xref: /openbmc/linux/drivers/scsi/sym53c8xx_2/sym_hipd.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 
41 #include <linux/slab.h>
42 #include <asm/param.h>		/* for timeouts in units of HZ */
43 
44 #include "sym_glue.h"
45 #include "sym_nvram.h"
46 
47 #if 0
48 #define SYM_DEBUG_GENERIC_SUPPORT
49 #endif
50 
51 /*
52  *  Needed function prototypes.
53  */
54 static void sym_int_ma (struct sym_hcb *np);
55 static void sym_int_sir(struct sym_hcb *);
56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
62 
63 /*
64  *  Print a buffer in hexadecimal format with a ".\n" at end.
65  */
66 static void sym_printl_hex(u_char *p, int n)
67 {
68 	while (n-- > 0)
69 		printf (" %x", *p++);
70 	printf (".\n");
71 }
72 
73 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
74 {
75 	if (label)
76 		sym_print_addr(cp->cmd, "%s: ", label);
77 	else
78 		sym_print_addr(cp->cmd, "");
79 
80 	spi_print_msg(msg);
81 	printf("\n");
82 }
83 
84 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
85 {
86 	struct sym_tcb *tp = &np->target[target];
87 	dev_info(&tp->starget->dev, "%s: ", label);
88 
89 	spi_print_msg(msg);
90 	printf("\n");
91 }
92 
93 /*
94  *  Print something that tells about extended errors.
95  */
96 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
97 {
98 	if (x_status & XE_PARITY_ERR) {
99 		sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
100 	}
101 	if (x_status & XE_EXTRA_DATA) {
102 		sym_print_addr(cmd, "extraneous data discarded.\n");
103 	}
104 	if (x_status & XE_BAD_PHASE) {
105 		sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
106 	}
107 	if (x_status & XE_SODL_UNRUN) {
108 		sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
109 	}
110 	if (x_status & XE_SWIDE_OVRUN) {
111 		sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
112 	}
113 }
114 
115 /*
116  *  Return a string for SCSI BUS mode.
117  */
118 static char *sym_scsi_bus_mode(int mode)
119 {
120 	switch(mode) {
121 	case SMODE_HVD:	return "HVD";
122 	case SMODE_SE:	return "SE";
123 	case SMODE_LVD: return "LVD";
124 	}
125 	return "??";
126 }
127 
128 /*
129  *  Soft reset the chip.
130  *
131  *  Raising SRST when the chip is running may cause
132  *  problems on dual function chips (see below).
133  *  On the other hand, LVD devices need some delay
134  *  to settle and report actual BUS mode in STEST4.
135  */
136 static void sym_chip_reset (struct sym_hcb *np)
137 {
138 	OUTB(np, nc_istat, SRST);
139 	INB(np, nc_mbox1);
140 	udelay(10);
141 	OUTB(np, nc_istat, 0);
142 	INB(np, nc_mbox1);
143 	udelay(2000);	/* For BUS MODE to settle */
144 }
145 
146 /*
147  *  Really soft reset the chip.:)
148  *
149  *  Some 896 and 876 chip revisions may hang-up if we set
150  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
151  *  are running.
152  *  So, we need to abort the current operation prior to
153  *  soft resetting the chip.
154  */
155 static void sym_soft_reset (struct sym_hcb *np)
156 {
157 	u_char istat = 0;
158 	int i;
159 
160 	if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
161 		goto do_chip_reset;
162 
163 	OUTB(np, nc_istat, CABRT);
164 	for (i = 100000 ; i ; --i) {
165 		istat = INB(np, nc_istat);
166 		if (istat & SIP) {
167 			INW(np, nc_sist);
168 		}
169 		else if (istat & DIP) {
170 			if (INB(np, nc_dstat) & ABRT)
171 				break;
172 		}
173 		udelay(5);
174 	}
175 	OUTB(np, nc_istat, 0);
176 	if (!i)
177 		printf("%s: unable to abort current chip operation, "
178 		       "ISTAT=0x%02x.\n", sym_name(np), istat);
179 do_chip_reset:
180 	sym_chip_reset(np);
181 }
182 
183 /*
184  *  Start reset process.
185  *
186  *  The interrupt handler will reinitialize the chip.
187  */
188 static void sym_start_reset(struct sym_hcb *np)
189 {
190 	sym_reset_scsi_bus(np, 1);
191 }
192 
193 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
194 {
195 	u32 term;
196 	int retv = 0;
197 
198 	sym_soft_reset(np);	/* Soft reset the chip */
199 	if (enab_int)
200 		OUTW(np, nc_sien, RST);
201 	/*
202 	 *  Enable Tolerant, reset IRQD if present and
203 	 *  properly set IRQ mode, prior to resetting the bus.
204 	 */
205 	OUTB(np, nc_stest3, TE);
206 	OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
207 	OUTB(np, nc_scntl1, CRST);
208 	INB(np, nc_mbox1);
209 	udelay(200);
210 
211 	if (!SYM_SETUP_SCSI_BUS_CHECK)
212 		goto out;
213 	/*
214 	 *  Check for no terminators or SCSI bus shorts to ground.
215 	 *  Read SCSI data bus, data parity bits and control signals.
216 	 *  We are expecting RESET to be TRUE and other signals to be
217 	 *  FALSE.
218 	 */
219 	term =	INB(np, nc_sstat0);
220 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
221 	term |= ((INB(np, nc_sstat2) & 0x01) << 26) |	/* sdp1     */
222 		((INW(np, nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
223 		((INW(np, nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
224 		INB(np, nc_sbcl);	/* req ack bsy sel atn msg cd io    */
225 
226 	if (!np->maxwide)
227 		term &= 0x3ffff;
228 
229 	if (term != (2<<7)) {
230 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
231 			sym_name(np));
232 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
233 			"0x%lx, expecting 0x%lx\n",
234 			sym_name(np),
235 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
236 			(u_long)term, (u_long)(2<<7));
237 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
238 			retv = 1;
239 	}
240 out:
241 	OUTB(np, nc_scntl1, 0);
242 	return retv;
243 }
244 
245 /*
246  *  Select SCSI clock frequency
247  */
248 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
249 {
250 	/*
251 	 *  If multiplier not present or not selected, leave here.
252 	 */
253 	if (np->multiplier <= 1) {
254 		OUTB(np, nc_scntl3, scntl3);
255 		return;
256 	}
257 
258 	if (sym_verbose >= 2)
259 		printf ("%s: enabling clock multiplier\n", sym_name(np));
260 
261 	OUTB(np, nc_stest1, DBLEN);	   /* Enable clock multiplier */
262 	/*
263 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
264 	 *  Otherwise wait 50 micro-seconds (at least).
265 	 */
266 	if (np->features & FE_LCKFRQ) {
267 		int i = 20;
268 		while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
269 			udelay(20);
270 		if (!i)
271 			printf("%s: the chip cannot lock the frequency\n",
272 				sym_name(np));
273 	} else {
274 		INB(np, nc_mbox1);
275 		udelay(50+10);
276 	}
277 	OUTB(np, nc_stest3, HSC);		/* Halt the scsi clock	*/
278 	OUTB(np, nc_scntl3, scntl3);
279 	OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
280 	OUTB(np, nc_stest3, 0x00);		/* Restart scsi clock 	*/
281 }
282 
283 
284 /*
285  *  Determine the chip's clock frequency.
286  *
287  *  This is essential for the negotiation of the synchronous
288  *  transfer rate.
289  *
290  *  Note: we have to return the correct value.
291  *  THERE IS NO SAFE DEFAULT VALUE.
292  *
293  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
294  *  53C860 and 53C875 rev. 1 support fast20 transfers but
295  *  do not have a clock doubler and so are provided with a
296  *  80 MHz clock. All other fast20 boards incorporate a doubler
297  *  and so should be delivered with a 40 MHz clock.
298  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
299  *  clock and provide a clock quadrupler (160 Mhz).
300  */
301 
302 /*
303  *  calculate SCSI clock frequency (in KHz)
304  */
305 static unsigned getfreq (struct sym_hcb *np, int gen)
306 {
307 	unsigned int ms = 0;
308 	unsigned int f;
309 
310 	/*
311 	 * Measure GEN timer delay in order
312 	 * to calculate SCSI clock frequency
313 	 *
314 	 * This code will never execute too
315 	 * many loop iterations (if DELAY is
316 	 * reasonably correct). It could get
317 	 * too low a delay (too high a freq.)
318 	 * if the CPU is slow executing the
319 	 * loop for some reason (an NMI, for
320 	 * example). For this reason we will
321 	 * if multiple measurements are to be
322 	 * performed trust the higher delay
323 	 * (lower frequency returned).
324 	 */
325 	OUTW(np, nc_sien, 0);	/* mask all scsi interrupts */
326 	INW(np, nc_sist);	/* clear pending scsi interrupt */
327 	OUTB(np, nc_dien, 0);	/* mask all dma interrupts */
328 	INW(np, nc_sist);	/* another one, just to be sure :) */
329 	/*
330 	 * The C1010-33 core does not report GEN in SIST,
331 	 * if this interrupt is masked in SIEN.
332 	 * I don't know yet if the C1010-66 behaves the same way.
333 	 */
334 	if (np->features & FE_C10) {
335 		OUTW(np, nc_sien, GEN);
336 		OUTB(np, nc_istat1, SIRQD);
337 	}
338 	OUTB(np, nc_scntl3, 4);	   /* set pre-scaler to divide by 3 */
339 	OUTB(np, nc_stime1, 0);	   /* disable general purpose timer */
340 	OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
341 	while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
342 		udelay(1000/4);    /* count in 1/4 of ms */
343 	OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
344 	/*
345 	 * Undo C1010-33 specific settings.
346 	 */
347 	if (np->features & FE_C10) {
348 		OUTW(np, nc_sien, 0);
349 		OUTB(np, nc_istat1, 0);
350 	}
351  	/*
352  	 * set prescaler to divide by whatever 0 means
353  	 * 0 ought to choose divide by 2, but appears
354  	 * to set divide by 3.5 mode in my 53c810 ...
355  	 */
356  	OUTB(np, nc_scntl3, 0);
357 
358   	/*
359  	 * adjust for prescaler, and convert into KHz
360   	 */
361 	f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
362 
363 	/*
364 	 * The C1010-33 result is biased by a factor
365 	 * of 2/3 compared to earlier chips.
366 	 */
367 	if (np->features & FE_C10)
368 		f = (f * 2) / 3;
369 
370 	if (sym_verbose >= 2)
371 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
372 			sym_name(np), gen, ms/4, f);
373 
374 	return f;
375 }
376 
377 static unsigned sym_getfreq (struct sym_hcb *np)
378 {
379 	u_int f1, f2;
380 	int gen = 8;
381 
382 	getfreq (np, gen);	/* throw away first result */
383 	f1 = getfreq (np, gen);
384 	f2 = getfreq (np, gen);
385 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
386 	return f1;
387 }
388 
389 /*
390  *  Get/probe chip SCSI clock frequency
391  */
392 static void sym_getclock (struct sym_hcb *np, int mult)
393 {
394 	unsigned char scntl3 = np->sv_scntl3;
395 	unsigned char stest1 = np->sv_stest1;
396 	unsigned f1;
397 
398 	np->multiplier = 1;
399 	f1 = 40000;
400 	/*
401 	 *  True with 875/895/896/895A with clock multiplier selected
402 	 */
403 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
404 		if (sym_verbose >= 2)
405 			printf ("%s: clock multiplier found\n", sym_name(np));
406 		np->multiplier = mult;
407 	}
408 
409 	/*
410 	 *  If multiplier not found or scntl3 not 7,5,3,
411 	 *  reset chip and get frequency from general purpose timer.
412 	 *  Otherwise trust scntl3 BIOS setting.
413 	 */
414 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
415 		OUTB(np, nc_stest1, 0);		/* make sure doubler is OFF */
416 		f1 = sym_getfreq (np);
417 
418 		if (sym_verbose)
419 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
420 
421 		if	(f1 <	45000)		f1 =  40000;
422 		else if (f1 <	55000)		f1 =  50000;
423 		else				f1 =  80000;
424 
425 		if (f1 < 80000 && mult > 1) {
426 			if (sym_verbose >= 2)
427 				printf ("%s: clock multiplier assumed\n",
428 					sym_name(np));
429 			np->multiplier	= mult;
430 		}
431 	} else {
432 		if	((scntl3 & 7) == 3)	f1 =  40000;
433 		else if	((scntl3 & 7) == 5)	f1 =  80000;
434 		else 				f1 = 160000;
435 
436 		f1 /= np->multiplier;
437 	}
438 
439 	/*
440 	 *  Compute controller synchronous parameters.
441 	 */
442 	f1		*= np->multiplier;
443 	np->clock_khz	= f1;
444 }
445 
446 /*
447  *  Get/probe PCI clock frequency
448  */
449 static int sym_getpciclock (struct sym_hcb *np)
450 {
451 	int f = 0;
452 
453 	/*
454 	 *  For now, we only need to know about the actual
455 	 *  PCI BUS clock frequency for C1010-66 chips.
456 	 */
457 #if 1
458 	if (np->features & FE_66MHZ) {
459 #else
460 	if (1) {
461 #endif
462 		OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
463 		f = sym_getfreq(np);
464 		OUTB(np, nc_stest1, 0);
465 	}
466 	np->pciclk_khz = f;
467 
468 	return f;
469 }
470 
471 /*
472  *  SYMBIOS chip clock divisor table.
473  *
474  *  Divisors are multiplied by 10,000,000 in order to make
475  *  calculations more simple.
476  */
477 #define _5M 5000000
478 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
479 
480 /*
481  *  Get clock factor and sync divisor for a given
482  *  synchronous factor period.
483  */
484 static int
485 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
486 {
487 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
488 	int	div = np->clock_divn;	/* Number of divisors supported	*/
489 	u32	fak;			/* Sync factor in sxfer		*/
490 	u32	per;			/* Period in tenths of ns	*/
491 	u32	kpc;			/* (per * clk)			*/
492 	int	ret;
493 
494 	/*
495 	 *  Compute the synchronous period in tenths of nano-seconds
496 	 */
497 	if (dt && sfac <= 9)	per = 125;
498 	else if	(sfac <= 10)	per = 250;
499 	else if	(sfac == 11)	per = 303;
500 	else if	(sfac == 12)	per = 500;
501 	else			per = 40 * sfac;
502 	ret = per;
503 
504 	kpc = per * clk;
505 	if (dt)
506 		kpc <<= 1;
507 
508 	/*
509 	 *  For earliest C10 revision 0, we cannot use extra
510 	 *  clocks for the setting of the SCSI clocking.
511 	 *  Note that this limits the lowest sync data transfer
512 	 *  to 5 Mega-transfers per second and may result in
513 	 *  using higher clock divisors.
514 	 */
515 #if 1
516 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
517 		/*
518 		 *  Look for the lowest clock divisor that allows an
519 		 *  output speed not faster than the period.
520 		 */
521 		while (div > 0) {
522 			--div;
523 			if (kpc > (div_10M[div] << 2)) {
524 				++div;
525 				break;
526 			}
527 		}
528 		fak = 0;			/* No extra clocks */
529 		if (div == np->clock_divn) {	/* Are we too fast ? */
530 			ret = -1;
531 		}
532 		*divp = div;
533 		*fakp = fak;
534 		return ret;
535 	}
536 #endif
537 
538 	/*
539 	 *  Look for the greatest clock divisor that allows an
540 	 *  input speed faster than the period.
541 	 */
542 	while (div-- > 0)
543 		if (kpc >= (div_10M[div] << 2)) break;
544 
545 	/*
546 	 *  Calculate the lowest clock factor that allows an output
547 	 *  speed not faster than the period, and the max output speed.
548 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
549 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
550 	 */
551 	if (dt) {
552 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
553 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
554 	} else {
555 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
556 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
557 	}
558 
559 	/*
560 	 *  Check against our hardware limits, or bugs :).
561 	 */
562 	if (fak > 2) {
563 		fak = 2;
564 		ret = -1;
565 	}
566 
567 	/*
568 	 *  Compute and return sync parameters.
569 	 */
570 	*divp = div;
571 	*fakp = fak;
572 
573 	return ret;
574 }
575 
576 /*
577  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
578  *  128 transfers. All chips support at least 16 transfers
579  *  bursts. The 825A, 875 and 895 chips support bursts of up
580  *  to 128 transfers and the 895A and 896 support bursts of up
581  *  to 64 transfers. All other chips support up to 16
582  *  transfers bursts.
583  *
584  *  For PCI 32 bit data transfers each transfer is a DWORD.
585  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
586  *
587  *  We use log base 2 (burst length) as internal code, with
588  *  value 0 meaning "burst disabled".
589  */
590 
591 /*
592  *  Burst length from burst code.
593  */
594 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
595 
596 /*
597  *  Burst code from io register bits.
598  */
599 #define burst_code(dmode, ctest4, ctest5) \
600 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
601 
602 /*
603  *  Set initial io register bits from burst code.
604  */
605 static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
606 {
607 	np->rv_ctest4	&= ~0x80;
608 	np->rv_dmode	&= ~(0x3 << 6);
609 	np->rv_ctest5	&= ~0x4;
610 
611 	if (!bc) {
612 		np->rv_ctest4	|= 0x80;
613 	}
614 	else {
615 		--bc;
616 		np->rv_dmode	|= ((bc & 0x3) << 6);
617 		np->rv_ctest5	|= (bc & 0x4);
618 	}
619 }
620 
621 /*
622  *  Save initial settings of some IO registers.
623  *  Assumed to have been set by BIOS.
624  *  We cannot reset the chip prior to reading the
625  *  IO registers, since informations will be lost.
626  *  Since the SCRIPTS processor may be running, this
627  *  is not safe on paper, but it seems to work quite
628  *  well. :)
629  */
630 static void sym_save_initial_setting (struct sym_hcb *np)
631 {
632 	np->sv_scntl0	= INB(np, nc_scntl0) & 0x0a;
633 	np->sv_scntl3	= INB(np, nc_scntl3) & 0x07;
634 	np->sv_dmode	= INB(np, nc_dmode)  & 0xce;
635 	np->sv_dcntl	= INB(np, nc_dcntl)  & 0xa8;
636 	np->sv_ctest3	= INB(np, nc_ctest3) & 0x01;
637 	np->sv_ctest4	= INB(np, nc_ctest4) & 0x80;
638 	np->sv_gpcntl	= INB(np, nc_gpcntl);
639 	np->sv_stest1	= INB(np, nc_stest1);
640 	np->sv_stest2	= INB(np, nc_stest2) & 0x20;
641 	np->sv_stest4	= INB(np, nc_stest4);
642 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
643 		np->sv_scntl4	= INB(np, nc_scntl4);
644 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x04;
645 	}
646 	else
647 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x24;
648 }
649 
650 /*
651  *  Set SCSI BUS mode.
652  *  - LVD capable chips (895/895A/896/1010) report the current BUS mode
653  *    through the STEST4 IO register.
654  *  - For previous generation chips (825/825A/875), the user has to tell us
655  *    how to check against HVD, since a 100% safe algorithm is not possible.
656  */
657 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
658 {
659 	if (np->scsi_mode)
660 		return;
661 
662 	np->scsi_mode = SMODE_SE;
663 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
664 		np->scsi_mode = (np->sv_stest4 & SMODE);
665 	else if	(np->features & FE_DIFF) {
666 		if (SYM_SETUP_SCSI_DIFF == 1) {
667 			if (np->sv_scntl3) {
668 				if (np->sv_stest2 & 0x20)
669 					np->scsi_mode = SMODE_HVD;
670 			} else if (nvram->type == SYM_SYMBIOS_NVRAM) {
671 				if (!(INB(np, nc_gpreg) & 0x08))
672 					np->scsi_mode = SMODE_HVD;
673 			}
674 		} else if (SYM_SETUP_SCSI_DIFF == 2)
675 			np->scsi_mode = SMODE_HVD;
676 	}
677 	if (np->scsi_mode == SMODE_HVD)
678 		np->rv_stest2 |= 0x20;
679 }
680 
681 /*
682  *  Prepare io register values used by sym_start_up()
683  *  according to selected and supported features.
684  */
685 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
686 {
687 	struct sym_data *sym_data = shost_priv(shost);
688 	struct pci_dev *pdev = sym_data->pdev;
689 	u_char	burst_max;
690 	u32	period;
691 	int i;
692 
693 	np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
694 
695 	/*
696 	 *  Guess the frequency of the chip's clock.
697 	 */
698 	if	(np->features & (FE_ULTRA3 | FE_ULTRA2))
699 		np->clock_khz = 160000;
700 	else if	(np->features & FE_ULTRA)
701 		np->clock_khz = 80000;
702 	else
703 		np->clock_khz = 40000;
704 
705 	/*
706 	 *  Get the clock multiplier factor.
707  	 */
708 	if	(np->features & FE_QUAD)
709 		np->multiplier	= 4;
710 	else if	(np->features & FE_DBLR)
711 		np->multiplier	= 2;
712 	else
713 		np->multiplier	= 1;
714 
715 	/*
716 	 *  Measure SCSI clock frequency for chips
717 	 *  it may vary from assumed one.
718 	 */
719 	if (np->features & FE_VARCLK)
720 		sym_getclock(np, np->multiplier);
721 
722 	/*
723 	 * Divisor to be used for async (timer pre-scaler).
724 	 */
725 	i = np->clock_divn - 1;
726 	while (--i >= 0) {
727 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
728 			++i;
729 			break;
730 		}
731 	}
732 	np->rv_scntl3 = i+1;
733 
734 	/*
735 	 * The C1010 uses hardwired divisors for async.
736 	 * So, we just throw away, the async. divisor.:-)
737 	 */
738 	if (np->features & FE_C10)
739 		np->rv_scntl3 = 0;
740 
741 	/*
742 	 * Minimum synchronous period factor supported by the chip.
743 	 * Btw, 'period' is in tenths of nanoseconds.
744 	 */
745 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
746 
747 	if	(period <= 250)		np->minsync = 10;
748 	else if	(period <= 303)		np->minsync = 11;
749 	else if	(period <= 500)		np->minsync = 12;
750 	else				np->minsync = (period + 40 - 1) / 40;
751 
752 	/*
753 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
754 	 */
755 	if	(np->minsync < 25 &&
756 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
757 		np->minsync = 25;
758 	else if	(np->minsync < 12 &&
759 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
760 		np->minsync = 12;
761 
762 	/*
763 	 * Maximum synchronous period factor supported by the chip.
