1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4  * Copyright 2016-2019 NXP
5  *
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/io.h>
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <soc/fsl/dpaa2-global.h>
13 
14 #include "qbman-portal.h"
15 
16 /* All QBMan command and result structures use this "valid bit" encoding */
17 #define QB_VALID_BIT ((u32)0x80)
18 
19 /* QBMan portal management command codes */
20 #define QBMAN_MC_ACQUIRE       0x30
21 #define QBMAN_WQCHAN_CONFIGURE 0x46
22 
23 /* CINH register offsets */
24 #define QBMAN_CINH_SWP_EQCR_PI      0x800
25 #define QBMAN_CINH_SWP_EQCR_CI	    0x840
26 #define QBMAN_CINH_SWP_EQAR    0x8c0
27 #define QBMAN_CINH_SWP_CR_RT        0x900
28 #define QBMAN_CINH_SWP_VDQCR_RT     0x940
29 #define QBMAN_CINH_SWP_EQCR_AM_RT   0x980
30 #define QBMAN_CINH_SWP_RCR_AM_RT    0x9c0
31 #define QBMAN_CINH_SWP_DQPI    0xa00
32 #define QBMAN_CINH_SWP_DCAP    0xac0
33 #define QBMAN_CINH_SWP_SDQCR   0xb00
34 #define QBMAN_CINH_SWP_EQCR_AM_RT2  0xb40
35 #define QBMAN_CINH_SWP_RCR_PI       0xc00
36 #define QBMAN_CINH_SWP_RAR     0xcc0
37 #define QBMAN_CINH_SWP_ISR     0xe00
38 #define QBMAN_CINH_SWP_IER     0xe40
39 #define QBMAN_CINH_SWP_ISDR    0xe80
40 #define QBMAN_CINH_SWP_IIR     0xec0
41 
42 /* CENA register offsets */
43 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
44 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
45 #define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((u32)(n) << 6))
46 #define QBMAN_CENA_SWP_CR      0x600
47 #define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((u32)(vb) >> 1))
48 #define QBMAN_CENA_SWP_VDQCR   0x780
49 #define QBMAN_CENA_SWP_EQCR_CI 0x840
50 #define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
51 
52 /* CENA register offsets in memory-backed mode */
53 #define QBMAN_CENA_SWP_DQRR_MEM(n)  (0x800 + ((u32)(n) << 6))
54 #define QBMAN_CENA_SWP_RCR_MEM(n)   (0x1400 + ((u32)(n) << 6))
55 #define QBMAN_CENA_SWP_CR_MEM       0x1600
56 #define QBMAN_CENA_SWP_RR_MEM       0x1680
57 #define QBMAN_CENA_SWP_VDQCR_MEM    0x1780
58 
59 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
60 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
61 
62 /* Define token used to determine if response written to memory is valid */
63 #define QMAN_DQ_TOKEN_VALID 1
64 
65 /* SDQCR attribute codes */
66 #define QB_SDQCR_FC_SHIFT   29
67 #define QB_SDQCR_FC_MASK    0x1
68 #define QB_SDQCR_DCT_SHIFT  24
69 #define QB_SDQCR_DCT_MASK   0x3
70 #define QB_SDQCR_TOK_SHIFT  16
71 #define QB_SDQCR_TOK_MASK   0xff
72 #define QB_SDQCR_SRC_SHIFT  0
73 #define QB_SDQCR_SRC_MASK   0xffff
74 
75 /* opaque token for static dequeues */
76 #define QMAN_SDQCR_TOKEN    0xbb
77 
78 #define QBMAN_EQCR_DCA_IDXMASK          0x0f
79 #define QBMAN_ENQUEUE_FLAG_DCA          (1ULL << 31)
80 
81 #define EQ_DESC_SIZE_WITHOUT_FD 29
82 #define EQ_DESC_SIZE_FD_START 32
83 
84 enum qbman_sdqcr_dct {
85 	qbman_sdqcr_dct_null = 0,
86 	qbman_sdqcr_dct_prio_ics,
87 	qbman_sdqcr_dct_active_ics,
88 	qbman_sdqcr_dct_active
89 };
90 
91 enum qbman_sdqcr_fc {
92 	qbman_sdqcr_fc_one = 0,
93 	qbman_sdqcr_fc_up_to_3 = 1
94 };
95 
96 /* Internal Function declaration */
97 static int qbman_swp_enqueue_direct(struct qbman_swp *s,
98 				    const struct qbman_eq_desc *d,
99 				    const struct dpaa2_fd *fd);
100 static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
101 				      const struct qbman_eq_desc *d,
102 				      const struct dpaa2_fd *fd);
103 static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
104 					     const struct qbman_eq_desc *d,
105 					     const struct dpaa2_fd *fd,
106 					     uint32_t *flags,
107 					     int num_frames);
108 static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
109 					       const struct qbman_eq_desc *d,
110 					       const struct dpaa2_fd *fd,
111 					       uint32_t *flags,
112 					       int num_frames);
113 static int
114 qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
115 				       const struct qbman_eq_desc *d,
116 				       const struct dpaa2_fd *fd,
117 				       int num_frames);
118 static
119 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
120 					     const struct qbman_eq_desc *d,
121 					     const struct dpaa2_fd *fd,
122 					     int num_frames);
123 static int qbman_swp_pull_direct(struct qbman_swp *s,
124 				 struct qbman_pull_desc *d);
125 static int qbman_swp_pull_mem_back(struct qbman_swp *s,
126 				   struct qbman_pull_desc *d);
127 
128 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
129 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
130 
131 static int qbman_swp_release_direct(struct qbman_swp *s,
132 				    const struct qbman_release_desc *d,
133 				    const u64 *buffers,
134 				    unsigned int num_buffers);
135 static int qbman_swp_release_mem_back(struct qbman_swp *s,
136 				      const struct qbman_release_desc *d,
137 				      const u64 *buffers,
138 				      unsigned int num_buffers);
139 
140 /* Function pointers */
141 int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
142 			     const struct qbman_eq_desc *d,
143 			     const struct dpaa2_fd *fd)
144 	= qbman_swp_enqueue_direct;
145 
146 int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
147 				      const struct qbman_eq_desc *d,
148 				      const struct dpaa2_fd *fd,
149 				      uint32_t *flags,
150 					     int num_frames)
151 	= qbman_swp_enqueue_multiple_direct;
152 
153 int
154 (*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
155 				       const struct qbman_eq_desc *d,
156 				       const struct dpaa2_fd *fd,
157 				       int num_frames)
158 	= qbman_swp_enqueue_multiple_desc_direct;
159 
160 int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
161 			= qbman_swp_pull_direct;
162 
163 const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
164 			= qbman_swp_dqrr_next_direct;
165 
166 int (*qbman_swp_release_ptr)(struct qbman_swp *s,
167 			     const struct qbman_release_desc *d,
168 			     const u64 *buffers,
169 			     unsigned int num_buffers)
170 			= qbman_swp_release_direct;
171 
172 /* Portal Access */
173 
174 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
175 {
176 	return readl_relaxed(p->addr_cinh + offset);
177 }
178 
179 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
180 					u32 value)
181 {
182 	writel_relaxed(value, p->addr_cinh + offset);
183 }
184 
185 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
186 {
187 	return p->addr_cena + offset;
188 }
189 
190 #define QBMAN_CINH_SWP_CFG   0xd00
191 
192 #define SWP_CFG_DQRR_MF_SHIFT 20
193 #define SWP_CFG_EST_SHIFT     16
194 #define SWP_CFG_CPBS_SHIFT    15
195 #define SWP_CFG_WN_SHIFT      14
196 #define SWP_CFG_RPM_SHIFT     12
197 #define SWP_CFG_DCM_SHIFT     10
198 #define SWP_CFG_EPM_SHIFT     8
199 #define SWP_CFG_VPM_SHIFT     7
200 #define SWP_CFG_CPM_SHIFT     6
201 #define SWP_CFG_SD_SHIFT      5
202 #define SWP_CFG_SP_SHIFT      4
203 #define SWP_CFG_SE_SHIFT      3
204 #define SWP_CFG_DP_SHIFT      2
205 #define SWP_CFG_DE_SHIFT      1
206 #define SWP_CFG_EP_SHIFT      0
207 
208 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn,	u8 est, u8 rpm, u8 dcm,
209 				    u8 epm, int sd, int sp, int se,
210 				    int dp, int de, int ep)
211 {
212 	return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
213 		est << SWP_CFG_EST_SHIFT |
214 		wn << SWP_CFG_WN_SHIFT |
215 		rpm << SWP_CFG_RPM_SHIFT |
216 		dcm << SWP_CFG_DCM_SHIFT |
217 		epm << SWP_CFG_EPM_SHIFT |
218 		sd << SWP_CFG_SD_SHIFT |
219 		sp << SWP_CFG_SP_SHIFT |
220 		se << SWP_CFG_SE_SHIFT |
221 		dp << SWP_CFG_DP_SHIFT |
222 		de << SWP_CFG_DE_SHIFT |
223 		ep << SWP_CFG_EP_SHIFT);
224 }
225 
226 #define QMAN_RT_MODE	   0x00000100
227 
228 static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
229 {
230 	/* 'first' is included, 'last' is excluded */
231 	if (first <= last)
232 		return last - first;
233 	else
234 		return (2 * ringsize) - (first - last);
235 }
236 
237 /**
238  * qbman_swp_init() - Create a functional object representing the given
239  *                    QBMan portal descriptor.
