1 /* 2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 3 * of PCI-SCSI IO processors. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * 7 * This driver is derived from the Linux sym53c8xx driver. 8 * Copyright (C) 1998-2000 Gerard Roudier 9 * 10 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 11 * a port of the FreeBSD ncr driver to Linux-1.2.13. 12 * 13 * The original ncr driver has been written for 386bsd and FreeBSD by 14 * Wolfgang Stanglmeier <wolf@cologne.de> 15 * Stefan Esser <se@mi.Uni-Koeln.de> 16 * Copyright (C) 1994 Wolfgang Stanglmeier 17 * 18 * Other major contributions: 19 * 20 * NVRAM detection and reading. 21 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 22 * 23 *----------------------------------------------------------------------------- 24 * 25 * This program is free software; you can redistribute it and/or modify 26 * it under the terms of the GNU General Public License as published by 27 * the Free Software Foundation; either version 2 of the License, or 28 * (at your option) any later version. 29 * 30 * This program is distributed in the hope that it will be useful, 31 * but WITHOUT ANY WARRANTY; without even the implied warranty of 32 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 33 * GNU General Public License for more details. 34 * 35 * You should have received a copy of the GNU General Public License 36 * along with this program; if not, write to the Free Software 37 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 38 */ 39 40 #include <linux/gfp.h> 41 42 #ifndef SYM_HIPD_H 43 #define SYM_HIPD_H 44 45 /* 46 * Generic driver options. 47 * 48 * They may be defined in platform specific headers, if they 49 * are useful. 50 * 51 * SYM_OPT_HANDLE_DEVICE_QUEUEING 52 * When this option is set, the driver will use a queue per 53 * device and handle QUEUE FULL status requeuing internally. 54 * 55 * SYM_OPT_LIMIT_COMMAND_REORDERING 56 * When this option is set, the driver tries to limit tagged 57 * command reordering to some reasonnable value. 58 * (set for Linux) 59 */ 60 #if 0 61 #define SYM_OPT_HANDLE_DEVICE_QUEUEING 62 #define SYM_OPT_LIMIT_COMMAND_REORDERING 63 #endif 64 65 /* 66 * Active debugging tags and verbosity. 67 * Both DEBUG_FLAGS and sym_verbose can be redefined 68 * by the platform specific code to something else. 69 */ 70 #define DEBUG_ALLOC (0x0001) 71 #define DEBUG_PHASE (0x0002) 72 #define DEBUG_POLL (0x0004) 73 #define DEBUG_QUEUE (0x0008) 74 #define DEBUG_RESULT (0x0010) 75 #define DEBUG_SCATTER (0x0020) 76 #define DEBUG_SCRIPT (0x0040) 77 #define DEBUG_TINY (0x0080) 78 #define DEBUG_TIMING (0x0100) 79 #define DEBUG_NEGO (0x0200) 80 #define DEBUG_TAGS (0x0400) 81 #define DEBUG_POINTER (0x0800) 82 83 #ifndef DEBUG_FLAGS 84 #define DEBUG_FLAGS (0x0000) 85 #endif 86 87 #ifndef sym_verbose 88 #define sym_verbose (np->verbose) 89 #endif 90 91 /* 92 * These ones should have been already defined. 93 */ 94 #ifndef assert 95 #define assert(expression) { \ 96 if (!(expression)) { \ 97 (void)panic( \ 98 "assertion \"%s\" failed: file \"%s\", line %d\n", \ 99 #expression, \ 100 __FILE__, __LINE__); \ 101 } \ 102 } 103 #endif 104 105 /* 106 * Number of tasks per device we want to handle. 107 */ 108 #if SYM_CONF_MAX_TAG_ORDER > 8 109 #error "more than 256 tags per logical unit not allowed." 110 #endif 111 #define SYM_CONF_MAX_TASK (1<<SYM_CONF_MAX_TAG_ORDER) 112 113 /* 114 * Donnot use more tasks that we can handle. 115 */ 116 #ifndef SYM_CONF_MAX_TAG 117 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 118 #endif 119 #if SYM_CONF_MAX_TAG > SYM_CONF_MAX_TASK 120 #undef SYM_CONF_MAX_TAG 121 #define SYM_CONF_MAX_TAG SYM_CONF_MAX_TASK 122 #endif 123 124 /* 125 * This one means 'NO TAG for this job' 126 */ 127 #define NO_TAG (256) 128 129 /* 130 * Number of SCSI targets. 131 */ 132 #if SYM_CONF_MAX_TARGET > 16 133 #error "more than 16 targets not allowed." 134 #endif 135 136 /* 137 * Number of logical units per target. 138 */ 139 #if SYM_CONF_MAX_LUN > 64 140 #error "more than 64 logical units per target not allowed." 141 #endif 142 143 /* 144 * Asynchronous pre-scaler (ns). Shall be 40 for 145 * the SCSI timings to be compliant. 146 */ 147 #define SYM_CONF_MIN_ASYNC (40) 148 149 150 /* 151 * MEMORY ALLOCATOR. 152 */ 153 154 #define SYM_MEM_WARN 1 /* Warn on failed operations */ 155 156 #define SYM_MEM_PAGE_ORDER 0 /* 1 PAGE maximum */ 157 #define SYM_MEM_CLUSTER_SHIFT (PAGE_SHIFT+SYM_MEM_PAGE_ORDER) 158 #define SYM_MEM_FREE_UNUSED /* Free unused pages immediately */ 159 /* 160 * Shortest memory chunk is (1<<SYM_MEM_SHIFT), currently 16. 161 * Actual allocations happen as SYM_MEM_CLUSTER_SIZE sized. 