1 /* 2 * Linux driver for VMware's para-virtualized SCSI HBA. 3 * 4 * Copyright (C) 2008-2014, VMware, Inc. All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the 8 * Free Software Foundation; version 2 of the License and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but 11 * WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 13 * NON INFRINGEMENT. See the GNU General Public License for more 14 * details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Maintained by: Jim Gill <jgill@vmware.com> 21 * 22 */ 23 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/interrupt.h> 27 #include <linux/slab.h> 28 #include <linux/workqueue.h> 29 #include <linux/pci.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_cmnd.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_tcq.h> 36 37 #include "vmw_pvscsi.h" 38 39 #define PVSCSI_LINUX_DRIVER_DESC "VMware PVSCSI driver" 40 41 MODULE_DESCRIPTION(PVSCSI_LINUX_DRIVER_DESC); 42 MODULE_AUTHOR("VMware, Inc."); 43 MODULE_LICENSE("GPL"); 44 MODULE_VERSION(PVSCSI_DRIVER_VERSION_STRING); 45 46 #define PVSCSI_DEFAULT_NUM_PAGES_PER_RING 8 47 #define PVSCSI_DEFAULT_NUM_PAGES_MSG_RING 1 48 #define PVSCSI_DEFAULT_QUEUE_DEPTH 254 49 #define SGL_SIZE PAGE_SIZE 50 51 struct pvscsi_sg_list { 52 struct PVSCSISGElement sge[PVSCSI_MAX_NUM_SG_ENTRIES_PER_SEGMENT]; 53 }; 54 55 struct pvscsi_ctx { 56 /* 57 * The index of the context in cmd_map serves as the context ID for a 58 * 1-to-1 mapping completions back to requests. 59 */ 60 struct scsi_cmnd *cmd; 61 struct pvscsi_sg_list *sgl; 62 struct list_head list; 63 dma_addr_t dataPA; 64 dma_addr_t sensePA; 65 dma_addr_t sglPA; 66 struct completion *abort_cmp; 67 }; 68 69 struct pvscsi_adapter { 70 char *mmioBase; 71 u8 rev; 72 bool use_msg; 73 bool use_req_threshold; 74 75 spinlock_t hw_lock; 76 77 struct workqueue_struct *workqueue; 78 struct work_struct work; 79 80 struct PVSCSIRingReqDesc *req_ring; 81 unsigned req_pages; 82 unsigned req_depth; 83 dma_addr_t reqRingPA; 84 85 struct PVSCSIRingCmpDesc *cmp_ring; 86 unsigned cmp_pages; 87 dma_addr_t cmpRingPA; 88 89 struct PVSCSIRingMsgDesc *msg_ring; 90 unsigned msg_pages; 91 dma_addr_t msgRingPA; 92 93 struct PVSCSIRingsState *rings_state; 94 dma_addr_t ringStatePA; 95 96 struct pci_dev *dev; 97 struct Scsi_Host *host; 98 99 struct list_head cmd_pool; 100 struct pvscsi_ctx *cmd_map; 101 }; 102 103 104 /* Command line parameters */ 105 static int pvscsi_ring_pages; 106 static int pvscsi_msg_ring_pages = PVSCSI_DEFAULT_NUM_PAGES_MSG_RING; 107 static int pvscsi_cmd_per_lun = PVSCSI_DEFAULT_QUEUE_DEPTH; 108 static bool pvscsi_disable_msi; 109 static bool pvscsi_disable_msix; 110 static bool pvscsi_use_msg = true; 111 static bool pvscsi_use_req_threshold = true; 112 113 #define PVSCSI_RW (S_IRUSR | S_IWUSR) 114 115 module_param_named(ring_pages, pvscsi_ring_pages, int, PVSCSI_RW); 116 MODULE_PARM_DESC(ring_pages, "Number of pages per req/cmp ring - (default=" 117 __stringify(PVSCSI_DEFAULT_NUM_PAGES_PER_RING) 118 "[up to 16 targets]," 119 __stringify(PVSCSI_SETUP_RINGS_MAX_NUM_PAGES) 120 "[for 16+ targets])"); 121 122 module_param_named(msg_ring_pages, pvscsi_msg_ring_pages, int, PVSCSI_RW); 123 MODULE_PARM_DESC(msg_ring_pages, "Number of pages for the msg ring - (default=" 124 __stringify(PVSCSI_DEFAULT_NUM_PAGES_MSG_RING) ")"); 125 126 module_param_named(cmd_per_lun, pvscsi_cmd_per_lun, int, PVSCSI_RW); 127 MODULE_PARM_DESC(cmd_per_lun, "Maximum commands per lun - (default=" 128 __stringify(PVSCSI_DEFAULT_QUEUE_DEPTH) ")"); 129 130 module_param_named(disable_msi, pvscsi_disable_msi, bool, PVSCSI_RW); 131 MODULE_PARM_DESC(disable_msi, "Disable MSI use in driver - (default=0)"); 132 133 module_param_named(disable_msix, pvscsi_disable_msix, bool, PVSCSI_RW); 134 MODULE_PARM_DESC(disable_msix, "Disable MSI-X use in driver - (default=0)"); 135 136 module_param_named(use_msg, pvscsi_use_msg, bool, PVSCSI_RW); 137 MODULE_PARM_DESC(use_msg, "Use msg ring when available - (default=1)"); 138 139 module_param_named(use_req_threshold, pvscsi_use_req_threshold, 140 bool, PVSCSI_RW); 141 MODULE_PARM_DESC(use_req_threshold, "Use driver-based request coalescing if configured - (default=1)"); 142 143 static const struct pci_device_id pvscsi_pci_tbl[] = { 144 { PCI_VDEVICE(VMWARE, PCI_DEVICE_ID_VMWARE_PVSCSI) }, 145 { 0 } 146 }; 147 148 MODULE_DEVICE_TABLE(pci, pvscsi_pci_tbl); 149 150 static struct device * 151 pvscsi_dev(const struct pvscsi_adapter *adapter) 152 { 153 return &(adapter->dev->dev); 154 } 155 156 static struct pvscsi_ctx * 157 pvscsi_find_context(const struct pvscsi_adapter *adapter, struct scsi_cmnd *cmd) 158 { 159 struct pvscsi_ctx *ctx, *end; 160 161 end = &adapter->cmd_map[adapter->req_depth]; 162 for (ctx = adapter->cmd_map; ctx < end; ctx++) 163 if (ctx->cmd == cmd) 164 return ctx; 165 166 return NULL; 167 } 168 169 static struct pvscsi_ctx * 170 pvscsi_acquire_context(struct pvscsi_adapter *adapter, struct scsi_cmnd *cmd) 171 { 172 struct pvscsi_ctx *ctx; 173 174 if (list_empty(&adapter->cmd_pool)) 175 return NULL; 176 177 ctx = list_first_entry(&adapter->cmd_pool, struct pvscsi_ctx, list); 178 ctx->cmd = cmd; 179 list_del(&ctx->list); 180 181 return ctx; 182 } 183 184 static void pvscsi_release_context(struct pvscsi_adapter *adapter, 185 struct pvscsi_ctx *ctx) 186 { 187 ctx->cmd = NULL; 188 ctx->abort_cmp = NULL; 189 list_add(&ctx->list, &adapter->cmd_pool); 190 } 191 192 /* 193 * Map a pvscsi_ctx struct to a context ID field value; we map to a simple 194 * non-zero integer. ctx always points to an entry in cmd_map array, hence 195 * the return value is always >=1. 