1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4  * Copyright 2016-2019 NXP
5  *
6  */
7 
8 #include <asm/cacheflush.h>
9 #include <linux/io.h>
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <soc/fsl/dpaa2-global.h>
13 
14 #include "qbman-portal.h"
15 
16 /* All QBMan command and result structures use this "valid bit" encoding */
17 #define QB_VALID_BIT ((u32)0x80)
18 
19 /* QBMan portal management command codes */
20 #define QBMAN_MC_ACQUIRE       0x30
21 #define QBMAN_WQCHAN_CONFIGURE 0x46
22 
23 /* CINH register offsets */
24 #define QBMAN_CINH_SWP_EQCR_PI      0x800
25 #define QBMAN_CINH_SWP_EQCR_CI	    0x840
26 #define QBMAN_CINH_SWP_EQAR    0x8c0
27 #define QBMAN_CINH_SWP_CR_RT        0x900
28 #define QBMAN_CINH_SWP_VDQCR_RT     0x940
29 #define QBMAN_CINH_SWP_EQCR_AM_RT   0x980
30 #define QBMAN_CINH_SWP_RCR_AM_RT    0x9c0
31 #define QBMAN_CINH_SWP_DQPI    0xa00
32 #define QBMAN_CINH_SWP_DCAP    0xac0
33 #define QBMAN_CINH_SWP_SDQCR   0xb00
34 #define QBMAN_CINH_SWP_EQCR_AM_RT2  0xb40
35 #define QBMAN_CINH_SWP_RCR_PI       0xc00
36 #define QBMAN_CINH_SWP_RAR     0xcc0
37 #define QBMAN_CINH_SWP_ISR     0xe00
38 #define QBMAN_CINH_SWP_IER     0xe40
39 #define QBMAN_CINH_SWP_ISDR    0xe80
40 #define QBMAN_CINH_SWP_IIR     0xec0
41 
42 /* CENA register offsets */
43 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
44 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
45 #define QBMAN_CENA_SWP_RCR(n)  (0x400 + ((u32)(n) << 6))
46 #define QBMAN_CENA_SWP_CR      0x600
47 #define QBMAN_CENA_SWP_RR(vb)  (0x700 + ((u32)(vb) >> 1))
48 #define QBMAN_CENA_SWP_VDQCR   0x780
49 #define QBMAN_CENA_SWP_EQCR_CI 0x840
50 #define QBMAN_CENA_SWP_EQCR_CI_MEMBACK 0x1840
51 
52 /* CENA register offsets in memory-backed mode */
53 #define QBMAN_CENA_SWP_DQRR_MEM(n)  (0x800 + ((u32)(n) << 6))
54 #define QBMAN_CENA_SWP_RCR_MEM(n)   (0x1400 + ((u32)(n) << 6))
55 #define QBMAN_CENA_SWP_CR_MEM       0x1600
56 #define QBMAN_CENA_SWP_RR_MEM       0x1680
57 #define QBMAN_CENA_SWP_VDQCR_MEM    0x1780
58 
59 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
60 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
61 
62 /* Define token used to determine if response written to memory is valid */
63 #define QMAN_DQ_TOKEN_VALID 1
64 
65 /* SDQCR attribute codes */
66 #define QB_SDQCR_FC_SHIFT   29
67 #define QB_SDQCR_FC_MASK    0x1
68 #define QB_SDQCR_DCT_SHIFT  24
69 #define QB_SDQCR_DCT_MASK   0x3
70 #define QB_SDQCR_TOK_SHIFT  16
71 #define QB_SDQCR_TOK_MASK   0xff
72 #define QB_SDQCR_SRC_SHIFT  0
73 #define QB_SDQCR_SRC_MASK   0xffff
74 
75 /* opaque token for static dequeues */
76 #define QMAN_SDQCR_TOKEN    0xbb
77 
78 #define QBMAN_EQCR_DCA_IDXMASK          0x0f
79 #define QBMAN_ENQUEUE_FLAG_DCA          (1ULL << 31)
80 
81 #define EQ_DESC_SIZE_WITHOUT_FD 29
82 #define EQ_DESC_SIZE_FD_START 32
83 
84 enum qbman_sdqcr_dct {
85 	qbman_sdqcr_dct_null = 0,
86 	qbman_sdqcr_dct_prio_ics,
87 	qbman_sdqcr_dct_active_ics,
88 	qbman_sdqcr_dct_active
89 };
90 
91 enum qbman_sdqcr_fc {
92 	qbman_sdqcr_fc_one = 0,
93 	qbman_sdqcr_fc_up_to_3 = 1
94 };
95 
96 /* Internal Function declaration */
97 static int qbman_swp_enqueue_direct(struct qbman_swp *s,
98 				    const struct qbman_eq_desc *d,
99 				    const struct dpaa2_fd *fd);
100 static int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
101 				      const struct qbman_eq_desc *d,
102 				      const struct dpaa2_fd *fd);
103 static int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
104 					     const struct qbman_eq_desc *d,
105 					     const struct dpaa2_fd *fd,
106 					     uint32_t *flags,
107 					     int num_frames);
108 static int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
109 					       const struct qbman_eq_desc *d,
110 					       const struct dpaa2_fd *fd,
111 					       uint32_t *flags,
112 					       int num_frames);
113 static int
114 qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
115 				       const struct qbman_eq_desc *d,
116 				       const struct dpaa2_fd *fd,
117 				       int num_frames);
118 static
119 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
120 					     const struct qbman_eq_desc *d,
121 					     const struct dpaa2_fd *fd,
122 					     int num_frames);
123 static int qbman_swp_pull_direct(struct qbman_swp *s,
124 				 struct qbman_pull_desc *d);
125 static int qbman_swp_pull_mem_back(struct qbman_swp *s,
126 				   struct qbman_pull_desc *d);
127 
128 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s);
129 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s);
130 
131 static int qbman_swp_release_direct(struct qbman_swp *s,
132 				    const struct qbman_release_desc *d,
133 				    const u64 *buffers,
134 				    unsigned int num_buffers);
135 static int qbman_swp_release_mem_back(struct qbman_swp *s,
136 				      const struct qbman_release_desc *d,
137 				      const u64 *buffers,
138 				      unsigned int num_buffers);
139 
140 /* Function pointers */
141 int (*qbman_swp_enqueue_ptr)(struct qbman_swp *s,
142 			     const struct qbman_eq_desc *d,
143 			     const struct dpaa2_fd *fd)
144 	= qbman_swp_enqueue_direct;
145 
146 int (*qbman_swp_enqueue_multiple_ptr)(struct qbman_swp *s,
147 				      const struct qbman_eq_desc *d,
148 				      const struct dpaa2_fd *fd,
149 				      uint32_t *flags,
150 					     int num_frames)
151 	= qbman_swp_enqueue_multiple_direct;
152 
153 int
154 (*qbman_swp_enqueue_multiple_desc_ptr)(struct qbman_swp *s,
155 				       const struct qbman_eq_desc *d,
156 				       const struct dpaa2_fd *fd,
157 				       int num_frames)
158 	= qbman_swp_enqueue_multiple_desc_direct;
159 
160 int (*qbman_swp_pull_ptr)(struct qbman_swp *s, struct qbman_pull_desc *d)
161 			= qbman_swp_pull_direct;
162 
163 const struct dpaa2_dq *(*qbman_swp_dqrr_next_ptr)(struct qbman_swp *s)
164 			= qbman_swp_dqrr_next_direct;
165 
166 int (*qbman_swp_release_ptr)(struct qbman_swp *s,
167 			     const struct qbman_release_desc *d,
168 			     const u64 *buffers,
169 			     unsigned int num_buffers)
170 			= qbman_swp_release_direct;
171 
172 /* Portal Access */
173 
174 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
175 {
176 	return readl_relaxed(p->addr_cinh + offset);
177 }
178 
179 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
180 					u32 value)
181 {
182 	writel_relaxed(value, p->addr_cinh + offset);
183 }
184 
185 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
186 {
187 	return p->addr_cena + offset;
188 }
189 
190 #define QBMAN_CINH_SWP_CFG   0xd00
191 
192 #define SWP_CFG_DQRR_MF_SHIFT 20
193 #define SWP_CFG_EST_SHIFT     16
194 #define SWP_CFG_CPBS_SHIFT    15
195 #define SWP_CFG_WN_SHIFT      14
196 #define SWP_CFG_RPM_SHIFT     12
197 #define SWP_CFG_DCM_SHIFT     10
198 #define SWP_CFG_EPM_SHIFT     8
199 #define SWP_CFG_VPM_SHIFT     7
200 #define SWP_CFG_CPM_SHIFT     6
201 #define SWP_CFG_SD_SHIFT      5
202 #define SWP_CFG_SP_SHIFT      4
203 #define SWP_CFG_SE_SHIFT      3
204 #define SWP_CFG_DP_SHIFT      2
205 #define SWP_CFG_DE_SHIFT      1
206 #define SWP_CFG_EP_SHIFT      0
207 
208 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn,	u8 est, u8 rpm, u8 dcm,
209 				    u8 epm, int sd, int sp, int se,
210 				    int dp, int de, int ep)
211 {
212 	return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
213 		est << SWP_CFG_EST_SHIFT |
214 		wn << SWP_CFG_WN_SHIFT |
215 		rpm << SWP_CFG_RPM_SHIFT |
216 		dcm << SWP_CFG_DCM_SHIFT |
217 		epm << SWP_CFG_EPM_SHIFT |
218 		sd << SWP_CFG_SD_SHIFT |
219 		sp << SWP_CFG_SP_SHIFT |
220 		se << SWP_CFG_SE_SHIFT |
221 		dp << SWP_CFG_DP_SHIFT |
222 		de << SWP_CFG_DE_SHIFT |
223 		ep << SWP_CFG_EP_SHIFT);
224 }
225 
226 #define QMAN_RT_MODE	   0x00000100
227 
228 static inline u8 qm_cyc_diff(u8 ringsize, u8 first, u8 last)
229 {
230 	/* 'first' is included, 'last' is excluded */
231 	if (first <= last)
232 		return last - first;
233 	else
234 		return (2 * ringsize) - (first - last);
235 }
236 
237 /**
238  * qbman_swp_init() - Create a functional object representing the given
239  *                    QBMan portal descriptor.
