 274 } else { 275 p->dqrr.dqrr_size = 8; 276 p->dqrr.reset_bug = 0; 277 } 278 279 p->addr_cena = d->cena_bar; 280 p->addr_cinh = d->cinh_bar; 281 282 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) { 283 284 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size, 285 1, /* Writes Non-cacheable */ 286 0, /* EQCR_CI stashing threshold */ 287 3, /* RPM: RCR in array mode */ 288 2, /* DCM: Discrete consumption ack */ 289 2, /* EPM: EQCR in ring mode */ 290 1, /* mem stashing drop enable enable */ 291 1, /* mem stashing priority enable */ 292 1, /* mem stashing enable */ 293 1, /* dequeue stashing priority enable */ 294 0, /* dequeue stashing enable enable */ 295 0); /* EQCR_CI stashing priority enable */ 296 } else { 297 memset(p->addr_cena, 0, 64 * 1024); 298 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size, 299 1, /* Writes Non-cacheable */ 300 1, /* EQCR_CI stashing threshold */ 301 3, /* RPM: RCR in array mode */ 302 2, /* DCM: Discrete consumption ack */ 303 0, /* EPM: EQCR in ring mode */ 304 1, /* mem stashing drop enable */ 305 1, /* mem stashing priority enable */ 306 1, /* mem stashing enable */ 307 1, /* dequeue stashing priority enable */ 308 0, /* dequeue stashing enable */ 309 0); /* EQCR_CI stashing priority enable */ 310 reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */ 311 1 << SWP_CFG_VPM_SHIFT | /* VDQCR read triggered mode */ 312 1 << SWP_CFG_CPM_SHIFT; /* CR read triggered mode */ 313 } 314 315 qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg); 316 reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG); 317 if (!reg) { 318 pr_err("qbman: the portal is not enabled!\n"); 319 kfree(p); 320 return NULL; 321 } 322 323 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) { 324 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE); 325 qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE); 326 } 327 /* 328 * SDQCR needs to be initialized to 0 when no channels are 329 * being dequeued from or else the QMan HW will indicate an 330 * error. The values that were calculated above will be 331 * applied when dequeues from a specific channel are enabled. 332 */ 333 qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0); 334 335 p->eqcr.pi_ring_size = 8; 336 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) { 337 p->eqcr.pi_ring_size = 32; 338 qbman_swp_enqueue_ptr = 339 qbman_swp_enqueue_mem_back; 340 qbman_swp_enqueue_multiple_ptr = 341 qbman_swp_enqueue_multiple_mem_back; 342 qbman_swp_enqueue_multiple_desc_ptr = 343 qbman_swp_enqueue_multiple_desc_mem_back; 344 qbman_swp_pull_ptr = qbman_swp_pull_mem_back; 345 qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back; 346 qbman_swp_release_ptr = qbman_swp_release_mem_back; 347 } 348 349 for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1) 350 p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1; 351 eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI); 352 p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask; 353 p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT; 354 p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI) 355 & p->eqcr.pi_ci_mask; 356 p->eqcr.available = p->eqcr.pi_ring_size; 357 358 return p; 359 } 360 361 /** 362 * qbman_swp_finish() - Create and destroy a functional object representing 363 * the given QBMan portal descriptor. 364 * @p: the qbman_swp object to be destroyed 365 */ 366 void qbman_swp_finish(struct qbman_swp *p) 367 { 368 kfree(p); 369 } 370 371 /** 372 * qbman_swp_interrupt_read_status() 373 * @p: the given software portal 374 * 375 * Return the value in the SWP_ISR register. 376 */ 377 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p) 378 { 379 return qbman_read_register(p, QBMAN_CINH_SWP_ISR); 380 } 381 382 /** 383 * qbman_swp_interrupt_clear_status() 384 * @p: the given software portal 385 * @mask: The mask to clear in SWP_ISR register 386 */ 387 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask) 388 { 389 qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask); 390 } 391 392 /** 393 * qbman_swp_interrupt_get_trigger() - read interrupt enable register 394 * @p: the given software portal 395 * 396 * Return the value in the SWP_IER register. 397 */ 398 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p) 399 { 400 return qbman_read_register(p, QBMAN_CINH_SWP_IER); 401 } 402 403 /** 404 * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp 405 * @p: the given software portal 406 * @mask: The mask of bits to enable in SWP_IER 407 */ 408 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask) 409 { 410 qbman_write_register(p, QBMAN_CINH_SWP_IER, mask); 411 } 412 413 /** 414 * qbman_swp_interrupt_get_inhibit() - read interrupt mask register 415 * @p: the given software portal object 416 * 417 * Return the value in the SWP_IIR register. 418 */ 419 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p) 420 { 421 return qbman_read_register(p, QBMAN_CINH_SWP_IIR); 422 } 423 424 /** 425 * qbman_swp_interrupt_set_inhibit() - write interrupt mask register 426 * @p: the given software portal object 427 * @inhibit: whether to inhibit the IRQs 428 */ 429 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit) 430 { 431 qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0); 432 } 433 434 /* 435 * Different management commands all use this common base layer of code to issue 436 * commands and poll for results. 437 */ 438 439 /* 440 * Returns a pointer to where the caller should fill in their management command 441 * (caller should ignore the verb byte) 442 */ 443 void *qbman_swp_mc_start(struct qbman_swp *p) 444 { 445 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) 446 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR); 447 else 448 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM); 449 } 450 451 /* 452 * Commits merges in the caller-supplied command verb (which should not include 453 * the valid-bit) and submits the command to hardware 454 */ 455 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb) 456 { 457 u8 *v = cmd; 458 459 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) { 460 dma_wmb(); 461 *v = cmd_verb | p->mc.valid_bit; 462 } else { 463 *v = cmd_verb | p->mc.valid_bit; 464 dma_wmb(); 465 qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE); 466 } 467 } 468 469 /* 470 * Checks for a completed response (returns non-NULL if only if the response 471 * is complete). 