240  * @d: the given qbman swp descriptor
241  *
242  * Return qbman_swp portal for success, NULL if the object cannot
243  * be created.
244  */
245 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
246 {
247 	struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
248 	u32 reg;
249 	u32 mask_size;
250 	u32 eqcr_pi;
251 
252 	if (!p)
253 		return NULL;
254 
255 	spin_lock_init(&p->access_spinlock);
256 
257 	p->desc = d;
258 	p->mc.valid_bit = QB_VALID_BIT;
259 	p->sdq = 0;
260 	p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
261 	p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
262 	p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
263 	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
264 		p->mr.valid_bit = QB_VALID_BIT;
265 
266 	atomic_set(&p->vdq.available, 1);
267 	p->vdq.valid_bit = QB_VALID_BIT;
268 	p->dqrr.next_idx = 0;
269 	p->dqrr.valid_bit = QB_VALID_BIT;
270 
271 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
272 		p->dqrr.dqrr_size = 4;
273 		p->dqrr.reset_bug = 1;
274 	} else {
275 		p->dqrr.dqrr_size = 8;
276 		p->dqrr.reset_bug = 0;
277 	}
278 
279 	p->addr_cena = d->cena_bar;
280 	p->addr_cinh = d->cinh_bar;
281 
282 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
283 
284 		reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
285 			1, /* Writes Non-cacheable */
286 			0, /* EQCR_CI stashing threshold */
287 			3, /* RPM: RCR in array mode */
288 			2, /* DCM: Discrete consumption ack */
289 			2, /* EPM: EQCR in ring mode */
290 			1, /* mem stashing drop enable enable */
291 			1, /* mem stashing priority enable */
292 			1, /* mem stashing enable */
293 			1, /* dequeue stashing priority enable */
294 			0, /* dequeue stashing enable enable */
295 			0); /* EQCR_CI stashing priority enable */
296 	} else {
297 		memset(p->addr_cena, 0, 64 * 1024);
298 		reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
299 			1, /* Writes Non-cacheable */
300 			1, /* EQCR_CI stashing threshold */
301 			3, /* RPM: RCR in array mode */
302 			2, /* DCM: Discrete consumption ack */
303 			0, /* EPM: EQCR in ring mode */
304 			1, /* mem stashing drop enable */
305 			1, /* mem stashing priority enable */
306 			1, /* mem stashing enable */
307 			1, /* dequeue stashing priority enable */
308 			0, /* dequeue stashing enable */
309 			0); /* EQCR_CI stashing priority enable */
310 		reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
311 		       1 << SWP_CFG_VPM_SHIFT |  /* VDQCR read triggered mode */
312 		       1 << SWP_CFG_CPM_SHIFT;   /* CR read triggered mode */
313 	}
314 
315 	qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
316 	reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
317 	if (!reg) {
318 		pr_err("qbman: the portal is not enabled!\n");
319 		kfree(p);
320 		return NULL;
321 	}
322 
323 	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
324 		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
325 		qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
326 	}
327 	/*
328 	 * SDQCR needs to be initialized to 0 when no channels are
329 	 * being dequeued from or else the QMan HW will indicate an
330 	 * error.  The values that were calculated above will be
331 	 * applied when dequeues from a specific channel are enabled.
332 	 */
333 	qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
334 
335 	p->eqcr.pi_ring_size = 8;
336 	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
337 		p->eqcr.pi_ring_size = 32;
338 		qbman_swp_enqueue_ptr =
339 			qbman_swp_enqueue_mem_back;
340 		qbman_swp_enqueue_multiple_ptr =
341 			qbman_swp_enqueue_multiple_mem_back;
342 		qbman_swp_enqueue_multiple_desc_ptr =
343 			qbman_swp_enqueue_multiple_desc_mem_back;
344 		qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
345 		qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
346 		qbman_swp_release_ptr = qbman_swp_release_mem_back;
347 	}
348 
349 	for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
350 		p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
351 	eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
352 	p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
353 	p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
354 	p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
355 			& p->eqcr.pi_ci_mask;
356 	p->eqcr.available = p->eqcr.pi_ring_size;
357 
358 	return p;
359 }
360 
361 /**
362  * qbman_swp_finish() - Create and destroy a functional object representing
363  *                      the given QBMan portal descriptor.
364  * @p: the qbman_swp object to be destroyed
365  */
366 void qbman_swp_finish(struct qbman_swp *p)
367 {
368 	kfree(p);
369 }
370 
371 /**
372  * qbman_swp_interrupt_read_status()
373  * @p: the given software portal
374  *
375  * Return the value in the SWP_ISR register.
376  */
377 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
378 {
379 	return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
380 }
381 
382 /**
383  * qbman_swp_interrupt_clear_status()
384  * @p: the given software portal
385  * @mask: The mask to clear in SWP_ISR register
386  */
387 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
388 {
389 	qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
390 }
391 
392 /**
393  * qbman_swp_interrupt_get_trigger() - read interrupt enable register
394  * @p: the given software portal
395  *
396  * Return the value in the SWP_IER register.
397  */
398 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
399 {
400 	return qbman_read_register(p, QBMAN_CINH_SWP_IER);
401 }
402 
403 /**
404  * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
405  * @p: the given software portal
406  * @mask: The mask of bits to enable in SWP_IER
407  */
408 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
409 {
410 	qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
411 }
412 
413 /**
414  * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
415  * @p: the given software portal object
416  *
417  * Return the value in the SWP_IIR register.
