1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) 2 /* 3 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc. 4 * Copyright 2016-2019 NXP 5 * 6 */ 7 8 #include <asm/cacheflush.h> 9 #include <linux/io.h> 10 #include <linux/slab.h> 11 #include <linux/spinlock.h> 12 #include <soc/fsl/dpaa2-global.h> 13 14 #include "qbman-portal.h" 15 16 /* All QBMan command and result structures use this "valid bit" encoding */ 17 #define QB_VALID_BIT ((u32)0x80) 18 19 /* QBMan portal management command codes */ 20 #define QBMAN_MC_ACQUIRE 0x30 21 #define QBMAN_WQCHAN_CONFIGURE 0x46 22 23 /* CINH register offsets */ 24 #define QBMAN_CINH_SWP_EQCR_PI 0x800 25 #define QBMAN_CINH_SWP_EQCR_CI 0x840 26 #define QBMAN_CINH_SWP_EQAR 0x8c0 27 #define QBMAN_CINH_SWP_CR_RT 0x900 28 #define QBMAN_CINH_SWP_VDQCR_RT 0x940 29 #define QBMAN_CINH_SWP_EQCR_AM_RT 0x980 30 #define QBMAN_CINH_SWP_RCR_AM_RT 0x9c0 31 #define QBMAN_CINH_SWP_DQPI 0xa00 32 #define QBMAN_CINH_SWP_DCAP 0xac0 33 #define QBMAN_CINH_SWP_SDQCR 0xb00 34 #define QBMAN_CINH_SWP_EQCR_AM_RT2 0xb40 35 #define QBMAN_CINH_SWP_RCR_PI 0xc00 36 #define QBMAN_CINH_SWP_RAR 0xcc0 37 #define QBMAN_CINH_SWP_ISR 0xe00 38 #define QBMAN_CINH_SWP_IER 0xe40 39 #define QBMAN_CINH_SWP_ISDR 0xe80 40 #define QBMAN_CINH_SWP_IIR 0xec0 41 42 /* CENA register offsets */ 43 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6)) 44 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6)) 45 #define QBMAN_CENA_SWP_RCR(n) (0x400 + ((u32)(n) << 6)) 46 #define QBMAN_CENA_SWP_CR 0x600 47 #define QBMAN_CENA_SWP_RR(vb) (0x700 + ((u32)(vb) >> 1)) 48 #define QBMAN_CENA_SWP_VDQCR 0x780 49 #define QBMAN_CENA_SWP_EQCR_CI 0x840 50 #define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840 51 52 /* CENA register offsets in memory-backed mode */ 53 #define QBMAN_CENA_SWP_DQRR_MEM(n) (0x800 + ((u32)(n) << 6)) 54 #define QBMAN_CENA_SWP_RCR_MEM(n) (0x1400 + ((u32)(n) << 6)) 55 #define QBMAN_CENA_SWP_CR_MEM 0x1600 56 #define QBMAN_CENA_SWP_RR_MEM 0x1680 57 #define QBMAN_CENA_SWP_VDQCR_MEM 0x1780 58 59 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */ 60 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6) 61 62 /* Define token used to determine if response written to memory is valid */ 63 #define QMAN_DQ_TOKEN_VALID 1 64 65 /* SDQCR attribute codes */ 66 #define QB_SDQCR_FC_SHIFT 29 67 #define QB_SDQCR_FC_MASK 0x1 68 #define QB_SDQCR_DCT_SHIFT 24 69 #define QB_SDQCR_DCT_MASK 0x3 70 #define QB_SDQCR_TOK_SHIFT 16 71 #define QB_SDQCR_TOK_MASK 0xff 72 #define QB_SDQCR_SRC_SHIFT 0 73 #define QB_SDQCR_SRC_MASK 0xffff 74 75 /* opaque token for static dequeues */ 76 #define QMAN_SDQCR_TOKEN 0xbb 77 78 #define QBMAN_EQCR_DCA_IDXMASK 0x0f 79 #define QBMAN_ENQUEUE_FLAG_DCA (1ULL << 31) 80 81 #define EQ_DESC_SIZE_WITHOUT_FD 29 82 #define EQ_DESC_SIZE_FD_START 32 83 84 enum qbman_sdqcr_dct { 85 qbman_sdqcr_dct_null = 0, 86 qbman_sdqcr_dct_prio_ics, 87 qbman_sdqcr_dct_active_ics, 88 qbman_sdqcr_dct_active 89 }; 90 91 enum qbman_sdqcr_fc { 92 qbman_sdqcr_fc_one = 0, 93 qbman_sdqcr_fc_up_to_3 = 1 94 }; 95 96 /* Internal Function declaration */ 97 static int qbman_swp_enqueue_direct(struct qbman_swp *s, 98 const struct qbman_eq_desc *d, 99 const struct dpaa2_fd *fd); 100 static int qbman_swp_enqueue_mem_back(struct qbman_swp *s, 101 const struct qbman_eq_desc *d, 102 const struct dpaa2_fd *fd); 103 static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s, 104 const struct qbman_eq_desc *d, 105 const struct dpaa2_fd *fd, 106 uint32_t *flags, 107 int num_frames); 108 static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s, 109 const struct qbman_eq_desc *d, 110 const struct dpaa2_fd *fd, 111 uint32_t *flags, 112 int num_frames); 113 static int 114 qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s, 115 const struct qbman_eq_desc *d, 116 const struct dpaa2_fd *fd, 117 int num_frames); 118 static 119 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s, 120 const struct qbman_eq_desc *d, 121 const struct dpaa2_fd *fd, 122 int num_frames); 123 static int qbman_swp_pull_direct(struct qbman_swp *s, 124 struct qbman_pull_desc *d); 125 static int qbman_swp_pull_mem_back(struct qbman_swp *s, 126 struct qbman_pull_desc *d); 127 128 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s); 129 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s); 130 131 static int qbman_swp_release_direct(struct qbman_swp *s, 132 const struct qbman_release_desc *d, 133 const u64 *buffers, 134 unsigned int num_buffers); 135 static int qbman_swp_release_mem_back(struct qbman_swp *s, 136 const struct qbman_release_desc *d, 137 const u64 *buffers, 138 unsigned int num_buffers); 139 140 /* Function pointers */ 141 int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s, 142 const struct qbman_eq_desc *d, 143 const struct dpaa2_fd *fd) 144 = qbman_swp_enqueue_direct; 145 146 int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s, 147 const struct qbman_eq_desc *d, 148 const struct dpaa2_fd *fd, 149 uint32_t *flags, 150 int num_frames) 151 = qbman_swp_enqueue_multiple_direct; 152 153 int 154 (*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s, 155 const struct qbman_eq_desc *d, 156 const struct dpaa2_fd *fd, 157 int num_frames) 158 = qbman_swp_enqueue_multiple_desc_direct; 159 160 int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d) 161 = qbman_swp_pull_direct; 162 163 const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s) 164 = qbman_swp_dqrr_next_direct; 165 166 int (*qbman_swp_release_ptr)(struct qbman_swp *s, 167 const struct qbman_release_desc *d, 168 const u64 *buffers, 169 unsigned int num_buffers) 170 = qbman_swp_release_direct; 171 172 /* Portal Access */ 173 174 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset) 175 { 176 return readl_relaxed(p->addr_cinh + offset); 177 } 178 179 static inline void qbman_write_register(struct qbman_swp *p, u32 offset, 180 u32 value) 181 { 182 writel_relaxed(value, p->addr_cinh + offset); 183 } 184 185 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset) 186 { 187 return p->addr_cena + offset; 188 } 189 190 #define QBMAN_CINH_SWP_CFG 0xd00 191 192 #define SWP_CFG_DQRR_MF_SHIFT 20 193 #define SWP_CFG_EST_SHIFT 16 194 #define SWP_CFG_CPBS_SHIFT 15 195 #define SWP_CFG_WN_SHIFT 14 196 #define SWP_CFG_RPM_SHIFT 12 197 #define SWP_CFG_DCM_SHIFT 10 198 #define SWP_CFG_EPM_SHIFT 8 199 #define SWP_CFG_VPM_SHIFT 7 200 #define SWP_CFG_CPM_SHIFT 6 201 #define SWP_CFG_SD_SHIFT 5 202 #define SWP_CFG_SP_SHIFT 4 203 #define SWP_CFG_SE_SHIFT 3 204 #define SWP_CFG_DP_SHIFT 2 205 #define SWP_CFG_DE_SHIFT 1 206 #define SWP_CFG_EP_SHIFT 0 207 208 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm, 209 u8 epm, int sd, int sp, int se, 210 int dp, int de, int ep) 211 { 212 return (max_fill << SWP_CFG_DQRR_MF_SHIFT | 213 est << SWP_CFG_EST_SHIFT | 214 wn << SWP_CFG_WN_SHIFT | 215 rpm << SWP_CFG_RPM_SHIFT | 216 dcm << SWP_CFG_DCM_SHIFT | 217 epm << SWP_CFG_EPM_SHIFT | 218 sd << SWP_CFG_SD_SHIFT | 219 sp << SWP_CFG_SP_SHIFT | 220 se << SWP_CFG_SE_SHIFT | 221 dp << SWP_CFG_DP_SHIFT | 222 de << SWP_CFG_DE_SHIFT | 223 ep << SWP_CFG_EP_SHIFT); 224 } 225 226 #define QMAN_RT_MODE 0x00000100 227 228 static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last) 229 { 230 /* 'first' is included, 'last' is excluded */ 231 if (first <= last) 232 return last - first; 233 else 234 return (2 * ringsize) - (first - last); 235 } 236 237 /** 238 * qbman_swp_init() - Create a functional object representing the given 239 * QBMan portal descriptor. 