240  * @d: the given qbman swp descriptor
241  *
242  * Return qbman_swp portal for success, NULL if the object cannot
243  * be created.
244  */
245 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
246 {
247 	struct qbman_swp *p = kzalloc(sizeof(*p), GFP_KERNEL);
248 	u32 reg;
249 	u32 mask_size;
250 	u32 eqcr_pi;
251 
252 	if (!p)
253 		return NULL;
254 
255 	spin_lock_init(&p->access_spinlock);
256 
257 	p->desc = d;
258 	p->mc.valid_bit = QB_VALID_BIT;
259 	p->sdq = 0;
260 	p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
261 	p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
262 	p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
263 	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000)
264 		p->mr.valid_bit = QB_VALID_BIT;
265 
266 	atomic_set(&p->vdq.available, 1);
267 	p->vdq.valid_bit = QB_VALID_BIT;
268 	p->dqrr.next_idx = 0;
269 	p->dqrr.valid_bit = QB_VALID_BIT;
270 
271 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
272 		p->dqrr.dqrr_size = 4;
273 		p->dqrr.reset_bug = 1;
274 	} else {
275 		p->dqrr.dqrr_size = 8;
276 		p->dqrr.reset_bug = 0;
277 	}
278 
279 	p->addr_cena = d->cena_bar;
280 	p->addr_cinh = d->cinh_bar;
281 
282 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
283 
284 		reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
285 			1, /* Writes Non-cacheable */
286 			0, /* EQCR_CI stashing threshold */
287 			3, /* RPM: RCR in array mode */
288 			2, /* DCM: Discrete consumption ack */
289 			2, /* EPM: EQCR in ring mode */
290 			1, /* mem stashing drop enable enable */
291 			1, /* mem stashing priority enable */
292 			1, /* mem stashing enable */
293 			1, /* dequeue stashing priority enable */
294 			0, /* dequeue stashing enable enable */
295 			0); /* EQCR_CI stashing priority enable */
296 	} else {
297 		memset(p->addr_cena, 0, 64 * 1024);
298 		reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
299 			1, /* Writes Non-cacheable */
300 			1, /* EQCR_CI stashing threshold */
301 			3, /* RPM: RCR in array mode */
302 			2, /* DCM: Discrete consumption ack */
303 			0, /* EPM: EQCR in ring mode */
304 			1, /* mem stashing drop enable */
305 			1, /* mem stashing priority enable */
306 			1, /* mem stashing enable */
307 			1, /* dequeue stashing priority enable */
308 			0, /* dequeue stashing enable */
309 			0); /* EQCR_CI stashing priority enable */
310 		reg |= 1 << SWP_CFG_CPBS_SHIFT | /* memory-backed mode */
311 		       1 << SWP_CFG_VPM_SHIFT |  /* VDQCR read triggered mode */
312 		       1 << SWP_CFG_CPM_SHIFT;   /* CR read triggered mode */
313 	}
314 
315 	qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
316 	reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
317 	if (!reg) {
318 		pr_err("qbman: the portal is not enabled!\n");
319 		kfree(p);
320 		return NULL;
321 	}
322 
323 	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
324 		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_PI, QMAN_RT_MODE);
325 		qbman_write_register(p, QBMAN_CINH_SWP_RCR_PI, QMAN_RT_MODE);
326 	}
327 	/*
328 	 * SDQCR needs to be initialized to 0 when no channels are
329 	 * being dequeued from or else the QMan HW will indicate an
330 	 * error.  The values that were calculated above will be
331 	 * applied when dequeues from a specific channel are enabled.
332 	 */
333 	qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
334 
335 	p->eqcr.pi_ring_size = 8;
336 	if ((p->desc->qman_version & QMAN_REV_MASK) >= QMAN_REV_5000) {
337 		p->eqcr.pi_ring_size = 32;
338 		qbman_swp_enqueue_ptr =
339 			qbman_swp_enqueue_mem_back;
340 		qbman_swp_enqueue_multiple_ptr =
341 			qbman_swp_enqueue_multiple_mem_back;
342 		qbman_swp_enqueue_multiple_desc_ptr =
343 			qbman_swp_enqueue_multiple_desc_mem_back;
344 		qbman_swp_pull_ptr = qbman_swp_pull_mem_back;
345 		qbman_swp_dqrr_next_ptr = qbman_swp_dqrr_next_mem_back;
346 		qbman_swp_release_ptr = qbman_swp_release_mem_back;
347 	}
348 
349 	for (mask_size = p->eqcr.pi_ring_size; mask_size > 0; mask_size >>= 1)
350 		p->eqcr.pi_ci_mask = (p->eqcr.pi_ci_mask << 1) + 1;
351 	eqcr_pi = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_PI);
352 	p->eqcr.pi = eqcr_pi & p->eqcr.pi_ci_mask;
353 	p->eqcr.pi_vb = eqcr_pi & QB_VALID_BIT;
354 	p->eqcr.ci = qbman_read_register(p, QBMAN_CINH_SWP_EQCR_CI)
355 			& p->eqcr.pi_ci_mask;
356 	p->eqcr.available = p->eqcr.pi_ring_size;
357 
358 	return p;
359 }
360 
361 /**
362  * qbman_swp_finish() - Create and destroy a functional object representing
363  *                      the given QBMan portal descriptor.
364  * @p: the qbman_swp object to be destroyed
365  */
366 void qbman_swp_finish(struct qbman_swp *p)
367 {
368 	kfree(p);
369 }
370 
371 /**
372  * qbman_swp_interrupt_read_status()
373  * @p: the given software portal
374  *
375  * Return the value in the SWP_ISR register.
376  */
377 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
378 {
379 	return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
380 }
381 
382 /**
383  * qbman_swp_interrupt_clear_status()
384  * @p: the given software portal
385  * @mask: The mask to clear in SWP_ISR register
386  */
387 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
388 {
389 	qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
390 }
391 
392 /**
393  * qbman_swp_interrupt_get_trigger() - read interrupt enable register
394  * @p: the given software portal
395  *
396  * Return the value in the SWP_IER register.