472 */ 473 void *qbman_swp_mc_result(struct qbman_swp *p) 474 { 475 u32 *ret, verb; 476 477 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) { 478 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit)); 479 /* Remove the valid-bit - command completed if the rest 480 * is non-zero. 481 */ 482 verb = ret[0] & ~QB_VALID_BIT; 483 if (!verb) 484 return NULL; 485 p->mc.valid_bit ^= QB_VALID_BIT; 486 } else { 487 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM); 488 /* Command completed if the valid bit is toggled */ 489 if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT)) 490 return NULL; 491 /* Command completed if the rest is non-zero */ 492 verb = ret[0] & ~QB_VALID_BIT; 493 if (!verb) 494 return NULL; 495 p->mr.valid_bit ^= QB_VALID_BIT; 496 } 497 498 return ret; 499 } 500 501 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT 0 502 enum qb_enqueue_commands { 503 enqueue_empty = 0, 504 enqueue_response_always = 1, 505 enqueue_rejects_to_fq = 2 506 }; 507 508 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT 2 509 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3 510 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT 4 511 #define QB_ENQUEUE_CMD_DCA_EN_SHIFT 7 512 513 /* 514 * qbman_eq_desc_clear() - Clear the contents of a descriptor to 515 * default/starting state. 516 */ 517 void qbman_eq_desc_clear(struct qbman_eq_desc *d) 518 { 519 memset(d, 0, sizeof(*d)); 520 } 521 522 /** 523 * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp 524 * @d: the enqueue descriptor. 525 * @respond_success: 1 = enqueue with response always; 0 = enqueue with 526 * rejections returned on a FQ. 527 */ 528 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success) 529 { 530 d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT); 531 if (respond_success) 532 d->verb |= enqueue_response_always; 533 else 534 d->verb |= enqueue_rejects_to_fq; 535 } 536 537 /* 538 * Exactly one of the following descriptor "targets" should be set. (Calling any 539 * one of these will replace the effect of any prior call to one of these.) 540 * -enqueue to a frame queue 541 * -enqueue to a queuing destination 542 */ 543 544 /** 545 * qbman_eq_desc_set_fq() - set the FQ for the enqueue command 546 * @d: the enqueue descriptor 547 * @fqid: the id of the frame queue to be enqueued 548 */ 549 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid) 550 { 551 d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT); 552 d->tgtid = cpu_to_le32(fqid); 553 } 554 555 /** 556 * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command 557 * @d: the enqueue descriptor 558 * @qdid: the id of the queuing destination to be enqueued 559 * @qd_bin: the queuing destination bin 560 * @qd_prio: the queuing destination priority 561 */ 562 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid, 563 u32 qd_bin, u32 qd_prio) 564 { 565 d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT; 566 d->tgtid = cpu_to_le32(qdid); 567 d->qdbin = cpu_to_le16(qd_bin); 568 d->qpri = qd_prio; 569 } 570 571 #define EQAR_IDX(eqar) ((eqar) & 0x7) 572 #define EQAR_VB(eqar) ((eqar) & 0x80) 573 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100) 574 575 #define QB_RT_BIT ((u32)0x100) 576 /** 577 * qbman_swp_enqueue_direct() - Issue an enqueue command 578 * @s: the software portal used for enqueue 579 * @d: the enqueue descriptor 580 * @fd: the frame descriptor to be enqueued 581 * 582 * Please note that 'fd' should only be NULL if the "action" of the 583 * descriptor is "orp_hole" or "orp_nesn". 584 * 585 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready. 586 */ 587 static 588 int qbman_swp_enqueue_direct(struct qbman_swp *s, 589 const struct qbman_eq_desc *d, 590 const struct dpaa2_fd *fd) 591 { 592 int flags = 0; 593 int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1); 594 595 if (ret >= 0) 596 ret = 0; 597 else 598 ret = -EBUSY; 599 return ret; 600 } 601 602 /** 603 * qbman_swp_enqueue_mem_back() - Issue an enqueue command 604 * @s: the software portal used for enqueue 605 * @d: the enqueue descriptor 606 * @fd: the frame descriptor to be enqueued 607 * 608 * Please note that 'fd' should only be NULL if the "action" of the 609 * descriptor is "orp_hole" or "orp_nesn". 610 * 611 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready. 612 */ 613 static 614 int qbman_swp_enqueue_mem_back(struct qbman_swp *s, 615 const struct qbman_eq_desc *d, 616 const struct dpaa2_fd *fd) 617 { 618 int flags = 0; 619 int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1); 620 621 if (ret >= 0) 622 ret = 0; 623 else 624 ret = -EBUSY; 625 return ret; 626 } 627 628 /** 629 * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command 630 * using one enqueue descriptor 631 * @s: the software portal used for enqueue 632 * @d: the enqueue descriptor 633 * @fd: table pointer of frame descriptor table to be enqueued 634 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL 635 * @num_frames: number of fd to be enqueued 636 * 637 * Return the number of fd enqueued, or a negative error number. 638 */ 639 static 640 int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s, 641 const struct qbman_eq_desc *d, 642 const struct dpaa2_fd *fd, 643 uint32_t *flags, 644 int num_frames) 645 { 646 uint32_t *p = NULL; 647 const uint32_t *cl = (uint32_t *)d; 648 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask; 649 int i, num_enqueued = 0; 650 651 spin_lock(&s->access_spinlock); 652 half_mask = (s->eqcr.pi_ci_mask>>1); 653 full_mask = s->eqcr.pi_ci_mask; 654 655 if (!s->eqcr.available) { 656 eqcr_ci = s->eqcr.ci; 657 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI; 658 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI); 659 s->eqcr.ci &= full_mask; 660 661 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size, 662 eqcr_ci, s->eqcr.ci); 663 if (!s->eqcr.available) { 664 spin_unlock(&s->access_spinlock); 665 return 0; 666 } 667 } 668 669 eqcr_pi = s->eqcr.pi; 670 num_enqueued = (s->eqcr.available < num_frames) ? 