196 */ 197 static u64 pvscsi_map_context(const struct pvscsi_adapter *adapter, 198 const struct pvscsi_ctx *ctx) 199 { 200 return ctx - adapter->cmd_map + 1; 201 } 202 203 static struct pvscsi_ctx * 204 pvscsi_get_context(const struct pvscsi_adapter *adapter, u64 context) 205 { 206 return &adapter->cmd_map[context - 1]; 207 } 208 209 static void pvscsi_reg_write(const struct pvscsi_adapter *adapter, 210 u32 offset, u32 val) 211 { 212 writel(val, adapter->mmioBase + offset); 213 } 214 215 static u32 pvscsi_reg_read(const struct pvscsi_adapter *adapter, u32 offset) 216 { 217 return readl(adapter->mmioBase + offset); 218 } 219 220 static u32 pvscsi_read_intr_status(const struct pvscsi_adapter *adapter) 221 { 222 return pvscsi_reg_read(adapter, PVSCSI_REG_OFFSET_INTR_STATUS); 223 } 224 225 static void pvscsi_write_intr_status(const struct pvscsi_adapter *adapter, 226 u32 val) 227 { 228 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_INTR_STATUS, val); 229 } 230 231 static void pvscsi_unmask_intr(const struct pvscsi_adapter *adapter) 232 { 233 u32 intr_bits; 234 235 intr_bits = PVSCSI_INTR_CMPL_MASK; 236 if (adapter->use_msg) 237 intr_bits |= PVSCSI_INTR_MSG_MASK; 238 239 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_INTR_MASK, intr_bits); 240 } 241 242 static void pvscsi_mask_intr(const struct pvscsi_adapter *adapter) 243 { 244 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_INTR_MASK, 0); 245 } 246 247 static void pvscsi_write_cmd_desc(const struct pvscsi_adapter *adapter, 248 u32 cmd, const void *desc, size_t len) 249 { 250 const u32 *ptr = desc; 251 size_t i; 252 253 len /= sizeof(*ptr); 254 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_COMMAND, cmd); 255 for (i = 0; i < len; i++) 256 pvscsi_reg_write(adapter, 257 PVSCSI_REG_OFFSET_COMMAND_DATA, ptr[i]); 258 } 259 260 static void pvscsi_abort_cmd(const struct pvscsi_adapter *adapter, 261 const struct pvscsi_ctx *ctx) 262 { 263 struct PVSCSICmdDescAbortCmd cmd = { 0 }; 264 265 cmd.target = ctx->cmd->device->id; 266 cmd.context = pvscsi_map_context(adapter, ctx); 267 268 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_ABORT_CMD, &cmd, sizeof(cmd)); 269 } 270 271 static void pvscsi_kick_rw_io(const struct pvscsi_adapter *adapter) 272 { 273 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_KICK_RW_IO, 0); 274 } 275 276 static void pvscsi_process_request_ring(const struct pvscsi_adapter *adapter) 277 { 278 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_KICK_NON_RW_IO, 0); 279 } 280 281 static int scsi_is_rw(unsigned char op) 282 { 283 return op == READ_6 || op == WRITE_6 || 284 op == READ_10 || op == WRITE_10 || 285 op == READ_12 || op == WRITE_12 || 286 op == READ_16 || op == WRITE_16; 287 } 288 289 static void pvscsi_kick_io(const struct pvscsi_adapter *adapter, 290 unsigned char op) 291 { 292 if (scsi_is_rw(op)) { 293 struct PVSCSIRingsState *s = adapter->rings_state; 294 295 if (!adapter->use_req_threshold || 296 s->reqProdIdx - s->reqConsIdx >= s->reqCallThreshold) 297 pvscsi_kick_rw_io(adapter); 298 } else { 299 pvscsi_process_request_ring(adapter); 300 } 301 } 302 303 static void ll_adapter_reset(const struct pvscsi_adapter *adapter) 304 { 305 dev_dbg(pvscsi_dev(adapter), "Adapter Reset on %p\n", adapter); 306 307 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_ADAPTER_RESET, NULL, 0); 308 } 309 310 static void ll_bus_reset(const struct pvscsi_adapter *adapter) 311 { 312 dev_dbg(pvscsi_dev(adapter), "Resetting bus on %p\n", adapter); 313 314 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_RESET_BUS, NULL, 0); 315 } 316 317 static void ll_device_reset(const struct pvscsi_adapter *adapter, u32 target) 318 { 319 struct PVSCSICmdDescResetDevice cmd = { 0 }; 320 321 dev_dbg(pvscsi_dev(adapter), "Resetting device: target=%u\n", target); 322 323 cmd.target = target; 324 325 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_RESET_DEVICE, 326 &cmd, sizeof(cmd)); 327 } 328 329 static void pvscsi_create_sg(struct pvscsi_ctx *ctx, 330 struct scatterlist *sg, unsigned count) 331 { 332 unsigned i; 333 struct PVSCSISGElement *sge; 334 335 BUG_ON(count > PVSCSI_MAX_NUM_SG_ENTRIES_PER_SEGMENT); 336 337 sge = &ctx->sgl->sge[0]; 338 for (i = 0; i < count; i++, sg = sg_next(sg)) { 339 sge[i].addr = sg_dma_address(sg); 340 sge[i].length = sg_dma_len(sg); 341 sge[i].flags = 0; 342 } 343 } 344 345 /* 346 * Map all data buffers for a command into PCI space and 347 * setup the scatter/gather list if needed. 348 */ 349 static int pvscsi_map_buffers(struct pvscsi_adapter *adapter, 350 struct pvscsi_ctx *ctx, struct scsi_cmnd *cmd, 351 struct PVSCSIRingReqDesc *e) 352 { 353 unsigned count; 354 unsigned bufflen = scsi_bufflen(cmd); 355 struct scatterlist *sg; 356 357 e->dataLen = bufflen; 358 e->dataAddr = 0; 359 if (bufflen == 0) 360 return 0; 361 362 sg = scsi_sglist(cmd); 363 count = scsi_sg_count(cmd); 364 if (count != 0) { 365 int segs = scsi_dma_map(cmd); 366 367 if (segs == -ENOMEM) { 368 scmd_printk(KERN_DEBUG, cmd, 369 "vmw_pvscsi: Failed to map cmd sglist for DMA.\n"); 370 return -ENOMEM; 371 } else if (segs > 1) { 372 pvscsi_create_sg(ctx, sg, segs); 373 374 e->flags |= PVSCSI_FLAG_CMD_WITH_SG_LIST; 375 ctx->sglPA = dma_map_single(&adapter->dev->dev, 376 ctx->sgl, SGL_SIZE, DMA_TO_DEVICE); 377 if (dma_mapping_error(&adapter->dev->dev, ctx->sglPA)) { 378 scmd_printk(KERN_ERR, cmd, 379 "vmw_pvscsi: Failed to map ctx sglist for DMA.\n"); 380 scsi_dma_unmap(cmd); 381 ctx->sglPA = 0; 382 return -ENOMEM; 383 } 384 e->dataAddr = ctx->sglPA; 385 } else 386 e->dataAddr = sg_dma_address(sg); 387 } else { 388 /* 389 * In case there is no S/G list, scsi_sglist points 390 * directly to the buffer. 391 */ 392 ctx->dataPA = dma_map_single(&adapter->dev->dev, sg, bufflen, 393 cmd->sc_data_direction); 394 if (dma_mapping_error(&adapter->dev->dev, ctx->dataPA)) { 395 scmd_printk(KERN_DEBUG, cmd, 396 "vmw_pvscsi: Failed to map direct data buffer for DMA.\n"); 397 return -ENOMEM; 398 } 399 e->dataAddr = ctx->dataPA; 400 } 401 402 return 0; 403 } 404 405 /* 406 * The device incorrectly doesn't clear the first byte of the sense 407 * buffer in some cases. We have to do it ourselves. 408 * Otherwise we run into trouble when SWIOTLB is forced. 