397  */
398 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
399 {
400 	return qbman_read_register(p, QBMAN_CINH_SWP_IER);
401 }
402 
403 /**
404  * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
405  * @p: the given software portal
406  * @mask: The mask of bits to enable in SWP_IER
407  */
408 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
409 {
410 	qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
411 }
412 
413 /**
414  * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
415  * @p: the given software portal object
416  *
417  * Return the value in the SWP_IIR register.
418  */
419 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
420 {
421 	return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
422 }
423 
424 /**
425  * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
426  * @p: the given software portal object
427  * @mask: The mask to set in SWP_IIR register
428  */
429 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
430 {
431 	qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
432 }
433 
434 /*
435  * Different management commands all use this common base layer of code to issue
436  * commands and poll for results.
437  */
438 
439 /*
440  * Returns a pointer to where the caller should fill in their management command
441  * (caller should ignore the verb byte)
442  */
443 void *qbman_swp_mc_start(struct qbman_swp *p)
444 {
445 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
446 		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
447 	else
448 		return qbman_get_cmd(p, QBMAN_CENA_SWP_CR_MEM);
449 }
450 
451 /*
452  * Commits merges in the caller-supplied command verb (which should not include
453  * the valid-bit) and submits the command to hardware
454  */
455 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
456 {
457 	u8 *v = cmd;
458 
459 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
460 		dma_wmb();
461 		*v = cmd_verb | p->mc.valid_bit;
462 	} else {
463 		*v = cmd_verb | p->mc.valid_bit;
464 		dma_wmb();
465 		qbman_write_register(p, QBMAN_CINH_SWP_CR_RT, QMAN_RT_MODE);
466 	}
467 }
468 
469 /*
470  * Checks for a completed response (returns non-NULL if only if the response
471  * is complete).
472  */
473 void *qbman_swp_mc_result(struct qbman_swp *p)
474 {
475 	u32 *ret, verb;
476 
477 	if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000) {
478 		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
479 		/* Remove the valid-bit - command completed if the rest
480 		 * is non-zero.
481 		 */
482 		verb = ret[0] & ~QB_VALID_BIT;
483 		if (!verb)
484 			return NULL;
485 		p->mc.valid_bit ^= QB_VALID_BIT;
486 	} else {
487 		ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR_MEM);
488 		/* Command completed if the valid bit is toggled */
489 		if (p->mr.valid_bit != (ret[0] & QB_VALID_BIT))
490 			return NULL;
491 		/* Command completed if the rest is non-zero */
492 		verb = ret[0] & ~QB_VALID_BIT;
493 		if (!verb)
494 			return NULL;
495 		p->mr.valid_bit ^= QB_VALID_BIT;
496 	}
497 
498 	return ret;
499 }
500 
501 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT    0
502 enum qb_enqueue_commands {
503 	enqueue_empty = 0,
504 	enqueue_response_always = 1,
505 	enqueue_rejects_to_fq = 2
506 };
507 
508 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT      2
509 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
510 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT     4
511 #define QB_ENQUEUE_CMD_DCA_EN_SHIFT          7
512 
513 /**
514  * qbman_eq_desc_clear() - Clear the contents of a descriptor to
515  *                         default/starting state.
516  */
517 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
518 {
519 	memset(d, 0, sizeof(*d));
520 }
521 
522 /**
523  * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
524  * @d:                the enqueue descriptor.
525  * @response_success: 1 = enqueue with response always; 0 = enqueue with
526  *                    rejections returned on a FQ.
527  */
528 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
529 {
530 	d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
531 	if (respond_success)
532 		d->verb |= enqueue_response_always;
533 	else
534 		d->verb |= enqueue_rejects_to_fq;
535 }
536 
537 /*
538  * Exactly one of the following descriptor "targets" should be set. (Calling any
539  * one of these will replace the effect of any prior call to one of these.)
540  *   -enqueue to a frame queue
541  *   -enqueue to a queuing destination
542  */
543 
544 /**
545  * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
546  * @d:    the enqueue descriptor
547  * @fqid: the id of the frame queue to be enqueued
548  */
549 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
550 {
551 	d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
552 	d->tgtid = cpu_to_le32(fqid);
553 }
554 
555 /**
556  * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
557  * @d:       the enqueue descriptor
558  * @qdid:    the id of the queuing destination to be enqueued
559  * @qd_bin:  the queuing destination bin
560  * @qd_prio: the queuing destination priority
561  */
562 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
563 			  u32 qd_bin, u32 qd_prio)
564 {
565 	d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
566 	d->tgtid = cpu_to_le32(qdid);
567 	d->qdbin = cpu_to_le16(qd_bin);
568 	d->qpri = qd_prio;
569 }
570 
571 #define EQAR_IDX(eqar)     ((eqar) & 0x7)
572 #define EQAR_VB(eqar)      ((eqar) & 0x80)
573 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
574 
575 static inline void qbman_write_eqcr_am_rt_register(struct qbman_swp *p,
576 						   u8 idx)
577 {
578 	if (idx < 16)
579 		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_AM_RT + idx * 4,
580 				     QMAN_RT_MODE);
581 	else
582 		qbman_write_register(p, QBMAN_CINH_SWP_EQCR_AM_RT2 +
583 				     (idx - 16) * 4,
584 				     QMAN_RT_MODE);
585 }
586 
587 #define QB_RT_BIT ((u32)0x100)
588 /**
589  * qbman_swp_enqueue_direct() - Issue an enqueue command
590  * @s:  the software portal used for enqueue
591  * @d:  the enqueue descriptor
592  * @fd: the frame descriptor to be enqueued
593  *
594  * Please note that 'fd' should only be NULL if the "action" of the
595  * descriptor is "orp_hole" or "orp_nesn".
596  *
597  * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
598  */
599 static
600 int qbman_swp_enqueue_direct(struct qbman_swp *s,
601 			     const struct qbman_eq_desc *d,
602 			     const struct dpaa2_fd *fd)
603 {
604 	int flags = 0;
605 	int ret = qbman_swp_enqueue_multiple_direct(s, d, fd, &flags, 1);
606 
607 	if (ret >= 0)
608 		ret = 0;
609 	else
610 		ret = -EBUSY;
611 	return  ret;
612 }
613 
614 /**
615  * qbman_swp_enqueue_mem_back() - Issue an enqueue command
616  * @s:  the software portal used for enqueue
617  * @d:  the enqueue descriptor
618  * @fd: the frame descriptor to be enqueued
619  *
620  * Please note that 'fd' should only be NULL if the "action" of the
621  * descriptor is "orp_hole" or "orp_nesn".
622  *
623  * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
624  */
625 static
626 int qbman_swp_enqueue_mem_back(struct qbman_swp *s,
627 			       const struct qbman_eq_desc *d,
628 			       const struct dpaa2_fd *fd)
629 {
630 	int flags = 0;
631 	int ret = qbman_swp_enqueue_multiple_mem_back(s, d, fd, &flags, 1);
632 
633 	if (ret >= 0)
634 		ret = 0;
635 	else
636 		ret = -EBUSY;
637 	return  ret;
638 }
639 
640 /**
641  * qbman_swp_enqueue_multiple_direct() - Issue a multi enqueue command
642  * using one enqueue descriptor
643  * @s:  the software portal used for enqueue
644  * @d:  the enqueue descriptor
645  * @fd: table pointer of frame descriptor table to be enqueued
646  * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
647  * @num_frames: number of fd to be enqueued
648  *
649  * Return the number of fd enqueued, or a negative error number.
650  */
651 static
652 int qbman_swp_enqueue_multiple_direct(struct qbman_swp *s,
653 				      const struct qbman_eq_desc *d,
654 				      const struct dpaa2_fd *fd,
655 				      uint32_t *flags,
656 				      int num_frames)
657 {
658 	uint32_t *p = NULL;
659 	const uint32_t *cl = (uint32_t *)d;
660 	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
661 	int i, num_enqueued = 0;
662 	uint64_t addr_cena;
663 
664 	spin_lock(&s->access_spinlock);
665 	half_mask = (s->eqcr.pi_ci_mask>>1);
666 	full_mask = s->eqcr.pi_ci_mask;
667 
668 	if (!s->eqcr.available) {
669 		eqcr_ci = s->eqcr.ci;
670 		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
671 		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
672 
673 		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
674 					eqcr_ci, s->eqcr.ci);
675 		if (!s->eqcr.available) {
676 			spin_unlock(&s->access_spinlock);
677 			return 0;
678 		}
679 	}
680 
681 	eqcr_pi = s->eqcr.pi;
682 	num_enqueued = (s->eqcr.available < num_frames) ?
