1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  * This driver is derived from the Linux sym53c8xx driver.
8  * Copyright (C) 1998-2000  Gerard Roudier
9  *
10  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11  * a port of the FreeBSD ncr driver to Linux-1.2.13.
12  *
13  * The original ncr driver has been written for 386bsd and FreeBSD by
14  *         Wolfgang Stanglmeier        <wolf@cologne.de>
15  *         Stefan Esser                <se@mi.Uni-Koeln.de>
16  * Copyright (C) 1994  Wolfgang Stanglmeier
17  *
18  * Other major contributions:
19  *
20  * NVRAM detection and reading.
21  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22  *
23  *-----------------------------------------------------------------------------
24  *
25  * This program is free software; you can redistribute it and/or modify
26  * it under the terms of the GNU General Public License as published by
27  * the Free Software Foundation; either version 2 of the License, or
28  * (at your option) any later version.
29  *
30  * This program is distributed in the hope that it will be useful,
31  * but WITHOUT ANY WARRANTY; without even the implied warranty of
32  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
33  * GNU General Public License for more details.
34  *
35  * You should have received a copy of the GNU General Public License
36  * along with this program; if not, write to the Free Software
37  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
38  */
39 
40 #include <linux/gfp.h>
41 
42 #ifndef SYM_HIPD_H
43 #define SYM_HIPD_H
44 
45 /*
46  *  Generic driver options.
47  *
48  *  They may be defined in platform specific headers, if they
49  *  are useful.
50  *
51  *    SYM_OPT_HANDLE_DEVICE_QUEUEING
52  *        When this option is set, the driver will use a queue per
53  *        device and handle QUEUE FULL status requeuing internally.
54  *
55  *    SYM_OPT_LIMIT_COMMAND_REORDERING
56  *        When this option is set, the driver tries to limit tagged
57  *        command reordering to some reasonnable value.
58  *        (set for Linux)
59  */
60 #if 0
61 #define SYM_OPT_HANDLE_DEVICE_QUEUEING
62 #define SYM_OPT_LIMIT_COMMAND_REORDERING
63 #endif
64 
65 /*
66  *  Active debugging tags and verbosity.
67  *  Both DEBUG_FLAGS and sym_verbose can be redefined
68  *  by the platform specific code to something else.
69  */
70 #define DEBUG_ALLOC	(0x0001)
71 #define DEBUG_PHASE	(0x0002)
72 #define DEBUG_POLL	(0x0004)
73 #define DEBUG_QUEUE	(0x0008)
74 #define DEBUG_RESULT	(0x0010)
75 #define DEBUG_SCATTER	(0x0020)
76 #define DEBUG_SCRIPT	(0x0040)
77 #define DEBUG_TINY	(0x0080)
78 #define DEBUG_TIMING	(0x0100)
79 #define DEBUG_NEGO	(0x0200)
80 #define DEBUG_TAGS	(0x0400)
81 #define DEBUG_POINTER	(0x0800)
82 
83 #ifndef DEBUG_FLAGS
84 #define DEBUG_FLAGS	(0x0000)
85 #endif
86 
87 #ifndef sym_verbose
88 #define sym_verbose	(np->verbose)
89 #endif
90 
91 /*
92  *  These ones should have been already defined.
93  */
94 #ifndef assert
95 #define	assert(expression) { \
96 	if (!(expression)) { \
97 		(void)panic( \
98 			"assertion \"%s\" failed: file \"%s\", line %d\n", \
99 			#expression, \
100 			__FILE__, __LINE__); \
101 	} \
102 }
103 #endif
104 
105 /*
106  *  Number of tasks per device we want to handle.
107  */
108 #if	SYM_CONF_MAX_TAG_ORDER > 8
109 #error	"more than 256 tags per logical unit not allowed."
110 #endif
111 #define	SYM_CONF_MAX_TASK	(1<<SYM_CONF_MAX_TAG_ORDER)
112 
113 /*
114  *  Donnot use more tasks that we can handle.
115  */
116 #ifndef	SYM_CONF_MAX_TAG
117 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
118 #endif
119 #if	SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK
120 #undef	SYM_CONF_MAX_TAG
121 #define	SYM_CONF_MAX_TAG	SYM_CONF_MAX_TASK
122 #endif
123 
124 /*
125  *    This one means 'NO TAG for this job'
126  */
127 #define NO_TAG	(256)
128 
129 /*
130  *  Number of SCSI targets.
131  */
132 #if	SYM_CONF_MAX_TARGET > 16
133 #error	"more than 16 targets not allowed."
134 #endif
135 
136 /*
137  *  Number of logical units per target.
138  */
139 #if	SYM_CONF_MAX_LUN > 64
140 #error	"more than 64 logical units per target not allowed."
141 #endif
142 
143 /*
144  *    Asynchronous pre-scaler (ns). Shall be 40 for
145  *    the SCSI timings to be compliant.
146  */
147 #define	SYM_CONF_MIN_ASYNC (40)
148 
149 
150 /*
151  * MEMORY ALLOCATOR.
152  */
153 
154 #define SYM_MEM_WARN	1	/* Warn on failed operations */
155 
156 #define SYM_MEM_PAGE_ORDER 0	/* 1 PAGE  maximum */
157 #define SYM_MEM_CLUSTER_SHIFT	(PAGE_SHIFT+SYM_MEM_PAGE_ORDER)
158 #define SYM_MEM_FREE_UNUSED	/* Free unused pages immediately */
159 /*
160  *  Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16.
161  *  Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized.
162  *  (1 PAGE at a time is just fine).
163  */
164 #define SYM_MEM_SHIFT	4
165 #define SYM_MEM_CLUSTER_SIZE	(1UL << SYM_MEM_CLUSTER_SHIFT)
166 #define SYM_MEM_CLUSTER_MASK	(SYM_MEM_CLUSTER_SIZE-1)
167 
168 /*
169  *  Number of entries in the START and DONE queues.
