1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 4 * of PCI-SCSI IO processors. 5 * 6 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 7 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx> 8 * 9 * This driver is derived from the Linux sym53c8xx driver. 10 * Copyright (C) 1998-2000 Gerard Roudier 11 * 12 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 13 * a port of the FreeBSD ncr driver to Linux-1.2.13. 14 * 15 * The original ncr driver has been written for 386bsd and FreeBSD by 16 * Wolfgang Stanglmeier <wolf@cologne.de> 17 * Stefan Esser <se@mi.Uni-Koeln.de> 18 * Copyright (C) 1994 Wolfgang Stanglmeier 19 * 20 * Other major contributions: 21 * 22 * NVRAM detection and reading. 23 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 24 * 25 *----------------------------------------------------------------------------- 26 */ 27 28 #include <linux/slab.h> 29 #include <asm/param.h> /* for timeouts in units of HZ */ 30 31 #include "sym_glue.h" 32 #include "sym_nvram.h" 33 34 #if 0 35 #define SYM_DEBUG_GENERIC_SUPPORT 36 #endif 37 38 /* 39 * Needed function prototypes. 40 */ 41 static void sym_int_ma (struct sym_hcb *np); 42 static void sym_int_sir(struct sym_hcb *); 43 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np); 44 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa); 45 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln); 46 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp); 47 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp); 48 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp); 49 50 /* 51 * Print a buffer in hexadecimal format with a ".\n" at end. 52 */ 53 static void sym_printl_hex(u_char *p, int n) 54 { 55 while (n-- > 0) 56 printf (" %x", *p++); 57 printf (".\n"); 58 } 59 60 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg) 61 { 62 sym_print_addr(cp->cmd, "%s: ", label); 63 64 spi_print_msg(msg); 65 printf("\n"); 66 } 67 68 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg) 69 { 70 struct sym_tcb *tp = &np->target[target]; 71 dev_info(&tp->starget->dev, "%s: ", label); 72 73 spi_print_msg(msg); 74 printf("\n"); 75 } 76 77 /* 78 * Print something that tells about extended errors. 79 */ 80 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status) 81 { 82 if (x_status & XE_PARITY_ERR) { 83 sym_print_addr(cmd, "unrecovered SCSI parity error.\n"); 84 } 85 if (x_status & XE_EXTRA_DATA) { 86 sym_print_addr(cmd, "extraneous data discarded.\n"); 87 } 88 if (x_status & XE_BAD_PHASE) { 89 sym_print_addr(cmd, "illegal scsi phase (4/5).\n"); 90 } 91 if (x_status & XE_SODL_UNRUN) { 92 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n"); 93 } 94 if (x_status & XE_SWIDE_OVRUN) { 95 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n"); 96 } 97 } 98 99 /* 100 * Return a string for SCSI BUS mode. 101 */ 102 static char *sym_scsi_bus_mode(int mode) 103 { 104 switch(mode) { 105 case SMODE_HVD: return "HVD"; 106 case SMODE_SE: return "SE"; 107 case SMODE_LVD: return "LVD"; 108 } 109 return "??"; 110 } 111 112 /* 113 * Soft reset the chip. 114 * 115 * Raising SRST when the chip is running may cause 116 * problems on dual function chips (see below). 117 * On the other hand, LVD devices need some delay 118 * to settle and report actual BUS mode in STEST4. 119 */ 120 static void sym_chip_reset (struct sym_hcb *np) 121 { 122 OUTB(np, nc_istat, SRST); 123 INB(np, nc_mbox1); 124 udelay(10); 125 OUTB(np, nc_istat, 0); 126 INB(np, nc_mbox1); 127 udelay(2000); /* For BUS MODE to settle */ 128 } 129 130 /* 131 * Really soft reset the chip.:) 132 * 133 * Some 896 and 876 chip revisions may hang-up if we set 134 * the SRST (soft reset) bit at the wrong time when SCRIPTS 135 * are running. 