671 s->eqcr.available : num_frames; 672 s->eqcr.available -= num_enqueued; 673 /* Fill in the EQCR ring */ 674 for (i = 0; i < num_enqueued; i++) { 675 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 676 /* Skip copying the verb */ 677 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1); 678 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)], 679 &fd[i], sizeof(*fd)); 680 eqcr_pi++; 681 } 682 683 dma_wmb(); 684 685 /* Set the verb byte, have to substitute in the valid-bit */ 686 eqcr_pi = s->eqcr.pi; 687 for (i = 0; i < num_enqueued; i++) { 688 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 689 p[0] = cl[0] | s->eqcr.pi_vb; 690 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) { 691 struct qbman_eq_desc *d = (struct qbman_eq_desc *)p; 692 693 d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) | 694 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK); 695 } 696 eqcr_pi++; 697 if (!(eqcr_pi & half_mask)) 698 s->eqcr.pi_vb ^= QB_VALID_BIT; 699 } 700 701 /* Flush all the cacheline without load/store in between */ 702 eqcr_pi = s->eqcr.pi; 703 for (i = 0; i < num_enqueued; i++) 704 eqcr_pi++; 705 s->eqcr.pi = eqcr_pi & full_mask; 706 spin_unlock(&s->access_spinlock); 707 708 return num_enqueued; 709 } 710 711 /** 712 * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command 713 * using one enqueue descriptor 714 * @s: the software portal used for enqueue 715 * @d: the enqueue descriptor 716 * @fd: table pointer of frame descriptor table to be enqueued 717 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL 718 * @num_frames: number of fd to be enqueued 719 * 720 * Return the number of fd enqueued, or a negative error number. 721 */ 722 static 723 int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s, 724 const struct qbman_eq_desc *d, 725 const struct dpaa2_fd *fd, 726 uint32_t *flags, 727 int num_frames) 728 { 729 uint32_t *p = NULL; 730 const uint32_t *cl = (uint32_t *)(d); 731 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask; 732 int i, num_enqueued = 0; 733 unsigned long irq_flags; 734 735 spin_lock(&s->access_spinlock); 736 local_irq_save(irq_flags); 737 738 half_mask = (s->eqcr.pi_ci_mask>>1); 739 full_mask = s->eqcr.pi_ci_mask; 740 if (!s->eqcr.available) { 741 eqcr_ci = s->eqcr.ci; 742 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK; 743 s->eqcr.ci = *p & full_mask; 744 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size, 745 eqcr_ci, s->eqcr.ci); 746 if (!s->eqcr.available) { 747 local_irq_restore(irq_flags); 748 spin_unlock(&s->access_spinlock); 749 return 0; 750 } 751 } 752 753 eqcr_pi = s->eqcr.pi; 754 num_enqueued = (s->eqcr.available < num_frames) ? 755 s->eqcr.available : num_frames; 756 s->eqcr.available -= num_enqueued; 757 /* Fill in the EQCR ring */ 758 for (i = 0; i < num_enqueued; i++) { 759 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 760 /* Skip copying the verb */ 761 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1); 762 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)], 763 &fd[i], sizeof(*fd)); 764 eqcr_pi++; 765 } 766 767 /* Set the verb byte, have to substitute in the valid-bit */ 768 eqcr_pi = s->eqcr.pi; 769 for (i = 0; i < num_enqueued; i++) { 770 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 771 p[0] = cl[0] | s->eqcr.pi_vb; 772 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) { 773 struct qbman_eq_desc *d = (struct qbman_eq_desc *)p; 774 775 d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) | 776 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK); 777 } 778 eqcr_pi++; 779 if (!(eqcr_pi & half_mask)) 780 s->eqcr.pi_vb ^= QB_VALID_BIT; 781 } 782 s->eqcr.pi = eqcr_pi & full_mask; 783 784 dma_wmb(); 785 qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI, 786 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb); 787 local_irq_restore(irq_flags); 788 spin_unlock(&s->access_spinlock); 789 790 return num_enqueued; 791 } 792 793 /** 794 * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command 795 * using multiple enqueue descriptor 796 * @s: the software portal used for enqueue 797 * @d: table of minimal enqueue descriptor 798 * @fd: table pointer of frame descriptor table to be enqueued 799 * @num_frames: number of fd to be enqueued 800 * 801 * Return the number of fd enqueued, or a negative error number. 802 */ 803 static 804 int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s, 805 const struct qbman_eq_desc *d, 806 const struct dpaa2_fd *fd, 807 int num_frames) 808 { 809 uint32_t *p; 810 const uint32_t *cl; 811 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask; 812 int i, num_enqueued = 0; 813 814 half_mask = (s->eqcr.pi_ci_mask>>1); 815 full_mask = s->eqcr.pi_ci_mask; 816 if (!s->eqcr.available) { 817 eqcr_ci = s->eqcr.ci; 818 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI; 819 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI); 820 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size, 821 eqcr_ci, s->eqcr.ci); 822 if (!s->eqcr.available) 823 return 0; 824 } 825 826 eqcr_pi = s->eqcr.pi; 827 num_enqueued = (s->eqcr.available < num_frames) ? 828 s->eqcr.available : num_frames; 829 s->eqcr.available -= num_enqueued; 830 /* Fill in the EQCR ring */ 831 for (i = 0; i < num_enqueued; i++) { 832 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 833 cl = (uint32_t *)(&d[i]); 834 /* Skip copying the verb */ 835 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1); 836 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)], 837 &fd[i], sizeof(*fd)); 838 eqcr_pi++; 839 } 840 841 dma_wmb(); 842 843 /* Set the verb byte, have to substitute in the valid-bit */ 844 eqcr_pi = s->eqcr.pi; 845 for (i = 0; i < num_enqueued; i++) { 846 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 847 cl = (uint32_t *)(&d[i]); 848 p[0] = cl[0] | s->eqcr.pi_vb; 849 eqcr_pi++; 850 if (!