409 */ 410 static void pvscsi_patch_sense(struct scsi_cmnd *cmd) 411 { 412 if (cmd->sense_buffer) 413 cmd->sense_buffer[0] = 0; 414 } 415 416 static void pvscsi_unmap_buffers(const struct pvscsi_adapter *adapter, 417 struct pvscsi_ctx *ctx) 418 { 419 struct scsi_cmnd *cmd; 420 unsigned bufflen; 421 422 cmd = ctx->cmd; 423 bufflen = scsi_bufflen(cmd); 424 425 if (bufflen != 0) { 426 unsigned count = scsi_sg_count(cmd); 427 428 if (count != 0) { 429 scsi_dma_unmap(cmd); 430 if (ctx->sglPA) { 431 dma_unmap_single(&adapter->dev->dev, ctx->sglPA, 432 SGL_SIZE, DMA_TO_DEVICE); 433 ctx->sglPA = 0; 434 } 435 } else 436 dma_unmap_single(&adapter->dev->dev, ctx->dataPA, 437 bufflen, cmd->sc_data_direction); 438 } 439 if (cmd->sense_buffer) 440 dma_unmap_single(&adapter->dev->dev, ctx->sensePA, 441 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 442 } 443 444 static int pvscsi_allocate_rings(struct pvscsi_adapter *adapter) 445 { 446 adapter->rings_state = dma_alloc_coherent(&adapter->dev->dev, PAGE_SIZE, 447 &adapter->ringStatePA, GFP_KERNEL); 448 if (!adapter->rings_state) 449 return -ENOMEM; 450 451 adapter->req_pages = min(PVSCSI_MAX_NUM_PAGES_REQ_RING, 452 pvscsi_ring_pages); 453 adapter->req_depth = adapter->req_pages 454 * PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE; 455 adapter->req_ring = dma_alloc_coherent(&adapter->dev->dev, 456 adapter->req_pages * PAGE_SIZE, &adapter->reqRingPA, 457 GFP_KERNEL); 458 if (!adapter->req_ring) 459 return -ENOMEM; 460 461 adapter->cmp_pages = min(PVSCSI_MAX_NUM_PAGES_CMP_RING, 462 pvscsi_ring_pages); 463 adapter->cmp_ring = dma_alloc_coherent(&adapter->dev->dev, 464 adapter->cmp_pages * PAGE_SIZE, &adapter->cmpRingPA, 465 GFP_KERNEL); 466 if (!adapter->cmp_ring) 467 return -ENOMEM; 468 469 BUG_ON(!IS_ALIGNED(adapter->ringStatePA, PAGE_SIZE)); 470 BUG_ON(!IS_ALIGNED(adapter->reqRingPA, PAGE_SIZE)); 471 BUG_ON(!IS_ALIGNED(adapter->cmpRingPA, PAGE_SIZE)); 472 473 if (!adapter->use_msg) 474 return 0; 475 476 adapter->msg_pages = min(PVSCSI_MAX_NUM_PAGES_MSG_RING, 477 pvscsi_msg_ring_pages); 478 adapter->msg_ring = dma_alloc_coherent(&adapter->dev->dev, 479 adapter->msg_pages * PAGE_SIZE, &adapter->msgRingPA, 480 GFP_KERNEL); 481 if (!adapter->msg_ring) 482 return -ENOMEM; 483 BUG_ON(!IS_ALIGNED(adapter->msgRingPA, PAGE_SIZE)); 484 485 return 0; 486 } 487 488 static void pvscsi_setup_all_rings(const struct pvscsi_adapter *adapter) 489 { 490 struct PVSCSICmdDescSetupRings cmd = { 0 }; 491 dma_addr_t base; 492 unsigned i; 493 494 cmd.ringsStatePPN = adapter->ringStatePA >> PAGE_SHIFT; 495 cmd.reqRingNumPages = adapter->req_pages; 496 cmd.cmpRingNumPages = adapter->cmp_pages; 497 498 base = adapter->reqRingPA; 499 for (i = 0; i < adapter->req_pages; i++) { 500 cmd.reqRingPPNs[i] = base >> PAGE_SHIFT; 501 base += PAGE_SIZE; 502 } 503 504 base = adapter->cmpRingPA; 505 for (i = 0; i < adapter->cmp_pages; i++) { 506 cmd.cmpRingPPNs[i] = base >> PAGE_SHIFT; 507 base += PAGE_SIZE; 508 } 509 510 memset(adapter->rings_state, 0, PAGE_SIZE); 511 memset(adapter->req_ring, 0, adapter->req_pages * PAGE_SIZE); 512 memset(adapter->cmp_ring, 0, adapter->cmp_pages * PAGE_SIZE); 513 514 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_SETUP_RINGS, 515 &cmd, sizeof(cmd)); 516 517 if (adapter->use_msg) { 518 struct PVSCSICmdDescSetupMsgRing cmd_msg = { 0 }; 519 520 cmd_msg.numPages = adapter->msg_pages; 521 522 base = adapter->msgRingPA; 523 for (i = 0; i < adapter->msg_pages; i++) { 524 cmd_msg.ringPPNs[i] = base >> PAGE_SHIFT; 525 base += PAGE_SIZE; 526 } 527 memset(adapter->msg_ring, 0, adapter->msg_pages * PAGE_SIZE); 528 529 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_SETUP_MSG_RING, 530 &cmd_msg, sizeof(cmd_msg)); 531 } 532 } 533 534 static int pvscsi_change_queue_depth(struct scsi_device *sdev, int qdepth) 535 { 536 if (!sdev->tagged_supported) 537 qdepth = 1; 538 return scsi_change_queue_depth(sdev, qdepth); 539 } 540 541 /* 542 * Pull a completion descriptor off and pass the completion back 543 * to the SCSI mid layer. 544 */ 545 static void pvscsi_complete_request(struct pvscsi_adapter *adapter, 546 const struct PVSCSIRingCmpDesc *e) 547 { 548 struct pvscsi_ctx *ctx; 549 struct scsi_cmnd *cmd; 550 struct completion *abort_cmp; 551 u32 btstat = e->hostStatus; 552 u32 sdstat = e->scsiStatus; 553 554 ctx = pvscsi_get_context(adapter, e->context); 555 cmd = ctx->cmd; 556 abort_cmp = ctx->abort_cmp; 557 pvscsi_unmap_buffers(adapter, ctx); 558 if (sdstat != SAM_STAT_CHECK_CONDITION) 559 pvscsi_patch_sense(cmd); 560 pvscsi_release_context(adapter, ctx); 561 if (abort_cmp) { 562 /* 563 * The command was requested to be aborted. Just signal that 564 * the request completed and swallow the actual cmd completion 565 * here. The abort handler will post a completion for this 566 * command indicating that it got successfully aborted. 567 */ 568 complete(abort_cmp); 569 return; 570 } 571 572 cmd->result = 0; 573 if (sdstat != SAM_STAT_GOOD && 574 (btstat == BTSTAT_SUCCESS || 575 btstat == BTSTAT_LINKED_COMMAND_COMPLETED || 576 btstat == BTSTAT_LINKED_COMMAND_COMPLETED_WITH_FLAG)) { 577 if (sdstat == SAM_STAT_COMMAND_TERMINATED) { 578 cmd->result = (DID_RESET << 16); 579 } else { 580 cmd->result = (DID_OK << 16) | sdstat; 581 if (sdstat == SAM_STAT_CHECK_CONDITION && 582 cmd->sense_buffer) 583 cmd->result |= (DRIVER_SENSE << 24); 584 } 585 } else 586 switch (btstat) { 587 case BTSTAT_SUCCESS: 588 case BTSTAT_LINKED_COMMAND_COMPLETED: 589 case BTSTAT_LINKED_COMMAND_COMPLETED_WITH_FLAG: 590 /* If everything went fine, let's move on.. */ 591 cmd->result = (DID_OK << 16); 592 break; 593 594 case BTSTAT_DATARUN: 595 case BTSTAT_DATA_UNDERRUN: 596 /* Report residual data in underruns */ 597 scsi_set_resid(cmd, scsi_bufflen(cmd) - e->dataLen); 598 cmd->result = (DID_ERROR << 16); 599 break; 600 601 case BTSTAT_SELTIMEO: 602 /* Our emulation returns this for non-connected devs */ 603 cmd->result = (DID_BAD_TARGET << 16); 604 break; 605 606 case BTSTAT_LUNMISMATCH: 607 case BTSTAT_TAGREJECT: 608 case BTSTAT_BADMSG: 609 cmd->result = (DRIVER_INVALID << 24); 610 /* fall through */ 611 612 case BTSTAT_HAHARDWARE: 613 case BTSTAT_INVPHASE: 614 case BTSTAT_HATIMEOUT: 615 case BTSTAT_NORESPONSE: 616 case BTSTAT_DISCONNECT: 617 case