1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 1996 John Shifflett, GeoLog Consulting 4 * john@geolog.com 5 * jshiffle@netcom.com 6 */ 7 8 /* 9 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC 10 * provided much of the inspiration and some of the code for this 11 * driver. Everything I know about Amiga DMA was gleaned from careful 12 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I 13 * borrowed shamelessly from all over that source. Thanks Hamish! 14 * 15 * _This_ driver is (I feel) an improvement over the old one in 16 * several respects: 17 * 18 * - Target Disconnection/Reconnection is now supported. Any 19 * system with more than one device active on the SCSI bus 20 * will benefit from this. The driver defaults to what I 21 * call 'adaptive disconnect' - meaning that each command 22 * is evaluated individually as to whether or not it should 23 * be run with the option to disconnect/reselect (if the 24 * device chooses), or as a "SCSI-bus-hog". 25 * 26 * - Synchronous data transfers are now supported. Because of 27 * a few devices that choke after telling the driver that 28 * they can do sync transfers, we don't automatically use 29 * this faster protocol - it can be enabled via the command- 30 * line on a device-by-device basis. 31 * 32 * - Runtime operating parameters can now be specified through 33 * the 'amiboot' or the 'insmod' command line. For amiboot do: 34 * "amiboot [usual stuff] wd33c93=blah,blah,blah" 35 * The defaults should be good for most people. See the comment 36 * for 'setup_strings' below for more details. 37 * 38 * - The old driver relied exclusively on what the Western Digital 39 * docs call "Combination Level 2 Commands", which are a great 40 * idea in that the CPU is relieved of a lot of interrupt 41 * overhead. However, by accepting a certain (user-settable) 42 * amount of additional interrupts, this driver achieves 43 * better control over the SCSI bus, and data transfers are 44 * almost as fast while being much easier to define, track, 45 * and debug. 46 * 47 * 48 * TODO: 49 * more speed. linked commands. 50 * 51 * 52 * People with bug reports, wish-lists, complaints, comments, 53 * or improvements are asked to pah-leeez email me (John Shifflett) 54 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get 55 * this thing into as good a shape as possible, and I'm positive 56 * there are lots of lurking bugs and "Stupid Places". 57 * 58 * Updates: 59 * 60 * Added support for pre -A chips, which don't have advanced features 61 * and will generate CSR_RESEL rather than CSR_RESEL_AM. 62 * Richard Hirst <richard@sleepie.demon.co.uk> August 2000 63 * 64 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of 65 * default_sx_per for asynchronous data transfers. Added adjustment 66 * of transfer periods in sx_table to the actual input-clock. 67 * peter fuerst <post@pfrst.de> February 2007 68 */ 69 70 #include <linux/module.h> 71 72 #include <linux/string.h> 73 #include <linux/delay.h> 74 #include <linux/init.h> 75 #include <linux/interrupt.h> 76 #include <linux/blkdev.h> 77 78 #include <scsi/scsi.h> 79 #include <scsi/scsi_cmnd.h> 80 #include <scsi/scsi_device.h> 81 #include <scsi/scsi_host.h> 82 83 #include <asm/irq.h> 84 85 #include "wd33c93.h" 86 87 #define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns 88 89 90 #define WD33C93_VERSION "1.26++" 91 #define WD33C93_DATE "10/Feb/2007" 92 93 MODULE_AUTHOR("John Shifflett"); 94 MODULE_DESCRIPTION("Generic WD33C93 SCSI driver"); 95 MODULE_LICENSE("GPL"); 96 97 /* 98 * 'setup_strings' is a single string used to pass operating parameters and 99 * settings from the kernel/module command-line to the driver. 'setup_args[]' 100 * is an array of strings that define the compile-time default values for 101 * these settings. If Linux boots with an amiboot or insmod command-line, 102 * those settings are combined with 'setup_args[]'. Note that amiboot 103 * command-lines are prefixed with "wd33c93=" while insmod uses a 104 * "setup_strings=" prefix. The driver recognizes the following keywords 105 * (lower case required) and arguments: 106 * 107 * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with 108 * the 7 possible SCSI devices. Set a bit to negotiate for 109 * asynchronous transfers on that device. To maintain 110 * backwards compatibility, a command-line such as 111 * "wd33c93=255" will be automatically translated to 112 * "wd33c93=nosync:0xff". 113 * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is 114 * optional - if not present, same as "nodma:1". 115 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer 116 * period. Default is 500; acceptable values are 250 - 1000. 117 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them. 118 * x = 1 does 'adaptive' disconnects, which is the default 119 * and generally the best choice. 120 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes 121 * various types of debug output to printed - see the DB_xxx 122 * defines in wd33c93.h 123 * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values 124 * would be from 8 through 20. Default is 8. 125 * - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use 126 * Single Byte DMA, which is the default. Argument is 127 * optional - if not present, same as "burst:1". 128 * - fast:x -x = 1 to enable Fast SCSI, which is only effective with 129 * input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable 130 * it, which is the default. Argument is optional - if not 131 * present, same as "fast:1". 132 * - next -No argument. Used to separate blocks of keywords when 133 * there's more than one host adapter in the system. 134 * 135 * Syntax Notes: 136 * - Numeric arguments can be decimal or the '0x' form of hex notation. There 137 * _must_ be a colon between a keyword and its numeric argument, with no 138 * spaces. 139 * - Keywords are separated by commas, no spaces, in the standard kernel 140 * command-line manner. 141 * - A keyword in the 'nth' comma-separated command-line member will overwrite 142 * the 'nth' element of setup_args[]. A blank command-line member (in 143 * other words, a comma with no preceding keyword) will _not_ overwrite 144 * the corresponding setup_args[] element. 145 * - If a keyword is used more than once, the first one applies to the first 146 * SCSI host found, the second to the second card, etc, unless the 'next' 147 * keyword is used to change the order. 148 * 149 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'): 150 * - wd33c93=nosync:255 151 * - wd33c93=nodma 152 * - wd33c93=nodma:1 153 * - wd33c93=disconnect:2,nosync:0x08,period:250 154 * - wd33c93=debug:0x1c 155 */ 156 157 /* Normally, no defaults are specified */ 158 static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" }; 159 160 static char *setup_strings; 161 module_param(setup_strings, charp, 0); 162 163 static void wd33c93_execute(struct Scsi_Host *instance); 164 165 #ifdef CONFIG_WD33C93_PIO 166 static inline uchar 167 read_wd33c93(const wd33c93_regs regs, uchar reg_num) 168 { 169 uchar data; 170 171 outb(reg_num, regs.SASR); 172 data = inb(regs.SCMD); 173 return data; 174 } 175 176 static inline unsigned long 177 read_wd33c93_count(const wd33c93_regs regs) 178 { 179 unsigned long value; 180 181 outb(WD_TRANSFER_COUNT_MSB, regs.SASR); 182 value = inb(regs.SCMD) << 16; 183 value |= inb(regs.SCMD) << 8; 184 value |= inb(regs.SCMD); 185 return value; 186 } 187 188 static inline uchar 189 read_aux_stat(const wd33c93_regs regs) 190 { 191 return inb(regs.SASR); 192 } 193 194 static inline void 195 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value) 196 { 197 outb(reg_num, regs.SASR); 198 outb(value, regs.SCMD); 199 } 200 201 static inline void 202 write_wd33c93_count(const wd33c93_regs regs, unsigned long value) 203 { 204 outb(WD_TRANSFER_COUNT_MSB, regs.SASR); 205 outb((value >> 16) & 0xff, regs.SCMD); 206 outb((value >> 8) & 0xff, regs.SCMD); 207 outb( value & 0xff, regs.SCMD); 208 } 209 210 #define write_wd33c93_cmd(regs, cmd) \ 211 write_wd33c93((regs), WD_COMMAND, (cmd)) 212 213 static inline void 214 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[]) 215 { 216 int i; 217 218 outb(WD_CDB_1, regs.SASR); 219 for (i=0; i<len; i++) 220 outb(cmnd[i], regs.SCMD); 221 } 222 223 #else /* CONFIG_WD33C93_PIO */ 224 static inline uchar 225 read_wd33c93(const wd33c93_regs regs, uchar reg_num) 226 { 227 *regs.SASR = reg_num; 228 mb(); 229 return (*regs.SCMD); 230 } 231 232 static unsigned long 233 read_wd33c93_count(const wd33c93_regs regs) 234 { 235 unsigned long value; 236 237 *regs.SASR = WD_TRANSFER_COUNT_MSB; 238 mb(); 239 value = *regs.SCMD << 16; 240 value |= *regs.SCMD << 8; 241 value |= *regs.SCMD; 242 mb(); 243 return value; 244 } 245 246 static inline uchar 247 read_aux_stat(const wd33c93_regs regs) 248 { 249 return *regs.SASR; 250 } 251 252 static inline void 253 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value) 254 { 255 *regs.SASR = reg_num; 256 mb(); 257 *regs.SCMD = value; 258 mb(); 259 } 260 261 static void 262 write_wd33c93_count(const wd33c93_regs regs, unsigned long value) 263 { 264 *regs.SASR = WD_TRANSFER_COUNT_MSB; 265 mb(); 266 *regs.SCMD = value >> 16; 267 *regs.SCMD = value >> 8; 268 *regs.SCMD = value; 269 mb(); 270 } 271 272 static inline void 273 write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd) 274 { 275 *regs.SASR = WD_COMMAND; 276 mb(); 277 *regs.SCMD = cmd; 278 mb(); 279 } 280 281 static inline void 282 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[]) 283 { 284 int i; 285 286 *regs.SASR = WD_CDB_1; 287 for (i = 0; i < len; i++) 288 *regs.SCMD = cmnd[i]; 289 } 290 #endif /* CONFIG_WD33C93_PIO */ 291 292 static inline uchar 293 read_1_byte(const wd33c93_regs regs) 294 { 295 uchar asr; 296 uchar x = 0; 297 298 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 299 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80); 300 do { 301 asr = read_aux_stat(regs); 302 if (asr & ASR_DBR) 303 x = read_wd33c93(regs, WD_DATA); 304 } while (!