764 	 */
765 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
766 	np->maxsync = period > 2540 ? 254 : period / 10;
767 
768 	/*
769 	 * If chip is a C1010, guess the sync limits in DT mode.
770 	 */
771 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
772 		if (np->clock_khz == 160000) {
773 			np->minsync_dt = 9;
774 			np->maxsync_dt = 50;
775 			np->maxoffs_dt = nvram->type ? 62 : 31;
776 		}
777 	}
778 
779 	/*
780 	 *  64 bit addressing  (895A/896/1010) ?
781 	 */
782 	if (np->features & FE_DAC) {
783 		if (!use_dac(np))
784 			np->rv_ccntl1 |= (DDAC);
785 		else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
786 			np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
787 		else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
788 			np->rv_ccntl1 |= (0 | EXTIBMV);
789 	}
790 
791 	/*
792 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
793   	 */
794 	if (np->features & FE_NOPM)
795 		np->rv_ccntl0	|= (ENPMJ);
796 
797  	/*
798 	 *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
799 	 *  In dual channel mode, contention occurs if internal cycles
800 	 *  are used. Disable internal cycles.
801 	 */
802 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
803 	    pdev->revision < 0x1)
804 		np->rv_ccntl0	|=  DILS;
805 
806 	/*
807 	 *  Select burst length (dwords)
808 	 */
809 	burst_max	= SYM_SETUP_BURST_ORDER;
810 	if (burst_max == 255)
811 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
812 				       np->sv_ctest5);
813 	if (burst_max > 7)
814 		burst_max = 7;
815 	if (burst_max > np->maxburst)
816 		burst_max = np->maxburst;
817 
818 	/*
819 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
820 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
821 	 *  based transactions on LOAD/STORE instructions. So we have
822 	 *  to prevent these chips from using such PCI transactions in
823 	 *  this driver. The generic ncr driver that does not use
824 	 *  LOAD/STORE instructions does not need this work-around.
825 	 */
826 	if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
827 	     pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
828 	    (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
829 	     pdev->revision <= 0x1))
830 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
831 
832 	/*
833 	 *  Select all supported special features.
834 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
835 	 *  does not help, but burst op fetch (BOF) does.
836 	 *  Disabling PFEN makes sure BOF will be used.
837 	 */
838 	if (np->features & FE_ERL)
839 		np->rv_dmode	|= ERL;		/* Enable Read Line */
840 	if (np->features & FE_BOF)
841 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
842 	if (np->features & FE_ERMP)
843 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
844 #if 1
845 	if ((np->features & FE_PFEN) && !np->ram_ba)
846 #else
847 	if (np->features & FE_PFEN)
848 #endif
849 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
850 	if (np->features & FE_CLSE)
851 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
852 	if (np->features & FE_WRIE)
853 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
854 	if (np->features & FE_DFS)
855 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
856 
857 	/*
858 	 *  Select some other
859 	 */
860 	np->rv_ctest4	|= MPEE; /* Master parity checking */
861 	np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
862 
863 	/*
864 	 *  Get parity checking, host ID and verbose mode from NVRAM
865 	 */
866 	np->myaddr = 255;
867 	np->scsi_mode = 0;
868 	sym_nvram_setup_host(shost, np, nvram);
869 
870 	/*
871 	 *  Get SCSI addr of host adapter (set by bios?).
872 	 */
873 	if (np->myaddr == 255) {
874 		np->myaddr = INB(np, nc_scid) & 0x07;
875 		if (!np->myaddr)
876 			np->myaddr = SYM_SETUP_HOST_ID;
877 	}
878 
879 	/*
880 	 *  Prepare initial io register bits for burst length
881 	 */
882 	sym_init_burst(np, burst_max);
883 
884 	sym_set_bus_mode(np, nvram);
885 
886 	/*
887 	 *  Set LED support from SCRIPTS.
888 	 *  Ignore this feature for boards known to use a
889 	 *  specific GPIO wiring and for the 895A, 896
890 	 *  and 1010 that drive the LED directly.
891 	 */
892 	if ((SYM_SETUP_SCSI_LED ||
893 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
894 	      (nvram->type == SYM_TEKRAM_NVRAM &&
895 	       pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
896 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
897 		np->features |= FE_LED0;
898 
899 	/*
900 	 *  Set irq mode.
901 	 */
902 	switch(SYM_SETUP_IRQ_MODE & 3) {
903 	case 2:
904 		np->rv_dcntl	|= IRQM;
905 		break;
906 	case 1:
907 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
908 		break;
909 	default:
910 		break;
911 	}
912 
913 	/*
914 	 *  Configure targets according to driver setup.
915 	 *  If NVRAM present get targets setup from NVRAM.
916 	 */
917 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
918 		struct sym_tcb *tp = &np->target[i];
919 
920 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
921 		tp->usrtags = SYM_SETUP_MAX_TAG;
922 		tp->usr_width = np->maxwide;
923 		tp->usr_period = 9;
924 
925 		sym_nvram_setup_target(tp, i, nvram);
926 
927 		if (!tp->usrtags)
928 			tp->usrflags &= ~SYM_TAGS_ENABLED;
929 	}
930 
931 	/*
932 	 *  Let user know about the settings.
933 	 */
934 	printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
935 		sym_nvram_type(nvram), np->myaddr,
936 		(np->features & FE_ULTRA3) ? 80 :
937 		(np->features & FE_ULTRA2) ? 40 :
938 		(np->features & FE_ULTRA)  ? 20 : 10,
939 		sym_scsi_bus_mode(np->scsi_mode),
940 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
941 	/*
942 	 *  Tell him more on demand.
943 	 */
944 	if (sym_verbose) {
945 		printf("%s: %s IRQ line driver%s\n",
946 			sym_name(np),
947 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
948 			np->ram_ba ? ", using on-chip SRAM" : "");
949 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
950 		if (np->features & FE_NOPM)
951 			printf("%s: handling phase mismatch from SCRIPTS.\n",
952 			       sym_name(np));
953 	}
954 	/*
955 	 *  And still more.
956 	 */
957 	if (sym_verbose >= 2) {
958 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
959 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
960 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
961 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
962 
963 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
964 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
965 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
966 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
967 	}
968 
969 	return 0;
970 }
971 
972 /*
973  *  Test the pci bus snoop logic :-(
974  *
975  *  Has to be called with interrupts disabled.
976  */
977 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
978 static int sym_regtest(struct sym_hcb *np)
979 {
980 	register volatile u32 data;
981 	/*
982 	 *  chip registers may NOT be cached.
983 	 *  write 0xffffffff to a read only register area,
984 	 *  and try to read it back.
985 	 */
986 	data = 0xffffffff;
987 	OUTL(np, nc_dstat, data);
988 	data = INL(np, nc_dstat);
989 #if 1
990 	if (data == 0xffffffff) {
991 #else
992 	if ((data & 0xe2f0fffd) != 0x02000080) {
993 #endif
994 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
995 			(unsigned) data);
996 		return 0x10;
997 	}
998 	return 0;
999 }
1000 #else
1001 static inline int sym_regtest(struct sym_hcb *np)
1002 {
1003 	return 0;
1004 }
1005 #endif
1006 
1007 static int sym_snooptest(struct sym_hcb *np)
1008 {
1009 	u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1010 	int i, err;
1011 
1012 	err = sym_regtest(np);
1013 	if (err)
1014 		return err;
1015 restart_test:
1016 	/*
1017 	 *  Enable Master Parity Checking as we intend
1018 	 *  to enable it for normal operations.
1019 	 */
1020 	OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1021 	/*
1022 	 *  init
1023 	 */
1024 	pc  = SCRIPTZ_BA(np, snooptest);
1025 	host_wr = 1;
1026 	sym_wr  = 2;
1027 	/*
1028 	 *  Set memory and register.
1029 	 */
1030 	np->scratch = cpu_to_scr(host_wr);
1031 	OUTL(np, nc_temp, sym_wr);
1032 	/*
1033 	 *  Start script (exchange values)
1034 	 */
1035 	OUTL(np, nc_dsa, np->hcb_ba);
1036 	OUTL_DSP(np, pc);
1037 	/*
1038 	 *  Wait 'til done (with timeout)
1039 	 */
1040 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1041 		if (INB(np, nc_istat) & (INTF|SIP|DIP))
1042 			break;
1043 	if (i>=SYM_SNOOP_TIMEOUT) {
1044 		printf ("CACHE TEST FAILED: timeout.\n");
1045 		return (0x20);
1046 	}
1047 	/*
1048 	 *  Check for fatal DMA errors.
1049 	 */
1050 	dstat = INB(np, nc_dstat);
1051 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
1052 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1053 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1054 			"DISABLING MASTER DATA PARITY CHECKING.\n",
1055 			sym_name(np));
1056 		np->rv_ctest4 &= ~MPEE;
1057 		goto restart_test;
1058 	}
1059 #endif
1060 	if (dstat & (MDPE|BF|IID)) {
1061 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1062 		return (0x80);
1063 	}
1064 	/*
1065 	 *  Save termination position.
1066 	 */
1067 	pc = INL(np, nc_dsp);
1068 	/*
1069 	 *  Read memory and register.
1070 	 */
1071 	host_rd = scr_to_cpu(np->scratch);
1072 	sym_rd  = INL(np, nc_scratcha);
1073 	sym_bk  = INL(np, nc_temp);
1074 	/*
1075 	 *  Check termination position.
1076 	 */
1077 	if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1078 		printf ("CACHE TEST FAILED: script execution failed.\n");
1079 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1080 			(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1081 			(u_long) SCRIPTZ_BA(np, snoopend) +8);
1082 		return (0x40);
1083 	}
1084 	/*
1085 	 *  Show results.
1086 	 */
1087 	if (host_wr != sym_rd) {
1088 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1089 			(int) host_wr, (int) sym_rd);
1090 		err |= 1;
1091 	}
1092 	if (host_rd != sym_wr) {
1093 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1094 			(int) sym_wr, (int) host_rd);
1095 		err |= 2;
1096 	}
1097 	if (sym_bk != sym_wr) {
1098 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1099 			(int) sym_wr, (int) sym_bk);
1100 		err |= 4;
1101 	}
1102 
1103 	return err;
1104 }
1105 
1106 /*
1107  *  log message for real hard errors
1108  *
1109  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1110  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1111  *
1112  *  exception register:
1113  *  	ds:	dstat
1114  *  	si:	sist
1115  *
1116  *  SCSI bus lines:
1117  *  	so:	control lines as driven by chip.
1118  *  	si:	control lines as seen by chip.
1119  *  	sd:	scsi data lines as seen by chip.
1120  *
1121  *  wide/fastmode:
1122  *  	sx:	sxfer  (see the manual)
1123  *  	s3:	scntl3 (see the manual)
1124  *  	s4:	scntl4 (see the manual)
1125  *
1126  *  current script command:
1127  *  	dsp:	script address (relative to start of script).
1128  *  	dbc:	first word of script command.
1129  *
1130  *  First 24 register of the chip:
1131  *  	r0..rf
1132  */
1133 static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1134 {
1135 	struct sym_hcb *np = sym_get_hcb(shost);
1136 	u32	dsp;
1137 	int	script_ofs;
1138 	int	script_size;
1139 	char	*script_name;
1140 	u_char	*script_base;
1141 	int	i;
1142 
1143 	dsp	= INL(np, nc_dsp);
1144 
1145 	if	(dsp > np->scripta_ba &&
1146 		 dsp <= np->scripta_ba + np->scripta_sz) {
1147 		script_ofs	= dsp - np->scripta_ba;
1148 		script_size	= np->scripta_sz;
1149 		script_base	= (u_char *) np->scripta0;
1150 		script_name	= "scripta";
1151 	}
1152 	else if (np->scriptb_ba < dsp &&
1153 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
1154 		script_ofs	= dsp - np->scriptb_ba;
1155 		script_size	= np->scriptb_sz;
1156 		script_base	= (u_char *) np->scriptb0;
1157 		script_name	= "scriptb";
1158 	} else {
1159 		script_ofs	= dsp;
1160 		script_size	= 0;
1161 		script_base	= NULL;
1162 		script_name	= "mem";
1163 	}
1164 
1165 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1166 		sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1167 		(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1168 		(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1169 		(unsigned)INB(np, nc_scntl3),
1170 		(np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1171 		script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1172 
1173 	if (((script_ofs & 3) == 0) &&
1174 	    (unsigned)script_ofs < script_size) {
1175 		printf ("%s: script cmd = %08x\n", sym_name(np),
1176 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1177 	}
1178 
1179 	printf("%s: regdump:", sym_name(np));
1180 	for (i = 0; i < 24; i++)
1181 		printf(" %02x", (unsigned)INB_OFF(np, i));
1182 	printf(".\n");
1183 
1184 	/*
1185 	 *  PCI BUS error.
1186 	 */
1187 	if (dstat & (MDPE|BF))
1188 		sym_log_bus_error(shost);
1189 }
1190 
1191 void sym_dump_registers(struct Scsi_Host *shost)
1192 {
1193 	struct sym_hcb *np = sym_get_hcb(shost);
1194 	u_short sist;
1195 	u_char dstat;
1196 
1197 	sist = INW(np, nc_sist);
1198 	dstat = INB(np, nc_dstat);
1199 	sym_log_hard_error(shost, sist, dstat);
1200 }
1201 
1202 static struct sym_chip sym_dev_table[] = {
1203  {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1204  FE_ERL}
1205  ,
1206 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1207  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1208  FE_BOF}
1209  ,
1210 #else
1211  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1212  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1213  ,
1214 #endif
1215  {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1216  FE_BOF|FE_ERL}
1217  ,
1218  {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1219  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1220  ,
1221  {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1222  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1223  ,
1224  {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1225  FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1226  ,
1227  {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1228  FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1229  FE_RAM|FE_DIFF|FE_VARCLK}
1230  ,
1231  {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1232  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1233  FE_RAM|FE_DIFF|FE_VARCLK}
1234  ,
1235  {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1236  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1237  FE_RAM|FE_DIFF|FE_VARCLK}
1238  ,
1239  {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1240  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1241  FE_RAM|FE_DIFF|FE_VARCLK}
1242  ,
1243 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1244  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1245  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1246  FE_RAM|FE_LCKFRQ}
1247  ,
1248 #else
1249  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1250  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1251  FE_RAM|FE_LCKFRQ}
1252  ,
1253 #endif
1254  {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1255  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1256  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1257  ,
1258  {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1259  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1260  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1261  ,
1262  {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1263  FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1264  FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1265  ,
1266  {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1267  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1268  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1269  FE_C10}
1270  ,
1271  {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1272  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1273  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1274  FE_C10|FE_U3EN}
1275  ,
1276  {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1277  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1278  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1279  FE_C10|FE_U3EN}
1280  ,
1281  {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1282  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1283  FE_RAM|FE_IO256|FE_LEDC}
1284 };
1285 
1286 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1287 
1288 /*
1289  *  Look up the chip table.
1290  *
1291  *  Return a pointer to the chip entry if found,
1292  *  zero otherwise.
1293  */
1294 struct sym_chip *
1295 sym_lookup_chip_table (u_short device_id, u_char revision)
1296 {
1297 	struct	sym_chip *chip;
1298 	int	i;
1299 
1300 	for (i = 0; i < sym_num_devs; i++) {
1301 		chip = &sym_dev_table[i];
1302 		if (device_id != chip->device_id)
1303 			continue;
1304 		if (revision > chip->revision_id)
1305 			continue;
1306 		return chip;
1307 	}
1308 
1309 	return NULL;
1310 }
1311 
1312 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1313 /*
1314  *  Lookup the 64 bit DMA segments map.
1315  *  This is only used if the direct mapping
1316  *  has been unsuccessful.
1317  */
1318 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1319 {
1320 	int i;
1321 
1322 	if (!use_dac(np))
1323 		goto weird;
1324 
1325 	/* Look up existing mappings */
1326 	for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1327 		if (h == np->dmap_bah[i])
1328 			return i;
1329 	}
1330 	/* If direct mapping is free, get it */
1331 	if (!np->dmap_bah[s])
1332 		goto new;
1333 	/* Collision -> lookup free mappings */
1334 	for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1335 		if (!np->dmap_bah[s])
1336 			goto new;
1337 	}
1338 weird:
1339 	panic("sym: ran out of 64 bit DMA segment registers");
1340 	return -1;
1341 new:
1342 	np->dmap_bah[s] = h;
1343 	np->dmap_dirty = 1;
1344 	return s;
1345 }
1346 
1347 /*
1348  *  Update IO registers scratch C..R so they will be
1349  *  in sync. with queued CCB expectations.
1350  */
1351 static void sym_update_dmap_regs(struct sym_hcb *np)
1352 {
1353 	int o, i;
1354 
1355 	if (!np->dmap_dirty)
1356 		return;
1357 	o = offsetof(struct sym_reg, nc_scrx[0]);
1358 	for (i = 0; i < SYM_DMAP_SIZE; i++) {
1359 		OUTL_OFF(np, o, np->dmap_bah[i]);
1360 		o += 4;
1361 	}
1362 	np->dmap_dirty = 0;
1363 }
1364 #endif
1365 
1366 /* Enforce all the fiddly SPI rules and the chip limitations */
1367 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1368 		struct sym_trans *goal)
1369 {
1370 	if (!spi_support_wide(starget))
1371 		goal->width = 0;
1372 
1373 	if (!spi_support_sync(starget)) {
1374 		goal->iu = 0;
1375 		goal->dt = 0;
1376 		goal->qas = 0;
1377 		goal->offset = 0;
1378 		return;
1379 	}
1380 
1381 	if (spi_support_dt(starget)) {
1382 		if (spi_support_dt_only(starget))
1383 			goal->dt = 1;
1384 
1385 		if (goal->offset == 0)
1386 			goal->dt = 0;
1387 	} else {
1388 		goal->dt = 0;
1389 	}
1390 
1391 	/* Some targets fail to properly negotiate DT in SE mode */
1392 	if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1393 		goal->dt = 0;
1394 
1395 	if (goal->dt) {
1396 		/* all DT transfers must be wide */
1397 		goal->width = 1;
1398 		if (goal->offset > np->maxoffs_dt)
1399 			goal->offset = np->maxoffs_dt;
1400 		if (goal->period < np->minsync_dt)
1401 			goal->period = np->minsync_dt;
1402 		if (goal->period > np->maxsync_dt)
1403 			goal->period = np->maxsync_dt;
1404 	} else {
1405 		goal->iu = goal->qas = 0;
1406 		if (goal->offset > np->maxoffs)
1407 			goal->offset = np->maxoffs;
1408 		if (goal->period < np->minsync)
1409 			goal->period = np->minsync;
1410 		if (goal->period > np->maxsync)
1411 			goal->period = np->maxsync;
1412 	}
1413 }
1414 
1415 /*
1416  *  Prepare the next negotiation message if needed.
1417  *
1418  *  Fill in the part of message buffer that contains the
1419  *  negotiation and the nego_status field of the CCB.
1420  *  Returns the size of the message in bytes.
1421  */
1422 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1423 {
1424 	struct sym_tcb *tp = &np->target[cp->target];
1425 	struct scsi_target *starget = tp->starget;
1426 	struct sym_trans *goal = &tp->tgoal;
1427 	int msglen = 0;
1428 	int nego;
1429 
1430 	sym_check_goals(np, starget, goal);
1431 
1432 	/*
1433 	 * Many devices implement PPR in a buggy way, so only use it if we
1434 	 * really want to.
1435 	 */
1436 	if (goal->offset &&
1437 	    (goal->iu || goal->dt || goal->qas || (goal->period < 0xa))) {
1438 		nego = NS_PPR;
1439 	} else if (spi_width(starget) != goal->width) {
1440 		nego = NS_WIDE;
1441 	} else if (spi_period(starget) != goal->period ||
1442 		   spi_offset(starget) != goal->offset) {
1443 		nego = NS_SYNC;
1444 	} else {
1445 		goal->check_nego = 0;
1446 		nego = 0;
1447 	}
1448 
1449 	switch (nego) {
1450 	case NS_SYNC:
1451 		msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1452 				goal->offset);
1453 		break;
1454 	case NS_WIDE:
1455 		msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1456 		break;
1457 	case NS_PPR:
1458 		msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1459 				goal->offset, goal->width,
1460 				(goal->iu ? PPR_OPT_IU : 0) |
1461 					(goal->dt ? PPR_OPT_DT : 0) |
1462 					(goal->qas ? PPR_OPT_QAS : 0));
1463 		break;
1464 	}
1465 
1466 	cp->nego_status = nego;
1467 
1468 	if (nego) {
1469 		tp->nego_cp = cp; /* Keep track a nego will be performed */
1470 		if (DEBUG_FLAGS & DEBUG_NEGO) {
1471 			sym_print_nego_msg(np, cp->target,
1472 					  nego == NS_SYNC ? "sync msgout" :
1473 					  nego == NS_WIDE ? "wide msgout" :
1474 					  "ppr msgout", msgptr);
1475 		}
1476 	}
1477 
1478 	return msglen;
1479 }
1480 
1481 /*
1482  *  Insert a job into the start queue.
1483  */
1484 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1485 {
1486 	u_short	qidx;
1487 
1488 #ifdef SYM_CONF_IARB_SUPPORT
1489 	/*
1490 	 *  If the previously queued CCB is not yet done,
1491 	 *  set the IARB hint. The SCRIPTS will go with IARB
1492 	 *  for this job when starting the previous one.
1493 	 *  We leave devices a chance to win arbitration by
1494 	 *  not using more than 'iarb_max' consecutive
1495 	 *  immediate arbitrations.
1496 	 */
1497 	if (np->last_cp && np->iarb_count < np->iarb_max) {
1498 		np->last_cp->host_flags |= HF_HINT_IARB;
1499 		++np->iarb_count;
1500 	}
1501 	else
1502 		np->iarb_count = 0;
1503 	np->last_cp = cp;
1504 #endif
1505 
1506 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1507 	/*
1508 	 *  Make SCRIPTS aware of the 64 bit DMA
1509 	 *  segment registers not being up-to-date.
1510 	 */
1511 	if (np->dmap_dirty)
1512 		cp->host_xflags |= HX_DMAP_DIRTY;
1513 #endif
1514 
1515 	/*
1516 	 *  Insert first the idle task and then our job.
1517 	 *  The MBs should ensure proper ordering.