170  *
171  *  We limit to 1 PAGE in order to succeed allocation of
172  *  these queues. Each entry is 8 bytes long (2 DWORDS).
173  */
174 #ifdef	SYM_CONF_MAX_START
175 #define	SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2)
176 #else
177 #define	SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2)
178 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
179 #endif
180 
181 #if	SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8
182 #undef	SYM_CONF_MAX_QUEUE
183 #define	SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8)
184 #undef	SYM_CONF_MAX_START
185 #define	SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2)
186 #endif
187 
188 /*
189  *  For this one, we want a short name :-)
190  */
191 #define MAX_QUEUE	SYM_CONF_MAX_QUEUE
192 
193 /*
194  *  Common definitions for both bus space based and legacy IO methods.
195  */
196 
197 #define INB_OFF(np, o)		ioread8(np->s.ioaddr + (o))
198 #define INW_OFF(np, o)		ioread16(np->s.ioaddr + (o))
199 #define INL_OFF(np, o)		ioread32(np->s.ioaddr + (o))
200 
201 #define OUTB_OFF(np, o, val)	iowrite8((val), np->s.ioaddr + (o))
202 #define OUTW_OFF(np, o, val)	iowrite16((val), np->s.ioaddr + (o))
203 #define OUTL_OFF(np, o, val)	iowrite32((val), np->s.ioaddr + (o))
204 
205 #define INB(np, r)		INB_OFF(np, offsetof(struct sym_reg, r))
206 #define INW(np, r)		INW_OFF(np, offsetof(struct sym_reg, r))
207 #define INL(np, r)		INL_OFF(np, offsetof(struct sym_reg, r))
208 
209 #define OUTB(np, r, v)		OUTB_OFF(np, offsetof(struct sym_reg, r), (v))
210 #define OUTW(np, r, v)		OUTW_OFF(np, offsetof(struct sym_reg, r), (v))
211 #define OUTL(np, r, v)		OUTL_OFF(np, offsetof(struct sym_reg, r), (v))
212 
213 #define OUTONB(np, r, m)	OUTB(np, r, INB(np, r) | (m))
214 #define OUTOFFB(np, r, m)	OUTB(np, r, INB(np, r) & ~(m))
215 #define OUTONW(np, r, m)	OUTW(np, r, INW(np, r) | (m))
216 #define OUTOFFW(np, r, m)	OUTW(np, r, INW(np, r) & ~(m))
217 #define OUTONL(np, r, m)	OUTL(np, r, INL(np, r) | (m))
218 #define OUTOFFL(np, r, m)	OUTL(np, r, INL(np, r) & ~(m))
219 
220 /*
221  *  We normally want the chip to have a consistent view
222  *  of driver internal data structures when we restart it.
223  *  Thus these macros.
224  */
225 #define OUTL_DSP(np, v)				\
226 	do {					\
227 		MEMORY_WRITE_BARRIER();		\
228 		OUTL(np, nc_dsp, (v));		\
229 	} while (0)
230 
231 #define OUTONB_STD()				\
232 	do {					\
233 		MEMORY_WRITE_BARRIER();		\
234 		OUTONB(np, nc_dcntl, (STD|NOCOM));	\
235 	} while (0)
236 
237 /*
238  *  Command control block states.
239  */
240 #define HS_IDLE		(0)
241 #define HS_BUSY		(1)
242 #define HS_NEGOTIATE	(2)	/* sync/wide data transfer*/
243 #define HS_DISCONNECT	(3)	/* Disconnected by target */
244 #define HS_WAIT		(4)	/* waiting for resource	  */
245 
246 #define HS_DONEMASK	(0x80)
247 #define HS_COMPLETE	(4|HS_DONEMASK)
248 #define HS_SEL_TIMEOUT	(5|HS_DONEMASK)	/* Selection timeout      */
249 #define HS_UNEXPECTED	(6|HS_DONEMASK)	/* Unexpected disconnect  */
250 #define HS_COMP_ERR	(7|HS_DONEMASK)	/* Completed with error	  */
251 
252 /*
253  *  Software Interrupt Codes
254  */
255 #define	SIR_BAD_SCSI_STATUS	(1)
256 #define	SIR_SEL_ATN_NO_MSG_OUT	(2)
257 #define	SIR_MSG_RECEIVED	(3)
258 #define	SIR_MSG_WEIRD		(4)
259 #define	SIR_NEGO_FAILED		(5)
260 #define	SIR_NEGO_PROTO		(6)
261 #define	SIR_SCRIPT_STOPPED	(7)
262 #define	SIR_REJECT_TO_SEND	(8)
263 #define	SIR_SWIDE_OVERRUN	(9)
264 #define	SIR_SODL_UNDERRUN	(10)
265 #define	SIR_RESEL_NO_MSG_IN	(11)
266 #define	SIR_RESEL_NO_IDENTIFY	(12)
267 #define	SIR_RESEL_BAD_LUN	(13)
268 #define	SIR_TARGET_SELECTED	(14)
269 #define	SIR_RESEL_BAD_I_T_L	(15)
270 #define	SIR_RESEL_BAD_I_T_L_Q	(16)
271 #define	SIR_ABORT_SENT		(17)
272 #define	SIR_RESEL_ABORTED	(18)
273 #define	SIR_MSG_OUT_DONE	(19)
274 #define	SIR_COMPLETE_ERROR	(20)
275 #define	SIR_DATA_OVERRUN	(21)
276 #define	SIR_BAD_PHASE		(22)
277 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
278 #define	SIR_DMAP_DIRTY		(23)
279 #define	SIR_MAX			(23)
280 #else
281 #define	SIR_MAX			(22)
282 #endif
283 
284 /*
285  *  Extended error bit codes.
286  *  xerr_status field of struct sym_ccb.
