1 /* 2 * Linux driver for VMware's para-virtualized SCSI HBA. 3 * 4 * Copyright (C) 2008-2014, VMware, Inc. All Rights Reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License as published by the 8 * Free Software Foundation; version 2 of the License and no later version. 9 * 10 * This program is distributed in the hope that it will be useful, but 11 * WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 13 * NON INFRINGEMENT. See the GNU General Public License for more 14 * details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Maintained by: Jim Gill <jgill@vmware.com> 21 * 22 */ 23 24 #include <linux/kernel.h> 25 #include <linux/module.h> 26 #include <linux/interrupt.h> 27 #include <linux/slab.h> 28 #include <linux/workqueue.h> 29 #include <linux/pci.h> 30 31 #include <scsi/scsi.h> 32 #include <scsi/scsi_host.h> 33 #include <scsi/scsi_cmnd.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_tcq.h> 36 37 #include "vmw_pvscsi.h" 38 39 #define PVSCSI_LINUX_DRIVER_DESC "VMware PVSCSI driver" 40 41 MODULE_DESCRIPTION(PVSCSI_LINUX_DRIVER_DESC); 42 MODULE_AUTHOR("VMware, Inc."); 43 MODULE_LICENSE("GPL"); 44 MODULE_VERSION(PVSCSI_DRIVER_VERSION_STRING); 45 46 #define PVSCSI_DEFAULT_NUM_PAGES_PER_RING 8 47 #define PVSCSI_DEFAULT_NUM_PAGES_MSG_RING 1 48 #define PVSCSI_DEFAULT_QUEUE_DEPTH 254 49 #define SGL_SIZE PAGE_SIZE 50 51 struct pvscsi_sg_list { 52 struct PVSCSISGElement sge[PVSCSI_MAX_NUM_SG_ENTRIES_PER_SEGMENT]; 53 }; 54 55 struct pvscsi_ctx { 56 /* 57 * The index of the context in cmd_map serves as the context ID for a 58 * 1-to-1 mapping completions back to requests. 59 */ 60 struct scsi_cmnd *cmd; 61 struct pvscsi_sg_list *sgl; 62 struct list_head list; 63 dma_addr_t dataPA; 64 dma_addr_t sensePA; 65 dma_addr_t sglPA; 66 struct completion *abort_cmp; 67 }; 68 69 struct pvscsi_adapter { 70 char *mmioBase; 71 u8 rev; 72 bool use_msg; 73 bool use_req_threshold; 74 75 spinlock_t hw_lock; 76 77 struct workqueue_struct *workqueue; 78 struct work_struct work; 79 80 struct PVSCSIRingReqDesc *req_ring; 81 unsigned req_pages; 82 unsigned req_depth; 83 dma_addr_t reqRingPA; 84 85 struct PVSCSIRingCmpDesc *cmp_ring; 86 unsigned cmp_pages; 87 dma_addr_t cmpRingPA; 88 89 struct PVSCSIRingMsgDesc *msg_ring; 90 unsigned msg_pages; 91 dma_addr_t msgRingPA; 92 93 struct PVSCSIRingsState *rings_state; 94 dma_addr_t ringStatePA; 95 96 struct pci_dev *dev; 97 struct Scsi_Host *host; 98 99 struct list_head cmd_pool; 100 struct pvscsi_ctx *cmd_map; 101 }; 102 103 104 /* Command line parameters */ 105 static int pvscsi_ring_pages; 106 static int pvscsi_msg_ring_pages = PVSCSI_DEFAULT_NUM_PAGES_MSG_RING; 107 static int pvscsi_cmd_per_lun = PVSCSI_DEFAULT_QUEUE_DEPTH; 108 static bool pvscsi_disable_msi; 109 static bool pvscsi_disable_msix; 110 static bool pvscsi_use_msg = true; 111 static bool pvscsi_use_req_threshold = true; 112 113 #define PVSCSI_RW (S_IRUSR | S_IWUSR) 114 115 module_param_named(ring_pages, pvscsi_ring_pages, int, PVSCSI_RW); 116 MODULE_PARM_DESC(ring_pages, "Number of pages per req/cmp ring - (default=" 117 __stringify(PVSCSI_DEFAULT_NUM_PAGES_PER_RING) 118 "[up to 16 targets]," 119 __stringify(PVSCSI_SETUP_RINGS_MAX_NUM_PAGES) 120 "[for 16+ targets])"); 121 122 module_param_named(msg_ring_pages, pvscsi_msg_ring_pages, int, PVSCSI_RW); 123 MODULE_PARM_DESC(msg_ring_pages, "Number of pages for the msg ring - (default=" 124 __stringify(PVSCSI_DEFAULT_NUM_PAGES_MSG_RING) ")"); 125 126 module_param_named(cmd_per_lun, pvscsi_cmd_per_lun, int, PVSCSI_RW); 127 MODULE_PARM_DESC(cmd_per_lun, "Maximum commands per lun - (default=" 128 __stringify(PVSCSI_DEFAULT_QUEUE_DEPTH) ")"); 129 130 module_param_named(disable_msi, pvscsi_disable_msi, bool, PVSCSI_RW); 131 MODULE_PARM_DESC(disable_msi, "Disable MSI use in driver - (default=0)"); 132 133 module_param_named(disable_msix, pvscsi_disable_msix, bool, PVSCSI_RW); 134 MODULE_PARM_DESC(disable_msix, "Disable MSI-X use in driver - (default=0)"); 135 136 module_param_named(use_msg, pvscsi_use_msg, bool, PVSCSI_RW); 137 MODULE_PARM_DESC(use_msg, "Use msg ring when available - (default=1)"); 138 139 module_param_named(use_req_threshold, pvscsi_use_req_threshold, 140 bool, PVSCSI_RW); 141 MODULE_PARM_DESC(use_req_threshold, "Use driver-based request coalescing if configured - (default=1)"); 142 143 static const struct pci_device_id pvscsi_pci_tbl[] = { 144 { PCI_VDEVICE(VMWARE, PCI_DEVICE_ID_VMWARE_PVSCSI) }, 145 { 0 } 146 }; 147 148 MODULE_DEVICE_TABLE(pci, pvscsi_pci_tbl); 149 150 static struct device * 151 pvscsi_dev(const struct pvscsi_adapter *adapter) 152 { 153 return &(adapter->dev->dev); 154 } 155 156 static struct pvscsi_ctx * 157 pvscsi_find_context(const struct pvscsi_adapter *adapter, struct scsi_cmnd *cmd) 158 { 159 struct pvscsi_ctx *ctx, *end; 160 161 end = &adapter->cmd_map[adapter->req_depth]; 162 for (ctx = adapter->cmd_map; ctx < end; ctx++) 163 if (ctx->cmd == cmd) 164 return ctx; 165 166 return NULL; 167 } 168 169 static struct pvscsi_ctx * 170 pvscsi_acquire_context(struct pvscsi_adapter *adapter, struct scsi_cmnd *cmd) 171 { 172 struct pvscsi_ctx *ctx; 173 174 if (list_empty(&adapter->cmd_pool)) 175 return NULL; 176 177 ctx = list_first_entry(&adapter->cmd_pool, struct pvscsi_ctx, list); 178 ctx->cmd = cmd; 179 list_del(&ctx->list); 180 181 return ctx; 182 } 183 184 static void pvscsi_release_context(struct pvscsi_adapter *adapter, 185 struct pvscsi_ctx *ctx) 186 { 187 ctx->cmd = NULL; 188 ctx->abort_cmp = NULL; 189 list_add(&ctx->list, &adapter->cmd_pool); 190 } 191 192 /* 193 * Map a pvscsi_ctx struct to a context ID field value; we map to a simple 194 * non-zero integer. ctx always points to an entry in cmd_map array, hence 195 * the return value is always >=1. 