1518 	 */
1519 	qidx = np->squeueput + 2;
1520 	if (qidx >= MAX_QUEUE*2) qidx = 0;
1521 
1522 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
1523 	MEMORY_WRITE_BARRIER();
1524 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1525 
1526 	np->squeueput = qidx;
1527 
1528 	if (DEBUG_FLAGS & DEBUG_QUEUE)
1529 		scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1530 							np->squeueput);
1531 
1532 	/*
1533 	 *  Script processor may be waiting for reselect.
1534 	 *  Wake it up.
1535 	 */
1536 	MEMORY_WRITE_BARRIER();
1537 	OUTB(np, nc_istat, SIGP|np->istat_sem);
1538 }
1539 
1540 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1541 /*
1542  *  Start next ready-to-start CCBs.
1543  */
1544 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1545 {
1546 	SYM_QUEHEAD *qp;
1547 	struct sym_ccb *cp;
1548 
1549 	/*
1550 	 *  Paranoia, as usual. :-)
1551 	 */
1552 	assert(!lp->started_tags || !lp->started_no_tag);
1553 
1554 	/*
1555 	 *  Try to start as many commands as asked by caller.
1556 	 *  Prevent from having both tagged and untagged
1557 	 *  commands queued to the device at the same time.
1558 	 */
1559 	while (maxn--) {
1560 		qp = sym_remque_head(&lp->waiting_ccbq);
1561 		if (!qp)
1562 			break;
1563 		cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1564 		if (cp->tag != NO_TAG) {
1565 			if (lp->started_no_tag ||
1566 			    lp->started_tags >= lp->started_max) {
1567 				sym_insque_head(qp, &lp->waiting_ccbq);
1568 				break;
1569 			}
1570 			lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1571 			lp->head.resel_sa =
1572 				cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1573 			++lp->started_tags;
1574 		} else {
1575 			if (lp->started_no_tag || lp->started_tags) {
1576 				sym_insque_head(qp, &lp->waiting_ccbq);
1577 				break;
1578 			}
1579 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1580 			lp->head.resel_sa =
1581 			      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1582 			++lp->started_no_tag;
1583 		}
1584 		cp->started = 1;
1585 		sym_insque_tail(qp, &lp->started_ccbq);
1586 		sym_put_start_queue(np, cp);
1587 	}
1588 }
1589 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1590 
1591 /*
1592  *  The chip may have completed jobs. Look at the DONE QUEUE.
1593  *
1594  *  On paper, memory read barriers may be needed here to
1595  *  prevent out of order LOADs by the CPU from having
1596  *  prefetched stale data prior to DMA having occurred.
1597  */
1598 static int sym_wakeup_done (struct sym_hcb *np)
1599 {
1600 	struct sym_ccb *cp;
1601 	int i, n;
1602 	u32 dsa;
1603 
1604 	n = 0;
1605 	i = np->dqueueget;
1606 
1607 	/* MEMORY_READ_BARRIER(); */
1608 	while (1) {
1609 		dsa = scr_to_cpu(np->dqueue[i]);
1610 		if (!dsa)
1611 			break;
1612 		np->dqueue[i] = 0;
1613 		if ((i = i+2) >= MAX_QUEUE*2)
1614 			i = 0;
1615 
1616 		cp = sym_ccb_from_dsa(np, dsa);
1617 		if (cp) {
1618 			MEMORY_READ_BARRIER();
1619 			sym_complete_ok (np, cp);
1620 			++n;
1621 		}
1622 		else
1623 			printf ("%s: bad DSA (%x) in done queue.\n",
1624 				sym_name(np), (u_int) dsa);
1625 	}
1626 	np->dqueueget = i;
1627 
1628 	return n;
1629 }
1630 
1631 /*
1632  *  Complete all CCBs queued to the COMP queue.
1633  *
1634  *  These CCBs are assumed:
1635  *  - Not to be referenced either by devices or
1636  *    SCRIPTS-related queues and datas.
1637  *  - To have to be completed with an error condition
1638  *    or requeued.
1639  *
1640  *  The device queue freeze count is incremented
1641  *  for each CCB that does not prevent this.
1642  *  This function is called when all CCBs involved
1643  *  in error handling/recovery have been reaped.
1644  */
1645 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1646 {
1647 	SYM_QUEHEAD *qp;
1648 	struct sym_ccb *cp;
1649 
1650 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1651 		struct scsi_cmnd *cmd;
1652 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1653 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1654 		/* Leave quiet CCBs waiting for resources */
1655 		if (cp->host_status == HS_WAIT)
1656 			continue;
1657 		cmd = cp->cmd;
1658 		if (cam_status)
1659 			sym_set_cam_status(cmd, cam_status);
1660 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1661 		if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1662 			struct sym_tcb *tp = &np->target[cp->target];
1663 			struct sym_lcb *lp = sym_lp(tp, cp->lun);
1664 			if (lp) {
1665 				sym_remque(&cp->link2_ccbq);
1666 				sym_insque_tail(&cp->link2_ccbq,
1667 				                &lp->waiting_ccbq);
1668 				if (cp->started) {
1669 					if (cp->tag != NO_TAG)
1670 						--lp->started_tags;
1671 					else
1672 						--lp->started_no_tag;
1673 				}
1674 			}
1675 			cp->started = 0;
1676 			continue;
1677 		}
1678 #endif
1679 		sym_free_ccb(np, cp);
1680 		sym_xpt_done(np, cmd);
1681 	}
1682 }
1683 
1684 /*
1685  *  Complete all active CCBs with error.
1686  *  Used on CHIP/SCSI RESET.
1687  */
1688 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1689 {
1690 	/*
1691 	 *  Move all active CCBs to the COMP queue
1692 	 *  and flush this queue.
1693 	 */
1694 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1695 	sym_que_init(&np->busy_ccbq);
1696 	sym_flush_comp_queue(np, cam_status);
1697 }
1698 
1699 /*
1700  *  Start chip.
1701  *
1702  *  'reason' means:
1703  *     0: initialisation.
1704  *     1: SCSI BUS RESET delivered or received.
1705  *     2: SCSI BUS MODE changed.
1706  */
1707 void sym_start_up(struct Scsi_Host *shost, int reason)
1708 {
1709 	struct sym_data *sym_data = shost_priv(shost);
1710 	struct pci_dev *pdev = sym_data->pdev;
1711 	struct sym_hcb *np = sym_data->ncb;
1712  	int	i;
1713 	u32	phys;
1714 
1715  	/*
1716 	 *  Reset chip if asked, otherwise just clear fifos.
1717  	 */
1718 	if (reason == 1)
1719 		sym_soft_reset(np);
1720 	else {
1721 		OUTB(np, nc_stest3, TE|CSF);
1722 		OUTONB(np, nc_ctest3, CLF);
1723 	}
1724 
1725 	/*
1726 	 *  Clear Start Queue
1727 	 */
1728 	phys = np->squeue_ba;
1729 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1730 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1731 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1732 	}
1733 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1734 
1735 	/*
1736 	 *  Start at first entry.
1737 	 */
1738 	np->squeueput = 0;
1739 
1740 	/*
1741 	 *  Clear Done Queue
1742 	 */
1743 	phys = np->dqueue_ba;
1744 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1745 		np->dqueue[i]   = 0;
1746 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1747 	}
1748 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1749 
1750 	/*
1751 	 *  Start at first entry.
1752 	 */
1753 	np->dqueueget = 0;
1754 
1755 	/*
1756 	 *  Install patches in scripts.
1757 	 *  This also let point to first position the start
1758 	 *  and done queue pointers used from SCRIPTS.
1759 	 */
1760 	np->fw_patch(shost);
1761 
1762 	/*
1763 	 *  Wakeup all pending jobs.
1764 	 */
1765 	sym_flush_busy_queue(np, DID_RESET);
1766 
1767 	/*
1768 	 *  Init chip.
1769 	 */
1770 	OUTB(np, nc_istat,  0x00);			/*  Remove Reset, abort */
1771 	INB(np, nc_mbox1);
1772 	udelay(2000); /* The 895 needs time for the bus mode to settle */
1773 
1774 	OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1775 					/*  full arb., ena parity, par->ATN  */
1776 	OUTB(np, nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
1777 
1778 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
1779 
1780 	OUTB(np, nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
1781 	OUTW(np, nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
1782 	OUTB(np, nc_istat , SIGP	);		/*  Signal Process */
1783 	OUTB(np, nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
1784 	OUTB(np, nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
1785 
1786 	OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
1787 	OUTB(np, nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
1788 	OUTB(np, nc_ctest4, np->rv_ctest4);	/* Master parity checking */
1789 
1790 	/* Extended Sreq/Sack filtering not supported on the C10 */
1791 	if (np->features & FE_C10)
1792 		OUTB(np, nc_stest2, np->rv_stest2);
1793 	else
1794 		OUTB(np, nc_stest2, EXT|np->rv_stest2);
1795 
1796 	OUTB(np, nc_stest3, TE);			/* TolerANT enable */
1797 	OUTB(np, nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
1798 
1799 	/*
1800 	 *  For now, disable AIP generation on C1010-66.
1801 	 */
1802 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1803 		OUTB(np, nc_aipcntl1, DISAIP);
1804 
1805 	/*
1806 	 *  C10101 rev. 0 errata.
1807 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
1808 	 *  STEST1 register to disable SGE. We probably should do
1809 	 *  that from SCRIPTS for each selection/reselection, but
1810 	 *  I just don't want. :)
1811 	 */
1812 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1813 	    pdev->revision < 1)
1814 		OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1815 
1816 	/*
1817 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1818 	 *  Disable overlapped arbitration for some dual function devices,
1819 	 *  regardless revision id (kind of post-chip-design feature. ;-))
1820 	 */
1821 	if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1822 		OUTB(np, nc_ctest0, (1<<5));
1823 	else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1824 		np->rv_ccntl0 |= DPR;
1825 
1826 	/*
1827 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1828 	 *  and/or hardware phase mismatch, since only such chips
1829 	 *  seem to support those IO registers.
1830 	 */
1831 	if (np->features & (FE_DAC|FE_NOPM)) {
1832 		OUTB(np, nc_ccntl0, np->rv_ccntl0);
1833 		OUTB(np, nc_ccntl1, np->rv_ccntl1);
1834 	}
1835 
1836 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1837 	/*
1838 	 *  Set up scratch C and DRS IO registers to map the 32 bit
1839 	 *  DMA address range our data structures are located in.
1840 	 */
1841 	if (use_dac(np)) {
1842 		np->dmap_bah[0] = 0;	/* ??? */
1843 		OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1844 		OUTL(np, nc_drs, np->dmap_bah[0]);
1845 	}
1846 #endif
1847 
1848 	/*
1849 	 *  If phase mismatch handled by scripts (895A/896/1010),
1850 	 *  set PM jump addresses.
1851 	 */
1852 	if (np->features & FE_NOPM) {
1853 		OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1854 		OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1855 	}
1856 
1857 	/*
1858 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1859 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1860 	 */
1861 	if (np->features & FE_LED0)
1862 		OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1863 	else if (np->features & FE_LEDC)
1864 		OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1865 
1866 	/*
1867 	 *      enable ints
1868 	 */
1869 	OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1870 	OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1871 
1872 	/*
1873 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1874 	 *  Try to eat the spurious SBMC interrupt that may occur when
1875 	 *  we reset the chip but not the SCSI BUS (at initialization).
1876 	 */
1877 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1878 		OUTONW(np, nc_sien, SBMC);
1879 		if (reason == 0) {
1880 			INB(np, nc_mbox1);
1881 			mdelay(100);
1882 			INW(np, nc_sist);
1883 		}
1884 		np->scsi_mode = INB(np, nc_stest4) & SMODE;
1885 	}
1886 
1887 	/*
1888 	 *  Fill in target structure.
1889 	 *  Reinitialize usrsync.
1890 	 *  Reinitialize usrwide.
1891 	 *  Prepare sync negotiation according to actual SCSI bus mode.
1892 	 */
1893 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1894 		struct sym_tcb *tp = &np->target[i];
1895 
1896 		tp->to_reset  = 0;
1897 		tp->head.sval = 0;
1898 		tp->head.wval = np->rv_scntl3;
1899 		tp->head.uval = 0;
1900 	}
1901 
1902 	/*
1903 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
1904 	 *  and start script processor.
1905 	 *  We do the download preferently from the CPU.
1906 	 *  For platforms that may not support PCI memory mapping,
1907 	 *  we use simple SCRIPTS that performs MEMORY MOVEs.
1908 	 */
1909 	phys = SCRIPTA_BA(np, init);
1910 	if (np->ram_ba) {
1911 		if (sym_verbose >= 2)
1912 			printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1913 		memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1914 		if (np->features & FE_RAM8K) {
1915 			memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1916 			phys = scr_to_cpu(np->scr_ram_seg);
1917 			OUTL(np, nc_mmws, phys);
1918 			OUTL(np, nc_mmrs, phys);
1919 			OUTL(np, nc_sfs,  phys);
1920 			phys = SCRIPTB_BA(np, start64);
1921 		}
1922 	}
1923 
1924 	np->istat_sem = 0;
1925 
1926 	OUTL(np, nc_dsa, np->hcb_ba);
1927 	OUTL_DSP(np, phys);
1928 
1929 	/*
1930 	 *  Notify the XPT about the RESET condition.
1931 	 */
1932 	if (reason != 0)
1933 		sym_xpt_async_bus_reset(np);
1934 }
1935 
1936 /*
1937  *  Switch trans mode for current job and its target.
1938  */
1939 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1940 			 u_char per, u_char wide, u_char div, u_char fak)
1941 {
1942 	SYM_QUEHEAD *qp;
1943 	u_char sval, wval, uval;
1944 	struct sym_tcb *tp = &np->target[target];
1945 
1946 	assert(target == (INB(np, nc_sdid) & 0x0f));
1947 
1948 	sval = tp->head.sval;
1949 	wval = tp->head.wval;
1950 	uval = tp->head.uval;
1951 
1952 #if 0
1953 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1954 		sval, wval, uval, np->rv_scntl3);
1955 #endif
1956 	/*
1957 	 *  Set the offset.
1958 	 */
1959 	if (!(np->features & FE_C10))
1960 		sval = (sval & ~0x1f) | ofs;
1961 	else
1962 		sval = (sval & ~0x3f) | ofs;
1963 
1964 	/*
1965 	 *  Set the sync divisor and extra clock factor.
1966 	 */
1967 	if (ofs != 0) {
1968 		wval = (wval & ~0x70) | ((div+1) << 4);
1969 		if (!(np->features & FE_C10))
1970 			sval = (sval & ~0xe0) | (fak << 5);
1971 		else {
1972 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1973 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1974 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1975 		}
1976 	}
1977 
1978 	/*
1979 	 *  Set the bus width.
1980 	 */
1981 	wval = wval & ~EWS;
1982 	if (wide != 0)
1983 		wval |= EWS;
1984 
1985 	/*
1986 	 *  Set misc. ultra enable bits.
1987 	 */
1988 	if (np->features & FE_C10) {
1989 		uval = uval & ~(U3EN|AIPCKEN);
1990 		if (opts)	{
1991 			assert(np->features & FE_U3EN);
1992 			uval |= U3EN;
1993 		}
1994 	} else {
1995 		wval = wval & ~ULTRA;
1996 		if (per <= 12)	wval |= ULTRA;
1997 	}
1998 
1999 	/*
2000 	 *   Stop there if sync parameters are unchanged.
2001 	 */
2002 	if (tp->head.sval == sval &&
2003 	    tp->head.wval == wval &&
2004 	    tp->head.uval == uval)
2005 		return;
2006 	tp->head.sval = sval;
2007 	tp->head.wval = wval;
2008 	tp->head.uval = uval;
2009 
2010 	/*
2011 	 *  Disable extended Sreq/Sack filtering if per < 50.
2012 	 *  Not supported on the C1010.
2013 	 */
2014 	if (per < 50 && !(np->features & FE_C10))
2015 		OUTOFFB(np, nc_stest2, EXT);
2016 
2017 	/*
2018 	 *  set actual value and sync_status
2019 	 */
2020 	OUTB(np, nc_sxfer,  tp->head.sval);
2021 	OUTB(np, nc_scntl3, tp->head.wval);
2022 
2023 	if (np->features & FE_C10) {
2024 		OUTB(np, nc_scntl4, tp->head.uval);
2025 	}
2026 
2027 	/*
2028 	 *  patch ALL busy ccbs of this target.
2029 	 */
2030 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2031 		struct sym_ccb *cp;
2032 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2033 		if (cp->target != target)
2034 			continue;
2035 		cp->phys.select.sel_scntl3 = tp->head.wval;
2036 		cp->phys.select.sel_sxfer  = tp->head.sval;
2037 		if (np->features & FE_C10) {
2038 			cp->phys.select.sel_scntl4 = tp->head.uval;
2039 		}
2040 	}
2041 }
2042 
2043 /*
2044  *  We received a WDTR.
2045  *  Let everything be aware of the changes.
2046  */
2047 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2048 {
2049 	struct sym_tcb *tp = &np->target[target];
2050 	struct scsi_target *starget = tp->starget;
2051 
2052 	if (spi_width(starget) == wide)
2053 		return;
2054 
2055 	sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2056 
2057 	tp->tgoal.width = wide;
2058 	spi_offset(starget) = 0;
2059 	spi_period(starget) = 0;
2060 	spi_width(starget) = wide;
2061 	spi_iu(starget) = 0;
2062 	spi_dt(starget) = 0;
2063 	spi_qas(starget) = 0;
2064 
2065 	if (sym_verbose >= 3)
2066 		spi_display_xfer_agreement(starget);
2067 }
2068 
2069 /*
2070  *  We received a SDTR.
2071  *  Let everything be aware of the changes.
2072  */
2073 static void
2074 sym_setsync(struct sym_hcb *np, int target,
2075             u_char ofs, u_char per, u_char div, u_char fak)
2076 {
2077 	struct sym_tcb *tp = &np->target[target];
2078 	struct scsi_target *starget = tp->starget;
2079 	u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2080 
2081 	sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2082 
2083 	spi_period(starget) = per;
2084 	spi_offset(starget) = ofs;
2085 	spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2086 
2087 	if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2088 		tp->tgoal.period = per;
2089 		tp->tgoal.offset = ofs;
2090 		tp->tgoal.check_nego = 0;
2091 	}
2092 
2093 	spi_display_xfer_agreement(starget);
2094 }
2095 
2096 /*
2097  *  We received a PPR.
2098  *  Let everything be aware of the changes.
2099  */
2100 static void
2101 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2102              u_char per, u_char wide, u_char div, u_char fak)
2103 {
2104 	struct sym_tcb *tp = &np->target[target];
2105 	struct scsi_target *starget = tp->starget;
2106 
2107 	sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2108 
2109 	spi_width(starget) = tp->tgoal.width = wide;
2110 	spi_period(starget) = tp->tgoal.period = per;
2111 	spi_offset(starget) = tp->tgoal.offset = ofs;
2112 	spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2113 	spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2114 	spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2115 	tp->tgoal.check_nego = 0;
2116 
2117 	spi_display_xfer_agreement(starget);
2118 }
2119 
2120 /*
2121  *  generic recovery from scsi interrupt
2122  *
2123  *  The doc says that when the chip gets an SCSI interrupt,
2124  *  it tries to stop in an orderly fashion, by completing
2125  *  an instruction fetch that had started or by flushing
2126  *  the DMA fifo for a write to memory that was executing.
2127  *  Such a fashion is not enough to know if the instruction
2128  *  that was just before the current DSP value has been
2129  *  executed or not.
2130  *
2131  *  There are some small SCRIPTS sections that deal with
2132  *  the start queue and the done queue that may break any
2133  *  assomption from the C code if we are interrupted
2134  *  inside, so we reset if this happens. Btw, since these
2135  *  SCRIPTS sections are executed while the SCRIPTS hasn't
2136  *  started SCSI operations, it is very unlikely to happen.
2137  *
2138  *  All the driver data structures are supposed to be
2139  *  allocated from the same 4 GB memory window, so there
2140  *  is a 1 to 1 relationship between DSA and driver data
2141  *  structures. Since we are careful :) to invalidate the
2142  *  DSA when we complete a command or when the SCRIPTS
2143  *  pushes a DSA into a queue, we can trust it when it
2144  *  points to a CCB.
2145  */
2146 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2147 {
2148 	u32	dsp	= INL(np, nc_dsp);
2149 	u32	dsa	= INL(np, nc_dsa);
2150 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2151 
2152 	/*
2153 	 *  If we haven't been interrupted inside the SCRIPTS
2154 	 *  critical pathes, we can safely restart the SCRIPTS
2155 	 *  and trust the DSA value if it matches a CCB.
2156 	 */
2157 	if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2158 	       dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2159 	    (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2160 	       dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2161 	    (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2162 	       dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2163 	    (!(dsp > SCRIPTA_BA(np, done) &&
2164 	       dsp < SCRIPTA_BA(np, done_end) + 1))) {
2165 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2166 		OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2167 		/*
2168 		 *  If we have a CCB, let the SCRIPTS call us back for
2169 		 *  the handling of the error with SCRATCHA filled with
2170 		 *  STARTPOS. This way, we will be able to freeze the
2171 		 *  device queue and requeue awaiting IOs.
2172 		 */
2173 		if (cp) {
2174 			cp->host_status = hsts;
2175 			OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2176 		}
2177 		/*
2178 		 *  Otherwise just restart the SCRIPTS.
2179 		 */
2180 		else {
2181 			OUTL(np, nc_dsa, 0xffffff);
2182 			OUTL_DSP(np, SCRIPTA_BA(np, start));
2183 		}
2184 	}
2185 	else
2186 		goto reset_all;
2187 
2188 	return;
2189 
2190 reset_all:
2191 	sym_start_reset(np);
2192 }
2193 
2194 /*
2195  *  chip exception handler for selection timeout
2196  */
2197 static void sym_int_sto (struct sym_hcb *np)
2198 {
2199 	u32 dsp	= INL(np, nc_dsp);
2200 
2201 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2202 
2203 	if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2204 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2205 	else
2206 		sym_start_reset(np);
2207 }
2208 
2209 /*
2210  *  chip exception handler for unexpected disconnect
2211  */
2212 static void sym_int_udc (struct sym_hcb *np)
2213 {
2214 	printf ("%s: unexpected disconnect\n", sym_name(np));
2215 	sym_recover_scsi_int(np, HS_UNEXPECTED);
2216 }
2217 
2218 /*
2219  *  chip exception handler for SCSI bus mode change
2220  *
2221  *  spi2-r12 11.2.3 says a transceiver mode change must
2222  *  generate a reset event and a device that detects a reset
2223  *  event shall initiate a hard reset. It says also that a
2224  *  device that detects a mode change shall set data transfer
2225  *  mode to eight bit asynchronous, etc...
