1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4  * Copyright 2016 NXP
5  *
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/io.h>
10 #include <linux/slab.h>
11 #include <soc/fsl/dpaa2-global.h>
12 
13 #include "qbman-portal.h"
14 
15 #define QMAN_REV_4000   0x04000000
16 #define QMAN_REV_4100   0x04010000
17 #define QMAN_REV_4101   0x04010001
18 #define QMAN_REV_MASK   0xffff0000
19 
20 /* All QBMan command and result structures use this "valid bit" encoding */
21 #define QB_VALID_BIT ((u32)0x80)
22 
23 /* QBMan portal management command codes */
24 #define QBMAN_MC_ACQUIRE       0x30
25 #define QBMAN_WQCHAN_CONFIGURE 0x46
26 
27 /* CINH register offsets */
28 #define QBMAN_CINH_SWP_EQAR    0x8c0
29 #define QBMAN_CINH_SWP_DQPI    0xa00
30 #define QBMAN_CINH_SWP_DCAP    0xac0
31 #define QBMAN_CINH_SWP_SDQCR   0xb00
32 #define QBMAN_CINH_SWP_RAR     0xcc0
33 #define QBMAN_CINH_SWP_ISR     0xe00
34 #define QBMAN_CINH_SWP_IER     0xe40
35 #define QBMAN_CINH_SWP_ISDR    0xe80
36 #define QBMAN_CINH_SWP_IIR     0xec0
37 
38 /* CENA register offsets */
39 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
40 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
41 #define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((u32)(n) << 6))
42 #define QBMAN_CENA_SWP_CR      0x600
43 #define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((u32)(vb) >> 1))
44 #define QBMAN_CENA_SWP_VDQCR   0x780
45 
46 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
47 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
48 
49 /* Define token used to determine if response written to memory is valid */
50 #define QMAN_DQ_TOKEN_VALID 1
51 
52 /* SDQCR attribute codes */
53 #define QB_SDQCR_FC_SHIFT   29
54 #define QB_SDQCR_FC_MASK    0x1
55 #define QB_SDQCR_DCT_SHIFT  24
56 #define QB_SDQCR_DCT_MASK   0x3
57 #define QB_SDQCR_TOK_SHIFT  16
58 #define QB_SDQCR_TOK_MASK   0xff
59 #define QB_SDQCR_SRC_SHIFT  0
60 #define QB_SDQCR_SRC_MASK   0xffff
61 
62 /* opaque token for static dequeues */
63 #define QMAN_SDQCR_TOKEN    0xbb
64 
65 enum qbman_sdqcr_dct {
66 	qbman_sdqcr_dct_null = 0,
67 	qbman_sdqcr_dct_prio_ics,
68 	qbman_sdqcr_dct_active_ics,
69 	qbman_sdqcr_dct_active
70 };
71 
72 enum qbman_sdqcr_fc {
73 	qbman_sdqcr_fc_one = 0,
74 	qbman_sdqcr_fc_up_to_3 = 1
75 };
76 
77 /* Portal Access */
78 
79 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
80 {
81 	return readl_relaxed(p->addr_cinh + offset);
82 }
83 
84 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
85 					u32 value)
86 {
87 	writel_relaxed(value, p->addr_cinh + offset);
88 }
89 
90 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
91 {
92 	return p->addr_cena + offset;
93 }
94 
95 #define QBMAN_CINH_SWP_CFG   0xd00
96 
97 #define SWP_CFG_DQRR_MF_SHIFT 20
98 #define SWP_CFG_EST_SHIFT     16
99 #define SWP_CFG_WN_SHIFT      14
100 #define SWP_CFG_RPM_SHIFT     12
101 #define SWP_CFG_DCM_SHIFT     10
102 #define SWP_CFG_EPM_SHIFT     8
103 #define SWP_CFG_SD_SHIFT      5
104 #define SWP_CFG_SP_SHIFT      4
105 #define SWP_CFG_SE_SHIFT      3
106 #define SWP_CFG_DP_SHIFT      2
107 #define SWP_CFG_DE_SHIFT      1
108 #define SWP_CFG_EP_SHIFT      0
109 
110 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn,	u8 est, u8 rpm, u8 dcm,
111 				    u8 epm, int sd, int sp, int se,
112 				    int dp, int de, int ep)
113 {
114 	return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
115 		est << SWP_CFG_EST_SHIFT |
116 		wn << SWP_CFG_WN_SHIFT |
117 		rpm << SWP_CFG_RPM_SHIFT |
118 		dcm << SWP_CFG_DCM_SHIFT |
119 		epm << SWP_CFG_EPM_SHIFT |
120 		sd << SWP_CFG_SD_SHIFT |
121 		sp << SWP_CFG_SP_SHIFT |
122 		se << SWP_CFG_SE_SHIFT |
123 		dp << SWP_CFG_DP_SHIFT |
124 		de << SWP_CFG_DE_SHIFT |
125 		ep << SWP_CFG_EP_SHIFT);
126 }
127 
128 /**
129  * qbman_swp_init() - Create a functional object representing the given
130  *                    QBMan portal descriptor.