196 */ 197 static u64 pvscsi_map_context(const struct pvscsi_adapter *adapter, 198 const struct pvscsi_ctx *ctx) 199 { 200 return ctx - adapter->cmd_map + 1; 201 } 202 203 static struct pvscsi_ctx * 204 pvscsi_get_context(const struct pvscsi_adapter *adapter, u64 context) 205 { 206 return &adapter->cmd_map[context - 1]; 207 } 208 209 static void pvscsi_reg_write(const struct pvscsi_adapter *adapter, 210 u32 offset, u32 val) 211 { 212 writel(val, adapter->mmioBase + offset); 213 } 214 215 static u32 pvscsi_reg_read(const struct pvscsi_adapter *adapter, u32 offset) 216 { 217 return readl(adapter->mmioBase + offset); 218 } 219 220 static u32 pvscsi_read_intr_status(const struct pvscsi_adapter *adapter) 221 { 222 return pvscsi_reg_read(adapter, PVSCSI_REG_OFFSET_INTR_STATUS); 223 } 224 225 static void pvscsi_write_intr_status(const struct pvscsi_adapter *adapter, 226 u32 val) 227 { 228 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_INTR_STATUS, val); 229 } 230 231 static void pvscsi_unmask_intr(const struct pvscsi_adapter *adapter) 232 { 233 u32 intr_bits; 234 235 intr_bits = PVSCSI_INTR_CMPL_MASK; 236 if (adapter->use_msg) 237 intr_bits |= PVSCSI_INTR_MSG_MASK; 238 239 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_INTR_MASK, intr_bits); 240 } 241 242 static void pvscsi_mask_intr(const struct pvscsi_adapter *adapter) 243 { 244 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_INTR_MASK, 0); 245 } 246 247 static void pvscsi_write_cmd_desc(const struct pvscsi_adapter *adapter, 248 u32 cmd, const void *desc, size_t len) 249 { 250 const u32 *ptr = desc; 251 size_t i; 252 253 len /= sizeof(*ptr); 254 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_COMMAND, cmd); 255 for (i = 0; i < len; i++) 256 pvscsi_reg_write(adapter, 257 PVSCSI_REG_OFFSET_COMMAND_DATA, ptr[i]); 258 } 259 260 static void pvscsi_abort_cmd(const struct pvscsi_adapter *adapter, 261 const struct pvscsi_ctx *ctx) 262 { 263 struct PVSCSICmdDescAbortCmd cmd = { 0 }; 264 265 cmd.target = ctx->cmd->device->id; 266 cmd.context = pvscsi_map_context(adapter, ctx); 267 268 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_ABORT_CMD, &cmd, sizeof(cmd)); 269 } 270 271 static void pvscsi_kick_rw_io(const struct pvscsi_adapter *adapter) 272 { 273 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_KICK_RW_IO, 0); 274 } 275 276 static void pvscsi_process_request_ring(const struct pvscsi_adapter *adapter) 277 { 278 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_KICK_NON_RW_IO, 0); 279 } 280 281 static int scsi_is_rw(unsigned char op) 282 { 283 return op == READ_6 || op == WRITE_6 || 284 op == READ_10 || op == WRITE_10 || 285 op == READ_12 || op == WRITE_12 || 286 op == READ_16 || op == WRITE_16; 287 } 288 289 static void pvscsi_kick_io(const struct pvscsi_adapter *adapter, 290 unsigned char op) 291 { 292 if (scsi_is_rw(op)) { 293 struct PVSCSIRingsState *s = adapter->rings_state; 294 295 if (!adapter->use_req_threshold || 296 s->reqProdIdx - s->reqConsIdx >= s->reqCallThreshold) 297 pvscsi_kick_rw_io(adapter); 298 } else { 299 pvscsi_process_request_ring(adapter); 300 } 301 } 302 303 static void ll_adapter_reset(const struct pvscsi_adapter *adapter) 304 { 305 dev_dbg(pvscsi_dev(adapter), "Adapter Reset on %p\n", adapter); 306 307 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_ADAPTER_RESET, NULL, 0); 308 } 309 310 static void ll_bus_reset(const struct pvscsi_adapter *adapter) 311 { 312 dev_dbg(pvscsi_dev(adapter), "Resetting bus on %p\n", adapter); 313 314 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_RESET_BUS, NULL, 0); 315 } 316 317 static void ll_device_reset(const struct pvscsi_adapter *adapter, u32 target) 318 { 319 struct PVSCSICmdDescResetDevice cmd = { 0 }; 320 321 dev_dbg(pvscsi_dev(adapter), "Resetting device: target=%u\n", target); 322 323 cmd.target = target; 324 325 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_RESET_DEVICE, 326 &cmd, sizeof(cmd)); 327 } 328 329 static void pvscsi_create_sg(struct pvscsi_ctx *ctx, 330 struct scatterlist *sg, unsigned count) 331 { 332 unsigned i; 333 struct PVSCSISGElement *sge; 334 335 BUG_ON(count > PVSCSI_MAX_NUM_SG_ENTRIES_PER_SEGMENT); 336 337 sge = &ctx->sgl->sge[0]; 338 for (i = 0; i < count; i++, sg++) { 339 sge[i].addr = sg_dma_address(sg); 340 sge[i].length = sg_dma_len(sg); 341 sge[i].flags = 0; 342 } 343 } 344 345 /* 346 * Map all data buffers for a command into PCI space and 347 * setup the scatter/gather list if needed. 348 */ 349 static int pvscsi_map_buffers(struct pvscsi_adapter *adapter, 350 struct pvscsi_ctx *ctx, struct scsi_cmnd *cmd, 351 struct PVSCSIRingReqDesc *e) 352 { 353 unsigned count; 354 unsigned bufflen = scsi_bufflen(cmd); 355 struct scatterlist *sg; 356 357 e->dataLen = bufflen; 358 e->dataAddr = 0; 359 if (bufflen == 0) 360 return 0; 361 362 sg = scsi_sglist(cmd); 363 count = scsi_sg_count(cmd); 364 if (count != 0) { 365 int segs = scsi_dma_map(cmd); 366 367 if (segs == -ENOMEM) { 368 scmd_printk(KERN_ERR, cmd, 369 "vmw_pvscsi: Failed to map cmd sglist for DMA.\n"); 370 return -ENOMEM; 371 } else if (segs > 1) { 372 pvscsi_create_sg(ctx, sg, segs); 373 374 e->flags |= PVSCSI_FLAG_CMD_WITH_SG_LIST; 375 ctx->sglPA = dma_map_single(&adapter->dev->dev, 376 ctx->sgl, SGL_SIZE, DMA_TO_DEVICE); 377 if (dma_mapping_error(&adapter->dev->dev, ctx->sglPA)) { 378 scmd_printk(KERN_ERR, cmd, 379 "vmw_pvscsi: Failed to map ctx sglist for DMA.\n"); 380 scsi_dma_unmap(cmd); 381 ctx->sglPA = 0; 382 return -ENOMEM; 383 } 384 e->dataAddr = ctx->sglPA; 385 } else 386 e->dataAddr = sg_dma_address(sg); 387 } else { 388 /* 389 * In case there is no S/G list, scsi_sglist points 390 * directly to the buffer. 391 */ 392 ctx->dataPA = dma_map_single(&adapter->dev->dev, sg, bufflen, 393 cmd->sc_data_direction); 394 if (dma_mapping_error(&adapter->dev->dev, ctx->dataPA)) { 395 scmd_printk(KERN_ERR, cmd, 396 "vmw_pvscsi: Failed to map direct data buffer for DMA.