1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  * This driver is derived from the Linux sym53c8xx driver.
8  * Copyright (C) 1998-2000  Gerard Roudier
9  *
10  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11  * a port of the FreeBSD ncr driver to Linux-1.2.13.
12  *
13  * The original ncr driver has been written for 386bsd and FreeBSD by
14  *         Wolfgang Stanglmeier        <wolf@cologne.de>
15  *         Stefan Esser                <se@mi.Uni-Koeln.de>
16  * Copyright (C) 1994  Wolfgang Stanglmeier
17  *
18  * Other major contributions:
19  *
20  * NVRAM detection and reading.
21  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22  *
23  *-----------------------------------------------------------------------------
24  *
25  * This program is free software; you can redistribute it and/or modify
26  * it under the terms of the GNU General Public License as published by
27  * the Free Software Foundation; either version 2 of the License, or
28  * (at your option) any later version.
29  *
30  * This program is distributed in the hope that it will be useful,
31  * but WITHOUT ANY WARRANTY; without even the implied warranty of
32  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
33  * GNU General Public License for more details.
34  *
35  * You should have received a copy of the GNU General Public License
36  * along with this program; if not, write to the Free Software
37  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
38  */
39 
40 #include <linux/gfp.h>
41 
42 #ifndef SYM_HIPD_H
43 #define SYM_HIPD_H
44 
45 /*
46  *  Generic driver options.
47  *
48  *  They may be defined in platform specific headers, if they
49  *  are useful.
50  *
51  *    SYM_OPT_HANDLE_DEVICE_QUEUEING
52  *        When this option is set, the driver will use a queue per
53  *        device and handle QUEUE FULL status requeuing internally.
54  *
55  *    SYM_OPT_LIMIT_COMMAND_REORDERING
56  *        When this option is set, the driver tries to limit tagged
57  *        command reordering to some reasonnable value.
58  *        (set for Linux)
59  */
60 #if 0
61 #define SYM_OPT_HANDLE_DEVICE_QUEUEING
62 #define SYM_OPT_LIMIT_COMMAND_REORDERING
63 #endif
64 
65 /*
66  *  Active debugging tags and verbosity.
67  *  Both DEBUG_FLAGS and sym_verbose can be redefined
68  *  by the platform specific code to something else.
69  */
70 #define DEBUG_ALLOC	(0x0001)
71 #define DEBUG_PHASE	(0x0002)
72 #define DEBUG_POLL	(0x0004)
73 #define DEBUG_QUEUE	(0x0008)
74 #define DEBUG_RESULT	(0x0010)
75 #define DEBUG_SCATTER	(0x0020)
76 #define DEBUG_SCRIPT	(0x0040)
77 #define DEBUG_TINY	(0x0080)
78 #define DEBUG_TIMING	(0x0100)
79 #define DEBUG_NEGO	(0x0200)
80 #define DEBUG_TAGS	(0x0400)
81 #define DEBUG_POINTER	(0x0800)
82 
83 #ifndef DEBUG_FLAGS
84 #define DEBUG_FLAGS	(0x0000)
85 #endif
86 
87 #ifndef sym_verbose
88 #define sym_verbose	(np->verbose)
89 #endif
90 
91 /*
92  *  These ones should have been already defined.
93  */
94 #ifndef assert
95 #define	assert(expression) { \
96 	if (!(expression)) { \
97 		(void)panic( \
98 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
99 			#expression, \
100 			__FILE__, __LINE__); \
101 	} \
102 }
103 #endif
104 
105 /*
106  *  Number of tasks per device we want to handle.
107  */
108 #if	SYM_CONF_MAX_TAG_ORDER > 8
109 #error	"more than 256 tags per logical unit not allowed."
110 #endif
111 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
112 
113 /*
114  *  Donnot use more tasks that we can handle.
115  */
116 #ifndef	SYM_CONF_MAX_TAG
117 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
118 #endif
119 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
120 #undef	SYM_CONF_MAX_TAG
121 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
122 #endif
123 
124 /*
125  *    This one means 'NO TAG for this job'
126  */
127 #define NO_TAG	(256)
128 
129 /*
130  *  Number of SCSI targets.
131  */
132 #if	SYM_CONF_MAX_TARGET > 16
133 #error	"more than 16 targets not allowed."
134 #endif
135 
136 /*
137  *  Number of logical units per target.
138  */
139 #if	SYM_CONF_MAX_LUN > 64
140 #error	"more than 64 logical units per target not allowed."
141 #endif
142 
143 /*
144  *    Asynchronous pre-scaler (ns). Shall be 40 for
145  *    the SCSI timings to be compliant.
146  */
147 #define	SYM_CONF_MIN_ASYNC (40)
148 
149 
150 /*
151  * MEMORY ALLOCATOR.
152  */
153 
154 #define SYM_MEM_WARN	1	/* Warn on failed operations */
155 
156 #define SYM_MEM_PAGE_ORDER 0	/* 1 PAGE  maximum */
157 #define SYM_MEM_CLUSTER_SHIFT	(PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
158 #define SYM_MEM_FREE_UNUSED	/* Free unused pages immediately */
159 /*
160  *  Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
161  *  Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
162  *  (1 PAGE at a time is just fine).