(asr & ASR_INT)); 305 return x; 306 } 307 308 static int 309 round_period(unsigned int period, const struct sx_period *sx_table) 310 { 311 int x; 312 313 for (x = 1; sx_table[x].period_ns; x++) { 314 if ((period <= sx_table[x - 0].period_ns) && 315 (period > sx_table[x - 1].period_ns)) { 316 return x; 317 } 318 } 319 return 7; 320 } 321 322 /* 323 * Calculate Synchronous Transfer Register value from SDTR code. 324 */ 325 static uchar 326 calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast, 327 const struct sx_period *sx_table) 328 { 329 /* When doing Fast SCSI synchronous data transfers, the corresponding 330 * value in 'sx_table' is two times the actually used transfer period. 331 */ 332 uchar result; 333 334 if (offset && fast) { 335 fast = STR_FSS; 336 period *= 2; 337 } else { 338 fast = 0; 339 } 340 period *= 4; /* convert SDTR code to ns */ 341 result = sx_table[round_period(period,sx_table)].reg_value; 342 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF; 343 result |= fast; 344 return result; 345 } 346 347 /* 348 * Calculate SDTR code bytes [3],[4] from period and offset. 349 */ 350 static inline void 351 calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast, 352 uchar msg[2]) 353 { 354 /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The 355 * actually used transfer period for Fast SCSI synchronous data 356 * transfers is half that value. 357 */ 358 period /= 4; 359 if (offset && fast) 360 period /= 2; 361 msg[0] = period; 362 msg[1] = offset; 363 } 364 365 static int 366 wd33c93_queuecommand_lck(struct scsi_cmnd *cmd, 367 void (*done)(struct scsi_cmnd *)) 368 { 369 struct WD33C93_hostdata *hostdata; 370 struct scsi_cmnd *tmp; 371 372 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata; 373 374 DB(DB_QUEUE_COMMAND, 375 printk("Q-%d-%02x( ", cmd->device->id, cmd->cmnd[0])) 376 377 /* Set up a few fields in the scsi_cmnd structure for our own use: 378 * - host_scribble is the pointer to the next cmd in the input queue 379 * - scsi_done points to the routine we call when a cmd is finished 380 * - result is what you'd expect 381 */ 382 cmd->host_scribble = NULL; 383 cmd->scsi_done = done; 384 cmd->result = 0; 385 386 /* We use the Scsi_Pointer structure that's included with each command 387 * as a scratchpad (as it's intended to be used!). The handy thing about 388 * the SCp.xxx fields is that they're always associated with a given 389 * cmd, and are preserved across disconnect-reselect. This means we 390 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages 391 * if we keep all the critical pointers and counters in SCp: 392 * - SCp.ptr is the pointer into the RAM buffer 393 * - SCp.this_residual is the size of that buffer 394 * - SCp.buffer points to the current scatter-gather buffer 395 * - SCp.buffers_residual tells us how many S.G. buffers there are 396 * - SCp.have_data_in is not used 397 * - SCp.sent_command is not used 398 * - SCp.phase records this command's SRCID_ER bit setting 399 */ 400 401 if (scsi_bufflen(cmd)) { 402 cmd->SCp.buffer = scsi_sglist(cmd); 403 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1; 404 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); 405 cmd->SCp.this_residual = cmd->SCp.buffer->length; 406 } else { 407 cmd->SCp.buffer = NULL; 408 cmd->SCp.buffers_residual = 0; 409 cmd->SCp.ptr = NULL; 410 cmd->SCp.this_residual = 0; 411 } 412 413 /* WD docs state that at the conclusion of a "LEVEL2" command, the 414 * status byte can be retrieved from the LUN register. Apparently, 415 * this is the case only for *uninterrupted* LEVEL2 commands! If 416 * there are any unexpected phases entered, even if they are 100% 417 * legal (different devices may choose to do things differently), 418 * the LEVEL2 command sequence is exited. This often occurs prior 419 * to receiving the status byte, in which case the driver does a 420 * status phase interrupt and gets the status byte on its own. 421 * While such a command can then be "resumed" (ie restarted to 422 * finish up as a LEVEL2 command), the LUN register will NOT be 423 * a valid status byte at the command's conclusion, and we must 424 * use the byte obtained during the earlier interrupt. Here, we 425 * preset SCp.Status to an illegal value (0xff) so that when 426 * this command finally completes, we can tell where the actual 427 * status byte is stored. 428 */ 429 430 cmd->SCp.Status = ILLEGAL_STATUS_BYTE; 431 432 /* 433 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE 434 * commands are added to the head of the queue so that the desired 435 * sense data is not lost before REQUEST_SENSE executes. 436 */ 437 438 spin_lock_irq(&hostdata->lock); 439 440 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) { 441 cmd->host_scribble = (uchar *) hostdata->input_Q; 442 hostdata->input_Q = cmd; 443 } else { /* find the end of the queue */ 444 for (tmp = (struct scsi_cmnd *) hostdata->input_Q; 445 tmp->host_scribble; 446 tmp = (struct scsi_cmnd *) tmp->host_scribble) ; 447 tmp->host_scribble = (uchar *) cmd; 448 } 449 450 /* We know that there's at least one command in 'input_Q' now. 451 * Go see if any of them are runnable! 452 */ 453 454 wd33c93_execute(cmd->device->host); 455 456 DB(DB_QUEUE_COMMAND, printk(")Q ")) 457 458 spin_unlock_irq(&hostdata->lock); 459 return 0; 460 } 461 462 DEF_SCSI_QCMD(wd33c93_queuecommand) 463 464 /* 465 * This routine attempts to start a scsi command. If the host_card is 466 * already connected, we give up immediately. Otherwise, look through 467 * the input_Q, using the first command we find that's intended 468 * for a currently non-busy target/lun. 469 * 470 * wd33c93_execute() is always called with interrupts disabled or from 471 * the wd33c93_intr itself, which means that a wd33c93 interrupt 472 * cannot occur while we are in here. 473 */ 474 static void 475 wd33c93_execute(struct Scsi_Host *instance) 476 { 477 struct WD33C93_hostdata *hostdata = 478 (struct WD33C93_hostdata *) instance->hostdata; 479 const wd33c93_regs regs = hostdata->regs; 480 struct scsi_cmnd *cmd, *prev; 481 482 DB(DB_EXECUTE, printk("EX(")) 483 if (hostdata->selecting || hostdata->connected) { 484 DB(DB_EXECUTE, printk(")EX-0 ")) 485 return; 486 } 487 488 /* 489 * Search through the input_Q for a command destined 490 * for an idle target/lun. 491 */ 492 493 cmd = (struct scsi_cmnd *) hostdata->input_Q; 494 prev = NULL; 495 while (cmd) { 496 if (!(hostdata->busy[cmd->device->id] & 497 (1 << (cmd->device->lun & 0xff)))) 498 break; 499 prev = cmd; 500 cmd = (struct scsi_cmnd *) cmd->host_scribble; 501 } 502 503 /* quit if queue empty or all possible targets are busy */ 504 505 if (!cmd) { 506 DB(DB_EXECUTE, printk(")EX-1 ")) 507 return; 508 } 509 510 /* remove command from queue */ 511 512 if (prev) 513 prev->host_scribble = cmd->host_scribble; 514 else 515 hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble; 516 517 #ifdef PROC_STATISTICS 518 hostdata->cmd_cnt[cmd->device->id]++; 519 #endif 520 521 /* 522 * Start the selection process 523 */ 524 525 if (cmd->sc_data_direction == DMA_TO_DEVICE) 526 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id); 527 else 528 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); 529 530 /* Now we need to figure out whether or not this command is a good 531 * candidate for disconnect/reselect. We guess to the best of our 532 * ability, based on a set of hierarchical rules. When several 533 * devices are operating simultaneously, disconnects are usually 534 * an advantage. In a single device system, or if only 1 device 535 * is being accessed, transfers usually go faster if disconnects 536 * are not allowed: 537 * 538 * + Commands should NEVER disconnect if hostdata->disconnect = 539 * DIS_NEVER (this holds for tape drives also), and ALWAYS 540 * disconnect if hostdata->disconnect = DIS_ALWAYS. 