162 * (1 PAGE at a time is just fine). 163 */ 164 #define SYM_MEM_SHIFT 4 165 #define SYM_MEM_CLUSTER_SIZE (1UL << SYM_MEM_CLUSTER_SHIFT) 166 #define SYM_MEM_CLUSTER_MASK (SYM_MEM_CLUSTER_SIZE-1) 167 168 /* 169 * Number of entries in the START and DONE queues. 170 * 171 * We limit to 1 PAGE in order to succeed allocation of 172 * these queues. Each entry is 8 bytes long (2 DWORDS). 173 */ 174 #ifdef SYM_CONF_MAX_START 175 #define SYM_CONF_MAX_QUEUE (SYM_CONF_MAX_START+2) 176 #else 177 #define SYM_CONF_MAX_QUEUE (7*SYM_CONF_MAX_TASK+2) 178 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 179 #endif 180 181 #if SYM_CONF_MAX_QUEUE > SYM_MEM_CLUSTER_SIZE/8 182 #undef SYM_CONF_MAX_QUEUE 183 #define SYM_CONF_MAX_QUEUE (SYM_MEM_CLUSTER_SIZE/8) 184 #undef SYM_CONF_MAX_START 185 #define SYM_CONF_MAX_START (SYM_CONF_MAX_QUEUE-2) 186 #endif 187 188 /* 189 * For this one, we want a short name :-) 190 */ 191 #define MAX_QUEUE SYM_CONF_MAX_QUEUE 192 193 /* 194 * Common definitions for both bus space based and legacy IO methods. 195 */ 196 197 #define INB_OFF(np, o) ioread8(np->s.ioaddr + (o)) 198 #define INW_OFF(np, o) ioread16(np->s.ioaddr + (o)) 199 #define INL_OFF(np, o) ioread32(np->s.ioaddr + (o)) 200 201 #define OUTB_OFF(np, o, val) iowrite8((val), np->s.ioaddr + (o)) 202 #define OUTW_OFF(np, o, val) iowrite16((val), np->s.ioaddr + (o)) 203 #define OUTL_OFF(np, o, val) iowrite32((val), np->s.ioaddr + (o)) 204 205 #define INB(np, r) INB_OFF(np, offsetof(struct sym_reg, r)) 206 #define INW(np, r) INW_OFF(np, offsetof(struct sym_reg, r)) 207 #define INL(np, r) INL_OFF(np, offsetof(struct sym_reg, r)) 208 209 #define OUTB(np, r, v) OUTB_OFF(np, offsetof(struct sym_reg, r), (v)) 210 #define OUTW(np, r, v) OUTW_OFF(np, offsetof(struct sym_reg, r), (v)) 211 #define OUTL(np, r, v) OUTL_OFF(np, offsetof(struct sym_reg, r), (v)) 212 213 #define OUTONB(np, r, m) OUTB(np, r, INB(np, r) | (m)) 214 #define OUTOFFB(np, r, m) OUTB(np, r, INB(np, r) & ~(m)) 215 #define OUTONW(np, r, m) OUTW(np, r, INW(np, r) | (m)) 216 #define OUTOFFW(np, r, m) OUTW(np, r, INW(np, r) & ~(m)) 217 #define OUTONL(np, r, m) OUTL(np, r, INL(np, r) | (m)) 218 #define OUTOFFL(np, r, m) OUTL(np, r, INL(np, r) & ~(m)) 219 220 /* 221 * We normally want the chip to have a consistent view 222 * of driver internal data structures when we restart it. 223 * Thus these macros. 224 */ 225 #define OUTL_DSP(np, v) \ 226 do { \ 227 MEMORY_WRITE_BARRIER(); \ 228 OUTL(np, nc_dsp, (v)); \ 229 } while (0) 230 231 #define OUTONB_STD() \ 232 do { \ 233 MEMORY_WRITE_BARRIER(); \ 234 OUTONB(np, nc_dcntl, (STD|NOCOM)); \ 235 } while (0) 236 237 /* 238 * Command control block states. 239 */ 240 #define HS_IDLE (0) 241 #define HS_BUSY (1) 242 #define HS_NEGOTIATE (2) /* sync/wide data transfer*/ 243 #define HS_DISCONNECT (3) /* Disconnected by target */ 244 #define HS_WAIT (4) /* waiting for resource */ 245 246 #define HS_DONEMASK (0x80) 247 #define HS_COMPLETE (4|HS_DONEMASK) 248 #define HS_SEL_TIMEOUT (5|HS_DONEMASK) /* Selection timeout */ 249 #define HS_UNEXPECTED (6|HS_DONEMASK) /* Unexpected disconnect */ 250 #define HS_COMP_ERR (7|HS_DONEMASK) /* Completed with error */ 251 252 /* 253 * Software Interrupt Codes 254 */ 255 #define SIR_BAD_SCSI_STATUS (1) 256 #define SIR_SEL_ATN_NO_MSG_OUT (2) 257 #define SIR_MSG_RECEIVED (3) 258 #define SIR_MSG_WEIRD (4) 259 #define SIR_NEGO_FAILED (5) 260 #define SIR_NEGO_PROTO (6) 261 #define SIR_SCRIPT_STOPPED (7) 262 #define SIR_REJECT_TO_SEND (8) 263 #define SIR_SWIDE_OVERRUN (9) 264 #define SIR_SODL_UNDERRUN (10) 265 #define SIR_RESEL_NO_MSG_IN (11) 266 #define SIR_RESEL_NO_IDENTIFY (12) 267 #define SIR_RESEL_BAD_LUN (13) 268 #define SIR_TARGET_SELECTED (14) 269 #define SIR_RESEL_BAD_I_T_L (15) 270 #define SIR_RESEL_BAD_I_T_L_Q (16) 271 #define SIR_ABORT_SENT (17) 272 #define SIR_RESEL_ABORTED (18) 273 #define SIR_MSG_OUT_DONE (19) 274 #define SIR_COMPLETE_ERROR (20) 275 #define SIR_DATA_OVERRUN (21) 276 #define SIR_BAD_PHASE (22) 277 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 278 #define SIR_DMAP_DIRTY (23) 279 #define SIR_MAX (23) 280 #else 281 #define SIR_MAX (22) 282 #endif 283 284 /* 285 * Extended error bit codes. 286 * xerr_status field of struct sym_ccb. 287 */ 288 #define XE_EXTRA_DATA (1) /* unexpected data phase */ 289 #define XE_BAD_PHASE (1<<1) /* illegal phase (4/5) */ 290 #define XE_PARITY_ERR (1<<2) /* unrecovered SCSI parity error */ 291 #define XE_SODL_UNRUN (1<<3) /* ODD transfer in DATA OUT phase */ 292 #define XE_SWIDE_OVRUN (1<<4) /* ODD transfer in DATA IN phase */ 293 294 /* 295 * Negotiation status. 