1 /* 2 * Copyright (c) 1996 John Shifflett, GeoLog Consulting 3 * john@geolog.com 4 * jshiffle@netcom.com 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2, or (at your option) 9 * any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 */ 16 17 /* 18 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC 19 * provided much of the inspiration and some of the code for this 20 * driver. Everything I know about Amiga DMA was gleaned from careful 21 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I 22 * borrowed shamelessly from all over that source. Thanks Hamish! 23 * 24 * _This_ driver is (I feel) an improvement over the old one in 25 * several respects: 26 * 27 * - Target Disconnection/Reconnection is now supported. Any 28 * system with more than one device active on the SCSI bus 29 * will benefit from this. The driver defaults to what I 30 * call 'adaptive disconnect' - meaning that each command 31 * is evaluated individually as to whether or not it should 32 * be run with the option to disconnect/reselect (if the 33 * device chooses), or as a "SCSI-bus-hog". 34 * 35 * - Synchronous data transfers are now supported. Because of 36 * a few devices that choke after telling the driver that 37 * they can do sync transfers, we don't automatically use 38 * this faster protocol - it can be enabled via the command- 39 * line on a device-by-device basis. 40 * 41 * - Runtime operating parameters can now be specified through 42 * the 'amiboot' or the 'insmod' command line. For amiboot do: 43 * "amiboot [usual stuff] wd33c93=blah,blah,blah" 44 * The defaults should be good for most people. See the comment 45 * for 'setup_strings' below for more details. 46 * 47 * - The old driver relied exclusively on what the Western Digital 48 * docs call "Combination Level 2 Commands", which are a great 49 * idea in that the CPU is relieved of a lot of interrupt 50 * overhead. However, by accepting a certain (user-settable) 51 * amount of additional interrupts, this driver achieves 52 * better control over the SCSI bus, and data transfers are 53 * almost as fast while being much easier to define, track, 54 * and debug. 55 * 56 * 57 * TODO: 58 * more speed. linked commands. 59 * 60 * 61 * People with bug reports, wish-lists, complaints, comments, 62 * or improvements are asked to pah-leeez email me (John Shifflett) 63 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get 64 * this thing into as good a shape as possible, and I'm positive 65 * there are lots of lurking bugs and "Stupid Places". 66 * 67 * Updates: 68 * 69 * Added support for pre -A chips, which don't have advanced features 70 * and will generate CSR_RESEL rather than CSR_RESEL_AM. 71 * Richard Hirst <richard@sleepie.demon.co.uk> August 2000 72 * 73 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of 74 * default_sx_per for asynchronous data transfers. Added adjustment 75 * of transfer periods in sx_table to the actual input-clock. 76 * peter fuerst <post@pfrst.de> February 2007 77 */ 78 79 #include <linux/module.h> 80 81 #include <linux/string.h> 82 #include <linux/delay.h> 83 #include <linux/init.h> 84 #include <linux/interrupt.h> 85 #include <linux/blkdev.h> 86 87 #include <scsi/scsi.h> 88 #include <scsi/scsi_cmnd.h> 89 #include <scsi/scsi_device.h> 90 #include <scsi/scsi_host.h> 91 92 #include <asm/irq.h> 93 94 #include "wd33c93.h" 95 96 #define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns 97 98 99 #define WD33C93_VERSION "1.26++" 100 #define WD33C93_DATE "10/Feb/2007" 101 102 MODULE_AUTHOR("John Shifflett"); 103 MODULE_DESCRIPTION("Generic WD33C93 SCSI driver"); 104 MODULE_LICENSE("GPL"); 105 106 /* 107 * 'setup_strings' is a single string used to pass operating parameters and 108 * settings from the kernel/module command-line to the driver. 'setup_args[]' 109 * is an array of strings that define the compile-time default values for 110 * these settings. If Linux boots with an amiboot or insmod command-line, 111 * those settings are combined with 'setup_args[]'. Note that amiboot 112 * command-lines are prefixed with "wd33c93=" while insmod uses a 113 * "setup_strings=" prefix. The driver recognizes the following keywords 114 * (lower case required) and arguments: 115 * 116 * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with 117 * the 7 possible SCSI devices. Set a bit to negotiate for 118 * asynchronous transfers on that device. To maintain 119 * backwards compatibility, a command-line such as 120 * "wd33c93=255" will be automatically translated to 121 * "wd33c93=nosync:0xff". 122 * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is 123 * optional - if not present, same as "nodma:1". 124 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer 125 * period. Default is 500; acceptable values are 250 - 1000. 126 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them. 127 * x = 1 does 'adaptive' disconnects, which is the default 128 * and generally the best choice. 129 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes 130 * various types of debug output to printed - see the DB_xxx 131 * defines in wd33c93.h 132 * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values 133 * would be from 8 through 20. Default is 8. 134 * - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use 135 * Single Byte DMA, which is the default. Argument is 136 * optional - if not present, same as "burst:1". 137 * - fast:x -x = 1 to enable Fast SCSI, which is only effective with 138 * input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable 139 * it, which is the default. Argument is optional - if not 140 * present, same as "fast:1". 141 * - next -No argument. Used to separate blocks of keywords when 142 * there's more than one host adapter in the system. 143 * 144 * Syntax Notes: 145 * - Numeric arguments can be decimal or the '0x' form of hex notation. There 146 * _must_ be a colon between a keyword and its numeric argument, with no 147 * spaces. 148 * - Keywords are separated by commas, no spaces, in the standard kernel 149 * command-line manner. 150 * - A keyword in the 'nth' comma-separated command-line member will overwrite 151 * the 'nth' element of setup_args[]. A blank command-line member (in 152 * other words, a comma with no preceding keyword) will _not_ overwrite 153 * the corresponding setup_args[] element. 154 * - If a keyword is used more than once, the first one applies to the first 155 * SCSI host found, the second to the second card, etc, unless the 'next' 156 * keyword is used to change the order. 157 * 158 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'): 159 * - wd33c93=nosync:255 160 * - wd33c93=nodma 161 * - wd33c93=nodma:1 162 * - wd33c93=disconnect:2,nosync:0x08,period:250 163 * - wd33c93=debug:0x1c 164 */ 165 166 /* Normally, no defaults are specified */ 167 static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" }; 168 169 static char *setup_strings; 170 module_param(setup_strings, charp, 0); 171 172 static void wd33c93_execute(struct Scsi_Host *instance); 173 174 #ifdef CONFIG_WD33C93_PIO 175 static inline uchar 176 read_wd33c93(const wd33c93_regs regs, uchar reg_num) 177 { 178 uchar data; 179 180 outb(reg_num, regs.SASR); 181 data = inb(regs.SCMD); 182 return data; 183 } 184 185 static inline unsigned long 186 read_wd33c93_count(const wd33c93_regs regs) 187 { 188 unsigned long value; 189 190 outb(WD_TRANSFER_COUNT_MSB, regs.SASR); 191 value = inb(regs.SCMD) << 16; 192 value |= inb(regs.SCMD) << 8; 193 value |= inb(regs.SCMD); 194 return value; 195 } 196 197 static inline uchar 198 read_aux_stat(const wd33c93_regs regs) 199 { 200 return inb(regs.SASR); 201 } 202 203 static inline void 204 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value) 205 { 206 outb(reg_num, regs.SASR); 207 outb(value, regs.SCMD); 208 } 209 210 static inline void 211 write_wd33c93_count(const wd33c93_regs regs, unsigned long value) 212 { 213 outb(WD_TRANSFER_COUNT_MSB, regs.SASR); 214 outb((value >> 16) & 0xff, regs.SCMD); 215 outb((value >> 8) & 0xff, regs.SCMD); 216 outb( value & 0xff, regs.SCMD); 217 } 218 219 #define write_wd33c93_cmd(regs, cmd) \ 220 write_wd33c93((regs), WD_COMMAND, (cmd)) 221 222 static inline void 223 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[]) 224 { 225 int i; 226 227 outb(WD_CDB_1, regs.SASR); 228 for (i=0; i<len; i++) 229 outb(cmnd[i], regs.SCMD); 230 } 231 232 #else /* CONFIG_WD33C93_PIO */ 233 static inline uchar 234 read_wd33c93(const wd33c93_regs regs, uchar reg_num) 235 { 236 *regs.SASR = reg_num; 237 mb(); 238 return (*regs.SCMD); 239 } 240 241 static unsigned long 242 read_wd33c93_count(const wd33c93_regs regs) 243 { 244 unsigned long value; 245 246 *regs.SASR = WD_TRANSFER_COUNT_MSB; 247 mb(); 248 value = *regs.SCMD << 16; 249 value |= *regs.SCMD << 8; 250 value |= *regs.SCMD; 251 mb(); 252 return value; 253 } 254 255 static inline uchar 256 read_aux_stat(const wd33c93_regs regs) 257 { 258 return *regs.SASR; 259 } 260 261 static inline void 262 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value) 263 { 264 *regs.SASR = reg_num; 265 mb(); 266 *regs.SCMD = value; 267 mb(); 268 } 269 270 static void 271 write_wd33c93_count(const wd33c93_regs regs, unsigned long value) 272 { 273 *regs.SASR = WD_TRANSFER_COUNT_MSB; 274 mb(); 275 *regs.SCMD = value >> 16; 276 *regs.SCMD = value >> 8; 277 *regs.SCMD = value; 278 mb(); 279 } 280 281 static inline void 282 write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd) 283 { 284 *regs.SASR = WD_COMMAND; 285 mb(); 286 *regs.SCMD = cmd; 287 mb(); 288 } 289 290 static inline void 291 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[]) 292 { 293 int i; 294 295 *regs.SASR = WD_CDB_1; 296 for (i = 0; i < len; i++) 297 *regs.SCMD = cmnd[i]; 298 } 299 #endif /* CONFIG_WD33C93_PIO */ 300 301 static inline uchar 302 read_1_byte(const wd33c93_regs regs) 303 { 304 uchar asr; 305 uchar x = 0; 306 307 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 308 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80); 309 do { 310 asr = read_aux_stat(regs); 311 if (asr & ASR_DBR) 312 x = read_wd33c93(regs, WD_DATA); 313 } while (!