(eqcr_pi & half_mask)) 851 s->eqcr.pi_vb ^= QB_VALID_BIT; 852 } 853 854 /* Flush all the cacheline without load/store in between */ 855 eqcr_pi = s->eqcr.pi; 856 for (i = 0; i < num_enqueued; i++) 857 eqcr_pi++; 858 s->eqcr.pi = eqcr_pi & full_mask; 859 860 return num_enqueued; 861 } 862 863 /** 864 * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command 865 * using multiple enqueue descriptor 866 * @s: the software portal used for enqueue 867 * @d: table of minimal enqueue descriptor 868 * @fd: table pointer of frame descriptor table to be enqueued 869 * @num_frames: number of fd to be enqueued 870 * 871 * Return the number of fd enqueued, or a negative error number. 872 */ 873 static 874 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s, 875 const struct qbman_eq_desc *d, 876 const struct dpaa2_fd *fd, 877 int num_frames) 878 { 879 uint32_t *p; 880 const uint32_t *cl; 881 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask; 882 int i, num_enqueued = 0; 883 884 half_mask = (s->eqcr.pi_ci_mask>>1); 885 full_mask = s->eqcr.pi_ci_mask; 886 if (!s->eqcr.available) { 887 eqcr_ci = s->eqcr.ci; 888 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK; 889 s->eqcr.ci = *p & full_mask; 890 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size, 891 eqcr_ci, s->eqcr.ci); 892 if (!s->eqcr.available) 893 return 0; 894 } 895 896 eqcr_pi = s->eqcr.pi; 897 num_enqueued = (s->eqcr.available < num_frames) ? 898 s->eqcr.available : num_frames; 899 s->eqcr.available -= num_enqueued; 900 /* Fill in the EQCR ring */ 901 for (i = 0; i < num_enqueued; i++) { 902 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 903 cl = (uint32_t *)(&d[i]); 904 /* Skip copying the verb */ 905 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1); 906 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)], 907 &fd[i], sizeof(*fd)); 908 eqcr_pi++; 909 } 910 911 /* Set the verb byte, have to substitute in the valid-bit */ 912 eqcr_pi = s->eqcr.pi; 913 for (i = 0; i < num_enqueued; i++) { 914 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 915 cl = (uint32_t *)(&d[i]); 916 p[0] = cl[0] | s->eqcr.pi_vb; 917 eqcr_pi++; 918 if (!(eqcr_pi & half_mask)) 919 s->eqcr.pi_vb ^= QB_VALID_BIT; 920 } 921 922 s->eqcr.pi = eqcr_pi & full_mask; 923 924 dma_wmb(); 925 qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI, 926 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb); 927 928 return num_enqueued; 929 } 930 931 /* Static (push) dequeue */ 932 933 /** 934 * qbman_swp_push_get() - Get the push dequeue setup 935 * @s: the software portal object 936 * @channel_idx: the channel index to query 937 * @enabled: returned boolean to show whether the push dequeue is enabled 938 * for the given channel 939 */ 940 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled) 941 { 942 u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK; 943 944 WARN_ON(channel_idx > 15); 945 *enabled = src | (1 << channel_idx); 946 } 947 948 /** 949 * qbman_swp_push_set() - Enable or disable push dequeue 950 * @s: the software portal object 951 * @channel_idx: the channel index (0 to 15) 952 * @enable: enable or disable push dequeue 953 */ 954 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable) 955 { 956 u16 dqsrc; 957 958 WARN_ON(channel_idx > 15); 959 if (enable) 960 s->sdq |= 1 << channel_idx; 961 else 962 s->sdq &= ~(1 << channel_idx); 963 964 /* Read make the complete src map. If no channels are enabled 965 * the SDQCR must be 0 or else QMan will assert errors 966 */ 967 dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK; 968 if (dqsrc != 0) 969 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq); 970 else 971 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0); 972 } 973 974 #define QB_VDQCR_VERB_DCT_SHIFT 0 975 #define QB_VDQCR_VERB_DT_SHIFT 2 976 #define QB_VDQCR_VERB_RLS_SHIFT 4 977 #define QB_VDQCR_VERB_WAE_SHIFT 5 978 979 enum qb_pull_dt_e { 980 qb_pull_dt_channel, 981 qb_pull_dt_workqueue, 982 qb_pull_dt_framequeue 983 }; 984 985 /** 986 * qbman_pull_desc_clear() - Clear the contents of a descriptor to 987 * default/starting state 988 * @d: the pull dequeue descriptor to be cleared 989 */ 990 void qbman_pull_desc_clear(struct qbman_pull_desc *d) 991 { 992 memset(d, 0, sizeof(*d)); 993 } 994 995 /** 996 * qbman_pull_desc_set_storage()- Set the pull dequeue storage 997 * @d: the pull dequeue descriptor to be set 998 * @storage: the pointer of the memory to store the dequeue result 999 * @storage_phys: the physical address of the storage memory 1000 * @stash: to indicate whether write allocate is enabled 1001 * 1002 * If not called, or if called with 'storage' as NULL, the result pull dequeues 1003 * will produce results to DQRR. If 'storage' is non-NULL, then results are 1004 * produced to the given memory location (using the DMA address which 1005 * the caller provides in 'storage_phys'), and 'stash' controls whether or not 1006 * those writes to main-memory express a cache-warming attribute. 1007 */ 1008 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d, 1009 struct dpaa2_dq *storage, 1010 dma_addr_t storage_phys, 1011 int stash) 1012 { 1013 /* save the virtual address */ 1014 d->rsp_addr_virt = (u64)(uintptr_t)storage; 1015 1016 if (!storage) { 1017 d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT); 1018 return; 1019 } 1020 d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT; 1021 if (stash) 1022 d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT; 1023 else 1024 d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT); 1025 1026 d->rsp_addr = cpu_to_le64(storage_phys); 1027 } 1028 1029 /** 1030 * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued 1031 * @d: the pull dequeue descriptor to be set 1032 * @numframes: number of frames to be set, must be between 1 and 16, inclusive 1033 */ 1034 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes) 1035 { 1036 d->numf = numframes - 1; 1037 } 1038 1039 /* 1040 * Exactly one of the following descriptor "actions" should be set. (Calling any 1041 * one of these will replace the effect of any prior call to one of these.) 