296 * nego_status field of struct sym_ccb. 297 */ 298 #define NS_SYNC (1) 299 #define NS_WIDE (2) 300 #define NS_PPR (3) 301 302 /* 303 * A CCB hashed table is used to retrieve CCB address 304 * from DSA value. 305 */ 306 #define CCB_HASH_SHIFT 8 307 #define CCB_HASH_SIZE (1UL << CCB_HASH_SHIFT) 308 #define CCB_HASH_MASK (CCB_HASH_SIZE-1) 309 #if 1 310 #define CCB_HASH_CODE(dsa) \ 311 (((dsa) >> (_LGRU16_(sizeof(struct sym_ccb)))) & CCB_HASH_MASK) 312 #else 313 #define CCB_HASH_CODE(dsa) (((dsa) >> 9) & CCB_HASH_MASK) 314 #endif 315 316 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 317 /* 318 * We may want to use segment registers for 64 bit DMA. 319 * 16 segments registers -> up to 64 GB addressable. 320 */ 321 #define SYM_DMAP_SHIFT (4) 322 #define SYM_DMAP_SIZE (1u<<SYM_DMAP_SHIFT) 323 #define SYM_DMAP_MASK (SYM_DMAP_SIZE-1) 324 #endif 325 326 /* 327 * Device flags. 328 */ 329 #define SYM_DISC_ENABLED (1) 330 #define SYM_TAGS_ENABLED (1<<1) 331 #define SYM_SCAN_BOOT_DISABLED (1<<2) 332 #define SYM_SCAN_LUNS_DISABLED (1<<3) 333 334 /* 335 * Host adapter miscellaneous flags. 336 */ 337 #define SYM_AVOID_BUS_RESET (1) 338 339 /* 340 * Misc. 341 */ 342 #define SYM_SNOOP_TIMEOUT (10000000) 343 #define BUS_8_BIT 0 344 #define BUS_16_BIT 1 345 346 /* 347 * Gather negotiable parameters value 348 */ 349 struct sym_trans { 350 u8 period; 351 u8 offset; 352 unsigned int width:1; 353 unsigned int iu:1; 354 unsigned int dt:1; 355 unsigned int qas:1; 356 unsigned int check_nego:1; 357 }; 358 359 /* 360 * Global TCB HEADER. 361 * 362 * Due to lack of indirect addressing on earlier NCR chips, 363 * this substructure is copied from the TCB to a global 364 * address after selection. 365 * For SYMBIOS chips that support LOAD/STORE this copy is 366 * not needed and thus not performed. 367 */ 368 struct sym_tcbh { 369 /* 370 * Scripts bus addresses of LUN table accessed from scripts. 371 * LUN #0 is a special case, since multi-lun devices are rare, 372 * and we we want to speed-up the general case and not waste 373 * resources. 374 */ 375 u32 luntbl_sa; /* bus address of this table */ 376 u32 lun0_sa; /* bus address of LCB #0 */ 377 /* 378 * Actual SYNC/WIDE IO registers value for this target. 379 * 'sval', 'wval' and 'uval' are read from SCRIPTS and 380 * so have alignment constraints. 381 */ 382 /*0*/ u_char uval; /* -> SCNTL4 register */ 383 /*1*/ u_char sval; /* -> SXFER io register */ 384 /*2*/ u_char filler1; 385 /*3*/ u_char wval; /* -> SCNTL3 io register */ 386 }; 387 388 /* 389 * Target Control Block 390 */ 391 struct sym_tcb { 392 /* 393 * TCB header. 394 * Assumed at offset 0. 395 */ 396 /*0*/ struct sym_tcbh head; 397 398 /* 399 * LUN table used by the SCRIPTS processor. 400 * An array of bus addresses is used on reselection. 401 */ 402 u32 *luntbl; /* LCBs bus address table */ 403 404 /* 405 * LUN table used by the C code. 406 */ 407 struct sym_lcb *lun0p; /* LCB of LUN #0 (usual case) */ 408 #if SYM_CONF_MAX_LUN > 1 409 struct sym_lcb **lunmp; /* Other LCBs [1..MAX_LUN] */ 410 #endif 411 412 #ifdef SYM_HAVE_STCB 413 /* 414 * O/S specific data structure. 415 */ 416 struct sym_stcb s; 417 #endif 418 419 /* Transfer goal */ 420 struct sym_trans tgoal; 421 422 /* 423 * Keep track of the CCB used for the negotiation in order 424 * to ensure that only 1 negotiation is queued at a time. 425 */ 426 struct sym_ccb * nego_cp; /* CCB used for the nego */ 427 428 /* 429 * Set when we want to reset the device. 430 */ 431 u_char to_reset; 432 433 /* 434 * Other user settable limits and options. 435 * These limits are read from the NVRAM if present. 436 */ 437 unsigned char usrflags; 438 unsigned char usr_period; 439 unsigned char usr_width; 440 unsigned short usrtags; 441 struct scsi_target *starget; 442 }; 443 444 /* 445 * Global LCB HEADER. 446 * 447 * Due to lack of indirect addressing on earlier NCR chips, 448 * this substructure is copied from the LCB to a global 449 * address after selection. 450 * For SYMBIOS chips that support LOAD/STORE this copy is 451 * not needed and thus not performed. 452 */ 453 struct sym_lcbh { 454 /* 455 * SCRIPTS address jumped by SCRIPTS on reselection. 456 * For not probed logical units, this address points to 457 * SCRIPTS that deal with bad LU handling (must be at 458 * offset zero of the LCB for that reason). 459 */ 460 /*0*/ u32 resel_sa; 461 462 /* 463 * Task (bus address of a CCB) read from SCRIPTS that points 464 * to the unique ITL nexus allowed to be disconnected. 465 */ 466 u32 itl_task_sa; 467 468 /* 469 * Task table bus address (read from SCRIPTS). 470 */ 471 u32 itlq_tbl_sa; 472 }; 473 474 /* 475 * Logical Unit Control Block 476 */ 477 struct sym_lcb { 478 /* 479 * TCB header. 480 * Assumed at offset 0. 