(asr & ASR_INT)); 314 return x; 315 } 316 317 static int 318 round_period(unsigned int period, const struct sx_period *sx_table) 319 { 320 int x; 321 322 for (x = 1; sx_table[x].period_ns; x++) { 323 if ((period <= sx_table[x - 0].period_ns) && 324 (period > sx_table[x - 1].period_ns)) { 325 return x; 326 } 327 } 328 return 7; 329 } 330 331 /* 332 * Calculate Synchronous Transfer Register value from SDTR code. 333 */ 334 static uchar 335 calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast, 336 const struct sx_period *sx_table) 337 { 338 /* When doing Fast SCSI synchronous data transfers, the corresponding 339 * value in 'sx_table' is two times the actually used transfer period. 340 */ 341 uchar result; 342 343 if (offset && fast) { 344 fast = STR_FSS; 345 period *= 2; 346 } else { 347 fast = 0; 348 } 349 period *= 4; /* convert SDTR code to ns */ 350 result = sx_table[round_period(period,sx_table)].reg_value; 351 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF; 352 result |= fast; 353 return result; 354 } 355 356 /* 357 * Calculate SDTR code bytes [3],[4] from period and offset. 358 */ 359 static inline void 360 calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast, 361 uchar msg[2]) 362 { 363 /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The 364 * actually used transfer period for Fast SCSI synchronous data 365 * transfers is half that value. 366 */ 367 period /= 4; 368 if (offset && fast) 369 period /= 2; 370 msg[0] = period; 371 msg[1] = offset; 372 } 373 374 static int 375 wd33c93_queuecommand_lck(struct scsi_cmnd *cmd, 376 void (*done)(struct scsi_cmnd *)) 377 { 378 struct WD33C93_hostdata *hostdata; 379 struct scsi_cmnd *tmp; 380 381 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata; 382 383 DB(DB_QUEUE_COMMAND, 384 printk("Q-%d-%02x( ", cmd->device->id, cmd->cmnd[0])) 385 386 /* Set up a few fields in the scsi_cmnd structure for our own use: 387 * - host_scribble is the pointer to the next cmd in the input queue 388 * - scsi_done points to the routine we call when a cmd is finished 389 * - result is what you'd expect 390 */ 391 cmd->host_scribble = NULL; 392 cmd->scsi_done = done; 393 cmd->result = 0; 394 395 /* We use the Scsi_Pointer structure that's included with each command 396 * as a scratchpad (as it's intended to be used!). The handy thing about 397 * the SCp.xxx fields is that they're always associated with a given 398 * cmd, and are preserved across disconnect-reselect. This means we 399 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages 400 * if we keep all the critical pointers and counters in SCp: 401 * - SCp.ptr is the pointer into the RAM buffer 402 * - SCp.this_residual is the size of that buffer 403 * - SCp.buffer points to the current scatter-gather buffer 404 * - SCp.buffers_residual tells us how many S.G. buffers there are 405 * - SCp.have_data_in is not used 406 * - SCp.sent_command is not used 407 * - SCp.phase records this command's SRCID_ER bit setting 408 */ 409 410 if (scsi_bufflen(cmd)) { 411 cmd->SCp.buffer = scsi_sglist(cmd); 412 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1; 413 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); 414 cmd->SCp.this_residual = cmd->SCp.buffer->length; 415 } else { 416 cmd->SCp.buffer = NULL; 417 cmd->SCp.buffers_residual = 0; 418 cmd->SCp.ptr = NULL; 419 cmd->SCp.this_residual = 0; 420 } 421 422 /* WD docs state that at the conclusion of a "LEVEL2" command, the 423 * status byte can be retrieved from the LUN register. Apparently, 424 * this is the case only for *uninterrupted* LEVEL2 commands! If 425 * there are any unexpected phases entered, even if they are 100% 426 * legal (different devices may choose to do things differently), 427 * the LEVEL2 command sequence is exited. This often occurs prior 428 * to receiving the status byte, in which case the driver does a 429 * status phase interrupt and gets the status byte on its own. 430 * While such a command can then be "resumed" (ie restarted to 431 * finish up as a LEVEL2 command), the LUN register will NOT be 432 * a valid status byte at the command's conclusion, and we must 433 * use the byte obtained during the earlier interrupt. Here, we 434 * preset SCp.Status to an illegal value (0xff) so that when 435 * this command finally completes, we can tell where the actual 436 * status byte is stored. 437 */ 438 439 cmd->SCp.Status = ILLEGAL_STATUS_BYTE; 440 441 /* 442 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE 443 * commands are added to the head of the queue so that the desired 444 * sense data is not lost before REQUEST_SENSE executes. 445 */ 446 447 spin_lock_irq(&hostdata->lock); 448 449 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) { 450 cmd->host_scribble = (uchar *) hostdata->input_Q; 451 hostdata->input_Q = cmd; 452 } else { /* find the end of the queue */ 453 for (tmp = (struct scsi_cmnd *) hostdata->input_Q; 454 tmp->host_scribble; 455 tmp = (struct scsi_cmnd *) tmp->host_scribble) ; 456 tmp->host_scribble = (uchar *) cmd; 457 } 458 459 /* We know that there's at least one command in 'input_Q' now. 460 * Go see if any of them are runnable! 461 */ 462 463 wd33c93_execute(cmd->device->host); 464 465 DB(DB_QUEUE_COMMAND, printk(")Q ")) 466 467 spin_unlock_irq(&hostdata->lock); 468 return 0; 469 } 470 471 DEF_SCSI_QCMD(wd33c93_queuecommand) 472 473 /* 474 * This routine attempts to start a scsi command. If the host_card is 475 * already connected, we give up immediately. Otherwise, look through 476 * the input_Q, using the first command we find that's intended 477 * for a currently non-busy target/lun. 478 * 479 * wd33c93_execute() is always called with interrupts disabled or from 480 * the wd33c93_intr itself, which means that a wd33c93 interrupt 481 * cannot occur while we are in here. 482 */ 483 static void 484 wd33c93_execute(struct Scsi_Host *instance) 485 { 486 struct WD33C93_hostdata *hostdata = 487 (struct WD33C93_hostdata *) instance->hostdata; 488 const wd33c93_regs regs = hostdata->regs; 489 struct scsi_cmnd *cmd, *prev; 490 491 DB(DB_EXECUTE, printk("EX(")) 492 if (hostdata->selecting || hostdata->connected) { 493 DB(DB_EXECUTE, printk(")EX-0 ")) 494 return; 495 } 496 497 /* 498 * Search through the input_Q for a command destined 499 * for an idle target/lun. 500 */ 501 502 cmd = (struct scsi_cmnd *) hostdata->input_Q; 503 prev = NULL; 504 while (cmd) { 505 if (!(hostdata->busy[cmd->device->id] & 506 (1 << (cmd->device->lun & 0xff)))) 507 break; 508 prev = cmd; 509 cmd = (struct scsi_cmnd *) cmd->host_scribble; 510 } 511 512 /* quit if queue empty or all possible targets are busy */ 513 514 if (!cmd) { 515 DB(DB_EXECUTE, printk(")EX-1 ")) 516 return; 517 } 518 519 /* remove command from queue */ 520 521 if (prev) 522 prev->host_scribble = cmd->host_scribble; 523 else 524 hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble; 525 526 #ifdef PROC_STATISTICS 527 hostdata->cmd_cnt[cmd->device->id]++; 528 #endif 529 530 /* 531 * Start the selection process 532 */ 533 534 if (cmd->sc_data_direction == DMA_TO_DEVICE) 535 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id); 536 else 537 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD); 538 539 /* Now we need to figure out whether or not this command is a good 540 * candidate for disconnect/reselect. We guess to the best of our 541 * ability, based on a set of hierarchical rules. When several 542 * devices are operating simultaneously, disconnects are usually 543 * an advantage. In a single device system, or if only 1 device 544 * is being accessed, transfers usually go faster if disconnects 545 * are not allowed: 546 * 547 * + Commands should NEVER disconnect if hostdata->disconnect = 548 * DIS_NEVER (this holds for tape drives also), and ALWAYS 549 * disconnect if hostdata->disconnect = DIS_ALWAYS. 