136 * So, we need to abort the current operation prior to 137 * soft resetting the chip. 138 */ 139 static void sym_soft_reset (struct sym_hcb *np) 140 { 141 u_char istat = 0; 142 int i; 143 144 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN)) 145 goto do_chip_reset; 146 147 OUTB(np, nc_istat, CABRT); 148 for (i = 100000 ; i ; --i) { 149 istat = INB(np, nc_istat); 150 if (istat & SIP) { 151 INW(np, nc_sist); 152 } 153 else if (istat & DIP) { 154 if (INB(np, nc_dstat) & ABRT) 155 break; 156 } 157 udelay(5); 158 } 159 OUTB(np, nc_istat, 0); 160 if (!i) 161 printf("%s: unable to abort current chip operation, " 162 "ISTAT=0x%02x.\n", sym_name(np), istat); 163 do_chip_reset: 164 sym_chip_reset(np); 165 } 166 167 /* 168 * Start reset process. 169 * 170 * The interrupt handler will reinitialize the chip. 171 */ 172 static void sym_start_reset(struct sym_hcb *np) 173 { 174 sym_reset_scsi_bus(np, 1); 175 } 176 177 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int) 178 { 179 u32 term; 180 int retv = 0; 181 182 sym_soft_reset(np); /* Soft reset the chip */ 183 if (enab_int) 184 OUTW(np, nc_sien, RST); 185 /* 186 * Enable Tolerant, reset IRQD if present and 187 * properly set IRQ mode, prior to resetting the bus. 188 */ 189 OUTB(np, nc_stest3, TE); 190 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM)); 191 OUTB(np, nc_scntl1, CRST); 192 INB(np, nc_mbox1); 193 udelay(200); 194 195 if (!SYM_SETUP_SCSI_BUS_CHECK) 196 goto out; 197 /* 198 * Check for no terminators or SCSI bus shorts to ground. 199 * Read SCSI data bus, data parity bits and control signals. 200 * We are expecting RESET to be TRUE and other signals to be 201 * FALSE. 202 */ 203 term = INB(np, nc_sstat0); 204 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 205 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */ 206 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */ 207 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 208 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */ 209 210 if (!np->maxwide) 211 term &= 0x3ffff; 212 213 if (term != (2<<7)) { 214 printf("%s: suspicious SCSI data while resetting the BUS.\n", 215 sym_name(np)); 216 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 217 "0x%lx, expecting 0x%lx\n", 218 sym_name(np), 219 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 220 (u_long)term, (u_long)(2<<7)); 221 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 222 retv = 1; 223 } 224 out: 225 OUTB(np, nc_scntl1, 0); 226 return retv; 227 } 228 229 /* 230 * Select SCSI clock frequency 231 */ 232 static void sym_selectclock(struct sym_hcb *np, u_char scntl3) 233 { 234 /* 235 * If multiplier not present or not selected, leave here. 236 */ 237 if (np->multiplier <= 1) { 238 OUTB(np, nc_scntl3, scntl3); 239 return; 240 } 241 242 if (sym_verbose >= 2) 243 printf ("%s: enabling clock multiplier\n", sym_name(np)); 244 245 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */ 246 /* 247 * Wait for the LCKFRQ bit to be set if supported by the chip. 248 * Otherwise wait 50 micro-seconds (at least). 249 */ 250 if (np->features & FE_LCKFRQ) { 251 int i = 20; 252 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0) 253 udelay(20); 254 if (!i) 255 printf("%s: the chip cannot lock the frequency\n", 256 sym_name(np)); 257 } else { 258 INB(np, nc_mbox1); 259 udelay(50+10); 260 } 261 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */ 262 OUTB(np, nc_scntl3, scntl3); 263 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 264 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */ 265 } 266 267 268 /* 269 * Determine the chip's clock frequency. 270 * 271 * This is essential for the negotiation of the synchronous 272 * transfer rate. 273 * 274 * Note: we have to return the correct value. 275 * THERE IS NO SAFE DEFAULT VALUE. 276 * 277 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 278 * 53C860 and 53C875 rev. 1 support fast20 transfers but 279 * do not have a clock doubler and so are provided with a 280 * 80 MHz clock. All other fast20 boards incorporate a doubler 281 * and so should be delivered with a 40 MHz clock. 