\n"); 397 return -ENOMEM; 398 } 399 e->dataAddr = ctx->dataPA; 400 } 401 402 return 0; 403 } 404 405 static void pvscsi_unmap_buffers(const struct pvscsi_adapter *adapter, 406 struct pvscsi_ctx *ctx) 407 { 408 struct scsi_cmnd *cmd; 409 unsigned bufflen; 410 411 cmd = ctx->cmd; 412 bufflen = scsi_bufflen(cmd); 413 414 if (bufflen != 0) { 415 unsigned count = scsi_sg_count(cmd); 416 417 if (count != 0) { 418 scsi_dma_unmap(cmd); 419 if (ctx->sglPA) { 420 dma_unmap_single(&adapter->dev->dev, ctx->sglPA, 421 SGL_SIZE, DMA_TO_DEVICE); 422 ctx->sglPA = 0; 423 } 424 } else 425 dma_unmap_single(&adapter->dev->dev, ctx->dataPA, 426 bufflen, cmd->sc_data_direction); 427 } 428 if (cmd->sense_buffer) 429 dma_unmap_single(&adapter->dev->dev, ctx->sensePA, 430 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 431 } 432 433 static int pvscsi_allocate_rings(struct pvscsi_adapter *adapter) 434 { 435 adapter->rings_state = dma_alloc_coherent(&adapter->dev->dev, PAGE_SIZE, 436 &adapter->ringStatePA, GFP_KERNEL); 437 if (!adapter->rings_state) 438 return -ENOMEM; 439 440 adapter->req_pages = min(PVSCSI_MAX_NUM_PAGES_REQ_RING, 441 pvscsi_ring_pages); 442 adapter->req_depth = adapter->req_pages 443 * PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE; 444 adapter->req_ring = dma_alloc_coherent(&adapter->dev->dev, 445 adapter->req_pages * PAGE_SIZE, &adapter->reqRingPA, 446 GFP_KERNEL); 447 if (!adapter->req_ring) 448 return -ENOMEM; 449 450 adapter->cmp_pages = min(PVSCSI_MAX_NUM_PAGES_CMP_RING, 451 pvscsi_ring_pages); 452 adapter->cmp_ring = dma_alloc_coherent(&adapter->dev->dev, 453 adapter->cmp_pages * PAGE_SIZE, &adapter->cmpRingPA, 454 GFP_KERNEL); 455 if (!adapter->cmp_ring) 456 return -ENOMEM; 457 458 BUG_ON(!IS_ALIGNED(adapter->ringStatePA, PAGE_SIZE)); 459 BUG_ON(!IS_ALIGNED(adapter->reqRingPA, PAGE_SIZE)); 460 BUG_ON(!IS_ALIGNED(adapter->cmpRingPA, PAGE_SIZE)); 461 462 if (!adapter->use_msg) 463 return 0; 464 465 adapter->msg_pages = min(PVSCSI_MAX_NUM_PAGES_MSG_RING, 466 pvscsi_msg_ring_pages); 467 adapter->msg_ring = dma_alloc_coherent(&adapter->dev->dev, 468 adapter->msg_pages * PAGE_SIZE, &adapter->msgRingPA, 469 GFP_KERNEL); 470 if (!adapter->msg_ring) 471 return -ENOMEM; 472 BUG_ON(!IS_ALIGNED(adapter->msgRingPA, PAGE_SIZE)); 473 474 return 0; 475 } 476 477 static void pvscsi_setup_all_rings(const struct pvscsi_adapter *adapter) 478 { 479 struct PVSCSICmdDescSetupRings cmd = { 0 }; 480 dma_addr_t base; 481 unsigned i; 482 483 cmd.ringsStatePPN = adapter->ringStatePA >> PAGE_SHIFT; 484 cmd.reqRingNumPages = adapter->req_pages; 485 cmd.cmpRingNumPages = adapter->cmp_pages; 486 487 base = adapter->reqRingPA; 488 for (i = 0; i < adapter->req_pages; i++) { 489 cmd.reqRingPPNs[i] = base >> PAGE_SHIFT; 490 base += PAGE_SIZE; 491 } 492 493 base = adapter->cmpRingPA; 494 for (i = 0; i < adapter->cmp_pages; i++) { 495 cmd.cmpRingPPNs[i] = base >> PAGE_SHIFT; 496 base += PAGE_SIZE; 497 } 498 499 memset(adapter->rings_state, 0, PAGE_SIZE); 500 memset(adapter->req_ring, 0, adapter->req_pages * PAGE_SIZE); 501 memset(adapter->cmp_ring, 0, adapter->cmp_pages * PAGE_SIZE); 502 503 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_SETUP_RINGS, 504 &cmd, sizeof(cmd)); 505 506 if (adapter->use_msg) { 507 struct PVSCSICmdDescSetupMsgRing cmd_msg = { 0 }; 508 509 cmd_msg.numPages = adapter->msg_pages; 510 511 base = adapter->msgRingPA; 512 for (i = 0; i < adapter->msg_pages; i++) { 513 cmd_msg.ringPPNs[i] = base >> PAGE_SHIFT; 514 base += PAGE_SIZE; 515 } 516 memset(adapter->msg_ring, 0, adapter->msg_pages * PAGE_SIZE); 517 518 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_SETUP_MSG_RING, 519 &cmd_msg, sizeof(cmd_msg)); 520 } 521 } 522 523 static int pvscsi_change_queue_depth(struct scsi_device *sdev, int qdepth) 524 { 525 if (!sdev->tagged_supported) 526 qdepth = 1; 527 return scsi_change_queue_depth(sdev, qdepth); 528 } 529 530 /* 531 * Pull a completion descriptor off and pass the completion back 532 * to the SCSI mid layer. 533 */ 534 static void pvscsi_complete_request(struct pvscsi_adapter *adapter, 535 const struct PVSCSIRingCmpDesc *e) 536 { 537 struct pvscsi_ctx *ctx; 538 struct scsi_cmnd *cmd; 539 struct completion *abort_cmp; 540 u32 btstat = e->hostStatus; 541 u32 sdstat = e->scsiStatus; 542 543 ctx = pvscsi_get_context(adapter, e->context); 544 cmd = ctx->cmd; 545 abort_cmp = ctx->abort_cmp; 546 pvscsi_unmap_buffers(adapter, ctx); 547 pvscsi_release_context(adapter, ctx); 548 if (abort_cmp) { 549 /* 550 * The command was requested to be aborted. Just signal that 551 * the request completed and swallow the actual cmd completion 552 * here. The abort handler will post a completion for this 553 * command indicating that it got successfully aborted. 554 */ 555 complete(abort_cmp); 556 return; 557 } 558 559 cmd->result = 0; 560 if (sdstat != SAM_STAT_GOOD && 561 (btstat == BTSTAT_SUCCESS || 562 btstat == BTSTAT_LINKED_COMMAND_COMPLETED || 563 btstat == BTSTAT_LINKED_COMMAND_COMPLETED_WITH_FLAG)) { 564 if (sdstat == SAM_STAT_COMMAND_TERMINATED) { 565 cmd->result = (DID_RESET << 16); 566 } else { 567 cmd->result = (DID_OK << 16) | sdstat; 568 if (sdstat == SAM_STAT_CHECK_CONDITION && 569 cmd->sense_buffer) 570 cmd->result |= (DRIVER_SENSE << 24); 571 } 572 } else 573 switch (btstat) { 574 case BTSTAT_SUCCESS: 575 case BTSTAT_LINKED_COMMAND_COMPLETED: 576 case BTSTAT_LINKED_COMMAND_COMPLETED_WITH_FLAG: 577 /* If everything went fine, let's move on.. */ 578 cmd->result = (DID_OK << 16); 579 break; 580 581 case BTSTAT_DATARUN: 582 case BTSTAT_DATA_UNDERRUN: 583 /* Report residual data in underruns */ 584 scsi_set_resid(cmd, scsi_bufflen(cmd) - e->dataLen); 585 cmd->result = (DID_ERROR << 16); 586 break; 587 588 case BTSTAT_SELTIMEO: 589 /* Our emulation returns this for non-connected devs */ 590 cmd->result = (DID_BAD_TARGET << 16); 591 break; 592 593 case BTSTAT_LUNMISMATCH: 594 case BTSTAT_TAGREJECT: 595 case BTSTAT_BADMSG: 596 cmd->result = (DRIVER_INVALID << 24); 597 /* fall through */ 598 599 case BTSTAT_HAHARDWARE: 600 case BTSTAT_INVPHASE: 601 case BTSTAT_HATIMEOUT: 602 case BTSTAT_NORESPONSE: 603 case BTSTAT_DISCONNECT: 604 case BTSTAT_HASOFTWARE: 605 case BTSTAT_BUSFREE: 606 case BTSTAT_SENSFAILED: 607 cmd->result |= (DID_ERROR << 16); 608 break; 609 610 case BTSTAT_SENTRST: 611 case