550 * + Tape drive commands should always be allowed to disconnect. 551 * + Disconnect should be allowed if disconnected_Q isn't empty. 552 * + Commands should NOT disconnect if input_Q is empty. 553 * + Disconnect should be allowed if there are commands in input_Q 554 * for a different target/lun. In this case, the other commands 555 * should be made disconnect-able, if not already. 556 * 557 * I know, I know - this code would flunk me out of any 558 * "C Programming 101" class ever offered. But it's easy 559 * to change around and experiment with for now. 560 */ 561 562 cmd->SCp.phase = 0; /* assume no disconnect */ 563 if (hostdata->disconnect == DIS_NEVER) 564 goto no; 565 if (hostdata->disconnect == DIS_ALWAYS) 566 goto yes; 567 if (cmd->device->type == 1) /* tape drive? */ 568 goto yes; 569 if (hostdata->disconnected_Q) /* other commands disconnected? */ 570 goto yes; 571 if (!(hostdata->input_Q)) /* input_Q empty? */ 572 goto no; 573 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev; 574 prev = (struct scsi_cmnd *) prev->host_scribble) { 575 if ((prev->device->id != cmd->device->id) || 576 (prev->device->lun != cmd->device->lun)) { 577 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev; 578 prev = (struct scsi_cmnd *) prev->host_scribble) 579 prev->SCp.phase = 1; 580 goto yes; 581 } 582 } 583 584 goto no; 585 586 yes: 587 cmd->SCp.phase = 1; 588 589 #ifdef PROC_STATISTICS 590 hostdata->disc_allowed_cnt[cmd->device->id]++; 591 #endif 592 593 no: 594 595 write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0)); 596 597 write_wd33c93(regs, WD_TARGET_LUN, (u8)cmd->device->lun); 598 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 599 hostdata->sync_xfer[cmd->device->id]); 600 hostdata->busy[cmd->device->id] |= (1 << (cmd->device->lun & 0xFF)); 601 602 if ((hostdata->level2 == L2_NONE) || 603 (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) { 604 605 /* 606 * Do a 'Select-With-ATN' command. This will end with 607 * one of the following interrupts: 608 * CSR_RESEL_AM: failure - can try again later. 609 * CSR_TIMEOUT: failure - give up. 610 * CSR_SELECT: success - proceed. 611 */ 612 613 hostdata->selecting = cmd; 614 615 /* Every target has its own synchronous transfer setting, kept in the 616 * sync_xfer array, and a corresponding status byte in sync_stat[]. 617 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its 618 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET 619 * means that the parameters are undetermined as yet, and that we 620 * need to send an SDTR message to this device after selection is 621 * complete: We set SS_FIRST to tell the interrupt routine to do so. 622 * If we've been asked not to try synchronous transfers on this 623 * target (and _all_ luns within it), we'll still send the SDTR message 624 * later, but at that time we'll negotiate for async by specifying a 625 * sync fifo depth of 0. 626 */ 627 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET) 628 hostdata->sync_stat[cmd->device->id] = SS_FIRST; 629 hostdata->state = S_SELECTING; 630 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 631 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN); 632 } else { 633 634 /* 635 * Do a 'Select-With-ATN-Xfer' command. This will end with 636 * one of the following interrupts: 637 * CSR_RESEL_AM: failure - can try again later. 638 * CSR_TIMEOUT: failure - give up. 639 * anything else: success - proceed. 640 */ 641 642 hostdata->connected = cmd; 643 write_wd33c93(regs, WD_COMMAND_PHASE, 0); 644 645 /* copy command_descriptor_block into WD chip 646 * (take advantage of auto-incrementing) 647 */ 648 649 write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd); 650 651 /* The wd33c93 only knows about Group 0, 1, and 5 commands when 652 * it's doing a 'select-and-transfer'. To be safe, we write the 653 * size of the CDB into the OWN_ID register for every case. This 654 * way there won't be problems with vendor-unique, audio, etc. 655 */ 656 657 write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len); 658 659 /* When doing a non-disconnect command with DMA, we can save 660 * ourselves a DATA phase interrupt later by setting everything 661 * up ahead of time. 662 */ 663 664 if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) { 665 if (hostdata->dma_setup(cmd, 666 (cmd->sc_data_direction == DMA_TO_DEVICE) ? 667 DATA_OUT_DIR : DATA_IN_DIR)) 668 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 669 else { 670 write_wd33c93_count(regs, 671 cmd->SCp.this_residual); 672 write_wd33c93(regs, WD_CONTROL, 673 CTRL_IDI | CTRL_EDI | hostdata->dma_mode); 674 hostdata->dma = D_DMA_RUNNING; 675 } 676 } else 677 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */ 678 679 hostdata->state = S_RUNNING_LEVEL2; 680 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 681 } 682 683 /* 684 * Since the SCSI bus can handle only 1 connection at a time, 685 * we get out of here now. If the selection fails, or when 686 * the command disconnects, we'll come back to this routine 687 * to search the input_Q again... 688 */ 689 690 DB(DB_EXECUTE, 691 printk("%s)EX-2 ", (cmd->SCp.phase) ? "d:" : "")) 692 } 693 694 static void 695 transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt, 696 int data_in_dir, struct WD33C93_hostdata *hostdata) 697 { 698 uchar asr; 699 700 DB(DB_TRANSFER, 701 printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out")) 702 703 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 704 write_wd33c93_count(regs, cnt); 705 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO); 706 if (data_in_dir) { 707 do { 708 asr = read_aux_stat(regs); 709 if (asr & ASR_DBR) 710 *buf++ = read_wd33c93(regs, WD_DATA); 711 } while (!(asr & ASR_INT)); 712 } else { 713 do { 714 asr = read_aux_stat(regs); 715 if (asr & ASR_DBR) 716 write_wd33c93(regs, WD_DATA, *buf++); 717 } while (!(asr & ASR_INT)); 718 } 719 720 /* Note: we are returning with the interrupt UN-cleared. 721 * Since (presumably) an entire I/O operation has 722 * completed, the bus phase is probably different, and 723 * the interrupt routine will discover this when it 724 * responds to the uncleared int. 725 */ 726 727 } 728 729 static void 730 transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd, 731 int data_in_dir) 732 { 733 struct WD33C93_hostdata *hostdata; 734 unsigned long length; 735 736 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata; 737 738 /* Normally, you'd expect 'this_residual' to be non-zero here. 739 * In a series of scatter-gather transfers, however, this 740 * routine will usually be called with 'this_residual' equal 741 * to 0 and 'buffers_residual' non-zero. This means that a 742 * previous transfer completed, clearing 'this_residual', and 743 * now we need to setup the next scatter-gather buffer as the 744 * source or destination for THIS transfer. 745 */ 746 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) { 747 ++cmd->SCp.buffer; 748 --cmd->SCp.buffers_residual; 749 cmd->SCp.this_residual = cmd->SCp.buffer->length; 750 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer); 751 } 752 if (!cmd->SCp.this_residual) /* avoid bogus setups */ 753 return; 754 755 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 756 hostdata->sync_xfer[cmd->device->id]); 757 758 /* 'hostdata->no_dma' is TRUE if we don't even want to try DMA. 759 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns. 760 */ 761 762 if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) { 763 #ifdef PROC_STATISTICS 764 hostdata->pio_cnt++; 765 #endif 766 transfer_pio(regs, (uchar *) cmd->SCp.ptr, 767 cmd->SCp.this_residual, data_in_dir, hostdata); 768 length = cmd->SCp.this_residual; 769 cmd->SCp.this_residual = read_wd33c93_count(regs); 770 cmd->SCp.ptr += (length - cmd->SCp.this_residual); 771 } 772 773 /* We are able to do DMA (in fact, the Amiga hardware is 774 * already going!), so start up the wd33c93 in DMA mode. 775 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the 776 * transfer completes and causes an interrupt, we're 777 * reminded to tell the Amiga to shut down its end. We'll 778 * postpone the updating of 'this_residual' and 'ptr' 779 * until then. 780 */ 781 782 else { 783 #ifdef PROC_STATISTICS 784 hostdata->dma_cnt++; 785 #endif 786 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode); 787 write_wd33c93_count(regs, cmd->SCp.this_residual); 788 789 if ((hostdata->level2 >= L2_DATA) || 790 (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) { 791 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 792 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 793 hostdata->state = S_RUNNING_LEVEL2; 794 } else 795 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO); 796 797 hostdata->dma = D_DMA_RUNNING; 798 } 799 } 800 801 void 802 wd33c93_intr(struct Scsi_Host *instance) 803 { 804 struct WD33C93_hostdata *hostdata = 805 (struct WD33C93_hostdata *) instance->hostdata; 806 const wd33c93_regs regs = hostdata->regs; 807 struct scsi_cmnd *patch, *cmd; 808 uchar asr, sr, phs, id, lun, *ucp, msg; 809 unsigned long length, flags; 810 811 asr = read_aux_stat(regs); 812 if (!