683 			s->eqcr.available : num_frames;
684 	s->eqcr.available -= num_enqueued;
685 	/* Fill in the EQCR ring */
686 	for (i = 0; i < num_enqueued; i++) {
687 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
688 		/* Skip copying the verb */
689 		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
690 		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
691 		       &fd[i], sizeof(*fd));
692 		eqcr_pi++;
693 	}
694 
695 	dma_wmb();
696 
697 	/* Set the verb byte, have to substitute in the valid-bit */
698 	eqcr_pi = s->eqcr.pi;
699 	for (i = 0; i < num_enqueued; i++) {
700 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
701 		p[0] = cl[0] | s->eqcr.pi_vb;
702 		if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
703 			struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
704 
705 			d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
706 				((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
707 		}
708 		eqcr_pi++;
709 		if (!(eqcr_pi & half_mask))
710 			s->eqcr.pi_vb ^= QB_VALID_BIT;
711 	}
712 
713 	/* Flush all the cacheline without load/store in between */
714 	eqcr_pi = s->eqcr.pi;
715 	addr_cena = (size_t)s->addr_cena;
716 	for (i = 0; i < num_enqueued; i++)
717 		eqcr_pi++;
718 	s->eqcr.pi = eqcr_pi & full_mask;
719 	spin_unlock(&s->access_spinlock);
720 
721 	return num_enqueued;
722 }
723 
724 /**
725  * qbman_swp_enqueue_multiple_mem_back() - Issue a multi enqueue command
726  * using one enqueue descriptor
727  * @s:  the software portal used for enqueue
728  * @d:  the enqueue descriptor
729  * @fd: table pointer of frame descriptor table to be enqueued
730  * @flags: table pointer of QBMAN_ENQUEUE_FLAG_DCA flags, not used if NULL
731  * @num_frames: number of fd to be enqueued
732  *
733  * Return the number of fd enqueued, or a negative error number.
734  */
735 static
736 int qbman_swp_enqueue_multiple_mem_back(struct qbman_swp *s,
737 					const struct qbman_eq_desc *d,
738 					const struct dpaa2_fd *fd,
739 					uint32_t *flags,
740 					int num_frames)
741 {
742 	uint32_t *p = NULL;
743 	const uint32_t *cl = (uint32_t *)(d);
744 	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
745 	int i, num_enqueued = 0;
746 	unsigned long irq_flags;
747 
748 	spin_lock(&s->access_spinlock);
749 	local_irq_save(irq_flags);
750 
751 	half_mask = (s->eqcr.pi_ci_mask>>1);
752 	full_mask = s->eqcr.pi_ci_mask;
753 	if (!s->eqcr.available) {
754 		eqcr_ci = s->eqcr.ci;
755 		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
756 		s->eqcr.ci = __raw_readl(p) & full_mask;
757 		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
758 					eqcr_ci, s->eqcr.ci);
759 		if (!s->eqcr.available) {
760 			local_irq_restore(irq_flags);
761 			spin_unlock(&s->access_spinlock);
762 			return 0;
763 		}
764 	}
765 
766 	eqcr_pi = s->eqcr.pi;
767 	num_enqueued = (s->eqcr.available < num_frames) ?
768 			s->eqcr.available : num_frames;
769 	s->eqcr.available -= num_enqueued;
770 	/* Fill in the EQCR ring */
771 	for (i = 0; i < num_enqueued; i++) {
772 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
773 		/* Skip copying the verb */
774 		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
775 		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
776 		       &fd[i], sizeof(*fd));
777 		eqcr_pi++;
778 	}
779 
780 	/* Set the verb byte, have to substitute in the valid-bit */
781 	eqcr_pi = s->eqcr.pi;
782 	for (i = 0; i < num_enqueued; i++) {
783 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
784 		p[0] = cl[0] | s->eqcr.pi_vb;
785 		if (flags && (flags[i] & QBMAN_ENQUEUE_FLAG_DCA)) {
786 			struct qbman_eq_desc *d = (struct qbman_eq_desc *)p;
787 
788 			d->dca = (1 << QB_ENQUEUE_CMD_DCA_EN_SHIFT) |
789 				((flags[i]) & QBMAN_EQCR_DCA_IDXMASK);
790 		}
791 		eqcr_pi++;
792 		if (!(eqcr_pi & half_mask))
793 			s->eqcr.pi_vb ^= QB_VALID_BIT;
794 	}
795 	s->eqcr.pi = eqcr_pi & full_mask;
796 
797 	dma_wmb();
798 	qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
799 				(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
800 	local_irq_restore(irq_flags);
801 	spin_unlock(&s->access_spinlock);
802 
803 	return num_enqueued;
804 }
805 
806 /**
807  * qbman_swp_enqueue_multiple_desc_direct() - Issue a multi enqueue command
808  * using multiple enqueue descriptor
809  * @s:  the software portal used for enqueue
810  * @d:  table of minimal enqueue descriptor
811  * @fd: table pointer of frame descriptor table to be enqueued
812  * @num_frames: number of fd to be enqueued
813  *
814  * Return the number of fd enqueued, or a negative error number.
815  */
816 static
817 int qbman_swp_enqueue_multiple_desc_direct(struct qbman_swp *s,
818 					   const struct qbman_eq_desc *d,
819 					   const struct dpaa2_fd *fd,
820 					   int num_frames)
821 {
822 	uint32_t *p;
823 	const uint32_t *cl;
824 	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
825 	int i, num_enqueued = 0;
826 	uint64_t addr_cena;
827 
828 	half_mask = (s->eqcr.pi_ci_mask>>1);
829 	full_mask = s->eqcr.pi_ci_mask;
830 	if (!s->eqcr.available) {
831 		eqcr_ci = s->eqcr.ci;
832 		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI;
833 		s->eqcr.ci = qbman_read_register(s, QBMAN_CINH_SWP_EQCR_CI);
834 		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
835 					eqcr_ci, s->eqcr.ci);
836 		if (!s->eqcr.available)
837 			return 0;
838 	}
839 
840 	eqcr_pi = s->eqcr.pi;
841 	num_enqueued = (s->eqcr.available < num_frames) ?
842 			s->eqcr.available : num_frames;
843 	s->eqcr.available -= num_enqueued;
844 	/* Fill in the EQCR ring */
845 	for (i = 0; i < num_enqueued; i++) {
846 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
847 		cl = (uint32_t *)(&d[i]);
848 		/* Skip copying the verb */
849 		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
850 		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
851 		       &fd[i], sizeof(*fd));
852 		eqcr_pi++;
853 	}
854 
855 	dma_wmb();
856 
857 	/* Set the verb byte, have to substitute in the valid-bit */
858 	eqcr_pi = s->eqcr.pi;
859 	for (i = 0; i < num_enqueued; i++) {
860 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
861 		cl = (uint32_t *)(&d[i]);
862 		p[0] = cl[0] | s->eqcr.pi_vb;
863 		eqcr_pi++;
864 		if (!(eqcr_pi & half_mask))
865 			s->eqcr.pi_vb ^= QB_VALID_BIT;
866 	}
867 
868 	/* Flush all the cacheline without load/store in between */
869 	eqcr_pi = s->eqcr.pi;
870 	addr_cena = (uint64_t)s->addr_cena;
871 	for (i = 0; i < num_enqueued; i++)
872 		eqcr_pi++;
873 	s->eqcr.pi = eqcr_pi & full_mask;
874 
875 	return num_enqueued;
876 }
877 
878 /**
879  * qbman_swp_enqueue_multiple_desc_mem_back() - Issue a multi enqueue command
880  * using multiple enqueue descriptor
881  * @s:  the software portal used for enqueue
882  * @d:  table of minimal enqueue descriptor
883  * @fd: table pointer of frame descriptor table to be enqueued
884  * @num_frames: number of fd to be enqueued
885  *
886  * Return the number of fd enqueued, or a negative error number.