BTSTAT_RECVRST: 612 case BTSTAT_BUSRESET: 613 cmd->result = (DID_RESET << 16); 614 break; 615 616 case BTSTAT_ABORTQUEUE: 617 cmd->result = (DID_BUS_BUSY << 16); 618 break; 619 620 case BTSTAT_SCSIPARITY: 621 cmd->result = (DID_PARITY << 16); 622 break; 623 624 default: 625 cmd->result = (DID_ERROR << 16); 626 scmd_printk(KERN_DEBUG, cmd, 627 "Unknown completion status: 0x%x\n", 628 btstat); 629 } 630 631 dev_dbg(&cmd->device->sdev_gendev, 632 "cmd=%p %x ctx=%p result=0x%x status=0x%x,%x\n", 633 cmd, cmd->cmnd[0], ctx, cmd->result, btstat, sdstat); 634 635 cmd->scsi_done(cmd); 636 } 637 638 /* 639 * barrier usage : Since the PVSCSI device is emulated, there could be cases 640 * where we may want to serialize some accesses between the driver and the 641 * emulation layer. We use compiler barriers instead of the more expensive 642 * memory barriers because PVSCSI is only supported on X86 which has strong 643 * memory access ordering. 644 */ 645 static void pvscsi_process_completion_ring(struct pvscsi_adapter *adapter) 646 { 647 struct PVSCSIRingsState *s = adapter->rings_state; 648 struct PVSCSIRingCmpDesc *ring = adapter->cmp_ring; 649 u32 cmp_entries = s->cmpNumEntriesLog2; 650 651 while (s->cmpConsIdx != s->cmpProdIdx) { 652 struct PVSCSIRingCmpDesc *e = ring + (s->cmpConsIdx & 653 MASK(cmp_entries)); 654 /* 655 * This barrier() ensures that *e is not dereferenced while 656 * the device emulation still writes data into the slot. 657 * Since the device emulation advances s->cmpProdIdx only after 658 * updating the slot we want to check it first. 659 */ 660 barrier(); 661 pvscsi_complete_request(adapter, e); 662 /* 663 * This barrier() ensures that compiler doesn't reorder write 664 * to s->cmpConsIdx before the read of (*e) inside 665 * pvscsi_complete_request. Otherwise, device emulation may 666 * overwrite *e before we had a chance to read it. 667 */ 668 barrier(); 669 s->cmpConsIdx++; 670 } 671 } 672 673 /* 674 * Translate a Linux SCSI request into a request ring entry. 675 */ 676 static int pvscsi_queue_ring(struct pvscsi_adapter *adapter, 677 struct pvscsi_ctx *ctx, struct scsi_cmnd *cmd) 678 { 679 struct PVSCSIRingsState *s; 680 struct PVSCSIRingReqDesc *e; 681 struct scsi_device *sdev; 682 u32 req_entries; 683 684 s = adapter->rings_state; 685 sdev = cmd->device; 686 req_entries = s->reqNumEntriesLog2; 687 688 /* 689 * If this condition holds, we might have room on the request ring, but 690 * we might not have room on the completion ring for the response. 691 * However, we have already ruled out this possibility - we would not 692 * have successfully allocated a context if it were true, since we only 693 * have one context per request entry. Check for it anyway, since it 694 * would be a serious bug. 695 */ 696 if (s->reqProdIdx - s->cmpConsIdx >= 1 << req_entries) { 697 scmd_printk(KERN_ERR, cmd, "vmw_pvscsi: " 698 "ring full: reqProdIdx=%d cmpConsIdx=%d\n", 699 s->reqProdIdx, s->cmpConsIdx); 700 return -1; 701 } 702 703 e = adapter->req_ring + (s->reqProdIdx & MASK(req_entries)); 704 705 e->bus = sdev->channel; 706 e->target = sdev->id; 707 memset(e->lun, 0, sizeof(e->lun)); 708 e->lun[1] = sdev->lun; 709 710 if (cmd->sense_buffer) { 711 ctx->sensePA = dma_map_single(&adapter->dev->dev, 712 cmd->sense_buffer, SCSI_SENSE_BUFFERSIZE, 713 DMA_FROM_DEVICE); 714 if (dma_mapping_error(&adapter->dev->dev, ctx->sensePA)) { 715 scmd_printk(KERN_ERR, cmd, 716 "vmw_pvscsi: Failed to map sense buffer for DMA.\n"); 717 ctx->sensePA = 0; 718 return -ENOMEM; 719 } 720 e->senseAddr = ctx->sensePA; 721 e->senseLen = SCSI_SENSE_BUFFERSIZE; 722 } else { 723 e->senseLen = 0; 724 e->senseAddr = 0; 725 } 726 e->cdbLen = cmd->cmd_len; 727 e->vcpuHint = smp_processor_id(); 728 memcpy(e->cdb, cmd->cmnd, e->cdbLen); 729 730 e->tag = SIMPLE_QUEUE_TAG; 731 732 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 733 e->flags = PVSCSI_FLAG_CMD_DIR_TOHOST; 734 else if (cmd->sc_data_direction == DMA_TO_DEVICE) 735 e->flags = PVSCSI_FLAG_CMD_DIR_TODEVICE; 736 else if (cmd->sc_data_direction == DMA_NONE) 737 e->flags = PVSCSI_FLAG_CMD_DIR_NONE; 738 else 739 e->flags = 0; 740 741 if (pvscsi_map_buffers(adapter, ctx, cmd, e) != 0) { 742 if (cmd->sense_buffer) { 743 dma_unmap_single(&adapter->dev->dev, ctx->sensePA, 744 SCSI_SENSE_BUFFERSIZE, 745 DMA_FROM_DEVICE); 746 ctx->sensePA = 0; 747 } 748 return -ENOMEM; 749 } 750 751 e->context = pvscsi_map_context(adapter, ctx); 752 753 barrier(); 754 755 s->reqProdIdx++; 756 757 return 0; 758 } 759 760 static int pvscsi_queue_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) 761 { 762 struct Scsi_Host *host = cmd->device->host; 763 struct pvscsi_adapter *adapter = shost_priv(host); 764 struct pvscsi_ctx *ctx; 765 unsigned long flags; 766 unsigned char op; 767 768 spin_lock_irqsave(&adapter->hw_lock, flags); 769 770 ctx = pvscsi_acquire_context(adapter, cmd); 771 if (!ctx || pvscsi_queue_ring(adapter, ctx, cmd) != 0) { 772 if (ctx) 773 pvscsi_release_context(adapter, ctx); 774 spin_unlock_irqrestore(&adapter->hw_lock, flags); 775 return SCSI_MLQUEUE_HOST_BUSY; 776 } 777 778 cmd->scsi_done = done; 779 op = cmd->cmnd[0]; 780 781 dev_dbg(&cmd->device->sdev_gendev, 782 "queued cmd %p, ctx %p, op=%x\n", cmd, ctx, op); 783 784 spin_unlock_irqrestore(&adapter->hw_lock, flags); 785 786 pvscsi_kick_io(adapter, op); 787 788 return 0; 789 } 790 791 static DEF_SCSI_QCMD(pvscsi_queue) 792 793 static int pvscsi_abort(struct scsi_cmnd *cmd) 794 { 795 struct pvscsi_adapter *adapter = shost_priv(cmd->device->host); 796 struct pvscsi_ctx *ctx; 797 unsigned long flags; 798 int result = SUCCESS; 799 DECLARE_COMPLETION_ONSTACK(abort_cmp); 800 int done; 801 802 scmd_printk(KERN_DEBUG, cmd, "task abort on host %u, %p\n", 803 adapter->host->host_no, cmd); 804 805 spin_lock_irqsave(&adapter->hw_lock, flags); 806 807 /* 808 * Poll the completion ring first - we might be trying to abort 809 * a command that is waiting to be dispatched in the completion ring. 810 */ 811 pvscsi_process_completion_ring(adapter); 812 813 /* 814 * If there is no context for the command, it either already succeeded 815 * or else was never properly issued. Not our problem. 