418  */
419 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
420 {
421 	return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
422 }
423 
424 /**
425  * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
426  * @p: the given software portal object
427  * @mask: The mask to set in SWP_IIR register
428  */
429 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
430 {
431 	qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
432 }
433 
434 /*
435  * Different management commands all use this common base layer of code to issue
436  * commands and poll for results.
437  */
438 
439 /*
440  * Returns a pointer to where the caller should fill in their management command
441  * (caller should ignore the verb byte)
442  */
443 void *qbman_swp_mc_start(struct qbman_swp *p)
444 {
445 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
446 		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
447 	else
448 		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
449 }
450 
451 /*
452  * Commits merges in the caller-supplied command verb (which should not include
453  * the valid-bit) and submits the command to hardware
454  */
455 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
456 {
457 	u8 *v = cmd;
458 
459 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
460 		dma_wmb();
461 		*v = cmd_verb | p->mc.valid_bit;
462 	} else {
463 		*v = cmd_verb | p->mc.valid_bit;
464 		dma_wmb();
465 		qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
466 	}
467 }
468 
469 /*
470  * Checks for a completed response (returns non-NULL if only if the response
471  * is complete).
472  */
473 void *qbman_swp_mc_result(struct qbman_swp *p)
474 {
475 	u32 *ret, verb;
476 
477 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
478 		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
479 		/* Remove the valid-bit - command completed if the rest
480 		 * is non-zero.
481 		 */
482 		verb = ret[0] & ~QB_VALID_BIT;
483 		if (!verb)
484 			return NULL;
485 		p->mc.valid_bit ^= QB_VALID_BIT;
486 	} else {
487 		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
488 		/* Command completed if the valid bit is toggled */
489 		if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
490 			return NULL;
491 		/* Command completed if the rest is non-zero */
492 		verb = ret[0] & ~QB_VALID_BIT;
493 		if (!verb)
494 			return NULL;
495 		p->mr.valid_bit ^= QB_VALID_BIT;
496 	}
497 
498 	return ret;
499 }
500 
501 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT    0
502 enum qb_enqueue_commands {
503 	enqueue_empty = 0,
504 	enqueue_response_always = 1,
505 	enqueue_rejects_to_fq = 2
506 };
507 
508 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT      2
509 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
510 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT     4
511 #define QB_ENQUEUE_CMD_DCA_EN_SHIFT          7
512 
513 /**
514  * qbman_eq_desc_clear() - Clear the contents of a descriptor to
515  *                         default/starting state.
516  */
517 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
518 {
519 	memset(d, 0, sizeof(*d));
520 }
521 
522 /**
523  * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
524  * @d:                the enqueue descriptor.
525  * @response_success: 1 = enqueue with response always; 0 = enqueue with
526  *                    rejections returned on a FQ.
527  */
528 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
529 {
530 	d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
531 	if (respond_success)
532 		d->verb |= enqueue_response_always;
533 	else
534 		d->verb |= enqueue_rejects_to_fq;
535 }
536 
537 /*
538  * Exactly one of the following descriptor "targets" should be set. (Calling any
539  * one of these will replace the effect of any prior call to one of these.)
540  *   -enqueue to a frame queue
541  *   -enqueue to a queuing destination
542  */
543 
544 /**
545  * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
546  * @d:    the enqueue descriptor
547  * @fqid: the id of the frame queue to be enqueued
548  */
549 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
550 {
551 	d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
552 	d->tgtid = cpu_to_le32(fqid);
553 }
554 
555 /**
556  * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
557  * @d:       the enqueue descriptor
558  * @qdid:    the id of the queuing destination to be enqueued
559  * @qd_bin:  the queuing destination bin
560  * @qd_prio: the queuing destination priority
561  */
562 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
563 			  u32 qd_bin, u32 qd_prio)
564 {
565 	d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
566 	d->tgtid = cpu_to_le32(qdid);
567 	d->qdbin = cpu_to_le16(qd_bin);
568 	d->qpri = qd_prio;
569 }
570 
571 #define EQAR_IDX(eqar)     ((eqar) & 0x7)
572 #define EQAR_VB(eqar)      ((eqar) & 0x80)
573 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
574 
575 static inline void qbman_write_eqcr_am_rt_register(struct qbman_swp *p,
576 						   u8 idx)
577 {
578 	if (idx < 16)
579 		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_AM_RT + idx * 4,
580 				     QMAN_RT_MODE);
581 	else
582 		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_AM_RT2 +
583 				     (idx - 16) * 4,
584 				     QMAN_RT_MODE);
585 }
586 
587 #define QB_RT_BIT ((u32)0x100)
588 /**
589  * qbman_swp_enqueue_direct() - Issue an enqueue command
590  * @s:  the software portal used for enqueue
591  * @d:  the enqueue descriptor
592  * @fd: the frame descriptor to be enqueued
593  *
594  * Please note that 'fd' should only be NULL if the "action" of the
595  * descriptor is "orp_hole" or "orp_nesn".
596  *
597  * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
598  */
599 static
600 int qbman_swp_enqueue_direct(struct qbman_swp *s,
601 			     const struct qbman_eq_desc *d,
602 			     const struct dpaa2_fd *fd)
603 {
604 	int flags = 0;
605 	int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
606 
607 	if (ret >= 0)
608 		ret = 0;
609 	else
610 		ret = -EBUSY;
611 	return  ret;
612 }
613 
614 /**
615  * qbman_swp_enqueue_mem_back() - Issue an enqueue command
616  * @s:  the software portal used for enqueue
617  * @d:  the enqueue descriptor
618  * @fd: the frame descriptor to be enqueued
619  *
620  * Please note that 'fd' should only be NULL if the "action" of the
621  * descriptor is "orp_hole" or "orp_nesn".
622  *
623  * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
624  */
625 static
626 int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
627 			       const struct qbman_eq_desc *d,
628 			       const struct dpaa2_fd *fd)
629 {
630 	int flags = 0;
631 	int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
632 
633 	if (ret >= 0)
634 		ret = 0;
635 	else
636 		ret = -EBUSY;
637 	return  ret;
638 }
639 
640 /**
641  * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
642  * using one enqueue descriptor
643  * @s:  the software portal used for enqueue
644  * @d:  the enqueue descriptor
645  * @fd: table pointer of frame descriptor table to be enqueued
646  * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
647  * @num_frames: number of fd to be enqueued
648  *
649  * Return the number of fd enqueued, or a negative error number.
650  */
651 static
652 int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
653 				      const struct qbman_eq_desc *d,
654 				      const struct dpaa2_fd *fd,
655 				      uint32_t *flags,
656 				      int num_frames)
657 {
658 	uint32_t *p = NULL;
659 	const uint32_t *cl = (uint32_t *)d;
660 	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
661 	int i, num_enqueued = 0;
662 	uint64_t addr_cena;
663 
664 	spin_lock(&s->access_spinlock);
665 	half_mask = (s->eqcr.pi_ci_mask>>1);
666 	full_mask = s->eqcr.pi_ci_mask;
667 
668 	if (!s->eqcr.available) {
669 		eqcr_ci = s->eqcr.ci;
670 		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
671 		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
672 		s->eqcr.ci &= full_mask;
673 
674 		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
675 					eqcr_ci, s->eqcr.ci);
676 		if (!s->eqcr.available) {
677 			spin_unlock(&s->access_spinlock);
678 			return 0;
679 		}
680 	}
681 
682 	eqcr_pi = s->eqcr.pi;
683 	num_enqueued = (s->eqcr.available < num_frames) ?