BTSTAT_HASOFTWARE: 618 case BTSTAT_BUSFREE: 619 case BTSTAT_SENSFAILED: 620 cmd->result |= (DID_ERROR << 16); 621 break; 622 623 case BTSTAT_SENTRST: 624 case BTSTAT_RECVRST: 625 case BTSTAT_BUSRESET: 626 cmd->result = (DID_RESET << 16); 627 break; 628 629 case BTSTAT_ABORTQUEUE: 630 cmd->result = (DID_BUS_BUSY << 16); 631 break; 632 633 case BTSTAT_SCSIPARITY: 634 cmd->result = (DID_PARITY << 16); 635 break; 636 637 default: 638 cmd->result = (DID_ERROR << 16); 639 scmd_printk(KERN_DEBUG, cmd, 640 "Unknown completion status: 0x%x\n", 641 btstat); 642 } 643 644 dev_dbg(&cmd->device->sdev_gendev, 645 "cmd=%p %x ctx=%p result=0x%x status=0x%x,%x\n", 646 cmd, cmd->cmnd[0], ctx, cmd->result, btstat, sdstat); 647 648 cmd->scsi_done(cmd); 649 } 650 651 /* 652 * barrier usage : Since the PVSCSI device is emulated, there could be cases 653 * where we may want to serialize some accesses between the driver and the 654 * emulation layer. We use compiler barriers instead of the more expensive 655 * memory barriers because PVSCSI is only supported on X86 which has strong 656 * memory access ordering. 657 */ 658 static void pvscsi_process_completion_ring(struct pvscsi_adapter *adapter) 659 { 660 struct PVSCSIRingsState *s = adapter->rings_state; 661 struct PVSCSIRingCmpDesc *ring = adapter->cmp_ring; 662 u32 cmp_entries = s->cmpNumEntriesLog2; 663 664 while (s->cmpConsIdx != s->cmpProdIdx) { 665 struct PVSCSIRingCmpDesc *e = ring + (s->cmpConsIdx & 666 MASK(cmp_entries)); 667 /* 668 * This barrier() ensures that *e is not dereferenced while 669 * the device emulation still writes data into the slot. 670 * Since the device emulation advances s->cmpProdIdx only after 671 * updating the slot we want to check it first. 672 */ 673 barrier(); 674 pvscsi_complete_request(adapter, e); 675 /* 676 * This barrier() ensures that compiler doesn't reorder write 677 * to s->cmpConsIdx before the read of (*e) inside 678 * pvscsi_complete_request. Otherwise, device emulation may 679 * overwrite *e before we had a chance to read it. 680 */ 681 barrier(); 682 s->cmpConsIdx++; 683 } 684 } 685 686 /* 687 * Translate a Linux SCSI request into a request ring entry. 688 */ 689 static int pvscsi_queue_ring(struct pvscsi_adapter *adapter, 690 struct pvscsi_ctx *ctx, struct scsi_cmnd *cmd) 691 { 692 struct PVSCSIRingsState *s; 693 struct PVSCSIRingReqDesc *e; 694 struct scsi_device *sdev; 695 u32 req_entries; 696 697 s = adapter->rings_state; 698 sdev = cmd->device; 699 req_entries = s->reqNumEntriesLog2; 700 701 /* 702 * If this condition holds, we might have room on the request ring, but 703 * we might not have room on the completion ring for the response. 704 * However, we have already ruled out this possibility - we would not 705 * have successfully allocated a context if it were true, since we only 706 * have one context per request entry. Check for it anyway, since it 707 * would be a serious bug. 708 */ 709 if (s->reqProdIdx - s->cmpConsIdx >= 1 << req_entries) { 710 scmd_printk(KERN_ERR, cmd, "vmw_pvscsi: " 711 "ring full: reqProdIdx=%d cmpConsIdx=%d\n", 712 s->reqProdIdx, s->cmpConsIdx); 713 return -1; 714 } 715 716 e = adapter->req_ring + (s->reqProdIdx & MASK(req_entries)); 717 718 e->bus = sdev->channel; 719 e->target = sdev->id; 720 memset(e->lun, 0, sizeof(e->lun)); 721 e->lun[1] = sdev->lun; 722 723 if (cmd->sense_buffer) { 724 ctx->sensePA = dma_map_single(&adapter->dev->dev, 725 cmd->sense_buffer, SCSI_SENSE_BUFFERSIZE, 726 DMA_FROM_DEVICE); 727 if (dma_mapping_error(&adapter->dev->dev, ctx->sensePA)) { 728 scmd_printk(KERN_DEBUG, cmd, 729 "vmw_pvscsi: Failed to map sense buffer for DMA.\n"); 730 ctx->sensePA = 0; 731 return -ENOMEM; 732 } 733 e->senseAddr = ctx->sensePA; 734 e->senseLen = SCSI_SENSE_BUFFERSIZE; 735 } else { 736 e->senseLen = 0; 737 e->senseAddr = 0; 738 } 739 e->cdbLen = cmd->cmd_len; 740 e->vcpuHint = smp_processor_id(); 741 memcpy(e->cdb, cmd->cmnd, e->cdbLen); 742 743 e->tag = SIMPLE_QUEUE_TAG; 744 745 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 746 e->flags = PVSCSI_FLAG_CMD_DIR_TOHOST; 747 else if (cmd->sc_data_direction == DMA_TO_DEVICE) 748 e->flags = PVSCSI_FLAG_CMD_DIR_TODEVICE; 749 else if (cmd->sc_data_direction == DMA_NONE) 750 e->flags = PVSCSI_FLAG_CMD_DIR_NONE; 751 else 752 e->flags = 0; 753 754 if (pvscsi_map_buffers(adapter, ctx, cmd, e) != 0) { 755 if (cmd->sense_buffer) { 756 dma_unmap_single(&adapter->dev->dev, ctx->sensePA, 757 SCSI_SENSE_BUFFERSIZE, 758 DMA_FROM_DEVICE); 759 ctx->sensePA = 0; 760 } 761 return -ENOMEM; 762 } 763 764 e->context = pvscsi_map_context(adapter, ctx); 765 766 barrier(); 767 768 s->reqProdIdx++; 769 770 return 0; 771 } 772 773 static int pvscsi_queue_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) 774 { 775 struct Scsi_Host *host = cmd->device->host; 776 struct pvscsi_adapter *adapter = shost_priv(host); 777 struct pvscsi_ctx *ctx; 778 unsigned long flags; 779 unsigned char op; 780 781 spin_lock_irqsave(&adapter->hw_lock, flags); 782 783 ctx = pvscsi_acquire_context(adapter, cmd); 784 if (!ctx || pvscsi_queue_ring(adapter, ctx, cmd) != 0) { 785 if (ctx) 786 pvscsi_release_context(adapter, ctx); 787 spin_unlock_irqrestore(&adapter->hw_lock, flags); 788 return SCSI_MLQUEUE_HOST_BUSY; 789 } 790 791 cmd->scsi_done = done; 792 op = cmd->cmnd[0]; 793 794 dev_dbg(&cmd->device->sdev_gendev, 795 "queued cmd %p, ctx %p, op=%x\n", cmd, ctx, op); 796 797 spin_unlock_irqrestore(&adapter->hw_lock, flags); 798 799 pvscsi_kick_io(adapter, op); 800 801 return 0; 802 } 803 804 static DEF_SCSI_QCMD(pvscsi_queue) 805 806 static int pvscsi_abort(struct scsi_cmnd *cmd) 807 { 808 struct pvscsi_adapter *adapter = shost_priv(cmd->device->host); 809 struct pvscsi_ctx *ctx; 810 unsigned long flags; 811 int result = SUCCESS; 812 DECLARE_COMPLETION_ONSTACK(abort_cmp); 813 int done; 814 815 scmd_printk(KERN_DEBUG, cmd, "task abort on host %u, %p\n", 816 adapter->host->host_no, cmd); 817 818 spin_lock_irqsave(&adapter->hw_lock, flags); 819 820 /* 821 * Poll the completion ring first - we might be trying to abort 822 * a command that is waiting to be dispatched in the completion ring. 823 */ 824 pvscsi_process_completion_ring(adapter); 825 826 /* 827 * If there is no context for the command, it either already succeeded 828 * or else was never properly issued. Not our problem. 