1042 * - pull dequeue from the given frame queue (FQ) 1043 * - pull dequeue from any FQ in the given work queue (WQ) 1044 * - pull dequeue from any FQ in any WQ in the given channel 1045 */ 1046 1047 /** 1048 * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues 1049 * @d: the pull dequeue descriptor to be set 1050 * @fqid: the frame queue index of the given FQ 1051 */ 1052 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid) 1053 { 1054 d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT; 1055 d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT; 1056 d->dq_src = cpu_to_le32(fqid); 1057 } 1058 1059 /** 1060 * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues 1061 * @d: the pull dequeue descriptor to be set 1062 * @wqid: composed of channel id and wqid within the channel 1063 * @dct: the dequeue command type 1064 */ 1065 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid, 1066 enum qbman_pull_type_e dct) 1067 { 1068 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT; 1069 d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT; 1070 d->dq_src = cpu_to_le32(wqid); 1071 } 1072 1073 /** 1074 * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command 1075 * dequeues 1076 * @d: the pull dequeue descriptor to be set 1077 * @chid: the channel id to be dequeued 1078 * @dct: the dequeue command type 1079 */ 1080 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid, 1081 enum qbman_pull_type_e dct) 1082 { 1083 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT; 1084 d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT; 1085 d->dq_src = cpu_to_le32(chid); 1086 } 1087 1088 /** 1089 * qbman_swp_pull_direct() - Issue the pull dequeue command 1090 * @s: the software portal object 1091 * @d: the software portal descriptor which has been configured with 1092 * the set of qbman_pull_desc_set_*() calls 1093 * 1094 * Return 0 for success, and -EBUSY if the software portal is not ready 1095 * to do pull dequeue. 1096 */ 1097 static 1098 int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d) 1099 { 1100 struct qbman_pull_desc *p; 1101 1102 if (!atomic_dec_and_test(&s->vdq.available)) { 1103 atomic_inc(&s->vdq.available); 1104 return -EBUSY; 1105 } 1106 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt; 1107 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) 1108 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR); 1109 else 1110 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM); 1111 p->numf = d->numf; 1112 p->tok = QMAN_DQ_TOKEN_VALID; 1113 p->dq_src = d->dq_src; 1114 p->rsp_addr = d->rsp_addr; 1115 p->rsp_addr_virt = d->rsp_addr_virt; 1116 dma_wmb(); 1117 /* Set the verb byte, have to substitute in the valid-bit */ 1118 p->verb = d->verb | s->vdq.valid_bit; 1119 s->vdq.valid_bit ^= QB_VALID_BIT; 1120 1121 return 0; 1122 } 1123 1124 /** 1125 * qbman_swp_pull_mem_back() - Issue the pull dequeue command 1126 * @s: the software portal object 1127 * @d: the software portal descriptor which has been configured with 1128 * the set of qbman_pull_desc_set_*() calls 1129 * 1130 * Return 0 for success, and -EBUSY if the software portal is not ready 1131 * to do pull dequeue. 1132 */ 1133 static 1134 int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d) 1135 { 1136 struct qbman_pull_desc *p; 1137 1138 if (!atomic_dec_and_test(&s->vdq.available)) { 1139 atomic_inc(&s->vdq.available); 1140 return -EBUSY; 1141 } 1142 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt; 1143 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) 1144 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR); 1145 else 1146 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM); 1147 p->numf = d->numf; 1148 p->tok = QMAN_DQ_TOKEN_VALID; 1149 p->dq_src = d->dq_src; 1150 p->rsp_addr = d->rsp_addr; 1151 p->rsp_addr_virt = d->rsp_addr_virt; 1152 1153 /* Set the verb byte, have to substitute in the valid-bit */ 1154 p->verb = d->verb | s->vdq.valid_bit; 1155 s->vdq.valid_bit ^= QB_VALID_BIT; 1156 dma_wmb(); 1157 qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE); 1158 1159 return 0; 1160 } 1161 1162 #define QMAN_DQRR_PI_MASK 0xf 1163 1164 /** 1165 * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry 1166 * @s: the software portal object 1167 * 1168 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry 1169 * only once, so repeated calls can return a sequence of DQRR entries, without 1170 * requiring they be consumed immediately or in any particular order. 1171 */ 1172 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s) 1173 { 1174 u32 verb; 1175 u32 response_verb; 1176 u32 flags; 1177 struct dpaa2_dq *p; 1178 1179 /* Before using valid-bit to detect if something is there, we have to 1180 * handle the case of the DQRR reset bug... 1181 */ 1182 if (unlikely(s->dqrr.reset_bug)) { 1183 /* 1184 * We pick up new entries by cache-inhibited producer index, 1185 * which means that a non-coherent mapping would require us to 1186 * invalidate and read *only* once that PI has indicated that 1187 * there's an entry here. The first trip around the DQRR ring 1188 * will be much less efficient than all subsequent trips around 1189 * it... 1190 */ 1191 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) & 1192 QMAN_DQRR_PI_MASK; 1193 1194 /* there are new entries if pi != next_idx */ 1195 if (pi == s->dqrr.next_idx) 1196 return NULL; 1197 1198 /* 1199 * if next_idx is/was the last ring index, and 'pi' is 1200 * different, we can disable the workaround as all the ring 1201 * entries have now been DMA'd to so valid-bit checking is 1202 * repaired. Note: this logic needs to be based on next_idx 1203 * (which increments one at a time), rather than on pi (which 1204 * can burst and wrap-around between our snapshots of it). 