481 */ 482 /*0*/ struct sym_lcbh head; 483 484 /* 485 * Task table read from SCRIPTS that contains pointers to 486 * ITLQ nexuses. The bus address read from SCRIPTS is 487 * inside the header. 488 */ 489 u32 *itlq_tbl; /* Kernel virtual address */ 490 491 /* 492 * Busy CCBs management. 493 */ 494 u_short busy_itlq; /* Number of busy tagged CCBs */ 495 u_short busy_itl; /* Number of busy untagged CCBs */ 496 497 /* 498 * Circular tag allocation buffer. 499 */ 500 u_short ia_tag; /* Tag allocation index */ 501 u_short if_tag; /* Tag release index */ 502 u_char *cb_tags; /* Circular tags buffer */ 503 504 /* 505 * O/S specific data structure. 506 */ 507 #ifdef SYM_HAVE_SLCB 508 struct sym_slcb s; 509 #endif 510 511 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 512 /* 513 * Optionnaly the driver can handle device queueing, 514 * and requeues internally command to redo. 515 */ 516 SYM_QUEHEAD waiting_ccbq; 517 SYM_QUEHEAD started_ccbq; 518 int num_sgood; 519 u_short started_tags; 520 u_short started_no_tag; 521 u_short started_max; 522 u_short started_limit; 523 #endif 524 525 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING 526 /* 527 * Optionally the driver can try to prevent SCSI 528 * IOs from being reordered too much. 529 */ 530 u_char tags_si; /* Current index to tags sum */ 531 u_short tags_sum[2]; /* Tags sum counters */ 532 u_short tags_since; /* # of tags since last switch */ 533 #endif 534 535 /* 536 * Set when we want to clear all tasks. 537 */ 538 u_char to_clear; 539 540 /* 541 * Capabilities. 542 */ 543 u_char user_flags; 544 u_char curr_flags; 545 }; 546 547 /* 548 * Action from SCRIPTS on a task. 549 * Is part of the CCB, but is also used separately to plug 550 * error handling action to perform from SCRIPTS. 551 */ 552 struct sym_actscr { 553 u32 start; /* Jumped by SCRIPTS after selection */ 554 u32 restart; /* Jumped by SCRIPTS on relection */ 555 }; 556 557 /* 558 * Phase mismatch context. 559 * 560 * It is part of the CCB and is used as parameters for the 561 * DATA pointer. We need two contexts to handle correctly the 562 * SAVED DATA POINTER. 563 */ 564 struct sym_pmc { 565 struct sym_tblmove sg; /* Updated interrupted SG block */ 566 u32 ret; /* SCRIPT return address */ 567 }; 568 569 /* 570 * LUN control block lookup. 571 * We use a direct pointer for LUN #0, and a table of 572 * pointers which is only allocated for devices that support 573 * LUN(s) > 0. 574 */ 575 #if SYM_CONF_MAX_LUN <= 1 576 #define sym_lp(tp, lun) (!lun) ? (tp)->lun0p : NULL 577 #else 578 #define sym_lp(tp, lun) \ 579 (!lun) ? (tp)->lun0p : (tp)->lunmp ? (tp)->lunmp[(lun)] : NULL 580 #endif 581 582 /* 583 * Status are used by the host and the script processor. 584 * 585 * The last four bytes (status[4]) are copied to the 586 * scratchb register (declared as scr0..scr3) just after the 587 * select/reselect, and copied back just after disconnecting. 588 * Inside the script the XX_REG are used. 589 */ 590 591 /* 592 * Last four bytes (script) 593 */ 594 #define HX_REG scr0 595 #define HX_PRT nc_scr0 596 #define HS_REG scr1 597 #define HS_PRT nc_scr1 598 #define SS_REG scr2 599 #define SS_PRT nc_scr2 600 #define HF_REG scr3 601 #define HF_PRT nc_scr3 602 603 /* 604 * Last four bytes (host) 605 */ 606 #define host_xflags phys.head.status[0] 607 #define host_status phys.head.status[1] 608 #define ssss_status phys.head.status[2] 609 #define host_flags phys.head.status[3] 610 611 /* 612 * Host flags 613 */ 614 #define HF_IN_PM0 1u 615 #define HF_IN_PM1 (1u<<1) 616 #define HF_ACT_PM (1u<<2) 617 #define HF_DP_SAVED (1u<<3) 618 #define HF_SENSE (1u<<4) 619 #define HF_EXT_ERR (1u<<5) 620 #define HF_DATA_IN (1u<<6) 621 #ifdef SYM_CONF_IARB_SUPPORT 622 #define HF_HINT_IARB (1u<<7) 623 #endif 624 625 /* 626 * More host flags 627 */ 628 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 629 #define HX_DMAP_DIRTY (1u<<7) 630 #endif 631 632 /* 633 * Global CCB HEADER. 634 * 635 * Due to lack of indirect addressing on earlier NCR chips, 636 * this substructure is copied from the ccb to a global 637 * address after selection (or reselection) and copied back 638 * before disconnect. 639 * For SYMBIOS chips that support LOAD/STORE this copy is 640 * not needed and thus not performed. 641 */ 642 643 struct sym_ccbh { 644 /* 645 * Start and restart SCRIPTS addresses (must be at 0). 646 */ 647 /*0*/ struct sym_actscr go; 648 649 /* 650 * SCRIPTS jump address that deal with data pointers. 651 * 'savep' points to the position in the script responsible 652 * for the actual transfer of data. 653 * It's written on reception of a SAVE_DATA_POINTER message. 