2226  *  So, just reinitializing all except chip should be enough.
2227  */
2228 static void sym_int_sbmc(struct Scsi_Host *shost)
2229 {
2230 	struct sym_hcb *np = sym_get_hcb(shost);
2231 	u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2232 
2233 	/*
2234 	 *  Notify user.
2235 	 */
2236 	printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2237 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2238 
2239 	/*
2240 	 *  Should suspend command processing for a few seconds and
2241 	 *  reinitialize all except the chip.
2242 	 */
2243 	sym_start_up(shost, 2);
2244 }
2245 
2246 /*
2247  *  chip exception handler for SCSI parity error.
2248  *
2249  *  When the chip detects a SCSI parity error and is
2250  *  currently executing a (CH)MOV instruction, it does
2251  *  not interrupt immediately, but tries to finish the
2252  *  transfer of the current scatter entry before
2253  *  interrupting. The following situations may occur:
2254  *
2255  *  - The complete scatter entry has been transferred
2256  *    without the device having changed phase.
2257  *    The chip will then interrupt with the DSP pointing
2258  *    to the instruction that follows the MOV.
2259  *
2260  *  - A phase mismatch occurs before the MOV finished
2261  *    and phase errors are to be handled by the C code.
2262  *    The chip will then interrupt with both PAR and MA
2263  *    conditions set.
2264  *
2265  *  - A phase mismatch occurs before the MOV finished and
2266  *    phase errors are to be handled by SCRIPTS.
2267  *    The chip will load the DSP with the phase mismatch
2268  *    JUMP address and interrupt the host processor.
2269  */
2270 static void sym_int_par (struct sym_hcb *np, u_short sist)
2271 {
2272 	u_char	hsts	= INB(np, HS_PRT);
2273 	u32	dsp	= INL(np, nc_dsp);
2274 	u32	dbc	= INL(np, nc_dbc);
2275 	u32	dsa	= INL(np, nc_dsa);
2276 	u_char	sbcl	= INB(np, nc_sbcl);
2277 	u_char	cmd	= dbc >> 24;
2278 	int phase	= cmd & 7;
2279 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2280 
2281 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2282 		sym_name(np), hsts, dbc, sbcl);
2283 
2284 	/*
2285 	 *  Check that the chip is connected to the SCSI BUS.
2286 	 */
2287 	if (!(INB(np, nc_scntl1) & ISCON)) {
2288 		sym_recover_scsi_int(np, HS_UNEXPECTED);
2289 		return;
2290 	}
2291 
2292 	/*
2293 	 *  If the nexus is not clearly identified, reset the bus.
2294 	 *  We will try to do better later.
2295 	 */
2296 	if (!cp)
2297 		goto reset_all;
2298 
2299 	/*
2300 	 *  Check instruction was a MOV, direction was INPUT and
2301 	 *  ATN is asserted.
2302 	 */
2303 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2304 		goto reset_all;
2305 
2306 	/*
2307 	 *  Keep track of the parity error.
2308 	 */
2309 	OUTONB(np, HF_PRT, HF_EXT_ERR);
2310 	cp->xerr_status |= XE_PARITY_ERR;
2311 
2312 	/*
2313 	 *  Prepare the message to send to the device.
2314 	 */
2315 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2316 
2317 	/*
2318 	 *  If the old phase was DATA IN phase, we have to deal with
2319 	 *  the 3 situations described above.
2320 	 *  For other input phases (MSG IN and STATUS), the device
2321 	 *  must resend the whole thing that failed parity checking
2322 	 *  or signal error. So, jumping to dispatcher should be OK.
2323 	 */
2324 	if (phase == 1 || phase == 5) {
2325 		/* Phase mismatch handled by SCRIPTS */
2326 		if (dsp == SCRIPTB_BA(np, pm_handle))
2327 			OUTL_DSP(np, dsp);
2328 		/* Phase mismatch handled by the C code */
2329 		else if (sist & MA)
2330 			sym_int_ma (np);
2331 		/* No phase mismatch occurred */
2332 		else {
2333 			sym_set_script_dp (np, cp, dsp);
2334 			OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2335 		}
2336 	}
2337 	else if (phase == 7)	/* We definitely cannot handle parity errors */
2338 #if 1				/* in message-in phase due to the relection  */
2339 		goto reset_all; /* path and various message anticipations.   */
2340 #else
2341 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2342 #endif
2343 	else
2344 		OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2345 	return;
2346 
2347 reset_all:
2348 	sym_start_reset(np);
2349 	return;
2350 }
2351 
2352 /*
2353  *  chip exception handler for phase errors.
2354  *
2355  *  We have to construct a new transfer descriptor,
2356  *  to transfer the rest of the current block.
2357  */
2358 static void sym_int_ma (struct sym_hcb *np)
2359 {
2360 	u32	dbc;
2361 	u32	rest;
2362 	u32	dsp;
2363 	u32	dsa;
2364 	u32	nxtdsp;
2365 	u32	*vdsp;
2366 	u32	oadr, olen;
2367 	u32	*tblp;
2368         u32	newcmd;
2369 	u_int	delta;
2370 	u_char	cmd;
2371 	u_char	hflags, hflags0;
2372 	struct	sym_pmc *pm;
2373 	struct sym_ccb *cp;
2374 
2375 	dsp	= INL(np, nc_dsp);
2376 	dbc	= INL(np, nc_dbc);
2377 	dsa	= INL(np, nc_dsa);
2378 
2379 	cmd	= dbc >> 24;
2380 	rest	= dbc & 0xffffff;
2381 	delta	= 0;
2382 
2383 	/*
2384 	 *  locate matching cp if any.
2385 	 */
2386 	cp = sym_ccb_from_dsa(np, dsa);
2387 
2388 	/*
2389 	 *  Donnot take into account dma fifo and various buffers in
2390 	 *  INPUT phase since the chip flushes everything before
2391 	 *  raising the MA interrupt for interrupted INPUT phases.
2392 	 *  For DATA IN phase, we will check for the SWIDE later.
2393 	 */
2394 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2395 		u_char ss0, ss2;
2396 
2397 		if (np->features & FE_DFBC)
2398 			delta = INW(np, nc_dfbc);
2399 		else {
2400 			u32 dfifo;
2401 
2402 			/*
2403 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2404 			 */
2405 			dfifo = INL(np, nc_dfifo);
2406 
2407 			/*
2408 			 *  Calculate remaining bytes in DMA fifo.
2409 			 *  (CTEST5 = dfifo >> 16)
2410 			 */
2411 			if (dfifo & (DFS << 16))
2412 				delta = ((((dfifo >> 8) & 0x300) |
2413 				          (dfifo & 0xff)) - rest) & 0x3ff;
2414 			else
2415 				delta = ((dfifo & 0xff) - rest) & 0x7f;
2416 		}
2417 
2418 		/*
2419 		 *  The data in the dma fifo has not been transfered to
2420 		 *  the target -> add the amount to the rest
2421 		 *  and clear the data.
2422 		 *  Check the sstat2 register in case of wide transfer.
2423 		 */
2424 		rest += delta;
2425 		ss0  = INB(np, nc_sstat0);
2426 		if (ss0 & OLF) rest++;
2427 		if (!(np->features & FE_C10))
2428 			if (ss0 & ORF) rest++;
2429 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2430 			ss2 = INB(np, nc_sstat2);
2431 			if (ss2 & OLF1) rest++;
2432 			if (!(np->features & FE_C10))
2433 				if (ss2 & ORF1) rest++;
2434 		}
2435 
2436 		/*
2437 		 *  Clear fifos.
2438 		 */
2439 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
2440 		OUTB(np, nc_stest3, TE|CSF);		/* scsi fifo */
2441 	}
2442 
2443 	/*
2444 	 *  log the information
2445 	 */
2446 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2447 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2448 			(unsigned) rest, (unsigned) delta);
2449 
2450 	/*
2451 	 *  try to find the interrupted script command,
2452 	 *  and the address at which to continue.
2453 	 */
2454 	vdsp	= NULL;
2455 	nxtdsp	= 0;
2456 	if	(dsp >  np->scripta_ba &&
2457 		 dsp <= np->scripta_ba + np->scripta_sz) {
2458 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2459 		nxtdsp = dsp;
2460 	}
2461 	else if	(dsp >  np->scriptb_ba &&
2462 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
2463 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2464 		nxtdsp = dsp;
2465 	}
2466 
2467 	/*
2468 	 *  log the information
2469 	 */
2470 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2471 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2472 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2473 	}
2474 
2475 	if (!vdsp) {
2476 		printf ("%s: interrupted SCRIPT address not found.\n",
2477 			sym_name (np));
2478 		goto reset_all;
2479 	}
2480 
2481 	if (!cp) {
2482 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2483 			sym_name (np));
2484 		goto reset_all;
2485 	}
2486 
2487 	/*
2488 	 *  get old startaddress and old length.
2489 	 */
2490 	oadr = scr_to_cpu(vdsp[1]);
2491 
2492 	if (cmd & 0x10) {	/* Table indirect */
2493 		tblp = (u32 *) ((char*) &cp->phys + oadr);
2494 		olen = scr_to_cpu(tblp[0]);
2495 		oadr = scr_to_cpu(tblp[1]);
2496 	} else {
2497 		tblp = (u32 *) 0;
2498 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2499 	}
2500 
2501 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2502 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2503 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2504 			tblp,
2505 			(unsigned) olen,
2506 			(unsigned) oadr);
2507 	}
2508 
2509 	/*
2510 	 *  check cmd against assumed interrupted script command.
2511 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
2512 	 *  the phase.
2513 	 */
2514 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2515 		sym_print_addr(cp->cmd,
2516 			"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2517 			cmd, scr_to_cpu(vdsp[0]) >> 24);
2518 
2519 		goto reset_all;
2520 	}
2521 
2522 	/*
2523 	 *  if old phase not dataphase, leave here.
2524 	 */
2525 	if (cmd & 2) {
2526 		sym_print_addr(cp->cmd,
2527 			"phase change %x-%x %d@%08x resid=%d.\n",
2528 			cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2529 			(unsigned)oadr, (unsigned)rest);
2530 		goto unexpected_phase;
2531 	}
2532 
2533 	/*
2534 	 *  Choose the correct PM save area.
2535 	 *
2536 	 *  Look at the PM_SAVE SCRIPT if you want to understand
2537 	 *  this stuff. The equivalent code is implemented in
2538 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
2539 	 *  handle PM from the SCRIPTS processor.
2540 	 */
2541 	hflags0 = INB(np, HF_PRT);
2542 	hflags = hflags0;
2543 
2544 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2545 		if (hflags & HF_IN_PM0)
2546 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2547 		else if	(hflags & HF_IN_PM1)
2548 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2549 
2550 		if (hflags & HF_DP_SAVED)
2551 			hflags ^= HF_ACT_PM;
2552 	}
2553 
2554 	if (!(hflags & HF_ACT_PM)) {
2555 		pm = &cp->phys.pm0;
2556 		newcmd = SCRIPTA_BA(np, pm0_data);
2557 	}
2558 	else {
2559 		pm = &cp->phys.pm1;
2560 		newcmd = SCRIPTA_BA(np, pm1_data);
2561 	}
2562 
2563 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2564 	if (hflags != hflags0)
2565 		OUTB(np, HF_PRT, hflags);
2566 
2567 	/*
2568 	 *  fillin the phase mismatch context
2569 	 */
2570 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2571 	pm->sg.size = cpu_to_scr(rest);
2572 	pm->ret     = cpu_to_scr(nxtdsp);
2573 
2574 	/*
2575 	 *  If we have a SWIDE,
2576 	 *  - prepare the address to write the SWIDE from SCRIPTS,
2577 	 *  - compute the SCRIPTS address to restart from,
2578 	 *  - move current data pointer context by one byte.
2579 	 */
2580 	nxtdsp = SCRIPTA_BA(np, dispatch);
2581 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2582 	    (INB(np, nc_scntl2) & WSR)) {
2583 		u32 tmp;
2584 
2585 		/*
2586 		 *  Set up the table indirect for the MOVE
2587 		 *  of the residual byte and adjust the data
2588 		 *  pointer context.
2589 		 */
2590 		tmp = scr_to_cpu(pm->sg.addr);
2591 		cp->phys.wresid.addr = cpu_to_scr(tmp);
2592 		pm->sg.addr = cpu_to_scr(tmp + 1);
2593 		tmp = scr_to_cpu(pm->sg.size);
2594 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2595 		pm->sg.size = cpu_to_scr(tmp - 1);
2596 
2597 		/*
2598 		 *  If only the residual byte is to be moved,
2599 		 *  no PM context is needed.
2600 		 */
2601 		if ((tmp&0xffffff) == 1)
2602 			newcmd = pm->ret;
2603 
2604 		/*
2605 		 *  Prepare the address of SCRIPTS that will
2606 		 *  move the residual byte to memory.
2607 		 */
2608 		nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2609 	}
2610 
2611 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2612 		sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2613 			hflags0, hflags, newcmd,
2614 			(unsigned)scr_to_cpu(pm->sg.addr),
2615 			(unsigned)scr_to_cpu(pm->sg.size),
2616 			(unsigned)scr_to_cpu(pm->ret));
2617 	}
2618 
2619 	/*
2620 	 *  Restart the SCRIPTS processor.
2621 	 */
2622 	sym_set_script_dp (np, cp, newcmd);
2623 	OUTL_DSP(np, nxtdsp);
2624 	return;
2625 
2626 	/*
2627 	 *  Unexpected phase changes that occurs when the current phase
2628 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
2629 	 *  Such event may only happen when the SCRIPTS is using a
2630 	 *  multibyte SCSI MOVE.
2631 	 *
2632 	 *  Phase change		Some possible cause
2633 	 *
2634 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
2635 	 *  COMMAND  --> STATUS	Bad command or refused by target.
2636 	 *  MSG OUT  --> MSG IN     Message rejected by target.
2637 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
2638 	 *  			negotiation messages.
2639 	 *
2640 	 *  The code below does not care of the new phase and so
2641 	 *  trusts the target. Why to annoy it ?
2642 	 *  If the interrupted phase is COMMAND phase, we restart at
2643 	 *  dispatcher.
2644 	 *  If a target does not get all the messages after selection,
2645 	 *  the code assumes blindly that the target discards extended
2646 	 *  messages and clears the negotiation status.
2647 	 *  If the target does not want all our response to negotiation,
2648 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2649 	 *  bloat for such a should_not_happen situation).
2650 	 *  In all other situation, we reset the BUS.
2651 	 *  Are these assumptions reasonnable ? (Wait and see ...)
2652 	 */
2653 unexpected_phase:
2654 	dsp -= 8;
2655 	nxtdsp = 0;
2656 
2657 	switch (cmd & 7) {
2658 	case 2:	/* COMMAND phase */
2659 		nxtdsp = SCRIPTA_BA(np, dispatch);
2660 		break;
2661 #if 0
2662 	case 3:	/* STATUS  phase */
2663 		nxtdsp = SCRIPTA_BA(np, dispatch);
2664 		break;
2665 #endif
2666 	case 6:	/* MSG OUT phase */
2667 		/*
2668 		 *  If the device may want to use untagged when we want
2669 		 *  tagged, we prepare an IDENTIFY without disc. granted,
2670 		 *  since we will not be able to handle reselect.
2671 		 *  Otherwise, we just don't care.
2672 		 */
2673 		if	(dsp == SCRIPTA_BA(np, send_ident)) {
2674 			if (cp->tag != NO_TAG && olen - rest <= 3) {
2675 				cp->host_status = HS_BUSY;
2676 				np->msgout[0] = IDENTIFY(0, cp->lun);
2677 				nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2678 			}
2679 			else
2680 				nxtdsp = SCRIPTB_BA(np, ident_break);
2681 		}
2682 		else if	(dsp == SCRIPTB_BA(np, send_wdtr) ||
2683 			 dsp == SCRIPTB_BA(np, send_sdtr) ||
2684 			 dsp == SCRIPTB_BA(np, send_ppr)) {
2685 			nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2686 			if (dsp == SCRIPTB_BA(np, send_ppr)) {
2687 				struct scsi_device *dev = cp->cmd->device;
2688 				dev->ppr = 0;
2689 			}
2690 		}
2691 		break;
2692 #if 0
2693 	case 7:	/* MSG IN  phase */
2694 		nxtdsp = SCRIPTA_BA(np, clrack);
2695 		break;
2696 #endif
2697 	}
2698 
2699 	if (nxtdsp) {
2700 		OUTL_DSP(np, nxtdsp);
2701 		return;
2702 	}
2703 
2704 reset_all:
2705 	sym_start_reset(np);
2706 }
2707 
2708 /*
2709  *  chip interrupt handler
2710  *
2711  *  In normal situations, interrupt conditions occur one at
2712  *  a time. But when something bad happens on the SCSI BUS,
2713  *  the chip may raise several interrupt flags before
2714  *  stopping and interrupting the CPU. The additionnal
2715  *  interrupt flags are stacked in some extra registers
2716  *  after the SIP and/or DIP flag has been raised in the
2717  *  ISTAT. After the CPU has read the interrupt condition
2718  *  flag from SIST or DSTAT, the chip unstacks the other
2719  *  interrupt flags and sets the corresponding bits in
2720  *  SIST or DSTAT. Since the chip starts stacking once the
2721  *  SIP or DIP flag is set, there is a small window of time
2722  *  where the stacking does not occur.
2723  *
2724  *  Typically, multiple interrupt conditions may happen in
2725  *  the following situations:
2726  *
2727  *  - SCSI parity error + Phase mismatch  (PAR|MA)
2728  *    When an parity error is detected in input phase
2729  *    and the device switches to msg-in phase inside a
2730  *    block MOV.
2731  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2732  *    When a stupid device does not want to handle the
2733  *    recovery of an SCSI parity error.
2734  *  - Some combinations of STO, PAR, UDC, ...
2735  *    When using non compliant SCSI stuff, when user is
2736  *    doing non compliant hot tampering on the BUS, when
2737  *    something really bad happens to a device, etc ...
2738  *
2739  *  The heuristic suggested by SYMBIOS to handle
2740  *  multiple interrupts is to try unstacking all
2741  *  interrupts conditions and to handle them on some
2742  *  priority based on error severity.
2743  *  This will work when the unstacking has been
2744  *  successful, but we cannot be 100 % sure of that,
2745  *  since the CPU may have been faster to unstack than
2746  *  the chip is able to stack. Hmmm ... But it seems that
2747  *  such a situation is very unlikely to happen.
2748  *
2749  *  If this happen, for example STO caught by the CPU
2750  *  then UDC happenning before the CPU have restarted
2751  *  the SCRIPTS, the driver may wrongly complete the
2752  *  same command on UDC, since the SCRIPTS didn't restart
2753  *  and the DSA still points to the same command.
2754  *  We avoid this situation by setting the DSA to an
2755  *  invalid value when the CCB is completed and before
2756  *  restarting the SCRIPTS.
2757  *
2758  *  Another issue is that we need some section of our
2759  *  recovery procedures to be somehow uninterruptible but
2760  *  the SCRIPTS processor does not provides such a
2761  *  feature. For this reason, we handle recovery preferently
2762  *  from the C code and check against some SCRIPTS critical
2763  *  sections from the C code.
2764  *
2765  *  Hopefully, the interrupt handling of the driver is now
2766  *  able to resist to weird BUS error conditions, but donnot
2767  *  ask me for any guarantee that it will never fail. :-)
2768  *  Use at your own decision and risk.
2769  */
2770 
2771 irqreturn_t sym_interrupt(struct Scsi_Host *shost)
2772 {
2773 	struct sym_data *sym_data = shost_priv(shost);
2774 	struct sym_hcb *np = sym_data->ncb;
2775 	struct pci_dev *pdev = sym_data->pdev;
2776 	u_char	istat, istatc;
2777 	u_char	dstat;
2778 	u_short	sist;
2779 
2780 	/*
2781 	 *  interrupt on the fly ?
2782 	 *  (SCRIPTS may still be running)
2783 	 *
2784 	 *  A `dummy read' is needed to ensure that the
2785 	 *  clear of the INTF flag reaches the device
2786 	 *  and that posted writes are flushed to memory
2787 	 *  before the scanning of the DONE queue.
2788 	 *  Note that SCRIPTS also (dummy) read to memory
2789 	 *  prior to deliver the INTF interrupt condition.
2790 	 */
2791 	istat = INB(np, nc_istat);
2792 	if (istat & INTF) {
2793 		OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2794 		istat |= INB(np, nc_istat);		/* DUMMY READ */
2795 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2796 		sym_wakeup_done(np);
2797 	}
2798 
2799 	if (!(istat & (SIP|DIP)))
2800 		return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
2801 
2802 #if 0	/* We should never get this one */
2803 	if (istat & CABRT)
2804 		OUTB(np, nc_istat, CABRT);
2805 #endif
2806 
2807 	/*
2808 	 *  PAR and MA interrupts may occur at the same time,
2809 	 *  and we need to know of both in order to handle
2810 	 *  this situation properly. We try to unstack SCSI
2811 	 *  interrupts for that reason. BTW, I dislike a LOT
2812 	 *  such a loop inside the interrupt routine.
2813 	 *  Even if DMA interrupt stacking is very unlikely to
2814 	 *  happen, we also try unstacking these ones, since
2815 	 *  this has no performance impact.
2816 	 */
2817 	sist	= 0;
2818 	dstat	= 0;
2819 	istatc	= istat;
2820 	do {
2821 		if (istatc & SIP)
2822 			sist  |= INW(np, nc_sist);
2823 		if (istatc & DIP)
2824 			dstat |= INB(np, nc_dstat);
2825 		istatc = INB(np, nc_istat);
2826 		istat |= istatc;
2827 
2828 		/* Prevent deadlock waiting on a condition that may
2829 		 * never clear. */
2830 		if (unlikely(sist == 0xffff && dstat == 0xff)) {
2831 			if (pci_channel_offline(pdev))
2832 				return IRQ_NONE;
2833 		}
2834 	} while (istatc & (SIP|DIP));
2835 
2836 	if (DEBUG_FLAGS & DEBUG_TINY)
2837 		printf ("<%d|%x:%x|%x:%x>",
2838 			(int)INB(np, nc_scr0),
2839 			dstat,sist,
2840 			(unsigned)INL(np, nc_dsp),
2841 			(unsigned)INL(np, nc_dbc));
2842 	/*
2843 	 *  On paper, a memory read barrier may be needed here to
2844 	 *  prevent out of order LOADs by the CPU from having
2845 	 *  prefetched stale data prior to DMA having occurred.