282 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 283 * clock and provide a clock quadrupler (160 Mhz). 284 */ 285 286 /* 287 * calculate SCSI clock frequency (in KHz) 288 */ 289 static unsigned getfreq (struct sym_hcb *np, int gen) 290 { 291 unsigned int ms = 0; 292 unsigned int f; 293 294 /* 295 * Measure GEN timer delay in order 296 * to calculate SCSI clock frequency 297 * 298 * This code will never execute too 299 * many loop iterations (if DELAY is 300 * reasonably correct). It could get 301 * too low a delay (too high a freq.) 302 * if the CPU is slow executing the 303 * loop for some reason (an NMI, for 304 * example). For this reason we will 305 * if multiple measurements are to be 306 * performed trust the higher delay 307 * (lower frequency returned). 308 */ 309 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */ 310 INW(np, nc_sist); /* clear pending scsi interrupt */ 311 OUTB(np, nc_dien, 0); /* mask all dma interrupts */ 312 INW(np, nc_sist); /* another one, just to be sure :) */ 313 /* 314 * The C1010-33 core does not report GEN in SIST, 315 * if this interrupt is masked in SIEN. 316 * I don't know yet if the C1010-66 behaves the same way. 317 */ 318 if (np->features & FE_C10) { 319 OUTW(np, nc_sien, GEN); 320 OUTB(np, nc_istat1, SIRQD); 321 } 322 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 323 OUTB(np, nc_stime1, 0); /* disable general purpose timer */ 324 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 325 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000) 326 udelay(1000/4); /* count in 1/4 of ms */ 327 OUTB(np, nc_stime1, 0); /* disable general purpose timer */ 328 /* 329 * Undo C1010-33 specific settings. 330 */ 331 if (np->features & FE_C10) { 332 OUTW(np, nc_sien, 0); 333 OUTB(np, nc_istat1, 0); 334 } 335 /* 336 * set prescaler to divide by whatever 0 means 337 * 0 ought to choose divide by 2, but appears 338 * to set divide by 3.5 mode in my 53c810 ... 339 */ 340 OUTB(np, nc_scntl3, 0); 341 342 /* 343 * adjust for prescaler, and convert into KHz 344 */ 345 f = ms ? ((1 << gen) * (4340*4)) / ms : 0; 346 347 /* 348 * The C1010-33 result is biased by a factor 349 * of 2/3 compared to earlier chips. 350 */ 351 if (np->features & FE_C10) 352 f = (f * 2) / 3; 353 354 if (sym_verbose >= 2) 355 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 356 sym_name(np), gen, ms/4, f); 357 358 return f; 359 } 360 361 static unsigned sym_getfreq (struct sym_hcb *np) 362 { 363 u_int f1, f2; 364 int gen = 8; 365 366 getfreq (np, gen); /* throw away first result */ 367 f1 = getfreq (np, gen); 368 f2 = getfreq (np, gen); 369 if (f1 > f2) f1 = f2; /* trust lower result */ 370 return f1; 371 } 372 373 /* 374 * Get/probe chip SCSI clock frequency 375 */ 376 static void sym_getclock (struct sym_hcb *np, int mult) 377 { 378 unsigned char scntl3 = np->sv_scntl3; 379 unsigned char stest1 = np->sv_stest1; 380 unsigned f1; 381 382 np->multiplier = 1; 383 f1 = 40000; 384 /* 385 * True with 875/895/896/895A with clock multiplier selected 386 */ 387 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 388 if (sym_verbose >= 2) 389 printf ("%s: clock multiplier found\n", sym_name(np)); 390 np->multiplier = mult; 391 } 392 393 /* 394 * If multiplier not found or scntl3 not 7,5,3, 395 * reset chip and get frequency from general purpose timer. 396 * Otherwise trust scntl3 BIOS setting. 