163  */
164 #define SYM_MEM_SHIFT	4
165 #define SYM_MEM_CLUSTER_SIZE	(1UL << SYM_MEM_CLUSTER_SHIFT)
166 #define SYM_MEM_CLUSTER_MASK	(SYM_MEM_CLUSTER_SIZE-1)
167 
168 /*
169  *  Number of entries in the START and DONE queues.
170  *
171  *  We limit to 1 PAGE in order to succeed allocation of
172  *  these queues. Each entry is 8 bytes long (2 DWORDS).
173  */
174 #ifdef	SYM_CONF_MAX_START
175 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
176 #else
177 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
178 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
179 #endif
180 
181 #if	SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
182 #undef	SYM_CONF_MAX_QUEUE
183 #define	SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
184 #undef	SYM_CONF_MAX_START
185 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
186 #endif
187 
188 /*
189  *  For this one, we want a short name :-)
190  */
191 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
192 
193 /*
194  *  Common definitions for both bus space based and legacy IO methods.
195  */
196 
197 #define INB_OFF(np, o)		ioread8(np->s.ioaddr + (o))
198 #define INW_OFF(np, o)		ioread16(np->s.ioaddr + (o))
199 #define INL_OFF(np, o)		ioread32(np->s.ioaddr + (o))
200 
201 #define OUTB_OFF(np, o, val)	iowrite8((val), np->s.ioaddr + (o))
202 #define OUTW_OFF(np, o, val)	iowrite16((val), np->s.ioaddr + (o))
203 #define OUTL_OFF(np, o, val)	iowrite32((val), np->s.ioaddr + (o))
204 
205 #define INB(np, r)		INB_OFF(np, offsetof(struct sym_reg, r))
206 #define INW(np, r)		INW_OFF(np, offsetof(struct sym_reg, r))
207 #define INL(np, r)		INL_OFF(np, offsetof(struct sym_reg, r))
208 
209 #define OUTB(np, r, v)		OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
210 #define OUTW(np, r, v)		OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
211 #define OUTL(np, r, v)		OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
212 
213 #define OUTONB(np, r, m)	OUTB(np, r, INB(np, r) | (m))
214 #define OUTOFFB(np, r, m)	OUTB(np, r, INB(np, r) & ~(m))
215 #define OUTONW(np, r, m)	OUTW(np, r, INW(np, r) | (m))
216 #define OUTOFFW(np, r, m)	OUTW(np, r, INW(np, r) & ~(m))
217 #define OUTONL(np, r, m)	OUTL(np, r, INL(np, r) | (m))
218 #define OUTOFFL(np, r, m)	OUTL(np, r, INL(np, r) & ~(m))
219 
220 /*
221  *  We normally want the chip to have a consistent view
222  *  of driver internal data structures when we restart it.
223  *  Thus these macros.
224  */
225 #define OUTL_DSP(np, v)				\
226 	do {					\
227 		MEMORY_WRITE_BARRIER();		\
228 		OUTL(np, nc_dsp, (v));		\
229 	} while (0)
230 
231 #define OUTONB_STD()				\
232 	do {					\
233 		MEMORY_WRITE_BARRIER();		\
234 		OUTONB(np, nc_dcntl, (STD|NOCOM));	\
235 	} while (0)
236 
237 /*
238  *  Command control block states.
239  */
240 #define HS_IDLE		(0)
241 #define HS_BUSY		(1)
242 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
243 #define HS_DISCONNECT	(3)	/* Disconnected by target */
244 #define HS_WAIT		(4)	/* waiting for resource	  */
245 
246 #define HS_DONEMASK	(0x80)
247 #define HS_COMPLETE	(4|HS_DONEMASK)
248 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
249 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
250 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
251 
252 /*
253  *  Software Interrupt Codes
254  */
255 #define	SIR_BAD_SCSI_STATUS	(1)
256 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
257 #define	SIR_MSG_RECEIVED	(3)
258 #define	SIR_MSG_WEIRD		(4)
259 #define	SIR_NEGO_FAILED		(5)
260 #define	SIR_NEGO_PROTO		(6)
261 #define	SIR_SCRIPT_STOPPED	(7)
262 #define	SIR_REJECT_TO_SEND	(8)
263 #define	SIR_SWIDE_OVERRUN	(9)
264 #define	SIR_SODL_UNDERRUN	(10)
265 #define	SIR_RESEL_NO_MSG_IN	(11)
266 #define	SIR_RESEL_NO_IDENTIFY	(12)
267 #define	SIR_RESEL_BAD_LUN	(13)
268 #define	SIR_TARGET_SELECTED	(14)
269 #define	SIR_RESEL_BAD_I_T_L	(15)
270 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
271 #define	SIR_ABORT_SENT		(17)
272 #define	SIR_RESEL_ABORTED	(18)
273 #define	SIR_MSG_OUT_DONE	(19)
274 #define	SIR_COMPLETE_ERROR	(20)
275 #define	SIR_DATA_OVERRUN	(21)
276 #define	SIR_BAD_PHASE		(22)
277 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
278 #define	SIR_DMAP_DIRTY		(23)
279 #define	SIR_MAX			(23)
280 #else
281 #define	SIR_MAX			(22)
282 #endif
283 
284 /*
285  *  Extended error bit codes.
286  *  xerr_status field of struct sym_ccb.
287  */
288 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
289 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
290 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
291 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
292 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
293 
294 /*
295  *  Negotiation status.