541 * + Tape drive commands should always be allowed to disconnect. 542 * + Disconnect should be allowed if disconnected_Q isn't empty. 543 * + Commands should NOT disconnect if input_Q is empty. 544 * + Disconnect should be allowed if there are commands in input_Q 545 * for a different target/lun. In this case, the other commands 546 * should be made disconnect-able, if not already. 547 * 548 * I know, I know - this code would flunk me out of any 549 * "C Programming 101" class ever offered. But it's easy 550 * to change around and experiment with for now. 551 */ 552 553 cmd->SCp.phase = 0; /* assume no disconnect */ 554 if (hostdata->disconnect == DIS_NEVER) 555 goto no; 556 if (hostdata->disconnect == DIS_ALWAYS) 557 goto yes; 558 if (cmd->device->type == 1) /* tape drive? */ 559 goto yes; 560 if (hostdata->disconnected_Q) /* other commands disconnected? */ 561 goto yes; 562 if (!(hostdata->input_Q)) /* input_Q empty? */ 563 goto no; 564 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev; 565 prev = (struct scsi_cmnd *) prev->host_scribble) { 566 if ((prev->device->id != cmd->device->id) || 567 (prev->device->lun != cmd->device->lun)) { 568 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev; 569 prev = (struct scsi_cmnd *) prev->host_scribble) 570 prev->SCp.phase = 1; 571 goto yes; 572 } 573 } 574 575 goto no; 576 577 yes: 578 cmd->SCp.phase = 1; 579 580 #ifdef PROC_STATISTICS 581 hostdata->disc_allowed_cnt[cmd->device->id]++; 582 #endif 583 584 no: 585 586 write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0)); 587 588 write_wd33c93(regs, WD_TARGET_LUN, (u8)cmd->device->lun); 589 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 590 hostdata->sync_xfer[cmd->device->id]); 591 hostdata->busy[cmd->device->id] |= (1 << (cmd->device->lun & 0xFF)); 592 593 if ((hostdata->level2 == L2_NONE) || 594 (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) { 595 596 /* 597 * Do a 'Select-With-ATN' command. This will end with 598 * one of the following interrupts: 599 * CSR_RESEL_AM: failure - can try again later. 600 * CSR_TIMEOUT: failure - give up. 601 * CSR_SELECT: success - proceed. 602 */ 603 604 hostdata->selecting = cmd; 605 606 /* Every target has its own synchronous transfer setting, kept in the 607 * sync_xfer array, and a corresponding status byte in sync_stat[]. 608 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its 609 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET 610 * means that the parameters are undetermined as yet, and that we 611 * need to send an SDTR message to this device after selection is 612 * complete: We set SS_FIRST to tell the interrupt routine to do so. 613 * If we've been asked not to try synchronous transfers on this 614 * target (and _all_ luns within it), we'll still send the SDTR message 615 * later, but at that time we'll negotiate for async by specifying a 616 * sync fifo depth of 0. 617 */ 618 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) 619 hostdata->sync_stat[cmd->device->id] = SS_FIRST; 620 hostdata->state = S_SELECTING; 621 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 622 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN); 623 } else { 624 625 /* 626 * Do a 'Select-With-ATN-Xfer' command. This will end with 627 * one of the following interrupts: 628 * CSR_RESEL_AM: failure - can try again later. 629 * CSR_TIMEOUT: failure - give up. 630 * anything else: success - proceed. 631 */ 632 633 hostdata->connected = cmd; 634 write_wd33c93(regs, WD_COMMAND_PHASE, 0); 635 636 /* copy command_descriptor_block into WD chip 637 * (take advantage of auto-incrementing) 638 */ 639 640 write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd); 641 642 /* The wd33c93 only knows about Group 0, 1, and 5 commands when 643 * it's doing a 'select-and-transfer'. To be safe, we write the 644 * size of the CDB into the OWN_ID register for every case. This 645 * way there won't be problems with vendor-unique, audio, etc. 646 */ 647 648 write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len); 649 650 /* When doing a non-disconnect command with DMA, we can save 651 * ourselves a DATA phase interrupt later by setting everything 652 * up ahead of time. 653 */ 654 655 if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) { 656 if (hostdata->dma_setup(cmd, 657 (cmd->sc_data_direction == DMA_TO_DEVICE) ? 658 DATA_OUT_DIR : DATA_IN_DIR)) 659 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 660 else { 661 write_wd33c93_count(regs, 662 cmd->SCp.this_residual); 663 write_wd33c93(regs, WD_CONTROL, 664 CTRL_IDI | CTRL_EDI | hostdata->dma_mode); 665 hostdata->dma = D_DMA_RUNNING; 666 } 667 } else 668 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 669 670 hostdata->state = S_RUNNING_LEVEL2; 671 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 672 } 673 674 /* 675 * Since the SCSI bus can handle only 1 connection at a time, 676 * we get out of here now. If the selection fails, or when 677 * the command disconnects, we'll come back to this routine 678 * to search the input_Q again... 679 */ 680 681 DB(DB_EXECUTE, 682 printk("%s)EX-2 ", (cmd->SCp.phase) ? "d:" : "")) 683 } 684 685 static void 686 transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt, 687 int data_in_dir, struct WD33C93_hostdata *hostdata) 688 { 689 uchar asr; 690 691 DB(DB_TRANSFER, 692 printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out")) 693 694 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 695 write_wd33c93_count(regs, cnt); 696 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO); 697 if (data_in_dir) { 698 do { 699 asr = read_aux_stat(regs); 700 if (asr & ASR_DBR) 701 *buf++ = read_wd33c93(regs, WD_DATA); 702 } while (!(asr & ASR_INT)); 703 } else { 704 do { 705 asr = read_aux_stat(regs); 706 if (asr & ASR_DBR) 707 write_wd33c93(regs, WD_DATA, *buf++); 708 } while (!(asr & ASR_INT)); 709 } 710 711 /* Note: we are returning with the interrupt UN-cleared. 712 * Since (presumably) an entire I/O operation has 713 * completed, the bus phase is probably different, and 714 * the interrupt routine will discover this when it 715 * responds to the uncleared int. 716 */ 717 718 } 719 720 static void 721 transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd, 722 int data_in_dir) 723 { 724 struct WD33C93_hostdata *hostdata; 725 unsigned long length; 726 727 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata; 728 729 /* Normally, you'd expect 'this_residual' to be non-zero here. 730 * In a series of scatter-gather transfers, however, this 731 * routine will usually be called with 'this_residual' equal 732 * to 0 and 'buffers_residual' non-zero. This means that a 733 * previous transfer completed, clearing 'this_residual', and 734 * now we need to setup the next scatter-gather buffer as the 735 * source or destination for THIS transfer. 736 */ 737 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) { 738 cmd->SCp.buffer = sg_next(cmd->SCp.buffer); 739 --cmd->SCp.buffers_residual; 740 cmd->SCp.this_residual = cmd->SCp.buffer->length; 741 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); 742 } 743 if (!cmd->SCp.this_residual) /* avoid bogus setups */ 744 return; 745 746 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 747 hostdata->sync_xfer[cmd->device->id]); 748 749 /* 'hostdata->no_dma' is TRUE if we don't even want to try DMA. 750 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns. 751 */ 752 753 if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) { 754 #ifdef PROC_STATISTICS 755 hostdata->pio_cnt++; 756 #endif 757 transfer_pio(regs, (uchar *) cmd->SCp.ptr, 758 cmd->SCp.this_residual, data_in_dir, hostdata); 759 length = cmd->SCp.this_residual; 760 cmd->SCp.this_residual = read_wd33c93_count(regs); 761 cmd->SCp.ptr += (length - cmd->SCp.this_residual); 762 } 763 764 /* We are able to do DMA (in fact, the Amiga hardware is 765 * already going!), so start up the wd33c93 in DMA mode. 766 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the 767 * transfer completes and causes an interrupt, we're 768 * reminded to tell the Amiga to shut down its end. We'll 769 * postpone the updating of 'this_residual' and 'ptr' 770 * until then. 771 */ 772 773 else { 774 #ifdef PROC_STATISTICS 775 hostdata->dma_cnt++; 776 #endif 777 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode); 778 write_wd33c93_count(regs, cmd->SCp.this_residual); 779 780 if ((hostdata->level2 >= L2_DATA) || 781 (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) { 782 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 783 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 784 hostdata->state = S_RUNNING_LEVEL2; 785 } else 786 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO); 787 788 hostdata->dma = D_DMA_RUNNING; 789 } 790 } 791 792 void 793 wd33c93_intr(struct Scsi_Host *instance) 794 { 795 struct WD33C93_hostdata *hostdata = 796 (struct WD33C93_hostdata *) instance->hostdata; 797 const wd33c93_regs regs = hostdata->regs; 798 struct scsi_cmnd *patch, *cmd; 799 uchar asr, sr, phs, id, lun, *ucp, msg; 800 unsigned long length, flags; 801 802 asr = read_aux_stat(regs); 803 if (!