684 			s->eqcr.available : num_frames;
685 	s->eqcr.available -= num_enqueued;
686 	/* Fill in the EQCR ring */
687 	for (i = 0; i < num_enqueued; i++) {
688 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
689 		/* Skip copying the verb */
690 		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
691 		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
692 		       &fd[i], sizeof(*fd));
693 		eqcr_pi++;
694 	}
695 
696 	dma_wmb();
697 
698 	/* Set the verb byte, have to substitute in the valid-bit */
699 	eqcr_pi = s->eqcr.pi;
700 	for (i = 0; i < num_enqueued; i++) {
701 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
702 		p[0] = cl[0] | s->eqcr.pi_vb;
703 		if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
704 			struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
705 
706 			d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
707 				((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
708 		}
709 		eqcr_pi++;
710 		if (!(eqcr_pi & half_mask))
711 			s->eqcr.pi_vb ^= QB_VALID_BIT;
712 	}
713 
714 	/* Flush all the cacheline without load/store in between */
715 	eqcr_pi = s->eqcr.pi;
716 	addr_cena = (size_t)s->addr_cena;
717 	for (i = 0; i < num_enqueued; i++)
718 		eqcr_pi++;
719 	s->eqcr.pi = eqcr_pi & full_mask;
720 	spin_unlock(&s->access_spinlock);
721 
722 	return num_enqueued;
723 }
724 
725 /**
726  * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
727  * using one enqueue descriptor
728  * @s:  the software portal used for enqueue
729  * @d:  the enqueue descriptor
730  * @fd: table pointer of frame descriptor table to be enqueued
731  * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
732  * @num_frames: number of fd to be enqueued
733  *
734  * Return the number of fd enqueued, or a negative error number.
735  */
736 static
737 int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
738 					const struct qbman_eq_desc *d,
739 					const struct dpaa2_fd *fd,
740 					uint32_t *flags,
741 					int num_frames)
742 {
743 	uint32_t *p = NULL;
744 	const uint32_t *cl = (uint32_t *)(d);
745 	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
746 	int i, num_enqueued = 0;
747 	unsigned long irq_flags;
748 
749 	spin_lock(&s->access_spinlock);
750 	local_irq_save(irq_flags);
751 
752 	half_mask = (s->eqcr.pi_ci_mask>>1);
753 	full_mask = s->eqcr.pi_ci_mask;
754 	if (!s->eqcr.available) {
755 		eqcr_ci = s->eqcr.ci;
756 		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
757 		s->eqcr.ci = *p & full_mask;
758 		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
759 					eqcr_ci, s->eqcr.ci);
760 		if (!s->eqcr.available) {
761 			local_irq_restore(irq_flags);
762 			spin_unlock(&s->access_spinlock);
763 			return 0;
764 		}
765 	}
766 
767 	eqcr_pi = s->eqcr.pi;
768 	num_enqueued = (s->eqcr.available < num_frames) ?
769 			s->eqcr.available : num_frames;
770 	s->eqcr.available -= num_enqueued;
771 	/* Fill in the EQCR ring */
772 	for (i = 0; i < num_enqueued; i++) {
773 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
774 		/* Skip copying the verb */
775 		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
776 		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
777 		       &fd[i], sizeof(*fd));
778 		eqcr_pi++;
779 	}
780 
781 	/* Set the verb byte, have to substitute in the valid-bit */
782 	eqcr_pi = s->eqcr.pi;
783 	for (i = 0; i < num_enqueued; i++) {
784 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
785 		p[0] = cl[0] | s->eqcr.pi_vb;
786 		if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
787 			struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
788 
789 			d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
790 				((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
791 		}
792 		eqcr_pi++;
793 		if (!(eqcr_pi & half_mask))
794 			s->eqcr.pi_vb ^= QB_VALID_BIT;
795 	}
796 	s->eqcr.pi = eqcr_pi & full_mask;
797 
798 	dma_wmb();
799 	qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
800 				(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
801 	local_irq_restore(irq_flags);
802 	spin_unlock(&s->access_spinlock);
803 
804 	return num_enqueued;
805 }
806 
807 /**
808  * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
809  * using multiple enqueue descriptor
810  * @s:  the software portal used for enqueue
811  * @d:  table of minimal enqueue descriptor
812  * @fd: table pointer of frame descriptor table to be enqueued
813  * @num_frames: number of fd to be enqueued
814  *
815  * Return the number of fd enqueued, or a negative error number.
816  */
817 static
818 int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
819 					   const struct qbman_eq_desc *d,
820 					   const struct dpaa2_fd *fd,
821 					   int num_frames)
822 {
823 	uint32_t *p;
824 	const uint32_t *cl;
825 	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
826 	int i, num_enqueued = 0;
827 
828 	half_mask = (s->eqcr.pi_ci_mask>>1);
829 	full_mask = s->eqcr.pi_ci_mask;
830 	if (!s->eqcr.available) {
831 		eqcr_ci = s->eqcr.ci;
832 		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
833 		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
834 		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
835 					eqcr_ci, s->eqcr.ci);
836 		if (!s->eqcr.available)
837 			return 0;
838 	}
839 
840 	eqcr_pi = s->eqcr.pi;
841 	num_enqueued = (s->eqcr.available < num_frames) ?
842 			s->eqcr.available : num_frames;
843 	s->eqcr.available -= num_enqueued;
844 	/* Fill in the EQCR ring */
845 	for (i = 0; i < num_enqueued; i++) {
846 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
847 		cl = (uint32_t *)(&d[i]);
848 		/* Skip copying the verb */
849 		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
850 		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
851 		       &fd[i], sizeof(*fd));
852 		eqcr_pi++;
853 	}
854 
855 	dma_wmb();
856 
857 	/* Set the verb byte, have to substitute in the valid-bit */
858 	eqcr_pi = s->eqcr.pi;
859 	for (i = 0; i < num_enqueued; i++) {
860 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
861 		cl = (uint32_t *)(&d[i]);
862 		p[0] = cl[0] | s->eqcr.pi_vb;
863 		eqcr_pi++;
864 		if (!(eqcr_pi & half_mask))
865 			s->eqcr.pi_vb ^= QB_VALID_BIT;
866 	}
867 
868 	/* Flush all the cacheline without load/store in between */
869 	eqcr_pi = s->eqcr.pi;
870 	for (i = 0; i < num_enqueued; i++)
871 		eqcr_pi++;
872 	s->eqcr.pi = eqcr_pi & full_mask;
873 
874 	return num_enqueued;
875 }
876 
877 /**
878  * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
879  * using multiple enqueue descriptor
880  * @s:  the software portal used for enqueue
881  * @d:  table of minimal enqueue descriptor
882  * @fd: table pointer of frame descriptor table to be enqueued
883  * @num_frames: number of fd to be enqueued
884  *
885  * Return the number of fd enqueued, or a negative error number.
