1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * MIPS-specific support for Broadcom STB S2/S3/S5 power management 4 * 5 * Copyright (C) 2016-2017 Broadcom 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/printk.h> 10 #include <linux/io.h> 11 #include <linux/of.h> 12 #include <linux/of_address.h> 13 #include <linux/delay.h> 14 #include <linux/suspend.h> 15 #include <asm/bmips.h> 16 #include <asm/tlbflush.h> 17 18 #include "pm.h" 19 20 #define S2_NUM_PARAMS 6 21 #define MAX_NUM_MEMC 3 22 23 /* S3 constants */ 24 #define MAX_GP_REGS 16 25 #define MAX_CP0_REGS 32 26 #define NUM_MEMC_CLIENTS 128 27 #define AON_CTRL_RAM_SIZE 128 28 #define BRCMSTB_S3_MAGIC 0x5AFEB007 29 30 #define CLEAR_RESET_MASK 0x01 31 32 /* Index each CP0 register that needs to be saved */ 33 #define CONTEXT 0 34 #define USER_LOCAL 1 35 #define PGMK 2 36 #define HWRENA 3 37 #define COMPARE 4 38 #define STATUS 5 39 #define CONFIG 6 40 #define MODE 7 41 #define EDSP 8 42 #define BOOT_VEC 9 43 #define EBASE 10 44 45 struct brcmstb_memc { 46 void __iomem *ddr_phy_base; 47 void __iomem *arb_base; 48 }; 49 50 struct brcmstb_pm_control { 51 void __iomem *aon_ctrl_base; 52 void __iomem *aon_sram_base; 53 void __iomem *timers_base; 54 struct brcmstb_memc memcs[MAX_NUM_MEMC]; 55 int num_memc; 56 }; 57 58 struct brcm_pm_s3_context { 59 u32 cp0_regs[MAX_CP0_REGS]; 60 u32 memc0_rts[NUM_MEMC_CLIENTS]; 61 u32 sc_boot_vec; 62 }; 63 64 struct brcmstb_mem_transfer; 65 66 struct brcmstb_mem_transfer { 67 struct brcmstb_mem_transfer *next; 68 void *src; 69 void *dst; 70 dma_addr_t pa_src; 71 dma_addr_t pa_dst; 72 u32 len; 73 u8 key; 74 u8 mode; 75 u8 src_remapped; 76 u8 dst_remapped; 77 u8 src_dst_remapped; 78 }; 79 80 #define AON_SAVE_SRAM(base, idx, val) \ 81 __raw_writel(val, base + (idx << 2)) 82 83 /* Used for saving registers in asm */ 84 u32 gp_regs[MAX_GP_REGS]; 85 86 #define BSP_CLOCK_STOP 0x00 87 #define PM_INITIATE 0x01 88 89 static struct brcmstb_pm_control ctrl; 90 91 static void brcm_pm_save_cp0_context(struct brcm_pm_s3_context *ctx) 92 { 93 /* Generic MIPS */ 94 ctx->cp0_regs[CONTEXT] = read_c0_context(); 95 ctx->cp0_regs[USER_LOCAL] = read_c0_userlocal(); 96 ctx->cp0_regs[PGMK] = read_c0_pagemask(); 97 ctx->cp0_regs[HWRENA] = read_c0_cache(); 98 ctx->cp0_regs[COMPARE] = read_c0_compare(); 99 ctx->cp0_regs[STATUS] = read_c0_status(); 100 101 /* Broadcom specific */ 102 ctx->cp0_regs[CONFIG] = read_c0_brcm_config(); 103 ctx->cp0_regs[MODE] = read_c0_brcm_mode(); 104 ctx->cp0_regs[EDSP] = read_c0_brcm_edsp(); 105 ctx->cp0_regs[BOOT_VEC] = read_c0_brcm_bootvec(); 106 ctx->cp0_regs[EBASE] = read_c0_ebase(); 107 108 ctx->sc_boot_vec = bmips_read_zscm_reg(0xa0); 109 } 110 111 static void brcm_pm_restore_cp0_context(struct brcm_pm_s3_context *ctx) 112 { 113 /* Restore cp0 state */ 114 bmips_write_zscm_reg(0xa0, ctx->sc_boot_vec); 115 116 /* Generic MIPS */ 117 write_c0_context(ctx->cp0_regs[CONTEXT]); 118 write_c0_userlocal(ctx->cp0_regs[USER_LOCAL]); 