397 */ 398 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 399 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */ 400 f1 = sym_getfreq (np); 401 402 if (sym_verbose) 403 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 404 405 if (f1 < 45000) f1 = 40000; 406 else if (f1 < 55000) f1 = 50000; 407 else f1 = 80000; 408 409 if (f1 < 80000 && mult > 1) { 410 if (sym_verbose >= 2) 411 printf ("%s: clock multiplier assumed\n", 412 sym_name(np)); 413 np->multiplier = mult; 414 } 415 } else { 416 if ((scntl3 & 7) == 3) f1 = 40000; 417 else if ((scntl3 & 7) == 5) f1 = 80000; 418 else f1 = 160000; 419 420 f1 /= np->multiplier; 421 } 422 423 /* 424 * Compute controller synchronous parameters. 425 */ 426 f1 *= np->multiplier; 427 np->clock_khz = f1; 428 } 429 430 /* 431 * Get/probe PCI clock frequency 432 */ 433 static int sym_getpciclock (struct sym_hcb *np) 434 { 435 int f = 0; 436 437 /* 438 * For now, we only need to know about the actual 439 * PCI BUS clock frequency for C1010-66 chips. 440 */ 441 #if 1 442 if (np->features & FE_66MHZ) { 443 #else 444 if (1) { 445 #endif 446 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 447 f = sym_getfreq(np); 448 OUTB(np, nc_stest1, 0); 449 } 450 np->pciclk_khz = f; 451 452 return f; 453 } 454 455 /* 456 * SYMBIOS chip clock divisor table. 457 * 458 * Divisors are multiplied by 10,000,000 in order to make 459 * calculations more simple. 460 */ 461 #define _5M 5000000 462 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 463 464 /* 465 * Get clock factor and sync divisor for a given 466 * synchronous factor period. 467 */ 468 static int 469 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 470 { 471 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 472 int div = np->clock_divn; /* Number of divisors supported */ 473 u32 fak; /* Sync factor in sxfer */ 474 u32 per; /* Period in tenths of ns */ 475 u32 kpc; /* (per * clk) */ 476 int ret; 477 478 /* 479 * Compute the synchronous period in tenths of nano-seconds 480 */ 481 if (dt && sfac <= 9) per = 125; 482 else if (sfac <= 10) per = 250; 483 else if (sfac == 11) per = 303; 484 else if (sfac == 12) per = 500; 485 else per = 40 * sfac; 486 ret = per; 487 488 kpc = per * clk; 489 if (dt) 490 kpc <<= 1; 491 492 /* 493 * For earliest C10 revision 0, we cannot use extra 494 * clocks for the setting of the SCSI clocking. 495 * Note that this limits the lowest sync data transfer 496 * to 5 Mega-transfers per second and may result in 497 * using higher clock divisors. 498 */ 499 #if 1 500 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 501 /* 502 * Look for the lowest clock divisor that allows an 503 * output speed not faster than the period. 504 */ 505 while (div > 0) { 506 --div; 507 if (kpc > (div_10M[div] << 2)) { 508 ++div; 509 break; 510 } 511 } 512 fak = 0; /* No extra clocks */ 513 if (div == np->clock_divn) { /* Are we too fast ? */ 514 ret = -1; 515 } 516 *divp = div; 517 *fakp = fak; 518 return ret; 519 } 520 #endif 521 522 /* 523 * Look for the greatest clock divisor that allows an 524 * input speed faster than the period. 525 */ 526 while (--div > 0) 527 if (kpc >= (div_10M[div] << 2)) break; 528 529 /* 530 * Calculate the lowest clock factor that allows an output 531 * speed not faster than the period, and the max output speed. 532 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 533 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 534 */ 535 if (dt) { 536 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 537 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 538 } else { 539 fak = (kpc - 1) / div_10M[div] + 1 - 4; 540 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 541 } 542 543 /* 544 * Check against our hardware limits, or bugs :). 545 */ 546 if (fak > 2) { 547 fak = 2; 548 ret = -1; 549 } 550 551 /* 552 * Compute and return sync parameters. 553 */ 554 *divp = div; 555 *fakp = fak; 556 557 return ret; 558 } 559 560 /* 561 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 562 * 128 transfers. All chips support at least 16 transfers 563 * bursts. The 825A, 875 and 895 chips support bursts of up 564 * to 128 transfers and the 895A and 896 support bursts of up 565 * to 64 transfers. All other chips support up to 16 566 * transfers bursts. 