816 */ 817 ctx = pvscsi_find_context(adapter, cmd); 818 if (!ctx) { 819 scmd_printk(KERN_DEBUG, cmd, "Failed to abort cmd %p\n", cmd); 820 goto out; 821 } 822 823 /* 824 * Mark that the command has been requested to be aborted and issue 825 * the abort. 826 */ 827 ctx->abort_cmp = &abort_cmp; 828 829 pvscsi_abort_cmd(adapter, ctx); 830 spin_unlock_irqrestore(&adapter->hw_lock, flags); 831 /* Wait for 2 secs for the completion. */ 832 done = wait_for_completion_timeout(&abort_cmp, msecs_to_jiffies(2000)); 833 spin_lock_irqsave(&adapter->hw_lock, flags); 834 835 if (!done) { 836 /* 837 * Failed to abort the command, unmark the fact that it 838 * was requested to be aborted. 839 */ 840 ctx->abort_cmp = NULL; 841 result = FAILED; 842 scmd_printk(KERN_DEBUG, cmd, 843 "Failed to get completion for aborted cmd %p\n", 844 cmd); 845 goto out; 846 } 847 848 /* 849 * Successfully aborted the command. 850 */ 851 cmd->result = (DID_ABORT << 16); 852 cmd->scsi_done(cmd); 853 854 out: 855 spin_unlock_irqrestore(&adapter->hw_lock, flags); 856 return result; 857 } 858 859 /* 860 * Abort all outstanding requests. This is only safe to use if the completion 861 * ring will never be walked again or the device has been reset, because it 862 * destroys the 1-1 mapping between context field passed to emulation and our 863 * request structure. 864 */ 865 static void pvscsi_reset_all(struct pvscsi_adapter *adapter) 866 { 867 unsigned i; 868 869 for (i = 0; i < adapter->req_depth; i++) { 870 struct pvscsi_ctx *ctx = &adapter->cmd_map[i]; 871 struct scsi_cmnd *cmd = ctx->cmd; 872 if (cmd) { 873 scmd_printk(KERN_ERR, cmd, 874 "Forced reset on cmd %p\n", cmd); 875 pvscsi_unmap_buffers(adapter, ctx); 876 pvscsi_release_context(adapter, ctx); 877 cmd->result = (DID_RESET << 16); 878 cmd->scsi_done(cmd); 879 } 880 } 881 } 882 883 static int pvscsi_host_reset(struct scsi_cmnd *cmd) 884 { 885 struct Scsi_Host *host = cmd->device->host; 886 struct pvscsi_adapter *adapter = shost_priv(host); 887 unsigned long flags; 888 bool use_msg; 889 890 scmd_printk(KERN_INFO, cmd, "SCSI Host reset\n"); 891 892 spin_lock_irqsave(&adapter->hw_lock, flags); 893 894 use_msg = adapter->use_msg; 895 896 if (use_msg) { 897 adapter->use_msg = 0; 898 spin_unlock_irqrestore(&adapter->hw_lock, flags); 899 900 /* 901 * Now that we know that the ISR won't add more work on the 902 * workqueue we can safely flush any outstanding work. 903 */ 904 flush_workqueue(adapter->workqueue); 905 spin_lock_irqsave(&adapter->hw_lock, flags); 906 } 907 908 /* 909 * We're going to tear down the entire ring structure and set it back 910 * up, so stalling new requests until all completions are flushed and 911 * the rings are back in place. 912 */ 913 914 pvscsi_process_request_ring(adapter); 915 916 ll_adapter_reset(adapter); 917 918 /* 919 * Now process any completions. Note we do this AFTER adapter reset, 920 * which is strange, but stops races where completions get posted 921 * between processing the ring and issuing the reset. The backend will 922 * not touch the ring memory after reset, so the immediately pre-reset 923 * completion ring state is still valid. 924 */ 925 pvscsi_process_completion_ring(adapter); 926 927 pvscsi_reset_all(adapter); 928 adapter->use_msg = use_msg; 929 pvscsi_setup_all_rings(adapter); 930 pvscsi_unmask_intr(adapter); 931 932 spin_unlock_irqrestore(&adapter->hw_lock, flags); 933 934 return SUCCESS; 935 } 936 937 static int pvscsi_bus_reset(struct scsi_cmnd *cmd) 938 { 939 struct Scsi_Host *host = cmd->device->host; 940 struct pvscsi_adapter *adapter = shost_priv(host); 941 unsigned long flags; 942 943 scmd_printk(KERN_INFO, cmd, "SCSI Bus reset\n"); 944 945 /* 946 * We don't want to queue new requests for this bus after 947 * flushing all pending requests to emulation, since new 948 * requests could then sneak in during this bus reset phase, 949 * so take the lock now. 950 */ 951 spin_lock_irqsave(&adapter->hw_lock, flags); 952 953 pvscsi_process_request_ring(adapter); 954 ll_bus_reset(adapter); 955 pvscsi_process_completion_ring(adapter); 956 957 spin_unlock_irqrestore(&adapter->hw_lock, flags); 958 959 return SUCCESS; 960 } 961 962 static int pvscsi_device_reset(struct scsi_cmnd *cmd) 963 { 964 struct Scsi_Host *host = cmd->device->host; 965 struct pvscsi_adapter *adapter = shost_priv(host); 966 unsigned long flags; 967 968 scmd_printk(KERN_INFO, cmd, "SCSI device reset on scsi%u:%u\n", 969 host->host_no, cmd->device->id); 970 971 /* 972 * We don't want to queue new requests for this device after flushing 973 * all pending requests to emulation, since new requests could then 974 * sneak in during this device reset phase, so take the lock now. 975 */ 976 spin_lock_irqsave(&adapter->hw_lock, flags); 977 978 pvscsi_process_request_ring(adapter); 979 ll_device_reset(adapter, cmd->device->id); 980 pvscsi_process_completion_ring(adapter); 981 982 spin_unlock_irqrestore(&adapter->hw_lock, flags); 983 984 return SUCCESS; 985 } 986 987 static struct scsi_host_template pvscsi_template; 988 989 static const char *pvscsi_info(struct Scsi_Host *host) 990 { 991 struct pvscsi_adapter *adapter = shost_priv(host); 992 static char buf[256]; 993 994 sprintf(buf, "VMware PVSCSI storage adapter rev %d, req/cmp/msg rings: " 995 "%u/%u/%u pages, cmd_per_lun=%u", adapter->rev, 996 adapter->req_pages, adapter->cmp_pages, adapter->msg_pages, 997 pvscsi_template.cmd_per_lun); 998 999 return buf; 1000 } 1001 1002 static struct scsi_host_template pvscsi_template = { 1003 .module = THIS_MODULE, 1004 .name = "VMware PVSCSI Host Adapter", 1005 .proc_name = "vmw_pvscsi", 1006 .info = pvscsi_info, 1007 .queuecommand = pvscsi_queue, 1008 .this_id = -1, 1009 .sg_tablesize = PVSCSI_MAX_NUM_SG_ENTRIES_PER_SEGMENT, 1010 .dma_boundary = UINT_MAX, 1011 .max_sectors = 0xffff, 1012 .change_queue_depth = pvscsi_change_queue_depth, 1013 .eh_abort_handler = pvscsi_abort, 1014 .eh_device_reset_handler = pvscsi_device_reset, 1015 .eh_bus_reset_handler = pvscsi_bus_reset, 1016 .eh_host_reset_handler = pvscsi_host_reset, 1017 }; 1018 1019 static void pvscsi_process_msg(const struct pvscsi_adapter *adapter, 1020 const struct PVSCSIRingMsgDesc *e) 1021 { 1022 struct PVSCSIRingsState *s = adapter->rings_state; 1023 struct Scsi_Host *host = adapter->host; 1024 struct scsi_device *sdev; 1025 1026 printk(KERN_INFO "vmw_pvscsi: msg type: 0x%x - MSG RING: %u/%u (%u) \n", 1027 e->type, s->msgProdIdx, s->msgConsIdx, s->msgNumEntriesLog2); 1028 1029 BUILD_BUG_ON(PVSCSI_MSG_LAST != 2); 1030 1031 if (e->type == PVSCSI_MSG_DEV_ADDED) { 1032 struct PVSCSIMsgDescDevStatusChanged *desc; 1033 desc = (struct PVSCSIMsgDescDevStatusChanged *)e; 1034 1035 printk(KERN_INFO 1036 "vmw_pvscsi: msg: device added at scsi%u:%u:%u\n", 1037 desc->bus, desc->target, desc->lun[1]); 1038 1039 if (!scsi_host_get(host)) 1040 return; 1041 1042 sdev = scsi_device_lookup(host, desc->bus, desc->target, 1043 desc->lun[1]); 1044 if (sdev) { 1045 printk(KERN_INFO "vmw_pvscsi: device already exists\n"); 1046 scsi_device_put(sdev); 1047 } else 1048 scsi_add_device(adapter->host, desc->bus, 1049 desc->target, desc->lun[1]); 1050 1051 scsi_host_put(host); 1052 } else if (e->type == PVSCSI_MSG_DEV_REMOVED) { 1053 struct PVSCSIMsgDescDevStatusChanged *desc; 1054 desc = (struct PVSCSIMsgDescDevStatusChanged *)e; 1055 1056 printk(KERN_INFO 1057 "vmw_pvscsi: msg: device removed at scsi%u:%u:%u\n", 1058 desc->bus, desc->target, desc->lun[1]); 1059 1060 if (!scsi_host_get(host)) 1061 return; 1062 1063 sdev = scsi_device_lookup(host, desc->bus, desc->target, 1064 desc->lun[1]); 1065 if (sdev) { 1066 scsi_remove_device(sdev); 1067 scsi_device_put(sdev); 1068 } else 1069 printk(KERN_INFO 1070 "vmw_pvscsi: failed to lookup scsi%u:%u:%u\n", 1071 desc->bus, desc->target, desc->lun[1]); 1072 1073 scsi_host_put(host); 1074 } 1075 } 1076 1077 static int pvscsi_msg_pending(const struct pvscsi_adapter *adapter) 1078 { 1079 struct PVSCSIRingsState *s = adapter->rings_state; 1080 1081 return s->msgProdIdx != s->msgConsIdx; 1082 } 1083 1084 static void pvscsi_process_msg_ring(const struct pvscsi_adapter *adapter) 1085 { 1086 struct PVSCSIRingsState *s = adapter->rings_state; 1087 struct PVSCSIRingMsgDesc *ring = adapter->msg_ring; 1088 u32 msg_entries = s->msgNumEntriesLog2; 1089 1090 while (pvscsi_msg_pending(adapter)) { 1091 struct PVSCSIRingMsgDesc *e = ring + (s->msgConsIdx & 1092 MASK(msg_entries)); 1093 1094 barrier(); 1095 pvscsi_process_msg(adapter, e); 1096 barrier(); 1097 s->msgConsIdx++; 1098 } 1099 } 1100 1101 static void pvscsi_msg_workqueue_handler(struct work_struct *data) 1102 { 1103 struct pvscsi_adapter *adapter; 1104 1105 adapter = container_of(data, struct pvscsi_adapter, work); 1106 1107 pvscsi_process_msg_ring(adapter); 1108 } 1109 1110 static int pvscsi_setup_msg_workqueue(struct pvscsi_adapter *adapter) 1111 { 1112 char name[32]; 1113 1114 if (!pvscsi_use_msg) 1115 return 0; 1116 1117 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_COMMAND, 1118 PVSCSI_CMD_SETUP_MSG_RING); 1119 1120 if (pvscsi_reg_read(adapter, PVSCSI_REG_OFFSET_COMMAND_STATUS) == -1) 1121 return 0; 1122 1123 snprintf(name, sizeof(name), 1124 "vmw_pvscsi_wq_%u", adapter->host->host_no); 1125 1126 adapter->workqueue = create_singlethread_workqueue(name); 1127 if (!adapter->workqueue) { 1128 printk(KERN_ERR "vmw_pvscsi: failed to create work queue\n"); 1129 return 0; 1130 } 1131 INIT_WORK(&adapter->work, pvscsi_msg_workqueue_handler); 1132 1133 return 1; 1134 } 1135 1136 static bool pvscsi_setup_req_threshold(struct pvscsi_adapter *adapter, 1137 bool enable) 1138 { 1139 u32 val; 1140 1141 if (!pvscsi_use_req_threshold) 1142 return false; 1143 1144 pvscsi_reg_write(adapter, PVSCSI_REG_OFFSET_COMMAND, 1145 PVSCSI_CMD_SETUP_REQCALLTHRESHOLD); 1146 val = pvscsi_reg_read(adapter, PVSCSI_REG_OFFSET_COMMAND_STATUS); 1147 if (val == -1) { 1148 printk(KERN_INFO "vmw_pvscsi: device does not support req_threshold\n"); 1149 return false; 1150 } else { 1151 struct PVSCSICmdDescSetupReqCall cmd_msg = { 0 }; 1152 cmd_msg.enable = enable; 1153 printk(KERN_INFO 1154 "vmw_pvscsi: %sabling reqCallThreshold\n", 1155 enable ? "en" : "dis"); 1156 pvscsi_write_cmd_desc(adapter, 1157 PVSCSI_CMD_SETUP_REQCALLTHRESHOLD, 1158 &cmd_msg, sizeof(cmd_msg)); 1159 return pvscsi_reg_read(adapter, 1160 PVSCSI_REG_OFFSET_COMMAND_STATUS) != 0; 1161 } 1162 } 1163 1164 static irqreturn_t pvscsi_isr(int irq, void *devp) 1165 { 1166 struct pvscsi_adapter *adapter = devp; 1167 unsigned long flags; 1168 1169 spin_lock_irqsave(&adapter->hw_lock, flags); 1170 pvscsi_process_completion_ring(adapter); 1171 if (adapter->use_msg && pvscsi_msg_pending(adapter)) 1172 queue_work(adapter->workqueue, &adapter->work); 1173 spin_unlock_irqrestore(&adapter->hw_lock, flags); 1174 1175 return IRQ_HANDLED; 1176 } 1177 1178 static irqreturn_t pvscsi_shared_isr(int irq, void *devp) 1179 { 1180 struct pvscsi_adapter *adapter = devp; 1181 u32 val = pvscsi_read_intr_status(adapter); 1182 1183 if (!(val & PVSCSI_INTR_ALL_SUPPORTED)) 1184 return IRQ_NONE; 1185 pvscsi_write_intr_status(devp, val); 1186 return pvscsi_isr(irq, devp); 1187 } 1188 1189 static void pvscsi_free_sgls(const struct pvscsi_adapter *adapter) 1190 { 1191 struct pvscsi_ctx *ctx = adapter->cmd_map; 1192 unsigned i; 1193 1194 for (i = 0; i < adapter->req_depth; ++i, ++ctx) 1195 free_pages((unsigned long)ctx->sgl, get_order(SGL_SIZE)); 1196 } 1197 1198 static void pvscsi_shutdown_intr(struct pvscsi_adapter *adapter) 1199 { 1200 free_irq(pci_irq_vector(adapter->dev, 0), adapter); 1201 pci_free_irq_vectors(adapter->dev); 1202 } 1203 1204 static void pvscsi_release_resources(struct pvscsi_adapter *adapter) 1205 { 1206 if (adapter->workqueue) 1207 destroy_workqueue(adapter->workqueue); 1208 1209 if (adapter->mmioBase) 1210 pci_iounmap(adapter->dev, adapter->mmioBase); 1211 1212 pci_release_regions(adapter->dev); 1213 1214 if (adapter->cmd_map) { 1215 pvscsi_free_sgls(adapter); 1216 kfree(adapter->cmd_map); 1217 } 1218 1219 if (adapter->rings_state) 1220 dma_free_coherent(&adapter->dev->dev, PAGE_SIZE, 1221 adapter->rings_state, adapter->ringStatePA); 1222 1223 if (adapter->req_ring) 1224 dma_free_coherent(&adapter->dev->dev, 1225 adapter->req_pages * PAGE_SIZE, 1226 adapter->req_ring, adapter->reqRingPA); 1227 1228 if (adapter->cmp_ring) 1229 dma_free_coherent(&adapter->dev->dev, 1230 adapter->cmp_pages * PAGE_SIZE, 1231 adapter->cmp_ring, adapter->cmpRingPA); 1232 1233 if (adapter->msg_ring) 1234 dma_free_coherent(&adapter->dev->dev, 1235 adapter->msg_pages * PAGE_SIZE, 1236 adapter->msg_ring, adapter->msgRingPA); 1237 } 1238 1239 /* 1240 * Allocate scatter gather lists. 