131  * @d: the given qbman swp descriptor
132  *
133  * Return qbman_swp portal for success, NULL if the object cannot
134  * be created.
135  */
136 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
137 {
138 	struct qbman_swp *p = kmalloc(sizeof(*p), GFP_KERNEL);
139 	u32 reg;
140 
141 	if (!p)
142 		return NULL;
143 	p->desc = d;
144 	p->mc.valid_bit = QB_VALID_BIT;
145 	p->sdq = 0;
146 	p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
147 	p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
148 	p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
149 
150 	atomic_set(&p->vdq.available, 1);
151 	p->vdq.valid_bit = QB_VALID_BIT;
152 	p->dqrr.next_idx = 0;
153 	p->dqrr.valid_bit = QB_VALID_BIT;
154 
155 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
156 		p->dqrr.dqrr_size = 4;
157 		p->dqrr.reset_bug = 1;
158 	} else {
159 		p->dqrr.dqrr_size = 8;
160 		p->dqrr.reset_bug = 0;
161 	}
162 
163 	p->addr_cena = d->cena_bar;
164 	p->addr_cinh = d->cinh_bar;
165 
166 	reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
167 				1, /* Writes Non-cacheable */
168 				0, /* EQCR_CI stashing threshold */
169 				3, /* RPM: Valid bit mode, RCR in array mode */
170 				2, /* DCM: Discrete consumption ack mode */
171 				3, /* EPM: Valid bit mode, EQCR in array mode */
172 				0, /* mem stashing drop enable == FALSE */
173 				1, /* mem stashing priority == TRUE */
174 				0, /* mem stashing enable == FALSE */
175 				1, /* dequeue stashing priority == TRUE */
176 				0, /* dequeue stashing enable == FALSE */
177 				0); /* EQCR_CI stashing priority == FALSE */
178 
179 	qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
180 	reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
181 	if (!reg) {
182 		pr_err("qbman: the portal is not enabled!\n");
183 		return NULL;
184 	}
185 
186 	/*
187 	 * SDQCR needs to be initialized to 0 when no channels are
188 	 * being dequeued from or else the QMan HW will indicate an
189 	 * error.  The values that were calculated above will be
190 	 * applied when dequeues from a specific channel are enabled.
191 	 */
192 	qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
193 	return p;
194 }
195 
196 /**
197  * qbman_swp_finish() - Create and destroy a functional object representing
198  *                      the given QBMan portal descriptor.
199  * @p: the qbman_swp object to be destroyed
200  */
201 void qbman_swp_finish(struct qbman_swp *p)
202 {
203 	kfree(p);
204 }
205 
206 /**
207  * qbman_swp_interrupt_read_status()
208  * @p: the given software portal
209  *
210  * Return the value in the SWP_ISR register.
211  */
212 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
213 {
214 	return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
215 }
216 
217 /**
218  * qbman_swp_interrupt_clear_status()
219  * @p: the given software portal
220  * @mask: The mask to clear in SWP_ISR register
221  */
222 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
223 {
224 	qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
225 }
226 
227 /**
228  * qbman_swp_interrupt_get_trigger() - read interrupt enable register
229  * @p: the given software portal
230  *
231  * Return the value in the SWP_IER register.
232  */
233 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
234 {
235 	return qbman_read_register(p, QBMAN_CINH_SWP_IER);
236 }
237 
238 /**
239  * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
240  * @p: the given software portal
241  * @mask: The mask of bits to enable in SWP_IER
242  */
243 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
244 {
245 	qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
246 }
247 
248 /**
249  * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
250  * @p: the given software portal object
251  *
252  * Return the value in the SWP_IIR register.