654 */ 655 u32 savep; /* Jump address to saved data pointer */ 656 u32 lastp; /* SCRIPTS address at end of data */ 657 658 /* 659 * Status fields. 660 */ 661 u8 status[4]; 662 }; 663 664 /* 665 * GET/SET the value of the data pointer used by SCRIPTS. 666 * 667 * We must distinguish between the LOAD/STORE-based SCRIPTS 668 * that use directly the header in the CCB, and the NCR-GENERIC 669 * SCRIPTS that use the copy of the header in the HCB. 670 */ 671 #if SYM_CONF_GENERIC_SUPPORT 672 #define sym_set_script_dp(np, cp, dp) \ 673 do { \ 674 if (np->features & FE_LDSTR) \ 675 cp->phys.head.lastp = cpu_to_scr(dp); \ 676 else \ 677 np->ccb_head.lastp = cpu_to_scr(dp); \ 678 } while (0) 679 #define sym_get_script_dp(np, cp) \ 680 scr_to_cpu((np->features & FE_LDSTR) ? \ 681 cp->phys.head.lastp : np->ccb_head.lastp) 682 #else 683 #define sym_set_script_dp(np, cp, dp) \ 684 do { \ 685 cp->phys.head.lastp = cpu_to_scr(dp); \ 686 } while (0) 687 688 #define sym_get_script_dp(np, cp) (cp->phys.head.lastp) 689 #endif 690 691 /* 692 * Data Structure Block 693 * 694 * During execution of a ccb by the script processor, the 695 * DSA (data structure address) register points to this 696 * substructure of the ccb. 697 */ 698 struct sym_dsb { 699 /* 700 * CCB header. 701 * Also assumed at offset 0 of the sym_ccb structure. 702 */ 703 /*0*/ struct sym_ccbh head; 704 705 /* 706 * Phase mismatch contexts. 707 * We need two to handle correctly the SAVED DATA POINTER. 708 * MUST BOTH BE AT OFFSET < 256, due to using 8 bit arithmetic 709 * for address calculation from SCRIPTS. 710 */ 711 struct sym_pmc pm0; 712 struct sym_pmc pm1; 713 714 /* 715 * Table data for Script 716 */ 717 struct sym_tblsel select; 718 struct sym_tblmove smsg; 719 struct sym_tblmove smsg_ext; 720 struct sym_tblmove cmd; 721 struct sym_tblmove sense; 722 struct sym_tblmove wresid; 723 struct sym_tblmove data [SYM_CONF_MAX_SG]; 724 }; 725 726 /* 727 * Our Command Control Block 728 */ 729 struct sym_ccb { 730 /* 731 * This is the data structure which is pointed by the DSA 732 * register when it is executed by the script processor. 733 * It must be the first entry. 734 */ 735 struct sym_dsb phys; 736 737 /* 738 * Pointer to CAM ccb and related stuff. 739 */ 740 struct scsi_cmnd *cmd; /* CAM scsiio ccb */ 741 u8 cdb_buf[16]; /* Copy of CDB */ 742 #define SYM_SNS_BBUF_LEN 32 743 u8 sns_bbuf[SYM_SNS_BBUF_LEN]; /* Bounce buffer for sense data */ 744 int data_len; /* Total data length */ 745 int segments; /* Number of SG segments */ 746 747 u8 order; /* Tag type (if tagged command) */ 748 unsigned char odd_byte_adjustment; /* odd-sized req on wide bus */ 749 750 u_char nego_status; /* Negotiation status */ 751 u_char xerr_status; /* Extended error flags */ 752 u32 extra_bytes; /* Extraneous bytes transferred */ 753 754 /* 755 * Message areas. 756 * We prepare a message to be sent after selection. 757 * We may use a second one if the command is rescheduled 758 * due to CHECK_CONDITION or COMMAND TERMINATED. 759 * Contents are IDENTIFY and SIMPLE_TAG. 760 * While negotiating sync or wide transfer, 761 * a SDTR or WDTR message is appended. 762 */ 763 u_char scsi_smsg [12]; 764 u_char scsi_smsg2[12]; 765 766 /* 767 * Auto request sense related fields. 768 */ 769 u_char sensecmd[6]; /* Request Sense command */ 770 u_char sv_scsi_status; /* Saved SCSI status */ 771 u_char sv_xerr_status; /* Saved extended status */ 772 int sv_resid; /* Saved residual */ 773 774 /* 775 * Other fields. 776 */ 777 u32 ccb_ba; /* BUS address of this CCB */ 778 u_short tag; /* Tag for this transfer */ 779 /* NO_TAG means no tag */ 780 u_char target; 781 u_char lun; 782 struct sym_ccb *link_ccbh; /* Host adapter CCB hash chain */ 783 SYM_QUEHEAD link_ccbq; /* Link to free/busy CCB queue */ 784 u32 startp; /* Initial data pointer */ 785 u32 goalp; /* Expected last data pointer */ 786 int ext_sg; /* Extreme data pointer, used */ 787 int ext_ofs; /* to calculate the residual. */ 788 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 789 SYM_QUEHEAD link2_ccbq; /* Link for device queueing */ 790 u_char started; /* CCB queued to the squeue */ 791 #endif 792 u_char to_abort; /* Want this IO to be aborted */ 793 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING 794 u_char tags_si; /* Lun tags sum index (0,1) */ 795 #endif 796 }; 797 798 #define CCB_BA(cp,lbl) cpu_to_scr(cp->ccb_ba + offsetof(struct sym_ccb, lbl)) 799 800 typedef struct device *m_pool_ident_t; 801 802 /* 803 * Host Control Block 804 */ 805 struct sym_hcb { 806 /* 807 * Global headers. 808 * Due to poorness of addressing capabilities, earlier 809 * chips (810, 815, 825) copy part of the data structures 810 * (CCB, TCB and LCB) in fixed areas. 