1205 */ 1206 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) { 1207 pr_debug("next_idx=%d, pi=%d, clear reset bug\n", 1208 s->dqrr.next_idx, pi); 1209 s->dqrr.reset_bug = 0; 1210 } 1211 prefetch(qbman_get_cmd(s, 1212 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx))); 1213 } 1214 1215 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)); 1216 verb = p->dq.verb; 1217 1218 /* 1219 * If the valid-bit isn't of the expected polarity, nothing there. Note, 1220 * in the DQRR reset bug workaround, we shouldn't need to skip these 1221 * check, because we've already determined that a new entry is available 1222 * and we've invalidated the cacheline before reading it, so the 1223 * valid-bit behaviour is repaired and should tell us what we already 1224 * knew from reading PI. 1225 */ 1226 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) { 1227 prefetch(qbman_get_cmd(s, 1228 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx))); 1229 return NULL; 1230 } 1231 /* 1232 * There's something there. Move "next_idx" attention to the next ring 1233 * entry (and prefetch it) before returning what we found. 1234 */ 1235 s->dqrr.next_idx++; 1236 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */ 1237 if (!s->dqrr.next_idx) 1238 s->dqrr.valid_bit ^= QB_VALID_BIT; 1239 1240 /* 1241 * If this is the final response to a volatile dequeue command 1242 * indicate that the vdq is available 1243 */ 1244 flags = p->dq.stat; 1245 response_verb = verb & QBMAN_RESULT_MASK; 1246 if ((response_verb == QBMAN_RESULT_DQ) && 1247 (flags & DPAA2_DQ_STAT_VOLATILE) && 1248 (flags & DPAA2_DQ_STAT_EXPIRED)) 1249 atomic_inc(&s->vdq.available); 1250 1251 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx))); 1252 1253 return p; 1254 } 1255 1256 /** 1257 * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry 1258 * @s: the software portal object 1259 * 1260 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry 1261 * only once, so repeated calls can return a sequence of DQRR entries, without 1262 * requiring they be consumed immediately or in any particular order. 1263 */ 1264 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s) 1265 { 1266 u32 verb; 1267 u32 response_verb; 1268 u32 flags; 1269 struct dpaa2_dq *p; 1270 1271 /* Before using valid-bit to detect if something is there, we have to 1272 * handle the case of the DQRR reset bug... 1273 */ 1274 if (unlikely(s->dqrr.reset_bug)) { 1275 /* 1276 * We pick up new entries by cache-inhibited producer index, 1277 * which means that a non-coherent mapping would require us to 1278 * invalidate and read *only* once that PI has indicated that 1279 * there's an entry here. The first trip around the DQRR ring 1280 * will be much less efficient than all subsequent trips around 1281 * it... 1282 */ 1283 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) & 1284 QMAN_DQRR_PI_MASK; 1285 1286 /* there are new entries if pi != next_idx */ 1287 if (pi == s->dqrr.next_idx) 1288 return NULL; 1289 1290 /* 1291 * if next_idx is/was the last ring index, and 'pi' is 1292 * different, we can disable the workaround as all the ring 1293 * entries have now been DMA'd to so valid-bit checking is 1294 * repaired. Note: this logic needs to be based on next_idx 1295 * (which increments one at a time), rather than on pi (which 1296 * can burst and wrap-around between our snapshots of it). 1297 */ 1298 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) { 1299 pr_debug("next_idx=%d, pi=%d, clear reset bug\n", 1300 s->dqrr.next_idx, pi); 1301 s->dqrr.reset_bug = 0; 1302 } 1303 prefetch(qbman_get_cmd(s, 1304 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx))); 1305 } 1306 1307 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx)); 1308 verb = p->dq.verb; 1309 1310 /* 1311 * If the valid-bit isn't of the expected polarity, nothing there. Note, 1312 * in the DQRR reset bug workaround, we shouldn't need to skip these 1313 * check, because we've already determined that a new entry is available 1314 * and we've invalidated the cacheline before reading it, so the 1315 * valid-bit behaviour is repaired and should tell us what we already 1316 * knew from reading PI. 1317 */ 1318 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) { 1319 prefetch(qbman_get_cmd(s, 1320 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx))); 1321 return NULL; 1322 } 1323 /* 1324 * There's something there. Move "next_idx" attention to the next ring 1325 * entry (and prefetch it) before returning what we found. 1326 */ 1327 s->dqrr.next_idx++; 1328 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */ 1329 if (!s->dqrr.next_idx) 1330 s->dqrr.valid_bit ^= QB_VALID_BIT; 1331 1332 /* 1333 * If this is the final response to a volatile dequeue command 1334 * indicate that the vdq is available 1335 */ 1336 flags = p->dq.stat; 1337 response_verb = verb & QBMAN_RESULT_MASK; 1338 if ((response_verb == QBMAN_RESULT_DQ) && 1339 (flags & DPAA2_DQ_STAT_VOLATILE) && 1340 (flags & DPAA2_DQ_STAT_EXPIRED)) 1341 atomic_inc(&s->vdq.available); 1342 1343 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx))); 1344 1345 return p; 1346 } 1347 1348 /** 1349 * qbman_swp_dqrr_consume() - Consume DQRR entries previously returned from 1350 * qbman_swp_dqrr_next(). 1351 * @s: the software portal object 1352 * @dq: the DQRR entry to be consumed 1353 */ 1354 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq) 1355 { 1356 qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq)); 1357 } 1358 1359 /** 1360 * qbman_result_has_new_result() - Check and get the dequeue response from the 1361 * dq storage memory set in pull dequeue command 1362 * @s: the software portal object 1363 * @dq: the dequeue result read from the memory 1364 * 1365 * Return 1 for getting a valid dequeue result, or 0 for not getting a valid 1366 * dequeue result. 