253  */
254 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
255 {
256 	return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
257 }
258 
259 /**
260  * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
261  * @p: the given software portal object
262  * @mask: The mask to set in SWP_IIR register
263  */
264 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
265 {
266 	qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
267 }
268 
269 /*
270  * Different management commands all use this common base layer of code to issue
271  * commands and poll for results.
272  */
273 
274 /*
275  * Returns a pointer to where the caller should fill in their management command
276  * (caller should ignore the verb byte)
277  */
278 void *qbman_swp_mc_start(struct qbman_swp *p)
279 {
280 	return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
281 }
282 
283 /*
284  * Commits merges in the caller-supplied command verb (which should not include
285  * the valid-bit) and submits the command to hardware
286  */
287 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
288 {
289 	u8 *v = cmd;
290 
291 	dma_wmb();
292 	*v = cmd_verb | p->mc.valid_bit;
293 }
294 
295 /*
296  * Checks for a completed response (returns non-NULL if only if the response
297  * is complete).
298  */
299 void *qbman_swp_mc_result(struct qbman_swp *p)
300 {
301 	u32 *ret, verb;
302 
303 	ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
304 
305 	/* Remove the valid-bit - command completed if the rest is non-zero */
306 	verb = ret[0] & ~QB_VALID_BIT;
307 	if (!verb)
308 		return NULL;
309 	p->mc.valid_bit ^= QB_VALID_BIT;
310 	return ret;
311 }
312 
313 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT    0
314 enum qb_enqueue_commands {
315 	enqueue_empty = 0,
316 	enqueue_response_always = 1,
317 	enqueue_rejects_to_fq = 2
318 };
319 
320 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT      2
321 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
322 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT     4
323 
324 /**
325  * qbman_eq_desc_clear() - Clear the contents of a descriptor to
326  *                         default/starting state.
327  */
328 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
329 {
330 	memset(d, 0, sizeof(*d));
331 }
332 
333 /**
334  * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
335  * @d:                the enqueue descriptor.
336  * @response_success: 1 = enqueue with response always; 0 = enqueue with
337  *                    rejections returned on a FQ.
338  */
339 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
340 {
341 	d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
342 	if (respond_success)
343 		d->verb |= enqueue_response_always;
344 	else
345 		d->verb |= enqueue_rejects_to_fq;
346 }
347 
348 /*
349  * Exactly one of the following descriptor "targets" should be set. (Calling any
350  * one of these will replace the effect of any prior call to one of these.)
351  *   -enqueue to a frame queue
352  *   -enqueue to a queuing destination
353  */
354 
355 /**
356  * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
357  * @d:    the enqueue descriptor
358  * @fqid: the id of the frame queue to be enqueued
359  */
360 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
361 {
362 	d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
363 	d->tgtid = cpu_to_le32(fqid);
364 }
365 
366 /**
367  * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
368  * @d:       the enqueue descriptor
369  * @qdid:    the id of the queuing destination to be enqueued
370  * @qd_bin:  the queuing destination bin
371  * @qd_prio: the queuing destination priority
372  */
373 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
374 			  u32 qd_bin, u32 qd_prio)
375 {
376 	d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
377 	d->tgtid = cpu_to_le32(qdid);
378 	d->qdbin = cpu_to_le16(qd_bin);
379 	d->qpri = qd_prio;
380 }
381 
382 #define EQAR_IDX(eqar)     ((eqar) & 0x7)
383 #define EQAR_VB(eqar)      ((eqar) & 0x80)
384 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
385 
386 /**
387  * qbman_swp_enqueue() - Issue an enqueue command
388  * @s:  the software portal used for enqueue
389  * @d:  the enqueue descriptor
390  * @fd: the frame descriptor to be enqueued
391  *
392  * Please note that 'fd' should only be NULL if the "action" of the
393  * descriptor is "orp_hole" or "orp_nesn".