296  *  nego_status field of struct sym_ccb.
297  */
298 #define NS_SYNC		(1)
299 #define NS_WIDE		(2)
300 #define NS_PPR		(3)
301 
302 /*
303  *  A CCB hashed table is used to retrieve CCB address
304  *  from DSA value.
305  */
306 #define CCB_HASH_SHIFT		8
307 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
308 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
309 #if 1
310 #define CCB_HASH_CODE(dsa)	\
311 	(((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
312 #else
313 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
314 #endif
315 
316 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
317 /*
318  *  We may want to use segment registers for 64 bit DMA.
319  *  16 segments registers -> up to 64 GB addressable.
320  */
321 #define SYM_DMAP_SHIFT	(4)
322 #define SYM_DMAP_SIZE	(1u<<SYM_DMAP_SHIFT)
323 #define SYM_DMAP_MASK	(SYM_DMAP_SIZE-1)
324 #endif
325 
326 /*
327  *  Device flags.
328  */
329 #define SYM_DISC_ENABLED	(1)
330 #define SYM_TAGS_ENABLED	(1<<1)
331 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
332 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
333 
334 /*
335  *  Host adapter miscellaneous flags.
336  */
337 #define SYM_AVOID_BUS_RESET	(1)
338 
339 /*
340  *  Misc.
341  */
342 #define SYM_SNOOP_TIMEOUT (10000000)
343 #define BUS_8_BIT	0
344 #define BUS_16_BIT	1
345 
346 /*
347  *  Gather negotiable parameters value
348  */
349 struct sym_trans {
350 	u8 period;
351 	u8 offset;
352 	unsigned int width:1;
353 	unsigned int iu:1;
354 	unsigned int dt:1;
355 	unsigned int qas:1;
356 	unsigned int check_nego:1;
357 	unsigned int renego:2;
358 };
359 
360 /*
361  *  Global TCB HEADER.
362  *
363  *  Due to lack of indirect addressing on earlier NCR chips,
364  *  this substructure is copied from the TCB to a global
365  *  address after selection.
366  *  For SYMBIOS chips that support LOAD/STORE this copy is
367  *  not needed and thus not performed.
368  */
369 struct sym_tcbh {
370 	/*
371 	 *  Scripts bus addresses of LUN table accessed from scripts.
372 	 *  LUN #0 is a special case, since multi-lun devices are rare,
373 	 *  and we we want to speed-up the general case and not waste
374 	 *  resources.
375 	 */
376 	u32	luntbl_sa;	/* bus address of this table	*/
377 	u32	lun0_sa;	/* bus address of LCB #0	*/
378 	/*
379 	 *  Actual SYNC/WIDE IO registers value for this target.
380 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
381 	 *  so have alignment constraints.
382 	 */
383 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
384 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
385 /*2*/	u_char	filler1;
386 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
387 };
388 
389 /*
390  *  Target Control Block
391  */
392 struct sym_tcb {
393 	/*
394 	 *  TCB header.
395 	 *  Assumed at offset 0.
396 	 */
397 /*0*/	struct sym_tcbh head;
398 
399 	/*
400 	 *  LUN table used by the SCRIPTS processor.
401 	 *  An array of bus addresses is used on reselection.
402 	 */
403 	u32	*luntbl;	/* LCBs bus address table	*/
404 
405 	/*
406 	 *  LUN table used by the C code.
407 	 */
408 	struct sym_lcb *lun0p;		/* LCB of LUN #0 (usual case)	*/
409 #if SYM_CONF_MAX_LUN > 1
410 	struct sym_lcb **lunmp;		/* Other LCBs [1..MAX_LUN]	*/
411 #endif
412 
413 #ifdef	SYM_HAVE_STCB
414 	/*
415 	 *  O/S specific data structure.
416 	 */
417 	struct sym_stcb s;
418 #endif
419 
420 	/* Transfer goal */
421 	struct sym_trans tgoal;
422 
423 	/* Last printed transfer speed */
424 	struct sym_trans tprint;
425 
426 	/*
427 	 * Keep track of the CCB used for the negotiation in order
428 	 * to ensure that only 1 negotiation is queued at a time.
429 	 */
430 	struct sym_ccb *  nego_cp;	/* CCB used for the nego		*/
431 
432 	/*
433 	 *  Set when we want to reset the device.
434 	 */
435 	u_char	to_reset;
436 
437 	/*
438 	 *  Other user settable limits and options.
439 	 *  These limits are read from the NVRAM if present.
440 	 */
441 	unsigned char	usrflags;
442 	unsigned char	usr_period;
443 	unsigned char	usr_width;
444 	unsigned short	usrtags;
445 	struct scsi_target *starget;
446 };
447 
448 /*
449  *  Global LCB HEADER.
450  *
451  *  Due to lack of indirect addressing on earlier NCR chips,
452  *  this substructure is copied from the LCB to a global
453  *  address after selection.
454  *  For SYMBIOS chips that support LOAD/STORE this copy is
455  *  not needed and thus not performed.
456  */
457 struct sym_lcbh {
458 	/*
459 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
460 	 *  For not probed logical units, this address points to
461 	 *  SCRIPTS that deal with bad LU handling (must be at
462 	 *  offset zero of the LCB for that reason).