2846 	 *  And since we are paranoid ... :)
2847 	 */
2848 	MEMORY_READ_BARRIER();
2849 
2850 	/*
2851 	 *  First, interrupts we want to service cleanly.
2852 	 *
2853 	 *  Phase mismatch (MA) is the most frequent interrupt
2854 	 *  for chip earlier than the 896 and so we have to service
2855 	 *  it as quickly as possible.
2856 	 *  A SCSI parity error (PAR) may be combined with a phase
2857 	 *  mismatch condition (MA).
2858 	 *  Programmed interrupts (SIR) are used to call the C code
2859 	 *  from SCRIPTS.
2860 	 *  The single step interrupt (SSI) is not used in this
2861 	 *  driver.
2862 	 */
2863 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2864 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2865 		if	(sist & PAR)	sym_int_par (np, sist);
2866 		else if (sist & MA)	sym_int_ma (np);
2867 		else if (dstat & SIR)	sym_int_sir(np);
2868 		else if (dstat & SSI)	OUTONB_STD();
2869 		else			goto unknown_int;
2870 		return IRQ_HANDLED;
2871 	}
2872 
2873 	/*
2874 	 *  Now, interrupts that donnot happen in normal
2875 	 *  situations and that we may need to recover from.
2876 	 *
2877 	 *  On SCSI RESET (RST), we reset everything.
2878 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
2879 	 *  active CCBs with RESET status, prepare all devices
2880 	 *  for negotiating again and restart the SCRIPTS.
2881 	 *  On STO and UDC, we complete the CCB with the corres-
2882 	 *  ponding status and restart the SCRIPTS.
2883 	 */
2884 	if (sist & RST) {
2885 		printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2886 		sym_start_up(shost, 1);
2887 		return IRQ_HANDLED;
2888 	}
2889 
2890 	OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
2891 	OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2892 
2893 	if (!(sist  & (GEN|HTH|SGE)) &&
2894 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2895 		if	(sist & SBMC)	sym_int_sbmc(shost);
2896 		else if (sist & STO)	sym_int_sto (np);
2897 		else if (sist & UDC)	sym_int_udc (np);
2898 		else			goto unknown_int;
2899 		return IRQ_HANDLED;
2900 	}
2901 
2902 	/*
2903 	 *  Now, interrupts we are not able to recover cleanly.
2904 	 *
2905 	 *  Log message for hard errors.
2906 	 *  Reset everything.
2907 	 */
2908 
2909 	sym_log_hard_error(shost, sist, dstat);
2910 
2911 	if ((sist & (GEN|HTH|SGE)) ||
2912 		(dstat & (MDPE|BF|ABRT|IID))) {
2913 		sym_start_reset(np);
2914 		return IRQ_HANDLED;
2915 	}
2916 
2917 unknown_int:
2918 	/*
2919 	 *  We just miss the cause of the interrupt. :(
2920 	 *  Print a message. The timeout will do the real work.
2921 	 */
2922 	printf(	"%s: unknown interrupt(s) ignored, "
2923 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2924 		sym_name(np), istat, dstat, sist);
2925 	return IRQ_NONE;
2926 }
2927 
2928 /*
2929  *  Dequeue from the START queue all CCBs that match
2930  *  a given target/lun/task condition (-1 means all),
2931  *  and move them from the BUSY queue to the COMP queue
2932  *  with DID_SOFT_ERROR status condition.
2933  *  This function is used during error handling/recovery.
2934  *  It is called with SCRIPTS not running.
2935  */
2936 static int
2937 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2938 {
2939 	int j;
2940 	struct sym_ccb *cp;
2941 
2942 	/*
2943 	 *  Make sure the starting index is within range.
2944 	 */
2945 	assert((i >= 0) && (i < 2*MAX_QUEUE));
2946 
2947 	/*
2948 	 *  Walk until end of START queue and dequeue every job
2949 	 *  that matches the target/lun/task condition.
2950 	 */
2951 	j = i;
2952 	while (i != np->squeueput) {
2953 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2954 		assert(cp);
2955 #ifdef SYM_CONF_IARB_SUPPORT
2956 		/* Forget hints for IARB, they may be no longer relevant */
2957 		cp->host_flags &= ~HF_HINT_IARB;
2958 #endif
2959 		if ((target == -1 || cp->target == target) &&
2960 		    (lun    == -1 || cp->lun    == lun)    &&
2961 		    (task   == -1 || cp->tag    == task)) {
2962 			sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2963 			sym_remque(&cp->link_ccbq);
2964 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2965 		}
2966 		else {
2967 			if (i != j)
2968 				np->squeue[j] = np->squeue[i];
2969 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
2970 		}
2971 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
2972 	}
2973 	if (i != j)		/* Copy back the idle task if needed */
2974 		np->squeue[j] = np->squeue[i];
2975 	np->squeueput = j;	/* Update our current start queue pointer */
2976 
2977 	return (i - j) / 2;
2978 }
2979 
2980 /*
2981  *  chip handler for bad SCSI status condition
2982  *
2983  *  In case of bad SCSI status, we unqueue all the tasks
2984  *  currently queued to the controller but not yet started
2985  *  and then restart the SCRIPTS processor immediately.
2986  *
2987  *  QUEUE FULL and BUSY conditions are handled the same way.
2988  *  Basically all the not yet started tasks are requeued in
2989  *  device queue and the queue is frozen until a completion.
2990  *
2991  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
2992  *  the CCB of the failed command to prepare a REQUEST SENSE
2993  *  SCSI command and queue it to the controller queue.
2994  *
2995  *  SCRATCHA is assumed to have been loaded with STARTPOS
2996  *  before the SCRIPTS called the C code.
2997  */
2998 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
2999 {
3000 	u32		startp;
3001 	u_char		s_status = cp->ssss_status;
3002 	u_char		h_flags  = cp->host_flags;
3003 	int		msglen;
3004 	int		i;
3005 
3006 	/*
3007 	 *  Compute the index of the next job to start from SCRIPTS.
3008 	 */
3009 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3010 
3011 	/*
3012 	 *  The last CCB queued used for IARB hint may be
3013 	 *  no longer relevant. Forget it.
3014 	 */
3015 #ifdef SYM_CONF_IARB_SUPPORT
3016 	if (np->last_cp)
3017 		np->last_cp = 0;
3018 #endif
3019 
3020 	/*
3021 	 *  Now deal with the SCSI status.
3022 	 */
3023 	switch(s_status) {
3024 	case S_BUSY:
3025 	case S_QUEUE_FULL:
3026 		if (sym_verbose >= 2) {
3027 			sym_print_addr(cp->cmd, "%s\n",
3028 			        s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3029 		}
3030 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
3031 		sym_complete_error (np, cp);
3032 		break;
3033 	case S_TERMINATED:
3034 	case S_CHECK_COND:
3035 		/*
3036 		 *  If we get an SCSI error when requesting sense, give up.
3037 		 */
3038 		if (h_flags & HF_SENSE) {
3039 			sym_complete_error (np, cp);
3040 			break;
3041 		}
3042 
3043 		/*
3044 		 *  Dequeue all queued CCBs for that device not yet started,
3045 		 *  and restart the SCRIPTS processor immediately.
3046 		 */
3047 		sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3048 		OUTL_DSP(np, SCRIPTA_BA(np, start));
3049 
3050  		/*
3051 		 *  Save some info of the actual IO.
3052 		 *  Compute the data residual.
3053 		 */
3054 		cp->sv_scsi_status = cp->ssss_status;
3055 		cp->sv_xerr_status = cp->xerr_status;
3056 		cp->sv_resid = sym_compute_residual(np, cp);
3057 
3058 		/*
3059 		 *  Prepare all needed data structures for
3060 		 *  requesting sense data.
3061 		 */
3062 
3063 		cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3064 		msglen = 1;
3065 
3066 		/*
3067 		 *  If we are currently using anything different from
3068 		 *  async. 8 bit data transfers with that target,
3069 		 *  start a negotiation, since the device may want
3070 		 *  to report us a UNIT ATTENTION condition due to
3071 		 *  a cause we currently ignore, and we donnot want
3072 		 *  to be stuck with WIDE and/or SYNC data transfer.
3073 		 *
3074 		 *  cp->nego_status is filled by sym_prepare_nego().
3075 		 */
3076 		cp->nego_status = 0;
3077 		msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3078 		/*
3079 		 *  Message table indirect structure.
3080 		 */
3081 		cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg2);
3082 		cp->phys.smsg.size	= cpu_to_scr(msglen);
3083 
3084 		/*
3085 		 *  sense command
3086 		 */
3087 		cp->phys.cmd.addr	= CCB_BA(cp, sensecmd);
3088 		cp->phys.cmd.size	= cpu_to_scr(6);
3089 
3090 		/*
3091 		 *  patch requested size into sense command
3092 		 */
3093 		cp->sensecmd[0]		= REQUEST_SENSE;
3094 		cp->sensecmd[1]		= 0;
3095 		if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3096 			cp->sensecmd[1]	= cp->lun << 5;
3097 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
3098 		cp->data_len		= SYM_SNS_BBUF_LEN;
3099 
3100 		/*
3101 		 *  sense data
3102 		 */
3103 		memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3104 		cp->phys.sense.addr	= CCB_BA(cp, sns_bbuf);
3105 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
3106 
3107 		/*
3108 		 *  requeue the command.
3109 		 */
3110 		startp = SCRIPTB_BA(np, sdata_in);
3111 
3112 		cp->phys.head.savep	= cpu_to_scr(startp);
3113 		cp->phys.head.lastp	= cpu_to_scr(startp);
3114 		cp->startp		= cpu_to_scr(startp);
3115 		cp->goalp		= cpu_to_scr(startp + 16);
3116 
3117 		cp->host_xflags = 0;
3118 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3119 		cp->ssss_status = S_ILLEGAL;
3120 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
3121 		cp->xerr_status = 0;
3122 		cp->extra_bytes = 0;
3123 
3124 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3125 
3126 		/*
3127 		 *  Requeue the command.
3128 		 */
3129 		sym_put_start_queue(np, cp);
3130 
3131 		/*
3132 		 *  Give back to upper layer everything we have dequeued.
3133 		 */
3134 		sym_flush_comp_queue(np, 0);
3135 		break;
3136 	}
3137 }
3138 
3139 /*
3140  *  After a device has accepted some management message
3141  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3142  *  a device signals a UNIT ATTENTION condition, some
3143  *  tasks are thrown away by the device. We are required
3144  *  to reflect that on our tasks list since the device
3145  *  will never complete these tasks.
3146  *
3147  *  This function move from the BUSY queue to the COMP
3148  *  queue all disconnected CCBs for a given target that
3149  *  match the following criteria:
3150  *  - lun=-1  means any logical UNIT otherwise a given one.
3151  *  - task=-1 means any task, otherwise a given one.
3152  */
3153 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3154 {
3155 	SYM_QUEHEAD qtmp, *qp;
3156 	int i = 0;
3157 	struct sym_ccb *cp;
3158 
3159 	/*
3160 	 *  Move the entire BUSY queue to our temporary queue.
3161 	 */
3162 	sym_que_init(&qtmp);
3163 	sym_que_splice(&np->busy_ccbq, &qtmp);
3164 	sym_que_init(&np->busy_ccbq);
3165 
3166 	/*
3167 	 *  Put all CCBs that matches our criteria into
3168 	 *  the COMP queue and put back other ones into
3169 	 *  the BUSY queue.
3170 	 */
3171 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
3172 		struct scsi_cmnd *cmd;
3173 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3174 		cmd = cp->cmd;
3175 		if (cp->host_status != HS_DISCONNECT ||
3176 		    cp->target != target	     ||
3177 		    (lun  != -1 && cp->lun != lun)   ||
3178 		    (task != -1 &&
3179 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3180 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3181 			continue;
3182 		}
3183 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3184 
3185 		/* Preserve the software timeout condition */
3186 		if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3187 			sym_set_cam_status(cmd, cam_status);
3188 		++i;
3189 #if 0
3190 printf("XXXX TASK @%p CLEARED\n", cp);
3191 #endif
3192 	}
3193 	return i;
3194 }
3195 
3196 /*
3197  *  chip handler for TASKS recovery
3198  *
3199  *  We cannot safely abort a command, while the SCRIPTS
3200  *  processor is running, since we just would be in race
3201  *  with it.
3202  *
3203  *  As long as we have tasks to abort, we keep the SEM
3204  *  bit set in the ISTAT. When this bit is set, the
3205  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3206  *  each time it enters the scheduler.
3207  *
3208  *  If we have to reset a target, clear tasks of a unit,
3209  *  or to perform the abort of a disconnected job, we
3210  *  restart the SCRIPTS for selecting the target. Once
3211  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3212  *  If it loses arbitration, the SCRIPTS will interrupt again
3213  *  the next time it will enter its scheduler, and so on ...
3214  *
3215  *  On SIR_TARGET_SELECTED, we scan for the more
3216  *  appropriate thing to do:
3217  *
3218  *  - If nothing, we just sent a M_ABORT message to the
3219  *    target to get rid of the useless SCSI bus ownership.
3220  *    According to the specs, no tasks shall be affected.
3221  *  - If the target is to be reset, we send it a M_RESET
3222  *    message.
3223  *  - If a logical UNIT is to be cleared , we send the
3224  *    IDENTIFY(lun) + M_ABORT.
3225  *  - If an untagged task is to be aborted, we send the
3226  *    IDENTIFY(lun) + M_ABORT.
3227  *  - If a tagged task is to be aborted, we send the
3228  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3229  *
3230  *  Once our 'kiss of death' :) message has been accepted
3231  *  by the target, the SCRIPTS interrupts again
3232  *  (SIR_ABORT_SENT). On this interrupt, we complete
3233  *  all the CCBs that should have been aborted by the
3234  *  target according to our message.
3235  */
3236 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3237 {
3238 	SYM_QUEHEAD *qp;
3239 	struct sym_ccb *cp;
3240 	struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3241 	struct scsi_target *starget;
3242 	int target=-1, lun=-1, task;
3243 	int i, k;
3244 
3245 	switch(num) {
3246 	/*
3247 	 *  The SCRIPTS processor stopped before starting
3248 	 *  the next command in order to allow us to perform
3249 	 *  some task recovery.
3250 	 */
3251 	case SIR_SCRIPT_STOPPED:
3252 		/*
3253 		 *  Do we have any target to reset or unit to clear ?
3254 		 */
3255 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3256 			tp = &np->target[i];
3257 			if (tp->to_reset ||
3258 			    (tp->lun0p && tp->lun0p->to_clear)) {
3259 				target = i;
3260 				break;
3261 			}
3262 			if (!tp->lunmp)
3263 				continue;
3264 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3265 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3266 					target	= i;
3267 					break;
3268 				}
3269 			}
3270 			if (target != -1)
3271 				break;
3272 		}
3273 
3274 		/*
3275 		 *  If not, walk the busy queue for any
3276 		 *  disconnected CCB to be aborted.
3277 		 */
3278 		if (target == -1) {
3279 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3280 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3281 				if (cp->host_status != HS_DISCONNECT)
3282 					continue;
3283 				if (cp->to_abort) {
3284 					target = cp->target;
3285 					break;
3286 				}
3287 			}
3288 		}
3289 
3290 		/*
3291 		 *  If some target is to be selected,
3292 		 *  prepare and start the selection.
3293 		 */
3294 		if (target != -1) {
3295 			tp = &np->target[target];
3296 			np->abrt_sel.sel_id	= target;
3297 			np->abrt_sel.sel_scntl3 = tp->head.wval;
3298 			np->abrt_sel.sel_sxfer  = tp->head.sval;
3299 			OUTL(np, nc_dsa, np->hcb_ba);
3300 			OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3301 			return;
3302 		}
3303 
3304 		/*
3305 		 *  Now look for a CCB to abort that haven't started yet.
3306 		 *  Btw, the SCRIPTS processor is still stopped, so
3307 		 *  we are not in race.
3308 		 */
3309 		i = 0;
3310 		cp = NULL;
3311 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3312 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3313 			if (cp->host_status != HS_BUSY &&
3314 			    cp->host_status != HS_NEGOTIATE)
3315 				continue;
3316 			if (!cp->to_abort)
3317 				continue;
3318 #ifdef SYM_CONF_IARB_SUPPORT
3319 			/*
3320 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
3321 			 *    want to cancel the last queued CCB, since the
3322 			 *    SCRIPTS may have anticipated the selection.
3323 			 */
3324 			if (cp == np->last_cp) {
3325 				cp->to_abort = 0;
3326 				continue;
3327 			}
3328 #endif
3329 			i = 1;	/* Means we have found some */
3330 			break;
3331 		}
3332 		if (!i) {
3333 			/*
3334 			 *  We are done, so we donnot need
3335 			 *  to synchronize with the SCRIPTS anylonger.
3336 			 *  Remove the SEM flag from the ISTAT.
3337 			 */
3338 			np->istat_sem = 0;
3339 			OUTB(np, nc_istat, SIGP);
3340 			break;
3341 		}
3342 		/*
3343 		 *  Compute index of next position in the start
3344 		 *  queue the SCRIPTS intends to start and dequeue
3345 		 *  all CCBs for that device that haven't been started.
3346 		 */
3347 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3348 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3349 
3350 		/*
3351 		 *  Make sure at least our IO to abort has been dequeued.
3352 		 */
3353 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3354 		assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3355 #else
3356 		sym_remque(&cp->link_ccbq);
3357 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3358 #endif
3359 		/*
3360 		 *  Keep track in cam status of the reason of the abort.
3361 		 */
3362 		if (cp->to_abort == 2)
3363 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3364 		else
3365 			sym_set_cam_status(cp->cmd, DID_ABORT);
3366 
3367 		/*
3368 		 *  Complete with error everything that we have dequeued.
3369 	 	 */
3370 		sym_flush_comp_queue(np, 0);
3371 		break;
3372 	/*
3373 	 *  The SCRIPTS processor has selected a target
3374 	 *  we may have some manual recovery to perform for.
3375 	 */
3376 	case SIR_TARGET_SELECTED:
3377 		target = INB(np, nc_sdid) & 0xf;
3378 		tp = &np->target[target];
3379 
3380 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3381 
3382 		/*
3383 		 *  If the target is to be reset, prepare a
3384 		 *  M_RESET message and clear the to_reset flag
3385 		 *  since we donnot expect this operation to fail.
3386 		 */
3387 		if (tp->to_reset) {
3388 			np->abrt_msg[0] = M_RESET;
3389 			np->abrt_tbl.size = 1;
3390 			tp->to_reset = 0;
3391 			break;
3392 		}
3393 
3394 		/*
3395 		 *  Otherwise, look for some logical unit to be cleared.
3396 		 */
3397 		if (tp->lun0p && tp->lun0p->to_clear)
3398 			lun = 0;
3399 		else if (tp->lunmp) {
3400 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3401 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3402 					lun = k;
3403 					break;
3404 				}
3405 			}
3406 		}
3407 
3408 		/*
3409 		 *  If a logical unit is to be cleared, prepare
3410 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
3411 		 */
3412 		if (lun != -1) {
3413 			struct sym_lcb *lp = sym_lp(tp, lun);
3414 			lp->to_clear = 0; /* We don't expect to fail here */
3415 			np->abrt_msg[0] = IDENTIFY(0, lun);
3416 			np->abrt_msg[1] = M_ABORT;
3417 			np->abrt_tbl.size = 2;
3418 			break;
3419 		}
3420 
3421 		/*
3422 		 *  Otherwise, look for some disconnected job to
3423 		 *  abort for this target.
3424 		 */
3425 		i = 0;
3426 		cp = NULL;
3427 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3428 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3429 			if (cp->host_status != HS_DISCONNECT)
3430 				continue;
3431 			if (cp->target != target)
3432 				continue;
3433 			if (!cp->to_abort)
3434 				continue;
3435 			i = 1;	/* Means we have some */
3436 			break;
3437 		}
3438 
3439 		/*
3440 		 *  If we have none, probably since the device has
3441 		 *  completed the command before we won abitration,
3442 		 *  send a M_ABORT message without IDENTIFY.
3443 		 *  According to the specs, the device must just
3444 		 *  disconnect the BUS and not abort any task.
3445 		 */
3446 		if (!i) {
3447 			np->abrt_msg[0] = M_ABORT;
3448 			np->abrt_tbl.size = 1;
3449 			break;
3450 		}
3451 
3452 		/*
3453 		 *  We have some task to abort.
3454 		 *  Set the IDENTIFY(lun)
3455 		 */
3456 		np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3457 
3458 		/*
3459 		 *  If we want to abort an untagged command, we
3460 		 *  will send a IDENTIFY + M_ABORT.
3461 		 *  Otherwise (tagged command), we will send
3462 		 *  a IDENTITFY + task attributes + ABORT TAG.
3463 		 */
3464 		if (cp->tag == NO_TAG) {
3465 			np->abrt_msg[1] = M_ABORT;
3466 			np->abrt_tbl.size = 2;
3467 		} else {
3468 			np->abrt_msg[1] = cp->scsi_smsg[1];
3469 			np->abrt_msg[2] = cp->scsi_smsg[2];
3470 			np->abrt_msg[3] = M_ABORT_TAG;
3471 			np->abrt_tbl.size = 4;
3472 		}
3473 		/*
3474 		 *  Keep track of software timeout condition, since the
3475 		 *  peripheral driver may not count retries on abort
3476 		 *  conditions not due to timeout.
3477 		 */
3478 		if (cp->to_abort == 2)
3479 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3480 		cp->to_abort = 0; /* We donnot expect to fail here */
3481 		break;
3482 
3483 	/*
3484 	 *  The target has accepted our message and switched
3485 	 *  to BUS FREE phase as we expected.
3486 	 */
3487 	case SIR_ABORT_SENT:
3488 		target = INB(np, nc_sdid) & 0xf;
3489 		tp = &np->target[target];
3490 		starget = tp->starget;
3491 
3492 		/*
3493 		**  If we didn't abort anything, leave here.
3494 		*/
3495 		if (np->abrt_msg[0] == M_ABORT)
3496 			break;
3497 
3498 		/*
3499 		 *  If we sent a M_RESET, then a hardware reset has
3500 		 *  been performed by the target.