394  *
395  * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
396  */
397 int qbman_swp_enqueue(struct qbman_swp *s, const struct qbman_eq_desc *d,
398 		      const struct dpaa2_fd *fd)
399 {
400 	struct qbman_eq_desc *p;
401 	u32 eqar = qbman_read_register(s, QBMAN_CINH_SWP_EQAR);
402 
403 	if (!EQAR_SUCCESS(eqar))
404 		return -EBUSY;
405 
406 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
407 	memcpy(&p->dca, &d->dca, 31);
408 	memcpy(&p->fd, fd, sizeof(*fd));
409 
410 	/* Set the verb byte, have to substitute in the valid-bit */
411 	dma_wmb();
412 	p->verb = d->verb | EQAR_VB(eqar);
413 
414 	return 0;
415 }
416 
417 /* Static (push) dequeue */
418 
419 /**
420  * qbman_swp_push_get() - Get the push dequeue setup
421  * @p:           the software portal object
422  * @channel_idx: the channel index to query
423  * @enabled:     returned boolean to show whether the push dequeue is enabled
424  *               for the given channel
425  */
426 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
427 {
428 	u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
429 
430 	WARN_ON(channel_idx > 15);
431 	*enabled = src | (1 << channel_idx);
432 }
433 
434 /**
435  * qbman_swp_push_set() - Enable or disable push dequeue
436  * @p:           the software portal object
437  * @channel_idx: the channel index (0 to 15)
438  * @enable:      enable or disable push dequeue
439  */
440 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
441 {
442 	u16 dqsrc;
443 
444 	WARN_ON(channel_idx > 15);
445 	if (enable)
446 		s->sdq |= 1 << channel_idx;
447 	else
448 		s->sdq &= ~(1 << channel_idx);
449 
450 	/* Read make the complete src map.  If no channels are enabled
451 	 * the SDQCR must be 0 or else QMan will assert errors
452 	 */
453 	dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
454 	if (dqsrc != 0)
455 		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
456 	else
457 		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
458 }
459 
460 #define QB_VDQCR_VERB_DCT_SHIFT    0
461 #define QB_VDQCR_VERB_DT_SHIFT     2
462 #define QB_VDQCR_VERB_RLS_SHIFT    4
463 #define QB_VDQCR_VERB_WAE_SHIFT    5
464 
465 enum qb_pull_dt_e {
466 	qb_pull_dt_channel,
467 	qb_pull_dt_workqueue,
468 	qb_pull_dt_framequeue
469 };
470 
471 /**
472  * qbman_pull_desc_clear() - Clear the contents of a descriptor to
473  *                           default/starting state
474  * @d: the pull dequeue descriptor to be cleared
475  */
476 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
477 {
478 	memset(d, 0, sizeof(*d));
479 }
480 
481 /**
482  * qbman_pull_desc_set_storage()- Set the pull dequeue storage
483  * @d:            the pull dequeue descriptor to be set
484  * @storage:      the pointer of the memory to store the dequeue result
485  * @storage_phys: the physical address of the storage memory
486  * @stash:        to indicate whether write allocate is enabled
487  *
488  * If not called, or if called with 'storage' as NULL, the result pull dequeues
489  * will produce results to DQRR. If 'storage' is non-NULL, then results are
490  * produced to the given memory location (using the DMA address which
491  * the caller provides in 'storage_phys'), and 'stash' controls whether or not
492  * those writes to main-memory express a cache-warming attribute.
493  */
494 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
495 				 struct dpaa2_dq *storage,
496 				 dma_addr_t storage_phys,
497 				 int stash)
498 {
499 	/* save the virtual address */
500 	d->rsp_addr_virt = (u64)(uintptr_t)storage;
501 
502 	if (!storage) {
503 		d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
504 		return;
505 	}
506 	d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
507 	if (stash)
508 		d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
509 	else
510 		d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
511 
512 	d->rsp_addr = cpu_to_le64(storage_phys);
513 }
514 
515 /**
516  * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
517  * @d:         the pull dequeue descriptor to be set
518  * @numframes: number of frames to be set, must be between 1 and 16, inclusive
519  */
520 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
521 {
522 	d->numf = numframes - 1;
523 }
524 
525 /*
526  * Exactly one of the following descriptor "actions" should be set. (Calling any
527  * one of these will replace the effect of any prior call to one of these.)