811 */ 812 #if SYM_CONF_GENERIC_SUPPORT 813 struct sym_ccbh ccb_head; 814 struct sym_tcbh tcb_head; 815 struct sym_lcbh lcb_head; 816 #endif 817 /* 818 * Idle task and invalid task actions and 819 * their bus addresses. 820 */ 821 struct sym_actscr idletask, notask, bad_itl, bad_itlq; 822 u32 idletask_ba, notask_ba, bad_itl_ba, bad_itlq_ba; 823 824 /* 825 * Dummy lun table to protect us against target 826 * returning bad lun number on reselection. 827 */ 828 u32 *badluntbl; /* Table physical address */ 829 u32 badlun_sa; /* SCRIPT handler BUS address */ 830 831 /* 832 * Bus address of this host control block. 833 */ 834 u32 hcb_ba; 835 836 /* 837 * Bit 32-63 of the on-chip RAM bus address in LE format. 838 * The START_RAM64 script loads the MMRS and MMWS from this 839 * field. 840 */ 841 u32 scr_ram_seg; 842 843 /* 844 * Initial value of some IO register bits. 845 * These values are assumed to have been set by BIOS, and may 846 * be used to probe adapter implementation differences. 847 */ 848 u_char sv_scntl0, sv_scntl3, sv_dmode, sv_dcntl, sv_ctest3, sv_ctest4, 849 sv_ctest5, sv_gpcntl, sv_stest2, sv_stest4, sv_scntl4, 850 sv_stest1; 851 852 /* 853 * Actual initial value of IO register bits used by the 854 * driver. They are loaded at initialisation according to 855 * features that are to be enabled/disabled. 856 */ 857 u_char rv_scntl0, rv_scntl3, rv_dmode, rv_dcntl, rv_ctest3, rv_ctest4, 858 rv_ctest5, rv_stest2, rv_ccntl0, rv_ccntl1, rv_scntl4; 859 860 /* 861 * Target data. 862 */ 863 struct sym_tcb target[SYM_CONF_MAX_TARGET]; 864 865 /* 866 * Target control block bus address array used by the SCRIPT 867 * on reselection. 868 */ 869 u32 *targtbl; 870 u32 targtbl_ba; 871 872 /* 873 * DMA pool handle for this HBA. 874 */ 875 m_pool_ident_t bus_dmat; 876 877 /* 878 * O/S specific data structure 879 */ 880 struct sym_shcb s; 881 882 /* 883 * Physical bus addresses of the chip. 884 */ 885 u32 mmio_ba; /* MMIO 32 bit BUS address */ 886 int mmio_ws; /* MMIO Window size */ 887 888 u32 ram_ba; /* RAM 32 bit BUS address */ 889 int ram_ws; /* RAM window size */ 890 891 /* 892 * SCRIPTS virtual and physical bus addresses. 893 * 'script' is loaded in the on-chip RAM if present. 894 * 'scripth' stays in main memory for all chips except the 895 * 53C895A, 53C896 and 53C1010 that provide 8K on-chip RAM. 896 */ 897 u_char *scripta0; /* Copy of scripts A, B, Z */ 898 u_char *scriptb0; 899 u_char *scriptz0; 900 u32 scripta_ba; /* Actual scripts A, B, Z */ 901 u32 scriptb_ba; /* 32 bit bus addresses. */ 902 u32 scriptz_ba; 903 u_short scripta_sz; /* Actual size of script A, B, Z*/ 904 u_short scriptb_sz; 905 u_short scriptz_sz; 906 907 /* 908 * Bus addresses, setup and patch methods for 909 * the selected firmware. 910 */ 911 struct sym_fwa_ba fwa_bas; /* Useful SCRIPTA bus addresses */ 912 struct sym_fwb_ba fwb_bas; /* Useful SCRIPTB bus addresses */ 913 struct sym_fwz_ba fwz_bas; /* Useful SCRIPTZ bus addresses */ 914 void (*fw_setup)(struct sym_hcb *np, struct sym_fw *fw); 915 void (*fw_patch)(struct sym_hcb *np); 916 char *fw_name; 917 918 /* 919 * General controller parameters and configuration. 920 */ 921 u_short device_id; /* PCI device id */ 922 u_char revision_id; /* PCI device revision id */ 923 u_int features; /* Chip features map */ 924 u_char myaddr; /* SCSI id of the adapter */ 925 u_char maxburst; /* log base 2 of dwords burst */ 926 u_char maxwide; /* Maximum transfer width */ 927 u_char minsync; /* Min sync period factor (ST) */ 928 u_char maxsync; /* Max sync period factor (ST) */ 929 u_char maxoffs; /* Max scsi offset (ST) */ 930 u_char minsync_dt; /* Min sync period factor (DT) */ 931 u_char maxsync_dt; /* Max sync period factor (DT) */ 932 u_char maxoffs_dt; /* Max scsi offset (DT) */ 933 u_char multiplier; /* Clock multiplier (1,2,4) */ 934 u_char clock_divn; /* Number of clock divisors */ 935 u32 clock_khz; /* SCSI clock frequency in KHz */ 936 u32 pciclk_khz; /* Estimated PCI clock in KHz */ 937 /* 938 * Start queue management. 939 * It is filled up by the host processor and accessed by the 940 * SCRIPTS processor in order to start SCSI commands. 941 */ 942 volatile /* Prevent code optimizations */ 943 u32 *squeue; /* Start queue virtual address */ 944 u32 squeue_ba; /* Start queue BUS address */ 945 u_short squeueput; /* Next free slot of the queue */ 946 u_short actccbs; /* Number of allocated CCBs */ 947 948 /* 949 * Command completion queue. 950 * It is the same size as the start queue to avoid overflow. 