829 */ 830 ctx = pvscsi_find_context(adapter, cmd); 831 if (!ctx) { 832 scmd_printk(KERN_DEBUG, cmd, "Failed to abort cmd %p\n", cmd); 833 goto out; 834 } 835 836 /* 837 * Mark that the command has been requested to be aborted and issue 838 * the abort. 839 */ 840 ctx->abort_cmp = &abort_cmp; 841 842 pvscsi_abort_cmd(adapter, ctx); 843 spin_unlock_irqrestore(&adapter->hw_lock, flags); 844 /* Wait for 2 secs for the completion. */ 845 done = wait_for_completion_timeout(&abort_cmp, msecs_to_jiffies(2000)); 846 spin_lock_irqsave(&adapter->hw_lock, flags); 847 848 if (!done) { 849 /* 850 * Failed to abort the command, unmark the fact that it 851 * was requested to be aborted. 852 */ 853 ctx->abort_cmp = NULL; 854 result = FAILED; 855 scmd_printk(KERN_DEBUG, cmd, 856 "Failed to get completion for aborted cmd %p\n", 857 cmd); 858 goto out; 859 } 860 861 /* 862 * Successfully aborted the command. 863 */ 864 cmd->result = (DID_ABORT << 16); 865 cmd->scsi_done(cmd); 866 867 out: 868 spin_unlock_irqrestore(&adapter->hw_lock, flags); 869 return result; 870 } 871 872 /* 873 * Abort all outstanding requests. This is only safe to use if the completion 874 * ring will never be walked again or the device has been reset, because it 875 * destroys the 1-1 mapping between context field passed to emulation and our 876 * request structure. 877 */ 878 static void pvscsi_reset_all(struct pvscsi_adapter *adapter) 879 { 880 unsigned i; 881 882 for (i = 0; i < adapter->req_depth; i++) { 883 struct pvscsi_ctx *ctx = &adapter->cmd_map[i]; 884 struct scsi_cmnd *cmd = ctx->cmd; 885 if (cmd) { 886 scmd_printk(KERN_ERR, cmd, 887 "Forced reset on cmd %p\n", cmd); 888 pvscsi_unmap_buffers(adapter, ctx); 889 pvscsi_patch_sense(cmd); 890 pvscsi_release_context(adapter, ctx); 891 cmd->result = (DID_RESET << 16); 892 cmd->scsi_done(cmd); 893 } 894 } 895 } 896 897 static int pvscsi_host_reset(struct scsi_cmnd *cmd) 898 { 899 struct Scsi_Host *host = cmd->device->host; 900 struct pvscsi_adapter *adapter = shost_priv(host); 901 unsigned long flags; 902 bool use_msg; 903 904 scmd_printk(KERN_INFO, cmd, "SCSI Host reset\n"); 905 906 spin_lock_irqsave(&adapter->hw_lock, flags); 907 908 use_msg = adapter->use_msg; 909 910 if (use_msg) { 911 adapter->use_msg = false; 912 spin_unlock_irqrestore(&adapter->hw_lock, flags); 913 914 /* 915 * Now that we know that the ISR won't add more work on the 916 * workqueue we can safely flush any outstanding work. 917 */ 918 flush_workqueue(adapter->workqueue); 919 spin_lock_irqsave(&adapter->hw_lock, flags); 920 } 921 922 /* 923 * We're going to tear down the entire ring structure and set it back 924 * up, so stalling new requests until all completions are flushed and 925 * the rings are back in place. 926 */ 927 928 pvscsi_process_request_ring(adapter); 929 930 ll_adapter_reset(adapter); 931 932 /* 933 * Now process any completions. Note we do this AFTER adapter reset, 934 * which is strange, but stops races where completions get posted 935 * between processing the ring and issuing the reset. The backend will 936 * not touch the ring memory after reset, so the immediately pre-reset 937 * completion ring state is still valid. 938 */ 939 pvscsi_process_completion_ring(adapter); 940 941 pvscsi_reset_all(adapter); 942 adapter->use_msg = use_msg; 943 pvscsi_setup_all_rings(adapter); 944 pvscsi_unmask_intr(adapter); 945 946 spin_unlock_irqrestore(&adapter->hw_lock, flags); 947 948 return SUCCESS; 949 } 950 951 static int pvscsi_bus_reset(struct scsi_cmnd *cmd) 952 { 953 struct Scsi_Host *host = cmd->device->host; 954 struct pvscsi_adapter *adapter = shost_priv(host); 955 unsigned long flags; 956 957 scmd_printk(KERN_INFO, cmd, "SCSI Bus reset\n"); 958 959 /* 960 * We don't want to queue new requests for this bus after 961 * flushing all pending requests to emulation, since new 962 * requests could then sneak in during this bus reset phase, 963 * so take the lock now. 964 */ 965 spin_lock_irqsave(&adapter->hw_lock, flags); 966 967 pvscsi_process_request_ring(adapter); 968 ll_bus_reset(adapter); 969 pvscsi_process_completion_ring(adapter); 970 971 spin_unlock_irqrestore(&adapter->hw_lock, flags); 972 973 return SUCCESS; 974 } 975 976 static int pvscsi_device_reset(struct scsi_cmnd *cmd) 977 { 978 struct Scsi_Host *host = cmd->device->host; 979 struct pvscsi_adapter *adapter = shost_priv(host); 980 unsigned long flags; 981 982 scmd_printk(KERN_INFO, cmd, "SCSI device reset on scsi%u:%u\n", 983 host->host_no, cmd->device->id); 984 985 /* 986 * We don't want to queue new requests for this device after flushing 987 * all pending requests to emulation, since new requests could then 988 * sneak in during this device reset phase, so take the lock now. 989 */ 990 spin_lock_irqsave(&adapter->hw_lock, flags); 991 992 pvscsi_process_request_ring(adapter); 993 ll_device_reset(adapter, cmd->device->id); 994 pvscsi_process_completion_ring(adapter); 995 996 spin_unlock_irqrestore(&adapter->hw_lock, flags); 997 998 return SUCCESS; 999 } 1000 1001 static struct scsi_host_template pvscsi_template; 1002 1003 static const char *pvscsi_info(struct Scsi_Host *host) 1004 { 1005 struct pvscsi_adapter *adapter = shost_priv(host); 1006 static char buf[256]; 1007 1008 sprintf(buf, "VMware PVSCSI storage adapter rev %d, req/cmp/msg rings: " 1009 "%u/%u/%u pages, cmd_per_lun=%u", adapter->rev, 1010 adapter->req_pages, adapter->cmp_pages, adapter->msg_pages, 1011 pvscsi_template.cmd_per_lun); 1012 1013 return buf; 1014 } 1015 1016 static struct scsi_host_template pvscsi_template = { 1017 .module = THIS_MODULE, 1018 .name = "VMware PVSCSI Host Adapter", 1019 .proc_name = "vmw_pvscsi", 1020 .info = pvscsi_info, 1021 .queuecommand = pvscsi_queue, 1022 .this_id = -1, 1023 .sg_tablesize = PVSCSI_MAX_NUM_SG_ENTRIES_PER_SEGMENT, 1024 .dma_boundary = UINT_MAX, 1025 .max_sectors = 0xffff, 1026 .change_queue_depth = pvscsi_change_queue_depth, 1027 .eh_abort_handler = pvscsi_abort, 1028 .eh_device_reset_handler = pvscsi_device_reset, 1029 .eh_bus_reset_handler = pvscsi_bus_reset, 1030 .eh_host_reset_handler = pvscsi_host_reset, 1031 }; 1032 1033 static void pvscsi_process_msg(const struct pvscsi_adapter *adapter, 1034 const struct PVSCSIRingMsgDesc *e) 1035 { 1036 struct PVSCSIRingsState *s = adapter->rings_state; 1037 struct Scsi_Host *host = adapter->host; 1038 struct scsi_device *sdev; 1039 1040 printk(KERN_INFO "vmw_pvscsi: msg type: 0x%x - MSG RING: %u/%u (%u) \n", 1041 e->type, s->msgProdIdx, s->msgConsIdx, s->msgNumEntriesLog2); 1042 1043 BUILD_BUG_ON(PVSCSI_MSG_LAST != 2); 1044 1045 if (e->type == PVSCSI_MSG_DEV_ADDED) { 1046 struct PVSCSIMsgDescDevStatusChanged *desc; 1047 desc = (struct PVSCSIMsgDescDevStatusChanged *)e; 1048 1049 printk(KERN_INFO 1050 "vmw_pvscsi: msg: device added at scsi%u:%u:%u\n", 1051 desc->bus, desc->target, desc->lun[1]); 1052 1053 if (!scsi_host_get(host)) 1054 return; 1055 1056 sdev = scsi_device_lookup(host, desc->bus, desc->target, 1057 desc->lun[1]); 1058 if (sdev) { 1059 printk(KERN_INFO "vmw_pvscsi: device already exists\n"); 1060 scsi_device_put(sdev); 1061 } else 1062 scsi_add_device(adapter->host, desc->bus, 1063 desc->target, desc->lun[1]); 1064 1065 scsi_host_put(host); 1066 } else if (e->type == PVSCSI_MSG_DEV_REMOVED) { 1067 struct PVSCSIMsgDescDevStatusChanged *desc; 1068 desc = (struct PVSCSIMsgDescDevStatusChanged *)e; 1069 1070 printk(KERN_INFO 1071 "vmw_pvscsi: msg: device removed at scsi%u:%u:%u\n", 1072 desc->bus, desc->target, desc->lun[1]); 1073 1074 if (!scsi_host_get(host)) 1075 return; 1076 1077 sdev = scsi_device_lookup(host, desc->bus, desc->target, 1078 desc->lun[1]); 1079 if (sdev) { 1080 scsi_remove_device(sdev); 1081 scsi_device_put(sdev); 1082 } else 1083 printk(KERN_INFO 1084 "vmw_pvscsi: failed to lookup scsi%u:%u:%u\n", 1085 desc->bus, desc->target, desc->lun[1]); 1086 1087 scsi_host_put(host); 1088 } 1089 } 1090 1091 static int pvscsi_msg_pending(const struct pvscsi_adapter *adapter) 1092 { 1093 struct PVSCSIRingsState *s = adapter->rings_state; 1094 1095 return s->msgProdIdx != s->msgConsIdx; 1096 } 1097 1098 static void pvscsi_process_msg_ring(const struct pvscsi_adapter *adapter) 1099 { 1100 struct PVSCSIRingsState *s = adapter->rings_state; 1101 struct PVSCSIRingMsgDesc *ring = adapter->msg_ring; 1102 u32 msg_entries = s->msgNumEntriesLog2; 1103 1104 while (pvscsi_msg_pending(adapter)) { 1105 struct PVSCSIRingMsgDesc *e = ring + (s->msgConsIdx & 1106 MASK(msg_entries)); 1107 1108 barrier(); 1109 pvscsi_process_msg(adapter, e); 1110 barrier(); 1111 s->msgConsIdx++; 1112 } 1113 } 1114 1115 static void pvscsi_msg_workqueue_handler(struct work_struct *data) 1116 { 1117 struct pvscsi_adapter *adapter; 1118 1119 adapter = container_of(data, struct pvscsi_adapter, work); 1120 1121 pvscsi_process_msg_ring(adapter); 1122 } 1123 1124 static int pvscsi_setup_msg_workqueue(struct pvscsi_adapter *adapter) 1125 { 1126 char name[32]; 1127 1128 if (!pvscsi_use_msg) 1129 return 0; 1130 1131 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_COMMAND, 1132 PVSCSI_CMD_SETUP_MSG_RING); 1133 1134 if (pvscsi_reg_read(adapter, PVSCSI_REG_OFFSET_COMMAND_STATUS) == -1) 1135 return 0; 1136 1137 snprintf(name, sizeof(name), 1138 "vmw_pvscsi_wq_%u", adapter->host->host_no); 1139 1140 adapter->workqueue = create_singlethread_workqueue(name); 1141 if (!adapter->workqueue) { 1142 printk(KERN_ERR "vmw_pvscsi: failed to create work queue\n"); 1143 return 0; 1144 } 1145 INIT_WORK(&adapter->work, pvscsi_msg_workqueue_handler); 1146 1147 return 1; 1148 } 1149 1150 static bool pvscsi_setup_req_threshold(struct pvscsi_adapter *adapter, 1151 bool enable) 1152 { 1153 u32 val; 1154 1155 if (!pvscsi_use_req_threshold) 1156 return false; 1157 1158 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_COMMAND, 1159 PVSCSI_CMD_SETUP_REQCALLTHRESHOLD); 1160 val = pvscsi_reg_read(adapter, PVSCSI_REG_OFFSET_COMMAND_STATUS); 1161 if (val == -1) { 1162 printk(KERN_INFO "vmw_pvscsi: device does not support req_threshold\n"); 1163 return false; 1164 } else { 1165 struct PVSCSICmdDescSetupReqCall cmd_msg = { 0 }; 1166 cmd_msg.enable = enable; 1167 printk(KERN_INFO 1168 "vmw_pvscsi: %sabling reqCallThreshold\n", 1169 enable ? "en" : "dis"); 1170 pvscsi_write_cmd_desc(adapter, 1171 PVSCSI_CMD_SETUP_REQCALLTHRESHOLD, 1172 &cmd_msg, sizeof(cmd_msg)); 1173 return pvscsi_reg_read(adapter, 1174 PVSCSI_REG_OFFSET_COMMAND_STATUS) != 0; 1175 } 1176 } 1177 1178 static irqreturn_t pvscsi_isr(int irq, void *devp) 1179 { 1180 struct pvscsi_adapter *adapter = devp; 1181 unsigned long flags; 1182 1183 spin_lock_irqsave(&adapter->hw_lock, flags); 1184 pvscsi_process_completion_ring(adapter); 1185 if (adapter->use_msg && pvscsi_msg_pending(adapter)) 1186 queue_work(adapter->workqueue, &adapter->work); 1187 spin_unlock_irqrestore(&adapter->hw_lock, flags); 1188 1189 return IRQ_HANDLED; 1190 } 1191 1192 static irqreturn_t pvscsi_shared_isr(int irq, void *devp) 1193 { 1194 struct pvscsi_adapter *adapter = devp; 1195 u32 val = pvscsi_read_intr_status(adapter); 1196 1197 if (!