1367 * 1368 * Only used for user-provided storage of dequeue results, not DQRR. For 1369 * efficiency purposes, the driver will perform any required endianness 1370 * conversion to ensure that the user's dequeue result storage is in host-endian 1371 * format. As such, once the user has called qbman_result_has_new_result() and 1372 * been returned a valid dequeue result, they should not call it again on 1373 * the same memory location (except of course if another dequeue command has 1374 * been executed to produce a new result to that location). 1375 */ 1376 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq) 1377 { 1378 if (dq->dq.tok != QMAN_DQ_TOKEN_VALID) 1379 return 0; 1380 1381 /* 1382 * Set token to be 0 so we will detect change back to 1 1383 * next time the looping is traversed. Const is cast away here 1384 * as we want users to treat the dequeue responses as read only. 1385 */ 1386 ((struct dpaa2_dq *)dq)->dq.tok = 0; 1387 1388 /* 1389 * Determine whether VDQCR is available based on whether the 1390 * current result is sitting in the first storage location of 1391 * the busy command. 1392 */ 1393 if (s->vdq.storage == dq) { 1394 s->vdq.storage = NULL; 1395 atomic_inc(&s->vdq.available); 1396 } 1397 1398 return 1; 1399 } 1400 1401 /** 1402 * qbman_release_desc_clear() - Clear the contents of a descriptor to 1403 * default/starting state. 1404 * @d: the pull dequeue descriptor to be cleared 1405 */ 1406 void qbman_release_desc_clear(struct qbman_release_desc *d) 1407 { 1408 memset(d, 0, sizeof(*d)); 1409 d->verb = 1 << 5; /* Release Command Valid */ 1410 } 1411 1412 /** 1413 * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to 1414 * @d: the pull dequeue descriptor to be set 1415 * @bpid: the bpid value to be set 1416 */ 1417 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid) 1418 { 1419 d->bpid = cpu_to_le16(bpid); 1420 } 1421 1422 /** 1423 * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI 1424 * interrupt source should be asserted after the release command is completed. 1425 * @d: the pull dequeue descriptor to be set 1426 * @enable: enable (1) or disable (0) value 1427 */ 1428 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable) 1429 { 1430 if (enable) 1431 d->verb |= 1 << 6; 1432 else 1433 d->verb &= ~(1 << 6); 1434 } 1435 1436 #define RAR_IDX(rar) ((rar) & 0x7) 1437 #define RAR_VB(rar) ((rar) & 0x80) 1438 #define RAR_SUCCESS(rar) ((rar) & 0x100) 1439 1440 /** 1441 * qbman_swp_release_direct() - Issue a buffer release command 1442 * @s: the software portal object 1443 * @d: the release descriptor 1444 * @buffers: a pointer pointing to the buffer address to be released 1445 * @num_buffers: number of buffers to be released, must be less than 8 1446 * 1447 * Return 0 for success, -EBUSY if the release command ring is not ready. 1448 */ 1449 int qbman_swp_release_direct(struct qbman_swp *s, 1450 const struct qbman_release_desc *d, 1451 const u64 *buffers, unsigned int num_buffers) 1452 { 1453 int i; 1454 struct qbman_release_desc *p; 1455 u32 rar; 1456 1457 if (!num_buffers || (num_buffers > 7)) 1458 return -EINVAL; 1459 1460 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR); 1461 if (!RAR_SUCCESS(rar)) 1462 return -EBUSY; 1463 1464 /* Start the release command */ 1465 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar))); 1466 1467 /* Copy the caller's buffer pointers to the command */ 1468 for (i = 0; i < num_buffers; i++) 1469 p->buf[i] = cpu_to_le64(buffers[i]); 1470 p->bpid = d->bpid; 1471 1472 /* 1473 * Set the verb byte, have to substitute in the valid-bit 1474 * and the number of buffers. 1475 */ 1476 dma_wmb(); 1477 p->verb = d->verb | RAR_VB(rar) | num_buffers; 1478 1479 return 0; 1480 } 1481 1482 /** 1483 * qbman_swp_release_mem_back() - Issue a buffer release command 1484 * @s: the software portal object 1485 * @d: the release descriptor 1486 * @buffers: a pointer pointing to the buffer address to be released 1487 * @num_buffers: number of buffers to be released, must be less than 8 1488 * 1489 * Return 0 for success, -EBUSY if the release command ring is not ready. 1490 */ 1491 int qbman_swp_release_mem_back(struct qbman_swp *s, 1492 const struct qbman_release_desc *d, 1493 const u64 *buffers, unsigned int num_buffers) 1494 { 1495 int i; 1496 struct qbman_release_desc *p; 1497 u32 rar; 1498 1499 if (!num_buffers || (num_buffers > 7)) 1500 return -EINVAL; 1501 1502 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR); 1503 if (!RAR_SUCCESS(rar)) 1504 return -EBUSY; 1505 1506 /* Start the release command */ 1507 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar))); 1508 1509 /* Copy the caller's buffer pointers to the command */ 1510 for (i = 0; i < num_buffers; i++) 1511 p->buf[i] = cpu_to_le64(buffers[i]); 1512 p->bpid = d->bpid; 1513 1514 p->verb = d->verb | RAR_VB(rar) | num_buffers; 1515 dma_wmb(); 1516 qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT + 1517 RAR_IDX(rar) * 4, QMAN_RT_MODE); 1518 1519 return 0; 1520 } 1521 1522 struct qbman_acquire_desc { 1523 u8 verb; 1524 u8 reserved; 1525 __le16 bpid; 1526 u8 num; 1527 u8 reserved2[59]; 1528 }; 1529 1530 struct qbman_acquire_rslt { 1531 u8 verb; 1532 u8 rslt; 1533 __le16 reserved; 1534 u8 num; 1535 u8 reserved2[3]; 1536 __le64 buf[7]; 1537 }; 1538 1539 /** 1540 * qbman_swp_acquire() - Issue a buffer acquire command 1541 * @s: the software portal object 1542 * @bpid: the buffer pool index 1543 * @buffers: a pointer pointing to the acquired buffer addresses 1544 * @num_buffers: number of buffers to be acquired, must be less than 8 1545 * 1546 * Return 0 for success, or negative error code if the acquire command 1547 * fails. 