887  */
888 static
889 int qbman_swp_enqueue_multiple_desc_mem_back(struct qbman_swp *s,
890 					   const struct qbman_eq_desc *d,
891 					   const struct dpaa2_fd *fd,
892 					   int num_frames)
893 {
894 	uint32_t *p;
895 	const uint32_t *cl;
896 	uint32_t eqcr_ci, eqcr_pi, half_mask, full_mask;
897 	int i, num_enqueued = 0;
898 
899 	half_mask = (s->eqcr.pi_ci_mask>>1);
900 	full_mask = s->eqcr.pi_ci_mask;
901 	if (!s->eqcr.available) {
902 		eqcr_ci = s->eqcr.ci;
903 		p = s->addr_cena + QBMAN_CENA_SWP_EQCR_CI_MEMBACK;
904 		s->eqcr.ci = __raw_readl(p) & full_mask;
905 		s->eqcr.available = qm_cyc_diff(s->eqcr.pi_ring_size,
906 					eqcr_ci, s->eqcr.ci);
907 		if (!s->eqcr.available)
908 			return 0;
909 	}
910 
911 	eqcr_pi = s->eqcr.pi;
912 	num_enqueued = (s->eqcr.available < num_frames) ?
913 			s->eqcr.available : num_frames;
914 	s->eqcr.available -= num_enqueued;
915 	/* Fill in the EQCR ring */
916 	for (i = 0; i < num_enqueued; i++) {
917 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
918 		cl = (uint32_t *)(&d[i]);
919 		/* Skip copying the verb */
920 		memcpy(&p[1], &cl[1], EQ_DESC_SIZE_WITHOUT_FD - 1);
921 		memcpy(&p[EQ_DESC_SIZE_FD_START/sizeof(uint32_t)],
922 		       &fd[i], sizeof(*fd));
923 		eqcr_pi++;
924 	}
925 
926 	/* Set the verb byte, have to substitute in the valid-bit */
927 	eqcr_pi = s->eqcr.pi;
928 	for (i = 0; i < num_enqueued; i++) {
929 		p = (s->addr_cena + QBMAN_CENA_SWP_EQCR(eqcr_pi & half_mask));
930 		cl = (uint32_t *)(&d[i]);
931 		p[0] = cl[0] | s->eqcr.pi_vb;
932 		eqcr_pi++;
933 		if (!(eqcr_pi & half_mask))
934 			s->eqcr.pi_vb ^= QB_VALID_BIT;
935 	}
936 
937 	s->eqcr.pi = eqcr_pi & full_mask;
938 
939 	dma_wmb();
940 	qbman_write_register(s, QBMAN_CINH_SWP_EQCR_PI,
941 				(QB_RT_BIT)|(s->eqcr.pi)|s->eqcr.pi_vb);
942 
943 	return num_enqueued;
944 }
945 
946 /* Static (push) dequeue */
947 
948 /**
949  * qbman_swp_push_get() - Get the push dequeue setup
950  * @p:           the software portal object
951  * @channel_idx: the channel index to query
952  * @enabled:     returned boolean to show whether the push dequeue is enabled
953  *               for the given channel
954  */
955 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
956 {
957 	u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
958 
959 	WARN_ON(channel_idx > 15);
960 	*enabled = src | (1 << channel_idx);
961 }
962 
963 /**
964  * qbman_swp_push_set() - Enable or disable push dequeue
965  * @p:           the software portal object
966  * @channel_idx: the channel index (0 to 15)
967  * @enable:      enable or disable push dequeue
968  */
969 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
970 {
971 	u16 dqsrc;
972 
973 	WARN_ON(channel_idx > 15);
974 	if (enable)
975 		s->sdq |= 1 << channel_idx;
976 	else
977 		s->sdq &= ~(1 << channel_idx);
978 
979 	/* Read make the complete src map.  If no channels are enabled
980 	 * the SDQCR must be 0 or else QMan will assert errors
981 	 */
982 	dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
983 	if (dqsrc != 0)
984 		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
985 	else
986 		qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
987 }
988 
989 #define QB_VDQCR_VERB_DCT_SHIFT    0
990 #define QB_VDQCR_VERB_DT_SHIFT     2
991 #define QB_VDQCR_VERB_RLS_SHIFT    4
992 #define QB_VDQCR_VERB_WAE_SHIFT    5
993 
994 enum qb_pull_dt_e {
995 	qb_pull_dt_channel,
996 	qb_pull_dt_workqueue,
997 	qb_pull_dt_framequeue
998 };
999 
1000 /**
1001  * qbman_pull_desc_clear() - Clear the contents of a descriptor to
1002  *                           default/starting state
1003  * @d: the pull dequeue descriptor to be cleared
1004  */
1005 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
1006 {
1007 	memset(d, 0, sizeof(*d));
1008 }
1009 
1010 /**
1011  * qbman_pull_desc_set_storage()- Set the pull dequeue storage
1012  * @d:            the pull dequeue descriptor to be set
1013  * @storage:      the pointer of the memory to store the dequeue result
1014  * @storage_phys: the physical address of the storage memory
1015  * @stash:        to indicate whether write allocate is enabled
1016  *
1017  * If not called, or if called with 'storage' as NULL, the result pull dequeues
1018  * will produce results to DQRR. If 'storage' is non-NULL, then results are
1019  * produced to the given memory location (using the DMA address which
1020  * the caller provides in 'storage_phys'), and 'stash' controls whether or not
1021  * those writes to main-memory express a cache-warming attribute.
1022  */
1023 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
1024 				 struct dpaa2_dq *storage,
1025 				 dma_addr_t storage_phys,
1026 				 int stash)
1027 {
1028 	/* save the virtual address */
1029 	d->rsp_addr_virt = (u64)(uintptr_t)storage;
1030 
1031 	if (!storage) {
1032 		d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
1033 		return;
1034 	}
1035 	d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
1036 	if (stash)
1037 		d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
1038 	else
1039 		d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
1040 
1041 	d->rsp_addr = cpu_to_le64(storage_phys);
1042 }
1043 
1044 /**
1045  * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
1046  * @d:         the pull dequeue descriptor to be set
1047  * @numframes: number of frames to be set, must be between 1 and 16, inclusive
1048  */
1049 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
1050 {
1051 	d->numf = numframes - 1;
1052 }
1053 
1054 /*
1055  * Exactly one of the following descriptor "actions" should be set. (Calling any
1056  * one of these will replace the effect of any prior call to one of these.)
1057  * - pull dequeue from the given frame queue (FQ)
1058  * - pull dequeue from any FQ in the given work queue (WQ)
1059  * - pull dequeue from any FQ in any WQ in the given channel
1060  */
1061 
1062 /**
1063  * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
1064  * @fqid: the frame queue index of the given FQ
1065  */
1066 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
1067 {
1068 	d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
1069 	d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
1070 	d->dq_src = cpu_to_le32(fqid);
1071 }
1072 
1073 /**
1074  * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
1075  * @wqid: composed of channel id and wqid within the channel
1076  * @dct:  the dequeue command type
1077  */
1078 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
1079 			    enum qbman_pull_type_e dct)
1080 {
1081 	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1082 	d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
1083 	d->dq_src = cpu_to_le32(wqid);
1084 }
1085 
1086 /**
1087  * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
1088  *                                 dequeues
1089  * @chid: the channel id to be dequeued
1090  * @dct:  the dequeue command type
1091  */
1092 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
1093 				 enum qbman_pull_type_e dct)
1094 {
1095 	d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
1096 	d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
1097 	d->dq_src = cpu_to_le32(chid);
1098 }
1099 
1100 /**
1101  * qbman_swp_pull_direct() - Issue the pull dequeue command
1102  * @s: the software portal object
1103  * @d: the software portal descriptor which has been configured with
1104  *     the set of qbman_pull_desc_set_*() calls
1105  *
1106  * Return 0 for success, and -EBUSY if the software portal is not ready
1107  * to do pull dequeue.