(asr & ASR_INT) || (asr & ASR_BSY)) 804 return; 805 806 spin_lock_irqsave(&hostdata->lock, flags); 807 808 #ifdef PROC_STATISTICS 809 hostdata->int_cnt++; 810 #endif 811 812 cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */ 813 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */ 814 phs = read_wd33c93(regs, WD_COMMAND_PHASE); 815 816 DB(DB_INTR, printk("{%02x:%02x-", asr, sr)) 817 818 /* After starting a DMA transfer, the next interrupt 819 * is guaranteed to be in response to completion of 820 * the transfer. Since the Amiga DMA hardware runs in 821 * in an open-ended fashion, it needs to be told when 822 * to stop; do that here if D_DMA_RUNNING is true. 823 * Also, we have to update 'this_residual' and 'ptr' 824 * based on the contents of the TRANSFER_COUNT register, 825 * in case the device decided to do an intermediate 826 * disconnect (a device may do this if it has to do a 827 * seek, or just to be nice and let other devices have 828 * some bus time during long transfers). After doing 829 * whatever is needed, we go on and service the WD3393 830 * interrupt normally. 831 */ 832 if (hostdata->dma == D_DMA_RUNNING) { 833 DB(DB_TRANSFER, 834 printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual)) 835 hostdata->dma_stop(cmd->device->host, cmd, 1); 836 hostdata->dma = D_DMA_OFF; 837 length = cmd->SCp.this_residual; 838 cmd->SCp.this_residual = read_wd33c93_count(regs); 839 cmd->SCp.ptr += (length - cmd->SCp.this_residual); 840 DB(DB_TRANSFER, 841 printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual)) 842 } 843 844 /* Respond to the specific WD3393 interrupt - there are quite a few! */ 845 switch (sr) { 846 case CSR_TIMEOUT: 847 DB(DB_INTR, printk("TIMEOUT")) 848 849 if (hostdata->state == S_RUNNING_LEVEL2) 850 hostdata->connected = NULL; 851 else { 852 cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */ 853 hostdata->selecting = NULL; 854 } 855 856 cmd->result = DID_NO_CONNECT << 16; 857 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 858 hostdata->state = S_UNCONNECTED; 859 cmd->scsi_done(cmd); 860 861 /* From esp.c: 862 * There is a window of time within the scsi_done() path 863 * of execution where interrupts are turned back on full 864 * blast and left that way. During that time we could 865 * reconnect to a disconnected command, then we'd bomb 866 * out below. We could also end up executing two commands 867 * at _once_. ...just so you know why the restore_flags() 868 * is here... 869 */ 870 871 spin_unlock_irqrestore(&hostdata->lock, flags); 872 873 /* We are not connected to a target - check to see if there 874 * are commands waiting to be executed. 875 */ 876 877 wd33c93_execute(instance); 878 break; 879 880 /* Note: this interrupt should not occur in a LEVEL2 command */ 881 882 case CSR_SELECT: 883 DB(DB_INTR, printk("SELECT")) 884 hostdata->connected = cmd = 885 (struct scsi_cmnd *) hostdata->selecting; 886 hostdata->selecting = NULL; 887 888 /* construct an IDENTIFY message with correct disconnect bit */ 889 890 hostdata->outgoing_msg[0] = IDENTIFY(0, cmd->device->lun); 891 if (cmd->SCp.phase) 892 hostdata->outgoing_msg[0] |= 0x40; 893 894 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) { 895 896 hostdata->sync_stat[cmd->device->id] = SS_WAITING; 897 898 /* Tack on a 2nd message to ask about synchronous transfers. If we've 899 * been asked to do only asynchronous transfers on this device, we 900 * request a fifo depth of 0, which is equivalent to async - should 901 * solve the problems some people have had with GVP's Guru ROM. 902 */ 903 904 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE; 905 hostdata->outgoing_msg[2] = 3; 906 hostdata->outgoing_msg[3] = EXTENDED_SDTR; 907 if (hostdata->no_sync & (1 << cmd->device->id)) { 908 calc_sync_msg(hostdata->default_sx_per, 0, 909 0, hostdata->outgoing_msg + 4); 910 } else { 911 calc_sync_msg(optimum_sx_per(hostdata), 912 OPTIMUM_SX_OFF, 913 hostdata->fast, 914 hostdata->outgoing_msg + 4); 915 } 916 hostdata->outgoing_len = 6; 917 #ifdef SYNC_DEBUG 918 ucp = hostdata->outgoing_msg + 1; 919 printk(" sending SDTR %02x03%02x%02x%02x ", 920 ucp[0], ucp[2], ucp[3], ucp[4]); 921 #endif 922 } else 923 hostdata->outgoing_len = 1; 924 925 hostdata->state = S_CONNECTED; 926 spin_unlock_irqrestore(&hostdata->lock, flags); 927 break; 928 929 case CSR_XFER_DONE | PHS_DATA_IN: 930 case CSR_UNEXP | PHS_DATA_IN: 931 case CSR_SRV_REQ | PHS_DATA_IN: 932 DB(DB_INTR, 933 printk("IN-%d.%d", cmd->SCp.this_residual, 934 cmd->SCp.buffers_residual)) 935 transfer_bytes(regs, cmd, DATA_IN_DIR); 936 if (hostdata->state != S_RUNNING_LEVEL2) 937 hostdata->state = S_CONNECTED; 938 spin_unlock_irqrestore(&hostdata->lock, flags); 939 break; 940 941 case CSR_XFER_DONE | PHS_DATA_OUT: 942 case CSR_UNEXP | PHS_DATA_OUT: 943 case CSR_SRV_REQ | PHS_DATA_OUT: 944 DB(DB_INTR, 945 printk("OUT-%d.%d", cmd->SCp.this_residual, 946 cmd->SCp.buffers_residual)) 947 transfer_bytes(regs, cmd, DATA_OUT_DIR); 948 if (hostdata->state != S_RUNNING_LEVEL2) 949 hostdata->state = S_CONNECTED; 950 spin_unlock_irqrestore(&hostdata->lock, flags); 951 break; 952 953 /* Note: this interrupt should not occur in a LEVEL2 command */ 954 955 case CSR_XFER_DONE | PHS_COMMAND: 956 case CSR_UNEXP | PHS_COMMAND: 957 case CSR_SRV_REQ | PHS_COMMAND: 958 DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0])) 959 transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, 960 hostdata); 961 hostdata->state = S_CONNECTED; 962 spin_unlock_irqrestore(&hostdata->lock, flags); 963 break; 964 965 case CSR_XFER_DONE | PHS_STATUS: 966 case CSR_UNEXP | PHS_STATUS: 967 case CSR_SRV_REQ | PHS_STATUS: 968 DB(DB_INTR, printk("STATUS=")) 969 cmd->SCp.Status = read_1_byte(regs); 970 DB(DB_INTR, printk("%02x", cmd->SCp.Status)) 971 if (hostdata->level2 >= L2_BASIC) { 972 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */ 973 udelay(7); 974 hostdata->state = S_RUNNING_LEVEL2; 975 write_wd33c93(regs, WD_COMMAND_PHASE, 0x50); 976 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 977 } else { 978 hostdata->state = S_CONNECTED; 979 } 980 spin_unlock_irqrestore(&hostdata->lock, flags); 981 break; 982 983 case CSR_XFER_DONE | PHS_MESS_IN: 984 case CSR_UNEXP | PHS_MESS_IN: 985 case CSR_SRV_REQ | PHS_MESS_IN: 986 DB(DB_INTR, printk("MSG_IN=")) 987 988 msg = read_1_byte(regs); 989 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */ 990 udelay(7); 991 992 hostdata->incoming_msg[hostdata->incoming_ptr] = msg; 993 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE) 994 msg = EXTENDED_MESSAGE; 995 else 996 hostdata->incoming_ptr = 0; 997 998 cmd->SCp.Message = msg; 999 switch (msg) { 1000 1001 case COMMAND_COMPLETE: 1002 DB(DB_INTR, printk("CCMP")) 1003 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1004 hostdata->state = S_PRE_CMP_DISC; 1005 break; 1006 1007 case SAVE_POINTERS: 1008 DB(DB_INTR, printk("SDP")) 1009 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1010 hostdata->state = S_CONNECTED; 1011 break; 1012 1013 case RESTORE_POINTERS: 1014 DB(DB_INTR, printk("RDP")) 1015 if (hostdata->level2 >= L2_BASIC) { 1016 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 1017 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1018 hostdata->state = S_RUNNING_LEVEL2; 1019 } else { 1020 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1021 hostdata->state = S_CONNECTED; 1022 } 1023 break; 1024 1025 case DISCONNECT: 1026 DB(DB_INTR, printk("DIS")) 1027 cmd->device->disconnect = 1; 1028 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1029 hostdata->state = S_PRE_TMP_DISC; 1030 break; 1031 1032 case MESSAGE_REJECT: 1033 DB(DB_INTR, printk("REJ")) 1034 #ifdef SYNC_DEBUG 1035 printk("-REJ-"); 1036 #endif 1037 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) { 1038 hostdata->sync_stat[cmd->device->id] = SS_SET; 1039 /* we want default_sx_per, not DEFAULT_SX_PER */ 1040 hostdata->sync_xfer[cmd->device->id] = 1041 calc_sync_xfer(hostdata->default_sx_per 1042 / 4, 0, 0, hostdata->sx_table); 1043 } 1044 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1045 hostdata->state = S_CONNECTED; 1046 break; 1047 1048 case EXTENDED_MESSAGE: 1049 DB(DB_INTR, printk("EXT")) 1050 1051 ucp = hostdata->incoming_msg; 1052 1053 #ifdef SYNC_DEBUG 1054 printk("%02x", ucp[hostdata->incoming_ptr]); 1055 #endif 1056 /* Is this the last byte of the extended message? */ 1057 1058 if ((hostdata->incoming_ptr >= 2) && 1059 (hostdata->incoming_ptr == (ucp[1] + 1))) { 1060 1061 switch (ucp[2]) { /* what's the EXTENDED code? */ 1062 case EXTENDED_SDTR: 1063 /* default to default async period */ 1064 id = calc_sync_xfer(hostdata-> 1065 default_sx_per / 4, 0, 1066 0, hostdata->sx_table); 1067 if (hostdata->sync_stat[cmd->device->id] != 1068 SS_WAITING) { 1069 1070 /* A device has sent an unsolicited SDTR message; rather than go 1071 * through the effort of decoding it and then figuring out what 1072 * our reply should be, we're just gonna say that we have a 1073 * synchronous fifo depth of 0. This will result in asynchronous 1074 * transfers - not ideal but so much easier. 