240 * @d: the given qbman swp descriptor 241 * 242 * Return qbman_swp portal for success, NULL if the object cannot 243 * be created. 244 */ 245 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d) 246 { 247 struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL); 248 u32 reg; 249 u32 mask_size; 250 u32 eqcr_pi; 251 252 if (!p) 253 return NULL; 254 255 spin_lock_init(&p->access_spinlock); 256 257 p->desc = d; 258 p->mc.valid_bit = QB_VALID_BIT; 259 p->sdq = 0; 260 p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT; 261 p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT; 262 p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT; 263 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) 264 p->mr.valid_bit = QB_VALID_BIT; 265 266 atomic_set(&p->vdq.available, 1); 267 p->vdq.valid_bit = QB_VALID_BIT; 268 p->dqrr.next_idx = 0; 269 p->dqrr.valid_bit = QB_VALID_BIT; 270 271 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) { 272 p->dqrr.dqrr_size = 4; 273 p->dqrr.reset_bug = 1; 274 } else { 275 p->dqrr.dqrr_size = 8; 276 p->dqrr.reset_bug = 0; 277 } 278 279 p->addr_cena = d->cena_bar; 280 p->addr_cinh = d->cinh_bar; 281 282 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) { 283 284 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size, 285 1, /* Writes Non-cacheable */ 286 0, /* EQCR_CI stashing threshold */ 287 3, /* RPM: RCR in array mode */ 288 2, /* DCM: Discrete consumption ack */ 289 2, /* EPM: EQCR in ring mode */ 290 1, /* mem stashing drop enable enable */ 291 1, /* mem stashing priority enable */ 292 1, /* mem stashing enable */ 293 1, /* dequeue stashing priority enable */ 294 0, /* dequeue stashing enable enable */ 295 0); /* EQCR_CI stashing priority enable */ 296 } else { 297 memset(p->addr_cena, 0, 64 * 1024); 298 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size, 299 1, /* Writes Non-cacheable */ 300 1, /* EQCR_CI stashing threshold */ 301 3, /* RPM: RCR in array mode */ 302 2, /* DCM: Discrete consumption ack */ 303 0, /* EPM: EQCR in ring mode */ 304 1, /* mem stashing drop enable */ 305 1, /* mem stashing priority enable */ 306 1, /* mem stashing enable */ 307 1, /* dequeue stashing priority enable */ 308 0, /* dequeue stashing enable */ 309 0); /* EQCR_CI stashing priority enable */ 310 reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */ 311 1 << SWP_CFG_VPM_SHIFT | /* VDQCR read triggered mode */ 312 1 << SWP_CFG_CPM_SHIFT; /* CR read triggered mode */ 313 } 314 315 qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg); 316 reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG); 317 if (!reg) { 318 pr_err("qbman: the portal is not enabled!\n"); 319 kfree(p); 320 return NULL; 321 } 322 323 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) { 324 qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE); 325 qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE); 326 } 327 /* 328 * SDQCR needs to be initialized to 0 when no channels are 329 * being dequeued from or else the QMan HW will indicate an 330 * error. The values that were calculated above will be 331 * applied when dequeues from a specific channel are enabled. 332 */ 333 qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0); 334 335 p->eqcr.pi_ring_size = 8; 336 if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) { 337 p->eqcr.pi_ring_size = 32; 338 qbman_swp_enqueue_ptr = 339 qbman_swp_enqueue_mem_back; 340 qbman_swp_enqueue_multiple_ptr = 341 qbman_swp_enqueue_multiple_mem_back; 342 qbman_swp_enqueue_multiple_desc_ptr = 343 qbman_swp_enqueue_multiple_desc_mem_back; 344 qbman_swp_pull_ptr = qbman_swp_pull_mem_back; 345 qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back; 346 qbman_swp_release_ptr = qbman_swp_release_mem_back; 347 } 348 349 for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1) 350 p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1; 351 eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI); 352 p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask; 353 p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT; 354 p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI) 355 & p->eqcr.pi_ci_mask; 356 p->eqcr.available = p->eqcr.pi_ring_size; 357 358 return p; 359 } 360 361 /** 362 * qbman_swp_finish() - Create and destroy a functional object representing 363 * the given QBMan portal descriptor. 364 * @p: the qbman_swp object to be destroyed 365 */ 366 void qbman_swp_finish(struct qbman_swp *p) 367 { 368 kfree(p); 369 } 370 371 /** 372 * qbman_swp_interrupt_read_status() 373 * @p: the given software portal 374 * 375 * Return the value in the SWP_ISR register. 376 */ 377 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p) 378 { 379 return qbman_read_register(p, QBMAN_CINH_SWP_ISR); 380 } 381 382 /** 383 * qbman_swp_interrupt_clear_status() 384 * @p: the given software portal 385 * @mask: The mask to clear in SWP_ISR register 386 */ 387 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask) 388 { 389 qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask); 390 } 391 392 /** 393 * qbman_swp_interrupt_get_trigger() - read interrupt enable register 394 * @p: the given software portal 395 * 396 * Return the value in the SWP_IER register. 397 */ 398 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p) 399 { 400 return qbman_read_register(p, QBMAN_CINH_SWP_IER); 401 } 402 403 /** 404 * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp 405 * @p: the given software portal 406 * @mask: The mask of bits to enable in SWP_IER 407 */ 408 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask) 409 { 410 qbman_write_register(p, QBMAN_CINH_SWP_IER, mask); 411 } 412 413 /** 414 * qbman_swp_interrupt_get_inhibit() - read interrupt mask register 415 * @p: the given software portal object 416 * 417 * Return the value in the SWP_IIR register. 418 */ 419 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p) 420 { 421 return qbman_read_register(p, QBMAN_CINH_SWP_IIR); 422 } 423 424 /** 425 * qbman_swp_interrupt_set_inhibit() - write interrupt mask register 426 * @p: the given software portal object 427 * @mask: The mask to set in SWP_IIR register 428 */ 429 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit) 430 { 431 qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0); 432 } 433 434 /* 435 * Different management commands all use this common base layer of code to issue 436 * commands and poll for results. 