528  * - pull dequeue from the given frame queue (FQ)
529  * - pull dequeue from any FQ in the given work queue (WQ)
530  * - pull dequeue from any FQ in any WQ in the given channel
531  */
532 
533 /**
534  * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
535  * @fqid: the frame queue index of the given FQ
536  */
537 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
538 {
539 	d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
540 	d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
541 	d->dq_src = cpu_to_le32(fqid);
542 }
543 
544 /**
545  * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
546  * @wqid: composed of channel id and wqid within the channel
547  * @dct:  the dequeue command type
548  */
549 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
550 			    enum qbman_pull_type_e dct)
551 {
552 	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
553 	d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
554 	d->dq_src = cpu_to_le32(wqid);
555 }
556 
557 /**
558  * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
559  *                                 dequeues
560  * @chid: the channel id to be dequeued
561  * @dct:  the dequeue command type
562  */
563 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
564 				 enum qbman_pull_type_e dct)
565 {
566 	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
567 	d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
568 	d->dq_src = cpu_to_le32(chid);
569 }
570 
571 /**
572  * qbman_swp_pull() - Issue the pull dequeue command
573  * @s: the software portal object
574  * @d: the software portal descriptor which has been configured with
575  *     the set of qbman_pull_desc_set_*() calls
576  *
577  * Return 0 for success, and -EBUSY if the software portal is not ready
578  * to do pull dequeue.
579  */
580 int qbman_swp_pull(struct qbman_swp *s, struct qbman_pull_desc *d)
581 {
582 	struct qbman_pull_desc *p;
583 
584 	if (!atomic_dec_and_test(&s->vdq.available)) {
585 		atomic_inc(&s->vdq.available);
586 		return -EBUSY;
587 	}
588 	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
589 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
590 	p->numf = d->numf;
591 	p->tok = QMAN_DQ_TOKEN_VALID;
592 	p->dq_src = d->dq_src;
593 	p->rsp_addr = d->rsp_addr;
594 	p->rsp_addr_virt = d->rsp_addr_virt;
595 	dma_wmb();
596 
597 	/* Set the verb byte, have to substitute in the valid-bit */
598 	p->verb = d->verb | s->vdq.valid_bit;
599 	s->vdq.valid_bit ^= QB_VALID_BIT;
600 
601 	return 0;
602 }
603 
604 #define QMAN_DQRR_PI_MASK   0xf
605 
606 /**
607  * qbman_swp_dqrr_next() - Get an valid DQRR entry
608  * @s: the software portal object
609  *
610  * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
611  * only once, so repeated calls can return a sequence of DQRR entries, without
612  * requiring they be consumed immediately or in any particular order.
613  */
614 const struct dpaa2_dq *qbman_swp_dqrr_next(struct qbman_swp *s)
615 {
616 	u32 verb;
617 	u32 response_verb;
618 	u32 flags;
619 	struct dpaa2_dq *p;
620 
621 	/* Before using valid-bit to detect if something is there, we have to
622 	 * handle the case of the DQRR reset bug...
623 	 */
624 	if (unlikely(s->dqrr.reset_bug)) {
625 		/*
626 		 * We pick up new entries by cache-inhibited producer index,
627 		 * which means that a non-coherent mapping would require us to
628 		 * invalidate and read *only* once that PI has indicated that
629 		 * there's an entry here. The first trip around the DQRR ring
630 		 * will be much less efficient than all subsequent trips around
631 		 * it...
632 		 */
633 		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
634 			QMAN_DQRR_PI_MASK;
635 
636 		/* there are new entries if pi != next_idx */
637 		if (pi == s->dqrr.next_idx)
638 			return NULL;
639 
640 		/*
641 		 * if next_idx is/was the last ring index, and 'pi' is
642 		 * different, we can disable the workaround as all the ring
643 		 * entries have now been DMA'd to so valid-bit checking is
644 		 * repaired. Note: this logic needs to be based on next_idx
645 		 * (which increments one at a time), rather than on pi (which
646 		 * can burst and wrap-around between our snapshots of it).
647 		 */
648 		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
649 			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
650 				 s->dqrr.next_idx, pi);
651 			s->dqrr.reset_bug = 0;
652 		}
653 		prefetch(qbman_get_cmd(s,
654 				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
655 	}
656 
657 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
658 	verb = p->dq.verb;
659 
660 	/*
661 	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
662 	 * in the DQRR reset bug workaround, we shouldn't need to skip these
663 	 * check, because we've already determined that a new entry is available
664 	 * and we've invalidated the cacheline before reading it, so the
665 	 * valid-bit behaviour is repaired and should tell us what we already
666 	 * knew from reading PI.