951 */ 952 u_short dqueueget; /* Next position to scan */ 953 volatile /* Prevent code optimizations */ 954 u32 *dqueue; /* Completion (done) queue */ 955 u32 dqueue_ba; /* Done queue BUS address */ 956 957 /* 958 * Miscellaneous buffers accessed by the scripts-processor. 959 * They shall be DWORD aligned, because they may be read or 960 * written with a script command. 961 */ 962 u_char msgout[8]; /* Buffer for MESSAGE OUT */ 963 u_char msgin [8]; /* Buffer for MESSAGE IN */ 964 u32 lastmsg; /* Last SCSI message sent */ 965 u32 scratch; /* Scratch for SCSI receive */ 966 /* Also used for cache test */ 967 /* 968 * Miscellaneous configuration and status parameters. 969 */ 970 u_char usrflags; /* Miscellaneous user flags */ 971 u_char scsi_mode; /* Current SCSI BUS mode */ 972 u_char verbose; /* Verbosity for this controller*/ 973 974 /* 975 * CCB lists and queue. 976 */ 977 struct sym_ccb **ccbh; /* CCBs hashed by DSA value */ 978 /* CCB_HASH_SIZE lists of CCBs */ 979 SYM_QUEHEAD free_ccbq; /* Queue of available CCBs */ 980 SYM_QUEHEAD busy_ccbq; /* Queue of busy CCBs */ 981 982 /* 983 * During error handling and/or recovery, 984 * active CCBs that are to be completed with 985 * error or requeued are moved from the busy_ccbq 986 * to the comp_ccbq prior to completion. 987 */ 988 SYM_QUEHEAD comp_ccbq; 989 990 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 991 SYM_QUEHEAD dummy_ccbq; 992 #endif 993 994 /* 995 * IMMEDIATE ARBITRATION (IARB) control. 996 * 997 * We keep track in 'last_cp' of the last CCB that has been 998 * queued to the SCRIPTS processor and clear 'last_cp' when 999 * this CCB completes. If last_cp is not zero at the moment 1000 * we queue a new CCB, we set a flag in 'last_cp' that is 1001 * used by the SCRIPTS as a hint for setting IARB. 1002 * We donnot set more than 'iarb_max' consecutive hints for 1003 * IARB in order to leave devices a chance to reselect. 1004 * By the way, any non zero value of 'iarb_max' is unfair. :) 1005 */ 1006 #ifdef SYM_CONF_IARB_SUPPORT 1007 u_short iarb_max; /* Max. # consecutive IARB hints*/ 1008 u_short iarb_count; /* Actual # of these hints */ 1009 struct sym_ccb * last_cp; 1010 #endif 1011 1012 /* 1013 * Command abort handling. 1014 * We need to synchronize tightly with the SCRIPTS 1015 * processor in order to handle things correctly. 1016 */ 1017 u_char abrt_msg[4]; /* Message to send buffer */ 1018 struct sym_tblmove abrt_tbl; /* Table for the MOV of it */ 1019 struct sym_tblsel abrt_sel; /* Sync params for selection */ 1020 u_char istat_sem; /* Tells the chip to stop (SEM) */ 1021 1022 /* 1023 * 64 bit DMA handling. 1024 */ 1025 #if SYM_CONF_DMA_ADDRESSING_MODE != 0 1026 u_char use_dac; /* Use PCI DAC cycles */ 1027 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 1028 u_char dmap_dirty; /* Dma segments registers dirty */ 1029 u32 dmap_bah[SYM_DMAP_SIZE];/* Segment registers map */ 1030 #endif 1031 #endif 1032 }; 1033 1034 #define HCB_BA(np, lbl) (np->hcb_ba + offsetof(struct sym_hcb, lbl)) 1035 1036 1037 /* 1038 * FIRMWARES (sym_fw.c) 1039 */ 1040 struct sym_fw * sym_find_firmware(struct sym_chip *chip); 1041 void sym_fw_bind_script(struct sym_hcb *np, u32 *start, int len); 1042 1043 /* 1044 * Driver methods called from O/S specific code. 1045 */ 1046 char *sym_driver_name(void); 1047 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status); 1048 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int); 1049 struct sym_chip *sym_lookup_chip_table(u_short device_id, u_char revision); 1050 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 1051 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn); 1052 #endif 1053 void sym_start_up(struct sym_hcb *np, int reason); 1054 void sym_interrupt(struct sym_hcb *np); 1055 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task); 1056 struct sym_ccb *sym_get_ccb(struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order); 1057 void sym_free_ccb(struct sym_hcb *np, struct sym_ccb *cp); 1058 struct sym_lcb *sym_alloc_lcb(struct sym_hcb *np, u_char tn, u_char ln); 1059 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *csio, struct sym_ccb *cp); 1060 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *ccb, int timed_out); 1061 int sym_reset_scsi_target(struct sym_hcb *np, int target); 1062 void sym_hcb_free(struct sym_hcb *np); 1063 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram); 1064 1065 /* 1066 * Build a scatter/gather entry. 1067 * 1068 * For 64 bit systems, we use the 8 upper bits of the size field 1069 * to provide bus address bits 32-39 to the SCRIPTS processor. 1070 * This allows the 895A, 896, 1010 to address up to 1 TB of memory. 