437 */ 438 439 /* 440 * Returns a pointer to where the caller should fill in their management command 441 * (caller should ignore the verb byte) 442 */ 443 void *qbman_swp_mc_start(struct qbman_swp *p) 444 { 445 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) 446 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR); 447 else 448 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM); 449 } 450 451 /* 452 * Commits merges in the caller-supplied command verb (which should not include 453 * the valid-bit) and submits the command to hardware 454 */ 455 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb) 456 { 457 u8 *v = cmd; 458 459 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) { 460 dma_wmb(); 461 *v = cmd_verb | p->mc.valid_bit; 462 } else { 463 *v = cmd_verb | p->mc.valid_bit; 464 dma_wmb(); 465 qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE); 466 } 467 } 468 469 /* 470 * Checks for a completed response (returns non-NULL if only if the response 471 * is complete). 472 */ 473 void *qbman_swp_mc_result(struct qbman_swp *p) 474 { 475 u32 *ret, verb; 476 477 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) { 478 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit)); 479 /* Remove the valid-bit - command completed if the rest 480 * is non-zero. 481 */ 482 verb = ret[0] & ~QB_VALID_BIT; 483 if (!verb) 484 return NULL; 485 p->mc.valid_bit ^= QB_VALID_BIT; 486 } else { 487 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM); 488 /* Command completed if the valid bit is toggled */ 489 if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT)) 490 return NULL; 491 /* Command completed if the rest is non-zero */ 492 verb = ret[0] & ~QB_VALID_BIT; 493 if (!verb) 494 return NULL; 495 p->mr.valid_bit ^= QB_VALID_BIT; 496 } 497 498 return ret; 499 } 500 501 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT 0 502 enum qb_enqueue_commands { 503 enqueue_empty = 0, 504 enqueue_response_always = 1, 505 enqueue_rejects_to_fq = 2 506 }; 507 508 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT 2 509 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3 510 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT 4 511 #define QB_ENQUEUE_CMD_DCA_EN_SHIFT 7 512 513 /** 514 * qbman_eq_desc_clear() - Clear the contents of a descriptor to 515 * default/starting state. 516 */ 517 void qbman_eq_desc_clear(struct qbman_eq_desc *d) 518 { 519 memset(d, 0, sizeof(*d)); 520 } 521 522 /** 523 * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp 524 * @d: the enqueue descriptor. 525 * @response_success: 1 = enqueue with response always; 0 = enqueue with 526 * rejections returned on a FQ. 527 */ 528 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success) 529 { 530 d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT); 531 if (respond_success) 532 d->verb |= enqueue_response_always; 533 else 534 d->verb |= enqueue_rejects_to_fq; 535 } 536 537 /* 538 * Exactly one of the following descriptor "targets" should be set. (Calling any 539 * one of these will replace the effect of any prior call to one of these.) 540 * -enqueue to a frame queue 541 * -enqueue to a queuing destination 542 */ 543 544 /** 545 * qbman_eq_desc_set_fq() - set the FQ for the enqueue command 546 * @d: the enqueue descriptor 547 * @fqid: the id of the frame queue to be enqueued 548 */ 549 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid) 550 { 551 d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT); 552 d->tgtid = cpu_to_le32(fqid); 553 } 554 555 /** 556 * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command 557 * @d: the enqueue descriptor 558 * @qdid: the id of the queuing destination to be enqueued 559 * @qd_bin: the queuing destination bin 560 * @qd_prio: the queuing destination priority 561 */ 562 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid, 563 u32 qd_bin, u32 qd_prio) 564 { 565 d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT; 566 d->tgtid = cpu_to_le32(qdid); 567 d->qdbin = cpu_to_le16(qd_bin); 568 d->qpri = qd_prio; 569 } 570 571 #define EQAR_IDX(eqar) ((eqar) & 0x7) 572 #define EQAR_VB(eqar) ((eqar) & 0x80) 573 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100) 574 575 #define QB_RT_BIT ((u32)0x100) 576 /** 577 * qbman_swp_enqueue_direct() - Issue an enqueue command 578 * @s: the software portal used for enqueue 579 * @d: the enqueue descriptor 580 * @fd: the frame descriptor to be enqueued 581 * 582 * Please note that 'fd' should only be NULL if the "action" of the 583 * descriptor is "orp_hole" or "orp_nesn". 584 * 585 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready. 586 */ 587 static 588 int qbman_swp_enqueue_direct(struct qbman_swp *s, 589 const struct qbman_eq_desc *d, 590 const struct dpaa2_fd *fd) 591 { 592 int flags = 0; 593 int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1); 594 595 if (ret >= 0) 596 ret = 0; 597 else 598 ret = -EBUSY; 599 return ret; 600 } 601 602 /** 603 * qbman_swp_enqueue_mem_back() - Issue an enqueue command 604 * @s: the software portal used for enqueue 605 * @d: the enqueue descriptor 606 * @fd: the frame descriptor to be enqueued 607 * 608 * Please note that 'fd' should only be NULL if the "action" of the 609 * descriptor is "orp_hole" or "orp_nesn". 610 * 611 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready. 612 */ 613 static 614 int qbman_swp_enqueue_mem_back(struct qbman_swp *s, 615 const struct qbman_eq_desc *d, 616 const struct dpaa2_fd *fd) 617 { 618 int flags = 0; 619 int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1); 620 621 if (ret >= 0) 622 ret = 0; 623 else 624 ret = -EBUSY; 625 return ret; 626 } 627 628 /** 629 * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command 630 * using one enqueue descriptor 631 * @s: the software portal used for enqueue 632 * @d: the enqueue descriptor 633 * @fd: table pointer of frame descriptor table to be enqueued 634 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL 635 * @num_frames: number of fd to be enqueued 636 * 637 * Return the number of fd enqueued, or a negative error number. 638 */ 639 static 640 int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s, 641 const struct qbman_eq_desc *d, 642 const struct dpaa2_fd *fd, 643 uint32_t *flags, 644 int num_frames) 645 { 646 uint32_t *p = NULL; 647 const uint32_t *cl = (uint32_t *)d; 648 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask; 649 int i, num_enqueued = 0; 650 uint64_t addr_cena; 651 652 spin_lock(&s->access_spinlock); 653 half_mask = (s->eqcr.pi_ci_mask>>1); 654 full_mask = s->eqcr.pi_ci_mask; 655 656 if (!s->eqcr.available) { 657 eqcr_ci = s->eqcr.ci; 658 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI; 659 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI); 660 s->eqcr.ci &= full_mask; 661 662 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size, 663 eqcr_ci, s->eqcr.ci); 664 if (!s->eqcr.available) { 665 spin_unlock(&s->access_spinlock); 666 return 0; 667 } 668 } 669 670 eqcr_pi = s->eqcr.pi; 671 num_enqueued = (s->eqcr.available < num_frames) ? 