463 	 */
464 /*0*/	u32	resel_sa;
465 
466 	/*
467 	 *  Task (bus address of a CCB) read from SCRIPTS that points
468 	 *  to the unique ITL nexus allowed to be disconnected.
469 	 */
470 	u32	itl_task_sa;
471 
472 	/*
473 	 *  Task table bus address (read from SCRIPTS).
474 	 */
475 	u32	itlq_tbl_sa;
476 };
477 
478 /*
479  *  Logical Unit Control Block
480  */
481 struct sym_lcb {
482 	/*
483 	 *  TCB header.
484 	 *  Assumed at offset 0.
485 	 */
486 /*0*/	struct sym_lcbh head;
487 
488 	/*
489 	 *  Task table read from SCRIPTS that contains pointers to
490 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
491 	 *  inside the header.
492 	 */
493 	u32	*itlq_tbl;	/* Kernel virtual address	*/
494 
495 	/*
496 	 *  Busy CCBs management.
497 	 */
498 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
499 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
500 
501 	/*
502 	 *  Circular tag allocation buffer.
503 	 */
504 	u_short	ia_tag;		/* Tag allocation index		*/
505 	u_short	if_tag;		/* Tag release index		*/
506 	u_char	*cb_tags;	/* Circular tags buffer		*/
507 
508 	/*
509 	 *  O/S specific data structure.
510 	 */
511 #ifdef	SYM_HAVE_SLCB
512 	struct sym_slcb s;
513 #endif
514 
515 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
516 	/*
517 	 *  Optionnaly the driver can handle device queueing,
518 	 *  and requeues internally command to redo.
519 	 */
520 	SYM_QUEHEAD waiting_ccbq;
521 	SYM_QUEHEAD started_ccbq;
522 	int	num_sgood;
523 	u_short	started_tags;
524 	u_short	started_no_tag;
525 	u_short	started_max;
526 	u_short	started_limit;
527 #endif
528 
529 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
530 	/*
531 	 *  Optionally the driver can try to prevent SCSI
532 	 *  IOs from being reordered too much.
533 	 */
534 	u_char		tags_si;	/* Current index to tags sum	*/
535 	u_short		tags_sum[2];	/* Tags sum counters		*/
536 	u_short		tags_since;	/* # of tags since last switch	*/
537 #endif
538 
539 	/*
540 	 *  Set when we want to clear all tasks.
541 	 */
542 	u_char to_clear;
543 
544 	/*
545 	 *  Capabilities.
546 	 */
547 	u_char	user_flags;
548 	u_char	curr_flags;
549 };
550 
551 /*
552  *  Action from SCRIPTS on a task.
553  *  Is part of the CCB, but is also used separately to plug
554  *  error handling action to perform from SCRIPTS.
555  */
556 struct sym_actscr {
557 	u32	start;		/* Jumped by SCRIPTS after selection	*/
558 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
559 };
560 
561 /*
562  *  Phase mismatch context.
563  *
564  *  It is part of the CCB and is used as parameters for the
565  *  DATA pointer. We need two contexts to handle correctly the
566  *  SAVED DATA POINTER.
567  */
568 struct sym_pmc {
569 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
570 	u32	ret;		/* SCRIPT return address	*/
571 };
572 
573 /*
574  *  LUN control block lookup.
575  *  We use a direct pointer for LUN #0, and a table of
576  *  pointers which is only allocated for devices that support
577  *  LUN(s) > 0.
578  */
579 #if SYM_CONF_MAX_LUN <= 1
580 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
581 #else
582 #define sym_lp(tp, lun) \
583 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL
584 #endif
585 
586 /*
587  *  Status are used by the host and the script processor.
588  *
589  *  The last four bytes (status[4]) are copied to the
590  *  scratchb register (declared as scr0..scr3) just after the
591  *  select/reselect, and copied back just after disconnecting.
592  *  Inside the script the XX_REG are used.
593  */
594 
595 /*
596  *  Last four bytes (script)
597  */
598 #define  HX_REG	scr0
599 #define  HX_PRT	nc_scr0
600 #define  HS_REG	scr1
601 #define  HS_PRT	nc_scr1
602 #define  SS_REG	scr2
603 #define  SS_PRT	nc_scr2
604 #define  HF_REG	scr3
605 #define  HF_PRT	nc_scr3
606 
607 /*
608  *  Last four bytes (host)
609  */
610 #define  host_xflags   phys.head.status[0]
611 #define  host_status   phys.head.status[1]
612 #define  ssss_status   phys.head.status[2]
613 #define  host_flags    phys.head.status[3]
614 
615 /*
616  *  Host flags
617  */
618 #define HF_IN_PM0	1u
619 #define HF_IN_PM1	(1u<<1)
620 #define HF_ACT_PM	(1u<<2)
621 #define HF_DP_SAVED	(1u<<3)
622 #define HF_SENSE	(1u<<4)
623 #define HF_EXT_ERR	(1u<<5)
624 #define HF_DATA_IN	(1u<<6)
625 #ifdef SYM_CONF_IARB_SUPPORT
626 #define HF_HINT_IARB	(1u<<7)
627 #endif
628 
629 /*
630  *  More host flags
631  */
632 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
633 #define	HX_DMAP_DIRTY	(1u<<7)
634 #endif
635 
636 /*
637  *  Global CCB HEADER.