1071 */ 1072 1073 #if SYM_CONF_DMA_ADDRESSING_MODE == 0 1074 #define sym_build_sge(np, data, badd, len) \ 1075 do { \ 1076 (data)->addr = cpu_to_scr(badd); \ 1077 (data)->size = cpu_to_scr(len); \ 1078 } while (0) 1079 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1 1080 #define sym_build_sge(np, data, badd, len) \ 1081 do { \ 1082 (data)->addr = cpu_to_scr(badd); \ 1083 (data)->size = cpu_to_scr((((badd) >> 8) & 0xff000000) + len); \ 1084 } while (0) 1085 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2 1086 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s); 1087 static __inline void 1088 sym_build_sge(struct sym_hcb *np, struct sym_tblmove *data, u64 badd, int len) 1089 { 1090 u32 h = (badd>>32); 1091 int s = (h&SYM_DMAP_MASK); 1092 1093 if (h != np->dmap_bah[s]) 1094 goto bad; 1095 good: 1096 (data)->addr = cpu_to_scr(badd); 1097 (data)->size = cpu_to_scr((s<<24) + len); 1098 return; 1099 bad: 1100 s = sym_lookup_dmap(np, h, s); 1101 goto good; 1102 } 1103 #else 1104 #error "Unsupported DMA addressing mode" 1105 #endif 1106 1107 /* 1108 * MEMORY ALLOCATOR. 1109 */ 1110 1111 #define sym_get_mem_cluster() \ 1112 (void *) __get_free_pages(GFP_ATOMIC, SYM_MEM_PAGE_ORDER) 1113 #define sym_free_mem_cluster(p) \ 1114 free_pages((unsigned long)p, SYM_MEM_PAGE_ORDER) 1115 1116 /* 1117 * Link between free memory chunks of a given size. 1118 */ 1119 typedef struct sym_m_link { 1120 struct sym_m_link *next; 1121 } *m_link_p; 1122 1123 /* 1124 * Virtual to bus physical translation for a given cluster. 1125 * Such a structure is only useful with DMA abstraction. 1126 */ 1127 typedef struct sym_m_vtob { /* Virtual to Bus address translation */ 1128 struct sym_m_vtob *next; 1129 void *vaddr; /* Virtual address */ 1130 dma_addr_t baddr; /* Bus physical address */ 1131 } *m_vtob_p; 1132 1133 /* Hash this stuff a bit to speed up translations */ 1134 #define VTOB_HASH_SHIFT 5 1135 #define VTOB_HASH_SIZE (1UL << VTOB_HASH_SHIFT) 1136 #define VTOB_HASH_MASK (VTOB_HASH_SIZE-1) 1137 #define VTOB_HASH_CODE(m) \ 1138 ((((unsigned long)(m)) >> SYM_MEM_CLUSTER_SHIFT) & VTOB_HASH_MASK) 1139 1140 /* 1141 * Memory pool of a given kind. 1142 * Ideally, we want to use: 1143 * 1) 1 pool for memory we donnot need to involve in DMA. 1144 * 2) The same pool for controllers that require same DMA 1145 * constraints and features. 1146 * The OS specific m_pool_id_t thing and the sym_m_pool_match() 1147 * method are expected to tell the driver about. 1148 */ 1149 typedef struct sym_m_pool { 1150 m_pool_ident_t dev_dmat; /* Identifies the pool (see above) */ 1151 void * (*get_mem_cluster)(struct sym_m_pool *); 1152 #ifdef SYM_MEM_FREE_UNUSED 1153 void (*free_mem_cluster)(struct sym_m_pool *, void *); 1154 #endif 1155 #define M_GET_MEM_CLUSTER() mp->get_mem_cluster(mp) 1156 #define M_FREE_MEM_CLUSTER(p) mp->free_mem_cluster(mp, p) 1157 int nump; 1158 m_vtob_p vtob[VTOB_HASH_SIZE]; 1159 struct sym_m_pool *next; 1160 struct sym_m_link h[SYM_MEM_CLUSTER_SHIFT - SYM_MEM_SHIFT + 1]; 1161 } *m_pool_p; 1162 1163 /* 1164 * Alloc, free and translate addresses to bus physical 1165 * for DMAable memory. 1166 */ 1167 void *__sym_calloc_dma(m_pool_ident_t dev_dmat, int size, char *name); 1168 void __sym_mfree_dma(m_pool_ident_t dev_dmat, void *m, int size, char *name); 1169 dma_addr_t __vtobus(m_pool_ident_t dev_dmat, void *m); 1170 1171 /* 1172 * Verbs used by the driver code for DMAable memory handling. 1173 * The _uvptv_ macro avoids a nasty warning about pointer to volatile 1174 * being discarded. 1175 */ 1176 #define _uvptv_(p) ((void *)((u_long)(p))) 1177 1178 #define _sym_calloc_dma(np, l, n) __sym_calloc_dma(np->bus_dmat, l, n) 1179 #define _sym_mfree_dma(np, p, l, n) \ 1180 __sym_mfree_dma(np->bus_dmat, _uvptv_(p), l, n) 1181 #define sym_calloc_dma(l, n) _sym_calloc_dma(np, l, n) 1182 #define sym_mfree_dma(p, l, n) _sym_mfree_dma(np, p, l, n) 1183 #define vtobus(p) __vtobus(np->bus_dmat, _uvptv_(p)) 1184 1185 /* 1186 * We have to provide the driver memory allocator with methods for 1187 * it to maintain virtual to bus physical address translations. 1188 */ 1189 1190 #define sym_m_pool_match(mp_id1, mp_id2) (mp_id1 == mp_id2) 1191 1192 static __inline void *sym_m_get_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp) 1193 { 1194 void *vaddr = NULL; 1195 dma_addr_t baddr = 0; 1196 1197 vaddr = dma_alloc_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, &baddr, 1198 GFP_ATOMIC); 1199 if (vaddr) { 1200 vbp->vaddr = vaddr; 1201 vbp->baddr = baddr; 1202 } 1203 return vaddr; 1204 } 1205 1206 static __inline void sym_m_free_dma_mem_cluster(m_pool_p mp, m_vtob_p vbp) 1207 { 1208 dma_free_coherent(mp->dev_dmat, SYM_MEM_CLUSTER_SIZE, vbp->vaddr, 1209 vbp->baddr); 1210 } 1211 1212 #endif /* SYM_HIPD_H */ 1213