886  */
887 static
888 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
889 					   const struct qbman_eq_desc *d,
890 					   const struct dpaa2_fd *fd,
891 					   int num_frames)
892 {
893 	uint32_t *p;
894 	const uint32_t *cl;
895 	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
896 	int i, num_enqueued = 0;
897 
898 	half_mask = (s->eqcr.pi_ci_mask>>1);
899 	full_mask = s->eqcr.pi_ci_mask;
900 	if (!s->eqcr.available) {
901 		eqcr_ci = s->eqcr.ci;
902 		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
903 		s->eqcr.ci = *p & full_mask;
904 		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
905 					eqcr_ci, s->eqcr.ci);
906 		if (!s->eqcr.available)
907 			return 0;
908 	}
909 
910 	eqcr_pi = s->eqcr.pi;
911 	num_enqueued = (s->eqcr.available < num_frames) ?
912 			s->eqcr.available : num_frames;
913 	s->eqcr.available -= num_enqueued;
914 	/* Fill in the EQCR ring */
915 	for (i = 0; i < num_enqueued; i++) {
916 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
917 		cl = (uint32_t *)(&d[i]);
918 		/* Skip copying the verb */
919 		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
920 		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
921 		       &fd[i], sizeof(*fd));
922 		eqcr_pi++;
923 	}
924 
925 	/* Set the verb byte, have to substitute in the valid-bit */
926 	eqcr_pi = s->eqcr.pi;
927 	for (i = 0; i < num_enqueued; i++) {
928 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
929 		cl = (uint32_t *)(&d[i]);
930 		p[0] = cl[0] | s->eqcr.pi_vb;
931 		eqcr_pi++;
932 		if (!(eqcr_pi & half_mask))
933 			s->eqcr.pi_vb ^= QB_VALID_BIT;
934 	}
935 
936 	s->eqcr.pi = eqcr_pi & full_mask;
937 
938 	dma_wmb();
939 	qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
940 				(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
941 
942 	return num_enqueued;
943 }
944 
945 /* Static (push) dequeue */
946 
947 /**
948  * qbman_swp_push_get() - Get the push dequeue setup
949  * @p:           the software portal object
950  * @channel_idx: the channel index to query
951  * @enabled:     returned boolean to show whether the push dequeue is enabled
952  *               for the given channel
953  */
954 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
955 {
956 	u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
957 
958 	WARN_ON(channel_idx > 15);
959 	*enabled = src | (1 << channel_idx);
960 }
961 
962 /**
963  * qbman_swp_push_set() - Enable or disable push dequeue
964  * @p:           the software portal object
965  * @channel_idx: the channel index (0 to 15)
966  * @enable:      enable or disable push dequeue
967  */
968 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
969 {
970 	u16 dqsrc;
971 
972 	WARN_ON(channel_idx > 15);
973 	if (enable)
974 		s->sdq |= 1 << channel_idx;
975 	else
976 		s->sdq &= ~(1 << channel_idx);
977 
978 	/* Read make the complete src map.  If no channels are enabled
979 	 * the SDQCR must be 0 or else QMan will assert errors
980 	 */
981 	dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
982 	if (dqsrc != 0)
983 		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
984 	else
985 		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
986 }
987 
988 #define QB_VDQCR_VERB_DCT_SHIFT    0
989 #define QB_VDQCR_VERB_DT_SHIFT     2
990 #define QB_VDQCR_VERB_RLS_SHIFT    4
991 #define QB_VDQCR_VERB_WAE_SHIFT    5
992 
993 enum qb_pull_dt_e {
994 	qb_pull_dt_channel,
995 	qb_pull_dt_workqueue,
996 	qb_pull_dt_framequeue
997 };
998 
999 /**
1000  * qbman_pull_desc_clear() - Clear the contents of a descriptor to
1001  *                           default/starting state
1002  * @d: the pull dequeue descriptor to be cleared
1003  */
1004 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
1005 {
1006 	memset(d, 0, sizeof(*d));
1007 }
1008 
1009 /**
1010  * qbman_pull_desc_set_storage()- Set the pull dequeue storage
1011  * @d:            the pull dequeue descriptor to be set
1012  * @storage:      the pointer of the memory to store the dequeue result
1013  * @storage_phys: the physical address of the storage memory
1014  * @stash:        to indicate whether write allocate is enabled
1015  *
1016  * If not called, or if called with 'storage' as NULL, the result pull dequeues
1017  * will produce results to DQRR. If 'storage' is non-NULL, then results are
1018  * produced to the given memory location (using the DMA address which
1019  * the caller provides in 'storage_phys'), and 'stash' controls whether or not
1020  * those writes to main-memory express a cache-warming attribute.
1021  */
1022 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
1023 				 struct dpaa2_dq *storage,
1024 				 dma_addr_t storage_phys,
1025 				 int stash)
1026 {
1027 	/* save the virtual address */
1028 	d->rsp_addr_virt = (u64)(uintptr_t)storage;
1029 
1030 	if (!storage) {
1031 		d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
1032 		return;
1033 	}
1034 	d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
1035 	if (stash)
1036 		d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
1037 	else
1038 		d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
1039 
1040 	d->rsp_addr = cpu_to_le64(storage_phys);
1041 }
1042 
1043 /**
1044  * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
1045  * @d:         the pull dequeue descriptor to be set
1046  * @numframes: number of frames to be set, must be between 1 and 16, inclusive
1047  */
1048 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
1049 {
1050 	d->numf = numframes - 1;
1051 }
1052 
1053 /*
1054  * Exactly one of the following descriptor "actions" should be set. (Calling any
1055  * one of these will replace the effect of any prior call to one of these.)
1056  * - pull dequeue from the given frame queue (FQ)
1057  * - pull dequeue from any FQ in the given work queue (WQ)
1058  * - pull dequeue from any FQ in any WQ in the given channel
1059  */
1060 
1061 /**
1062  * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
1063  * @fqid: the frame queue index of the given FQ
1064  */
1065 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
1066 {
1067 	d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
1068 	d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
1069 	d->dq_src = cpu_to_le32(fqid);
1070 }
1071 
1072 /**
1073  * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
1074  * @wqid: composed of channel id and wqid within the channel
1075  * @dct:  the dequeue command type
1076  */
1077 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
1078 			    enum qbman_pull_type_e dct)
1079 {
1080 	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1081 	d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
1082 	d->dq_src = cpu_to_le32(wqid);
1083 }
1084 
1085 /**
1086  * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
1087  *                                 dequeues
1088  * @chid: the channel id to be dequeued
1089  * @dct:  the dequeue command type
1090  */
1091 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
1092 				 enum qbman_pull_type_e dct)
1093 {
1094 	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1095 	d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
1096 	d->dq_src = cpu_to_le32(chid);
1097 }
1098 
1099 /**
1100  * qbman_swp_pull_direct() - Issue the pull dequeue command
1101  * @s: the software portal object
1102  * @d: the software portal descriptor which has been configured with
1103  *     the set of qbman_pull_desc_set_*() calls
1104  *
1105  * Return 0 for success, and -EBUSY if the software portal is not ready
1106  * to do pull dequeue.