1075 * Actually, this is OK because it assures us that if we don't 1076 * specifically ask for sync transfers, we won't do any. 1077 */ 1078 1079 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1080 hostdata->outgoing_msg[0] = 1081 EXTENDED_MESSAGE; 1082 hostdata->outgoing_msg[1] = 3; 1083 hostdata->outgoing_msg[2] = 1084 EXTENDED_SDTR; 1085 calc_sync_msg(hostdata-> 1086 default_sx_per, 0, 1087 0, hostdata->outgoing_msg + 3); 1088 hostdata->outgoing_len = 5; 1089 } else { 1090 if (ucp[4]) /* well, sync transfer */ 1091 id = calc_sync_xfer(ucp[3], ucp[4], 1092 hostdata->fast, 1093 hostdata->sx_table); 1094 else if (ucp[3]) /* very unlikely... */ 1095 id = calc_sync_xfer(ucp[3], ucp[4], 1096 0, hostdata->sx_table); 1097 } 1098 hostdata->sync_xfer[cmd->device->id] = id; 1099 #ifdef SYNC_DEBUG 1100 printk(" sync_xfer=%02x\n", 1101 hostdata->sync_xfer[cmd->device->id]); 1102 #endif 1103 hostdata->sync_stat[cmd->device->id] = 1104 SS_SET; 1105 write_wd33c93_cmd(regs, 1106 WD_CMD_NEGATE_ACK); 1107 hostdata->state = S_CONNECTED; 1108 break; 1109 case EXTENDED_WDTR: 1110 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1111 printk("sending WDTR "); 1112 hostdata->outgoing_msg[0] = 1113 EXTENDED_MESSAGE; 1114 hostdata->outgoing_msg[1] = 2; 1115 hostdata->outgoing_msg[2] = 1116 EXTENDED_WDTR; 1117 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */ 1118 hostdata->outgoing_len = 4; 1119 write_wd33c93_cmd(regs, 1120 WD_CMD_NEGATE_ACK); 1121 hostdata->state = S_CONNECTED; 1122 break; 1123 default: 1124 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1125 printk 1126 ("Rejecting Unknown Extended Message(%02x). ", 1127 ucp[2]); 1128 hostdata->outgoing_msg[0] = 1129 MESSAGE_REJECT; 1130 hostdata->outgoing_len = 1; 1131 write_wd33c93_cmd(regs, 1132 WD_CMD_NEGATE_ACK); 1133 hostdata->state = S_CONNECTED; 1134 break; 1135 } 1136 hostdata->incoming_ptr = 0; 1137 } 1138 1139 /* We need to read more MESS_IN bytes for the extended message */ 1140 1141 else { 1142 hostdata->incoming_ptr++; 1143 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1144 hostdata->state = S_CONNECTED; 1145 } 1146 break; 1147 1148 default: 1149 printk("Rejecting Unknown Message(%02x) ", msg); 1150 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1151 hostdata->outgoing_msg[0] = MESSAGE_REJECT; 1152 hostdata->outgoing_len = 1; 1153 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1154 hostdata->state = S_CONNECTED; 1155 } 1156 spin_unlock_irqrestore(&hostdata->lock, flags); 1157 break; 1158 1159 /* Note: this interrupt will occur only after a LEVEL2 command */ 1160 1161 case CSR_SEL_XFER_DONE: 1162 1163 /* Make sure that reselection is enabled at this point - it may 1164 * have been turned off for the command that just completed. 1165 */ 1166 1167 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1168 if (phs == 0x60) { 1169 DB(DB_INTR, printk("SX-DONE")) 1170 cmd->SCp.Message = COMMAND_COMPLETE; 1171 lun = read_wd33c93(regs, WD_TARGET_LUN); 1172 DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun)) 1173 hostdata->connected = NULL; 1174 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1175 hostdata->state = S_UNCONNECTED; 1176 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE) 1177 cmd->SCp.Status = lun; 1178 if (cmd->cmnd[0] == REQUEST_SENSE 1179 && cmd->SCp.Status != SAM_STAT_GOOD) 1180 cmd->result = 1181 (cmd-> 1182 result & 0x00ffff) | (DID_ERROR << 16); 1183 else 1184 cmd->result = 1185 cmd->SCp.Status | (cmd->SCp.Message << 8); 1186 cmd->scsi_done(cmd); 1187 1188 /* We are no longer connected to a target - check to see if 1189 * there are commands waiting to be executed. 1190 */ 1191 spin_unlock_irqrestore(&hostdata->lock, flags); 1192 wd33c93_execute(instance); 1193 } else { 1194 printk 1195 ("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---", 1196 asr, sr, phs); 1197 spin_unlock_irqrestore(&hostdata->lock, flags); 1198 } 1199 break; 1200 1201 /* Note: this interrupt will occur only after a LEVEL2 command */ 1202 1203 case CSR_SDP: 1204 DB(DB_INTR, printk("SDP")) 1205 hostdata->state = S_RUNNING_LEVEL2; 1206 write_wd33c93(regs, WD_COMMAND_PHASE, 0x41); 1207 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1208 spin_unlock_irqrestore(&hostdata->lock, flags); 1209 break; 1210 1211 case CSR_XFER_DONE | PHS_MESS_OUT: 1212 case CSR_UNEXP | PHS_MESS_OUT: 1213 case CSR_SRV_REQ | PHS_MESS_OUT: 1214 DB(DB_INTR, printk("MSG_OUT=")) 1215 1216 /* To get here, we've probably requested MESSAGE_OUT and have 1217 * already put the correct bytes in outgoing_msg[] and filled 1218 * in outgoing_len. We simply send them out to the SCSI bus. 1219 * Sometimes we get MESSAGE_OUT phase when we're not expecting 1220 * it - like when our SDTR message is rejected by a target. Some 1221 * targets send the REJECT before receiving all of the extended 1222 * message, and then seem to go back to MESSAGE_OUT for a byte 1223 * or two. Not sure why, or if I'm doing something wrong to 1224 * cause this to happen. Regardless, it seems that sending 1225 * NOP messages in these situations results in no harm and 1226 * makes everyone happy. 1227 */ 1228 if (hostdata->outgoing_len == 0) { 1229 hostdata->outgoing_len = 1; 1230 hostdata->outgoing_msg[0] = NOP; 1231 } 1232 transfer_pio(regs, hostdata->outgoing_msg, 1233 hostdata->outgoing_len, DATA_OUT_DIR, hostdata); 1234 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0])) 1235 hostdata->outgoing_len = 0; 1236 hostdata->state = S_CONNECTED; 1237 spin_unlock_irqrestore(&hostdata->lock, flags); 1238 break; 1239 1240 case CSR_UNEXP_DISC: 1241 1242 /* I think I've seen this after a request-sense that was in response 1243 * to an error condition, but not sure. We certainly need to do 1244 * something when we get this interrupt - the question is 'what?'. 1245 * Let's think positively, and assume some command has finished 1246 * in a legal manner (like a command that provokes a request-sense), 1247 * so we treat it as a normal command-complete-disconnect. 1248 */ 1249 1250 /* Make sure that reselection is enabled at this point - it may 1251 * have been turned off for the command that just completed. 1252 */ 1253 1254 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1255 if (cmd == NULL) { 1256 printk(" - Already disconnected! "); 1257 hostdata->state = S_UNCONNECTED; 1258 spin_unlock_irqrestore(&hostdata->lock, flags); 1259 return; 1260 } 1261 DB(DB_INTR, printk("UNEXP_DISC")) 1262 hostdata->connected = NULL; 1263 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1264 hostdata->state = S_UNCONNECTED; 1265 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != SAM_STAT_GOOD) 1266 cmd->result = 1267 (cmd->result & 0x00ffff) | (DID_ERROR << 16); 1268 else 1269 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); 1270 cmd->scsi_done(cmd); 1271 1272 /* We are no longer connected to a target - check to see if 1273 * there are commands waiting to be executed. 1274 */ 1275 /* look above for comments on scsi_done() */ 1276 spin_unlock_irqrestore(&hostdata->lock, flags); 1277 wd33c93_execute(instance); 1278 break; 1279 1280 case CSR_DISC: 1281 1282 /* Make sure that reselection is enabled at this point - it may 1283 * have been turned off for the command that just completed. 1284 */ 1285 1286 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1287 DB(DB_INTR, printk("DISC")) 1288 if (cmd == NULL) { 1289 printk(" - Already disconnected! "); 1290 hostdata->state = S_UNCONNECTED; 1291 } 1292 switch (hostdata->state) { 1293 case S_PRE_CMP_DISC: 1294 hostdata->connected = NULL; 1295 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1296 hostdata->state = S_UNCONNECTED; 1297 DB(DB_INTR, printk(":%d", cmd->SCp.Status)) 1298 if (cmd->cmnd[0] == REQUEST_SENSE 1299 && cmd->SCp.Status != SAM_STAT_GOOD) 1300 cmd->result = 1301 (cmd-> 1302 result & 0x00ffff) | (DID_ERROR << 16); 1303 else 1304 cmd->result = 1305 cmd->SCp.Status | (cmd->SCp.Message << 8); 1306 cmd->scsi_done(cmd); 1307 break; 1308 case S_PRE_TMP_DISC: 1309 case S_RUNNING_LEVEL2: 1310 cmd->host_scribble = (uchar *) hostdata->disconnected_Q; 1311 hostdata->disconnected_Q = cmd; 1312 hostdata->connected = NULL; 1313 hostdata->state = S_UNCONNECTED; 1314 1315 #ifdef PROC_STATISTICS 1316 hostdata->disc_done_cnt[cmd->device->id]++; 1317 #endif 1318 1319 break; 1320 default: 1321 printk("*** Unexpected DISCONNECT interrupt! ***"); 1322 hostdata->state = S_UNCONNECTED; 1323 } 1324 1325 /* We are no longer connected to a target - check to see if 1326 * there are commands waiting to be executed. 