119 write_c0_pagemask(ctx->cp0_regs[PGMK]); 120 write_c0_cache(ctx->cp0_regs[HWRENA]); 121 write_c0_compare(ctx->cp0_regs[COMPARE]); 122 write_c0_status(ctx->cp0_regs[STATUS]); 123 124 /* Broadcom specific */ 125 write_c0_brcm_config(ctx->cp0_regs[CONFIG]); 126 write_c0_brcm_mode(ctx->cp0_regs[MODE]); 127 write_c0_brcm_edsp(ctx->cp0_regs[EDSP]); 128 write_c0_brcm_bootvec(ctx->cp0_regs[BOOT_VEC]); 129 write_c0_ebase(ctx->cp0_regs[EBASE]); 130 } 131 132 static void brcmstb_pm_handshake(void) 133 { 134 void __iomem *base = ctrl.aon_ctrl_base; 135 u32 tmp; 136 137 /* BSP power handshake, v1 */ 138 tmp = __raw_readl(base + AON_CTRL_HOST_MISC_CMDS); 139 tmp &= ~1UL; 140 __raw_writel(tmp, base + AON_CTRL_HOST_MISC_CMDS); 141 (void)__raw_readl(base + AON_CTRL_HOST_MISC_CMDS); 142 143 __raw_writel(0, base + AON_CTRL_PM_INITIATE); 144 (void)__raw_readl(base + AON_CTRL_PM_INITIATE); 145 __raw_writel(BSP_CLOCK_STOP | PM_INITIATE, 146 base + AON_CTRL_PM_INITIATE); 147 /* 148 * HACK: BSP may have internal race on the CLOCK_STOP command. 149 * Avoid touching the BSP for a few milliseconds. 150 */ 151 mdelay(3); 152 } 153 154 static void brcmstb_pm_s5(void) 155 { 156 void __iomem *base = ctrl.aon_ctrl_base; 157 158 brcmstb_pm_handshake(); 159 160 /* Clear magic s3 warm-boot value */ 161 AON_SAVE_SRAM(ctrl.aon_sram_base, 0, 0); 162 163 /* Set the countdown */ 164 __raw_writel(0x10, base + AON_CTRL_PM_CPU_WAIT_COUNT); 165 (void)__raw_readl(base + AON_CTRL_PM_CPU_WAIT_COUNT); 166 167 /* Prepare to S5 cold boot */ 168 __raw_writel(PM_COLD_CONFIG, base + AON_CTRL_PM_CTRL); 169 (void)__raw_readl(base + AON_CTRL_PM_CTRL); 170 171 __raw_writel((PM_COLD_CONFIG | PM_PWR_DOWN), base + 172 AON_CTRL_PM_CTRL); 173 (void)__raw_readl(base + AON_CTRL_PM_CTRL); 174 175 __asm__ __volatile__( 176 " wait\n" 177 : : : "memory"); 178 } 179 180 static int brcmstb_pm_s3(void) 181 { 182 struct brcm_pm_s3_context s3_context; 183 void __iomem *memc_arb_base; 184 unsigned long flags; 185 u32 tmp; 186 int i; 187 188 /* Prepare for s3 */ 189 AON_SAVE_SRAM(ctrl.aon_sram_base, 0, BRCMSTB_S3_MAGIC); 190 AON_SAVE_SRAM(ctrl.aon_sram_base, 1, (u32)&s3_reentry); 191 AON_SAVE_SRAM(ctrl.aon_sram_base, 2, 0); 192 193 /* Clear RESET_HISTORY */ 194 tmp = __raw_readl(ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL); 195 tmp &= ~CLEAR_RESET_MASK; 196 __raw_writel(tmp, ctrl.aon_ctrl_base + AON_CTRL_RESET_CTRL); 197 198 local_irq_save(flags); 199 200 /* Inhibit DDR_RSTb pulse for both MMCs*/ 201 for (i = 0; i < ctrl.num_memc; i++) { 202 tmp = __raw_readl(ctrl.memcs[i].ddr_phy_base + 203 DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL); 204 205 tmp &= ~0x0f; 206 __raw_writel(tmp, ctrl.memcs[i].ddr_phy_base + 207 DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL); 208 tmp |= (0x05 | BIT(5)); 209 __raw_writel(tmp, ctrl.memcs[i].ddr_phy_base + 210 DDR40_PHY_CONTROL_REGS_0_STANDBY_CTRL); 211 } 212 213 /* Save CP0 context */ 214 brcm_pm_save_cp0_context(&s3_context); 