(asr & ASR_INT) || (asr & ASR_BSY)) 813 return; 814 815 spin_lock_irqsave(&hostdata->lock, flags); 816 817 #ifdef PROC_STATISTICS 818 hostdata->int_cnt++; 819 #endif 820 821 cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */ 822 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */ 823 phs = read_wd33c93(regs, WD_COMMAND_PHASE); 824 825 DB(DB_INTR, printk("{%02x:%02x-", asr, sr)) 826 827 /* After starting a DMA transfer, the next interrupt 828 * is guaranteed to be in response to completion of 829 * the transfer. Since the Amiga DMA hardware runs in 830 * in an open-ended fashion, it needs to be told when 831 * to stop; do that here if D_DMA_RUNNING is true. 832 * Also, we have to update 'this_residual' and 'ptr' 833 * based on the contents of the TRANSFER_COUNT register, 834 * in case the device decided to do an intermediate 835 * disconnect (a device may do this if it has to do a 836 * seek, or just to be nice and let other devices have 837 * some bus time during long transfers). After doing 838 * whatever is needed, we go on and service the WD3393 839 * interrupt normally. 840 */ 841 if (hostdata->dma == D_DMA_RUNNING) { 842 DB(DB_TRANSFER, 843 printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual)) 844 hostdata->dma_stop(cmd->device->host, cmd, 1); 845 hostdata->dma = D_DMA_OFF; 846 length = cmd->SCp.this_residual; 847 cmd->SCp.this_residual = read_wd33c93_count(regs); 848 cmd->SCp.ptr += (length - cmd->SCp.this_residual); 849 DB(DB_TRANSFER, 850 printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual)) 851 } 852 853 /* Respond to the specific WD3393 interrupt - there are quite a few! */ 854 switch (sr) { 855 case CSR_TIMEOUT: 856 DB(DB_INTR, printk("TIMEOUT")) 857 858 if (hostdata->state == S_RUNNING_LEVEL2) 859 hostdata->connected = NULL; 860 else { 861 cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */ 862 hostdata->selecting = NULL; 863 } 864 865 cmd->result = DID_NO_CONNECT << 16; 866 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 867 hostdata->state = S_UNCONNECTED; 868 cmd->scsi_done(cmd); 869 870 /* From esp.c: 871 * There is a window of time within the scsi_done() path 872 * of execution where interrupts are turned back on full 873 * blast and left that way. During that time we could 874 * reconnect to a disconnected command, then we'd bomb 875 * out below. We could also end up executing two commands 876 * at _once_. ...just so you know why the restore_flags() 877 * is here... 878 */ 879 880 spin_unlock_irqrestore(&hostdata->lock, flags); 881 882 /* We are not connected to a target - check to see if there 883 * are commands waiting to be executed. 884 */ 885 886 wd33c93_execute(instance); 887 break; 888 889 /* Note: this interrupt should not occur in a LEVEL2 command */ 890 891 case CSR_SELECT: 892 DB(DB_INTR, printk("SELECT")) 893 hostdata->connected = cmd = 894 (struct scsi_cmnd *) hostdata->selecting; 895 hostdata->selecting = NULL; 896 897 /* construct an IDENTIFY message with correct disconnect bit */ 898 899 hostdata->outgoing_msg[0] = IDENTIFY(0, cmd->device->lun); 900 if (cmd->SCp.phase) 901 hostdata->outgoing_msg[0] |= 0x40; 902 903 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) { 904 905 hostdata->sync_stat[cmd->device->id] = SS_WAITING; 906 907 /* Tack on a 2nd message to ask about synchronous transfers. If we've 908 * been asked to do only asynchronous transfers on this device, we 909 * request a fifo depth of 0, which is equivalent to async - should 910 * solve the problems some people have had with GVP's Guru ROM. 911 */ 912 913 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE; 914 hostdata->outgoing_msg[2] = 3; 915 hostdata->outgoing_msg[3] = EXTENDED_SDTR; 916 if (hostdata->no_sync & (1 << cmd->device->id)) { 917 calc_sync_msg(hostdata->default_sx_per, 0, 918 0, hostdata->outgoing_msg + 4); 919 } else { 920 calc_sync_msg(optimum_sx_per(hostdata), 921 OPTIMUM_SX_OFF, 922 hostdata->fast, 923 hostdata->outgoing_msg + 4); 924 } 925 hostdata->outgoing_len = 6; 926 #ifdef SYNC_DEBUG 927 ucp = hostdata->outgoing_msg + 1; 928 printk(" sending SDTR %02x03%02x%02x%02x ", 929 ucp[0], ucp[2], ucp[3], ucp[4]); 930 #endif 931 } else 932 hostdata->outgoing_len = 1; 933 934 hostdata->state = S_CONNECTED; 935 spin_unlock_irqrestore(&hostdata->lock, flags); 936 break; 937 938 case CSR_XFER_DONE | PHS_DATA_IN: 939 case CSR_UNEXP | PHS_DATA_IN: 940 case CSR_SRV_REQ | PHS_DATA_IN: 941 DB(DB_INTR, 942 printk("IN-%d.%d", cmd->SCp.this_residual, 943 cmd->SCp.buffers_residual)) 944 transfer_bytes(regs, cmd, DATA_IN_DIR); 945 if (hostdata->state != S_RUNNING_LEVEL2) 946 hostdata->state = S_CONNECTED; 947 spin_unlock_irqrestore(&hostdata->lock, flags); 948 break; 949 950 case CSR_XFER_DONE | PHS_DATA_OUT: 951 case CSR_UNEXP | PHS_DATA_OUT: 952 case CSR_SRV_REQ | PHS_DATA_OUT: 953 DB(DB_INTR, 954 printk("OUT-%d.%d", cmd->SCp.this_residual, 955 cmd->SCp.buffers_residual)) 956 transfer_bytes(regs, cmd, DATA_OUT_DIR); 957 if (hostdata->state != S_RUNNING_LEVEL2) 958 hostdata->state = S_CONNECTED; 959 spin_unlock_irqrestore(&hostdata->lock, flags); 960 break; 961 962 /* Note: this interrupt should not occur in a LEVEL2 command */ 963 964 case CSR_XFER_DONE | PHS_COMMAND: 965 case CSR_UNEXP | PHS_COMMAND: 966 case CSR_SRV_REQ | PHS_COMMAND: 967 DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0])) 968 transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR, 969 hostdata); 970 hostdata->state = S_CONNECTED; 971 spin_unlock_irqrestore(&hostdata->lock, flags); 972 break; 973 974 case CSR_XFER_DONE | PHS_STATUS: 975 case CSR_UNEXP | PHS_STATUS: 976 case CSR_SRV_REQ | PHS_STATUS: 977 DB(DB_INTR, printk("STATUS=")) 978 cmd->SCp.Status = read_1_byte(regs); 979 DB(DB_INTR, printk("%02x", cmd->SCp.Status)) 980 if (hostdata->level2 >= L2_BASIC) { 981 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */ 982 udelay(7); 983 hostdata->state = S_RUNNING_LEVEL2; 984 write_wd33c93(regs, WD_COMMAND_PHASE, 0x50); 985 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 986 } else { 987 hostdata->state = S_CONNECTED; 988 } 989 spin_unlock_irqrestore(&hostdata->lock, flags); 990 break; 991 992 case CSR_XFER_DONE | PHS_MESS_IN: 993 case CSR_UNEXP | PHS_MESS_IN: 994 case CSR_SRV_REQ | PHS_MESS_IN: 995 DB(DB_INTR, printk("MSG_IN=")) 996 997 msg = read_1_byte(regs); 998 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */ 999 udelay(7); 1000 1001 hostdata->incoming_msg[hostdata->incoming_ptr] = msg; 1002 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE) 1003 msg = EXTENDED_MESSAGE; 1004 else 1005 hostdata->incoming_ptr = 0; 1006 1007 cmd->SCp.Message = msg; 1008 switch (msg) { 1009 1010 case COMMAND_COMPLETE: 1011 DB(DB_INTR, printk("CCMP")) 1012 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1013 hostdata->state = S_PRE_CMP_DISC; 1014 break; 1015 1016 case SAVE_POINTERS: 1017 DB(DB_INTR, printk("SDP")) 1018 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1019 hostdata->state = S_CONNECTED; 1020 break; 1021 1022 case RESTORE_POINTERS: 1023 DB(DB_INTR, printk("RDP")) 1024 if (hostdata->level2 >= L2_BASIC) { 1025 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 1026 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1027 hostdata->state = S_RUNNING_LEVEL2; 1028 } else { 1029 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1030 hostdata->state = S_CONNECTED; 1031 } 1032 break; 1033 1034 case DISCONNECT: 1035 DB(DB_INTR, printk("DIS")) 1036 cmd->device->disconnect = 1; 1037 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1038 hostdata->state = S_PRE_TMP_DISC; 1039 break; 1040 1041 case MESSAGE_REJECT: 1042 DB(DB_INTR, printk("REJ")) 1043 #ifdef SYNC_DEBUG 1044 printk("-REJ-"); 1045 #endif 1046 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) { 1047 hostdata->sync_stat[cmd->device->id] = SS_SET; 1048 /* we want default_sx_per, not DEFAULT_SX_PER */ 1049 hostdata->sync_xfer[cmd->device->id] = 1050 calc_sync_xfer(hostdata->default_sx_per 1051 / 4, 0, 0, hostdata->sx_table); 1052 } 1053 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1054 hostdata->state = S_CONNECTED; 1055 break; 1056 1057 case EXTENDED_MESSAGE: 1058 DB(DB_INTR, printk("EXT")) 1059 1060 ucp = hostdata->incoming_msg; 1061 1062 #ifdef SYNC_DEBUG 1063 printk("%02x", ucp[hostdata->incoming_ptr]); 1064 #endif 1065 /* Is this the last byte of the extended message? */ 1066 1067 if ((hostdata->incoming_ptr >= 2) && 1068 (hostdata->incoming_ptr == (ucp[1] + 1))) { 1069 1070 switch (ucp[2]) { /* what's the EXTENDED code? */ 1071 case EXTENDED_SDTR: 1072 /* default to default async period */ 1073 id = calc_sync_xfer(hostdata-> 1074 default_sx_per / 4, 0, 1075 0, hostdata->sx_table); 1076 if (hostdata->sync_stat[cmd->device->id] != 1077 SS_WAITING) { 1078 1079 /* A device has sent an unsolicited SDTR message; rather than go 1080 * through the effort of decoding it and then figuring out what 1081 * our reply should be, we're just gonna say that we have a 1082 * synchronous fifo depth of 0. This will result in asynchronous 1083 * transfers - not ideal but so much easier. 