1327 */ 1328 spin_unlock_irqrestore(&hostdata->lock, flags); 1329 wd33c93_execute(instance); 1330 break; 1331 1332 case CSR_RESEL_AM: 1333 case CSR_RESEL: 1334 DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : "")) 1335 1336 /* Old chips (pre -A ???) don't have advanced features and will 1337 * generate CSR_RESEL. In that case we have to extract the LUN the 1338 * hard way (see below). 1339 * First we have to make sure this reselection didn't 1340 * happen during Arbitration/Selection of some other device. 1341 * If yes, put losing command back on top of input_Q. 1342 */ 1343 if (hostdata->level2 <= L2_NONE) { 1344 1345 if (hostdata->selecting) { 1346 cmd = (struct scsi_cmnd *) hostdata->selecting; 1347 hostdata->selecting = NULL; 1348 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1349 cmd->host_scribble = 1350 (uchar *) hostdata->input_Q; 1351 hostdata->input_Q = cmd; 1352 } 1353 } 1354 1355 else { 1356 1357 if (cmd) { 1358 if (phs == 0x00) { 1359 hostdata->busy[cmd->device->id] &= 1360 ~(1 << (cmd->device->lun & 0xff)); 1361 cmd->host_scribble = 1362 (uchar *) hostdata->input_Q; 1363 hostdata->input_Q = cmd; 1364 } else { 1365 printk 1366 ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", 1367 asr, sr, phs); 1368 while (1) 1369 printk("\r"); 1370 } 1371 } 1372 1373 } 1374 1375 /* OK - find out which device reselected us. */ 1376 1377 id = read_wd33c93(regs, WD_SOURCE_ID); 1378 id &= SRCID_MASK; 1379 1380 /* and extract the lun from the ID message. (Note that we don't 1381 * bother to check for a valid message here - I guess this is 1382 * not the right way to go, but...) 1383 */ 1384 1385 if (sr == CSR_RESEL_AM) { 1386 lun = read_wd33c93(regs, WD_DATA); 1387 if (hostdata->level2 < L2_RESELECT) 1388 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1389 lun &= 7; 1390 } else { 1391 /* Old chip; wait for msgin phase to pick up the LUN. */ 1392 for (lun = 255; lun; lun--) { 1393 if ((asr = read_aux_stat(regs)) & ASR_INT) 1394 break; 1395 udelay(10); 1396 } 1397 if (!(asr & ASR_INT)) { 1398 printk 1399 ("wd33c93: Reselected without IDENTIFY\n"); 1400 lun = 0; 1401 } else { 1402 /* Verify this is a change to MSG_IN and read the message */ 1403 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1404 udelay(7); 1405 if (sr == (CSR_ABORT | PHS_MESS_IN) || 1406 sr == (CSR_UNEXP | PHS_MESS_IN) || 1407 sr == (CSR_SRV_REQ | PHS_MESS_IN)) { 1408 /* Got MSG_IN, grab target LUN */ 1409 lun = read_1_byte(regs); 1410 /* Now we expect a 'paused with ACK asserted' int.. */ 1411 asr = read_aux_stat(regs); 1412 if (!(asr & ASR_INT)) { 1413 udelay(10); 1414 asr = read_aux_stat(regs); 1415 if (!(asr & ASR_INT)) 1416 printk 1417 ("wd33c93: No int after LUN on RESEL (%02x)\n", 1418 asr); 1419 } 1420 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1421 udelay(7); 1422 if (sr != CSR_MSGIN) 1423 printk 1424 ("wd33c93: Not paused with ACK on RESEL (%02x)\n", 1425 sr); 1426 lun &= 7; 1427 write_wd33c93_cmd(regs, 1428 WD_CMD_NEGATE_ACK); 1429 } else { 1430 printk 1431 ("wd33c93: Not MSG_IN on reselect (%02x)\n", 1432 sr); 1433 lun = 0; 1434 } 1435 } 1436 } 1437 1438 /* Now we look for the command that's reconnecting. */ 1439 1440 cmd = (struct scsi_cmnd *) hostdata->disconnected_Q; 1441 patch = NULL; 1442 while (cmd) { 1443 if (id == cmd->device->id && lun == (u8)cmd->device->lun) 1444 break; 1445 patch = cmd; 1446 cmd = (struct scsi_cmnd *) cmd->host_scribble; 1447 } 1448 1449 /* Hmm. Couldn't find a valid command.... What to do? */ 1450 1451 if (!cmd) { 1452 printk 1453 ("---TROUBLE: target %d.%d not in disconnect queue---", 1454 id, (u8)lun); 1455 spin_unlock_irqrestore(&hostdata->lock, flags); 1456 return; 1457 } 1458 1459 /* Ok, found the command - now start it up again. */ 1460 1461 if (patch) 1462 patch->host_scribble = cmd->host_scribble; 1463 else 1464 hostdata->disconnected_Q = 1465 (struct scsi_cmnd *) cmd->host_scribble; 1466 hostdata->connected = cmd; 1467 1468 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]' 1469 * because these things are preserved over a disconnect. 1470 * But we DO need to fix the DPD bit so it's correct for this command. 1471 */ 1472 1473 if (cmd->sc_data_direction == DMA_TO_DEVICE) 1474 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id); 1475 else 1476 write_wd33c93(regs, WD_DESTINATION_ID, 1477 cmd->device->id | DSTID_DPD); 1478 if (hostdata->level2 >= L2_RESELECT) { 1479 write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */ 1480 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 1481 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1482 hostdata->state = S_RUNNING_LEVEL2; 1483 } else 1484 hostdata->state = S_CONNECTED; 1485 1486 spin_unlock_irqrestore(&hostdata->lock, flags); 1487 break; 1488 1489 default: 1490 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs); 1491 spin_unlock_irqrestore(&hostdata->lock, flags); 1492 } 1493 1494 DB(DB_INTR, printk("} ")) 1495 1496 } 1497 1498 static void 1499 reset_wd33c93(struct Scsi_Host *instance) 1500 { 1501 struct WD33C93_hostdata *hostdata = 1502 (struct WD33C93_hostdata *) instance->hostdata; 1503 const wd33c93_regs regs = hostdata->regs; 1504 uchar sr; 1505 1506 #ifdef CONFIG_SGI_IP22 1507 { 1508 int busycount = 0; 1509 extern void sgiwd93_reset(unsigned long); 1510 /* wait 'til the chip gets some time for us */ 1511 while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100) 1512 udelay (10); 1513 /* 1514 * there are scsi devices out there, which manage to lock up 1515 * the wd33c93 in a busy condition. In this state it won't 1516 * accept the reset command. The only way to solve this is to 1517 * give the chip a hardware reset (if possible). The code below 1518 * does this for the SGI Indy, where this is possible 1519 */ 1520 /* still busy ? */ 1521 if (read_aux_stat(regs) & ASR_BSY) 1522 sgiwd93_reset(instance->base); /* yeah, give it the hard one */ 1523 } 1524 #endif 1525 1526 write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF | 1527 instance->this_id | hostdata->clock_freq); 1528 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1529 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 1530 calc_sync_xfer(hostdata->default_sx_per / 4, 1531 DEFAULT_SX_OFF, 0, hostdata->sx_table)); 1532 write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET); 1533 1534 1535 #ifdef CONFIG_MVME147_SCSI 1536 udelay(25); /* The old wd33c93 on MVME147 needs this, at least */ 1537 #endif 1538 1539 while (!(read_aux_stat(regs) & ASR_INT)) 1540 ; 1541 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1542 1543 hostdata->microcode = read_wd33c93(regs, WD_CDB_1); 1544 if (sr == 0x00) 1545 hostdata->chip = C_WD33C93; 1546 else if (sr == 0x01) { 1547 write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */ 1548 sr = read_wd33c93(regs, WD_QUEUE_TAG); 1549 if (sr == 0xa5) { 1550 hostdata->chip = C_WD33C93B; 1551 write_wd33c93(regs, WD_QUEUE_TAG, 0); 1552 } else 1553 hostdata->chip = C_WD33C93A; 1554 } else 1555 hostdata->chip = C_UNKNOWN_CHIP; 1556 1557 if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */ 1558 hostdata->fast = 0; 1559 1560 write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE); 1561 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1562 } 1563 1564 int 1565 wd33c93_host_reset(struct scsi_cmnd * SCpnt) 1566 { 1567 struct Scsi_Host *instance; 1568 struct WD33C93_hostdata *hostdata; 1569 int i; 1570 1571 instance = SCpnt->device->host; 1572 spin_lock_irq(instance->host_lock); 1573 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1574 1575 printk("scsi%d: reset. ", instance->host_no); 1576 disable_irq(instance->irq); 1577 1578 hostdata->dma_stop(instance, NULL, 0); 1579 for (i = 0; i < 8; i++) { 1580 hostdata->busy[i] = 0; 1581 hostdata->sync_xfer[i] = 1582 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF, 1583 0, hostdata->sx_table); 1584 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ 1585 } 1586 hostdata->input_Q = NULL; 1587 hostdata->selecting = NULL; 1588 hostdata->connected = NULL; 1589 hostdata->disconnected_Q = NULL; 1590 hostdata->state = S_UNCONNECTED; 1591 hostdata->dma = D_DMA_OFF; 1592 hostdata->incoming_ptr = 0; 1593 hostdata->outgoing_len = 0; 1594 1595 reset_wd33c93(instance); 1596 SCpnt->result = DID_RESET << 16; 1597 enable_irq(instance->irq); 1598 spin_unlock_irq(instance->host_lock); 1599 return SUCCESS; 1600 } 1601 1602 int 1603 wd33c93_abort(struct scsi_cmnd * cmd) 1604 { 1605 struct Scsi_Host *instance; 1606 struct WD33C93_hostdata *hostdata; 1607 wd33c93_regs regs; 1608 struct scsi_cmnd *tmp, *prev; 1609 1610 disable_irq(cmd->device->host->irq); 1611 1612 instance = cmd->device->host; 1613 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1614 regs = hostdata->regs; 1615 1616 /* 1617 * Case 1 : If the command hasn't been issued yet, we simply remove it 1618 * from the input_Q. 1619 */ 1620 1621 tmp = (struct scsi_cmnd *) hostdata->input_Q; 1622 prev = NULL; 1623 while (tmp) { 1624 if (tmp == cmd) { 1625 if (prev) 1626 prev->host_scribble = cmd->host_scribble; 1627 else 1628 hostdata->input_Q = 1629 (struct scsi_cmnd *) cmd->host_scribble; 1630 cmd->host_scribble = NULL; 1631 cmd->result = DID_ABORT << 16; 1632 printk 1633 ("scsi%d: Abort - removing command from input_Q. ", 1634 instance->host_no); 1635 enable_irq(cmd->device->host->irq); 1636 cmd->scsi_done(cmd); 1637 return SUCCESS; 1638 } 1639 prev = tmp; 1640 tmp = (struct scsi_cmnd *) tmp->host_scribble; 1641 } 1642 1643 /* 1644 * Case 2 : If the command is connected, we're going to fail the abort 1645 * and let the high level SCSI driver retry at a later time or 1646 * issue a reset. 