638  *
639  *  Due to lack of indirect addressing on earlier NCR chips,
640  *  this substructure is copied from the ccb to a global
641  *  address after selection (or reselection) and copied back
642  *  before disconnect.
643  *  For SYMBIOS chips that support LOAD/STORE this copy is
644  *  not needed and thus not performed.
645  */
646 
647 struct sym_ccbh {
648 	/*
649 	 *  Start and restart SCRIPTS addresses (must be at 0).
650 	 */
651 /*0*/	struct sym_actscr go;
652 
653 	/*
654 	 *  SCRIPTS jump address that deal with data pointers.
655 	 *  'savep' points to the position in the script responsible
656 	 *  for the actual transfer of data.
657 	 *  It's written on reception of a SAVE_DATA_POINTER message.
658 	 */
659 	u32	savep;		/* Jump address to saved data pointer	*/
660 	u32	lastp;		/* SCRIPTS address at end of data	*/
661 
662 	/*
663 	 *  Status fields.
664 	 */
665 	u8	status[4];
666 };
667 
668 /*
669  *  GET/SET the value of the data pointer used by SCRIPTS.
670  *
671  *  We must distinguish between the LOAD/STORE-based SCRIPTS
672  *  that use directly the header in the CCB, and the NCR-GENERIC
673  *  SCRIPTS that use the copy of the header in the HCB.
674  */
675 #if	SYM_CONF_GENERIC_SUPPORT
676 #define sym_set_script_dp(np, cp, dp)				\
677 	do {							\
678 		if (np->features & FE_LDSTR)			\
679 			cp->phys.head.lastp = cpu_to_scr(dp);	\
680 		else						\
681 			np->ccb_head.lastp = cpu_to_scr(dp);	\
682 	} while (0)
683 #define sym_get_script_dp(np, cp) 				\
684 	scr_to_cpu((np->features & FE_LDSTR) ?			\
685 		cp->phys.head.lastp : np->ccb_head.lastp)
686 #else
687 #define sym_set_script_dp(np, cp, dp)				\
688 	do {							\
689 		cp->phys.head.lastp = cpu_to_scr(dp);		\
690 	} while (0)
691 
692 #define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
693 #endif
694 
695 /*
696  *  Data Structure Block
697  *
698  *  During execution of a ccb by the script processor, the
699  *  DSA (data structure address) register points to this
700  *  substructure of the ccb.
701  */
702 struct sym_dsb {
703 	/*
704 	 *  CCB header.
705 	 *  Also assumed at offset 0 of the sym_ccb structure.
706 	 */
707 /*0*/	struct sym_ccbh head;
708 
709 	/*
710 	 *  Phase mismatch contexts.
711 	 *  We need two to handle correctly the SAVED DATA POINTER.
712 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
713 	 *  for address calculation from SCRIPTS.
714 	 */
715 	struct sym_pmc pm0;
716 	struct sym_pmc pm1;
717 
718 	/*
719 	 *  Table data for Script
720 	 */
721 	struct sym_tblsel  select;
722 	struct sym_tblmove smsg;
723 	struct sym_tblmove smsg_ext;
724 	struct sym_tblmove cmd;
725 	struct sym_tblmove sense;
726 	struct sym_tblmove wresid;
727 	struct sym_tblmove data [SYM_CONF_MAX_SG];
728 };
729 
730 /*
731  *  Our Command Control Block
732  */
733 struct sym_ccb {
734 	/*
735 	 *  This is the data structure which is pointed by the DSA
736 	 *  register when it is executed by the script processor.
737 	 *  It must be the first entry.
738 	 */
739 	struct sym_dsb phys;
740 
741 	/*
742 	 *  Pointer to CAM ccb and related stuff.
743 	 */
744 	struct scsi_cmnd *cmd;	/* CAM scsiio ccb		*/
745 	u8	cdb_buf[16];	/* Copy of CDB			*/
746 #define	SYM_SNS_BBUF_LEN 32
747 	u8	sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
748 	int	data_len;	/* Total data length		*/
749 	int	segments;	/* Number of SG segments	*/
750 
751 	u8	order;		/* Tag type (if tagged command)	*/
752 	unsigned char odd_byte_adjustment;	/* odd-sized req on wide bus */
753 
754 	u_char	nego_status;	/* Negotiation status		*/
755 	u_char	xerr_status;	/* Extended error flags		*/
756 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
757 
758 	/*
759 	 *  Message areas.
760 	 *  We prepare a message to be sent after selection.
761 	 *  We may use a second one if the command is rescheduled
762 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
763 	 *  Contents are IDENTIFY and SIMPLE_TAG.
764 	 *  While negotiating sync or wide transfer,
765 	 *  a SDTR or WDTR message is appended.
766 	 */
767 	u_char	scsi_smsg [12];
768 	u_char	scsi_smsg2[12];
769 
770 	/*
771 	 *  Auto request sense related fields.
772 	 */
773 	u_char	sensecmd[6];	/* Request Sense command	*/
774 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
775 	u_char	sv_xerr_status;	/* Saved extended status	*/
776 	int	sv_resid;	/* Saved residual		*/
777 
778 	/*
779 	 *  Other fields.