287  */
288 #define	XE_EXTRA_DATA	(1)	/* unexpected data phase	 */
289 #define	XE_BAD_PHASE	(1<<1)	/* illegal phase (4/5)		 */
290 #define	XE_PARITY_ERR	(1<<2)	/* unrecovered SCSI parity error */
291 #define	XE_SODL_UNRUN	(1<<3)	/* ODD transfer in DATA OUT phase */
292 #define	XE_SWIDE_OVRUN	(1<<4)	/* ODD transfer in DATA IN phase */
293 
294 /*
295  *  Negotiation status.
296  *  nego_status field of struct sym_ccb.
297  */
298 #define NS_SYNC		(1)
299 #define NS_WIDE		(2)
300 #define NS_PPR		(3)
301 
302 /*
303  *  A CCB hashed table is used to retrieve CCB address
304  *  from DSA value.
305  */
306 #define CCB_HASH_SHIFT		8
307 #define CCB_HASH_SIZE		(1UL << CCB_HASH_SHIFT)
308 #define CCB_HASH_MASK		(CCB_HASH_SIZE-1)
309 #if 1
310 #define CCB_HASH_CODE(dsa)	\
311 	(((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK)
312 #else
313 #define CCB_HASH_CODE(dsa)	(((dsa) >> 9) & CCB_HASH_MASK)
314 #endif
315 
316 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
317 /*
318  *  We may want to use segment registers for 64 bit DMA.
319  *  16 segments registers -> up to 64 GB addressable.
320  */
321 #define SYM_DMAP_SHIFT	(4)
322 #define SYM_DMAP_SIZE	(1u<<SYM_DMAP_SHIFT)
323 #define SYM_DMAP_MASK	(SYM_DMAP_SIZE-1)
324 #endif
325 
326 /*
327  *  Device flags.
328  */
329 #define SYM_DISC_ENABLED	(1)
330 #define SYM_TAGS_ENABLED	(1<<1)
331 #define SYM_SCAN_BOOT_DISABLED	(1<<2)
332 #define SYM_SCAN_LUNS_DISABLED	(1<<3)
333 
334 /*
335  *  Host adapter miscellaneous flags.
336  */
337 #define SYM_AVOID_BUS_RESET	(1)
338 
339 /*
340  *  Misc.
341  */
342 #define SYM_SNOOP_TIMEOUT (10000000)
343 #define BUS_8_BIT	0
344 #define BUS_16_BIT	1
345 
346 /*
347  *  Gather negotiable parameters value
348  */
349 struct sym_trans {
350 	u8 period;
351 	u8 offset;
352 	unsigned int width:1;
353 	unsigned int iu:1;
354 	unsigned int dt:1;
355 	unsigned int qas:1;
356 	unsigned int check_nego:1;
357 };
358 
359 /*
360  *  Global TCB HEADER.
361  *
362  *  Due to lack of indirect addressing on earlier NCR chips,
363  *  this substructure is copied from the TCB to a global
364  *  address after selection.
365  *  For SYMBIOS chips that support LOAD/STORE this copy is
366  *  not needed and thus not performed.
367  */
368 struct sym_tcbh {
369 	/*
370 	 *  Scripts bus addresses of LUN table accessed from scripts.
371 	 *  LUN #0 is a special case, since multi-lun devices are rare,
372 	 *  and we we want to speed-up the general case and not waste
373 	 *  resources.
374 	 */
375 	u32	luntbl_sa;	/* bus address of this table	*/
376 	u32	lun0_sa;	/* bus address of LCB #0	*/
377 	/*
378 	 *  Actual SYNC/WIDE IO registers value for this target.
379 	 *  'sval', 'wval' and 'uval' are read from SCRIPTS and
380 	 *  so have alignment constraints.
381 	 */
382 /*0*/	u_char	uval;		/* -> SCNTL4 register		*/
383 /*1*/	u_char	sval;		/* -> SXFER  io register	*/
384 /*2*/	u_char	filler1;
385 /*3*/	u_char	wval;		/* -> SCNTL3 io register	*/
386 };
387 
388 /*
389  *  Target Control Block
390  */
391 struct sym_tcb {
392 	/*
393 	 *  TCB header.
394 	 *  Assumed at offset 0.
395 	 */
396 /*0*/	struct sym_tcbh head;
397 
398 	/*
399 	 *  LUN table used by the SCRIPTS processor.
400 	 *  An array of bus addresses is used on reselection.
401 	 */
402 	u32	*luntbl;	/* LCBs bus address table	*/
403 
404 	/*
405 	 *  LUN table used by the C code.
406 	 */
407 	struct sym_lcb *lun0p;		/* LCB of LUN #0 (usual case)	*/
408 #if SYM_CONF_MAX_LUN > 1
409 	struct sym_lcb **lunmp;		/* Other LCBs [1..MAX_LUN]	*/
410 #endif
411 
412 #ifdef	SYM_HAVE_STCB
413 	/*
414 	 *  O/S specific data structure.
415 	 */
416 	struct sym_stcb s;
417 #endif
418 
419 	/* Transfer goal */
420 	struct sym_trans tgoal;
421 
422 	/*
423 	 * Keep track of the CCB used for the negotiation in order
424 	 * to ensure that only 1 negotiation is queued at a time.
425 	 */
426 	struct sym_ccb *  nego_cp;	/* CCB used for the nego		*/
427 
428 	/*
429 	 *  Set when we want to reset the device.
430 	 */
431 	u_char	to_reset;
432 
433 	/*
434 	 *  Other user settable limits and options.
435 	 *  These limits are read from the NVRAM if present.
436 	 */
437 	unsigned char	usrflags;
438 	unsigned char	usr_period;
439 	unsigned char	usr_width;
440 	unsigned short	usrtags;
441 	struct scsi_target *starget;
442 };
443 
444 /*
445  *  Global LCB HEADER.
446  *
447  *  Due to lack of indirect addressing on earlier NCR chips,
448  *  this substructure is copied from the LCB to a global
449  *  address after selection.
450  *  For SYMBIOS chips that support LOAD/STORE this copy is
451  *  not needed and thus not performed.
452  */
453 struct sym_lcbh {
454 	/*
455 	 *  SCRIPTS address jumped by SCRIPTS on reselection.