672 s->eqcr.available : num_frames; 673 s->eqcr.available -= num_enqueued; 674 /* Fill in the EQCR ring */ 675 for (i = 0; i < num_enqueued; i++) { 676 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 677 /* Skip copying the verb */ 678 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1); 679 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)], 680 &fd[i], sizeof(*fd)); 681 eqcr_pi++; 682 } 683 684 dma_wmb(); 685 686 /* Set the verb byte, have to substitute in the valid-bit */ 687 eqcr_pi = s->eqcr.pi; 688 for (i = 0; i < num_enqueued; i++) { 689 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 690 p[0] = cl[0] | s->eqcr.pi_vb; 691 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) { 692 struct qbman_eq_desc *d = (struct qbman_eq_desc *)p; 693 694 d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) | 695 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK); 696 } 697 eqcr_pi++; 698 if (!(eqcr_pi & half_mask)) 699 s->eqcr.pi_vb ^= QB_VALID_BIT; 700 } 701 702 /* Flush all the cacheline without load/store in between */ 703 eqcr_pi = s->eqcr.pi; 704 addr_cena = (size_t)s->addr_cena; 705 for (i = 0; i < num_enqueued; i++) 706 eqcr_pi++; 707 s->eqcr.pi = eqcr_pi & full_mask; 708 spin_unlock(&s->access_spinlock); 709 710 return num_enqueued; 711 } 712 713 /** 714 * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command 715 * using one enqueue descriptor 716 * @s: the software portal used for enqueue 717 * @d: the enqueue descriptor 718 * @fd: table pointer of frame descriptor table to be enqueued 719 * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL 720 * @num_frames: number of fd to be enqueued 721 * 722 * Return the number of fd enqueued, or a negative error number. 723 */ 724 static 725 int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s, 726 const struct qbman_eq_desc *d, 727 const struct dpaa2_fd *fd, 728 uint32_t *flags, 729 int num_frames) 730 { 731 uint32_t *p = NULL; 732 const uint32_t *cl = (uint32_t *)(d); 733 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask; 734 int i, num_enqueued = 0; 735 unsigned long irq_flags; 736 737 spin_lock(&s->access_spinlock); 738 local_irq_save(irq_flags); 739 740 half_mask = (s->eqcr.pi_ci_mask>>1); 741 full_mask = s->eqcr.pi_ci_mask; 742 if (!s->eqcr.available) { 743 eqcr_ci = s->eqcr.ci; 744 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK; 745 s->eqcr.ci = *p & full_mask; 746 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size, 747 eqcr_ci, s->eqcr.ci); 748 if (!s->eqcr.available) { 749 local_irq_restore(irq_flags); 750 spin_unlock(&s->access_spinlock); 751 return 0; 752 } 753 } 754 755 eqcr_pi = s->eqcr.pi; 756 num_enqueued = (s->eqcr.available < num_frames) ? 757 s->eqcr.available : num_frames; 758 s->eqcr.available -= num_enqueued; 759 /* Fill in the EQCR ring */ 760 for (i = 0; i < num_enqueued; i++) { 761 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 762 /* Skip copying the verb */ 763 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1); 764 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)], 765 &fd[i], sizeof(*fd)); 766 eqcr_pi++; 767 } 768 769 /* Set the verb byte, have to substitute in the valid-bit */ 770 eqcr_pi = s->eqcr.pi; 771 for (i = 0; i < num_enqueued; i++) { 772 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 773 p[0] = cl[0] | s->eqcr.pi_vb; 774 if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) { 775 struct qbman_eq_desc *d = (struct qbman_eq_desc *)p; 776 777 d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) | 778 ((flags[i]) & QBMAN_EQCR_DCA_IDXMASK); 779 } 780 eqcr_pi++; 781 if (!(eqcr_pi & half_mask)) 782 s->eqcr.pi_vb ^= QB_VALID_BIT; 783 } 784 s->eqcr.pi = eqcr_pi & full_mask; 785 786 dma_wmb(); 787 qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI, 788 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb); 789 local_irq_restore(irq_flags); 790 spin_unlock(&s->access_spinlock); 791 792 return num_enqueued; 793 } 794 795 /** 796 * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command 797 * using multiple enqueue descriptor 798 * @s: the software portal used for enqueue 799 * @d: table of minimal enqueue descriptor 800 * @fd: table pointer of frame descriptor table to be enqueued 801 * @num_frames: number of fd to be enqueued 802 * 803 * Return the number of fd enqueued, or a negative error number. 804 */ 805 static 806 int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s, 807 const struct qbman_eq_desc *d, 808 const struct dpaa2_fd *fd, 809 int num_frames) 810 { 811 uint32_t *p; 812 const uint32_t *cl; 813 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask; 814 int i, num_enqueued = 0; 815 816 half_mask = (s->eqcr.pi_ci_mask>>1); 817 full_mask = s->eqcr.pi_ci_mask; 818 if (!s->eqcr.available) { 819 eqcr_ci = s->eqcr.ci; 820 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI; 821 s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI); 822 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size, 823 eqcr_ci, s->eqcr.ci); 824 if (!s->eqcr.available) 825 return 0; 826 } 827 828 eqcr_pi = s->eqcr.pi; 829 num_enqueued = (s->eqcr.available < num_frames) ? 830 s->eqcr.available : num_frames; 831 s->eqcr.available -= num_enqueued; 832 /* Fill in the EQCR ring */ 833 for (i = 0; i < num_enqueued; i++) { 834 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 835 cl = (uint32_t *)(&d[i]); 836 /* Skip copying the verb */ 837 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1); 838 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)], 839 &fd[i], sizeof(*fd)); 840 eqcr_pi++; 841 } 842 843 dma_wmb(); 844 845 /* Set the verb byte, have to substitute in the valid-bit */ 846 eqcr_pi = s->eqcr.pi; 847 for (i = 0; i < num_enqueued; i++) { 848 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 849 cl = (uint32_t *)(&d[i]); 850 p[0] = cl[0] | s->eqcr.pi_vb; 851 eqcr_pi++; 852 if (!(eqcr_pi & half_mask)) 853 s->eqcr.pi_vb ^= QB_VALID_BIT; 854 } 855 856 /* Flush all the cacheline without load/store in between */ 857 eqcr_pi = s->eqcr.pi; 858 for (i = 0; i < num_enqueued; i++) 859 eqcr_pi++; 860 s->eqcr.pi = eqcr_pi & full_mask; 861 862 return num_enqueued; 863 } 864 865 /** 866 * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command 867 * using multiple enqueue descriptor 868 * @s: the software portal used for enqueue 869 * @d: table of minimal enqueue descriptor 870 * @fd: table pointer of frame descriptor table to be enqueued 871 * @num_frames: number of fd to be enqueued 872 * 873 * Return the number of fd enqueued, or a negative error number. 874 */ 875 static 876 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s, 877 const struct qbman_eq_desc *d, 878 const struct dpaa2_fd *fd, 879 int num_frames) 880 { 881 uint32_t *p; 882 const uint32_t *cl; 883 uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask; 884 int i, num_enqueued = 0; 885 886 half_mask = (s->eqcr.pi_ci_mask>>1); 887 full_mask = s->eqcr.pi_ci_mask; 888 if (!s->eqcr.available) { 889 eqcr_ci = s->eqcr.ci; 890 p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK; 891 s->eqcr.ci = *p & full_mask; 892 s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size, 893 eqcr_ci, s->eqcr.ci); 894 if (!s->eqcr.available) 895 return 0; 896 } 897 898 eqcr_pi = s->eqcr.pi; 899 num_enqueued = (s->eqcr.available < num_frames) ? 