1107  */
1108 static
1109 int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
1110 {
1111 	struct qbman_pull_desc *p;
1112 
1113 	if (!atomic_dec_and_test(&s->vdq.available)) {
1114 		atomic_inc(&s->vdq.available);
1115 		return -EBUSY;
1116 	}
1117 	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1118 	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1119 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1120 	else
1121 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1122 	p->numf = d->numf;
1123 	p->tok = QMAN_DQ_TOKEN_VALID;
1124 	p->dq_src = d->dq_src;
1125 	p->rsp_addr = d->rsp_addr;
1126 	p->rsp_addr_virt = d->rsp_addr_virt;
1127 	dma_wmb();
1128 	/* Set the verb byte, have to substitute in the valid-bit */
1129 	p->verb = d->verb | s->vdq.valid_bit;
1130 	s->vdq.valid_bit ^= QB_VALID_BIT;
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  * qbman_swp_pull_mem_back() - Issue the pull dequeue command
1137  * @s: the software portal object
1138  * @d: the software portal descriptor which has been configured with
1139  *     the set of qbman_pull_desc_set_*() calls
1140  *
1141  * Return 0 for success, and -EBUSY if the software portal is not ready
1142  * to do pull dequeue.
1143  */
1144 static
1145 int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
1146 {
1147 	struct qbman_pull_desc *p;
1148 
1149 	if (!atomic_dec_and_test(&s->vdq.available)) {
1150 		atomic_inc(&s->vdq.available);
1151 		return -EBUSY;
1152 	}
1153 	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1154 	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1155 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1156 	else
1157 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1158 	p->numf = d->numf;
1159 	p->tok = QMAN_DQ_TOKEN_VALID;
1160 	p->dq_src = d->dq_src;
1161 	p->rsp_addr = d->rsp_addr;
1162 	p->rsp_addr_virt = d->rsp_addr_virt;
1163 
1164 	/* Set the verb byte, have to substitute in the valid-bit */
1165 	p->verb = d->verb | s->vdq.valid_bit;
1166 	s->vdq.valid_bit ^= QB_VALID_BIT;
1167 	dma_wmb();
1168 	qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
1169 
1170 	return 0;
1171 }
1172 
1173 #define QMAN_DQRR_PI_MASK   0xf
1174 
1175 /**
1176  * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
1177  * @s: the software portal object
1178  *
1179  * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1180  * only once, so repeated calls can return a sequence of DQRR entries, without
1181  * requiring they be consumed immediately or in any particular order.
1182  */
1183 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
1184 {
1185 	u32 verb;
1186 	u32 response_verb;
1187 	u32 flags;
1188 	struct dpaa2_dq *p;
1189 
1190 	/* Before using valid-bit to detect if something is there, we have to
1191 	 * handle the case of the DQRR reset bug...
1192 	 */
1193 	if (unlikely(s->dqrr.reset_bug)) {
1194 		/*
1195 		 * We pick up new entries by cache-inhibited producer index,
1196 		 * which means that a non-coherent mapping would require us to
1197 		 * invalidate and read *only* once that PI has indicated that
1198 		 * there's an entry here. The first trip around the DQRR ring
1199 		 * will be much less efficient than all subsequent trips around
1200 		 * it...
1201 		 */
1202 		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1203 			QMAN_DQRR_PI_MASK;
1204 
1205 		/* there are new entries if pi != next_idx */
1206 		if (pi == s->dqrr.next_idx)
1207 			return NULL;
1208 
1209 		/*
1210 		 * if next_idx is/was the last ring index, and 'pi' is
1211 		 * different, we can disable the workaround as all the ring
1212 		 * entries have now been DMA'd to so valid-bit checking is
1213 		 * repaired. Note: this logic needs to be based on next_idx
1214 		 * (which increments one at a time), rather than on pi (which
1215 		 * can burst and wrap-around between our snapshots of it).
1216 		 */
1217 		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1218 			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1219 				 s->dqrr.next_idx, pi);
1220 			s->dqrr.reset_bug = 0;
1221 		}
1222 		prefetch(qbman_get_cmd(s,
1223 				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1224 	}
1225 
1226 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
1227 	verb = p->dq.verb;
1228 
1229 	/*
1230 	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1231 	 * in the DQRR reset bug workaround, we shouldn't need to skip these
1232 	 * check, because we've already determined that a new entry is available
1233 	 * and we've invalidated the cacheline before reading it, so the
1234 	 * valid-bit behaviour is repaired and should tell us what we already
1235 	 * knew from reading PI.
1236 	 */
1237 	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1238 		prefetch(qbman_get_cmd(s,
1239 				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1240 		return NULL;
1241 	}
1242 	/*
1243 	 * There's something there. Move "next_idx" attention to the next ring
1244 	 * entry (and prefetch it) before returning what we found.
1245 	 */
1246 	s->dqrr.next_idx++;
1247 	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1248 	if (!s->dqrr.next_idx)
1249 		s->dqrr.valid_bit ^= QB_VALID_BIT;
1250 
1251 	/*
1252 	 * If this is the final response to a volatile dequeue command
1253 	 * indicate that the vdq is available
1254 	 */
1255 	flags = p->dq.stat;
1256 	response_verb = verb & QBMAN_RESULT_MASK;
1257 	if ((response_verb == QBMAN_RESULT_DQ) &&
1258 	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
1259 	    (flags & DPAA2_DQ_STAT_EXPIRED))
1260 		atomic_inc(&s->vdq.available);
1261 
1262 	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1263 
1264 	return p;
1265 }
1266 
1267 /**
1268  * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
1269  * @s: the software portal object
1270  *
1271  * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1272  * only once, so repeated calls can return a sequence of DQRR entries, without
1273  * requiring they be consumed immediately or in any particular order.
1274  */
1275 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
1276 {
1277 	u32 verb;
1278 	u32 response_verb;
1279 	u32 flags;
1280 	struct dpaa2_dq *p;
1281 
1282 	/* Before using valid-bit to detect if something is there, we have to
1283 	 * handle the case of the DQRR reset bug...
1284 	 */
1285 	if (unlikely(s->dqrr.reset_bug)) {
1286 		/*
1287 		 * We pick up new entries by cache-inhibited producer index,
1288 		 * which means that a non-coherent mapping would require us to
1289 		 * invalidate and read *only* once that PI has indicated that
1290 		 * there's an entry here. The first trip around the DQRR ring
1291 		 * will be much less efficient than all subsequent trips around
1292 		 * it...
1293 		 */
1294 		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1295 			QMAN_DQRR_PI_MASK;
1296 
1297 		/* there are new entries if pi != next_idx */
1298 		if (pi == s->dqrr.next_idx)
1299 			return NULL;
1300 
1301 		/*
1302 		 * if next_idx is/was the last ring index, and 'pi' is
1303 		 * different, we can disable the workaround as all the ring
1304 		 * entries have now been DMA'd to so valid-bit checking is
1305 		 * repaired. Note: this logic needs to be based on next_idx
1306 		 * (which increments one at a time), rather than on pi (which
1307 		 * can burst and wrap-around between our snapshots of it).
1308 		 */
1309 		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1310 			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1311 				 s->dqrr.next_idx, pi);
1312 			s->dqrr.reset_bug = 0;
1313 		}
1314 		prefetch(qbman_get_cmd(s,
1315 				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1316 	}
1317 
1318 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
1319 	verb = p->dq.verb;
1320 
1321 	/*
1322 	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1323 	 * in the DQRR reset bug workaround, we shouldn't need to skip these
1324 	 * check, because we've already determined that a new entry is available
1325 	 * and we've invalidated the cacheline before reading it, so the
1326 	 * valid-bit behaviour is repaired and should tell us what we already
1327 	 * knew from reading PI.