1084 * Actually, this is OK because it assures us that if we don't 1085 * specifically ask for sync transfers, we won't do any. 1086 */ 1087 1088 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1089 hostdata->outgoing_msg[0] = 1090 EXTENDED_MESSAGE; 1091 hostdata->outgoing_msg[1] = 3; 1092 hostdata->outgoing_msg[2] = 1093 EXTENDED_SDTR; 1094 calc_sync_msg(hostdata-> 1095 default_sx_per, 0, 1096 0, hostdata->outgoing_msg + 3); 1097 hostdata->outgoing_len = 5; 1098 } else { 1099 if (ucp[4]) /* well, sync transfer */ 1100 id = calc_sync_xfer(ucp[3], ucp[4], 1101 hostdata->fast, 1102 hostdata->sx_table); 1103 else if (ucp[3]) /* very unlikely... */ 1104 id = calc_sync_xfer(ucp[3], ucp[4], 1105 0, hostdata->sx_table); 1106 } 1107 hostdata->sync_xfer[cmd->device->id] = id; 1108 #ifdef SYNC_DEBUG 1109 printk(" sync_xfer=%02x\n", 1110 hostdata->sync_xfer[cmd->device->id]); 1111 #endif 1112 hostdata->sync_stat[cmd->device->id] = 1113 SS_SET; 1114 write_wd33c93_cmd(regs, 1115 WD_CMD_NEGATE_ACK); 1116 hostdata->state = S_CONNECTED; 1117 break; 1118 case EXTENDED_WDTR: 1119 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1120 printk("sending WDTR "); 1121 hostdata->outgoing_msg[0] = 1122 EXTENDED_MESSAGE; 1123 hostdata->outgoing_msg[1] = 2; 1124 hostdata->outgoing_msg[2] = 1125 EXTENDED_WDTR; 1126 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */ 1127 hostdata->outgoing_len = 4; 1128 write_wd33c93_cmd(regs, 1129 WD_CMD_NEGATE_ACK); 1130 hostdata->state = S_CONNECTED; 1131 break; 1132 default: 1133 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1134 printk 1135 ("Rejecting Unknown Extended Message(%02x). ", 1136 ucp[2]); 1137 hostdata->outgoing_msg[0] = 1138 MESSAGE_REJECT; 1139 hostdata->outgoing_len = 1; 1140 write_wd33c93_cmd(regs, 1141 WD_CMD_NEGATE_ACK); 1142 hostdata->state = S_CONNECTED; 1143 break; 1144 } 1145 hostdata->incoming_ptr = 0; 1146 } 1147 1148 /* We need to read more MESS_IN bytes for the extended message */ 1149 1150 else { 1151 hostdata->incoming_ptr++; 1152 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1153 hostdata->state = S_CONNECTED; 1154 } 1155 break; 1156 1157 default: 1158 printk("Rejecting Unknown Message(%02x) ", msg); 1159 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */ 1160 hostdata->outgoing_msg[0] = MESSAGE_REJECT; 1161 hostdata->outgoing_len = 1; 1162 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1163 hostdata->state = S_CONNECTED; 1164 } 1165 spin_unlock_irqrestore(&hostdata->lock, flags); 1166 break; 1167 1168 /* Note: this interrupt will occur only after a LEVEL2 command */ 1169 1170 case CSR_SEL_XFER_DONE: 1171 1172 /* Make sure that reselection is enabled at this point - it may 1173 * have been turned off for the command that just completed. 1174 */ 1175 1176 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1177 if (phs == 0x60) { 1178 DB(DB_INTR, printk("SX-DONE")) 1179 cmd->SCp.Message = COMMAND_COMPLETE; 1180 lun = read_wd33c93(regs, WD_TARGET_LUN); 1181 DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun)) 1182 hostdata->connected = NULL; 1183 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1184 hostdata->state = S_UNCONNECTED; 1185 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE) 1186 cmd->SCp.Status = lun; 1187 if (cmd->cmnd[0] == REQUEST_SENSE 1188 && cmd->SCp.Status != GOOD) 1189 cmd->result = 1190 (cmd-> 1191 result & 0x00ffff) | (DID_ERROR << 16); 1192 else 1193 cmd->result = 1194 cmd->SCp.Status | (cmd->SCp.Message << 8); 1195 cmd->scsi_done(cmd); 1196 1197 /* We are no longer connected to a target - check to see if 1198 * there are commands waiting to be executed. 1199 */ 1200 spin_unlock_irqrestore(&hostdata->lock, flags); 1201 wd33c93_execute(instance); 1202 } else { 1203 printk 1204 ("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---", 1205 asr, sr, phs); 1206 spin_unlock_irqrestore(&hostdata->lock, flags); 1207 } 1208 break; 1209 1210 /* Note: this interrupt will occur only after a LEVEL2 command */ 1211 1212 case CSR_SDP: 1213 DB(DB_INTR, printk("SDP")) 1214 hostdata->state = S_RUNNING_LEVEL2; 1215 write_wd33c93(regs, WD_COMMAND_PHASE, 0x41); 1216 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1217 spin_unlock_irqrestore(&hostdata->lock, flags); 1218 break; 1219 1220 case CSR_XFER_DONE | PHS_MESS_OUT: 1221 case CSR_UNEXP | PHS_MESS_OUT: 1222 case CSR_SRV_REQ | PHS_MESS_OUT: 1223 DB(DB_INTR, printk("MSG_OUT=")) 1224 1225 /* To get here, we've probably requested MESSAGE_OUT and have 1226 * already put the correct bytes in outgoing_msg[] and filled 1227 * in outgoing_len. We simply send them out to the SCSI bus. 1228 * Sometimes we get MESSAGE_OUT phase when we're not expecting 1229 * it - like when our SDTR message is rejected by a target. Some 1230 * targets send the REJECT before receiving all of the extended 1231 * message, and then seem to go back to MESSAGE_OUT for a byte 1232 * or two. Not sure why, or if I'm doing something wrong to 1233 * cause this to happen. Regardless, it seems that sending 1234 * NOP messages in these situations results in no harm and 1235 * makes everyone happy. 1236 */ 1237 if (hostdata->outgoing_len == 0) { 1238 hostdata->outgoing_len = 1; 1239 hostdata->outgoing_msg[0] = NOP; 1240 } 1241 transfer_pio(regs, hostdata->outgoing_msg, 1242 hostdata->outgoing_len, DATA_OUT_DIR, hostdata); 1243 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0])) 1244 hostdata->outgoing_len = 0; 1245 hostdata->state = S_CONNECTED; 1246 spin_unlock_irqrestore(&hostdata->lock, flags); 1247 break; 1248 1249 case CSR_UNEXP_DISC: 1250 1251 /* I think I've seen this after a request-sense that was in response 1252 * to an error condition, but not sure. We certainly need to do 1253 * something when we get this interrupt - the question is 'what?'. 1254 * Let's think positively, and assume some command has finished 1255 * in a legal manner (like a command that provokes a request-sense), 1256 * so we treat it as a normal command-complete-disconnect. 1257 */ 1258 1259 /* Make sure that reselection is enabled at this point - it may 1260 * have been turned off for the command that just completed. 1261 */ 1262 1263 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1264 if (cmd == NULL) { 1265 printk(" - Already disconnected! "); 1266 hostdata->state = S_UNCONNECTED; 1267 spin_unlock_irqrestore(&hostdata->lock, flags); 1268 return; 1269 } 1270 DB(DB_INTR, printk("UNEXP_DISC")) 1271 hostdata->connected = NULL; 1272 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1273 hostdata->state = S_UNCONNECTED; 1274 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD) 1275 cmd->result = 1276 (cmd->result & 0x00ffff) | (DID_ERROR << 16); 1277 else 1278 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8); 1279 cmd->scsi_done(cmd); 1280 1281 /* We are no longer connected to a target - check to see if 1282 * there are commands waiting to be executed. 1283 */ 1284 /* look above for comments on scsi_done() */ 1285 spin_unlock_irqrestore(&hostdata->lock, flags); 1286 wd33c93_execute(instance); 1287 break; 1288 1289 case CSR_DISC: 1290 1291 /* Make sure that reselection is enabled at this point - it may 1292 * have been turned off for the command that just completed. 1293 */ 1294 1295 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER); 1296 DB(DB_INTR, printk("DISC")) 1297 if (cmd == NULL) { 1298 printk(" - Already disconnected! "); 1299 hostdata->state = S_UNCONNECTED; 1300 } 1301 switch (hostdata->state) { 1302 case S_PRE_CMP_DISC: 1303 hostdata->connected = NULL; 1304 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1305 hostdata->state = S_UNCONNECTED; 1306 DB(DB_INTR, printk(":%d", cmd->SCp.Status)) 1307 if (cmd->cmnd[0] == REQUEST_SENSE 1308 && cmd->SCp.Status != GOOD) 1309 cmd->result = 1310 (cmd-> 1311 result & 0x00ffff) | (DID_ERROR << 16); 1312 else 1313 cmd->result = 1314 cmd->SCp.Status | (cmd->SCp.Message << 8); 1315 cmd->scsi_done(cmd); 1316 break; 1317 case S_PRE_TMP_DISC: 1318 case S_RUNNING_LEVEL2: 1319 cmd->host_scribble = (uchar *) hostdata->disconnected_Q; 1320 hostdata->disconnected_Q = cmd; 1321 hostdata->connected = NULL; 1322 hostdata->state = S_UNCONNECTED; 1323 1324 #ifdef PROC_STATISTICS 1325 hostdata->disc_done_cnt[cmd->device->id]++; 1326 #endif 1327 1328 break; 1329 default: 1330 printk("*** Unexpected DISCONNECT interrupt! ***"); 1331 hostdata->state = S_UNCONNECTED; 1332 } 1333 1334 /* We are no longer connected to a target - check to see if 1335 * there are commands waiting to be executed. 