667 	 */
668 	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
669 		prefetch(qbman_get_cmd(s,
670 				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
671 		return NULL;
672 	}
673 	/*
674 	 * There's something there. Move "next_idx" attention to the next ring
675 	 * entry (and prefetch it) before returning what we found.
676 	 */
677 	s->dqrr.next_idx++;
678 	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
679 	if (!s->dqrr.next_idx)
680 		s->dqrr.valid_bit ^= QB_VALID_BIT;
681 
682 	/*
683 	 * If this is the final response to a volatile dequeue command
684 	 * indicate that the vdq is available
685 	 */
686 	flags = p->dq.stat;
687 	response_verb = verb & QBMAN_RESULT_MASK;
688 	if ((response_verb == QBMAN_RESULT_DQ) &&
689 	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
690 	    (flags & DPAA2_DQ_STAT_EXPIRED))
691 		atomic_inc(&s->vdq.available);
692 
693 	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
694 
695 	return p;
696 }
697 
698 /**
699  * qbman_swp_dqrr_consume() -  Consume DQRR entries previously returned from
700  *                             qbman_swp_dqrr_next().
701  * @s: the software portal object
702  * @dq: the DQRR entry to be consumed
703  */
704 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
705 {
706 	qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
707 }
708 
709 /**
710  * qbman_result_has_new_result() - Check and get the dequeue response from the
711  *                                 dq storage memory set in pull dequeue command
712  * @s: the software portal object
713  * @dq: the dequeue result read from the memory
714  *
715  * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
716  * dequeue result.
717  *
718  * Only used for user-provided storage of dequeue results, not DQRR. For
719  * efficiency purposes, the driver will perform any required endianness
720  * conversion to ensure that the user's dequeue result storage is in host-endian
721  * format. As such, once the user has called qbman_result_has_new_result() and
722  * been returned a valid dequeue result, they should not call it again on
723  * the same memory location (except of course if another dequeue command has
724  * been executed to produce a new result to that location).
725  */
726 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
727 {
728 	if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
729 		return 0;
730 
731 	/*
732 	 * Set token to be 0 so we will detect change back to 1
733 	 * next time the looping is traversed. Const is cast away here
734 	 * as we want users to treat the dequeue responses as read only.
735 	 */
736 	((struct dpaa2_dq *)dq)->dq.tok = 0;
737 
738 	/*
739 	 * Determine whether VDQCR is available based on whether the
740 	 * current result is sitting in the first storage location of
741 	 * the busy command.
742 	 */
743 	if (s->vdq.storage == dq) {
744 		s->vdq.storage = NULL;
745 		atomic_inc(&s->vdq.available);
746 	}
747 
748 	return 1;
749 }
750 
751 /**
752  * qbman_release_desc_clear() - Clear the contents of a descriptor to
753  *                              default/starting state.
754  */
755 void qbman_release_desc_clear(struct qbman_release_desc *d)
756 {
757 	memset(d, 0, sizeof(*d));
758 	d->verb = 1 << 5; /* Release Command Valid */
759 }
760 
761 /**
762  * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
763  */
764 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
765 {
766 	d->bpid = cpu_to_le16(bpid);
767 }
768 
769 /**
770  * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
771  * interrupt source should be asserted after the release command is completed.
772  */
773 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
774 {
775 	if (enable)
776 		d->verb |= 1 << 6;
777 	else
778 		d->verb &= ~(1 << 6);
779 }
780 
781 #define RAR_IDX(rar)     ((rar) & 0x7)
782 #define RAR_VB(rar)      ((rar) & 0x80)
783 #define RAR_SUCCESS(rar) ((rar) & 0x100)
784 
785 /**
786  * qbman_swp_release() - Issue a buffer release command
787  * @s:           the software portal object
788  * @d:           the release descriptor
789  * @buffers:     a pointer pointing to the buffer address to be released
790  * @num_buffers: number of buffers to be released,  must be less than 8
791  *
792  * Return 0 for success, -EBUSY if the release command ring is not ready.