900 s->eqcr.available : num_frames; 901 s->eqcr.available -= num_enqueued; 902 /* Fill in the EQCR ring */ 903 for (i = 0; i < num_enqueued; i++) { 904 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 905 cl = (uint32_t *)(&d[i]); 906 /* Skip copying the verb */ 907 memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1); 908 memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)], 909 &fd[i], sizeof(*fd)); 910 eqcr_pi++; 911 } 912 913 /* Set the verb byte, have to substitute in the valid-bit */ 914 eqcr_pi = s->eqcr.pi; 915 for (i = 0; i < num_enqueued; i++) { 916 p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask)); 917 cl = (uint32_t *)(&d[i]); 918 p[0] = cl[0] | s->eqcr.pi_vb; 919 eqcr_pi++; 920 if (!(eqcr_pi & half_mask)) 921 s->eqcr.pi_vb ^= QB_VALID_BIT; 922 } 923 924 s->eqcr.pi = eqcr_pi & full_mask; 925 926 dma_wmb(); 927 qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI, 928 (QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb); 929 930 return num_enqueued; 931 } 932 933 /* Static (push) dequeue */ 934 935 /** 936 * qbman_swp_push_get() - Get the push dequeue setup 937 * @p: the software portal object 938 * @channel_idx: the channel index to query 939 * @enabled: returned boolean to show whether the push dequeue is enabled 940 * for the given channel 941 */ 942 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled) 943 { 944 u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK; 945 946 WARN_ON(channel_idx > 15); 947 *enabled = src | (1 << channel_idx); 948 } 949 950 /** 951 * qbman_swp_push_set() - Enable or disable push dequeue 952 * @p: the software portal object 953 * @channel_idx: the channel index (0 to 15) 954 * @enable: enable or disable push dequeue 955 */ 956 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable) 957 { 958 u16 dqsrc; 959 960 WARN_ON(channel_idx > 15); 961 if (enable) 962 s->sdq |= 1 << channel_idx; 963 else 964 s->sdq &= ~(1 << channel_idx); 965 966 /* Read make the complete src map. If no channels are enabled 967 * the SDQCR must be 0 or else QMan will assert errors 968 */ 969 dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK; 970 if (dqsrc != 0) 971 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq); 972 else 973 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0); 974 } 975 976 #define QB_VDQCR_VERB_DCT_SHIFT 0 977 #define QB_VDQCR_VERB_DT_SHIFT 2 978 #define QB_VDQCR_VERB_RLS_SHIFT 4 979 #define QB_VDQCR_VERB_WAE_SHIFT 5 980 981 enum qb_pull_dt_e { 982 qb_pull_dt_channel, 983 qb_pull_dt_workqueue, 984 qb_pull_dt_framequeue 985 }; 986 987 /** 988 * qbman_pull_desc_clear() - Clear the contents of a descriptor to 989 * default/starting state 990 * @d: the pull dequeue descriptor to be cleared 991 */ 992 void qbman_pull_desc_clear(struct qbman_pull_desc *d) 993 { 994 memset(d, 0, sizeof(*d)); 995 } 996 997 /** 998 * qbman_pull_desc_set_storage()- Set the pull dequeue storage 999 * @d: the pull dequeue descriptor to be set 1000 * @storage: the pointer of the memory to store the dequeue result 1001 * @storage_phys: the physical address of the storage memory 1002 * @stash: to indicate whether write allocate is enabled 1003 * 1004 * If not called, or if called with 'storage' as NULL, the result pull dequeues 1005 * will produce results to DQRR. If 'storage' is non-NULL, then results are 1006 * produced to the given memory location (using the DMA address which 1007 * the caller provides in 'storage_phys'), and 'stash' controls whether or not 1008 * those writes to main-memory express a cache-warming attribute. 1009 */ 1010 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d, 1011 struct dpaa2_dq *storage, 1012 dma_addr_t storage_phys, 1013 int stash) 1014 { 1015 /* save the virtual address */ 1016 d->rsp_addr_virt = (u64)(uintptr_t)storage; 1017 1018 if (!storage) { 1019 d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT); 1020 return; 1021 } 1022 d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT; 1023 if (stash) 1024 d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT; 1025 else 1026 d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT); 1027 1028 d->rsp_addr = cpu_to_le64(storage_phys); 1029 } 1030 1031 /** 1032 * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued 1033 * @d: the pull dequeue descriptor to be set 1034 * @numframes: number of frames to be set, must be between 1 and 16, inclusive 1035 */ 1036 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes) 1037 { 1038 d->numf = numframes - 1; 1039 } 1040 1041 /* 1042 * Exactly one of the following descriptor "actions" should be set. (Calling any 1043 * one of these will replace the effect of any prior call to one of these.) 1044 * - pull dequeue from the given frame queue (FQ) 1045 * - pull dequeue from any FQ in the given work queue (WQ) 1046 * - pull dequeue from any FQ in any WQ in the given channel 1047 */ 1048 1049 /** 1050 * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues 1051 * @fqid: the frame queue index of the given FQ 1052 */ 1053 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid) 1054 { 1055 d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT; 1056 d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT; 1057 d->dq_src = cpu_to_le32(fqid); 1058 } 1059 1060 /** 1061 * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues 1062 * @wqid: composed of channel id and wqid within the channel 1063 * @dct: the dequeue command type 1064 */ 1065 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid, 1066 enum qbman_pull_type_e dct) 1067 { 1068 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT; 1069 d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT; 1070 d->dq_src = cpu_to_le32(wqid); 1071 } 1072 1073 /** 1074 * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command 1075 * dequeues 1076 * @chid: the channel id to be dequeued 1077 * @dct: the dequeue command type 1078 */ 1079 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid, 1080 enum qbman_pull_type_e dct) 1081 { 1082 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT; 1083 d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT; 1084 d->dq_src = cpu_to_le32(chid); 1085 } 1086 1087 /** 1088 * qbman_swp_pull_direct() - Issue the pull dequeue command 1089 * @s: the software portal object 1090 * @d: the software portal descriptor which has been configured with 1091 * the set of qbman_pull_desc_set_*() calls 1092 * 1093 * Return 0 for success, and -EBUSY if the software portal is not ready 1094 * to do pull dequeue. 