1241 * 1242 * These are statically allocated. Trying to be clever was not worth it. 1243 * 1244 * Dynamic allocation can fail, and we can't go deep into the memory 1245 * allocator, since we're a SCSI driver, and trying too hard to allocate 1246 * memory might generate disk I/O. We also don't want to fail disk I/O 1247 * in that case because we can't get an allocation - the I/O could be 1248 * trying to swap out data to free memory. Since that is pathological, 1249 * just use a statically allocated scatter list. 1250 * 1251 */ 1252 static int pvscsi_allocate_sg(struct pvscsi_adapter *adapter) 1253 { 1254 struct pvscsi_ctx *ctx; 1255 int i; 1256 1257 ctx = adapter->cmd_map; 1258 BUILD_BUG_ON(sizeof(struct pvscsi_sg_list) > SGL_SIZE); 1259 1260 for (i = 0; i < adapter->req_depth; ++i, ++ctx) { 1261 ctx->sgl = (void *)__get_free_pages(GFP_KERNEL, 1262 get_order(SGL_SIZE)); 1263 ctx->sglPA = 0; 1264 BUG_ON(!IS_ALIGNED(((unsigned long)ctx->sgl), PAGE_SIZE)); 1265 if (!ctx->sgl) { 1266 for (; i >= 0; --i, --ctx) { 1267 free_pages((unsigned long)ctx->sgl, 1268 get_order(SGL_SIZE)); 1269 ctx->sgl = NULL; 1270 } 1271 return -ENOMEM; 1272 } 1273 } 1274 1275 return 0; 1276 } 1277 1278 /* 1279 * Query the device, fetch the config info and return the 1280 * maximum number of targets on the adapter. In case of 1281 * failure due to any reason return default i.e. 16. 1282 */ 1283 static u32 pvscsi_get_max_targets(struct pvscsi_adapter *adapter) 1284 { 1285 struct PVSCSICmdDescConfigCmd cmd; 1286 struct PVSCSIConfigPageHeader *header; 1287 struct device *dev; 1288 dma_addr_t configPagePA; 1289 void *config_page; 1290 u32 numPhys = 16; 1291 1292 dev = pvscsi_dev(adapter); 1293 config_page = dma_alloc_coherent(&adapter->dev->dev, PAGE_SIZE, 1294 &configPagePA, GFP_KERNEL); 1295 if (!config_page) { 1296 dev_warn(dev, "vmw_pvscsi: failed to allocate memory for config page\n"); 1297 goto exit; 1298 } 1299 BUG_ON(configPagePA & ~PAGE_MASK); 1300 1301 /* Fetch config info from the device. */ 1302 cmd.configPageAddress = ((u64)PVSCSI_CONFIG_CONTROLLER_ADDRESS) << 32; 1303 cmd.configPageNum = PVSCSI_CONFIG_PAGE_CONTROLLER; 1304 cmd.cmpAddr = configPagePA; 1305 cmd._pad = 0; 1306 1307 /* 1308 * Mark the completion page header with error values. If the device 1309 * completes the command successfully, it sets the status values to 1310 * indicate success. 1311 */ 1312 header = config_page; 1313 memset(header, 0, sizeof *header); 1314 header->hostStatus = BTSTAT_INVPARAM; 1315 header->scsiStatus = SDSTAT_CHECK; 1316 1317 pvscsi_write_cmd_desc(adapter, PVSCSI_CMD_CONFIG, &cmd, sizeof cmd); 1318 1319 if (header->hostStatus == BTSTAT_SUCCESS && 1320 header->scsiStatus == SDSTAT_GOOD) { 1321 struct PVSCSIConfigPageController *config; 1322 1323 config = config_page; 1324 numPhys = config->numPhys; 1325 } else 1326 dev_warn(dev, "vmw_pvscsi: PVSCSI_CMD_CONFIG failed. hostStatus = 0x%x, scsiStatus = 0x%x\n", 1327 header->hostStatus, header->scsiStatus); 1328 dma_free_coherent(&adapter->dev->dev, PAGE_SIZE, config_page, 1329 configPagePA); 1330 exit: 1331 return numPhys; 1332 } 1333 1334 static int pvscsi_probe(struct pci_dev *pdev, const struct pci_device_id *id) 1335 { 1336 unsigned int irq_flag = PCI_IRQ_MSIX | PCI_IRQ_MSI | PCI_IRQ_LEGACY; 1337 struct pvscsi_adapter *adapter; 1338 struct pvscsi_adapter adapter_temp; 1339 struct Scsi_Host *host = NULL; 1340 unsigned int i; 1341 int error; 1342 u32 max_id; 1343 1344 error = -ENODEV; 1345 1346 if (pci_enable_device(pdev)) 1347 return error; 1348 1349 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { 1350 printk(KERN_INFO "vmw_pvscsi: using 64bit dma\n"); 1351 } else if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) { 1352 printk(KERN_INFO "vmw_pvscsi: using 32bit dma\n"); 1353 } else { 1354 printk(KERN_ERR "vmw_pvscsi: failed to set DMA mask\n"); 1355 goto out_disable_device; 1356 } 1357 1358 /* 1359 * Let's use a temp pvscsi_adapter struct until we find the number of 1360 * targets on the adapter, after that we will switch to the real 1361 * allocated struct. 1362 */ 1363 adapter = &adapter_temp; 1364 memset(adapter, 0, sizeof(*adapter)); 1365 adapter->dev = pdev; 1366 adapter->rev = pdev->revision; 1367 1368 if (pci_request_regions(pdev, "vmw_pvscsi")) { 1369 printk(KERN_ERR "vmw_pvscsi: pci memory selection failed\n"); 1370 goto out_disable_device; 1371 } 1372 1373 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 1374 if ((pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE_IO)) 1375 continue; 1376 1377 if (pci_resource_len(pdev, i) < PVSCSI_MEM_SPACE_SIZE) 1378 continue; 1379 1380 break; 1381 } 1382 1383 if (i == DEVICE_COUNT_RESOURCE) { 1384 printk(KERN_ERR 1385 "vmw_pvscsi: adapter has no suitable MMIO region\n"); 1386 goto out_release_resources_and_disable; 1387 } 1388 1389 adapter->mmioBase = pci_iomap(pdev, i, PVSCSI_MEM_SPACE_SIZE); 1390 1391 if (!adapter->mmioBase) { 1392 printk(KERN_ERR 1393 "vmw_pvscsi: can't iomap for BAR %d memsize %lu\n", 1394 i, PVSCSI_MEM_SPACE_SIZE); 1395 goto out_release_resources_and_disable; 1396 } 1397 1398 pci_set_master(pdev); 1399 1400 /* 1401 * Ask the device for max number of targets before deciding the 1402 * default pvscsi_ring_pages value. 