1108  */
1109 static
1110 int qbman_swp_pull_direct(struct qbman_swp *s, struct qbman_pull_desc *d)
1111 {
1112 	struct qbman_pull_desc *p;
1113 
1114 	if (!atomic_dec_and_test(&s->vdq.available)) {
1115 		atomic_inc(&s->vdq.available);
1116 		return -EBUSY;
1117 	}
1118 	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1119 	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1120 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1121 	else
1122 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1123 	p->numf = d->numf;
1124 	p->tok = QMAN_DQ_TOKEN_VALID;
1125 	p->dq_src = d->dq_src;
1126 	p->rsp_addr = d->rsp_addr;
1127 	p->rsp_addr_virt = d->rsp_addr_virt;
1128 	dma_wmb();
1129 	/* Set the verb byte, have to substitute in the valid-bit */
1130 	p->verb = d->verb | s->vdq.valid_bit;
1131 	s->vdq.valid_bit ^= QB_VALID_BIT;
1132 
1133 	return 0;
1134 }
1135 
1136 /**
1137  * qbman_swp_pull_mem_back() - Issue the pull dequeue command
1138  * @s: the software portal object
1139  * @d: the software portal descriptor which has been configured with
1140  *     the set of qbman_pull_desc_set_*() calls
1141  *
1142  * Return 0 for success, and -EBUSY if the software portal is not ready
1143  * to do pull dequeue.
1144  */
1145 static
1146 int qbman_swp_pull_mem_back(struct qbman_swp *s, struct qbman_pull_desc *d)
1147 {
1148 	struct qbman_pull_desc *p;
1149 
1150 	if (!atomic_dec_and_test(&s->vdq.available)) {
1151 		atomic_inc(&s->vdq.available);
1152 		return -EBUSY;
1153 	}
1154 	s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
1155 	if ((s->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_5000)
1156 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
1157 	else
1158 		p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR_MEM);
1159 	p->numf = d->numf;
1160 	p->tok = QMAN_DQ_TOKEN_VALID;
1161 	p->dq_src = d->dq_src;
1162 	p->rsp_addr = d->rsp_addr;
1163 	p->rsp_addr_virt = d->rsp_addr_virt;
1164 
1165 	/* Set the verb byte, have to substitute in the valid-bit */
1166 	p->verb = d->verb | s->vdq.valid_bit;
1167 	s->vdq.valid_bit ^= QB_VALID_BIT;
1168 	dma_wmb();
1169 	qbman_write_register(s, QBMAN_CINH_SWP_VDQCR_RT, QMAN_RT_MODE);
1170 
1171 	return 0;
1172 }
1173 
1174 #define QMAN_DQRR_PI_MASK   0xf
1175 
1176 /**
1177  * qbman_swp_dqrr_next_direct() - Get an valid DQRR entry
1178  * @s: the software portal object
1179  *
1180  * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1181  * only once, so repeated calls can return a sequence of DQRR entries, without
1182  * requiring they be consumed immediately or in any particular order.
1183  */
1184 const struct dpaa2_dq *qbman_swp_dqrr_next_direct(struct qbman_swp *s)
1185 {
1186 	u32 verb;
1187 	u32 response_verb;
1188 	u32 flags;
1189 	struct dpaa2_dq *p;
1190 
1191 	/* Before using valid-bit to detect if something is there, we have to
1192 	 * handle the case of the DQRR reset bug...
1193 	 */
1194 	if (unlikely(s->dqrr.reset_bug)) {
1195 		/*
1196 		 * We pick up new entries by cache-inhibited producer index,
1197 		 * which means that a non-coherent mapping would require us to
1198 		 * invalidate and read *only* once that PI has indicated that
1199 		 * there's an entry here. The first trip around the DQRR ring
1200 		 * will be much less efficient than all subsequent trips around
1201 		 * it...
1202 		 */
1203 		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1204 			QMAN_DQRR_PI_MASK;
1205 
1206 		/* there are new entries if pi != next_idx */
1207 		if (pi == s->dqrr.next_idx)
1208 			return NULL;
1209 
1210 		/*
1211 		 * if next_idx is/was the last ring index, and 'pi' is
1212 		 * different, we can disable the workaround as all the ring
1213 		 * entries have now been DMA'd to so valid-bit checking is
1214 		 * repaired. Note: this logic needs to be based on next_idx
1215 		 * (which increments one at a time), rather than on pi (which
1216 		 * can burst and wrap-around between our snapshots of it).
1217 		 */
1218 		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1219 			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1220 				 s->dqrr.next_idx, pi);
1221 			s->dqrr.reset_bug = 0;
1222 		}
1223 		prefetch(qbman_get_cmd(s,
1224 				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1225 	}
1226 
1227 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
1228 	verb = p->dq.verb;
1229 
1230 	/*
1231 	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1232 	 * in the DQRR reset bug workaround, we shouldn't need to skip these
1233 	 * check, because we've already determined that a new entry is available
1234 	 * and we've invalidated the cacheline before reading it, so the
1235 	 * valid-bit behaviour is repaired and should tell us what we already
1236 	 * knew from reading PI.
1237 	 */
1238 	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1239 		prefetch(qbman_get_cmd(s,
1240 				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1241 		return NULL;
1242 	}
1243 	/*
1244 	 * There's something there. Move "next_idx" attention to the next ring
1245 	 * entry (and prefetch it) before returning what we found.
1246 	 */
1247 	s->dqrr.next_idx++;
1248 	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1249 	if (!s->dqrr.next_idx)
1250 		s->dqrr.valid_bit ^= QB_VALID_BIT;
1251 
1252 	/*
1253 	 * If this is the final response to a volatile dequeue command
1254 	 * indicate that the vdq is available
1255 	 */
1256 	flags = p->dq.stat;
1257 	response_verb = verb & QBMAN_RESULT_MASK;
1258 	if ((response_verb == QBMAN_RESULT_DQ) &&
1259 	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
1260 	    (flags & DPAA2_DQ_STAT_EXPIRED))
1261 		atomic_inc(&s->vdq.available);
1262 
1263 	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1264 
1265 	return p;
1266 }
1267 
1268 /**
1269  * qbman_swp_dqrr_next_mem_back() - Get an valid DQRR entry
1270  * @s: the software portal object
1271  *
1272  * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
1273  * only once, so repeated calls can return a sequence of DQRR entries, without
1274  * requiring they be consumed immediately or in any particular order.
1275  */
1276 const struct dpaa2_dq *qbman_swp_dqrr_next_mem_back(struct qbman_swp *s)
1277 {
1278 	u32 verb;
1279 	u32 response_verb;
1280 	u32 flags;
1281 	struct dpaa2_dq *p;
1282 
1283 	/* Before using valid-bit to detect if something is there, we have to
1284 	 * handle the case of the DQRR reset bug...
1285 	 */
1286 	if (unlikely(s->dqrr.reset_bug)) {
1287 		/*
1288 		 * We pick up new entries by cache-inhibited producer index,
1289 		 * which means that a non-coherent mapping would require us to
1290 		 * invalidate and read *only* once that PI has indicated that
1291 		 * there's an entry here. The first trip around the DQRR ring
1292 		 * will be much less efficient than all subsequent trips around
1293 		 * it...
1294 		 */
1295 		u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
1296 			QMAN_DQRR_PI_MASK;
1297 
1298 		/* there are new entries if pi != next_idx */
1299 		if (pi == s->dqrr.next_idx)
1300 			return NULL;
1301 
1302 		/*
1303 		 * if next_idx is/was the last ring index, and 'pi' is
1304 		 * different, we can disable the workaround as all the ring
1305 		 * entries have now been DMA'd to so valid-bit checking is
1306 		 * repaired. Note: this logic needs to be based on next_idx
1307 		 * (which increments one at a time), rather than on pi (which
1308 		 * can burst and wrap-around between our snapshots of it).
1309 		 */
1310 		if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
1311 			pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
1312 				 s->dqrr.next_idx, pi);
1313 			s->dqrr.reset_bug = 0;
1314 		}
1315 		prefetch(qbman_get_cmd(s,
1316 				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1317 	}
1318 
1319 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR_MEM(s->dqrr.next_idx));
1320 	verb = p->dq.verb;
1321 
1322 	/*
1323 	 * If the valid-bit isn't of the expected polarity, nothing there. Note,
1324 	 * in the DQRR reset bug workaround, we shouldn't need to skip these
1325 	 * check, because we've already determined that a new entry is available
1326 	 * and we've invalidated the cacheline before reading it, so the
1327 	 * valid-bit behaviour is repaired and should tell us what we already
1328 	 * knew from reading PI.