567 * 568 * For PCI 32 bit data transfers each transfer is a DWORD. 569 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 570 * 571 * We use log base 2 (burst length) as internal code, with 572 * value 0 meaning "burst disabled". 573 */ 574 575 /* 576 * Burst length from burst code. 577 */ 578 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 579 580 /* 581 * Burst code from io register bits. 582 */ 583 #define burst_code(dmode, ctest4, ctest5) \ 584 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 585 586 /* 587 * Set initial io register bits from burst code. 588 */ 589 static inline void sym_init_burst(struct sym_hcb *np, u_char bc) 590 { 591 np->rv_ctest4 &= ~0x80; 592 np->rv_dmode &= ~(0x3 << 6); 593 np->rv_ctest5 &= ~0x4; 594 595 if (!bc) { 596 np->rv_ctest4 |= 0x80; 597 } 598 else { 599 --bc; 600 np->rv_dmode |= ((bc & 0x3) << 6); 601 np->rv_ctest5 |= (bc & 0x4); 602 } 603 } 604 605 /* 606 * Save initial settings of some IO registers. 607 * Assumed to have been set by BIOS. 608 * We cannot reset the chip prior to reading the 609 * IO registers, since informations will be lost. 610 * Since the SCRIPTS processor may be running, this 611 * is not safe on paper, but it seems to work quite 612 * well. :) 613 */ 614 static void sym_save_initial_setting (struct sym_hcb *np) 615 { 616 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a; 617 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07; 618 np->sv_dmode = INB(np, nc_dmode) & 0xce; 619 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8; 620 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01; 621 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80; 622 np->sv_gpcntl = INB(np, nc_gpcntl); 623 np->sv_stest1 = INB(np, nc_stest1); 624 np->sv_stest2 = INB(np, nc_stest2) & 0x20; 625 np->sv_stest4 = INB(np, nc_stest4); 626 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 627 np->sv_scntl4 = INB(np, nc_scntl4); 628 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04; 629 } 630 else 631 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24; 632 } 633 634 /* 635 * Set SCSI BUS mode. 636 * - LVD capable chips (895/895A/896/1010) report the current BUS mode 637 * through the STEST4 IO register. 638 * - For previous generation chips (825/825A/875), the user has to tell us 639 * how to check against HVD, since a 100% safe algorithm is not possible. 640 */ 641 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram) 642 { 643 if (np->scsi_mode) 644 return; 645 646 np->scsi_mode = SMODE_SE; 647 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 648 np->scsi_mode = (np->sv_stest4 & SMODE); 649 else if (np->features & FE_DIFF) { 650 if (SYM_SETUP_SCSI_DIFF == 1) { 651 if (np->sv_scntl3) { 652 if (np->sv_stest2 & 0x20) 653 np->scsi_mode = SMODE_HVD; 654 } else if (nvram->type == SYM_SYMBIOS_NVRAM) { 655 if (!(INB(np, nc_gpreg) & 0x08)) 656 np->scsi_mode = SMODE_HVD; 657 } 658 } else if (SYM_SETUP_SCSI_DIFF == 2) 659 np->scsi_mode = SMODE_HVD; 660 } 661 if (np->scsi_mode == SMODE_HVD) 662 np->rv_stest2 |= 0x20; 663 } 664 665 /* 666 * Prepare io register values used by sym_start_up() 667 * according to selected and supported features. 668 */ 669 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram) 670 { 671 struct sym_data *sym_data = shost_priv(shost); 672 struct pci_dev *pdev = sym_data->pdev; 673 u_char burst_max; 674 u32 period; 675 int i; 676 677 np->maxwide = (np->features & FE_WIDE) ? 1 : 0; 678 679 /* 680 * Guess the frequency of the chip's clock. 681 */ 682 if (np->features & (FE_ULTRA3 | FE_ULTRA2)) 683 np->clock_khz = 160000; 684 else if (np->features & FE_ULTRA) 685 np->clock_khz = 80000; 686 else 687 np->clock_khz = 40000; 688 689 /* 690 * Get the clock multiplier factor. 