1403 */ 1404 max_id = pvscsi_get_max_targets(adapter); 1405 printk(KERN_INFO "vmw_pvscsi: max_id: %u\n", max_id); 1406 1407 if (pvscsi_ring_pages == 0) 1408 /* 1409 * Set the right default value. Up to 16 it is 8, above it is 1410 * max. 1411 */ 1412 pvscsi_ring_pages = (max_id > 16) ? 1413 PVSCSI_SETUP_RINGS_MAX_NUM_PAGES : 1414 PVSCSI_DEFAULT_NUM_PAGES_PER_RING; 1415 printk(KERN_INFO 1416 "vmw_pvscsi: setting ring_pages to %d\n", 1417 pvscsi_ring_pages); 1418 1419 pvscsi_template.can_queue = 1420 min(PVSCSI_MAX_NUM_PAGES_REQ_RING, pvscsi_ring_pages) * 1421 PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE; 1422 pvscsi_template.cmd_per_lun = 1423 min(pvscsi_template.can_queue, pvscsi_cmd_per_lun); 1424 host = scsi_host_alloc(&pvscsi_template, sizeof(struct pvscsi_adapter)); 1425 if (!host) { 1426 printk(KERN_ERR "vmw_pvscsi: failed to allocate host\n"); 1427 goto out_release_resources_and_disable; 1428 } 1429 1430 /* 1431 * Let's use the real pvscsi_adapter struct here onwards. 1432 */ 1433 adapter = shost_priv(host); 1434 memset(adapter, 0, sizeof(*adapter)); 1435 adapter->dev = pdev; 1436 adapter->host = host; 1437 /* 1438 * Copy back what we already have to the allocated adapter struct. 1439 */ 1440 adapter->rev = adapter_temp.rev; 1441 adapter->mmioBase = adapter_temp.mmioBase; 1442 1443 spin_lock_init(&adapter->hw_lock); 1444 host->max_channel = 0; 1445 host->max_lun = 1; 1446 host->max_cmd_len = 16; 1447 host->max_id = max_id; 1448 1449 pci_set_drvdata(pdev, host); 1450 1451 ll_adapter_reset(adapter); 1452 1453 adapter->use_msg = pvscsi_setup_msg_workqueue(adapter); 1454 1455 error = pvscsi_allocate_rings(adapter); 1456 if (error) { 1457 printk(KERN_ERR "vmw_pvscsi: unable to allocate ring memory\n"); 1458 goto out_release_resources; 1459 } 1460 1461 /* 1462 * From this point on we should reset the adapter if anything goes 1463 * wrong. 1464 */ 1465 pvscsi_setup_all_rings(adapter); 1466 1467 adapter->cmd_map = kcalloc(adapter->req_depth, 1468 sizeof(struct pvscsi_ctx), GFP_KERNEL); 1469 if (!adapter->cmd_map) { 1470 printk(KERN_ERR "vmw_pvscsi: failed to allocate memory.\n"); 1471 error = -ENOMEM; 1472 goto out_reset_adapter; 1473 } 1474 1475 INIT_LIST_HEAD(&adapter->cmd_pool); 1476 for (i = 0; i < adapter->req_depth; i++) { 1477 struct pvscsi_ctx *ctx = adapter->cmd_map + i; 1478 list_add(&ctx->list, &adapter->cmd_pool); 1479 } 1480 1481 error = pvscsi_allocate_sg(adapter); 1482 if (error) { 1483 printk(KERN_ERR "vmw_pvscsi: unable to allocate s/g table\n"); 1484 goto out_reset_adapter; 1485 } 1486 1487 if (pvscsi_disable_msix) 1488 irq_flag &= ~PCI_IRQ_MSIX; 1489 if (pvscsi_disable_msi) 1490 irq_flag &= ~PCI_IRQ_MSI; 1491 1492 error = pci_alloc_irq_vectors(adapter->dev, 1, 1, irq_flag); 1493 if (error < 0) 1494 goto out_reset_adapter; 1495 1496 adapter->use_req_threshold = pvscsi_setup_req_threshold(adapter, true); 1497 printk(KERN_DEBUG "vmw_pvscsi: driver-based request coalescing %sabled\n", 1498 adapter->use_req_threshold ? "en" : "dis"); 1499 1500 if (adapter->dev->msix_enabled || adapter->dev->msi_enabled) { 1501 printk(KERN_INFO "vmw_pvscsi: using MSI%s\n", 1502 adapter->dev->msix_enabled ? "-X" : ""); 1503 error = request_irq(pci_irq_vector(pdev, 0), pvscsi_isr, 1504 0, "vmw_pvscsi", adapter); 1505 } else { 1506 printk(KERN_INFO "vmw_pvscsi: using INTx\n"); 1507 error = request_irq(pci_irq_vector(pdev, 0), pvscsi_shared_isr, 1508 IRQF_SHARED, "vmw_pvscsi", adapter); 1509 } 1510 1511 if (error) { 1512 printk(KERN_ERR 1513 "vmw_pvscsi: unable to request IRQ: %d\n", error); 1514 goto out_reset_adapter; 1515 } 1516 1517 error = scsi_add_host(host, &pdev->dev); 1518 if (error) { 1519 printk(KERN_ERR 1520 "vmw_pvscsi: scsi_add_host failed: %d\n", error); 1521 goto out_reset_adapter; 1522 } 1523 1524 dev_info(&pdev->dev, "VMware PVSCSI rev %d host #%u\n", 1525 adapter->rev, host->host_no); 1526 1527 pvscsi_unmask_intr(adapter); 1528 1529 scsi_scan_host(host); 1530 1531 return 0; 1532 1533 out_reset_adapter: 1534 ll_adapter_reset(adapter); 1535 out_release_resources: 1536 pvscsi_shutdown_intr(adapter); 1537 pvscsi_release_resources(adapter); 1538 scsi_host_put(host); 1539 out_disable_device: 1540 pci_disable_device(pdev); 1541 1542 return error; 1543 1544 out_release_resources_and_disable: 1545 pvscsi_shutdown_intr(adapter); 1546 pvscsi_release_resources(adapter); 1547 goto out_disable_device; 1548 } 1549 1550 static void __pvscsi_shutdown(struct pvscsi_adapter *adapter) 1551 { 1552 pvscsi_mask_intr(adapter); 1553 1554 if (adapter->workqueue) 1555 flush_workqueue(adapter->workqueue); 1556 1557 pvscsi_shutdown_intr(adapter); 1558 1559 pvscsi_process_request_ring(adapter); 1560 pvscsi_process_completion_ring(adapter); 1561 ll_adapter_reset(adapter); 1562 } 1563 1564 static void pvscsi_shutdown(struct pci_dev *dev) 1565 { 1566 struct Scsi_Host *host = pci_get_drvdata(dev); 1567 struct pvscsi_adapter *adapter = shost_priv(host); 1568 1569 __pvscsi_shutdown(adapter); 1570 } 1571 1572 static void pvscsi_remove(struct pci_dev *pdev) 1573 { 1574 struct Scsi_Host *host = pci_get_drvdata(pdev); 1575 struct pvscsi_adapter *adapter = shost_priv(host); 1576 1577 scsi_remove_host(host); 1578 1579 __pvscsi_shutdown(adapter); 1580 pvscsi_release_resources(adapter); 1581 1582 scsi_host_put(host); 1583 1584 pci_disable_device(pdev); 1585 } 1586 1587 static struct pci_driver pvscsi_pci_driver = { 1588 .name = "vmw_pvscsi", 1589 .id_table = pvscsi_pci_tbl, 1590 .probe = pvscsi_probe, 1591 .remove = pvscsi_remove, 1592 .shutdown = pvscsi_shutdown, 1593 }; 1594 1595 static int __init pvscsi_init(void) 1596 { 1597 pr_info("%s - version %s\n", 1598 PVSCSI_LINUX_DRIVER_DESC, PVSCSI_DRIVER_VERSION_STRING); 1599 return pci_register_driver(&pvscsi_pci_driver); 1600 } 1601 1602 static void __exit pvscsi_exit(void) 1603 { 1604 pci_unregister_driver(&pvscsi_pci_driver); 1605 } 1606 1607 module_init(pvscsi_init); 1608 module_exit(pvscsi_exit); 1609