1329 	 */
1330 	if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
1331 		prefetch(qbman_get_cmd(s,
1332 				       QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1333 		return NULL;
1334 	}
1335 	/*
1336 	 * There's something there. Move "next_idx" attention to the next ring
1337 	 * entry (and prefetch it) before returning what we found.
1338 	 */
1339 	s->dqrr.next_idx++;
1340 	s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
1341 	if (!s->dqrr.next_idx)
1342 		s->dqrr.valid_bit ^= QB_VALID_BIT;
1343 
1344 	/*
1345 	 * If this is the final response to a volatile dequeue command
1346 	 * indicate that the vdq is available
1347 	 */
1348 	flags = p->dq.stat;
1349 	response_verb = verb & QBMAN_RESULT_MASK;
1350 	if ((response_verb == QBMAN_RESULT_DQ) &&
1351 	    (flags & DPAA2_DQ_STAT_VOLATILE) &&
1352 	    (flags & DPAA2_DQ_STAT_EXPIRED))
1353 		atomic_inc(&s->vdq.available);
1354 
1355 	prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
1356 
1357 	return p;
1358 }
1359 
1360 /**
1361  * qbman_swp_dqrr_consume() -  Consume DQRR entries previously returned from
1362  *                             qbman_swp_dqrr_next().
1363  * @s: the software portal object
1364  * @dq: the DQRR entry to be consumed
1365  */
1366 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
1367 {
1368 	qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
1369 }
1370 
1371 /**
1372  * qbman_result_has_new_result() - Check and get the dequeue response from the
1373  *                                 dq storage memory set in pull dequeue command
1374  * @s: the software portal object
1375  * @dq: the dequeue result read from the memory
1376  *
1377  * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
1378  * dequeue result.
1379  *
1380  * Only used for user-provided storage of dequeue results, not DQRR. For
1381  * efficiency purposes, the driver will perform any required endianness
1382  * conversion to ensure that the user's dequeue result storage is in host-endian
1383  * format. As such, once the user has called qbman_result_has_new_result() and
1384  * been returned a valid dequeue result, they should not call it again on
1385  * the same memory location (except of course if another dequeue command has
1386  * been executed to produce a new result to that location).
1387  */
1388 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
1389 {
1390 	if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
1391 		return 0;
1392 
1393 	/*
1394 	 * Set token to be 0 so we will detect change back to 1
1395 	 * next time the looping is traversed. Const is cast away here
1396 	 * as we want users to treat the dequeue responses as read only.
1397 	 */
1398 	((struct dpaa2_dq *)dq)->dq.tok = 0;
1399 
1400 	/*
1401 	 * Determine whether VDQCR is available based on whether the
1402 	 * current result is sitting in the first storage location of
1403 	 * the busy command.
1404 	 */
1405 	if (s->vdq.storage == dq) {
1406 		s->vdq.storage = NULL;
1407 		atomic_inc(&s->vdq.available);
1408 	}
1409 
1410 	return 1;
1411 }
1412 
1413 /**
1414  * qbman_release_desc_clear() - Clear the contents of a descriptor to
1415  *                              default/starting state.
1416  */
1417 void qbman_release_desc_clear(struct qbman_release_desc *d)
1418 {
1419 	memset(d, 0, sizeof(*d));
1420 	d->verb = 1 << 5; /* Release Command Valid */
1421 }
1422 
1423 /**
1424  * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
1425  */
1426 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
1427 {
1428 	d->bpid = cpu_to_le16(bpid);
1429 }
1430 
1431 /**
1432  * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
1433  * interrupt source should be asserted after the release command is completed.
1434  */
1435 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
1436 {
1437 	if (enable)
1438 		d->verb |= 1 << 6;
1439 	else
1440 		d->verb &= ~(1 << 6);
1441 }
1442 
1443 #define RAR_IDX(rar)     ((rar) & 0x7)
1444 #define RAR_VB(rar)      ((rar) & 0x80)
1445 #define RAR_SUCCESS(rar) ((rar) & 0x100)
1446 
1447 /**
1448  * qbman_swp_release_direct() - Issue a buffer release command
1449  * @s:           the software portal object
1450  * @d:           the release descriptor
1451  * @buffers:     a pointer pointing to the buffer address to be released
1452  * @num_buffers: number of buffers to be released,  must be less than 8
1453  *
1454  * Return 0 for success, -EBUSY if the release command ring is not ready.
1455  */
1456 int qbman_swp_release_direct(struct qbman_swp *s,
1457 			     const struct qbman_release_desc *d,
1458 			     const u64 *buffers, unsigned int num_buffers)
1459 {
1460 	int i;
1461 	struct qbman_release_desc *p;
1462 	u32 rar;
1463 
1464 	if (!num_buffers || (num_buffers > 7))
1465 		return -EINVAL;
1466 
1467 	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1468 	if (!RAR_SUCCESS(rar))
1469 		return -EBUSY;
1470 
1471 	/* Start the release command */
1472 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
1473 
1474 	/* Copy the caller's buffer pointers to the command */
1475 	for (i = 0; i < num_buffers; i++)
1476 		p->buf[i] = cpu_to_le64(buffers[i]);
1477 	p->bpid = d->bpid;
1478 
1479 	/*
1480 	 * Set the verb byte, have to substitute in the valid-bit
1481 	 * and the number of buffers.
1482 	 */
1483 	dma_wmb();
1484 	p->verb = d->verb | RAR_VB(rar) | num_buffers;
1485 
1486 	return 0;
1487 }
1488 
1489 /**
1490  * qbman_swp_release_mem_back() - Issue a buffer release command
1491  * @s:           the software portal object
1492  * @d:           the release descriptor
1493  * @buffers:     a pointer pointing to the buffer address to be released
1494  * @num_buffers: number of buffers to be released,  must be less than 8
1495  *
1496  * Return 0 for success, -EBUSY if the release command ring is not ready.
1497  */
1498 int qbman_swp_release_mem_back(struct qbman_swp *s,
1499 			       const struct qbman_release_desc *d,
1500 			       const u64 *buffers, unsigned int num_buffers)
1501 {
1502 	int i;
1503 	struct qbman_release_desc *p;
1504 	u32 rar;
1505 
1506 	if (!num_buffers || (num_buffers > 7))
1507 		return -EINVAL;
1508 
1509 	rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
1510 	if (!RAR_SUCCESS(rar))
1511 		return -EBUSY;
1512 
1513 	/* Start the release command */
1514 	p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR_MEM(RAR_IDX(rar)));
1515 
1516 	/* Copy the caller's buffer pointers to the command */
1517 	for (i = 0; i < num_buffers; i++)
1518 		p->buf[i] = cpu_to_le64(buffers[i]);
1519 	p->bpid = d->bpid;
1520 
1521 	p->verb = d->verb | RAR_VB(rar) | num_buffers;
1522 	dma_wmb();
1523 	qbman_write_register(s, QBMAN_CINH_SWP_RCR_AM_RT +
1524 			     RAR_IDX(rar)  * 4, QMAN_RT_MODE);
1525 
1526 	return 0;
1527 }
1528 
1529 struct qbman_acquire_desc {
1530 	u8 verb;
1531 	u8 reserved;
1532 	__le16 bpid;
1533 	u8 num;
1534 	u8 reserved2[59];
1535 };
1536 
1537 struct qbman_acquire_rslt {
1538 	u8 verb;
1539 	u8 rslt;
1540 	__le16 reserved;
1541 	u8 num;
1542 	u8 reserved2[3];
1543 	__le64 buf[7];
1544 };
1545 
1546 /**
1547  * qbman_swp_acquire() - Issue a buffer acquire command
1548  * @s:           the software portal object
1549  * @bpid:        the buffer pool index
1550  * @buffers:     a pointer pointing to the acquired buffer addresses
1551  * @num_buffers: number of buffers to be acquired, must be less than 8
1552  *
1553  * Return 0 for success, or negative error code if the acquire command
1554  * fails.