780 	 */
781 	u32	ccb_ba;		/* BUS address of this CCB	*/
782 	u_short	tag;		/* Tag for this transfer	*/
783 				/*  NO_TAG means no tag		*/
784 	u_char	target;
785 	u_char	lun;
786 	struct sym_ccb *link_ccbh;	/* Host adapter CCB hash chain	*/
787 	SYM_QUEHEAD link_ccbq;	/* Link to free/busy CCB queue	*/
788 	u32	startp;		/* Initial data pointer		*/
789 	u32	goalp;		/* Expected last data pointer	*/
790 	int	ext_sg;		/* Extreme data pointer, used	*/
791 	int	ext_ofs;	/*  to calculate the residual.	*/
792 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
793 	SYM_QUEHEAD link2_ccbq;	/* Link for device queueing	*/
794 	u_char	started;	/* CCB queued to the squeue	*/
795 #endif
796 	u_char	to_abort;	/* Want this IO to be aborted	*/
797 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
798 	u_char	tags_si;	/* Lun tags sum index (0,1)	*/
799 #endif
800 };
801 
802 #define CCB_BA(cp,lbl)	cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
803 
804 typedef struct device *m_pool_ident_t;
805 
806 /*
807  *  Host Control Block
808  */
809 struct sym_hcb {
810 	/*
811 	 *  Global headers.
812 	 *  Due to poorness of addressing capabilities, earlier
813 	 *  chips (810, 815, 825) copy part of the data structures
814 	 *  (CCB, TCB and LCB) in fixed areas.
815 	 */
816 #if	SYM_CONF_GENERIC_SUPPORT
817 	struct sym_ccbh	ccb_head;
818 	struct sym_tcbh	tcb_head;
819 	struct sym_lcbh	lcb_head;
820 #endif
821 	/*
822 	 *  Idle task and invalid task actions and
823 	 *  their bus addresses.
824 	 */
825 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
826 	u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
827 
828 	/*
829 	 *  Dummy lun table to protect us against target
830 	 *  returning bad lun number on reselection.
831 	 */
832 	u32	*badluntbl;	/* Table physical address	*/
833 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
834 
835 	/*
836 	 *  Bus address of this host control block.
837 	 */
838 	u32	hcb_ba;
839 
840 	/*
841 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
842 	 *  The START_RAM64 script loads the MMRS and MMWS from this
843 	 *  field.
844 	 */
845 	u32	scr_ram_seg;
846 
847 	/*
848 	 *  Initial value of some IO register bits.
849 	 *  These values are assumed to have been set by BIOS, and may
850 	 *  be used to probe adapter implementation differences.
851 	 */
852 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
853 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
854 		sv_stest1;
855 
856 	/*
857 	 *  Actual initial value of IO register bits used by the
858 	 *  driver. They are loaded at initialisation according to
859 	 *  features that are to be enabled/disabled.
860 	 */
861 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
862 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
863 
864 	/*
865 	 *  Target data.
866 	 */
867 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
868 
869 	/*
870 	 *  Target control block bus address array used by the SCRIPT
871 	 *  on reselection.
872 	 */
873 	u32		*targtbl;
874 	u32		targtbl_ba;
875 
876 	/*
877 	 *  DMA pool handle for this HBA.
878 	 */
879 	m_pool_ident_t	bus_dmat;
880 
881 	/*
882 	 *  O/S specific data structure
883 	 */
884 	struct sym_shcb s;
885 
886 	/*
887 	 *  Physical bus addresses of the chip.
888 	 */
889 	u32		mmio_ba;	/* MMIO 32 bit BUS address	*/
890 	u32		ram_ba;		/* RAM 32 bit BUS address	*/
891 
892 	/*
893 	 *  SCRIPTS virtual and physical bus addresses.
894 	 *  'script'  is loaded in the on-chip RAM if present.
895 	 *  'scripth' stays in main memory for all chips except the
896 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
897 	 */
898 	u_char		*scripta0;	/* Copy of scripts A, B, Z	*/
899 	u_char		*scriptb0;
900 	u_char		*scriptz0;
901 	u32		scripta_ba;	/* Actual scripts A, B, Z	*/
902 	u32		scriptb_ba;	/* 32 bit bus addresses.	*/
903 	u32		scriptz_ba;
904 	u_short		scripta_sz;	/* Actual size of script A, B, Z*/
905 	u_short		scriptb_sz;
906 	u_short		scriptz_sz;
907 
908 	/*
909 	 *  Bus addresses, setup and patch methods for
910 	 *  the selected firmware.
911 	 */
912 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
913 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
914 	struct sym_fwz_ba fwz_bas;	/* Useful SCRIPTZ bus addresses	*/
915 	void		(*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
916 	void		(*fw_patch)(struct Scsi_Host *);
917 	char		*fw_name;
918 
919 	/*
920 	 *  General controller parameters and configuration.
921 	 */
922 	u_int	features;	/* Chip features map		*/
923 	u_char	myaddr;		/* SCSI id of the adapter	*/
924 	u_char	maxburst;	/* log base 2 of dwords burst	*/
925 	u_char	maxwide;	/* Maximum transfer width	*/
926 	u_char	minsync;	/* Min sync period factor (ST)	*/
927 	u_char	maxsync;	/* Max sync period factor (ST)	*/
928 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
929 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
930 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
931 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
932 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
933 	u_char	clock_divn;	/* Number of clock divisors	*/
934 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
935 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
936 	/*
937 	 *  Start queue management.