1647 * 1648 * Timeouts, and therefore aborted commands, will be highly unlikely 1649 * and handling them cleanly in this situation would make the common 1650 * case of noresets less efficient, and would pollute our code. So, 1651 * we fail. 1652 */ 1653 1654 if (hostdata->connected == cmd) { 1655 uchar sr, asr; 1656 unsigned long timeout; 1657 1658 printk("scsi%d: Aborting connected command - ", 1659 instance->host_no); 1660 1661 printk("stopping DMA - "); 1662 if (hostdata->dma == D_DMA_RUNNING) { 1663 hostdata->dma_stop(instance, cmd, 0); 1664 hostdata->dma = D_DMA_OFF; 1665 } 1666 1667 printk("sending wd33c93 ABORT command - "); 1668 write_wd33c93(regs, WD_CONTROL, 1669 CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1670 write_wd33c93_cmd(regs, WD_CMD_ABORT); 1671 1672 /* Now we have to attempt to flush out the FIFO... */ 1673 1674 printk("flushing fifo - "); 1675 timeout = 1000000; 1676 do { 1677 asr = read_aux_stat(regs); 1678 if (asr & ASR_DBR) 1679 read_wd33c93(regs, WD_DATA); 1680 } while (!(asr & ASR_INT) && timeout-- > 0); 1681 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1682 printk 1683 ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", 1684 asr, sr, read_wd33c93_count(regs), timeout); 1685 1686 /* 1687 * Abort command processed. 1688 * Still connected. 1689 * We must disconnect. 1690 */ 1691 1692 printk("sending wd33c93 DISCONNECT command - "); 1693 write_wd33c93_cmd(regs, WD_CMD_DISCONNECT); 1694 1695 timeout = 1000000; 1696 asr = read_aux_stat(regs); 1697 while ((asr & ASR_CIP) && timeout-- > 0) 1698 asr = read_aux_stat(regs); 1699 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1700 printk("asr=%02x, sr=%02x.", asr, sr); 1701 1702 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1703 hostdata->connected = NULL; 1704 hostdata->state = S_UNCONNECTED; 1705 cmd->result = DID_ABORT << 16; 1706 1707 /* sti();*/ 1708 wd33c93_execute(instance); 1709 1710 enable_irq(cmd->device->host->irq); 1711 cmd->scsi_done(cmd); 1712 return SUCCESS; 1713 } 1714 1715 /* 1716 * Case 3: If the command is currently disconnected from the bus, 1717 * we're not going to expend much effort here: Let's just return 1718 * an ABORT_SNOOZE and hope for the best... 1719 */ 1720 1721 tmp = (struct scsi_cmnd *) hostdata->disconnected_Q; 1722 while (tmp) { 1723 if (tmp == cmd) { 1724 printk 1725 ("scsi%d: Abort - command found on disconnected_Q - ", 1726 instance->host_no); 1727 printk("Abort SNOOZE. "); 1728 enable_irq(cmd->device->host->irq); 1729 return FAILED; 1730 } 1731 tmp = (struct scsi_cmnd *) tmp->host_scribble; 1732 } 1733 1734 /* 1735 * Case 4 : If we reached this point, the command was not found in any of 1736 * the queues. 1737 * 1738 * We probably reached this point because of an unlikely race condition 1739 * between the command completing successfully and the abortion code, 1740 * so we won't panic, but we will notify the user in case something really 1741 * broke. 1742 */ 1743 1744 /* sti();*/ 1745 wd33c93_execute(instance); 1746 1747 enable_irq(cmd->device->host->irq); 1748 printk("scsi%d: warning : SCSI command probably completed successfully" 1749 " before abortion. ", instance->host_no); 1750 return FAILED; 1751 } 1752 1753 #define MAX_WD33C93_HOSTS 4 1754 #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args) 1755 #define SETUP_BUFFER_SIZE 200 1756 static char setup_buffer[SETUP_BUFFER_SIZE]; 1757 static char setup_used[MAX_SETUP_ARGS]; 1758 static int done_setup = 0; 1759 1760 static int 1761 wd33c93_setup(char *str) 1762 { 1763 int i; 1764 char *p1, *p2; 1765 1766 /* The kernel does some processing of the command-line before calling 1767 * this function: If it begins with any decimal or hex number arguments, 1768 * ints[0] = how many numbers found and ints[1] through [n] are the values 1769 * themselves. str points to where the non-numeric arguments (if any) 1770 * start: We do our own parsing of those. We construct synthetic 'nosync' 1771 * keywords out of numeric args (to maintain compatibility with older 1772 * versions) and then add the rest of the arguments. 1773 */ 1774 1775 p1 = setup_buffer; 1776 *p1 = '\0'; 1777 if (str) 1778 strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer)); 1779 setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0'; 1780 p1 = setup_buffer; 1781 i = 0; 1782 while (*p1 && (i < MAX_SETUP_ARGS)) { 1783 p2 = strchr(p1, ','); 1784 if (p2) { 1785 *p2 = '\0'; 1786 if (p1 != p2) 1787 setup_args[i] = p1; 1788 p1 = p2 + 1; 1789 i++; 1790 } else { 1791 setup_args[i] = p1; 1792 break; 1793 } 1794 } 1795 for (i = 0; i < MAX_SETUP_ARGS; i++) 1796 setup_used[i] = 0; 1797 done_setup = 1; 1798 1799 return 1; 1800 } 1801 __setup("wd33c93=", wd33c93_setup); 1802 1803 /* check_setup_args() returns index if key found, 0 if not 1804 */ 1805 static int 1806 check_setup_args(char *key, int *flags, int *val, char *buf) 1807 { 1808 int x; 1809 char *cp; 1810 1811 for (x = 0; x < MAX_SETUP_ARGS; x++) { 1812 if (setup_used[x]) 1813 continue; 1814 if (!strncmp(setup_args[x], key, strlen(key))) 1815 break; 1816 if (!strncmp(setup_args[x], "next", strlen("next"))) 1817 return 0; 1818 } 1819 if (x == MAX_SETUP_ARGS) 1820 return 0; 1821 setup_used[x] = 1; 1822 cp = setup_args[x] + strlen(key); 1823 *val = -1; 1824 if (*cp != ':') 1825 return ++x; 1826 cp++; 1827 if ((*cp >= '0') && (*cp <= '9')) { 1828 *val = simple_strtoul(cp, NULL, 0); 1829 } 1830 return ++x; 1831 } 1832 1833 /* 1834 * Calculate internal data-transfer-clock cycle from input-clock 1835 * frequency (/MHz) and fill 'sx_table'. 1836 * 1837 * The original driver used to rely on a fixed sx_table, containing periods 1838 * for (only) the lower limits of the respective input-clock-frequency ranges 1839 * (8-10/12-15/16-20 MHz). Although it seems, that no problems occurred with 1840 * this setting so far, it might be desirable to adjust the transfer periods 1841 * closer to the really attached, possibly 25% higher, input-clock, since 1842 * - the wd33c93 may really use a significant shorter period, than it has 1843 * negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz 1844 * instead). 1845 * - the wd33c93 may ask the target for a lower transfer rate, than the target 1846 * is capable of (eg. negotiating for an assumed minimum of 252ns instead of 1847 * possible 200ns, which indeed shows up in tests as an approx. 10% lower 1848 * transfer rate). 1849 */ 1850 static inline unsigned int 1851 round_4(unsigned int x) 1852 { 1853 switch (x & 3) { 1854 case 1: --x; 1855 break; 1856 case 2: ++x; 1857 fallthrough; 1858 case 3: ++x; 1859 } 1860 return x; 1861 } 1862 1863 static void 1864 calc_sx_table(unsigned int mhz, struct sx_period sx_table[9]) 1865 { 1866 unsigned int d, i; 1867 if (mhz < 11) 1868 d = 2; /* divisor for 8-10 MHz input-clock */ 1869 else if (mhz < 16) 1870 d = 3; /* divisor for 12-15 MHz input-clock */ 1871 else 1872 d = 4; /* divisor for 16-20 MHz input-clock */ 1873 1874 d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */ 1875 1876 sx_table[0].period_ns = 1; 1877 sx_table[0].reg_value = 0x20; 1878 for (i = 1; i < 8; i++) { 1879 sx_table[i].period_ns = round_4((i+1)*d / 100); 1880 sx_table[i].reg_value = (i+1)*0x10; 1881 } 1882 sx_table[7].reg_value = 0; 1883 sx_table[8].period_ns = 0; 1884 sx_table[8].reg_value = 0; 1885 } 1886 1887 /* 1888 * check and, maybe, map an init- or "clock:"- argument. 