1548 */ 1549 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers, 1550 unsigned int num_buffers) 1551 { 1552 struct qbman_acquire_desc *p; 1553 struct qbman_acquire_rslt *r; 1554 int i; 1555 1556 if (!num_buffers || (num_buffers > 7)) 1557 return -EINVAL; 1558 1559 /* Start the management command */ 1560 p = qbman_swp_mc_start(s); 1561 1562 if (!p) 1563 return -EBUSY; 1564 1565 /* Encode the caller-provided attributes */ 1566 p->bpid = cpu_to_le16(bpid); 1567 p->num = num_buffers; 1568 1569 /* Complete the management command */ 1570 r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE); 1571 if (unlikely(!r)) { 1572 pr_err("qbman: acquire from BPID %d failed, no response\n", 1573 bpid); 1574 return -EIO; 1575 } 1576 1577 /* Decode the outcome */ 1578 WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE); 1579 1580 /* Determine success or failure */ 1581 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) { 1582 pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n", 1583 bpid, r->rslt); 1584 return -EIO; 1585 } 1586 1587 WARN_ON(r->num > num_buffers); 1588 1589 /* Copy the acquired buffers to the caller's array */ 1590 for (i = 0; i < r->num; i++) 1591 buffers[i] = le64_to_cpu(r->buf[i]); 1592 1593 return (int)r->num; 1594 } 1595 1596 struct qbman_alt_fq_state_desc { 1597 u8 verb; 1598 u8 reserved[3]; 1599 __le32 fqid; 1600 u8 reserved2[56]; 1601 }; 1602 1603 struct qbman_alt_fq_state_rslt { 1604 u8 verb; 1605 u8 rslt; 1606 u8 reserved[62]; 1607 }; 1608 1609 #define ALT_FQ_FQID_MASK 0x00FFFFFF 1610 1611 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid, 1612 u8 alt_fq_verb) 1613 { 1614 struct qbman_alt_fq_state_desc *p; 1615 struct qbman_alt_fq_state_rslt *r; 1616 1617 /* Start the management command */ 1618 p = qbman_swp_mc_start(s); 1619 if (!p) 1620 return -EBUSY; 1621 1622 p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK); 1623 1624 /* Complete the management command */ 1625 r = qbman_swp_mc_complete(s, p, alt_fq_verb); 1626 if (unlikely(!r)) { 1627 pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n", 1628 alt_fq_verb); 1629 return -EIO; 1630 } 1631 1632 /* Decode the outcome */ 1633 WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb); 1634 1635 /* Determine success or failure */ 1636 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) { 1637 pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n", 1638 fqid, r->verb, r->rslt); 1639 return -EIO; 1640 } 1641 1642 return 0; 1643 } 1644 1645 struct qbman_cdan_ctrl_desc { 1646 u8 verb; 1647 u8 reserved; 1648 __le16 ch; 1649 u8 we; 1650 u8 ctrl; 1651 __le16 reserved2; 1652 __le64 cdan_ctx; 1653 u8 reserved3[48]; 1654 1655 }; 1656 1657 struct qbman_cdan_ctrl_rslt { 1658 u8 verb; 1659 u8 rslt; 1660 __le16 ch; 1661 u8 reserved[60]; 1662 }; 1663 1664 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid, 1665 u8 we_mask, u8 cdan_en, 1666 u64 ctx) 1667 { 1668 struct qbman_cdan_ctrl_desc *p = NULL; 1669 struct qbman_cdan_ctrl_rslt *r = NULL; 1670 1671 /* Start the management command */ 1672 p = qbman_swp_mc_start(s); 1673 if (!p) 1674 return -EBUSY; 1675 1676 /* Encode the caller-provided attributes */ 1677 p->ch = cpu_to_le16(channelid); 1678 p->we = we_mask; 1679 if (cdan_en) 1680 p->ctrl = 1; 1681 else 1682 p->ctrl = 0; 1683 p->cdan_ctx = cpu_to_le64(ctx); 1684 1685 /* Complete the management command */ 1686 r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE); 1687 if (unlikely(!r)) { 1688 pr_err("qbman: wqchan config failed, no response\n"); 1689 return -EIO; 1690 } 1691 1692 WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE); 1693 1694 /* Determine success or failure */ 1695 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) { 1696 pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n", 1697 channelid, r->rslt); 1698 return -EIO; 1699 } 1700 1701 return 0; 1702 } 1703 1704 #define QBMAN_RESPONSE_VERB_MASK 0x7f 1705 #define QBMAN_FQ_QUERY_NP 0x45 1706 #define QBMAN_BP_QUERY 0x32 1707 1708 struct qbman_fq_query_desc { 1709 u8 verb; 1710 u8 reserved[3]; 1711 __le32 fqid; 1712 u8 reserved2[56]; 1713 }; 1714 1715 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid, 1716 struct qbman_fq_query_np_rslt *r) 1717 { 1718 struct qbman_fq_query_desc *p; 1719 void *resp; 1720 1721 p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s); 1722 if (!p) 1723 return -EBUSY; 1724 1725 /* FQID is a 24 bit value */ 1726 p->fqid = cpu_to_le32(fqid & 0x00FFFFFF); 1727 resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP); 1728 if (!resp) { 1729 pr_err("qbman: Query FQID %d NP fields failed, no response\n", 1730 fqid); 1731 return -EIO; 1732 } 1733 *r = *(struct qbman_fq_query_np_rslt *)resp; 1734 /* Decode the outcome */ 1735 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP); 1736 1737 /* Determine success or failure */ 1738 if (r->rslt != QBMAN_MC_RSLT_OK) { 1739 pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n", 1740 p->fqid, r->rslt); 1741 return -EIO; 1742 } 1743 1744 return 0; 1745 } 1746 1747 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r) 1748 { 1749 return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF); 1750 } 1751 1752 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r) 1753 { 1754 return le32_to_cpu(r->byte_cnt); 1755 } 1756 1757 struct qbman_bp_query_desc { 1758 u8 verb; 1759 u8 reserved; 1760 __le16 bpid; 1761 u8 reserved2[60]; 1762 }; 1763 1764 int qbman_bp_query(struct qbman_swp *s, u16 bpid, 1765 struct qbman_bp_query_rslt *r) 1766 { 1767 struct qbman_bp_query_desc *p; 1768 void *resp; 1769 1770 p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s); 1771 if (!p) 1772 return -EBUSY; 1773 1774 p->bpid = cpu_to_le16(bpid); 1775 resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY); 1776 if (!resp) { 1777 pr_err("qbman: Query BPID %d fields failed, no response\n", 1778 bpid); 1779 return -EIO; 1780 } 1781 *r = *(struct qbman_bp_query_rslt *)resp; 1782 /* Decode the outcome */ 1783 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY); 1784 1785 /* Determine success or failure */ 1786 if (r->rslt != QBMAN_MC_RSLT_OK) { 1787 pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n", 1788 bpid, r->rslt); 1789 return -EIO; 1790 } 1791 1792 return 0; 1793 } 1794 1795 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a) 1796 { 1797 return le32_to_cpu(a->fill); 1798 } 1799