691 */ 692 if (np->features & FE_QUAD) 693 np->multiplier = 4; 694 else if (np->features & FE_DBLR) 695 np->multiplier = 2; 696 else 697 np->multiplier = 1; 698 699 /* 700 * Measure SCSI clock frequency for chips 701 * it may vary from assumed one. 702 */ 703 if (np->features & FE_VARCLK) 704 sym_getclock(np, np->multiplier); 705 706 /* 707 * Divisor to be used for async (timer pre-scaler). 708 */ 709 i = np->clock_divn - 1; 710 while (--i >= 0) { 711 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 712 ++i; 713 break; 714 } 715 } 716 np->rv_scntl3 = i+1; 717 718 /* 719 * The C1010 uses hardwired divisors for async. 720 * So, we just throw away, the async. divisor.:-) 721 */ 722 if (np->features & FE_C10) 723 np->rv_scntl3 = 0; 724 725 /* 726 * Minimum synchronous period factor supported by the chip. 727 * Btw, 'period' is in tenths of nanoseconds. 728 */ 729 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 730 731 if (period <= 250) np->minsync = 10; 732 else if (period <= 303) np->minsync = 11; 733 else if (period <= 500) np->minsync = 12; 734 else np->minsync = (period + 40 - 1) / 40; 735 736 /* 737 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 738 */ 739 if (np->minsync < 25 && 740 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 741 np->minsync = 25; 742 else if (np->minsync < 12 && 743 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 744 np->minsync = 12; 745 746 /* 747 * Maximum synchronous period factor supported by the chip. 748 */ 749 period = div64_ul(11 * div_10M[np->clock_divn - 1], 4 * np->clock_khz); 750 np->maxsync = period > 2540 ? 254 : period / 10; 751 752 /* 753 * If chip is a C1010, guess the sync limits in DT mode. 754 */ 755 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 756 if (np->clock_khz == 160000) { 757 np->minsync_dt = 9; 758 np->maxsync_dt = 50; 759 np->maxoffs_dt = nvram->type ? 62 : 31; 760 } 761 } 762 763 /* 764 * 64 bit addressing (895A/896/1010) ? 765 */ 766 if (np->features & FE_DAC) { 767 if (!use_dac(np)) 768 np->rv_ccntl1 |= (DDAC); 769 else if (SYM_CONF_DMA_ADDRESSING_MODE == 1) 770 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 771 else if (SYM_CONF_DMA_ADDRESSING_MODE == 2) 772 np->rv_ccntl1 |= (0 | EXTIBMV); 773 } 774 775 /* 776 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 777 */ 778 if (np->features & FE_NOPM) 779 np->rv_ccntl0 |= (ENPMJ); 780 781 /* 782 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed. 783 * In dual channel mode, contention occurs if internal cycles 784 * are used. Disable internal cycles. 785 */ 786 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 && 787 pdev->revision < 0x1) 788 np->rv_ccntl0 |= DILS; 789 790 /* 791 * Select burst length (dwords) 792 */ 793 burst_max = SYM_SETUP_BURST_ORDER; 794 if (burst_max == 255) 795 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 796 np->sv_ctest5); 797 if (burst_max > 7) 798 burst_max = 7; 799 if (burst_max > np->maxburst) 800 burst_max = np->maxburst; 801 802 /* 803 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 804 * This chip and the 860 Rev 1 may wrongly use PCI cache line 805 * based transactions on LOAD/STORE instructions. So we have 806 * to prevent these chips from using such PCI transactions in 807 * this driver. The generic ncr driver that does not use 808 * LOAD/STORE instructions does not need this work-around. 809 */ 810 if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 && 811 pdev->revision >= 0x10 && pdev->revision <= 0x11) || 812 (pdev->device == PCI_DEVICE_ID_NCR_53C860 && 813 pdev->revision <= 0x1)) 814 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 815 816 /* 817 * Select all supported special features. 