(val & PVSCSI_INTR_ALL_SUPPORTED)) 1198 return IRQ_NONE; 1199 pvscsi_write_intr_status(devp, val); 1200 return pvscsi_isr(irq, devp); 1201 } 1202 1203 static void pvscsi_free_sgls(const struct pvscsi_adapter *adapter) 1204 { 1205 struct pvscsi_ctx *ctx = adapter->cmd_map; 1206 unsigned i; 1207 1208 for (i = 0; i < adapter->req_depth; ++i, ++ctx) 1209 free_pages((unsigned long)ctx->sgl, get_order(SGL_SIZE)); 1210 } 1211 1212 static void pvscsi_shutdown_intr(struct pvscsi_adapter *adapter) 1213 { 1214 free_irq(pci_irq_vector(adapter->dev, 0), adapter); 1215 pci_free_irq_vectors(adapter->dev); 1216 } 1217 1218 static void pvscsi_release_resources(struct pvscsi_adapter *adapter) 1219 { 1220 if (adapter->workqueue) 1221 destroy_workqueue(adapter->workqueue); 1222 1223 if (adapter->mmioBase) 1224 pci_iounmap(adapter->dev, adapter->mmioBase); 1225 1226 pci_release_regions(adapter->dev); 1227 1228 if (adapter->cmd_map) { 1229 pvscsi_free_sgls(adapter); 1230 kfree(adapter->cmd_map); 1231 } 1232 1233 if (adapter->rings_state) 1234 dma_free_coherent(&adapter->dev->dev, PAGE_SIZE, 1235 adapter->rings_state, adapter->ringStatePA); 1236 1237 if (adapter->req_ring) 1238 dma_free_coherent(&adapter->dev->dev, 1239 adapter->req_pages * PAGE_SIZE, 1240 adapter->req_ring, adapter->reqRingPA); 1241 1242 if (adapter->cmp_ring) 1243 dma_free_coherent(&adapter->dev->dev, 1244 adapter->cmp_pages * PAGE_SIZE, 1245 adapter->cmp_ring, adapter->cmpRingPA); 1246 1247 if (adapter->msg_ring) 1248 dma_free_coherent(&adapter->dev->dev, 1249 adapter->msg_pages * PAGE_SIZE, 1250 adapter->msg_ring, adapter->msgRingPA); 1251 } 1252 1253 /* 1254 * Allocate scatter gather lists. 1255 * 1256 * These are statically allocated. Trying to be clever was not worth it. 1257 * 1258 * Dynamic allocation can fail, and we can't go deep into the memory 1259 * allocator, since we're a SCSI driver, and trying too hard to allocate 1260 * memory might generate disk I/O. We also don't want to fail disk I/O 1261 * in that case because we can't get an allocation - the I/O could be 1262 * trying to swap out data to free memory. Since that is pathological, 1263 * just use a statically allocated scatter list. 1264 * 1265 */ 1266 static int pvscsi_allocate_sg(struct pvscsi_adapter *adapter) 1267 { 1268 struct pvscsi_ctx *ctx; 1269 int i; 1270 1271 ctx = adapter->cmd_map; 1272 BUILD_BUG_ON(sizeof(struct pvscsi_sg_list) > SGL_SIZE); 1273 1274 for (i = 0; i < adapter->req_depth; ++i, ++ctx) { 1275 ctx->sgl = (void *)__get_free_pages(GFP_KERNEL, 1276 get_order(SGL_SIZE)); 1277 ctx->sglPA = 0; 1278 BUG_ON(!IS_ALIGNED(((unsigned long)ctx->sgl), PAGE_SIZE)); 1279 if (!ctx->sgl) { 1280 for (; i >= 0; --i, --ctx) { 1281 free_pages((unsigned long)ctx->sgl, 1282 get_order(SGL_SIZE)); 1283 ctx->sgl = NULL; 1284 } 1285 return -ENOMEM; 1286 } 1287 } 1288 1289 return 0; 1290 } 1291 1292 /* 1293 * Query the device, fetch the config info and return the 1294 * maximum number of targets on the adapter. In case of 1295 * failure due to any reason return default i.e. 16. 1296 */ 1297 static u32 pvscsi_get_max_targets(struct pvscsi_adapter *adapter) 1298 { 1299 struct PVSCSICmdDescConfigCmd cmd; 1300 struct PVSCSIConfigPageHeader *header; 1301 struct device *dev; 1302 dma_addr_t configPagePA; 1303 void *config_page; 1304 u32 numPhys = 16; 1305 1306 dev = pvscsi_dev(adapter); 1307 config_page = dma_alloc_coherent(&adapter->dev->dev, PAGE_SIZE, 1308 &configPagePA, GFP_KERNEL); 1309 if (!config_page) { 1310 dev_warn(dev, "vmw_pvscsi: failed to allocate memory for config page\n"); 1311 goto exit; 1312 } 1313 BUG_ON(configPagePA & ~PAGE_MASK); 1314 1315 /* Fetch config info from the device. */ 1316 cmd.configPageAddress = ((u64)PVSCSI_CONFIG_CONTROLLER_ADDRESS) << 32; 1317 cmd.configPageNum = PVSCSI_CONFIG_PAGE_CONTROLLER; 1318 cmd.cmpAddr = configPagePA; 1319 cmd._pad = 0; 1320 1321 /* 1322 * Mark the completion page header with error values. If the device 1323 * completes the command successfully, it sets the status values to 1324 * indicate success. 1325 */ 1326 header = config_page; 1327 memset(header, 0, sizeof *header); 1328 header->hostStatus = BTSTAT_INVPARAM; 1329 header->scsiStatus = SDSTAT_CHECK; 1330 1331 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_CONFIG, &cmd, sizeof cmd); 1332 1333 if (header->hostStatus == BTSTAT_SUCCESS && 1334 header->scsiStatus == SDSTAT_GOOD) { 1335 struct PVSCSIConfigPageController *config; 1336 1337 config = config_page; 1338 numPhys = config->numPhys; 1339 } else 1340 dev_warn(dev, "vmw_pvscsi: PVSCSI_CMD_CONFIG failed. hostStatus = 0x%x, scsiStatus = 0x%x\n", 1341 header->hostStatus, header->scsiStatus); 1342 dma_free_coherent(&adapter->dev->dev, PAGE_SIZE, config_page, 1343 configPagePA); 1344 exit: 1345 return numPhys; 1346 } 1347 1348 static int pvscsi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1349 { 1350 unsigned int irq_flag = PCI_IRQ_MSIX | PCI_IRQ_MSI | PCI_IRQ_LEGACY; 1351 struct pvscsi_adapter *adapter; 1352 struct pvscsi_adapter adapter_temp; 1353 struct Scsi_Host *host = NULL; 1354 unsigned int i; 1355 int error; 1356 u32 max_id; 1357 1358 error = -ENODEV; 1359 1360 if (pci_enable_device(pdev)) 1361 return error; 1362 1363 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1364 printk(KERN_INFO "vmw_pvscsi: using 64bit dma\n"); 1365 } else if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) { 1366 printk(KERN_INFO "vmw_pvscsi: using 32bit dma\n"); 1367 } else { 1368 printk(KERN_ERR "vmw_pvscsi: failed to set DMA mask\n"); 1369 goto out_disable_device; 1370 } 1371 1372 /* 1373 * Let's use a temp pvscsi_adapter struct until we find the number of 1374 * targets on the adapter, after that we will switch to the real 1375 * allocated struct. 1376 */ 1377 adapter = &adapter_temp; 1378 memset(adapter, 0, sizeof(*adapter)); 1379 adapter->dev = pdev; 1380 adapter->rev = pdev->revision; 1381 1382 if (pci_request_regions(pdev, "vmw_pvscsi")) { 1383 printk(KERN_ERR "vmw_pvscsi: pci memory selection failed\n"); 1384 goto out_disable_device; 1385 } 1386 1387 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 1388 if ((pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE_IO)) 1389 continue; 1390 1391 if (pci_resource_len(pdev, i) < PVSCSI_MEM_SPACE_SIZE) 1392 continue; 1393 1394 break; 1395 } 1396 1397 if (i == DEVICE_COUNT_RESOURCE) { 1398 printk(KERN_ERR 1399 "vmw_pvscsi: adapter has no suitable MMIO region\n"); 1400 goto out_release_resources_and_disable; 1401 } 1402 1403 adapter->mmioBase = pci_iomap(pdev, i, PVSCSI_MEM_SPACE_SIZE); 1404 1405 if (!adapter->mmioBase) { 1406 printk(KERN_ERR 1407 "vmw_pvscsi: can't iomap for BAR %d memsize %lu\n", 1408 i, PVSCSI_MEM_SPACE_SIZE); 1409 goto out_release_resources_and_disable; 1410 } 1411 1412 pci_set_master(pdev); 1413 1414 /* 1415 * Ask the device for max number of targets before deciding the 1416 * default pvscsi_ring_pages value. 