215 216 /* Save RTS(skip debug register) */ 217 memc_arb_base = ctrl.memcs[0].arb_base + 4; 218 for (i = 0; i < NUM_MEMC_CLIENTS; i++) { 219 s3_context.memc0_rts[i] = __raw_readl(memc_arb_base); 220 memc_arb_base += 4; 221 } 222 223 /* Save I/O context */ 224 local_flush_tlb_all(); 225 _dma_cache_wback_inv(0, ~0); 226 227 brcm_pm_do_s3(ctrl.aon_ctrl_base, current_cpu_data.dcache.linesz); 228 229 /* CPU reconfiguration */ 230 local_flush_tlb_all(); 231 bmips_cpu_setup(); 232 cpumask_clear(&bmips_booted_mask); 233 234 /* Restore RTS (skip debug register) */ 235 memc_arb_base = ctrl.memcs[0].arb_base + 4; 236 for (i = 0; i < NUM_MEMC_CLIENTS; i++) { 237 __raw_writel(s3_context.memc0_rts[i], memc_arb_base); 238 memc_arb_base += 4; 239 } 240 241 /* restore CP0 context */ 242 brcm_pm_restore_cp0_context(&s3_context); 243 244 local_irq_restore(flags); 245 246 return 0; 247 } 248 249 static int brcmstb_pm_s2(void) 250 { 251 /* 252 * We need to pass 6 arguments to an assembly function. Lets avoid the 253 * stack and pass arguments in a explicit 4 byte array. The assembly 254 * code assumes all arguments are 4 bytes and arguments are ordered 255 * like so: 256 * 257 * 0: AON_CTRl base register 258 * 1: DDR_PHY base register 259 * 2: TIMERS base resgister 260 * 3: I-Cache line size 261 * 4: Restart vector address 262 * 5: Restart vector size 263 */ 264 u32 s2_params[6]; 265 266 /* Prepare s2 parameters */ 267 s2_params[0] = (u32)ctrl.aon_ctrl_base; 268 s2_params[1] = (u32)ctrl.memcs[0].ddr_phy_base; 269 s2_params[2] = (u32)ctrl.timers_base; 270 s2_params[3] = (u32)current_cpu_data.icache.linesz; 271 s2_params[4] = (u32)BMIPS_WARM_RESTART_VEC; 272 s2_params[5] = (u32)(bmips_smp_int_vec_end - 273 bmips_smp_int_vec); 274 275 /* Drop to standby */ 276 brcm_pm_do_s2(s2_params); 277 278 return 0; 279 } 280 281 static int brcmstb_pm_standby(bool deep_standby) 282 { 283 brcmstb_pm_handshake(); 284 285 /* Send IRQs to BMIPS_WARM_RESTART_VEC */ 286 clear_c0_cause(CAUSEF_IV); 287 irq_disable_hazard(); 288 set_c0_status(ST0_BEV); 289 irq_disable_hazard(); 290 291 if (deep_standby) 292 brcmstb_pm_s3(); 293 else 294 brcmstb_pm_s2(); 295 296 /* Send IRQs to normal runtime vectors */ 297 clear_c0_status(ST0_BEV); 298 irq_disable_hazard(); 299 set_c0_cause(CAUSEF_IV); 300 irq_disable_hazard(); 301 302 return 0; 303 } 304 305 static int brcmstb_pm_enter(suspend_state_t state) 306 { 307 int ret = -EINVAL; 308 309 switch (state) { 310 case PM_SUSPEND_STANDBY: 311 ret = brcmstb_pm_standby(false); 312 break; 313 case PM_SUSPEND_MEM: 314 ret = brcmstb_pm_standby(true); 315 break; 316 } 317 318 return ret; 319 } 320 321 static int brcmstb_pm_valid(suspend_state_t state) 322 { 323 switch (state) { 324 case PM_SUSPEND_STANDBY: 325 return true; 326 case PM_SUSPEND_MEM: 327 return true; 328 default: 329 return false; 330 } 331 } 332 333 static const struct platform_suspend_ops brcmstb_pm_ops = { 334 .enter = brcmstb_pm_enter, 335 .valid = brcmstb_pm_valid, 