793  */
794 int qbman_swp_release(struct qbman_swp *s, const struct qbman_release_desc *d,
795 		      const u64 *buffers, unsigned int num_buffers)
796 {
797 	int i;
798 	struct qbman_release_desc *p;
799 	u32 rar;
800 
801 	if (!num_buffers || (num_buffers > 7))
802 		return -EINVAL;
803 
804 	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
805 	if (!RAR_SUCCESS(rar))
806 		return -EBUSY;
807 
808 	/* Start the release command */
809 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
810 	/* Copy the caller's buffer pointers to the command */
811 	for (i = 0; i < num_buffers; i++)
812 		p->buf[i] = cpu_to_le64(buffers[i]);
813 	p->bpid = d->bpid;
814 
815 	/*
816 	 * Set the verb byte, have to substitute in the valid-bit and the number
817 	 * of buffers.
818 	 */
819 	dma_wmb();
820 	p->verb = d->verb | RAR_VB(rar) | num_buffers;
821 
822 	return 0;
823 }
824 
825 struct qbman_acquire_desc {
826 	u8 verb;
827 	u8 reserved;
828 	__le16 bpid;
829 	u8 num;
830 	u8 reserved2[59];
831 };
832 
833 struct qbman_acquire_rslt {
834 	u8 verb;
835 	u8 rslt;
836 	__le16 reserved;
837 	u8 num;
838 	u8 reserved2[3];
839 	__le64 buf[7];
840 };
841 
842 /**
843  * qbman_swp_acquire() - Issue a buffer acquire command
844  * @s:           the software portal object
845  * @bpid:        the buffer pool index
846  * @buffers:     a pointer pointing to the acquired buffer addresses
847  * @num_buffers: number of buffers to be acquired, must be less than 8
848  *
849  * Return 0 for success, or negative error code if the acquire command
850  * fails.
851  */
852 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
853 		      unsigned int num_buffers)
854 {
855 	struct qbman_acquire_desc *p;
856 	struct qbman_acquire_rslt *r;
857 	int i;
858 
859 	if (!num_buffers || (num_buffers > 7))
860 		return -EINVAL;
861 
862 	/* Start the management command */
863 	p = qbman_swp_mc_start(s);
864 
865 	if (!p)
866 		return -EBUSY;
867 
868 	/* Encode the caller-provided attributes */
869 	p->bpid = cpu_to_le16(bpid);
870 	p->num = num_buffers;
871 
872 	/* Complete the management command */
873 	r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
874 	if (unlikely(!r)) {
875 		pr_err("qbman: acquire from BPID %d failed, no response\n",
876 		       bpid);
877 		return -EIO;
878 	}
879 
880 	/* Decode the outcome */
881 	WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
882 
883 	/* Determine success or failure */
884 	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
885 		pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
886 		       bpid, r->rslt);
887 		return -EIO;
888 	}
889 
890 	WARN_ON(r->num > num_buffers);
891 
892 	/* Copy the acquired buffers to the caller's array */
893 	for (i = 0; i < r->num; i++)
894 		buffers[i] = le64_to_cpu(r->buf[i]);
895 
896 	return (int)r->num;
897 }
898 
899 struct qbman_alt_fq_state_desc {
900 	u8 verb;
901 	u8 reserved[3];
902 	__le32 fqid;
903 	u8 reserved2[56];
904 };
905 
906 struct qbman_alt_fq_state_rslt {
907 	u8 verb;
908 	u8 rslt;
909 	u8 reserved[62];
910 };
911 
912 #define ALT_FQ_FQID_MASK 0x00FFFFFF
913 
914 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
915 			   u8 alt_fq_verb)
916 {
917 	struct qbman_alt_fq_state_desc *p;
918 	struct qbman_alt_fq_state_rslt *r;
919 
920 	/* Start the management command */
921 	p = qbman_swp_mc_start(s);
922 	if (!p)
923 		return -EBUSY;
924 
925 	p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
926 
927 	/* Complete the management command */
928 	r = qbman_swp_mc_complete(s, p, alt_fq_verb);
929 	if (unlikely(!r)) {
930 		pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
931 		       alt_fq_verb);
932 		return -EIO;
933 	}
934 
935 	/* Decode the outcome */
936 	WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
937 
938 	/* Determine success or failure */
939 	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
940 		pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
941 		       fqid, r->verb, r->rslt);