938 	 *  It is filled up by the host processor and accessed by the
939 	 *  SCRIPTS processor in order to start SCSI commands.
940 	 */
941 	volatile		/* Prevent code optimizations	*/
942 	u32	*squeue;	/* Start queue virtual address	*/
943 	u32	squeue_ba;	/* Start queue BUS address	*/
944 	u_short	squeueput;	/* Next free slot of the queue	*/
945 	u_short	actccbs;	/* Number of allocated CCBs	*/
946 
947 	/*
948 	 *  Command completion queue.
949 	 *  It is the same size as the start queue to avoid overflow.
950 	 */
951 	u_short	dqueueget;	/* Next position to scan	*/
952 	volatile		/* Prevent code optimizations	*/
953 	u32	*dqueue;	/* Completion (done) queue	*/
954 	u32	dqueue_ba;	/* Done queue BUS address	*/
955 
956 	/*
957 	 *  Miscellaneous buffers accessed by the scripts-processor.
958 	 *  They shall be DWORD aligned, because they may be read or
959 	 *  written with a script command.
960 	 */
961 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
962 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
963 	u32		lastmsg;	/* Last SCSI message sent	*/
964 	u32		scratch;	/* Scratch for SCSI receive	*/
965 					/* Also used for cache test 	*/
966 	/*
967 	 *  Miscellaneous configuration and status parameters.
968 	 */
969 	u_char		usrflags;	/* Miscellaneous user flags	*/
970 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
971 	u_char		verbose;	/* Verbosity for this controller*/
972 
973 	/*
974 	 *  CCB lists and queue.
975 	 */
976 	struct sym_ccb **ccbh;			/* CCBs hashed by DSA value	*/
977 					/* CCB_HASH_SIZE lists of CCBs	*/
978 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
979 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
980 
981 	/*
982 	 *  During error handling and/or recovery,
983 	 *  active CCBs that are to be completed with
984 	 *  error or requeued are moved from the busy_ccbq
985 	 *  to the comp_ccbq prior to completion.
986 	 */
987 	SYM_QUEHEAD	comp_ccbq;
988 
989 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
990 	SYM_QUEHEAD	dummy_ccbq;
991 #endif
992 
993 	/*
994 	 *  IMMEDIATE ARBITRATION (IARB) control.
995 	 *
996 	 *  We keep track in 'last_cp' of the last CCB that has been
997 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
998 	 *  this CCB completes. If last_cp is not zero at the moment
999 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
1000 	 *  used by the SCRIPTS as a hint for setting IARB.
1001 	 *  We donnot set more than 'iarb_max' consecutive hints for
1002 	 *  IARB in order to leave devices a chance to reselect.
1003 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1004 	 */
1005 #ifdef SYM_CONF_IARB_SUPPORT
1006 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1007 	u_short		iarb_count;	/* Actual # of these hints	*/
1008 	struct sym_ccb *	last_cp;
1009 #endif
1010 
1011 	/*
1012 	 *  Command abort handling.
1013 	 *  We need to synchronize tightly with the SCRIPTS
1014 	 *  processor in order to handle things correctly.
1015 	 */
1016 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1017 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1018 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1019 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1020 
1021 	/*
1022 	 *  64 bit DMA handling.
1023 	 */
1024 #if	SYM_CONF_DMA_ADDRESSING_MODE != 0
1025 	u_char	use_dac;		/* Use PCI DAC cycles		*/
1026 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1027 	u_char	dmap_dirty;		/* Dma segments registers dirty	*/
1028 	u32	dmap_bah[SYM_DMAP_SIZE];/* Segment registers map	*/
1029 #endif
1030 #endif
1031 };
1032 
1033 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
1034 #define use_dac(np)	0
1035 #define set_dac(np)	do { } while (0)
1036 #else
1037 #define use_dac(np)	(np)->use_dac
1038 #define set_dac(np)	(np)->use_dac = 1
1039 #endif
1040 
1041 #define HCB_BA(np, lbl)	(np->hcb_ba + offsetof(struct sym_hcb, lbl))
1042 
1043 
1044 /*
1045  *  FIRMWARES (sym_fw.c)
1046  */
1047 struct sym_fw * sym_find_firmware(struct sym_chip *chip);
1048 void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
1049 
1050 /*
1051  *  Driver methods called from O/S specific code.
1052  */
1053 char *sym_driver_name(void);
1054 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
1055 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
1056 struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
1057 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1058 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
1059 #else
1060 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
1061 #endif
1062 void sym_start_up(struct Scsi_Host *, int reason);
1063 irqreturn_t sym_interrupt(struct Scsi_Host *);
1064 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
1065 struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
1066 void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
1067 struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1068 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
1069 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
1070 int sym_reset_scsi_target(struct sym_hcb *np, int target);
1071 void sym_hcb_free(struct sym_hcb *np);
1072 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
1073 
1074 /*
1075  *  Build a scatter/gather entry.
1076  *
1077  *  For 64 bit systems, we use the 8 upper bits of the size field
1078  *  to provide bus address bits 32-39 to the SCRIPTS processor.
1079  *  This allows the 895A, 896, 1010 to address up to 1 TB of memory.