1328 	 */
1329 	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1330 		prefetch(qbman_get_cmd(s,
1331 				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1332 		return NULL;
1333 	}
1334 	/*
1335 	 * There's something there. Move "next_idx" attention to the next ring
1336 	 * entry (and prefetch it) before returning what we found.
1337 	 */
1338 	s->dqrr.next_idx++;
1339 	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1340 	if (!s->dqrr.next_idx)
1341 		s->dqrr.valid_bit ^= QB_VALID_BIT;
1342 
1343 	/*
1344 	 * If this is the final response to a volatile dequeue command
1345 	 * indicate that the vdq is available
1346 	 */
1347 	flags = p->dq.stat;
1348 	response_verb = verb & QBMAN_RESULT_MASK;
1349 	if ((response_verb == QBMAN_RESULT_DQ) &&
1350 	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
1351 	    (flags & DPAA2_DQ_STAT_EXPIRED))
1352 		atomic_inc(&s->vdq.available);
1353 
1354 	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1355 
1356 	return p;
1357 }
1358 
1359 /**
1360  * qbman_swp_dqrr_consume() -  Consume DQRR entries previously returned from
1361  *                             qbman_swp_dqrr_next().
1362  * @s: the software portal object
1363  * @dq: the DQRR entry to be consumed
1364  */
1365 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
1366 {
1367 	qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
1368 }
1369 
1370 /**
1371  * qbman_result_has_new_result() - Check and get the dequeue response from the
1372  *                                 dq storage memory set in pull dequeue command
1373  * @s: the software portal object
1374  * @dq: the dequeue result read from the memory
1375  *
1376  * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
1377  * dequeue result.
1378  *
1379  * Only used for user-provided storage of dequeue results, not DQRR. For
1380  * efficiency purposes, the driver will perform any required endianness
1381  * conversion to ensure that the user's dequeue result storage is in host-endian
1382  * format. As such, once the user has called qbman_result_has_new_result() and
1383  * been returned a valid dequeue result, they should not call it again on
1384  * the same memory location (except of course if another dequeue command has
1385  * been executed to produce a new result to that location).
1386  */
1387 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
1388 {
1389 	if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
1390 		return 0;
1391 
1392 	/*
1393 	 * Set token to be 0 so we will detect change back to 1
1394 	 * next time the looping is traversed. Const is cast away here
1395 	 * as we want users to treat the dequeue responses as read only.
1396 	 */
1397 	((struct dpaa2_dq *)dq)->dq.tok = 0;
1398 
1399 	/*
1400 	 * Determine whether VDQCR is available based on whether the
1401 	 * current result is sitting in the first storage location of
1402 	 * the busy command.
1403 	 */
1404 	if (s->vdq.storage == dq) {
1405 		s->vdq.storage = NULL;
1406 		atomic_inc(&s->vdq.available);
1407 	}
1408 
1409 	return 1;
1410 }
1411 
1412 /**
1413  * qbman_release_desc_clear() - Clear the contents of a descriptor to
1414  *                              default/starting state.
1415  */
1416 void qbman_release_desc_clear(struct qbman_release_desc *d)
1417 {
1418 	memset(d, 0, sizeof(*d));
1419 	d->verb = 1 << 5; /* Release Command Valid */
1420 }
1421 
1422 /**
1423  * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
1424  */
1425 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
1426 {
1427 	d->bpid = cpu_to_le16(bpid);
1428 }
1429 
1430 /**
1431  * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
1432  * interrupt source should be asserted after the release command is completed.
1433  */
1434 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1435 {
1436 	if (enable)
1437 		d->verb |= 1 << 6;
1438 	else
1439 		d->verb &= ~(1 << 6);
1440 }
1441 
1442 #define RAR_IDX(rar)     ((rar) & 0x7)
1443 #define RAR_VB(rar)      ((rar) & 0x80)
1444 #define RAR_SUCCESS(rar) ((rar) & 0x100)
1445 
1446 /**
1447  * qbman_swp_release_direct() - Issue a buffer release command
1448  * @s:           the software portal object
1449  * @d:           the release descriptor
1450  * @buffers:     a pointer pointing to the buffer address to be released
1451  * @num_buffers: number of buffers to be released,  must be less than 8
1452  *
1453  * Return 0 for success, -EBUSY if the release command ring is not ready.
1454  */
1455 int qbman_swp_release_direct(struct qbman_swp *s,
1456 			     const struct qbman_release_desc *d,
1457 			     const u64 *buffers, unsigned int num_buffers)
1458 {
1459 	int i;
1460 	struct qbman_release_desc *p;
1461 	u32 rar;
1462 
1463 	if (!num_buffers || (num_buffers > 7))
1464 		return -EINVAL;
1465 
1466 	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1467 	if (!RAR_SUCCESS(rar))
1468 		return -EBUSY;
1469 
1470 	/* Start the release command */
1471 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1472 
1473 	/* Copy the caller's buffer pointers to the command */
1474 	for (i = 0; i < num_buffers; i++)
1475 		p->buf[i] = cpu_to_le64(buffers[i]);
1476 	p->bpid = d->bpid;
1477 
1478 	/*
1479 	 * Set the verb byte, have to substitute in the valid-bit
1480 	 * and the number of buffers.
1481 	 */
1482 	dma_wmb();
1483 	p->verb = d->verb | RAR_VB(rar) | num_buffers;
1484 
1485 	return 0;
1486 }
1487 
1488 /**
1489  * qbman_swp_release_mem_back() - Issue a buffer release command
1490  * @s:           the software portal object
1491  * @d:           the release descriptor
1492  * @buffers:     a pointer pointing to the buffer address to be released
1493  * @num_buffers: number of buffers to be released,  must be less than 8
1494  *
1495  * Return 0 for success, -EBUSY if the release command ring is not ready.
1496  */
1497 int qbman_swp_release_mem_back(struct qbman_swp *s,
1498 			       const struct qbman_release_desc *d,
1499 			       const u64 *buffers, unsigned int num_buffers)
1500 {
1501 	int i;
1502 	struct qbman_release_desc *p;
1503 	u32 rar;
1504 
1505 	if (!num_buffers || (num_buffers > 7))
1506 		return -EINVAL;
1507 
1508 	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1509 	if (!RAR_SUCCESS(rar))
1510 		return -EBUSY;
1511 
1512 	/* Start the release command */
1513 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
1514 
1515 	/* Copy the caller's buffer pointers to the command */
1516 	for (i = 0; i < num_buffers; i++)
1517 		p->buf[i] = cpu_to_le64(buffers[i]);
1518 	p->bpid = d->bpid;
1519 
1520 	p->verb = d->verb | RAR_VB(rar) | num_buffers;
1521 	dma_wmb();
1522 	qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
1523 			     RAR_IDX(rar)  * 4, QMAN_RT_MODE);
1524 
1525 	return 0;
1526 }
1527 
1528 struct qbman_acquire_desc {
1529 	u8 verb;
1530 	u8 reserved;
1531 	__le16 bpid;
1532 	u8 num;
1533 	u8 reserved2[59];
1534 };
1535 
1536 struct qbman_acquire_rslt {
1537 	u8 verb;
1538 	u8 rslt;
1539 	__le16 reserved;
1540 	u8 num;
1541 	u8 reserved2[3];
1542 	__le64 buf[7];
1543 };
1544 
1545 /**
1546  * qbman_swp_acquire() - Issue a buffer acquire command
1547  * @s:           the software portal object
1548  * @bpid:        the buffer pool index
1549  * @buffers:     a pointer pointing to the acquired buffer addresses
1550  * @num_buffers: number of buffers to be acquired, must be less than 8
1551  *
1552  * Return 0 for success, or negative error code if the acquire command
1553  * fails.