336 }; 337 338 static const struct of_device_id aon_ctrl_dt_ids[] = { 339 { .compatible = "brcm,brcmstb-aon-ctrl" }, 340 { /* sentinel */ } 341 }; 342 343 static const struct of_device_id ddr_phy_dt_ids[] = { 344 { .compatible = "brcm,brcmstb-ddr-phy" }, 345 { /* sentinel */ } 346 }; 347 348 static const struct of_device_id arb_dt_ids[] = { 349 { .compatible = "brcm,brcmstb-memc-arb" }, 350 { /* sentinel */ } 351 }; 352 353 static const struct of_device_id timers_ids[] = { 354 { .compatible = "brcm,brcmstb-timers" }, 355 { /* sentinel */ } 356 }; 357 358 static inline void __iomem *brcmstb_ioremap_node(struct device_node *dn, 359 int index) 360 { 361 return of_io_request_and_map(dn, index, dn->full_name); 362 } 363 364 static void __iomem *brcmstb_ioremap_match(const struct of_device_id *matches, 365 int index, const void **ofdata) 366 { 367 struct device_node *dn; 368 const struct of_device_id *match; 369 370 dn = of_find_matching_node_and_match(NULL, matches, &match); 371 if (!dn) 372 return ERR_PTR(-EINVAL); 373 374 if (ofdata) 375 *ofdata = match->data; 376 377 return brcmstb_ioremap_node(dn, index); 378 } 379 380 static int brcmstb_pm_init(void) 381 { 382 struct device_node *dn; 383 void __iomem *base; 384 int i; 385 386 /* AON ctrl registers */ 387 base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 0, NULL); 388 if (IS_ERR(base)) { 389 pr_err("error mapping AON_CTRL\n"); 390 goto aon_err; 391 } 392 ctrl.aon_ctrl_base = base; 393 394 /* AON SRAM registers */ 395 base = brcmstb_ioremap_match(aon_ctrl_dt_ids, 1, NULL); 396 if (IS_ERR(base)) { 397 pr_err("error mapping AON_SRAM\n"); 398 goto sram_err; 399 } 400 ctrl.aon_sram_base = base; 401 402 ctrl.num_memc = 0; 403 /* Map MEMC DDR PHY registers */ 404 for_each_matching_node(dn, ddr_phy_dt_ids) { 405 i = ctrl.num_memc; 406 if (i >= MAX_NUM_MEMC) { 407 pr_warn("Too many MEMCs (max %d)\n", MAX_NUM_MEMC); 408 of_node_put(dn); 409 break; 410 } 411 base = brcmstb_ioremap_node(dn, 0); 412 if (IS_ERR(base)) { 413 of_node_put(dn); 414 goto ddr_err; 415 } 416 417 ctrl.memcs[i].ddr_phy_base = base; 418 ctrl.num_memc++; 419 } 420 421 /* MEMC ARB registers */ 422 base = brcmstb_ioremap_match(arb_dt_ids, 0, NULL); 423 if (IS_ERR(base)) { 424 pr_err("error mapping MEMC ARB\n"); 425 goto ddr_err; 426 } 427 ctrl.memcs[0].arb_base = base; 428 429 /* Timer registers */ 430 base = brcmstb_ioremap_match(timers_ids, 0, NULL); 431 if (IS_ERR(base)) { 432 pr_err("error mapping timers\n"); 433 goto tmr_err; 434 } 435 ctrl.timers_base = base; 436 437 /* s3 cold boot aka s5 */ 438 pm_power_off = brcmstb_pm_s5; 439 440 suspend_set_ops(&brcmstb_pm_ops); 441 442 return 0; 443 444 tmr_err: 445 iounmap(ctrl.memcs[0].arb_base); 446 ddr_err: 447 for (i = 0; i < ctrl.num_memc; i++) 448 iounmap(ctrl.memcs[i].ddr_phy_base); 449 450 iounmap(ctrl.aon_sram_base); 451 sram_err: 452 iounmap(ctrl.aon_ctrl_base); 453 aon_err: 454 return PTR_ERR(base); 455 } 456 arch_initcall(brcmstb_pm_init); 457