456 	 *  For not probed logical units, this address points to
457 	 *  SCRIPTS that deal with bad LU handling (must be at
458 	 *  offset zero of the LCB for that reason).
459 	 */
460 /*0*/	u32	resel_sa;
461 
462 	/*
463 	 *  Task (bus address of a CCB) read from SCRIPTS that points
464 	 *  to the unique ITL nexus allowed to be disconnected.
465 	 */
466 	u32	itl_task_sa;
467 
468 	/*
469 	 *  Task table bus address (read from SCRIPTS).
470 	 */
471 	u32	itlq_tbl_sa;
472 };
473 
474 /*
475  *  Logical Unit Control Block
476  */
477 struct sym_lcb {
478 	/*
479 	 *  TCB header.
480 	 *  Assumed at offset 0.
481 	 */
482 /*0*/	struct sym_lcbh head;
483 
484 	/*
485 	 *  Task table read from SCRIPTS that contains pointers to
486 	 *  ITLQ nexuses. The bus address read from SCRIPTS is
487 	 *  inside the header.
488 	 */
489 	u32	*itlq_tbl;	/* Kernel virtual address	*/
490 
491 	/*
492 	 *  Busy CCBs management.
493 	 */
494 	u_short	busy_itlq;	/* Number of busy tagged CCBs	*/
495 	u_short	busy_itl;	/* Number of busy untagged CCBs	*/
496 
497 	/*
498 	 *  Circular tag allocation buffer.
499 	 */
500 	u_short	ia_tag;		/* Tag allocation index		*/
501 	u_short	if_tag;		/* Tag release index		*/
502 	u_char	*cb_tags;	/* Circular tags buffer		*/
503 
504 	/*
505 	 *  O/S specific data structure.
506 	 */
507 #ifdef	SYM_HAVE_SLCB
508 	struct sym_slcb s;
509 #endif
510 
511 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
512 	/*
513 	 *  Optionnaly the driver can handle device queueing,
514 	 *  and requeues internally command to redo.
515 	 */
516 	SYM_QUEHEAD waiting_ccbq;
517 	SYM_QUEHEAD started_ccbq;
518 	int	num_sgood;
519 	u_short	started_tags;
520 	u_short	started_no_tag;
521 	u_short	started_max;
522 	u_short	started_limit;
523 #endif
524 
525 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
526 	/*
527 	 *  Optionally the driver can try to prevent SCSI
528 	 *  IOs from being reordered too much.
529 	 */
530 	u_char		tags_si;	/* Current index to tags sum	*/
531 	u_short		tags_sum[2];	/* Tags sum counters		*/
532 	u_short		tags_since;	/* # of tags since last switch	*/
533 #endif
534 
535 	/*
536 	 *  Set when we want to clear all tasks.
537 	 */
538 	u_char to_clear;
539 
540 	/*
541 	 *  Capabilities.
542 	 */
543 	u_char	user_flags;
544 	u_char	curr_flags;
545 };
546 
547 /*
548  *  Action from SCRIPTS on a task.
549  *  Is part of the CCB, but is also used separately to plug
550  *  error handling action to perform from SCRIPTS.
551  */
552 struct sym_actscr {
553 	u32	start;		/* Jumped by SCRIPTS after selection	*/
554 	u32	restart;	/* Jumped by SCRIPTS on relection	*/
555 };
556 
557 /*
558  *  Phase mismatch context.
559  *
560  *  It is part of the CCB and is used as parameters for the
561  *  DATA pointer. We need two contexts to handle correctly the
562  *  SAVED DATA POINTER.
563  */
564 struct sym_pmc {
565 	struct	sym_tblmove sg;	/* Updated interrupted SG block	*/
566 	u32	ret;		/* SCRIPT return address	*/
567 };
568 
569 /*
570  *  LUN control block lookup.
571  *  We use a direct pointer for LUN #0, and a table of
572  *  pointers which is only allocated for devices that support
573  *  LUN(s) > 0.
574  */
575 #if SYM_CONF_MAX_LUN <= 1
576 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL
577 #else
578 #define sym_lp(tp, lun) \
579 	(!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL
580 #endif
581 
582 /*
583  *  Status are used by the host and the script processor.
584  *
585  *  The last four bytes (status[4]) are copied to the
586  *  scratchb register (declared as scr0..scr3) just after the
587  *  select/reselect, and copied back just after disconnecting.
588  *  Inside the script the XX_REG are used.
589  */
590 
591 /*
592  *  Last four bytes (script)
593  */
594 #define  HX_REG	scr0
595 #define  HX_PRT	nc_scr0
596 #define  HS_REG	scr1
597 #define  HS_PRT	nc_scr1
598 #define  SS_REG	scr2
599 #define  SS_PRT	nc_scr2
600 #define  HF_REG	scr3
601 #define  HF_PRT	nc_scr3
602 
603 /*
604  *  Last four bytes (host)
605  */
606 #define  host_xflags   phys.head.status[0]
607 #define  host_status   phys.head.status[1]
608 #define  ssss_status   phys.head.status[2]
609 #define  host_flags    phys.head.status[3]
610 
611 /*
612  *  Host flags
613  */
614 #define HF_IN_PM0	1u
615 #define HF_IN_PM1	(1u<<1)
616 #define HF_ACT_PM	(1u<<2)
617 #define HF_DP_SAVED	(1u<<3)
618 #define HF_SENSE	(1u<<4)
619 #define HF_EXT_ERR	(1u<<5)
620 #define HF_DATA_IN	(1u<<6)
621 #ifdef SYM_CONF_IARB_SUPPORT
622 #define HF_HINT_IARB	(1u<<7)
623 #endif
624 
625 /*
626  *  More host flags
627  */
628 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
629 #define	HX_DMAP_DIRTY	(1u<<7)
630 #endif
631 
632 /*
633  *  Global CCB HEADER.
634  *
635  *  Due to lack of indirect addressing on earlier NCR chips,
636  *  this substructure is copied from the ccb to a global
637  *  address after selection (or reselection) and copied back
638  *  before disconnect.