3501 		 *  - Reset everything to async 8 bit
3502 		 *  - Tell ourself to negotiate next time :-)
3503 		 *  - Prepare to clear all disconnected CCBs for
3504 		 *    this target from our task list (lun=task=-1)
3505 		 */
3506 		lun = -1;
3507 		task = -1;
3508 		if (np->abrt_msg[0] == M_RESET) {
3509 			tp->head.sval = 0;
3510 			tp->head.wval = np->rv_scntl3;
3511 			tp->head.uval = 0;
3512 			spi_period(starget) = 0;
3513 			spi_offset(starget) = 0;
3514 			spi_width(starget) = 0;
3515 			spi_iu(starget) = 0;
3516 			spi_dt(starget) = 0;
3517 			spi_qas(starget) = 0;
3518 			tp->tgoal.check_nego = 1;
3519 		}
3520 
3521 		/*
3522 		 *  Otherwise, check for the LUN and TASK(s)
3523 		 *  concerned by the cancelation.
3524 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
3525 		 *  or an ABORT message :-)
3526 		 */
3527 		else {
3528 			lun = np->abrt_msg[0] & 0x3f;
3529 			if (np->abrt_msg[1] == M_ABORT_TAG)
3530 				task = np->abrt_msg[2];
3531 		}
3532 
3533 		/*
3534 		 *  Complete all the CCBs the device should have
3535 		 *  aborted due to our 'kiss of death' message.
3536 		 */
3537 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3538 		sym_dequeue_from_squeue(np, i, target, lun, -1);
3539 		sym_clear_tasks(np, DID_ABORT, target, lun, task);
3540 		sym_flush_comp_queue(np, 0);
3541 
3542  		/*
3543 		 *  If we sent a BDR, make upper layer aware of that.
3544  		 */
3545 		if (np->abrt_msg[0] == M_RESET)
3546 			starget_printk(KERN_NOTICE, starget,
3547 							"has been reset\n");
3548 		break;
3549 	}
3550 
3551 	/*
3552 	 *  Print to the log the message we intend to send.
3553 	 */
3554 	if (num == SIR_TARGET_SELECTED) {
3555 		dev_info(&tp->starget->dev, "control msgout:");
3556 		sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3557 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3558 	}
3559 
3560 	/*
3561 	 *  Let the SCRIPTS processor continue.
3562 	 */
3563 	OUTONB_STD();
3564 }
3565 
3566 /*
3567  *  Gerard's alchemy:) that deals with with the data
3568  *  pointer for both MDP and the residual calculation.
3569  *
3570  *  I didn't want to bloat the code by more than 200
3571  *  lines for the handling of both MDP and the residual.
3572  *  This has been achieved by using a data pointer
3573  *  representation consisting in an index in the data
3574  *  array (dp_sg) and a negative offset (dp_ofs) that
3575  *  have the following meaning:
3576  *
3577  *  - dp_sg = SYM_CONF_MAX_SG
3578  *    we are at the end of the data script.
3579  *  - dp_sg < SYM_CONF_MAX_SG
3580  *    dp_sg points to the next entry of the scatter array
3581  *    we want to transfer.
3582  *  - dp_ofs < 0
3583  *    dp_ofs represents the residual of bytes of the
3584  *    previous entry scatter entry we will send first.
3585  *  - dp_ofs = 0
3586  *    no residual to send first.
3587  *
3588  *  The function sym_evaluate_dp() accepts an arbitray
3589  *  offset (basically from the MDP message) and returns
3590  *  the corresponding values of dp_sg and dp_ofs.
3591  */
3592 
3593 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3594 {
3595 	u32	dp_scr;
3596 	int	dp_ofs, dp_sg, dp_sgmin;
3597 	int	tmp;
3598 	struct sym_pmc *pm;
3599 
3600 	/*
3601 	 *  Compute the resulted data pointer in term of a script
3602 	 *  address within some DATA script and a signed byte offset.
3603 	 */
3604 	dp_scr = scr;
3605 	dp_ofs = *ofs;
3606 	if	(dp_scr == SCRIPTA_BA(np, pm0_data))
3607 		pm = &cp->phys.pm0;
3608 	else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3609 		pm = &cp->phys.pm1;
3610 	else
3611 		pm = NULL;
3612 
3613 	if (pm) {
3614 		dp_scr  = scr_to_cpu(pm->ret);
3615 		dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3616 	}
3617 
3618 	/*
3619 	 *  If we are auto-sensing, then we are done.
3620 	 */
3621 	if (cp->host_flags & HF_SENSE) {
3622 		*ofs = dp_ofs;
3623 		return 0;
3624 	}
3625 
3626 	/*
3627 	 *  Deduce the index of the sg entry.
3628 	 *  Keep track of the index of the first valid entry.
3629 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3630 	 *  end of the data.
3631 	 */
3632 	tmp = scr_to_cpu(cp->goalp);
3633 	dp_sg = SYM_CONF_MAX_SG;
3634 	if (dp_scr != tmp)
3635 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3636 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3637 
3638 	/*
3639 	 *  Move to the sg entry the data pointer belongs to.
3640 	 *
3641 	 *  If we are inside the data area, we expect result to be:
3642 	 *
3643 	 *  Either,
3644 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
3645 	 *      the data pointer belongs to (or the end of the data)
3646 	 *  Or,
3647 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
3648 	 *      the data pointer belongs to + 1.
3649 	 */
3650 	if (dp_ofs < 0) {
3651 		int n;
3652 		while (dp_sg > dp_sgmin) {
3653 			--dp_sg;
3654 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3655 			n = dp_ofs + (tmp & 0xffffff);
3656 			if (n > 0) {
3657 				++dp_sg;
3658 				break;
3659 			}
3660 			dp_ofs = n;
3661 		}
3662 	}
3663 	else if (dp_ofs > 0) {
3664 		while (dp_sg < SYM_CONF_MAX_SG) {
3665 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3666 			dp_ofs -= (tmp & 0xffffff);
3667 			++dp_sg;
3668 			if (dp_ofs <= 0)
3669 				break;
3670 		}
3671 	}
3672 
3673 	/*
3674 	 *  Make sure the data pointer is inside the data area.
3675 	 *  If not, return some error.
3676 	 */
3677 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3678 		goto out_err;
3679 	else if	(dp_sg > SYM_CONF_MAX_SG ||
3680 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3681 		goto out_err;
3682 
3683 	/*
3684 	 *  Save the extreme pointer if needed.
3685 	 */
3686 	if (dp_sg > cp->ext_sg ||
3687             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3688 		cp->ext_sg  = dp_sg;
3689 		cp->ext_ofs = dp_ofs;
3690 	}
3691 
3692 	/*
3693 	 *  Return data.
3694 	 */
3695 	*ofs = dp_ofs;
3696 	return dp_sg;
3697 
3698 out_err:
3699 	return -1;
3700 }
3701 
3702 /*
3703  *  chip handler for MODIFY DATA POINTER MESSAGE
3704  *
3705  *  We also call this function on IGNORE WIDE RESIDUE
3706  *  messages that do not match a SWIDE full condition.
3707  *  Btw, we assume in that situation that such a message
3708  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3709  */
3710 
3711 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3712 {
3713 	int dp_ofs	= ofs;
3714 	u32	dp_scr	= sym_get_script_dp (np, cp);
3715 	u32	dp_ret;
3716 	u32	tmp;
3717 	u_char	hflags;
3718 	int	dp_sg;
3719 	struct	sym_pmc *pm;
3720 
3721 	/*
3722 	 *  Not supported for auto-sense.
3723 	 */
3724 	if (cp->host_flags & HF_SENSE)
3725 		goto out_reject;
3726 
3727 	/*
3728 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
3729 	 *  to the resulted data pointer.
3730 	 */
3731 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3732 	if (dp_sg < 0)
3733 		goto out_reject;
3734 
3735 	/*
3736 	 *  And our alchemy:) allows to easily calculate the data
3737 	 *  script address we want to return for the next data phase.
3738 	 */
3739 	dp_ret = cpu_to_scr(cp->goalp);
3740 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3741 
3742 	/*
3743 	 *  If offset / scatter entry is zero we donnot need
3744 	 *  a context for the new current data pointer.
3745 	 */
3746 	if (dp_ofs == 0) {
3747 		dp_scr = dp_ret;
3748 		goto out_ok;
3749 	}
3750 
3751 	/*
3752 	 *  Get a context for the new current data pointer.
3753 	 */
3754 	hflags = INB(np, HF_PRT);
3755 
3756 	if (hflags & HF_DP_SAVED)
3757 		hflags ^= HF_ACT_PM;
3758 
3759 	if (!(hflags & HF_ACT_PM)) {
3760 		pm  = &cp->phys.pm0;
3761 		dp_scr = SCRIPTA_BA(np, pm0_data);
3762 	}
3763 	else {
3764 		pm = &cp->phys.pm1;
3765 		dp_scr = SCRIPTA_BA(np, pm1_data);
3766 	}
3767 
3768 	hflags &= ~(HF_DP_SAVED);
3769 
3770 	OUTB(np, HF_PRT, hflags);
3771 
3772 	/*
3773 	 *  Set up the new current data pointer.
3774 	 *  ofs < 0 there, and for the next data phase, we
3775 	 *  want to transfer part of the data of the sg entry
3776 	 *  corresponding to index dp_sg-1 prior to returning
3777 	 *  to the main data script.
3778 	 */
3779 	pm->ret = cpu_to_scr(dp_ret);
3780 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3781 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3782 	pm->sg.addr = cpu_to_scr(tmp);
3783 	pm->sg.size = cpu_to_scr(-dp_ofs);
3784 
3785 out_ok:
3786 	sym_set_script_dp (np, cp, dp_scr);
3787 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3788 	return;
3789 
3790 out_reject:
3791 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3792 }
3793 
3794 
3795 /*
3796  *  chip calculation of the data residual.
3797  *
3798  *  As I used to say, the requirement of data residual
3799  *  in SCSI is broken, useless and cannot be achieved
3800  *  without huge complexity.
3801  *  But most OSes and even the official CAM require it.
3802  *  When stupidity happens to be so widely spread inside
3803  *  a community, it gets hard to convince.
3804  *
3805  *  Anyway, I don't care, since I am not going to use
3806  *  any software that considers this data residual as
3807  *  a relevant information. :)
3808  */
3809 
3810 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3811 {
3812 	int dp_sg, dp_sgmin, resid = 0;
3813 	int dp_ofs = 0;
3814 
3815 	/*
3816 	 *  Check for some data lost or just thrown away.
3817 	 *  We are not required to be quite accurate in this
3818 	 *  situation. Btw, if we are odd for output and the
3819 	 *  device claims some more data, it may well happen
3820 	 *  than our residual be zero. :-)
3821 	 */
3822 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3823 		if (cp->xerr_status & XE_EXTRA_DATA)
3824 			resid -= cp->extra_bytes;
3825 		if (cp->xerr_status & XE_SODL_UNRUN)
3826 			++resid;
3827 		if (cp->xerr_status & XE_SWIDE_OVRUN)
3828 			--resid;
3829 	}
3830 
3831 	/*
3832 	 *  If all data has been transferred,
3833 	 *  there is no residual.
3834 	 */
3835 	if (cp->phys.head.lastp == cp->goalp)
3836 		return resid;
3837 
3838 	/*
3839 	 *  If no data transfer occurs, or if the data
3840 	 *  pointer is weird, return full residual.
3841 	 */
3842 	if (cp->startp == cp->phys.head.lastp ||
3843 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3844 			    &dp_ofs) < 0) {
3845 		return cp->data_len - cp->odd_byte_adjustment;
3846 	}
3847 
3848 	/*
3849 	 *  If we were auto-sensing, then we are done.
3850 	 */
3851 	if (cp->host_flags & HF_SENSE) {
3852 		return -dp_ofs;
3853 	}
3854 
3855 	/*
3856 	 *  We are now full comfortable in the computation
3857 	 *  of the data residual (2's complement).
3858 	 */
3859 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3860 	resid = -cp->ext_ofs;
3861 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3862 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3863 		resid += (tmp & 0xffffff);
3864 	}
3865 
3866 	resid -= cp->odd_byte_adjustment;
3867 
3868 	/*
3869 	 *  Hopefully, the result is not too wrong.
3870 	 */
3871 	return resid;
3872 }
3873 
3874 /*
3875  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3876  *
3877  *  When we try to negotiate, we append the negotiation message
3878  *  to the identify and (maybe) simple tag message.
3879  *  The host status field is set to HS_NEGOTIATE to mark this
3880  *  situation.
3881  *
3882  *  If the target doesn't answer this message immediately
3883  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3884  *  will be raised eventually.
3885  *  The handler removes the HS_NEGOTIATE status, and sets the
3886  *  negotiated value to the default (async / nowide).
3887  *
3888  *  If we receive a matching answer immediately, we check it
3889  *  for validity, and set the values.
3890  *
3891  *  If we receive a Reject message immediately, we assume the
3892  *  negotiation has failed, and fall back to standard values.
3893  *
3894  *  If we receive a negotiation message while not in HS_NEGOTIATE
3895  *  state, it's a target initiated negotiation. We prepare a
3896  *  (hopefully) valid answer, set our parameters, and send back
3897  *  this answer to the target.
3898  *
3899  *  If the target doesn't fetch the answer (no message out phase),
3900  *  we assume the negotiation has failed, and fall back to default
3901  *  settings (SIR_NEGO_PROTO interrupt).
3902  *
3903  *  When we set the values, we adjust them in all ccbs belonging
3904  *  to this target, in the controller's register, and in the "phys"
3905  *  field of the controller's struct sym_hcb.
3906  */
3907 
3908 /*
3909  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3910  */
3911 static int
3912 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3913 {
3914 	int target = cp->target;
3915 	u_char	chg, ofs, per, fak, div;
3916 
3917 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3918 		sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3919 	}
3920 
3921 	/*
3922 	 *  Get requested values.
3923 	 */
3924 	chg = 0;
3925 	per = np->msgin[3];
3926 	ofs = np->msgin[4];
3927 
3928 	/*
3929 	 *  Check values against our limits.
3930 	 */
3931 	if (ofs) {
3932 		if (ofs > np->maxoffs)
3933 			{chg = 1; ofs = np->maxoffs;}
3934 	}
3935 
3936 	if (ofs) {
3937 		if (per < np->minsync)
3938 			{chg = 1; per = np->minsync;}
3939 	}
3940 
3941 	/*
3942 	 *  Get new chip synchronous parameters value.
3943 	 */
3944 	div = fak = 0;
3945 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3946 		goto reject_it;
3947 
3948 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3949 		sym_print_addr(cp->cmd,
3950 				"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3951 				ofs, per, div, fak, chg);
3952 	}
3953 
3954 	/*
3955 	 *  If it was an answer we want to change,
3956 	 *  then it isn't acceptable. Reject it.
3957 	 */
3958 	if (!req && chg)
3959 		goto reject_it;
3960 
3961 	/*
3962 	 *  Apply new values.
3963 	 */
3964 	sym_setsync (np, target, ofs, per, div, fak);
3965 
3966 	/*
3967 	 *  It was an answer. We are done.
3968 	 */
3969 	if (!req)
3970 		return 0;
3971 
3972 	/*
3973 	 *  It was a request. Prepare an answer message.
3974 	 */
3975 	spi_populate_sync_msg(np->msgout, per, ofs);
3976 
3977 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3978 		sym_print_nego_msg(np, target, "sync msgout", np->msgout);
3979 	}
3980 
3981 	np->msgin [0] = M_NOOP;
3982 
3983 	return 0;
3984 
3985 reject_it:
3986 	sym_setsync (np, target, 0, 0, 0, 0);
3987 	return -1;
3988 }
3989 
3990 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
3991 {
3992 	int req = 1;
3993 	int result;
3994 
3995 	/*
3996 	 *  Request or answer ?
3997 	 */
3998 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
3999 		OUTB(np, HS_PRT, HS_BUSY);
4000 		if (cp->nego_status && cp->nego_status != NS_SYNC)
4001 			goto reject_it;
4002 		req = 0;
4003 	}
4004 
4005 	/*
4006 	 *  Check and apply new values.
4007 	 */
4008 	result = sym_sync_nego_check(np, req, cp);
4009 	if (result)	/* Not acceptable, reject it */
4010 		goto reject_it;
4011 	if (req) {	/* Was a request, send response. */
4012 		cp->nego_status = NS_SYNC;
4013 		OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4014 	}
4015 	else		/* Was a response, we are done. */
4016 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4017 	return;
4018 
4019 reject_it:
4020 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4021 }
4022 
4023 /*
4024  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4025  */
4026 static int
4027 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4028 {
4029 	struct sym_tcb *tp = &np->target[target];
4030 	unsigned char fak, div;
4031 	int dt, chg = 0;
4032 
4033 	unsigned char per = np->msgin[3];
4034 	unsigned char ofs = np->msgin[5];
4035 	unsigned char wide = np->msgin[6];
4036 	unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4037 
4038 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4039 		sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4040 	}
4041 
4042 	/*
4043 	 *  Check values against our limits.
4044 	 */
4045 	if (wide > np->maxwide) {
4046 		chg = 1;
4047 		wide = np->maxwide;
4048 	}
4049 	if (!wide || !(np->features & FE_U3EN))
4050 		opts = 0;
4051 
4052 	if (opts != (np->msgin[7] & PPR_OPT_MASK))
4053 		chg = 1;
4054 
4055 	dt = opts & PPR_OPT_DT;
4056 
4057 	if (ofs) {
4058 		unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4059 		if (ofs > maxoffs) {
4060 			chg = 1;
4061 			ofs = maxoffs;
4062 		}
4063 	}
4064 
4065 	if (ofs) {
4066 		unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4067 		if (per < minsync) {
4068 			chg = 1;
4069 			per = minsync;
4070 		}
4071 	}
4072 
4073 	/*
4074 	 *  Get new chip synchronous parameters value.
4075 	 */
4076 	div = fak = 0;
4077 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4078 		goto reject_it;
4079 
4080 	/*
4081 	 *  If it was an answer we want to change,
4082 	 *  then it isn't acceptable. Reject it.
4083 	 */
4084 	if (!req && chg)
4085 		goto reject_it;
4086 
4087 	/*
4088 	 *  Apply new values.
4089 	 */
4090 	sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4091 
4092 	/*
4093 	 *  It was an answer. We are done.
4094 	 */
4095 	if (!req)
4096 		return 0;
4097 
4098 	/*
4099 	 *  It was a request. Prepare an answer message.
4100 	 */
4101 	spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4102 
4103 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4104 		sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4105 	}
4106 
4107 	np->msgin [0] = M_NOOP;
4108 
4109 	return 0;
4110 
4111 reject_it:
4112 	sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4113 	/*
4114 	 *  If it is a device response that should result in
4115 	 *  ST, we may want to try a legacy negotiation later.
4116 	 */
4117 	if (!req && !opts) {
4118 		tp->tgoal.period = per;
4119 		tp->tgoal.offset = ofs;
4120 		tp->tgoal.width = wide;
4121 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4122 		tp->tgoal.check_nego = 1;
4123 	}
4124 	return -1;
4125 }
4126 
4127 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4128 {
4129 	int req = 1;
4130 	int result;
4131 
4132 	/*
4133 	 *  Request or answer ?
4134 	 */
4135 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4136 		OUTB(np, HS_PRT, HS_BUSY);
4137 		if (cp->nego_status && cp->nego_status != NS_PPR)
4138 			goto reject_it;
4139 		req = 0;
4140 	}
4141 
4142 	/*
4143 	 *  Check and apply new values.
4144 	 */
4145 	result = sym_ppr_nego_check(np, req, cp->target);
4146 	if (result)	/* Not acceptable, reject it */
4147 		goto reject_it;
4148 	if (req) {	/* Was a request, send response. */
4149 		cp->nego_status = NS_PPR;
4150 		OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4151 	}
4152 	else		/* Was a response, we are done. */
4153 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4154 	return;
4155 
4156 reject_it:
4157 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4158 }
4159 
4160 /*
4161  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4162  */
4163 static int
4164 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4165 {
4166 	int target = cp->target;
4167 	u_char	chg, wide;
4168 
4169 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4170 		sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4171 	}
4172 
4173 	/*
4174 	 *  Get requested values.
4175 	 */
4176 	chg  = 0;
4177 	wide = np->msgin[3];
4178 
4179 	/*
4180 	 *  Check values against our limits.
4181 	 */
4182 	if (wide > np->maxwide) {
4183 		chg = 1;
4184 		wide = np->maxwide;
4185 	}
4186 
4187 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4188 		sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4189 				wide, chg);
4190 	}
4191 
4192 	/*
4193 	 *  If it was an answer we want to change,
4194 	 *  then it isn't acceptable. Reject it.
4195 	 */
4196 	if (!req && chg)
4197 		goto reject_it;
4198 
4199 	/*
4200 	 *  Apply new values.
4201 	 */
4202 	sym_setwide (np, target, wide);
4203 
4204 	/*
4205 	 *  It was an answer. We are done.
4206 	 */
4207 	if (!req)
4208 		return 0;
4209 
4210 	/*
4211 	 *  It was a request. Prepare an answer message.
4212 	 */
4213 	spi_populate_width_msg(np->msgout, wide);
4214 
4215 	np->msgin [0] = M_NOOP;
4216 
4217 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4218 		sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4219 	}
4220 
4221 	return 0;
4222 
4223 reject_it:
4224 	return -1;
4225 }
4226 
4227 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4228 {
4229 	int req = 1;
4230 	int result;
4231 
4232 	/*
4233 	 *  Request or answer ?
4234 	 */
4235 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4236 		OUTB(np, HS_PRT, HS_BUSY);
4237 		if (cp->nego_status && cp->nego_status != NS_WIDE)
4238 			goto reject_it;
4239 		req = 0;
4240 	}
4241 
4242 	/*
4243 	 *  Check and apply new values.
4244 	 */
4245 	result = sym_wide_nego_check(np, req, cp);
4246 	if (result)	/* Not acceptable, reject it */
4247 		goto reject_it;
4248 	if (req) {	/* Was a request, send response. */
4249 		cp->nego_status = NS_WIDE;
4250 		OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4251 	} else {		/* Was a response. */
4252 		/*
4253 		 * Negotiate for SYNC immediately after WIDE response.
4254 		 * This allows to negotiate for both WIDE and SYNC on
4255 		 * a single SCSI command (Suggested by Justin Gibbs).