1095 */ 1096 static 1097 int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d) 1098 { 1099 struct qbman_pull_desc *p; 1100 1101 if (!atomic_dec_and_test(&s->vdq.available)) { 1102 atomic_inc(&s->vdq.available); 1103 return -EBUSY; 1104 } 1105 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt; 1106 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) 1107 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR); 1108 else 1109 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM); 1110 p->numf = d->numf; 1111 p->tok = QMAN_DQ_TOKEN_VALID; 1112 p->dq_src = d->dq_src; 1113 p->rsp_addr = d->rsp_addr; 1114 p->rsp_addr_virt = d->rsp_addr_virt; 1115 dma_wmb(); 1116 /* Set the verb byte, have to substitute in the valid-bit */ 1117 p->verb = d->verb | s->vdq.valid_bit; 1118 s->vdq.valid_bit ^= QB_VALID_BIT; 1119 1120 return 0; 1121 } 1122 1123 /** 1124 * qbman_swp_pull_mem_back() - Issue the pull dequeue command 1125 * @s: the software portal object 1126 * @d: the software portal descriptor which has been configured with 1127 * the set of qbman_pull_desc_set_*() calls 1128 * 1129 * Return 0 for success, and -EBUSY if the software portal is not ready 1130 * to do pull dequeue. 1131 */ 1132 static 1133 int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d) 1134 { 1135 struct qbman_pull_desc *p; 1136 1137 if (!atomic_dec_and_test(&s->vdq.available)) { 1138 atomic_inc(&s->vdq.available); 1139 return -EBUSY; 1140 } 1141 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt; 1142 if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) 1143 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR); 1144 else 1145 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM); 1146 p->numf = d->numf; 1147 p->tok = QMAN_DQ_TOKEN_VALID; 1148 p->dq_src = d->dq_src; 1149 p->rsp_addr = d->rsp_addr; 1150 p->rsp_addr_virt = d->rsp_addr_virt; 1151 1152 /* Set the verb byte, have to substitute in the valid-bit */ 1153 p->verb = d->verb | s->vdq.valid_bit; 1154 s->vdq.valid_bit ^= QB_VALID_BIT; 1155 dma_wmb(); 1156 qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE); 1157 1158 return 0; 1159 } 1160 1161 #define QMAN_DQRR_PI_MASK 0xf 1162 1163 /** 1164 * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry 1165 * @s: the software portal object 1166 * 1167 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry 1168 * only once, so repeated calls can return a sequence of DQRR entries, without 1169 * requiring they be consumed immediately or in any particular order. 1170 */ 1171 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s) 1172 { 1173 u32 verb; 1174 u32 response_verb; 1175 u32 flags; 1176 struct dpaa2_dq *p; 1177 1178 /* Before using valid-bit to detect if something is there, we have to 1179 * handle the case of the DQRR reset bug... 1180 */ 1181 if (unlikely(s->dqrr.reset_bug)) { 1182 /* 1183 * We pick up new entries by cache-inhibited producer index, 1184 * which means that a non-coherent mapping would require us to 1185 * invalidate and read *only* once that PI has indicated that 1186 * there's an entry here. The first trip around the DQRR ring 1187 * will be much less efficient than all subsequent trips around 1188 * it... 1189 */ 1190 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) & 1191 QMAN_DQRR_PI_MASK; 1192 1193 /* there are new entries if pi != next_idx */ 1194 if (pi == s->dqrr.next_idx) 1195 return NULL; 1196 1197 /* 1198 * if next_idx is/was the last ring index, and 'pi' is 1199 * different, we can disable the workaround as all the ring 1200 * entries have now been DMA'd to so valid-bit checking is 1201 * repaired. Note: this logic needs to be based on next_idx 1202 * (which increments one at a time), rather than on pi (which 1203 * can burst and wrap-around between our snapshots of it). 1204 */ 1205 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) { 1206 pr_debug("next_idx=%d, pi=%d, clear reset bug\n", 1207 s->dqrr.next_idx, pi); 1208 s->dqrr.reset_bug = 0; 1209 } 1210 prefetch(qbman_get_cmd(s, 1211 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx))); 1212 } 1213 1214 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)); 1215 verb = p->dq.verb; 1216 1217 /* 1218 * If the valid-bit isn't of the expected polarity, nothing there. Note, 1219 * in the DQRR reset bug workaround, we shouldn't need to skip these 1220 * check, because we've already determined that a new entry is available 1221 * and we've invalidated the cacheline before reading it, so the 1222 * valid-bit behaviour is repaired and should tell us what we already 1223 * knew from reading PI. 1224 */ 1225 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) { 1226 prefetch(qbman_get_cmd(s, 1227 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx))); 1228 return NULL; 1229 } 1230 /* 1231 * There's something there. Move "next_idx" attention to the next ring 1232 * entry (and prefetch it) before returning what we found. 1233 */ 1234 s->dqrr.next_idx++; 1235 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */ 1236 if (!s->dqrr.next_idx) 1237 s->dqrr.valid_bit ^= QB_VALID_BIT; 1238 1239 /* 1240 * If this is the final response to a volatile dequeue command 1241 * indicate that the vdq is available 1242 */ 1243 flags = p->dq.stat; 1244 response_verb = verb & QBMAN_RESULT_MASK; 1245 if ((response_verb == QBMAN_RESULT_DQ) && 1246 (flags & DPAA2_DQ_STAT_VOLATILE) && 1247 (flags & DPAA2_DQ_STAT_EXPIRED)) 1248 atomic_inc(&s->vdq.available); 1249 1250 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx))); 1251 1252 return p; 1253 } 1254 1255 /** 1256 * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry 1257 * @s: the software portal object 1258 * 1259 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry 1260 * only once, so repeated calls can return a sequence of DQRR entries, without 1261 * requiring they be consumed immediately or in any particular order. 1262 */ 1263 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s) 1264 { 1265 u32 verb; 1266 u32 response_verb; 1267 u32 flags; 1268 struct dpaa2_dq *p; 1269 1270 /* Before using valid-bit to detect if something is there, we have to 1271 * handle the case of the DQRR reset bug... 1272 */ 1273 if (unlikely(s->dqrr.reset_bug)) { 1274 /* 1275 * We pick up new entries by cache-inhibited producer index, 1276 * which means that a non-coherent mapping would require us to 1277 * invalidate and read *only* once that PI has indicated that 1278 * there's an entry here. The first trip around the DQRR ring 1279 * will be much less efficient than all subsequent trips around 1280 * it... 1281 */ 1282 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) & 1283 QMAN_DQRR_PI_MASK; 1284 1285 /* there are new entries if pi != next_idx */ 1286 if (pi == s->dqrr.next_idx) 1287 return NULL; 1288 1289 /* 1290 * if next_idx is/was the last ring index, and 'pi' is 1291 * different, we can disable the workaround as all the ring 1292 * entries have now been DMA'd to so valid-bit checking is 1293 * repaired. Note: this logic needs to be based on next_idx 1294 * (which increments one at a time), rather than on pi (which 1295 * can burst and wrap-around between our snapshots of it). 