639  *  For SYMBIOS chips that support LOAD/STORE this copy is
640  *  not needed and thus not performed.
641  */
642 
643 struct sym_ccbh {
644 	/*
645 	 *  Start and restart SCRIPTS addresses (must be at 0).
646 	 */
647 /*0*/	struct sym_actscr go;
648 
649 	/*
650 	 *  SCRIPTS jump address that deal with data pointers.
651 	 *  'savep' points to the position in the script responsible
652 	 *  for the actual transfer of data.
653 	 *  It's written on reception of a SAVE_DATA_POINTER message.
654 	 */
655 	u32	savep;		/* Jump address to saved data pointer	*/
656 	u32	lastp;		/* SCRIPTS address at end of data	*/
657 
658 	/*
659 	 *  Status fields.
660 	 */
661 	u8	status[4];
662 };
663 
664 /*
665  *  GET/SET the value of the data pointer used by SCRIPTS.
666  *
667  *  We must distinguish between the LOAD/STORE-based SCRIPTS
668  *  that use directly the header in the CCB, and the NCR-GENERIC
669  *  SCRIPTS that use the copy of the header in the HCB.
670  */
671 #if	SYM_CONF_GENERIC_SUPPORT
672 #define sym_set_script_dp(np, cp, dp)				\
673 	do {							\
674 		if (np->features & FE_LDSTR)			\
675 			cp->phys.head.lastp = cpu_to_scr(dp);	\
676 		else						\
677 			np->ccb_head.lastp = cpu_to_scr(dp);	\
678 	} while (0)
679 #define sym_get_script_dp(np, cp) 				\
680 	scr_to_cpu((np->features & FE_LDSTR) ?			\
681 		cp->phys.head.lastp : np->ccb_head.lastp)
682 #else
683 #define sym_set_script_dp(np, cp, dp)				\
684 	do {							\
685 		cp->phys.head.lastp = cpu_to_scr(dp);		\
686 	} while (0)
687 
688 #define sym_get_script_dp(np, cp) (cp->phys.head.lastp)
689 #endif
690 
691 /*
692  *  Data Structure Block
693  *
694  *  During execution of a ccb by the script processor, the
695  *  DSA (data structure address) register points to this
696  *  substructure of the ccb.
697  */
698 struct sym_dsb {
699 	/*
700 	 *  CCB header.
701 	 *  Also assumed at offset 0 of the sym_ccb structure.
702 	 */
703 /*0*/	struct sym_ccbh head;
704 
705 	/*
706 	 *  Phase mismatch contexts.
707 	 *  We need two to handle correctly the SAVED DATA POINTER.
708 	 *  MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic
709 	 *  for address calculation from SCRIPTS.
710 	 */
711 	struct sym_pmc pm0;
712 	struct sym_pmc pm1;
713 
714 	/*
715 	 *  Table data for Script
716 	 */
717 	struct sym_tblsel  select;
718 	struct sym_tblmove smsg;
719 	struct sym_tblmove smsg_ext;
720 	struct sym_tblmove cmd;
721 	struct sym_tblmove sense;
722 	struct sym_tblmove wresid;
723 	struct sym_tblmove data [SYM_CONF_MAX_SG];
724 };
725 
726 /*
727  *  Our Command Control Block
728  */
729 struct sym_ccb {
730 	/*
731 	 *  This is the data structure which is pointed by the DSA
732 	 *  register when it is executed by the script processor.
733 	 *  It must be the first entry.
734 	 */
735 	struct sym_dsb phys;
736 
737 	/*
738 	 *  Pointer to CAM ccb and related stuff.
739 	 */
740 	struct scsi_cmnd *cmd;	/* CAM scsiio ccb		*/
741 	u8	cdb_buf[16];	/* Copy of CDB			*/
742 #define	SYM_SNS_BBUF_LEN 32
743 	u8	sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */
744 	int	data_len;	/* Total data length		*/
745 	int	segments;	/* Number of SG segments	*/
746 
747 	u8	order;		/* Tag type (if tagged command)	*/
748 	unsigned char odd_byte_adjustment;	/* odd-sized req on wide bus */
749 
750 	u_char	nego_status;	/* Negotiation status		*/
751 	u_char	xerr_status;	/* Extended error flags		*/
752 	u32	extra_bytes;	/* Extraneous bytes transferred	*/
753 
754 	/*
755 	 *  Message areas.
756 	 *  We prepare a message to be sent after selection.
757 	 *  We may use a second one if the command is rescheduled
758 	 *  due to CHECK_CONDITION or COMMAND TERMINATED.
759 	 *  Contents are IDENTIFY and SIMPLE_TAG.
760 	 *  While negotiating sync or wide transfer,
761 	 *  a SDTR or WDTR message is appended.
762 	 */
763 	u_char	scsi_smsg [12];
764 	u_char	scsi_smsg2[12];
765 
766 	/*
767 	 *  Auto request sense related fields.
768 	 */
769 	u_char	sensecmd[6];	/* Request Sense command	*/
770 	u_char	sv_scsi_status;	/* Saved SCSI status 		*/
771 	u_char	sv_xerr_status;	/* Saved extended status	*/
772 	int	sv_resid;	/* Saved residual		*/
773 
774 	/*
775 	 *  Other fields.