1417 */ 1418 max_id = pvscsi_get_max_targets(adapter); 1419 printk(KERN_INFO "vmw_pvscsi: max_id: %u\n", max_id); 1420 1421 if (pvscsi_ring_pages == 0) 1422 /* 1423 * Set the right default value. Up to 16 it is 8, above it is 1424 * max. 1425 */ 1426 pvscsi_ring_pages = (max_id > 16) ? 1427 PVSCSI_SETUP_RINGS_MAX_NUM_PAGES : 1428 PVSCSI_DEFAULT_NUM_PAGES_PER_RING; 1429 printk(KERN_INFO 1430 "vmw_pvscsi: setting ring_pages to %d\n", 1431 pvscsi_ring_pages); 1432 1433 pvscsi_template.can_queue = 1434 min(PVSCSI_MAX_NUM_PAGES_REQ_RING, pvscsi_ring_pages) * 1435 PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE; 1436 pvscsi_template.cmd_per_lun = 1437 min(pvscsi_template.can_queue, pvscsi_cmd_per_lun); 1438 host = scsi_host_alloc(&pvscsi_template, sizeof(struct pvscsi_adapter)); 1439 if (!host) { 1440 printk(KERN_ERR "vmw_pvscsi: failed to allocate host\n"); 1441 goto out_release_resources_and_disable; 1442 } 1443 1444 /* 1445 * Let's use the real pvscsi_adapter struct here onwards. 1446 */ 1447 adapter = shost_priv(host); 1448 memset(adapter, 0, sizeof(*adapter)); 1449 adapter->dev = pdev; 1450 adapter->host = host; 1451 /* 1452 * Copy back what we already have to the allocated adapter struct. 1453 */ 1454 adapter->rev = adapter_temp.rev; 1455 adapter->mmioBase = adapter_temp.mmioBase; 1456 1457 spin_lock_init(&adapter->hw_lock); 1458 host->max_channel = 0; 1459 host->max_lun = 1; 1460 host->max_cmd_len = 16; 1461 host->max_id = max_id; 1462 1463 pci_set_drvdata(pdev, host); 1464 1465 ll_adapter_reset(adapter); 1466 1467 adapter->use_msg = pvscsi_setup_msg_workqueue(adapter); 1468 1469 error = pvscsi_allocate_rings(adapter); 1470 if (error) { 1471 printk(KERN_ERR "vmw_pvscsi: unable to allocate ring memory\n"); 1472 goto out_release_resources; 1473 } 1474 1475 /* 1476 * From this point on we should reset the adapter if anything goes 1477 * wrong. 1478 */ 1479 pvscsi_setup_all_rings(adapter); 1480 1481 adapter->cmd_map = kcalloc(adapter->req_depth, 1482 sizeof(struct pvscsi_ctx), GFP_KERNEL); 1483 if (!adapter->cmd_map) { 1484 printk(KERN_ERR "vmw_pvscsi: failed to allocate memory.\n"); 1485 error = -ENOMEM; 1486 goto out_reset_adapter; 1487 } 1488 1489 INIT_LIST_HEAD(&adapter->cmd_pool); 1490 for (i = 0; i < adapter->req_depth; i++) { 1491 struct pvscsi_ctx *ctx = adapter->cmd_map + i; 1492 list_add(&ctx->list, &adapter->cmd_pool); 1493 } 1494 1495 error = pvscsi_allocate_sg(adapter); 1496 if (error) { 1497 printk(KERN_ERR "vmw_pvscsi: unable to allocate s/g table\n"); 1498 goto out_reset_adapter; 1499 } 1500 1501 if (pvscsi_disable_msix) 1502 irq_flag &= ~PCI_IRQ_MSIX; 1503 if (pvscsi_disable_msi) 1504 irq_flag &= ~PCI_IRQ_MSI; 1505 1506 error = pci_alloc_irq_vectors(adapter->dev, 1, 1, irq_flag); 1507 if (error < 0) 1508 goto out_reset_adapter; 1509 1510 adapter->use_req_threshold = pvscsi_setup_req_threshold(adapter, true); 1511 printk(KERN_DEBUG "vmw_pvscsi: driver-based request coalescing %sabled\n", 1512 adapter->use_req_threshold ? "en" : "dis"); 1513 1514 if (adapter->dev->msix_enabled || adapter->dev->msi_enabled) { 1515 printk(KERN_INFO "vmw_pvscsi: using MSI%s\n", 1516 adapter->dev->msix_enabled ? "-X" : ""); 1517 error = request_irq(pci_irq_vector(pdev, 0), pvscsi_isr, 1518 0, "vmw_pvscsi", adapter); 1519 } else { 1520 printk(KERN_INFO "vmw_pvscsi: using INTx\n"); 1521 error = request_irq(pci_irq_vector(pdev, 0), pvscsi_shared_isr, 1522 IRQF_SHARED, "vmw_pvscsi", adapter); 1523 } 1524 1525 if (error) { 1526 printk(KERN_ERR 1527 "vmw_pvscsi: unable to request IRQ: %d\n", error); 1528 goto out_reset_adapter; 1529 } 1530 1531 error = scsi_add_host(host, &pdev->dev); 1532 if (error) { 1533 printk(KERN_ERR 1534 "vmw_pvscsi: scsi_add_host failed: %d\n", error); 1535 goto out_reset_adapter; 1536 } 1537 1538 dev_info(&pdev->dev, "VMware PVSCSI rev %d host #%u\n", 1539 adapter->rev, host->host_no); 1540 1541 pvscsi_unmask_intr(adapter); 1542 1543 scsi_scan_host(host); 1544 1545 return 0; 1546 1547 out_reset_adapter: 1548 ll_adapter_reset(adapter); 1549 out_release_resources: 1550 pvscsi_shutdown_intr(adapter); 1551 pvscsi_release_resources(adapter); 1552 scsi_host_put(host); 1553 out_disable_device: 1554 pci_disable_device(pdev); 1555 1556 return error; 1557 1558 out_release_resources_and_disable: 1559 pvscsi_shutdown_intr(adapter); 1560 pvscsi_release_resources(adapter); 1561 goto out_disable_device; 1562 } 1563 1564 static void __pvscsi_shutdown(struct pvscsi_adapter *adapter) 1565 { 1566 pvscsi_mask_intr(adapter); 1567 1568 if (adapter->workqueue) 1569 flush_workqueue(adapter->workqueue); 1570 1571 pvscsi_shutdown_intr(adapter); 1572 1573 pvscsi_process_request_ring(adapter); 1574 pvscsi_process_completion_ring(adapter); 1575 ll_adapter_reset(adapter); 1576 } 1577 1578 static void pvscsi_shutdown(struct pci_dev *dev) 1579 { 1580 struct Scsi_Host *host = pci_get_drvdata(dev); 1581 struct pvscsi_adapter *adapter = shost_priv(host); 1582 1583 __pvscsi_shutdown(adapter); 1584 } 1585 1586 static void pvscsi_remove(struct pci_dev *pdev) 1587 { 1588 struct Scsi_Host *host = pci_get_drvdata(pdev); 1589 struct pvscsi_adapter *adapter = shost_priv(host); 1590 1591 scsi_remove_host(host); 1592 1593 __pvscsi_shutdown(adapter); 1594 pvscsi_release_resources(adapter); 1595 1596 scsi_host_put(host); 1597 1598 pci_disable_device(pdev); 1599 } 1600 1601 static struct pci_driver pvscsi_pci_driver = { 1602 .name = "vmw_pvscsi", 1603 .id_table = pvscsi_pci_tbl, 1604 .probe = pvscsi_probe, 1605 .remove = pvscsi_remove, 1606 .shutdown = pvscsi_shutdown, 1607 }; 1608 1609 static int __init pvscsi_init(void) 1610 { 1611 pr_info("%s - version %s\n", 1612 PVSCSI_LINUX_DRIVER_DESC, PVSCSI_DRIVER_VERSION_STRING); 1613 return pci_register_driver(&pvscsi_pci_driver); 1614 } 1615 1616 static void __exit pvscsi_exit(void) 1617 { 1618 pci_unregister_driver(&pvscsi_pci_driver); 1619 } 1620 1621 module_init(pvscsi_init); 1622 module_exit(pvscsi_exit); 1623