1080  */
1081 
1082 #if   SYM_CONF_DMA_ADDRESSING_MODE == 0
1083 #define DMA_DAC_MASK	DMA_BIT_MASK(32)
1084 #define sym_build_sge(np, data, badd, len)	\
1085 do {						\
1086 	(data)->addr = cpu_to_scr(badd);	\
1087 	(data)->size = cpu_to_scr(len);		\
1088 } while (0)
1089 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
1090 #define DMA_DAC_MASK	DMA_BIT_MASK(40)
1091 #define sym_build_sge(np, data, badd, len)				\
1092 do {									\
1093 	(data)->addr = cpu_to_scr(badd);				\
1094 	(data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len);	\
1095 } while (0)
1096 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1097 #define DMA_DAC_MASK	DMA_BIT_MASK(64)
1098 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
1099 static inline void
1100 sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
1101 {
1102 	u32 h = (badd>>32);
1103 	int s = (h&SYM_DMAP_MASK);
1104 
1105 	if (h != np->dmap_bah[s])
1106 		goto bad;
1107 good:
1108 	(data)->addr = cpu_to_scr(badd);
1109 	(data)->size = cpu_to_scr((s<<24) + len);
1110 	return;
1111 bad:
1112 	s = sym_lookup_dmap(np, h, s);
1113 	goto good;
1114 }
1115 #else
1116 #error "Unsupported DMA addressing mode"
1117 #endif
1118 
1119 /*
1120  *  MEMORY ALLOCATOR.
1121  */
1122 
1123 #define sym_get_mem_cluster()	\
1124 	(void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
1125 #define sym_free_mem_cluster(p)	\
1126 	free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
1127 
1128 /*
1129  *  Link between free memory chunks of a given size.
1130  */
1131 typedef struct sym_m_link {
1132 	struct sym_m_link *next;
1133 } *m_link_p;
1134 
1135 /*
1136  *  Virtual to bus physical translation for a given cluster.
1137  *  Such a structure is only useful with DMA abstraction.
1138  */
1139 typedef struct sym_m_vtob {	/* Virtual to Bus address translation */
1140 	struct sym_m_vtob *next;
1141 	void *vaddr;		/* Virtual address */
1142 	dma_addr_t baddr;	/* Bus physical address */
1143 } *m_vtob_p;
1144 
1145 /* Hash this stuff a bit to speed up translations */
1146 #define VTOB_HASH_SHIFT		5
1147 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
1148 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
1149 #define VTOB_HASH_CODE(m)	\
1150 	((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
1151 
1152 /*
1153  *  Memory pool of a given kind.
1154  *  Ideally, we want to use:
1155  *  1) 1 pool for memory we donnot need to involve in DMA.
1156  *  2) The same pool for controllers that require same DMA
1157  *     constraints and features.
1158  *     The OS specific m_pool_id_t thing and the sym_m_pool_match()
1159  *     method are expected to tell the driver about.
1160  */
1161 typedef struct sym_m_pool {
1162 	m_pool_ident_t	dev_dmat;	/* Identifies the pool (see above) */
1163 	void * (*get_mem_cluster)(struct sym_m_pool *);
1164 #ifdef	SYM_MEM_FREE_UNUSED
1165 	void (*free_mem_cluster)(struct sym_m_pool *, void *);
1166 #endif
1167 #define M_GET_MEM_CLUSTER()		mp->get_mem_cluster(mp)
1168 #define M_FREE_MEM_CLUSTER(p)		mp->free_mem_cluster(mp, p)
1169 	int nump;
1170 	m_vtob_p vtob[VTOB_HASH_SIZE];
1171 	struct sym_m_pool *next;
1172 	struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
1173 } *m_pool_p;
1174 
1175 /*
1176  *  Alloc, free and translate addresses to bus physical
1177  *  for DMAable memory.
1178  */
1179 void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
1180 void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
1181 dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
1182 
1183 /*
1184  * Verbs used by the driver code for DMAable memory handling.
1185  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
1186  * being discarded.
1187  */
1188 #define _uvptv_(p) ((void *)((u_long)(p)))
1189 
1190 #define _sym_calloc_dma(np, l, n)	__sym_calloc_dma(np->bus_dmat, l, n)
1191 #define _sym_mfree_dma(np, p, l, n)	\
1192 			__sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
1193 #define sym_calloc_dma(l, n)		_sym_calloc_dma(np, l, n)
1194 #define sym_mfree_dma(p, l, n)		_sym_mfree_dma(np, p, l, n)
1195 #define vtobus(p)			__vtobus(np->bus_dmat, _uvptv_(p))
1196 
1197 /*
1198  *  We have to provide the driver memory allocator with methods for
1199  *  it to maintain virtual to bus physical address translations.
1200  */
1201 
1202 #define sym_m_pool_match(mp_id1, mp_id2)	(mp_id1 == mp_id2)
1203 
1204 static inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1205 {
1206 	void *vaddr = NULL;
1207 	dma_addr_t baddr = 0;
1208 
1209 	vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
1210 			GFP_ATOMIC);
1211 	if (vaddr) {
1212 		vbp->vaddr = vaddr;
1213 		vbp->baddr = baddr;
1214 	}
1215 	return vaddr;
1216 }
1217 
1218 static inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1219 {
1220 	dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
1221 			vbp->baddr);
1222 }
1223 
1224 #endif /* SYM_HIPD_H */
1225