776 	 */
777 	u32	ccb_ba;		/* BUS address of this CCB	*/
778 	u_short	tag;		/* Tag for this transfer	*/
779 				/*  NO_TAG means no tag		*/
780 	u_char	target;
781 	u_char	lun;
782 	struct sym_ccb *link_ccbh;	/* Host adapter CCB hash chain	*/
783 	SYM_QUEHEAD link_ccbq;	/* Link to free/busy CCB queue	*/
784 	u32	startp;		/* Initial data pointer		*/
785 	u32	goalp;		/* Expected last data pointer	*/
786 	int	ext_sg;		/* Extreme data pointer, used	*/
787 	int	ext_ofs;	/*  to calculate the residual.	*/
788 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
789 	SYM_QUEHEAD link2_ccbq;	/* Link for device queueing	*/
790 	u_char	started;	/* CCB queued to the squeue	*/
791 #endif
792 	u_char	to_abort;	/* Want this IO to be aborted	*/
793 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
794 	u_char	tags_si;	/* Lun tags sum index (0,1)	*/
795 #endif
796 };
797 
798 #define CCB_BA(cp,lbl)	cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl))
799 
800 typedef struct device *m_pool_ident_t;
801 
802 /*
803  *  Host Control Block
804  */
805 struct sym_hcb {
806 	/*
807 	 *  Global headers.
808 	 *  Due to poorness of addressing capabilities, earlier
809 	 *  chips (810, 815, 825) copy part of the data structures
810 	 *  (CCB, TCB and LCB) in fixed areas.
811 	 */
812 #if	SYM_CONF_GENERIC_SUPPORT
813 	struct sym_ccbh	ccb_head;
814 	struct sym_tcbh	tcb_head;
815 	struct sym_lcbh	lcb_head;
816 #endif
817 	/*
818 	 *  Idle task and invalid task actions and
819 	 *  their bus addresses.
820 	 */
821 	struct sym_actscr idletask, notask, bad_itl, bad_itlq;
822 	u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba;
823 
824 	/*
825 	 *  Dummy lun table to protect us against target
826 	 *  returning bad lun number on reselection.
827 	 */
828 	u32	*badluntbl;	/* Table physical address	*/
829 	u32	badlun_sa;	/* SCRIPT handler BUS address	*/
830 
831 	/*
832 	 *  Bus address of this host control block.
833 	 */
834 	u32	hcb_ba;
835 
836 	/*
837 	 *  Bit 32-63 of the on-chip RAM bus address in LE format.
838 	 *  The START_RAM64 script loads the MMRS and MMWS from this
839 	 *  field.
840 	 */
841 	u32	scr_ram_seg;
842 
843 	/*
844 	 *  Initial value of some IO register bits.
845 	 *  These values are assumed to have been set by BIOS, and may
846 	 *  be used to probe adapter implementation differences.
847 	 */
848 	u_char	sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4,
849 		sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4,
850 		sv_stest1;
851 
852 	/*
853 	 *  Actual initial value of IO register bits used by the
854 	 *  driver. They are loaded at initialisation according to
855 	 *  features that are to be enabled/disabled.
856 	 */
857 	u_char	rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4,
858 		rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4;
859 
860 	/*
861 	 *  Target data.
862 	 */
863 	struct sym_tcb	target[SYM_CONF_MAX_TARGET];
864 
865 	/*
866 	 *  Target control block bus address array used by the SCRIPT
867 	 *  on reselection.
868 	 */
869 	u32		*targtbl;
870 	u32		targtbl_ba;
871 
872 	/*
873 	 *  DMA pool handle for this HBA.
874 	 */
875 	m_pool_ident_t	bus_dmat;
876 
877 	/*
878 	 *  O/S specific data structure
879 	 */
880 	struct sym_shcb s;
881 
882 	/*
883 	 *  Physical bus addresses of the chip.
884 	 */
885 	u32		mmio_ba;	/* MMIO 32 bit BUS address	*/
886 	u32		ram_ba;		/* RAM 32 bit BUS address	*/
887 
888 	/*
889 	 *  SCRIPTS virtual and physical bus addresses.
890 	 *  'script'  is loaded in the on-chip RAM if present.
891 	 *  'scripth' stays in main memory for all chips except the
892 	 *  53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM.
893 	 */
894 	u_char		*scripta0;	/* Copy of scripts A, B, Z	*/
895 	u_char		*scriptb0;
896 	u_char		*scriptz0;
897 	u32		scripta_ba;	/* Actual scripts A, B, Z	*/
898 	u32		scriptb_ba;	/* 32 bit bus addresses.	*/
899 	u32		scriptz_ba;
900 	u_short		scripta_sz;	/* Actual size of script A, B, Z*/
901 	u_short		scriptb_sz;
902 	u_short		scriptz_sz;
903 
904 	/*
905 	 *  Bus addresses, setup and patch methods for
906 	 *  the selected firmware.
907 	 */
908 	struct sym_fwa_ba fwa_bas;	/* Useful SCRIPTA bus addresses	*/
909 	struct sym_fwb_ba fwb_bas;	/* Useful SCRIPTB bus addresses	*/
910 	struct sym_fwz_ba fwz_bas;	/* Useful SCRIPTZ bus addresses	*/
911 	void		(*fw_setup)(struct sym_hcb *np, struct sym_fw *fw);
912 	void		(*fw_patch)(struct Scsi_Host *);
913 	char		*fw_name;
914 
915 	/*
916 	 *  General controller parameters and configuration.
917 	 */
918 	u_int	features;	/* Chip features map		*/
919 	u_char	myaddr;		/* SCSI id of the adapter	*/
920 	u_char	maxburst;	/* log base 2 of dwords burst	*/
921 	u_char	maxwide;	/* Maximum transfer width	*/
922 	u_char	minsync;	/* Min sync period factor (ST)	*/
923 	u_char	maxsync;	/* Max sync period factor (ST)	*/
924 	u_char	maxoffs;	/* Max scsi offset        (ST)	*/
925 	u_char	minsync_dt;	/* Min sync period factor (DT)	*/
926 	u_char	maxsync_dt;	/* Max sync period factor (DT)	*/
927 	u_char	maxoffs_dt;	/* Max scsi offset        (DT)	*/
928 	u_char	multiplier;	/* Clock multiplier (1,2,4)	*/
929 	u_char	clock_divn;	/* Number of clock divisors	*/
930 	u32	clock_khz;	/* SCSI clock frequency in KHz	*/
931 	u32	pciclk_khz;	/* Estimated PCI clock  in KHz	*/
932 	/*
933 	 *  Start queue management.