942 		return -EIO;
943 	}
944 
945 	return 0;
946 }
947 
948 struct qbman_cdan_ctrl_desc {
949 	u8 verb;
950 	u8 reserved;
951 	__le16 ch;
952 	u8 we;
953 	u8 ctrl;
954 	__le16 reserved2;
955 	__le64 cdan_ctx;
956 	u8 reserved3[48];
957 
958 };
959 
960 struct qbman_cdan_ctrl_rslt {
961 	u8 verb;
962 	u8 rslt;
963 	__le16 ch;
964 	u8 reserved[60];
965 };
966 
967 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
968 		       u8 we_mask, u8 cdan_en,
969 		       u64 ctx)
970 {
971 	struct qbman_cdan_ctrl_desc *p = NULL;
972 	struct qbman_cdan_ctrl_rslt *r = NULL;
973 
974 	/* Start the management command */
975 	p = qbman_swp_mc_start(s);
976 	if (!p)
977 		return -EBUSY;
978 
979 	/* Encode the caller-provided attributes */
980 	p->ch = cpu_to_le16(channelid);
981 	p->we = we_mask;
982 	if (cdan_en)
983 		p->ctrl = 1;
984 	else
985 		p->ctrl = 0;
986 	p->cdan_ctx = cpu_to_le64(ctx);
987 
988 	/* Complete the management command */
989 	r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
990 	if (unlikely(!r)) {
991 		pr_err("qbman: wqchan config failed, no response\n");
992 		return -EIO;
993 	}
994 
995 	WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
996 
997 	/* Determine success or failure */
998 	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
999 		pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1000 		       channelid, r->rslt);
1001 		return -EIO;
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 #define QBMAN_RESPONSE_VERB_MASK	0x7f
1008 #define QBMAN_FQ_QUERY_NP		0x45
1009 #define QBMAN_BP_QUERY			0x32
1010 
1011 struct qbman_fq_query_desc {
1012 	u8 verb;
1013 	u8 reserved[3];
1014 	__le32 fqid;
1015 	u8 reserved2[56];
1016 };
1017 
1018 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1019 			 struct qbman_fq_query_np_rslt *r)
1020 {
1021 	struct qbman_fq_query_desc *p;
1022 	void *resp;
1023 
1024 	p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1025 	if (!p)
1026 		return -EBUSY;
1027 
1028 	/* FQID is a 24 bit value */
1029 	p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1030 	resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1031 	if (!resp) {
1032 		pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1033 		       fqid);
1034 		return -EIO;
1035 	}
1036 	*r = *(struct qbman_fq_query_np_rslt *)resp;
1037 	/* Decode the outcome */
1038 	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1039 
1040 	/* Determine success or failure */
1041 	if (r->rslt != QBMAN_MC_RSLT_OK) {
1042 		pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1043 		       p->fqid, r->rslt);
1044 		return -EIO;
1045 	}
1046 
1047 	return 0;
1048 }
1049 
1050 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1051 {
1052 	return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1053 }
1054 
1055 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1056 {
1057 	return le32_to_cpu(r->byte_cnt);
1058 }
1059 
1060 struct qbman_bp_query_desc {
1061 	u8 verb;
1062 	u8 reserved;
1063 	__le16 bpid;
1064 	u8 reserved2[60];
1065 };
1066 
1067 int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1068 		   struct qbman_bp_query_rslt *r)
1069 {
1070 	struct qbman_bp_query_desc *p;
1071 	void *resp;
1072 
1073 	p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1074 	if (!p)
1075 		return -EBUSY;
1076 
1077 	p->bpid = cpu_to_le16(bpid);
1078 	resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1079 	if (!resp) {
1080 		pr_err("qbman: Query BPID %d fields failed, no response\n",
1081 		       bpid);
1082 		return -EIO;
1083 	}
1084 	*r = *(struct qbman_bp_query_rslt *)resp;
1085 	/* Decode the outcome */
1086 	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1087 
1088 	/* Determine success or failure */
1089 	if (r->rslt != QBMAN_MC_RSLT_OK) {
1090 		pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1091 		       bpid, r->rslt);
1092 		return -EIO;
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1099 {
1100 	return le32_to_cpu(a->fill);
1101 }
1102