1296 */ 1297 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) { 1298 pr_debug("next_idx=%d, pi=%d, clear reset bug\n", 1299 s->dqrr.next_idx, pi); 1300 s->dqrr.reset_bug = 0; 1301 } 1302 prefetch(qbman_get_cmd(s, 1303 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx))); 1304 } 1305 1306 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx)); 1307 verb = p->dq.verb; 1308 1309 /* 1310 * If the valid-bit isn't of the expected polarity, nothing there. Note, 1311 * in the DQRR reset bug workaround, we shouldn't need to skip these 1312 * check, because we've already determined that a new entry is available 1313 * and we've invalidated the cacheline before reading it, so the 1314 * valid-bit behaviour is repaired and should tell us what we already 1315 * knew from reading PI. 1316 */ 1317 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) { 1318 prefetch(qbman_get_cmd(s, 1319 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx))); 1320 return NULL; 1321 } 1322 /* 1323 * There's something there. Move "next_idx" attention to the next ring 1324 * entry (and prefetch it) before returning what we found. 1325 */ 1326 s->dqrr.next_idx++; 1327 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */ 1328 if (!s->dqrr.next_idx) 1329 s->dqrr.valid_bit ^= QB_VALID_BIT; 1330 1331 /* 1332 * If this is the final response to a volatile dequeue command 1333 * indicate that the vdq is available 1334 */ 1335 flags = p->dq.stat; 1336 response_verb = verb & QBMAN_RESULT_MASK; 1337 if ((response_verb == QBMAN_RESULT_DQ) && 1338 (flags & DPAA2_DQ_STAT_VOLATILE) && 1339 (flags & DPAA2_DQ_STAT_EXPIRED)) 1340 atomic_inc(&s->vdq.available); 1341 1342 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx))); 1343 1344 return p; 1345 } 1346 1347 /** 1348 * qbman_swp_dqrr_consume() - Consume DQRR entries previously returned from 1349 * qbman_swp_dqrr_next(). 1350 * @s: the software portal object 1351 * @dq: the DQRR entry to be consumed 1352 */ 1353 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq) 1354 { 1355 qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq)); 1356 } 1357 1358 /** 1359 * qbman_result_has_new_result() - Check and get the dequeue response from the 1360 * dq storage memory set in pull dequeue command 1361 * @s: the software portal object 1362 * @dq: the dequeue result read from the memory 1363 * 1364 * Return 1 for getting a valid dequeue result, or 0 for not getting a valid 1365 * dequeue result. 1366 * 1367 * Only used for user-provided storage of dequeue results, not DQRR. For 1368 * efficiency purposes, the driver will perform any required endianness 1369 * conversion to ensure that the user's dequeue result storage is in host-endian 1370 * format. As such, once the user has called qbman_result_has_new_result() and 1371 * been returned a valid dequeue result, they should not call it again on 1372 * the same memory location (except of course if another dequeue command has 1373 * been executed to produce a new result to that location). 1374 */ 1375 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq) 1376 { 1377 if (dq->dq.tok != QMAN_DQ_TOKEN_VALID) 1378 return 0; 1379 1380 /* 1381 * Set token to be 0 so we will detect change back to 1 1382 * next time the looping is traversed. Const is cast away here 1383 * as we want users to treat the dequeue responses as read only. 1384 */ 1385 ((struct dpaa2_dq *)dq)->dq.tok = 0; 1386 1387 /* 1388 * Determine whether VDQCR is available based on whether the 1389 * current result is sitting in the first storage location of 1390 * the busy command. 1391 */ 1392 if (s->vdq.storage == dq) { 1393 s->vdq.storage = NULL; 1394 atomic_inc(&s->vdq.available); 1395 } 1396 1397 return 1; 1398 } 1399 1400 /** 1401 * qbman_release_desc_clear() - Clear the contents of a descriptor to 1402 * default/starting state. 1403 */ 1404 void qbman_release_desc_clear(struct qbman_release_desc *d) 1405 { 1406 memset(d, 0, sizeof(*d)); 1407 d->verb = 1 << 5; /* Release Command Valid */ 1408 } 1409 1410 /** 1411 * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to 1412 */ 1413 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid) 1414 { 1415 d->bpid = cpu_to_le16(bpid); 1416 } 1417 1418 /** 1419 * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI 1420 * interrupt source should be asserted after the release command is completed. 1421 */ 1422 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable) 1423 { 1424 if (enable) 1425 d->verb |= 1 << 6; 1426 else 1427 d->verb &= ~(1 << 6); 1428 } 1429 1430 #define RAR_IDX(rar) ((rar) & 0x7) 1431 #define RAR_VB(rar) ((rar) & 0x80) 1432 #define RAR_SUCCESS(rar) ((rar) & 0x100) 1433 1434 /** 1435 * qbman_swp_release_direct() - Issue a buffer release command 1436 * @s: the software portal object 1437 * @d: the release descriptor 1438 * @buffers: a pointer pointing to the buffer address to be released 1439 * @num_buffers: number of buffers to be released, must be less than 8 1440 * 1441 * Return 0 for success, -EBUSY if the release command ring is not ready. 1442 */ 1443 int qbman_swp_release_direct(struct qbman_swp *s, 1444 const struct qbman_release_desc *d, 1445 const u64 *buffers, unsigned int num_buffers) 1446 { 1447 int i; 1448 struct qbman_release_desc *p; 1449 u32 rar; 1450 1451 if (!num_buffers || (num_buffers > 7)) 1452 return -EINVAL; 1453 1454 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR); 1455 if (!RAR_SUCCESS(rar)) 1456 return -EBUSY; 1457 1458 /* Start the release command */ 1459 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar))); 1460 1461 /* Copy the caller's buffer pointers to the command */ 1462 for (i = 0; i < num_buffers; i++) 1463 p->buf[i] = cpu_to_le64(buffers[i]); 1464 p->bpid = d->bpid; 1465 1466 /* 1467 * Set the verb byte, have to substitute in the valid-bit 1468 * and the number of buffers. 1469 */ 1470 dma_wmb(); 1471 p->verb = d->verb | RAR_VB(rar) | num_buffers; 1472 1473 return 0; 1474 } 1475 1476 /** 1477 * qbman_swp_release_mem_back() - Issue a buffer release command 1478 * @s: the software portal object 1479 * @d: the release descriptor 1480 * @buffers: a pointer pointing to the buffer address to be released 1481 * @num_buffers: number of buffers to be released, must be less than 8 1482 * 1483 * Return 0 for success, -EBUSY if the release command ring is not ready. 1484 */ 1485 int qbman_swp_release_mem_back(struct qbman_swp *s, 1486 const struct qbman_release_desc *d, 1487 const u64 *buffers, unsigned int num_buffers) 1488 { 1489 int i; 1490 struct qbman_release_desc *p; 1491 u32 rar; 1492 1493 if (!num_buffers || (num_buffers > 7)) 1494 return -EINVAL; 1495 1496 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR); 1497 if (!RAR_SUCCESS(rar)) 1498 return -EBUSY; 1499 1500 /* Start the release command */ 1501 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar))); 1502 1503 /* Copy the caller's buffer pointers to the command */ 1504 for (i = 0; i < num_buffers; i++) 1505 p->buf[i] = cpu_to_le64(buffers[i]); 1506 p->bpid = d->bpid; 1507 1508 p->verb = d->verb | RAR_VB(rar) | num_buffers; 1509 dma_wmb(); 1510 qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT + 1511 RAR_IDX(rar) * 4, QMAN_RT_MODE); 1512 1513 return 0; 1514 } 1515 1516 struct qbman_acquire_desc { 1517 u8 verb; 1518 u8 reserved; 1519 __le16 bpid; 1520 u8 num; 1521 u8 reserved2[59]; 1522 }; 1523 1524 struct qbman_acquire_rslt { 1525 u8 verb; 1526 u8 rslt; 1527 __le16 reserved; 1528 u8 num; 1529 u8 reserved2[3]; 1530 __le64 buf[7]; 1531 }; 1532 1533 /** 1534 * qbman_swp_acquire() - Issue a buffer acquire command 1535 * @s: the software portal object 1536 * @bpid: the buffer pool index 1537 * @buffers: a pointer pointing to the acquired buffer addresses 1538 * @num_buffers: number of buffers to be acquired, must be less than 8 1539 * 1540 * Return 0 for success, or negative error code if the acquire command 1541 * fails. 