1336 */ 1337 spin_unlock_irqrestore(&hostdata->lock, flags); 1338 wd33c93_execute(instance); 1339 break; 1340 1341 case CSR_RESEL_AM: 1342 case CSR_RESEL: 1343 DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : "")) 1344 1345 /* Old chips (pre -A ???) don't have advanced features and will 1346 * generate CSR_RESEL. In that case we have to extract the LUN the 1347 * hard way (see below). 1348 * First we have to make sure this reselection didn't 1349 * happen during Arbitration/Selection of some other device. 1350 * If yes, put losing command back on top of input_Q. 1351 */ 1352 if (hostdata->level2 <= L2_NONE) { 1353 1354 if (hostdata->selecting) { 1355 cmd = (struct scsi_cmnd *) hostdata->selecting; 1356 hostdata->selecting = NULL; 1357 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1358 cmd->host_scribble = 1359 (uchar *) hostdata->input_Q; 1360 hostdata->input_Q = cmd; 1361 } 1362 } 1363 1364 else { 1365 1366 if (cmd) { 1367 if (phs == 0x00) { 1368 hostdata->busy[cmd->device->id] &= 1369 ~(1 << (cmd->device->lun & 0xff)); 1370 cmd->host_scribble = 1371 (uchar *) hostdata->input_Q; 1372 hostdata->input_Q = cmd; 1373 } else { 1374 printk 1375 ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---", 1376 asr, sr, phs); 1377 while (1) 1378 printk("\r"); 1379 } 1380 } 1381 1382 } 1383 1384 /* OK - find out which device reselected us. */ 1385 1386 id = read_wd33c93(regs, WD_SOURCE_ID); 1387 id &= SRCID_MASK; 1388 1389 /* and extract the lun from the ID message. (Note that we don't 1390 * bother to check for a valid message here - I guess this is 1391 * not the right way to go, but...) 1392 */ 1393 1394 if (sr == CSR_RESEL_AM) { 1395 lun = read_wd33c93(regs, WD_DATA); 1396 if (hostdata->level2 < L2_RESELECT) 1397 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK); 1398 lun &= 7; 1399 } else { 1400 /* Old chip; wait for msgin phase to pick up the LUN. */ 1401 for (lun = 255; lun; lun--) { 1402 if ((asr = read_aux_stat(regs)) & ASR_INT) 1403 break; 1404 udelay(10); 1405 } 1406 if (!(asr & ASR_INT)) { 1407 printk 1408 ("wd33c93: Reselected without IDENTIFY\n"); 1409 lun = 0; 1410 } else { 1411 /* Verify this is a change to MSG_IN and read the message */ 1412 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1413 udelay(7); 1414 if (sr == (CSR_ABORT | PHS_MESS_IN) || 1415 sr == (CSR_UNEXP | PHS_MESS_IN) || 1416 sr == (CSR_SRV_REQ | PHS_MESS_IN)) { 1417 /* Got MSG_IN, grab target LUN */ 1418 lun = read_1_byte(regs); 1419 /* Now we expect a 'paused with ACK asserted' int.. */ 1420 asr = read_aux_stat(regs); 1421 if (!(asr & ASR_INT)) { 1422 udelay(10); 1423 asr = read_aux_stat(regs); 1424 if (!(asr & ASR_INT)) 1425 printk 1426 ("wd33c93: No int after LUN on RESEL (%02x)\n", 1427 asr); 1428 } 1429 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1430 udelay(7); 1431 if (sr != CSR_MSGIN) 1432 printk 1433 ("wd33c93: Not paused with ACK on RESEL (%02x)\n", 1434 sr); 1435 lun &= 7; 1436 write_wd33c93_cmd(regs, 1437 WD_CMD_NEGATE_ACK); 1438 } else { 1439 printk 1440 ("wd33c93: Not MSG_IN on reselect (%02x)\n", 1441 sr); 1442 lun = 0; 1443 } 1444 } 1445 } 1446 1447 /* Now we look for the command that's reconnecting. */ 1448 1449 cmd = (struct scsi_cmnd *) hostdata->disconnected_Q; 1450 patch = NULL; 1451 while (cmd) { 1452 if (id == cmd->device->id && lun == (u8)cmd->device->lun) 1453 break; 1454 patch = cmd; 1455 cmd = (struct scsi_cmnd *) cmd->host_scribble; 1456 } 1457 1458 /* Hmm. Couldn't find a valid command.... What to do? */ 1459 1460 if (!cmd) { 1461 printk 1462 ("---TROUBLE: target %d.%d not in disconnect queue---", 1463 id, (u8)lun); 1464 spin_unlock_irqrestore(&hostdata->lock, flags); 1465 return; 1466 } 1467 1468 /* Ok, found the command - now start it up again. */ 1469 1470 if (patch) 1471 patch->host_scribble = cmd->host_scribble; 1472 else 1473 hostdata->disconnected_Q = 1474 (struct scsi_cmnd *) cmd->host_scribble; 1475 hostdata->connected = cmd; 1476 1477 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]' 1478 * because these things are preserved over a disconnect. 1479 * But we DO need to fix the DPD bit so it's correct for this command. 1480 */ 1481 1482 if (cmd->sc_data_direction == DMA_TO_DEVICE) 1483 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id); 1484 else 1485 write_wd33c93(regs, WD_DESTINATION_ID, 1486 cmd->device->id | DSTID_DPD); 1487 if (hostdata->level2 >= L2_RESELECT) { 1488 write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */ 1489 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45); 1490 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER); 1491 hostdata->state = S_RUNNING_LEVEL2; 1492 } else 1493 hostdata->state = S_CONNECTED; 1494 1495 spin_unlock_irqrestore(&hostdata->lock, flags); 1496 break; 1497 1498 default: 1499 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs); 1500 spin_unlock_irqrestore(&hostdata->lock, flags); 1501 } 1502 1503 DB(DB_INTR, printk("} ")) 1504 1505 } 1506 1507 static void 1508 reset_wd33c93(struct Scsi_Host *instance) 1509 { 1510 struct WD33C93_hostdata *hostdata = 1511 (struct WD33C93_hostdata *) instance->hostdata; 1512 const wd33c93_regs regs = hostdata->regs; 1513 uchar sr; 1514 1515 #ifdef CONFIG_SGI_IP22 1516 { 1517 int busycount = 0; 1518 extern void sgiwd93_reset(unsigned long); 1519 /* wait 'til the chip gets some time for us */ 1520 while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100) 1521 udelay (10); 1522 /* 1523 * there are scsi devices out there, which manage to lock up 1524 * the wd33c93 in a busy condition. In this state it won't 1525 * accept the reset command. The only way to solve this is to 1526 * give the chip a hardware reset (if possible). The code below 1527 * does this for the SGI Indy, where this is possible 1528 */ 1529 /* still busy ? */ 1530 if (read_aux_stat(regs) & ASR_BSY) 1531 sgiwd93_reset(instance->base); /* yeah, give it the hard one */ 1532 } 1533 #endif 1534 1535 write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF | 1536 instance->this_id | hostdata->clock_freq); 1537 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1538 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER, 1539 calc_sync_xfer(hostdata->default_sx_per / 4, 1540 DEFAULT_SX_OFF, 0, hostdata->sx_table)); 1541 write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET); 1542 1543 1544 #ifdef CONFIG_MVME147_SCSI 1545 udelay(25); /* The old wd33c93 on MVME147 needs this, at least */ 1546 #endif 1547 1548 while (!(read_aux_stat(regs) & ASR_INT)) 1549 ; 1550 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1551 1552 hostdata->microcode = read_wd33c93(regs, WD_CDB_1); 1553 if (sr == 0x00) 1554 hostdata->chip = C_WD33C93; 1555 else if (sr == 0x01) { 1556 write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */ 1557 sr = read_wd33c93(regs, WD_QUEUE_TAG); 1558 if (sr == 0xa5) { 1559 hostdata->chip = C_WD33C93B; 1560 write_wd33c93(regs, WD_QUEUE_TAG, 0); 1561 } else 1562 hostdata->chip = C_WD33C93A; 1563 } else 1564 hostdata->chip = C_UNKNOWN_CHIP; 1565 1566 if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */ 1567 hostdata->fast = 0; 1568 1569 write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE); 1570 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1571 } 1572 1573 int 1574 wd33c93_host_reset(struct scsi_cmnd * SCpnt) 1575 { 1576 struct Scsi_Host *instance; 1577 struct WD33C93_hostdata *hostdata; 1578 int i; 1579 1580 instance = SCpnt->device->host; 1581 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1582 1583 printk("scsi%d: reset. ", instance->host_no); 1584 disable_irq(instance->irq); 1585 1586 hostdata->dma_stop(instance, NULL, 0); 1587 for (i = 0; i < 8; i++) { 1588 hostdata->busy[i] = 0; 1589 hostdata->sync_xfer[i] = 1590 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF, 1591 0, hostdata->sx_table); 1592 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ 1593 } 1594 hostdata->input_Q = NULL; 1595 hostdata->selecting = NULL; 1596 hostdata->connected = NULL; 1597 hostdata->disconnected_Q = NULL; 1598 hostdata->state = S_UNCONNECTED; 1599 hostdata->dma = D_DMA_OFF; 1600 hostdata->incoming_ptr = 0; 1601 hostdata->outgoing_len = 0; 1602 1603 reset_wd33c93(instance); 1604 SCpnt->result = DID_RESET << 16; 1605 enable_irq(instance->irq); 1606 return SUCCESS; 1607 } 1608 1609 int 1610 wd33c93_abort(struct scsi_cmnd * cmd) 1611 { 1612 struct Scsi_Host *instance; 1613 struct WD33C93_hostdata *hostdata; 1614 wd33c93_regs regs; 1615 struct scsi_cmnd *tmp, *prev; 1616 1617 disable_irq(cmd->device->host->irq); 1618 1619 instance = cmd->device->host; 1620 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1621 regs = hostdata->regs; 1622 1623 /* 1624 * Case 1 : If the command hasn't been issued yet, we simply remove it 1625 * from the input_Q. 1626 */ 1627 1628 tmp = (struct scsi_cmnd *) hostdata->input_Q; 1629 prev = NULL; 1630 while (tmp) { 1631 if (tmp == cmd) { 1632 if (prev) 1633 prev->host_scribble = cmd->host_scribble; 1634 else 1635 hostdata->input_Q = 1636 (struct scsi_cmnd *) cmd->host_scribble; 1637 cmd->host_scribble = NULL; 1638 cmd->result = DID_ABORT << 16; 1639 printk 1640 ("scsi%d: Abort - removing command from input_Q. ", 1641 instance->host_no); 1642 enable_irq(cmd->device->host->irq); 1643 cmd->scsi_done(cmd); 1644 return SUCCESS; 1645 } 1646 prev = tmp; 1647 tmp = (struct scsi_cmnd *) tmp->host_scribble; 1648 } 1649 1650 /* 1651 * Case 2 : If the command is connected, we're going to fail the abort 1652 * and let the high level SCSI driver retry at a later time or 1653 * issue a reset. 