934 	 *  It is filled up by the host processor and accessed by the
935 	 *  SCRIPTS processor in order to start SCSI commands.
936 	 */
937 	volatile		/* Prevent code optimizations	*/
938 	u32	*squeue;	/* Start queue virtual address	*/
939 	u32	squeue_ba;	/* Start queue BUS address	*/
940 	u_short	squeueput;	/* Next free slot of the queue	*/
941 	u_short	actccbs;	/* Number of allocated CCBs	*/
942 
943 	/*
944 	 *  Command completion queue.
945 	 *  It is the same size as the start queue to avoid overflow.
946 	 */
947 	u_short	dqueueget;	/* Next position to scan	*/
948 	volatile		/* Prevent code optimizations	*/
949 	u32	*dqueue;	/* Completion (done) queue	*/
950 	u32	dqueue_ba;	/* Done queue BUS address	*/
951 
952 	/*
953 	 *  Miscellaneous buffers accessed by the scripts-processor.
954 	 *  They shall be DWORD aligned, because they may be read or
955 	 *  written with a script command.
956 	 */
957 	u_char		msgout[8];	/* Buffer for MESSAGE OUT 	*/
958 	u_char		msgin [8];	/* Buffer for MESSAGE IN	*/
959 	u32		lastmsg;	/* Last SCSI message sent	*/
960 	u32		scratch;	/* Scratch for SCSI receive	*/
961 					/* Also used for cache test 	*/
962 	/*
963 	 *  Miscellaneous configuration and status parameters.
964 	 */
965 	u_char		usrflags;	/* Miscellaneous user flags	*/
966 	u_char		scsi_mode;	/* Current SCSI BUS mode	*/
967 	u_char		verbose;	/* Verbosity for this controller*/
968 
969 	/*
970 	 *  CCB lists and queue.
971 	 */
972 	struct sym_ccb **ccbh;			/* CCBs hashed by DSA value	*/
973 					/* CCB_HASH_SIZE lists of CCBs	*/
974 	SYM_QUEHEAD	free_ccbq;	/* Queue of available CCBs	*/
975 	SYM_QUEHEAD	busy_ccbq;	/* Queue of busy CCBs		*/
976 
977 	/*
978 	 *  During error handling and/or recovery,
979 	 *  active CCBs that are to be completed with
980 	 *  error or requeued are moved from the busy_ccbq
981 	 *  to the comp_ccbq prior to completion.
982 	 */
983 	SYM_QUEHEAD	comp_ccbq;
984 
985 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
986 	SYM_QUEHEAD	dummy_ccbq;
987 #endif
988 
989 	/*
990 	 *  IMMEDIATE ARBITRATION (IARB) control.
991 	 *
992 	 *  We keep track in 'last_cp' of the last CCB that has been
993 	 *  queued to the SCRIPTS processor and clear 'last_cp' when
994 	 *  this CCB completes. If last_cp is not zero at the moment
995 	 *  we queue a new CCB, we set a flag in 'last_cp' that is
996 	 *  used by the SCRIPTS as a hint for setting IARB.
997 	 *  We donnot set more than 'iarb_max' consecutive hints for
998 	 *  IARB in order to leave devices a chance to reselect.
999 	 *  By the way, any non zero value of 'iarb_max' is unfair. :)
1000 	 */
1001 #ifdef SYM_CONF_IARB_SUPPORT
1002 	u_short		iarb_max;	/* Max. # consecutive IARB hints*/
1003 	u_short		iarb_count;	/* Actual # of these hints	*/
1004 	struct sym_ccb *	last_cp;
1005 #endif
1006 
1007 	/*
1008 	 *  Command abort handling.
1009 	 *  We need to synchronize tightly with the SCRIPTS
1010 	 *  processor in order to handle things correctly.
1011 	 */
1012 	u_char		abrt_msg[4];	/* Message to send buffer	*/
1013 	struct sym_tblmove abrt_tbl;	/* Table for the MOV of it 	*/
1014 	struct sym_tblsel  abrt_sel;	/* Sync params for selection	*/
1015 	u_char		istat_sem;	/* Tells the chip to stop (SEM)	*/
1016 
1017 	/*
1018 	 *  64 bit DMA handling.
1019 	 */
1020 #if	SYM_CONF_DMA_ADDRESSING_MODE != 0
1021 	u_char	use_dac;		/* Use PCI DAC cycles		*/
1022 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1023 	u_char	dmap_dirty;		/* Dma segments registers dirty	*/
1024 	u32	dmap_bah[SYM_DMAP_SIZE];/* Segment registers map	*/
1025 #endif
1026 #endif
1027 };
1028 
1029 #if SYM_CONF_DMA_ADDRESSING_MODE == 0
1030 #define use_dac(np)	0
1031 #define set_dac(np)	do { } while (0)
1032 #else
1033 #define use_dac(np)	(np)->use_dac
1034 #define set_dac(np)	(np)->use_dac = 1
1035 #endif
1036 
1037 #define HCB_BA(np, lbl)	(np->hcb_ba + offsetof(struct sym_hcb, lbl))
1038 
1039 
1040 /*
1041  *  FIRMWARES (sym_fw.c)
1042  */
1043 struct sym_fw * sym_find_firmware(struct sym_chip *chip);
1044 void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len);
1045 
1046 /*
1047  *  Driver methods called from O/S specific code.
1048  */
1049 char *sym_driver_name(void);
1050 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status);
1051 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int);
1052 struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision);
1053 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1054 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn);
1055 #else
1056 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp);
1057 #endif
1058 void sym_start_up(struct Scsi_Host *, int reason);
1059 irqreturn_t sym_interrupt(struct Scsi_Host *);
1060 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task);
1061 struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order);
1062 void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp);
1063 struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln);
1064 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp);
1065 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out);
1066 int sym_reset_scsi_target(struct sym_hcb *np, int target);
1067 void sym_hcb_free(struct sym_hcb *np);
1068 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram);
1069 
1070 /*
1071  *  Build a scatter/gather entry.