4256 		 */
4257 		if (tp->tgoal.offset) {
4258 			spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4259 					tp->tgoal.offset);
4260 
4261 			if (DEBUG_FLAGS & DEBUG_NEGO) {
4262 				sym_print_nego_msg(np, cp->target,
4263 				                   "sync msgout", np->msgout);
4264 			}
4265 
4266 			cp->nego_status = NS_SYNC;
4267 			OUTB(np, HS_PRT, HS_NEGOTIATE);
4268 			OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4269 			return;
4270 		} else
4271 			OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4272 	}
4273 
4274 	return;
4275 
4276 reject_it:
4277 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4278 }
4279 
4280 /*
4281  *  Reset DT, SYNC or WIDE to default settings.
4282  *
4283  *  Called when a negotiation does not succeed either
4284  *  on rejection or on protocol error.
4285  *
4286  *  A target that understands a PPR message should never
4287  *  reject it, and messing with it is very unlikely.
4288  *  So, if a PPR makes problems, we may just want to
4289  *  try a legacy negotiation later.
4290  */
4291 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4292 {
4293 	switch (cp->nego_status) {
4294 	case NS_PPR:
4295 #if 0
4296 		sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4297 #else
4298 		if (tp->tgoal.period < np->minsync)
4299 			tp->tgoal.period = np->minsync;
4300 		if (tp->tgoal.offset > np->maxoffs)
4301 			tp->tgoal.offset = np->maxoffs;
4302 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4303 		tp->tgoal.check_nego = 1;
4304 #endif
4305 		break;
4306 	case NS_SYNC:
4307 		sym_setsync (np, cp->target, 0, 0, 0, 0);
4308 		break;
4309 	case NS_WIDE:
4310 		sym_setwide (np, cp->target, 0);
4311 		break;
4312 	}
4313 	np->msgin [0] = M_NOOP;
4314 	np->msgout[0] = M_NOOP;
4315 	cp->nego_status = 0;
4316 }
4317 
4318 /*
4319  *  chip handler for MESSAGE REJECT received in response to
4320  *  PPR, WIDE or SYNCHRONOUS negotiation.
4321  */
4322 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4323 {
4324 	sym_nego_default(np, tp, cp);
4325 	OUTB(np, HS_PRT, HS_BUSY);
4326 }
4327 
4328 /*
4329  *  chip exception handler for programmed interrupts.
4330  */
4331 static void sym_int_sir(struct sym_hcb *np)
4332 {
4333 	u_char	num	= INB(np, nc_dsps);
4334 	u32	dsa	= INL(np, nc_dsa);
4335 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
4336 	u_char	target	= INB(np, nc_sdid) & 0x0f;
4337 	struct sym_tcb *tp	= &np->target[target];
4338 	int	tmp;
4339 
4340 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4341 
4342 	switch (num) {
4343 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4344 	/*
4345 	 *  SCRIPTS tell us that we may have to update
4346 	 *  64 bit DMA segment registers.
4347 	 */
4348 	case SIR_DMAP_DIRTY:
4349 		sym_update_dmap_regs(np);
4350 		goto out;
4351 #endif
4352 	/*
4353 	 *  Command has been completed with error condition
4354 	 *  or has been auto-sensed.
4355 	 */
4356 	case SIR_COMPLETE_ERROR:
4357 		sym_complete_error(np, cp);
4358 		return;
4359 	/*
4360 	 *  The C code is currently trying to recover from something.
4361 	 *  Typically, user want to abort some command.
4362 	 */
4363 	case SIR_SCRIPT_STOPPED:
4364 	case SIR_TARGET_SELECTED:
4365 	case SIR_ABORT_SENT:
4366 		sym_sir_task_recovery(np, num);
4367 		return;
4368 	/*
4369 	 *  The device didn't go to MSG OUT phase after having
4370 	 *  been selected with ATN.  We do not want to handle that.
4371 	 */
4372 	case SIR_SEL_ATN_NO_MSG_OUT:
4373 		scmd_printk(KERN_WARNING, cp->cmd,
4374 				"No MSG OUT phase after selection with ATN\n");
4375 		goto out_stuck;
4376 	/*
4377 	 *  The device didn't switch to MSG IN phase after
4378 	 *  having reselected the initiator.
4379 	 */
4380 	case SIR_RESEL_NO_MSG_IN:
4381 		scmd_printk(KERN_WARNING, cp->cmd,
4382 				"No MSG IN phase after reselection\n");
4383 		goto out_stuck;
4384 	/*
4385 	 *  After reselection, the device sent a message that wasn't
4386 	 *  an IDENTIFY.
4387 	 */
4388 	case SIR_RESEL_NO_IDENTIFY:
4389 		scmd_printk(KERN_WARNING, cp->cmd,
4390 				"No IDENTIFY after reselection\n");
4391 		goto out_stuck;
4392 	/*
4393 	 *  The device reselected a LUN we do not know about.
4394 	 */
4395 	case SIR_RESEL_BAD_LUN:
4396 		np->msgout[0] = M_RESET;
4397 		goto out;
4398 	/*
4399 	 *  The device reselected for an untagged nexus and we
4400 	 *  haven't any.
4401 	 */
4402 	case SIR_RESEL_BAD_I_T_L:
4403 		np->msgout[0] = M_ABORT;
4404 		goto out;
4405 	/*
4406 	 * The device reselected for a tagged nexus that we do not have.
4407 	 */
4408 	case SIR_RESEL_BAD_I_T_L_Q:
4409 		np->msgout[0] = M_ABORT_TAG;
4410 		goto out;
4411 	/*
4412 	 *  The SCRIPTS let us know that the device has grabbed
4413 	 *  our message and will abort the job.
4414 	 */
4415 	case SIR_RESEL_ABORTED:
4416 		np->lastmsg = np->msgout[0];
4417 		np->msgout[0] = M_NOOP;
4418 		scmd_printk(KERN_WARNING, cp->cmd,
4419 			"message %x sent on bad reselection\n", np->lastmsg);
4420 		goto out;
4421 	/*
4422 	 *  The SCRIPTS let us know that a message has been
4423 	 *  successfully sent to the device.
4424 	 */
4425 	case SIR_MSG_OUT_DONE:
4426 		np->lastmsg = np->msgout[0];
4427 		np->msgout[0] = M_NOOP;
4428 		/* Should we really care of that */
4429 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4430 			if (cp) {
4431 				cp->xerr_status &= ~XE_PARITY_ERR;
4432 				if (!cp->xerr_status)
4433 					OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4434 			}
4435 		}
4436 		goto out;
4437 	/*
4438 	 *  The device didn't send a GOOD SCSI status.
4439 	 *  We may have some work to do prior to allow
4440 	 *  the SCRIPTS processor to continue.
4441 	 */
4442 	case SIR_BAD_SCSI_STATUS:
4443 		if (!cp)
4444 			goto out;
4445 		sym_sir_bad_scsi_status(np, num, cp);
4446 		return;
4447 	/*
4448 	 *  We are asked by the SCRIPTS to prepare a
4449 	 *  REJECT message.
4450 	 */
4451 	case SIR_REJECT_TO_SEND:
4452 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4453 		np->msgout[0] = M_REJECT;
4454 		goto out;
4455 	/*
4456 	 *  We have been ODD at the end of a DATA IN
4457 	 *  transfer and the device didn't send a
4458 	 *  IGNORE WIDE RESIDUE message.
4459 	 *  It is a data overrun condition.
4460 	 */
4461 	case SIR_SWIDE_OVERRUN:
4462 		if (cp) {
4463 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4464 			cp->xerr_status |= XE_SWIDE_OVRUN;
4465 		}
4466 		goto out;
4467 	/*
4468 	 *  We have been ODD at the end of a DATA OUT
4469 	 *  transfer.
4470 	 *  It is a data underrun condition.
4471 	 */
4472 	case SIR_SODL_UNDERRUN:
4473 		if (cp) {
4474 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4475 			cp->xerr_status |= XE_SODL_UNRUN;
4476 		}
4477 		goto out;
4478 	/*
4479 	 *  The device wants us to tranfer more data than
4480 	 *  expected or in the wrong direction.
4481 	 *  The number of extra bytes is in scratcha.
4482 	 *  It is a data overrun condition.
4483 	 */
4484 	case SIR_DATA_OVERRUN:
4485 		if (cp) {
4486 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4487 			cp->xerr_status |= XE_EXTRA_DATA;
4488 			cp->extra_bytes += INL(np, nc_scratcha);
4489 		}
4490 		goto out;
4491 	/*
4492 	 *  The device switched to an illegal phase (4/5).
4493 	 */
4494 	case SIR_BAD_PHASE:
4495 		if (cp) {
4496 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4497 			cp->xerr_status |= XE_BAD_PHASE;
4498 		}
4499 		goto out;
4500 	/*
4501 	 *  We received a message.
4502 	 */
4503 	case SIR_MSG_RECEIVED:
4504 		if (!cp)
4505 			goto out_stuck;
4506 		switch (np->msgin [0]) {
4507 		/*
4508 		 *  We received an extended message.
4509 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
4510 		 *  and reject all other extended messages.
4511 		 */
4512 		case M_EXTENDED:
4513 			switch (np->msgin [2]) {
4514 			case M_X_MODIFY_DP:
4515 				if (DEBUG_FLAGS & DEBUG_POINTER)
4516 					sym_print_msg(cp, NULL, np->msgin);
4517 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4518 				      (np->msgin[5]<<8)  + (np->msgin[6]);
4519 				sym_modify_dp(np, tp, cp, tmp);
4520 				return;
4521 			case M_X_SYNC_REQ:
4522 				sym_sync_nego(np, tp, cp);
4523 				return;
4524 			case M_X_PPR_REQ:
4525 				sym_ppr_nego(np, tp, cp);
4526 				return;
4527 			case M_X_WIDE_REQ:
4528 				sym_wide_nego(np, tp, cp);
4529 				return;
4530 			default:
4531 				goto out_reject;
4532 			}
4533 			break;
4534 		/*
4535 		 *  We received a 1/2 byte message not handled from SCRIPTS.
4536 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
4537 		 *  RESIDUE messages that haven't been anticipated by
4538 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4539 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4540 		 */
4541 		case M_IGN_RESIDUE:
4542 			if (DEBUG_FLAGS & DEBUG_POINTER)
4543 				sym_print_msg(cp, NULL, np->msgin);
4544 			if (cp->host_flags & HF_SENSE)
4545 				OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4546 			else
4547 				sym_modify_dp(np, tp, cp, -1);
4548 			return;
4549 		case M_REJECT:
4550 			if (INB(np, HS_PRT) == HS_NEGOTIATE)
4551 				sym_nego_rejected(np, tp, cp);
4552 			else {
4553 				sym_print_addr(cp->cmd,
4554 					"M_REJECT received (%x:%x).\n",
4555 					scr_to_cpu(np->lastmsg), np->msgout[0]);
4556 			}
4557 			goto out_clrack;
4558 			break;
4559 		default:
4560 			goto out_reject;
4561 		}
4562 		break;
4563 	/*
4564 	 *  We received an unknown message.
4565 	 *  Ignore all MSG IN phases and reject it.
4566 	 */
4567 	case SIR_MSG_WEIRD:
4568 		sym_print_msg(cp, "WEIRD message received", np->msgin);
4569 		OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4570 		return;
4571 	/*
4572 	 *  Negotiation failed.
4573 	 *  Target does not send us the reply.
4574 	 *  Remove the HS_NEGOTIATE status.
4575 	 */
4576 	case SIR_NEGO_FAILED:
4577 		OUTB(np, HS_PRT, HS_BUSY);
4578 	/*
4579 	 *  Negotiation failed.
4580 	 *  Target does not want answer message.
4581 	 */
4582 	case SIR_NEGO_PROTO:
4583 		sym_nego_default(np, tp, cp);
4584 		goto out;
4585 	}
4586 
4587 out:
4588 	OUTONB_STD();
4589 	return;
4590 out_reject:
4591 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4592 	return;
4593 out_clrack:
4594 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4595 	return;
4596 out_stuck:
4597 	return;
4598 }
4599 
4600 /*
4601  *  Acquire a control block
4602  */
4603 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4604 {
4605 	u_char tn = cmd->device->id;
4606 	u_char ln = cmd->device->lun;
4607 	struct sym_tcb *tp = &np->target[tn];
4608 	struct sym_lcb *lp = sym_lp(tp, ln);
4609 	u_short tag = NO_TAG;
4610 	SYM_QUEHEAD *qp;
4611 	struct sym_ccb *cp = NULL;
4612 
4613 	/*
4614 	 *  Look for a free CCB
4615 	 */
4616 	if (sym_que_empty(&np->free_ccbq))
4617 		sym_alloc_ccb(np);
4618 	qp = sym_remque_head(&np->free_ccbq);
4619 	if (!qp)
4620 		goto out;
4621 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4622 
4623 	{
4624 		/*
4625 		 *  If we have been asked for a tagged command.
4626 		 */
4627 		if (tag_order) {
4628 			/*
4629 			 *  Debugging purpose.
4630 			 */
4631 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4632 			if (lp->busy_itl != 0)
4633 				goto out_free;
4634 #endif
4635 			/*
4636 			 *  Allocate resources for tags if not yet.
4637 			 */
4638 			if (!lp->cb_tags) {
4639 				sym_alloc_lcb_tags(np, tn, ln);
4640 				if (!lp->cb_tags)
4641 					goto out_free;
4642 			}
4643 			/*
4644 			 *  Get a tag for this SCSI IO and set up
4645 			 *  the CCB bus address for reselection,
4646 			 *  and count it for this LUN.
4647 			 *  Toggle reselect path to tagged.
4648 			 */
4649 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4650 				tag = lp->cb_tags[lp->ia_tag];
4651 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4652 					lp->ia_tag = 0;
4653 				++lp->busy_itlq;
4654 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4655 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4656 				lp->head.resel_sa =
4657 					cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4658 #endif
4659 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4660 				cp->tags_si = lp->tags_si;
4661 				++lp->tags_sum[cp->tags_si];
4662 				++lp->tags_since;
4663 #endif
4664 			}
4665 			else
4666 				goto out_free;
4667 		}
4668 		/*
4669 		 *  This command will not be tagged.
4670 		 *  If we already have either a tagged or untagged
4671 		 *  one, refuse to overlap this untagged one.
4672 		 */
4673 		else {
4674 			/*
4675 			 *  Debugging purpose.
4676 			 */
4677 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4678 			if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4679 				goto out_free;
4680 #endif
4681 			/*
4682 			 *  Count this nexus for this LUN.
4683 			 *  Set up the CCB bus address for reselection.
4684 			 *  Toggle reselect path to untagged.
4685 			 */
4686 			++lp->busy_itl;
4687 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4688 			if (lp->busy_itl == 1) {
4689 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4690 				lp->head.resel_sa =
4691 				      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4692 			}
4693 			else
4694 				goto out_free;
4695 #endif
4696 		}
4697 	}
4698 	/*
4699 	 *  Put the CCB into the busy queue.
4700 	 */
4701 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4702 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4703 	if (lp) {
4704 		sym_remque(&cp->link2_ccbq);
4705 		sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4706 	}
4707 
4708 #endif
4709 	cp->to_abort = 0;
4710 	cp->odd_byte_adjustment = 0;
4711 	cp->tag	   = tag;
4712 	cp->order  = tag_order;
4713 	cp->target = tn;
4714 	cp->lun    = ln;
4715 
4716 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4717 		sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4718 	}
4719 
4720 out:
4721 	return cp;
4722 out_free:
4723 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4724 	return NULL;
4725 }
4726 
4727 /*
4728  *  Release one control block
4729  */
4730 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4731 {
4732 	struct sym_tcb *tp = &np->target[cp->target];
4733 	struct sym_lcb *lp = sym_lp(tp, cp->lun);
4734 
4735 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4736 		sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4737 				cp, cp->tag);
4738 	}
4739 
4740 	/*
4741 	 *  If LCB available,
4742 	 */
4743 	if (lp) {
4744 		/*
4745 		 *  If tagged, release the tag, set the relect path
4746 		 */
4747 		if (cp->tag != NO_TAG) {
4748 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4749 			--lp->tags_sum[cp->tags_si];
4750 #endif
4751 			/*
4752 			 *  Free the tag value.
4753 			 */
4754 			lp->cb_tags[lp->if_tag] = cp->tag;
4755 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
4756 				lp->if_tag = 0;
4757 			/*
4758 			 *  Make the reselect path invalid,
4759 			 *  and uncount this CCB.
4760 			 */
4761 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4762 			--lp->busy_itlq;
4763 		} else {	/* Untagged */
4764 			/*
4765 			 *  Make the reselect path invalid,
4766 			 *  and uncount this CCB.
4767 			 */
4768 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4769 			--lp->busy_itl;
4770 		}
4771 		/*
4772 		 *  If no JOB active, make the LUN reselect path invalid.
4773 		 */
4774 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4775 			lp->head.resel_sa =
4776 				cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4777 	}
4778 
4779 	/*
4780 	 *  We donnot queue more than 1 ccb per target
4781 	 *  with negotiation at any time. If this ccb was
4782 	 *  used for negotiation, clear this info in the tcb.
4783 	 */
4784 	if (cp == tp->nego_cp)
4785 		tp->nego_cp = NULL;
4786 
4787 #ifdef SYM_CONF_IARB_SUPPORT
4788 	/*
4789 	 *  If we just complete the last queued CCB,
4790 	 *  clear this info that is no longer relevant.
4791 	 */
4792 	if (cp == np->last_cp)
4793 		np->last_cp = 0;
4794 #endif
4795 
4796 	/*
4797 	 *  Make this CCB available.
4798 	 */
4799 	cp->cmd = NULL;
4800 	cp->host_status = HS_IDLE;
4801 	sym_remque(&cp->link_ccbq);
4802 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4803 
4804 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4805 	if (lp) {
4806 		sym_remque(&cp->link2_ccbq);
4807 		sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4808 		if (cp->started) {
4809 			if (cp->tag != NO_TAG)
4810 				--lp->started_tags;
4811 			else
4812 				--lp->started_no_tag;
4813 		}
4814 	}
4815 	cp->started = 0;
4816 #endif
4817 }
4818 
4819 /*
4820  *  Allocate a CCB from memory and initialize its fixed part.
4821  */
4822 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4823 {
4824 	struct sym_ccb *cp = NULL;
4825 	int hcode;
4826 
4827 	/*
4828 	 *  Prevent from allocating more CCBs than we can
4829 	 *  queue to the controller.
4830 	 */
4831 	if (np->actccbs >= SYM_CONF_MAX_START)
4832 		return NULL;
4833 
4834 	/*
4835 	 *  Allocate memory for this CCB.
4836 	 */
4837 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4838 	if (!cp)
4839 		goto out_free;
4840 
4841 	/*
4842 	 *  Count it.
4843 	 */
4844 	np->actccbs++;
4845 
4846 	/*
4847 	 *  Compute the bus address of this ccb.
4848 	 */
4849 	cp->ccb_ba = vtobus(cp);
4850 
4851 	/*
4852 	 *  Insert this ccb into the hashed list.
4853 	 */
4854 	hcode = CCB_HASH_CODE(cp->ccb_ba);
4855 	cp->link_ccbh = np->ccbh[hcode];
4856 	np->ccbh[hcode] = cp;
4857 
4858 	/*
4859 	 *  Initialyze the start and restart actions.
4860 	 */
4861 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4862 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4863 
4864  	/*
4865 	 *  Initilialyze some other fields.
4866 	 */
4867 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4868 
4869 	/*
4870 	 *  Chain into free ccb queue.
4871 	 */
4872 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4873 
4874 	/*
4875 	 *  Chain into optionnal lists.
4876 	 */
4877 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4878 	sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4879 #endif
4880 	return cp;
4881 out_free:
4882 	if (cp)
4883 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
4884 	return NULL;
4885 }
4886 
4887 /*
4888  *  Look up a CCB from a DSA value.
4889  */
4890 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4891 {
4892 	int hcode;
4893 	struct sym_ccb *cp;
4894 
4895 	hcode = CCB_HASH_CODE(dsa);
4896 	cp = np->ccbh[hcode];
4897 	while (cp) {
4898 		if (cp->ccb_ba == dsa)
4899 			break;
4900 		cp = cp->link_ccbh;
4901 	}
4902 
4903 	return cp;
4904 }
4905 
4906 /*
4907  *  Target control block initialisation.
4908  *  Nothing important to do at the moment.
4909  */
4910 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4911 {
4912 #if 0	/*  Hmmm... this checking looks paranoid. */
4913 	/*
4914 	 *  Check some alignments required by the chip.
4915 	 */
4916 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
4917 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
4918 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
4919 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
4920 #endif
4921 }
4922 
4923 /*
4924  *  Lun control block allocation and initialization.
4925  */
4926 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4927 {
4928 	struct sym_tcb *tp = &np->target[tn];
4929 	struct sym_lcb *lp = NULL;
4930 
4931 	/*
4932 	 *  Initialize the target control block if not yet.
4933 	 */
4934 	sym_init_tcb (np, tn);
4935 
4936 	/*
4937 	 *  Allocate the LCB bus address array.
4938 	 *  Compute the bus address of this table.
4939 	 */
4940 	if (ln && !tp->luntbl) {
4941 		int i;
4942 
4943 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4944 		if (!tp->luntbl)
4945 			goto fail;
4946 		for (i = 0 ; i < 64 ; i++)
4947 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4948 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4949 	}
4950 
4951 	/*
4952 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
4953 	 */
4954 	if (ln && !tp->lunmp) {
4955 		tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4956 				GFP_KERNEL);
4957 		if (!tp->lunmp)
4958 			goto fail;
4959 	}
4960 
4961 	/*
4962 	 *  Allocate the lcb.
4963 	 *  Make it available to the chip.
4964 	 */
4965 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
4966 	if (!lp)
4967 		goto fail;
4968 	if (ln) {
4969 		tp->lunmp[ln] = lp;
4970 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
4971 	}
4972 	else {
4973 		tp->lun0p = lp;
4974 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
4975 	}
4976 
4977 	/*
4978 	 *  Let the itl task point to error handling.
4979 	 */
4980 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4981 
4982 	/*
4983 	 *  Set the reselect pattern to our default. :)
4984 	 */
4985 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4986 
4987 	/*
4988 	 *  Set user capabilities.
4989 	 */
4990 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
4991 
4992 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4993 	/*
4994 	 *  Initialize device queueing.