1654 * 1655 * Timeouts, and therefore aborted commands, will be highly unlikely 1656 * and handling them cleanly in this situation would make the common 1657 * case of noresets less efficient, and would pollute our code. So, 1658 * we fail. 1659 */ 1660 1661 if (hostdata->connected == cmd) { 1662 uchar sr, asr; 1663 unsigned long timeout; 1664 1665 printk("scsi%d: Aborting connected command - ", 1666 instance->host_no); 1667 1668 printk("stopping DMA - "); 1669 if (hostdata->dma == D_DMA_RUNNING) { 1670 hostdata->dma_stop(instance, cmd, 0); 1671 hostdata->dma = D_DMA_OFF; 1672 } 1673 1674 printk("sending wd33c93 ABORT command - "); 1675 write_wd33c93(regs, WD_CONTROL, 1676 CTRL_IDI | CTRL_EDI | CTRL_POLLED); 1677 write_wd33c93_cmd(regs, WD_CMD_ABORT); 1678 1679 /* Now we have to attempt to flush out the FIFO... */ 1680 1681 printk("flushing fifo - "); 1682 timeout = 1000000; 1683 do { 1684 asr = read_aux_stat(regs); 1685 if (asr & ASR_DBR) 1686 read_wd33c93(regs, WD_DATA); 1687 } while (!(asr & ASR_INT) && timeout-- > 0); 1688 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1689 printk 1690 ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ", 1691 asr, sr, read_wd33c93_count(regs), timeout); 1692 1693 /* 1694 * Abort command processed. 1695 * Still connected. 1696 * We must disconnect. 1697 */ 1698 1699 printk("sending wd33c93 DISCONNECT command - "); 1700 write_wd33c93_cmd(regs, WD_CMD_DISCONNECT); 1701 1702 timeout = 1000000; 1703 asr = read_aux_stat(regs); 1704 while ((asr & ASR_CIP) && timeout-- > 0) 1705 asr = read_aux_stat(regs); 1706 sr = read_wd33c93(regs, WD_SCSI_STATUS); 1707 printk("asr=%02x, sr=%02x.", asr, sr); 1708 1709 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff)); 1710 hostdata->connected = NULL; 1711 hostdata->state = S_UNCONNECTED; 1712 cmd->result = DID_ABORT << 16; 1713 1714 /* sti();*/ 1715 wd33c93_execute(instance); 1716 1717 enable_irq(cmd->device->host->irq); 1718 cmd->scsi_done(cmd); 1719 return SUCCESS; 1720 } 1721 1722 /* 1723 * Case 3: If the command is currently disconnected from the bus, 1724 * we're not going to expend much effort here: Let's just return 1725 * an ABORT_SNOOZE and hope for the best... 1726 */ 1727 1728 tmp = (struct scsi_cmnd *) hostdata->disconnected_Q; 1729 while (tmp) { 1730 if (tmp == cmd) { 1731 printk 1732 ("scsi%d: Abort - command found on disconnected_Q - ", 1733 instance->host_no); 1734 printk("Abort SNOOZE. "); 1735 enable_irq(cmd->device->host->irq); 1736 return FAILED; 1737 } 1738 tmp = (struct scsi_cmnd *) tmp->host_scribble; 1739 } 1740 1741 /* 1742 * Case 4 : If we reached this point, the command was not found in any of 1743 * the queues. 1744 * 1745 * We probably reached this point because of an unlikely race condition 1746 * between the command completing successfully and the abortion code, 1747 * so we won't panic, but we will notify the user in case something really 1748 * broke. 1749 */ 1750 1751 /* sti();*/ 1752 wd33c93_execute(instance); 1753 1754 enable_irq(cmd->device->host->irq); 1755 printk("scsi%d: warning : SCSI command probably completed successfully" 1756 " before abortion. ", instance->host_no); 1757 return FAILED; 1758 } 1759 1760 #define MAX_WD33C93_HOSTS 4 1761 #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args) 1762 #define SETUP_BUFFER_SIZE 200 1763 static char setup_buffer[SETUP_BUFFER_SIZE]; 1764 static char setup_used[MAX_SETUP_ARGS]; 1765 static int done_setup = 0; 1766 1767 static int 1768 wd33c93_setup(char *str) 1769 { 1770 int i; 1771 char *p1, *p2; 1772 1773 /* The kernel does some processing of the command-line before calling 1774 * this function: If it begins with any decimal or hex number arguments, 1775 * ints[0] = how many numbers found and ints[1] through [n] are the values 1776 * themselves. str points to where the non-numeric arguments (if any) 1777 * start: We do our own parsing of those. We construct synthetic 'nosync' 1778 * keywords out of numeric args (to maintain compatibility with older 1779 * versions) and then add the rest of the arguments. 1780 */ 1781 1782 p1 = setup_buffer; 1783 *p1 = '\0'; 1784 if (str) 1785 strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer)); 1786 setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0'; 1787 p1 = setup_buffer; 1788 i = 0; 1789 while (*p1 && (i < MAX_SETUP_ARGS)) { 1790 p2 = strchr(p1, ','); 1791 if (p2) { 1792 *p2 = '\0'; 1793 if (p1 != p2) 1794 setup_args[i] = p1; 1795 p1 = p2 + 1; 1796 i++; 1797 } else { 1798 setup_args[i] = p1; 1799 break; 1800 } 1801 } 1802 for (i = 0; i < MAX_SETUP_ARGS; i++) 1803 setup_used[i] = 0; 1804 done_setup = 1; 1805 1806 return 1; 1807 } 1808 __setup("wd33c93=", wd33c93_setup); 1809 1810 /* check_setup_args() returns index if key found, 0 if not 1811 */ 1812 static int 1813 check_setup_args(char *key, int *flags, int *val, char *buf) 1814 { 1815 int x; 1816 char *cp; 1817 1818 for (x = 0; x < MAX_SETUP_ARGS; x++) { 1819 if (setup_used[x]) 1820 continue; 1821 if (!strncmp(setup_args[x], key, strlen(key))) 1822 break; 1823 if (!strncmp(setup_args[x], "next", strlen("next"))) 1824 return 0; 1825 } 1826 if (x == MAX_SETUP_ARGS) 1827 return 0; 1828 setup_used[x] = 1; 1829 cp = setup_args[x] + strlen(key); 1830 *val = -1; 1831 if (*cp != ':') 1832 return ++x; 1833 cp++; 1834 if ((*cp >= '0') && (*cp <= '9')) { 1835 *val = simple_strtoul(cp, NULL, 0); 1836 } 1837 return ++x; 1838 } 1839 1840 /* 1841 * Calculate internal data-transfer-clock cycle from input-clock 1842 * frequency (/MHz) and fill 'sx_table'. 1843 * 1844 * The original driver used to rely on a fixed sx_table, containing periods 1845 * for (only) the lower limits of the respective input-clock-frequency ranges 1846 * (8-10/12-15/16-20 MHz). Although it seems, that no problems occurred with 1847 * this setting so far, it might be desirable to adjust the transfer periods 1848 * closer to the really attached, possibly 25% higher, input-clock, since 1849 * - the wd33c93 may really use a significant shorter period, than it has 1850 * negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz 1851 * instead). 1852 * - the wd33c93 may ask the target for a lower transfer rate, than the target 1853 * is capable of (eg. negotiating for an assumed minimum of 252ns instead of 1854 * possible 200ns, which indeed shows up in tests as an approx. 10% lower 1855 * transfer rate). 1856 */ 1857 static inline unsigned int 1858 round_4(unsigned int x) 1859 { 1860 switch (x & 3) { 1861 case 1: --x; 1862 break; 1863 case 2: ++x; 1864 case 3: ++x; 1865 } 1866 return x; 1867 } 1868 1869 static void 1870 calc_sx_table(unsigned int mhz, struct sx_period sx_table[9]) 1871 { 1872 unsigned int d, i; 1873 if (mhz < 11) 1874 d = 2; /* divisor for 8-10 MHz input-clock */ 1875 else if (mhz < 16) 1876 d = 3; /* divisor for 12-15 MHz input-clock */ 1877 else 1878 d = 4; /* divisor for 16-20 MHz input-clock */ 1879 1880 d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */ 1881 1882 sx_table[0].period_ns = 1; 1883 sx_table[0].reg_value = 0x20; 1884 for (i = 1; i < 8; i++) { 1885 sx_table[i].period_ns = round_4((i+1)*d / 100); 1886 sx_table[i].reg_value = (i+1)*0x10; 1887 } 1888 sx_table[7].reg_value = 0; 1889 sx_table[8].period_ns = 0; 1890 sx_table[8].reg_value = 0; 1891 } 1892 1893 /* 1894 * check and, maybe, map an init- or "clock:"- argument. 