1072  *
1073  *  For 64 bit systems, we use the 8 upper bits of the size field
1074  *  to provide bus address bits 32-39 to the SCRIPTS processor.
1075  *  This allows the 895A, 896, 1010 to address up to 1 TB of memory.
1076  */
1077 
1078 #if   SYM_CONF_DMA_ADDRESSING_MODE == 0
1079 #define DMA_DAC_MASK	DMA_32BIT_MASK
1080 #define sym_build_sge(np, data, badd, len)	\
1081 do {						\
1082 	(data)->addr = cpu_to_scr(badd);	\
1083 	(data)->size = cpu_to_scr(len);		\
1084 } while (0)
1085 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
1086 #define DMA_DAC_MASK	DMA_40BIT_MASK
1087 #define sym_build_sge(np, data, badd, len)				\
1088 do {									\
1089 	(data)->addr = cpu_to_scr(badd);				\
1090 	(data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len);	\
1091 } while (0)
1092 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1093 #define DMA_DAC_MASK	DMA_64BIT_MASK
1094 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s);
1095 static __inline void
1096 sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len)
1097 {
1098 	u32 h = (badd>>32);
1099 	int s = (h&SYM_DMAP_MASK);
1100 
1101 	if (h != np->dmap_bah[s])
1102 		goto bad;
1103 good:
1104 	(data)->addr = cpu_to_scr(badd);
1105 	(data)->size = cpu_to_scr((s<<24) + len);
1106 	return;
1107 bad:
1108 	s = sym_lookup_dmap(np, h, s);
1109 	goto good;
1110 }
1111 #else
1112 #error "Unsupported DMA addressing mode"
1113 #endif
1114 
1115 /*
1116  *  MEMORY ALLOCATOR.
1117  */
1118 
1119 #define sym_get_mem_cluster()	\
1120 	(void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER)
1121 #define sym_free_mem_cluster(p)	\
1122 	free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER)
1123 
1124 /*
1125  *  Link between free memory chunks of a given size.
1126  */
1127 typedef struct sym_m_link {
1128 	struct sym_m_link *next;
1129 } *m_link_p;
1130 
1131 /*
1132  *  Virtual to bus physical translation for a given cluster.
1133  *  Such a structure is only useful with DMA abstraction.
1134  */
1135 typedef struct sym_m_vtob {	/* Virtual to Bus address translation */
1136 	struct sym_m_vtob *next;
1137 	void *vaddr;		/* Virtual address */
1138 	dma_addr_t baddr;	/* Bus physical address */
1139 } *m_vtob_p;
1140 
1141 /* Hash this stuff a bit to speed up translations */
1142 #define VTOB_HASH_SHIFT		5
1143 #define VTOB_HASH_SIZE		(1UL << VTOB_HASH_SHIFT)
1144 #define VTOB_HASH_MASK		(VTOB_HASH_SIZE-1)
1145 #define VTOB_HASH_CODE(m)	\
1146 	((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK)
1147 
1148 /*
1149  *  Memory pool of a given kind.
1150  *  Ideally, we want to use:
1151  *  1) 1 pool for memory we donnot need to involve in DMA.
1152  *  2) The same pool for controllers that require same DMA
1153  *     constraints and features.
1154  *     The OS specific m_pool_id_t thing and the sym_m_pool_match()
1155  *     method are expected to tell the driver about.
1156  */
1157 typedef struct sym_m_pool {
1158 	m_pool_ident_t	dev_dmat;	/* Identifies the pool (see above) */
1159 	void * (*get_mem_cluster)(struct sym_m_pool *);
1160 #ifdef	SYM_MEM_FREE_UNUSED
1161 	void (*free_mem_cluster)(struct sym_m_pool *, void *);
1162 #endif
1163 #define M_GET_MEM_CLUSTER()		mp->get_mem_cluster(mp)
1164 #define M_FREE_MEM_CLUSTER(p)		mp->free_mem_cluster(mp, p)
1165 	int nump;
1166 	m_vtob_p vtob[VTOB_HASH_SIZE];
1167 	struct sym_m_pool *next;
1168 	struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1];
1169 } *m_pool_p;
1170 
1171 /*
1172  *  Alloc, free and translate addresses to bus physical
1173  *  for DMAable memory.
1174  */
1175 void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name);
1176 void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name);
1177 dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m);
1178 
1179 /*
1180  * Verbs used by the driver code for DMAable memory handling.
1181  * The _uvptv_ macro avoids a nasty warning about pointer to volatile
1182  * being discarded.
1183  */
1184 #define _uvptv_(p) ((void *)((u_long)(p)))
1185 
1186 #define _sym_calloc_dma(np, l, n)	__sym_calloc_dma(np->bus_dmat, l, n)
1187 #define _sym_mfree_dma(np, p, l, n)	\
1188 			__sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n)
1189 #define sym_calloc_dma(l, n)		_sym_calloc_dma(np, l, n)
1190 #define sym_mfree_dma(p, l, n)		_sym_mfree_dma(np, p, l, n)
1191 #define vtobus(p)			__vtobus(np->bus_dmat, _uvptv_(p))
1192 
1193 /*
1194  *  We have to provide the driver memory allocator with methods for
1195  *  it to maintain virtual to bus physical address translations.
1196  */
1197 
1198 #define sym_m_pool_match(mp_id1, mp_id2)	(mp_id1 == mp_id2)
1199 
1200 static __inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1201 {
1202 	void *vaddr = NULL;
1203 	dma_addr_t baddr = 0;
1204 
1205 	vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr,
1206 			GFP_ATOMIC);
1207 	if (vaddr) {
1208 		vbp->vaddr = vaddr;
1209 		vbp->baddr = baddr;
1210 	}
1211 	return vaddr;
1212 }
1213 
1214 static __inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp)
1215 {
1216 	dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr,
1217 			vbp->baddr);
1218 }
1219 
1220 #endif /* SYM_HIPD_H */
1221