4995 	 */
4996 	sym_que_init(&lp->waiting_ccbq);
4997 	sym_que_init(&lp->started_ccbq);
4998 	lp->started_max   = SYM_CONF_MAX_TASK;
4999 	lp->started_limit = SYM_CONF_MAX_TASK;
5000 #endif
5001 
5002 fail:
5003 	return lp;
5004 }
5005 
5006 /*
5007  *  Allocate LCB resources for tagged command queuing.
5008  */
5009 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5010 {
5011 	struct sym_tcb *tp = &np->target[tn];
5012 	struct sym_lcb *lp = sym_lp(tp, ln);
5013 	int i;
5014 
5015 	/*
5016 	 *  Allocate the task table and and the tag allocation
5017 	 *  circular buffer. We want both or none.
5018 	 */
5019 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5020 	if (!lp->itlq_tbl)
5021 		goto fail;
5022 	lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5023 	if (!lp->cb_tags) {
5024 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5025 		lp->itlq_tbl = NULL;
5026 		goto fail;
5027 	}
5028 
5029 	/*
5030 	 *  Initialize the task table with invalid entries.
5031 	 */
5032 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5033 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5034 
5035 	/*
5036 	 *  Fill up the tag buffer with tag numbers.
5037 	 */
5038 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5039 		lp->cb_tags[i] = i;
5040 
5041 	/*
5042 	 *  Make the task table available to SCRIPTS,
5043 	 *  And accept tagged commands now.
5044 	 */
5045 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5046 
5047 	return;
5048 fail:
5049 	return;
5050 }
5051 
5052 /*
5053  *  Queue a SCSI IO to the controller.
5054  */
5055 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5056 {
5057 	struct scsi_device *sdev = cmd->device;
5058 	struct sym_tcb *tp;
5059 	struct sym_lcb *lp;
5060 	u_char	*msgptr;
5061 	u_int   msglen;
5062 	int can_disconnect;
5063 
5064 	/*
5065 	 *  Keep track of the IO in our CCB.
5066 	 */
5067 	cp->cmd = cmd;
5068 
5069 	/*
5070 	 *  Retrieve the target descriptor.
5071 	 */
5072 	tp = &np->target[cp->target];
5073 
5074 	/*
5075 	 *  Retrieve the lun descriptor.
5076 	 */
5077 	lp = sym_lp(tp, sdev->lun);
5078 
5079 	can_disconnect = (cp->tag != NO_TAG) ||
5080 		(lp && (lp->curr_flags & SYM_DISC_ENABLED));
5081 
5082 	msgptr = cp->scsi_smsg;
5083 	msglen = 0;
5084 	msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5085 
5086 	/*
5087 	 *  Build the tag message if present.
5088 	 */
5089 	if (cp->tag != NO_TAG) {
5090 		u_char order = cp->order;
5091 
5092 		switch(order) {
5093 		case M_ORDERED_TAG:
5094 			break;
5095 		case M_HEAD_TAG:
5096 			break;
5097 		default:
5098 			order = M_SIMPLE_TAG;
5099 		}
5100 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5101 		/*
5102 		 *  Avoid too much reordering of SCSI commands.
5103 		 *  The algorithm tries to prevent completion of any
5104 		 *  tagged command from being delayed against more
5105 		 *  than 3 times the max number of queued commands.
5106 		 */
5107 		if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5108 			lp->tags_si = !(lp->tags_si);
5109 			if (lp->tags_sum[lp->tags_si]) {
5110 				order = M_ORDERED_TAG;
5111 				if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5112 					sym_print_addr(cmd,
5113 						"ordered tag forced.\n");
5114 				}
5115 			}
5116 			lp->tags_since = 0;
5117 		}
5118 #endif
5119 		msgptr[msglen++] = order;
5120 
5121 		/*
5122 		 *  For less than 128 tags, actual tags are numbered
5123 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
5124 		 *  with devices that have problems with #TAG 0 or too
5125 		 *  great #TAG numbers. For more tags (up to 256),
5126 		 *  we use directly our tag number.
5127 		 */
5128 #if SYM_CONF_MAX_TASK > (512/4)
5129 		msgptr[msglen++] = cp->tag;
5130 #else
5131 		msgptr[msglen++] = (cp->tag << 1) + 1;
5132 #endif
5133 	}
5134 
5135 	/*
5136 	 *  Build a negotiation message if needed.
5137 	 *  (nego_status is filled by sym_prepare_nego())
5138 	 */
5139 	cp->nego_status = 0;
5140 	if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5141 		msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5142 	}
5143 
5144 	/*
5145 	 *  Startqueue
5146 	 */
5147 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5148 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5149 
5150 	/*
5151 	 *  select
5152 	 */
5153 	cp->phys.select.sel_id		= cp->target;
5154 	cp->phys.select.sel_scntl3	= tp->head.wval;
5155 	cp->phys.select.sel_sxfer	= tp->head.sval;
5156 	cp->phys.select.sel_scntl4	= tp->head.uval;
5157 
5158 	/*
5159 	 *  message
5160 	 */
5161 	cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg);
5162 	cp->phys.smsg.size	= cpu_to_scr(msglen);
5163 
5164 	/*
5165 	 *  status
5166 	 */
5167 	cp->host_xflags		= 0;
5168 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5169 	cp->ssss_status		= S_ILLEGAL;
5170 	cp->xerr_status		= 0;
5171 	cp->host_flags		= 0;
5172 	cp->extra_bytes		= 0;
5173 
5174 	/*
5175 	 *  extreme data pointer.
5176 	 *  shall be positive, so -1 is lower than lowest.:)
5177 	 */
5178 	cp->ext_sg  = -1;
5179 	cp->ext_ofs = 0;
5180 
5181 	/*
5182 	 *  Build the CDB and DATA descriptor block
5183 	 *  and start the IO.
5184 	 */
5185 	return sym_setup_data_and_start(np, cmd, cp);
5186 }
5187 
5188 /*
5189  *  Reset a SCSI target (all LUNs of this target).
5190  */
5191 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5192 {
5193 	struct sym_tcb *tp;
5194 
5195 	if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5196 		return -1;
5197 
5198 	tp = &np->target[target];
5199 	tp->to_reset = 1;
5200 
5201 	np->istat_sem = SEM;
5202 	OUTB(np, nc_istat, SIGP|SEM);
5203 
5204 	return 0;
5205 }
5206 
5207 /*
5208  *  Abort a SCSI IO.
5209  */
5210 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5211 {
5212 	/*
5213 	 *  Check that the IO is active.
5214 	 */
5215 	if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5216 		return -1;
5217 
5218 	/*
5219 	 *  If a previous abort didn't succeed in time,
5220 	 *  perform a BUS reset.
5221 	 */
5222 	if (cp->to_abort) {
5223 		sym_reset_scsi_bus(np, 1);
5224 		return 0;
5225 	}
5226 
5227 	/*
5228 	 *  Mark the CCB for abort and allow time for.
5229 	 */
5230 	cp->to_abort = timed_out ? 2 : 1;
5231 
5232 	/*
5233 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
5234 	 */
5235 	np->istat_sem = SEM;
5236 	OUTB(np, nc_istat, SIGP|SEM);
5237 	return 0;
5238 }
5239 
5240 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5241 {
5242 	struct sym_ccb *cp;
5243 	SYM_QUEHEAD *qp;
5244 
5245 	/*
5246 	 *  Look up our CCB control block.
5247 	 */
5248 	cp = NULL;
5249 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5250 		struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5251 		if (cp2->cmd == cmd) {
5252 			cp = cp2;
5253 			break;
5254 		}
5255 	}
5256 
5257 	return sym_abort_ccb(np, cp, timed_out);
5258 }
5259 
5260 /*
5261  *  Complete execution of a SCSI command with extended
5262  *  error, SCSI status error, or having been auto-sensed.
5263  *
5264  *  The SCRIPTS processor is not running there, so we
5265  *  can safely access IO registers and remove JOBs from
5266  *  the START queue.
5267  *  SCRATCHA is assumed to have been loaded with STARTPOS
5268  *  before the SCRIPTS called the C code.
5269  */
5270 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5271 {
5272 	struct scsi_device *sdev;
5273 	struct scsi_cmnd *cmd;
5274 	struct sym_tcb *tp;
5275 	struct sym_lcb *lp;
5276 	int resid;
5277 	int i;
5278 
5279 	/*
5280 	 *  Paranoid check. :)
5281 	 */
5282 	if (!cp || !cp->cmd)
5283 		return;
5284 
5285 	cmd = cp->cmd;
5286 	sdev = cmd->device;
5287 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5288 		dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5289 			cp->host_status, cp->ssss_status, cp->host_flags);
5290 	}
5291 
5292 	/*
5293 	 *  Get target and lun pointers.
5294 	 */
5295 	tp = &np->target[cp->target];
5296 	lp = sym_lp(tp, sdev->lun);
5297 
5298 	/*
5299 	 *  Check for extended errors.
5300 	 */
5301 	if (cp->xerr_status) {
5302 		if (sym_verbose)
5303 			sym_print_xerr(cmd, cp->xerr_status);
5304 		if (cp->host_status == HS_COMPLETE)
5305 			cp->host_status = HS_COMP_ERR;
5306 	}
5307 
5308 	/*
5309 	 *  Calculate the residual.
5310 	 */
5311 	resid = sym_compute_residual(np, cp);
5312 
5313 	if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5314 		resid  = 0;		 /* throw them away. :)		    */
5315 		cp->sv_resid = 0;
5316 	}
5317 #ifdef DEBUG_2_0_X
5318 if (resid)
5319 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5320 #endif
5321 
5322 	/*
5323 	 *  Dequeue all queued CCBs for that device
5324 	 *  not yet started by SCRIPTS.
5325 	 */
5326 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5327 	i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5328 
5329 	/*
5330 	 *  Restart the SCRIPTS processor.
5331 	 */
5332 	OUTL_DSP(np, SCRIPTA_BA(np, start));
5333 
5334 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5335 	if (cp->host_status == HS_COMPLETE &&
5336 	    cp->ssss_status == S_QUEUE_FULL) {
5337 		if (!lp || lp->started_tags - i < 2)
5338 			goto weirdness;
5339 		/*
5340 		 *  Decrease queue depth as needed.
5341 		 */
5342 		lp->started_max = lp->started_tags - i - 1;
5343 		lp->num_sgood = 0;
5344 
5345 		if (sym_verbose >= 2) {
5346 			sym_print_addr(cmd, " queue depth is now %d\n",
5347 					lp->started_max);
5348 		}
5349 
5350 		/*
5351 		 *  Repair the CCB.
5352 		 */
5353 		cp->host_status = HS_BUSY;
5354 		cp->ssss_status = S_ILLEGAL;
5355 
5356 		/*
5357 		 *  Let's requeue it to device.
5358 		 */
5359 		sym_set_cam_status(cmd, DID_SOFT_ERROR);
5360 		goto finish;
5361 	}
5362 weirdness:
5363 #endif
5364 	/*
5365 	 *  Build result in CAM ccb.
5366 	 */
5367 	sym_set_cam_result_error(np, cp, resid);
5368 
5369 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5370 finish:
5371 #endif
5372 	/*
5373 	 *  Add this one to the COMP queue.
5374 	 */
5375 	sym_remque(&cp->link_ccbq);
5376 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5377 
5378 	/*
5379 	 *  Complete all those commands with either error
5380 	 *  or requeue condition.
5381 	 */
5382 	sym_flush_comp_queue(np, 0);
5383 
5384 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5385 	/*
5386 	 *  Donnot start more than 1 command after an error.
5387 	 */
5388 	sym_start_next_ccbs(np, lp, 1);
5389 #endif
5390 }
5391 
5392 /*
5393  *  Complete execution of a successful SCSI command.
5394  *
5395  *  Only successful commands go to the DONE queue,
5396  *  since we need to have the SCRIPTS processor
5397  *  stopped on any error condition.
5398  *  The SCRIPTS processor is running while we are
5399  *  completing successful commands.
5400  */
5401 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5402 {
5403 	struct sym_tcb *tp;
5404 	struct sym_lcb *lp;
5405 	struct scsi_cmnd *cmd;
5406 	int resid;
5407 
5408 	/*
5409 	 *  Paranoid check. :)
5410 	 */
5411 	if (!cp || !cp->cmd)
5412 		return;
5413 	assert (cp->host_status == HS_COMPLETE);
5414 
5415 	/*
5416 	 *  Get user command.
5417 	 */
5418 	cmd = cp->cmd;
5419 
5420 	/*
5421 	 *  Get target and lun pointers.
5422 	 */
5423 	tp = &np->target[cp->target];
5424 	lp = sym_lp(tp, cp->lun);
5425 
5426 	/*
5427 	 *  If all data have been transferred, given than no
5428 	 *  extended error did occur, there is no residual.
5429 	 */
5430 	resid = 0;
5431 	if (cp->phys.head.lastp != cp->goalp)
5432 		resid = sym_compute_residual(np, cp);
5433 
5434 	/*
5435 	 *  Wrong transfer residuals may be worse than just always
5436 	 *  returning zero. User can disable this feature in
5437 	 *  sym53c8xx.h. Residual support is enabled by default.
5438 	 */
5439 	if (!SYM_SETUP_RESIDUAL_SUPPORT)
5440 		resid  = 0;
5441 #ifdef DEBUG_2_0_X
5442 if (resid)
5443 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5444 #endif
5445 
5446 	/*
5447 	 *  Build result in CAM ccb.
5448 	 */
5449 	sym_set_cam_result_ok(cp, cmd, resid);
5450 
5451 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5452 	/*
5453 	 *  If max number of started ccbs had been reduced,
5454 	 *  increase it if 200 good status received.
5455 	 */
5456 	if (lp && lp->started_max < lp->started_limit) {
5457 		++lp->num_sgood;
5458 		if (lp->num_sgood >= 200) {
5459 			lp->num_sgood = 0;
5460 			++lp->started_max;
5461 			if (sym_verbose >= 2) {
5462 				sym_print_addr(cmd, " queue depth is now %d\n",
5463 				       lp->started_max);
5464 			}
5465 		}
5466 	}
5467 #endif
5468 
5469 	/*
5470 	 *  Free our CCB.
5471 	 */
5472 	sym_free_ccb (np, cp);
5473 
5474 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5475 	/*
5476 	 *  Requeue a couple of awaiting scsi commands.
5477 	 */
5478 	if (!sym_que_empty(&lp->waiting_ccbq))
5479 		sym_start_next_ccbs(np, lp, 2);
5480 #endif
5481 	/*
5482 	 *  Complete the command.
5483 	 */
5484 	sym_xpt_done(np, cmd);
5485 }
5486 
5487 /*
5488  *  Soft-attach the controller.
5489  */
5490 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5491 {
5492 	struct sym_hcb *np = sym_get_hcb(shost);
5493 	int i;
5494 
5495 	/*
5496 	 *  Get some info about the firmware.
5497 	 */
5498 	np->scripta_sz	 = fw->a_size;
5499 	np->scriptb_sz	 = fw->b_size;
5500 	np->scriptz_sz	 = fw->z_size;
5501 	np->fw_setup	 = fw->setup;
5502 	np->fw_patch	 = fw->patch;
5503 	np->fw_name	 = fw->name;
5504 
5505 	/*
5506 	 *  Save setting of some IO registers, so we will
5507 	 *  be able to probe specific implementations.
5508 	 */
5509 	sym_save_initial_setting (np);
5510 
5511 	/*
5512 	 *  Reset the chip now, since it has been reported
5513 	 *  that SCSI clock calibration may not work properly
5514 	 *  if the chip is currently active.
5515 	 */
5516 	sym_chip_reset(np);
5517 
5518 	/*
5519 	 *  Prepare controller and devices settings, according
5520 	 *  to chip features, user set-up and driver set-up.
5521 	 */
5522 	sym_prepare_setting(shost, np, nvram);
5523 
5524 	/*
5525 	 *  Check the PCI clock frequency.
5526 	 *  Must be performed after prepare_setting since it destroys
5527 	 *  STEST1 that is used to probe for the clock doubler.
5528 	 */
5529 	i = sym_getpciclock(np);
5530 	if (i > 37000 && !(np->features & FE_66MHZ))
5531 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5532 			sym_name(np), i);
5533 
5534 	/*
5535 	 *  Allocate the start queue.
5536 	 */
5537 	np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5538 	if (!np->squeue)
5539 		goto attach_failed;
5540 	np->squeue_ba = vtobus(np->squeue);
5541 
5542 	/*
5543 	 *  Allocate the done queue.
5544 	 */
5545 	np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5546 	if (!np->dqueue)
5547 		goto attach_failed;
5548 	np->dqueue_ba = vtobus(np->dqueue);
5549 
5550 	/*
5551 	 *  Allocate the target bus address array.
5552 	 */
5553 	np->targtbl = sym_calloc_dma(256, "TARGTBL");
5554 	if (!np->targtbl)
5555 		goto attach_failed;
5556 	np->targtbl_ba = vtobus(np->targtbl);
5557 
5558 	/*
5559 	 *  Allocate SCRIPTS areas.
5560 	 */
5561 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5562 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5563 	np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5564 	if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5565 		goto attach_failed;
5566 
5567 	/*
5568 	 *  Allocate the array of lists of CCBs hashed by DSA.
5569 	 */
5570 	np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
5571 	if (!np->ccbh)
5572 		goto attach_failed;
5573 
5574 	/*
5575 	 *  Initialyze the CCB free and busy queues.
5576 	 */
5577 	sym_que_init(&np->free_ccbq);
5578 	sym_que_init(&np->busy_ccbq);
5579 	sym_que_init(&np->comp_ccbq);
5580 
5581 	/*
5582 	 *  Initialization for optional handling
5583 	 *  of device queueing.
5584 	 */
5585 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5586 	sym_que_init(&np->dummy_ccbq);
5587 #endif
5588 	/*
5589 	 *  Allocate some CCB. We need at least ONE.
5590 	 */
5591 	if (!sym_alloc_ccb(np))
5592 		goto attach_failed;
5593 
5594 	/*
5595 	 *  Calculate BUS addresses where we are going
5596 	 *  to load the SCRIPTS.
5597 	 */
5598 	np->scripta_ba	= vtobus(np->scripta0);
5599 	np->scriptb_ba	= vtobus(np->scriptb0);
5600 	np->scriptz_ba	= vtobus(np->scriptz0);
5601 
5602 	if (np->ram_ba) {
5603 		np->scripta_ba = np->ram_ba;
5604 		if (np->features & FE_RAM8K) {
5605 			np->scriptb_ba = np->scripta_ba + 4096;
5606 #if 0	/* May get useful for 64 BIT PCI addressing */
5607 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5608 #endif
5609 		}
5610 	}
5611 
5612 	/*
5613 	 *  Copy scripts to controller instance.
5614 	 */
5615 	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5616 	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5617 	memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5618 
5619 	/*
5620 	 *  Setup variable parts in scripts and compute
5621 	 *  scripts bus addresses used from the C code.
5622 	 */
5623 	np->fw_setup(np, fw);
5624 
5625 	/*
5626 	 *  Bind SCRIPTS with physical addresses usable by the
5627 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5628 	 */
5629 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5630 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5631 	sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5632 
5633 #ifdef SYM_CONF_IARB_SUPPORT
5634 	/*
5635 	 *    If user wants IARB to be set when we win arbitration
5636 	 *    and have other jobs, compute the max number of consecutive
5637 	 *    settings of IARB hints before we leave devices a chance to
5638 	 *    arbitrate for reselection.
5639 	 */
5640 #ifdef	SYM_SETUP_IARB_MAX
5641 	np->iarb_max = SYM_SETUP_IARB_MAX;
5642 #else
5643 	np->iarb_max = 4;
5644 #endif
5645 #endif
5646 
5647 	/*
5648 	 *  Prepare the idle and invalid task actions.
5649 	 */
5650 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5651 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5652 	np->idletask_ba		= vtobus(&np->idletask);
5653 
5654 	np->notask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5655 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5656 	np->notask_ba		= vtobus(&np->notask);
5657 
5658 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5659 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5660 	np->bad_itl_ba		= vtobus(&np->bad_itl);
5661 
5662 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5663 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5664 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
5665 
5666 	/*
5667 	 *  Allocate and prepare the lun JUMP table that is used
5668 	 *  for a target prior the probing of devices (bad lun table).
5669 	 *  A private table will be allocated for the target on the
5670 	 *  first INQUIRY response received.
5671 	 */
5672 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5673 	if (!np->badluntbl)
5674 		goto attach_failed;
5675 
5676 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5677 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
5678 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5679 
5680 	/*
5681 	 *  Prepare the bus address array that contains the bus
5682 	 *  address of each target control block.
5683 	 *  For now, assume all logical units are wrong. :)
5684 	 */
5685 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5686 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5687 		np->target[i].head.luntbl_sa =
5688 				cpu_to_scr(vtobus(np->badluntbl));
5689 		np->target[i].head.lun0_sa =
5690 				cpu_to_scr(vtobus(&np->badlun_sa));
5691 	}
5692 
5693 	/*
5694 	 *  Now check the cache handling of the pci chipset.
5695 	 */
5696 	if (sym_snooptest (np)) {
5697 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5698 		goto attach_failed;
5699 	}
5700 
5701 	/*
5702 	 *  Sigh! we are done.
5703 	 */
5704 	return 0;
5705 
5706 attach_failed:
5707 	return -ENXIO;
5708 }
5709 
5710 /*
5711  *  Free everything that has been allocated for this device.
5712  */
5713 void sym_hcb_free(struct sym_hcb *np)
5714 {
5715 	SYM_QUEHEAD *qp;
5716 	struct sym_ccb *cp;
5717 	struct sym_tcb *tp;
5718 	int target;
5719 
5720 	if (np->scriptz0)
5721 		sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5722 	if (np->scriptb0)
5723 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5724 	if (np->scripta0)
5725 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5726 	if (np->squeue)
5727 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5728 	if (np->dqueue)
5729 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5730 
5731 	if (np->actccbs) {
5732 		while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
5733 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5734 			sym_mfree_dma(cp, sizeof(*cp), "CCB");
5735 		}
5736 	}
5737 	kfree(np->ccbh);
5738 
5739 	if (np->badluntbl)
5740 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5741 
5742 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5743 		tp = &np->target[target];
5744 		if (tp->luntbl)
5745 			sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5746 #if SYM_CONF_MAX_LUN > 1
5747 		kfree(tp->lunmp);
5748 #endif
5749 	}
5750 	if (np->targtbl)
5751 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5752 }
5753