1542 */ 1543 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers, 1544 unsigned int num_buffers) 1545 { 1546 struct qbman_acquire_desc *p; 1547 struct qbman_acquire_rslt *r; 1548 int i; 1549 1550 if (!num_buffers || (num_buffers > 7)) 1551 return -EINVAL; 1552 1553 /* Start the management command */ 1554 p = qbman_swp_mc_start(s); 1555 1556 if (!p) 1557 return -EBUSY; 1558 1559 /* Encode the caller-provided attributes */ 1560 p->bpid = cpu_to_le16(bpid); 1561 p->num = num_buffers; 1562 1563 /* Complete the management command */ 1564 r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE); 1565 if (unlikely(!r)) { 1566 pr_err("qbman: acquire from BPID %d failed, no response\n", 1567 bpid); 1568 return -EIO; 1569 } 1570 1571 /* Decode the outcome */ 1572 WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE); 1573 1574 /* Determine success or failure */ 1575 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) { 1576 pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n", 1577 bpid, r->rslt); 1578 return -EIO; 1579 } 1580 1581 WARN_ON(r->num > num_buffers); 1582 1583 /* Copy the acquired buffers to the caller's array */ 1584 for (i = 0; i < r->num; i++) 1585 buffers[i] = le64_to_cpu(r->buf[i]); 1586 1587 return (int)r->num; 1588 } 1589 1590 struct qbman_alt_fq_state_desc { 1591 u8 verb; 1592 u8 reserved[3]; 1593 __le32 fqid; 1594 u8 reserved2[56]; 1595 }; 1596 1597 struct qbman_alt_fq_state_rslt { 1598 u8 verb; 1599 u8 rslt; 1600 u8 reserved[62]; 1601 }; 1602 1603 #define ALT_FQ_FQID_MASK 0x00FFFFFF 1604 1605 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid, 1606 u8 alt_fq_verb) 1607 { 1608 struct qbman_alt_fq_state_desc *p; 1609 struct qbman_alt_fq_state_rslt *r; 1610 1611 /* Start the management command */ 1612 p = qbman_swp_mc_start(s); 1613 if (!p) 1614 return -EBUSY; 1615 1616 p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK); 1617 1618 /* Complete the management command */ 1619 r = qbman_swp_mc_complete(s, p, alt_fq_verb); 1620 if (unlikely(!r)) { 1621 pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n", 1622 alt_fq_verb); 1623 return -EIO; 1624 } 1625 1626 /* Decode the outcome */ 1627 WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb); 1628 1629 /* Determine success or failure */ 1630 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) { 1631 pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n", 1632 fqid, r->verb, r->rslt); 1633 return -EIO; 1634 } 1635 1636 return 0; 1637 } 1638 1639 struct qbman_cdan_ctrl_desc { 1640 u8 verb; 1641 u8 reserved; 1642 __le16 ch; 1643 u8 we; 1644 u8 ctrl; 1645 __le16 reserved2; 1646 __le64 cdan_ctx; 1647 u8 reserved3[48]; 1648 1649 }; 1650 1651 struct qbman_cdan_ctrl_rslt { 1652 u8 verb; 1653 u8 rslt; 1654 __le16 ch; 1655 u8 reserved[60]; 1656 }; 1657 1658 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid, 1659 u8 we_mask, u8 cdan_en, 1660 u64 ctx) 1661 { 1662 struct qbman_cdan_ctrl_desc *p = NULL; 1663 struct qbman_cdan_ctrl_rslt *r = NULL; 1664 1665 /* Start the management command */ 1666 p = qbman_swp_mc_start(s); 1667 if (!p) 1668 return -EBUSY; 1669 1670 /* Encode the caller-provided attributes */ 1671 p->ch = cpu_to_le16(channelid); 1672 p->we = we_mask; 1673 if (cdan_en) 1674 p->ctrl = 1; 1675 else 1676 p->ctrl = 0; 1677 p->cdan_ctx = cpu_to_le64(ctx); 1678 1679 /* Complete the management command */ 1680 r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE); 1681 if (unlikely(!r)) { 1682 pr_err("qbman: wqchan config failed, no response\n"); 1683 return -EIO; 1684 } 1685 1686 WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE); 1687 1688 /* Determine success or failure */ 1689 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) { 1690 pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n", 1691 channelid, r->rslt); 1692 return -EIO; 1693 } 1694 1695 return 0; 1696 } 1697 1698 #define QBMAN_RESPONSE_VERB_MASK 0x7f 1699 #define QBMAN_FQ_QUERY_NP 0x45 1700 #define QBMAN_BP_QUERY 0x32 1701 1702 struct qbman_fq_query_desc { 1703 u8 verb; 1704 u8 reserved[3]; 1705 __le32 fqid; 1706 u8 reserved2[56]; 1707 }; 1708 1709 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid, 1710 struct qbman_fq_query_np_rslt *r) 1711 { 1712 struct qbman_fq_query_desc *p; 1713 void *resp; 1714 1715 p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s); 1716 if (!p) 1717 return -EBUSY; 1718 1719 /* FQID is a 24 bit value */ 1720 p->fqid = cpu_to_le32(fqid & 0x00FFFFFF); 1721 resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP); 1722 if (!resp) { 1723 pr_err("qbman: Query FQID %d NP fields failed, no response\n", 1724 fqid); 1725 return -EIO; 1726 } 1727 *r = *(struct qbman_fq_query_np_rslt *)resp; 1728 /* Decode the outcome */ 1729 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP); 1730 1731 /* Determine success or failure */ 1732 if (r->rslt != QBMAN_MC_RSLT_OK) { 1733 pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n", 1734 p->fqid, r->rslt); 1735 return -EIO; 1736 } 1737 1738 return 0; 1739 } 1740 1741 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r) 1742 { 1743 return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF); 1744 } 1745 1746 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r) 1747 { 1748 return le32_to_cpu(r->byte_cnt); 1749 } 1750 1751 struct qbman_bp_query_desc { 1752 u8 verb; 1753 u8 reserved; 1754 __le16 bpid; 1755 u8 reserved2[60]; 1756 }; 1757 1758 int qbman_bp_query(struct qbman_swp *s, u16 bpid, 1759 struct qbman_bp_query_rslt *r) 1760 { 1761 struct qbman_bp_query_desc *p; 1762 void *resp; 1763 1764 p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s); 1765 if (!p) 1766 return -EBUSY; 1767 1768 p->bpid = cpu_to_le16(bpid); 1769 resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY); 1770 if (!resp) { 1771 pr_err("qbman: Query BPID %d fields failed, no response\n", 1772 bpid); 1773 return -EIO; 1774 } 1775 *r = *(struct qbman_bp_query_rslt *)resp; 1776 /* Decode the outcome */ 1777 WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY); 1778 1779 /* Determine success or failure */ 1780 if (r->rslt != QBMAN_MC_RSLT_OK) { 1781 pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n", 1782 bpid, r->rslt); 1783 return -EIO; 1784 } 1785 1786 return 0; 1787 } 1788 1789 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a) 1790 { 1791 return le32_to_cpu(a->fill); 1792 } 1793