1554  */
1555 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
1556 		      unsigned int num_buffers)
1557 {
1558 	struct qbman_acquire_desc *p;
1559 	struct qbman_acquire_rslt *r;
1560 	int i;
1561 
1562 	if (!num_buffers || (num_buffers > 7))
1563 		return -EINVAL;
1564 
1565 	/* Start the management command */
1566 	p = qbman_swp_mc_start(s);
1567 
1568 	if (!p)
1569 		return -EBUSY;
1570 
1571 	/* Encode the caller-provided attributes */
1572 	p->bpid = cpu_to_le16(bpid);
1573 	p->num = num_buffers;
1574 
1575 	/* Complete the management command */
1576 	r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
1577 	if (unlikely(!r)) {
1578 		pr_err("qbman: acquire from BPID %d failed, no response\n",
1579 		       bpid);
1580 		return -EIO;
1581 	}
1582 
1583 	/* Decode the outcome */
1584 	WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
1585 
1586 	/* Determine success or failure */
1587 	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1588 		pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
1589 		       bpid, r->rslt);
1590 		return -EIO;
1591 	}
1592 
1593 	WARN_ON(r->num > num_buffers);
1594 
1595 	/* Copy the acquired buffers to the caller's array */
1596 	for (i = 0; i < r->num; i++)
1597 		buffers[i] = le64_to_cpu(r->buf[i]);
1598 
1599 	return (int)r->num;
1600 }
1601 
1602 struct qbman_alt_fq_state_desc {
1603 	u8 verb;
1604 	u8 reserved[3];
1605 	__le32 fqid;
1606 	u8 reserved2[56];
1607 };
1608 
1609 struct qbman_alt_fq_state_rslt {
1610 	u8 verb;
1611 	u8 rslt;
1612 	u8 reserved[62];
1613 };
1614 
1615 #define ALT_FQ_FQID_MASK 0x00FFFFFF
1616 
1617 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1618 			   u8 alt_fq_verb)
1619 {
1620 	struct qbman_alt_fq_state_desc *p;
1621 	struct qbman_alt_fq_state_rslt *r;
1622 
1623 	/* Start the management command */
1624 	p = qbman_swp_mc_start(s);
1625 	if (!p)
1626 		return -EBUSY;
1627 
1628 	p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1629 
1630 	/* Complete the management command */
1631 	r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1632 	if (unlikely(!r)) {
1633 		pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1634 		       alt_fq_verb);
1635 		return -EIO;
1636 	}
1637 
1638 	/* Decode the outcome */
1639 	WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1640 
1641 	/* Determine success or failure */
1642 	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1643 		pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1644 		       fqid, r->verb, r->rslt);
1645 		return -EIO;
1646 	}
1647 
1648 	return 0;
1649 }
1650 
1651 struct qbman_cdan_ctrl_desc {
1652 	u8 verb;
1653 	u8 reserved;
1654 	__le16 ch;
1655 	u8 we;
1656 	u8 ctrl;
1657 	__le16 reserved2;
1658 	__le64 cdan_ctx;
1659 	u8 reserved3[48];
1660 
1661 };
1662 
1663 struct qbman_cdan_ctrl_rslt {
1664 	u8 verb;
1665 	u8 rslt;
1666 	__le16 ch;
1667 	u8 reserved[60];
1668 };
1669 
1670 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1671 		       u8 we_mask, u8 cdan_en,
1672 		       u64 ctx)
1673 {
1674 	struct qbman_cdan_ctrl_desc *p = NULL;
1675 	struct qbman_cdan_ctrl_rslt *r = NULL;
1676 
1677 	/* Start the management command */
1678 	p = qbman_swp_mc_start(s);
1679 	if (!p)
1680 		return -EBUSY;
1681 
1682 	/* Encode the caller-provided attributes */
1683 	p->ch = cpu_to_le16(channelid);
1684 	p->we = we_mask;
1685 	if (cdan_en)
1686 		p->ctrl = 1;
1687 	else
1688 		p->ctrl = 0;
1689 	p->cdan_ctx = cpu_to_le64(ctx);
1690 
1691 	/* Complete the management command */
1692 	r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1693 	if (unlikely(!r)) {
1694 		pr_err("qbman: wqchan config failed, no response\n");
1695 		return -EIO;
1696 	}
1697 
1698 	WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1699 
1700 	/* Determine success or failure */
1701 	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1702 		pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1703 		       channelid, r->rslt);
1704 		return -EIO;
1705 	}
1706 
1707 	return 0;
1708 }
1709 
1710 #define QBMAN_RESPONSE_VERB_MASK	0x7f
1711 #define QBMAN_FQ_QUERY_NP		0x45
1712 #define QBMAN_BP_QUERY			0x32
1713 
1714 struct qbman_fq_query_desc {
1715 	u8 verb;
1716 	u8 reserved[3];
1717 	__le32 fqid;
1718 	u8 reserved2[56];
1719 };
1720 
1721 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1722 			 struct qbman_fq_query_np_rslt *r)
1723 {
1724 	struct qbman_fq_query_desc *p;
1725 	void *resp;
1726 
1727 	p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1728 	if (!p)
1729 		return -EBUSY;
1730 
1731 	/* FQID is a 24 bit value */
1732 	p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1733 	resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1734 	if (!resp) {
1735 		pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1736 		       fqid);
1737 		return -EIO;
1738 	}
1739 	*r = *(struct qbman_fq_query_np_rslt *)resp;
1740 	/* Decode the outcome */
1741 	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1742 
1743 	/* Determine success or failure */
1744 	if (r->rslt != QBMAN_MC_RSLT_OK) {
1745 		pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1746 		       p->fqid, r->rslt);
1747 		return -EIO;
1748 	}
1749 
1750 	return 0;
1751 }
1752 
1753 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1754 {
1755 	return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1756 }
1757 
1758 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1759 {
1760 	return le32_to_cpu(r->byte_cnt);
1761 }
1762 
1763 struct qbman_bp_query_desc {
1764 	u8 verb;
1765 	u8 reserved;
1766 	__le16 bpid;
1767 	u8 reserved2[60];
1768 };
1769 
1770 int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1771 		   struct qbman_bp_query_rslt *r)
1772 {
1773 	struct qbman_bp_query_desc *p;
1774 	void *resp;
1775 
1776 	p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1777 	if (!p)
1778 		return -EBUSY;
1779 
1780 	p->bpid = cpu_to_le16(bpid);
1781 	resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1782 	if (!resp) {
1783 		pr_err("qbman: Query BPID %d fields failed, no response\n",
1784 		       bpid);
1785 		return -EIO;
1786 	}
1787 	*r = *(struct qbman_bp_query_rslt *)resp;
1788 	/* Decode the outcome */
1789 	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1790 
1791 	/* Determine success or failure */
1792 	if (r->rslt != QBMAN_MC_RSLT_OK) {
1793 		pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1794 		       bpid, r->rslt);
1795 		return -EIO;
1796 	}
1797 
1798 	return 0;
1799 }
1800 
1801 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1802 {
1803 	return le32_to_cpu(a->fill);
1804 }
1805