1889 */ 1890 static uchar 1891 set_clk_freq(int freq, int *mhz) 1892 { 1893 int x = freq; 1894 if (WD33C93_FS_8_10 == freq) 1895 freq = 8; 1896 else if (WD33C93_FS_12_15 == freq) 1897 freq = 12; 1898 else if (WD33C93_FS_16_20 == freq) 1899 freq = 16; 1900 else if (freq > 7 && freq < 11) 1901 x = WD33C93_FS_8_10; 1902 else if (freq > 11 && freq < 16) 1903 x = WD33C93_FS_12_15; 1904 else if (freq > 15 && freq < 21) 1905 x = WD33C93_FS_16_20; 1906 else { 1907 /* Hmm, wouldn't it be safer to assume highest freq here? */ 1908 x = WD33C93_FS_8_10; 1909 freq = 8; 1910 } 1911 *mhz = freq; 1912 return x; 1913 } 1914 1915 /* 1916 * to be used with the resync: fast: ... options 1917 */ 1918 static inline void set_resync ( struct WD33C93_hostdata *hd, int mask ) 1919 { 1920 int i; 1921 for (i = 0; i < 8; i++) 1922 if (mask & (1 << i)) 1923 hd->sync_stat[i] = SS_UNSET; 1924 } 1925 1926 void 1927 wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs, 1928 dma_setup_t setup, dma_stop_t stop, int clock_freq) 1929 { 1930 struct WD33C93_hostdata *hostdata; 1931 int i; 1932 int flags; 1933 int val; 1934 char buf[32]; 1935 1936 if (!done_setup && setup_strings) 1937 wd33c93_setup(setup_strings); 1938 1939 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1940 1941 hostdata->regs = regs; 1942 hostdata->clock_freq = set_clk_freq(clock_freq, &i); 1943 calc_sx_table(i, hostdata->sx_table); 1944 hostdata->dma_setup = setup; 1945 hostdata->dma_stop = stop; 1946 hostdata->dma_bounce_buffer = NULL; 1947 hostdata->dma_bounce_len = 0; 1948 for (i = 0; i < 8; i++) { 1949 hostdata->busy[i] = 0; 1950 hostdata->sync_xfer[i] = 1951 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF, 1952 0, hostdata->sx_table); 1953 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ 1954 #ifdef PROC_STATISTICS 1955 hostdata->cmd_cnt[i] = 0; 1956 hostdata->disc_allowed_cnt[i] = 0; 1957 hostdata->disc_done_cnt[i] = 0; 1958 #endif 1959 } 1960 hostdata->input_Q = NULL; 1961 hostdata->selecting = NULL; 1962 hostdata->connected = NULL; 1963 hostdata->disconnected_Q = NULL; 1964 hostdata->state = S_UNCONNECTED; 1965 hostdata->dma = D_DMA_OFF; 1966 hostdata->level2 = L2_BASIC; 1967 hostdata->disconnect = DIS_ADAPTIVE; 1968 hostdata->args = DEBUG_DEFAULTS; 1969 hostdata->incoming_ptr = 0; 1970 hostdata->outgoing_len = 0; 1971 hostdata->default_sx_per = DEFAULT_SX_PER; 1972 hostdata->no_dma = 0; /* default is DMA enabled */ 1973 1974 #ifdef PROC_INTERFACE 1975 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | 1976 PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP; 1977 #ifdef PROC_STATISTICS 1978 hostdata->dma_cnt = 0; 1979 hostdata->pio_cnt = 0; 1980 hostdata->int_cnt = 0; 1981 #endif 1982 #endif 1983 1984 if (check_setup_args("clock", &flags, &val, buf)) { 1985 hostdata->clock_freq = set_clk_freq(val, &val); 1986 calc_sx_table(val, hostdata->sx_table); 1987 } 1988 1989 if (check_setup_args("nosync", &flags, &val, buf)) 1990 hostdata->no_sync = val; 1991 1992 if (check_setup_args("nodma", &flags, &val, buf)) 1993 hostdata->no_dma = (val == -1) ? 1 : val; 1994 1995 if (check_setup_args("period", &flags, &val, buf)) 1996 hostdata->default_sx_per = 1997 hostdata->sx_table[round_period((unsigned int) val, 1998 hostdata->sx_table)].period_ns; 1999 2000 if (check_setup_args("disconnect", &flags, &val, buf)) { 2001 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS)) 2002 hostdata->disconnect = val; 2003 else 2004 hostdata->disconnect = DIS_ADAPTIVE; 2005 } 2006 2007 if (check_setup_args("level2", &flags, &val, buf)) 2008 hostdata->level2 = val; 2009 2010 if (check_setup_args("debug", &flags, &val, buf)) 2011 hostdata->args = val & DB_MASK; 2012 2013 if (check_setup_args("burst", &flags, &val, buf)) 2014 hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA; 2015 2016 if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */ 2017 && check_setup_args("fast", &flags, &val, buf)) 2018 hostdata->fast = !!val; 2019 2020 if ((i = check_setup_args("next", &flags, &val, buf))) { 2021 while (i) 2022 setup_used[--i] = 1; 2023 } 2024 #ifdef PROC_INTERFACE 2025 if (check_setup_args("proc", &flags, &val, buf)) 2026 hostdata->proc = val; 2027 #endif 2028 2029 spin_lock_irq(&hostdata->lock); 2030 reset_wd33c93(instance); 2031 spin_unlock_irq(&hostdata->lock); 2032 2033 printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d", 2034 instance->host_no, 2035 (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == 2036 C_WD33C93A) ? 2037 "WD33c93A" : (hostdata->chip == 2038 C_WD33C93B) ? "WD33c93B" : "unknown", 2039 hostdata->microcode, hostdata->no_sync, hostdata->no_dma); 2040 #ifdef DEBUGGING_ON 2041 printk(" debug_flags=0x%02x\n", hostdata->args); 2042 #else 2043 printk(" debugging=OFF\n"); 2044 #endif 2045 printk(" setup_args="); 2046 for (i = 0; i < MAX_SETUP_ARGS; i++) 2047 printk("%s,", setup_args[i]); 2048 printk("\n"); 2049 printk(" Version %s - %s\n", WD33C93_VERSION, WD33C93_DATE); 2050 } 2051 2052 int wd33c93_write_info(struct Scsi_Host *instance, char *buf, int len) 2053 { 2054 #ifdef PROC_INTERFACE 2055 char *bp; 2056 struct WD33C93_hostdata *hd; 2057 int x; 2058 2059 hd = (struct WD33C93_hostdata *) instance->hostdata; 2060 2061 /* We accept the following 2062 * keywords (same format as command-line, but arguments are not optional): 2063 * debug 2064 * disconnect 2065 * period 2066 * resync 2067 * proc 2068 * nodma 2069 * level2 2070 * burst 2071 * fast 2072 * nosync 2073 */ 2074 2075 buf[len] = '\0'; 2076 for (bp = buf; *bp; ) { 2077 while (',' == *bp || ' ' == *bp) 2078 ++bp; 2079 if (!strncmp(bp, "debug:", 6)) { 2080 hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK; 2081 } else if (!strncmp(bp, "disconnect:", 11)) { 2082 x = simple_strtoul(bp+11, &bp, 0); 2083 if (x < DIS_NEVER || x > DIS_ALWAYS) 2084 x = DIS_ADAPTIVE; 2085 hd->disconnect = x; 2086 } else if (!strncmp(bp, "period:", 7)) { 2087 x = simple_strtoul(bp+7, &bp, 0); 2088 hd->default_sx_per = 2089 hd->sx_table[round_period((unsigned int) x, 2090 hd->sx_table)].period_ns; 2091 } else if (!strncmp(bp, "resync:", 7)) { 2092 set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0)); 2093 } else if (!strncmp(bp, "proc:", 5)) { 2094 hd->proc = simple_strtoul(bp+5, &bp, 0); 2095 } else if (!strncmp(bp, "nodma:", 6)) { 2096 hd->no_dma = simple_strtoul(bp+6, &bp, 0); 2097 } else if (!strncmp(bp, "level2:", 7)) { 2098 hd->level2 = simple_strtoul(bp+7, &bp, 0); 2099 } else if (!strncmp(bp, "burst:", 6)) { 2100 hd->dma_mode = 2101 simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA; 2102 } else if (!strncmp(bp, "fast:", 5)) { 2103 x = !!simple_strtol(bp+5, &bp, 0); 2104 if (x != hd->fast) 2105 set_resync(hd, 0xff); 2106 hd->fast = x; 2107 } else if (!strncmp(bp, "nosync:", 7)) { 2108 x = simple_strtoul(bp+7, &bp, 0); 2109 set_resync(hd, x ^ hd->no_sync); 2110 hd->no_sync = x; 2111 } else { 2112 break; /* unknown keyword,syntax-error,... */ 2113 } 2114 } 2115 return len; 2116 #else 2117 return 0; 2118 #endif 2119 } 2120 2121 int 2122 wd33c93_show_info(struct seq_file *m, struct Scsi_Host *instance) 2123 { 2124 #ifdef PROC_INTERFACE 2125 struct WD33C93_hostdata *hd; 2126 struct scsi_cmnd *cmd; 2127 int x; 2128 2129 hd = (struct WD33C93_hostdata *) instance->hostdata; 2130 2131 spin_lock_irq(&hd->lock); 2132 if (hd->proc & PR_VERSION) 2133 seq_printf(m, "\nVersion %s - %s.", 2134 WD33C93_VERSION, WD33C93_DATE); 2135 2136 if (hd->proc & PR_INFO) { 2137 seq_printf(m, "\nclock_freq=%02x no_sync=%02x no_dma=%d" 2138 " dma_mode=%02x fast=%d", 2139 hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast); 2140 seq_puts(m, "\nsync_xfer[] = "); 2141 for (x = 0; x < 7; x++) 2142 seq_printf(m, "\t%02x", hd->sync_xfer[x]); 2143 seq_puts(m, "\nsync_stat[] = "); 2144 for (x = 0; x < 7; x++) 2145 seq_printf(m, "\t%02x", hd->sync_stat[x]); 2146 } 2147 #ifdef PROC_STATISTICS 2148 if (hd->proc & PR_STATISTICS) { 2149 seq_puts(m, "\ncommands issued: "); 2150 for (x = 0; x < 7; x++) 2151 seq_printf(m, "\t%ld", hd->cmd_cnt[x]); 2152 seq_puts(m, "\ndisconnects allowed:"); 2153 for (x = 0; x < 7; x++) 2154 seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]); 2155 seq_puts(m, "\ndisconnects done: "); 2156 for (x = 0; x < 7; x++) 2157 seq_printf(m, "\t%ld", hd->disc_done_cnt[x]); 2158 seq_printf(m, 2159 "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO", 2160 hd->int_cnt, hd->dma_cnt, hd->pio_cnt); 2161 } 2162 #endif 2163 if (hd->proc & PR_CONNECTED) { 2164 seq_puts(m, "\nconnected: "); 2165 if (hd->connected) { 2166 cmd = (struct scsi_cmnd *) hd->connected; 2167 seq_printf(m, " %d:%llu(%02x)", 2168 cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2169 } 2170 } 2171 if (hd->proc & PR_INPUTQ) { 2172 seq_puts(m, "\ninput_Q: "); 2173 cmd = (struct scsi_cmnd *) hd->input_Q; 2174 while (cmd) { 2175 seq_printf(m, " %d:%llu(%02x)", 2176 cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2177 cmd = (struct scsi_cmnd *) cmd->host_scribble; 2178 } 2179 } 2180 if (hd->proc & PR_DISCQ) { 2181 seq_puts(m, "\ndisconnected_Q:"); 2182 cmd = (struct scsi_cmnd *) hd->disconnected_Q; 2183 while (cmd) { 2184 seq_printf(m, " %d:%llu(%02x)", 2185 cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2186 cmd = (struct scsi_cmnd *) cmd->host_scribble; 2187 } 2188 } 2189 seq_putc(m, '\n'); 2190 spin_unlock_irq(&hd->lock); 2191 #endif /* PROC_INTERFACE */ 2192 return 0; 2193 } 2194 2195 EXPORT_SYMBOL(wd33c93_host_reset); 2196 EXPORT_SYMBOL(wd33c93_init); 2197 EXPORT_SYMBOL(wd33c93_abort); 2198 EXPORT_SYMBOL(wd33c93_queuecommand); 2199 EXPORT_SYMBOL(wd33c93_intr); 2200 EXPORT_SYMBOL(wd33c93_show_info); 2201 EXPORT_SYMBOL(wd33c93_write_info); 2202