1555  */
1556 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
1557 		      unsigned int num_buffers)
1558 {
1559 	struct qbman_acquire_desc *p;
1560 	struct qbman_acquire_rslt *r;
1561 	int i;
1562 
1563 	if (!num_buffers || (num_buffers > 7))
1564 		return -EINVAL;
1565 
1566 	/* Start the management command */
1567 	p = qbman_swp_mc_start(s);
1568 
1569 	if (!p)
1570 		return -EBUSY;
1571 
1572 	/* Encode the caller-provided attributes */
1573 	p->bpid = cpu_to_le16(bpid);
1574 	p->num = num_buffers;
1575 
1576 	/* Complete the management command */
1577 	r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
1578 	if (unlikely(!r)) {
1579 		pr_err("qbman: acquire from BPID %d failed, no response\n",
1580 		       bpid);
1581 		return -EIO;
1582 	}
1583 
1584 	/* Decode the outcome */
1585 	WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
1586 
1587 	/* Determine success or failure */
1588 	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1589 		pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
1590 		       bpid, r->rslt);
1591 		return -EIO;
1592 	}
1593 
1594 	WARN_ON(r->num > num_buffers);
1595 
1596 	/* Copy the acquired buffers to the caller's array */
1597 	for (i = 0; i < r->num; i++)
1598 		buffers[i] = le64_to_cpu(r->buf[i]);
1599 
1600 	return (int)r->num;
1601 }
1602 
1603 struct qbman_alt_fq_state_desc {
1604 	u8 verb;
1605 	u8 reserved[3];
1606 	__le32 fqid;
1607 	u8 reserved2[56];
1608 };
1609 
1610 struct qbman_alt_fq_state_rslt {
1611 	u8 verb;
1612 	u8 rslt;
1613 	u8 reserved[62];
1614 };
1615 
1616 #define ALT_FQ_FQID_MASK 0x00FFFFFF
1617 
1618 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
1619 			   u8 alt_fq_verb)
1620 {
1621 	struct qbman_alt_fq_state_desc *p;
1622 	struct qbman_alt_fq_state_rslt *r;
1623 
1624 	/* Start the management command */
1625 	p = qbman_swp_mc_start(s);
1626 	if (!p)
1627 		return -EBUSY;
1628 
1629 	p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
1630 
1631 	/* Complete the management command */
1632 	r = qbman_swp_mc_complete(s, p, alt_fq_verb);
1633 	if (unlikely(!r)) {
1634 		pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
1635 		       alt_fq_verb);
1636 		return -EIO;
1637 	}
1638 
1639 	/* Decode the outcome */
1640 	WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
1641 
1642 	/* Determine success or failure */
1643 	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1644 		pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
1645 		       fqid, r->verb, r->rslt);
1646 		return -EIO;
1647 	}
1648 
1649 	return 0;
1650 }
1651 
1652 struct qbman_cdan_ctrl_desc {
1653 	u8 verb;
1654 	u8 reserved;
1655 	__le16 ch;
1656 	u8 we;
1657 	u8 ctrl;
1658 	__le16 reserved2;
1659 	__le64 cdan_ctx;
1660 	u8 reserved3[48];
1661 
1662 };
1663 
1664 struct qbman_cdan_ctrl_rslt {
1665 	u8 verb;
1666 	u8 rslt;
1667 	__le16 ch;
1668 	u8 reserved[60];
1669 };
1670 
1671 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
1672 		       u8 we_mask, u8 cdan_en,
1673 		       u64 ctx)
1674 {
1675 	struct qbman_cdan_ctrl_desc *p = NULL;
1676 	struct qbman_cdan_ctrl_rslt *r = NULL;
1677 
1678 	/* Start the management command */
1679 	p = qbman_swp_mc_start(s);
1680 	if (!p)
1681 		return -EBUSY;
1682 
1683 	/* Encode the caller-provided attributes */
1684 	p->ch = cpu_to_le16(channelid);
1685 	p->we = we_mask;
1686 	if (cdan_en)
1687 		p->ctrl = 1;
1688 	else
1689 		p->ctrl = 0;
1690 	p->cdan_ctx = cpu_to_le64(ctx);
1691 
1692 	/* Complete the management command */
1693 	r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
1694 	if (unlikely(!r)) {
1695 		pr_err("qbman: wqchan config failed, no response\n");
1696 		return -EIO;
1697 	}
1698 
1699 	WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
1700 
1701 	/* Determine success or failure */
1702 	if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
1703 		pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1704 		       channelid, r->rslt);
1705 		return -EIO;
1706 	}
1707 
1708 	return 0;
1709 }
1710 
1711 #define QBMAN_RESPONSE_VERB_MASK	0x7f
1712 #define QBMAN_FQ_QUERY_NP		0x45
1713 #define QBMAN_BP_QUERY			0x32
1714 
1715 struct qbman_fq_query_desc {
1716 	u8 verb;
1717 	u8 reserved[3];
1718 	__le32 fqid;
1719 	u8 reserved2[56];
1720 };
1721 
1722 int qbman_fq_query_state(struct qbman_swp *s, u32 fqid,
1723 			 struct qbman_fq_query_np_rslt *r)
1724 {
1725 	struct qbman_fq_query_desc *p;
1726 	void *resp;
1727 
1728 	p = (struct qbman_fq_query_desc *)qbman_swp_mc_start(s);
1729 	if (!p)
1730 		return -EBUSY;
1731 
1732 	/* FQID is a 24 bit value */
1733 	p->fqid = cpu_to_le32(fqid & 0x00FFFFFF);
1734 	resp = qbman_swp_mc_complete(s, p, QBMAN_FQ_QUERY_NP);
1735 	if (!resp) {
1736 		pr_err("qbman: Query FQID %d NP fields failed, no response\n",
1737 		       fqid);
1738 		return -EIO;
1739 	}
1740 	*r = *(struct qbman_fq_query_np_rslt *)resp;
1741 	/* Decode the outcome */
1742 	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_FQ_QUERY_NP);
1743 
1744 	/* Determine success or failure */
1745 	if (r->rslt != QBMAN_MC_RSLT_OK) {
1746 		pr_err("Query NP fields of FQID 0x%x failed, code=0x%02x\n",
1747 		       p->fqid, r->rslt);
1748 		return -EIO;
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 u32 qbman_fq_state_frame_count(const struct qbman_fq_query_np_rslt *r)
1755 {
1756 	return (le32_to_cpu(r->frm_cnt) & 0x00FFFFFF);
1757 }
1758 
1759 u32 qbman_fq_state_byte_count(const struct qbman_fq_query_np_rslt *r)
1760 {
1761 	return le32_to_cpu(r->byte_cnt);
1762 }
1763 
1764 struct qbman_bp_query_desc {
1765 	u8 verb;
1766 	u8 reserved;
1767 	__le16 bpid;
1768 	u8 reserved2[60];
1769 };
1770 
1771 int qbman_bp_query(struct qbman_swp *s, u16 bpid,
1772 		   struct qbman_bp_query_rslt *r)
1773 {
1774 	struct qbman_bp_query_desc *p;
1775 	void *resp;
1776 
1777 	p = (struct qbman_bp_query_desc *)qbman_swp_mc_start(s);
1778 	if (!p)
1779 		return -EBUSY;
1780 
1781 	p->bpid = cpu_to_le16(bpid);
1782 	resp = qbman_swp_mc_complete(s, p, QBMAN_BP_QUERY);
1783 	if (!resp) {
1784 		pr_err("qbman: Query BPID %d fields failed, no response\n",
1785 		       bpid);
1786 		return -EIO;
1787 	}
1788 	*r = *(struct qbman_bp_query_rslt *)resp;
1789 	/* Decode the outcome */
1790 	WARN_ON((r->verb & QBMAN_RESPONSE_VERB_MASK) != QBMAN_BP_QUERY);
1791 
1792 	/* Determine success or failure */
1793 	if (r->rslt != QBMAN_MC_RSLT_OK) {
1794 		pr_err("Query fields of BPID 0x%x failed, code=0x%02x\n",
1795 		       bpid, r->rslt);
1796 		return -EIO;
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 u32 qbman_bp_info_num_free_bufs(struct qbman_bp_query_rslt *a)
1803 {
1804 	return le32_to_cpu(a->fill);
1805 }
1806