1895 */ 1896 static uchar 1897 set_clk_freq(int freq, int *mhz) 1898 { 1899 int x = freq; 1900 if (WD33C93_FS_8_10 == freq) 1901 freq = 8; 1902 else if (WD33C93_FS_12_15 == freq) 1903 freq = 12; 1904 else if (WD33C93_FS_16_20 == freq) 1905 freq = 16; 1906 else if (freq > 7 && freq < 11) 1907 x = WD33C93_FS_8_10; 1908 else if (freq > 11 && freq < 16) 1909 x = WD33C93_FS_12_15; 1910 else if (freq > 15 && freq < 21) 1911 x = WD33C93_FS_16_20; 1912 else { 1913 /* Hmm, wouldn't it be safer to assume highest freq here? */ 1914 x = WD33C93_FS_8_10; 1915 freq = 8; 1916 } 1917 *mhz = freq; 1918 return x; 1919 } 1920 1921 /* 1922 * to be used with the resync: fast: ... options 1923 */ 1924 static inline void set_resync ( struct WD33C93_hostdata *hd, int mask ) 1925 { 1926 int i; 1927 for (i = 0; i < 8; i++) 1928 if (mask & (1 << i)) 1929 hd->sync_stat[i] = SS_UNSET; 1930 } 1931 1932 void 1933 wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs, 1934 dma_setup_t setup, dma_stop_t stop, int clock_freq) 1935 { 1936 struct WD33C93_hostdata *hostdata; 1937 int i; 1938 int flags; 1939 int val; 1940 char buf[32]; 1941 1942 if (!done_setup && setup_strings) 1943 wd33c93_setup(setup_strings); 1944 1945 hostdata = (struct WD33C93_hostdata *) instance->hostdata; 1946 1947 hostdata->regs = regs; 1948 hostdata->clock_freq = set_clk_freq(clock_freq, &i); 1949 calc_sx_table(i, hostdata->sx_table); 1950 hostdata->dma_setup = setup; 1951 hostdata->dma_stop = stop; 1952 hostdata->dma_bounce_buffer = NULL; 1953 hostdata->dma_bounce_len = 0; 1954 for (i = 0; i < 8; i++) { 1955 hostdata->busy[i] = 0; 1956 hostdata->sync_xfer[i] = 1957 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF, 1958 0, hostdata->sx_table); 1959 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */ 1960 #ifdef PROC_STATISTICS 1961 hostdata->cmd_cnt[i] = 0; 1962 hostdata->disc_allowed_cnt[i] = 0; 1963 hostdata->disc_done_cnt[i] = 0; 1964 #endif 1965 } 1966 hostdata->input_Q = NULL; 1967 hostdata->selecting = NULL; 1968 hostdata->connected = NULL; 1969 hostdata->disconnected_Q = NULL; 1970 hostdata->state = S_UNCONNECTED; 1971 hostdata->dma = D_DMA_OFF; 1972 hostdata->level2 = L2_BASIC; 1973 hostdata->disconnect = DIS_ADAPTIVE; 1974 hostdata->args = DEBUG_DEFAULTS; 1975 hostdata->incoming_ptr = 0; 1976 hostdata->outgoing_len = 0; 1977 hostdata->default_sx_per = DEFAULT_SX_PER; 1978 hostdata->no_dma = 0; /* default is DMA enabled */ 1979 1980 #ifdef PROC_INTERFACE 1981 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS | 1982 PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP; 1983 #ifdef PROC_STATISTICS 1984 hostdata->dma_cnt = 0; 1985 hostdata->pio_cnt = 0; 1986 hostdata->int_cnt = 0; 1987 #endif 1988 #endif 1989 1990 if (check_setup_args("clock", &flags, &val, buf)) { 1991 hostdata->clock_freq = set_clk_freq(val, &val); 1992 calc_sx_table(val, hostdata->sx_table); 1993 } 1994 1995 if (check_setup_args("nosync", &flags, &val, buf)) 1996 hostdata->no_sync = val; 1997 1998 if (check_setup_args("nodma", &flags, &val, buf)) 1999 hostdata->no_dma = (val == -1) ? 1 : val; 2000 2001 if (check_setup_args("period", &flags, &val, buf)) 2002 hostdata->default_sx_per = 2003 hostdata->sx_table[round_period((unsigned int) val, 2004 hostdata->sx_table)].period_ns; 2005 2006 if (check_setup_args("disconnect", &flags, &val, buf)) { 2007 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS)) 2008 hostdata->disconnect = val; 2009 else 2010 hostdata->disconnect = DIS_ADAPTIVE; 2011 } 2012 2013 if (check_setup_args("level2", &flags, &val, buf)) 2014 hostdata->level2 = val; 2015 2016 if (check_setup_args("debug", &flags, &val, buf)) 2017 hostdata->args = val & DB_MASK; 2018 2019 if (check_setup_args("burst", &flags, &val, buf)) 2020 hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA; 2021 2022 if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */ 2023 && check_setup_args("fast", &flags, &val, buf)) 2024 hostdata->fast = !!val; 2025 2026 if ((i = check_setup_args("next", &flags, &val, buf))) { 2027 while (i) 2028 setup_used[--i] = 1; 2029 } 2030 #ifdef PROC_INTERFACE 2031 if (check_setup_args("proc", &flags, &val, buf)) 2032 hostdata->proc = val; 2033 #endif 2034 2035 spin_lock_irq(&hostdata->lock); 2036 reset_wd33c93(instance); 2037 spin_unlock_irq(&hostdata->lock); 2038 2039 printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d", 2040 instance->host_no, 2041 (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip == 2042 C_WD33C93A) ? 2043 "WD33c93A" : (hostdata->chip == 2044 C_WD33C93B) ? "WD33c93B" : "unknown", 2045 hostdata->microcode, hostdata->no_sync, hostdata->no_dma); 2046 #ifdef DEBUGGING_ON 2047 printk(" debug_flags=0x%02x\n", hostdata->args); 2048 #else 2049 printk(" debugging=OFF\n"); 2050 #endif 2051 printk(" setup_args="); 2052 for (i = 0; i < MAX_SETUP_ARGS; i++) 2053 printk("%s,", setup_args[i]); 2054 printk("\n"); 2055 printk(" Version %s - %s\n", WD33C93_VERSION, WD33C93_DATE); 2056 } 2057 2058 int wd33c93_write_info(struct Scsi_Host *instance, char *buf, int len) 2059 { 2060 #ifdef PROC_INTERFACE 2061 char *bp; 2062 struct WD33C93_hostdata *hd; 2063 int x; 2064 2065 hd = (struct WD33C93_hostdata *) instance->hostdata; 2066 2067 /* We accept the following 2068 * keywords (same format as command-line, but arguments are not optional): 2069 * debug 2070 * disconnect 2071 * period 2072 * resync 2073 * proc 2074 * nodma 2075 * level2 2076 * burst 2077 * fast 2078 * nosync 2079 */ 2080 2081 buf[len] = '\0'; 2082 for (bp = buf; *bp; ) { 2083 while (',' == *bp || ' ' == *bp) 2084 ++bp; 2085 if (!strncmp(bp, "debug:", 6)) { 2086 hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK; 2087 } else if (!strncmp(bp, "disconnect:", 11)) { 2088 x = simple_strtoul(bp+11, &bp, 0); 2089 if (x < DIS_NEVER || x > DIS_ALWAYS) 2090 x = DIS_ADAPTIVE; 2091 hd->disconnect = x; 2092 } else if (!strncmp(bp, "period:", 7)) { 2093 x = simple_strtoul(bp+7, &bp, 0); 2094 hd->default_sx_per = 2095 hd->sx_table[round_period((unsigned int) x, 2096 hd->sx_table)].period_ns; 2097 } else if (!strncmp(bp, "resync:", 7)) { 2098 set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0)); 2099 } else if (!strncmp(bp, "proc:", 5)) { 2100 hd->proc = simple_strtoul(bp+5, &bp, 0); 2101 } else if (!strncmp(bp, "nodma:", 6)) { 2102 hd->no_dma = simple_strtoul(bp+6, &bp, 0); 2103 } else if (!strncmp(bp, "level2:", 7)) { 2104 hd->level2 = simple_strtoul(bp+7, &bp, 0); 2105 } else if (!strncmp(bp, "burst:", 6)) { 2106 hd->dma_mode = 2107 simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA; 2108 } else if (!strncmp(bp, "fast:", 5)) { 2109 x = !!simple_strtol(bp+5, &bp, 0); 2110 if (x != hd->fast) 2111 set_resync(hd, 0xff); 2112 hd->fast = x; 2113 } else if (!strncmp(bp, "nosync:", 7)) { 2114 x = simple_strtoul(bp+7, &bp, 0); 2115 set_resync(hd, x ^ hd->no_sync); 2116 hd->no_sync = x; 2117 } else { 2118 break; /* unknown keyword,syntax-error,... */ 2119 } 2120 } 2121 return len; 2122 #else 2123 return 0; 2124 #endif 2125 } 2126 2127 int 2128 wd33c93_show_info(struct seq_file *m, struct Scsi_Host *instance) 2129 { 2130 #ifdef PROC_INTERFACE 2131 struct WD33C93_hostdata *hd; 2132 struct scsi_cmnd *cmd; 2133 int x; 2134 2135 hd = (struct WD33C93_hostdata *) instance->hostdata; 2136 2137 spin_lock_irq(&hd->lock); 2138 if (hd->proc & PR_VERSION) 2139 seq_printf(m, "\nVersion %s - %s.", 2140 WD33C93_VERSION, WD33C93_DATE); 2141 2142 if (hd->proc & PR_INFO) { 2143 seq_printf(m, "\nclock_freq=%02x no_sync=%02x no_dma=%d" 2144 " dma_mode=%02x fast=%d", 2145 hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast); 2146 seq_printf(m, "\nsync_xfer[] = "); 2147 for (x = 0; x < 7; x++) 2148 seq_printf(m, "\t%02x", hd->sync_xfer[x]); 2149 seq_printf(m, "\nsync_stat[] = "); 2150 for (x = 0; x < 7; x++) 2151 seq_printf(m, "\t%02x", hd->sync_stat[x]); 2152 } 2153 #ifdef PROC_STATISTICS 2154 if (hd->proc & PR_STATISTICS) { 2155 seq_printf(m, "\ncommands issued: "); 2156 for (x = 0; x < 7; x++) 2157 seq_printf(m, "\t%ld", hd->cmd_cnt[x]); 2158 seq_printf(m, "\ndisconnects allowed:"); 2159 for (x = 0; x < 7; x++) 2160 seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]); 2161 seq_printf(m, "\ndisconnects done: "); 2162 for (x = 0; x < 7; x++) 2163 seq_printf(m, "\t%ld", hd->disc_done_cnt[x]); 2164 seq_printf(m, 2165 "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO", 2166 hd->int_cnt, hd->dma_cnt, hd->pio_cnt); 2167 } 2168 #endif 2169 if (hd->proc & PR_CONNECTED) { 2170 seq_printf(m, "\nconnected: "); 2171 if (hd->connected) { 2172 cmd = (struct scsi_cmnd *) hd->connected; 2173 seq_printf(m, " %d:%llu(%02x)", 2174 cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2175 } 2176 } 2177 if (hd->proc & PR_INPUTQ) { 2178 seq_printf(m, "\ninput_Q: "); 2179 cmd = (struct scsi_cmnd *) hd->input_Q; 2180 while (cmd) { 2181 seq_printf(m, " %d:%llu(%02x)", 2182 cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2183 cmd = (struct scsi_cmnd *) cmd->host_scribble; 2184 } 2185 } 2186 if (hd->proc & PR_DISCQ) { 2187 seq_printf(m, "\ndisconnected_Q:"); 2188 cmd = (struct scsi_cmnd *) hd->disconnected_Q; 2189 while (cmd) { 2190 seq_printf(m, " %d:%llu(%02x)", 2191 cmd->device->id, cmd->device->lun, cmd->cmnd[0]); 2192 cmd = (struct scsi_cmnd *) cmd->host_scribble; 2193 } 2194 } 2195 seq_printf(m, "\n"); 2196 spin_unlock_irq(&hd->lock); 2197 #endif /* PROC_INTERFACE */ 2198 return 0; 2199 } 2200 2201 EXPORT_SYMBOL(wd33c93_host_reset); 2202 EXPORT_SYMBOL(wd33c93_init); 2203 EXPORT_SYMBOL(wd33c93_abort); 2204 EXPORT_SYMBOL(wd33c93_queuecommand); 2205 EXPORT_SYMBOL(wd33c93_intr); 2206 EXPORT_SYMBOL(wd33c93_show_info); 2207 EXPORT_SYMBOL(wd33c93_write_info); 2208