818 * If we are using on-board RAM for scripts, prefetch (PFEN) 819 * does not help, but burst op fetch (BOF) does. 820 * Disabling PFEN makes sure BOF will be used. 821 */ 822 if (np->features & FE_ERL) 823 np->rv_dmode |= ERL; /* Enable Read Line */ 824 if (np->features & FE_BOF) 825 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 826 if (np->features & FE_ERMP) 827 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 828 #if 1 829 if ((np->features & FE_PFEN) && !np->ram_ba) 830 #else 831 if (np->features & FE_PFEN) 832 #endif 833 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 834 if (np->features & FE_CLSE) 835 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 836 if (np->features & FE_WRIE) 837 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 838 if (np->features & FE_DFS) 839 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 840 841 /* 842 * Select some other 843 */ 844 np->rv_ctest4 |= MPEE; /* Master parity checking */ 845 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 846 847 /* 848 * Get parity checking, host ID and verbose mode from NVRAM 849 */ 850 np->myaddr = 255; 851 np->scsi_mode = 0; 852 sym_nvram_setup_host(shost, np, nvram); 853 854 /* 855 * Get SCSI addr of host adapter (set by bios?). 856 */ 857 if (np->myaddr == 255) { 858 np->myaddr = INB(np, nc_scid) & 0x07; 859 if (!np->myaddr) 860 np->myaddr = SYM_SETUP_HOST_ID; 861 } 862 863 /* 864 * Prepare initial io register bits for burst length 865 */ 866 sym_init_burst(np, burst_max); 867 868 sym_set_bus_mode(np, nvram); 869 870 /* 871 * Set LED support from SCRIPTS. 872 * Ignore this feature for boards known to use a 873 * specific GPIO wiring and for the 895A, 896 874 * and 1010 that drive the LED directly. 875 */ 876 if ((SYM_SETUP_SCSI_LED || 877 (nvram->type == SYM_SYMBIOS_NVRAM || 878 (nvram->type == SYM_TEKRAM_NVRAM && 879 pdev->device == PCI_DEVICE_ID_NCR_53C895))) && 880 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 881 np->features |= FE_LED0; 882 883 /* 884 * Set irq mode. 885 */ 886 switch(SYM_SETUP_IRQ_MODE & 3) { 887 case 2: 888 np->rv_dcntl |= IRQM; 889 break; 890 case 1: 891 np->rv_dcntl |= (np->sv_dcntl & IRQM); 892 break; 893 default: 894 break; 895 } 896 897 /* 898 * Configure targets according to driver setup. 899 * If NVRAM present get targets setup from NVRAM. 900 */ 901 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 902 struct sym_tcb *tp = &np->target[i]; 903 904 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 905 tp->usrtags = SYM_SETUP_MAX_TAG; 906 tp->usr_width = np->maxwide; 907 tp->usr_period = 9; 908 909 sym_nvram_setup_target(tp, i, nvram); 910 911 if (!tp->usrtags) 912 tp->usrflags &= ~SYM_TAGS_ENABLED; 913 } 914 915 /* 916 * Let user know about the settings. 917 */ 918 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np), 919 sym_nvram_type(nvram), np->myaddr, 920 (np->features & FE_ULTRA3) ? 80 : 921 (np->features & FE_ULTRA2) ? 40 : 922 (np->features & FE_ULTRA) ? 20 : 10, 923 sym_scsi_bus_mode(np->scsi_mode), 924 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 925 /* 926 * Tell him more on demand. 927 */ 928 if (sym_verbose) { 929 printf("%s: %s IRQ line driver%s\n", 930 sym_name(np), 931 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 932 np->ram_ba ? ", using on-chip SRAM" : ""); 933 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 934 if (np->features & FE_NOPM) 935 printf("%s: handling phase mismatch from SCRIPTS.\n", 936 sym_name(np)); 937 } 938 /* 939 * And still more. 940 */ 941 if (sym_verbose >= 2) { 942 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 943 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 944 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 945 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 946 947 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 948 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 949 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 950 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 951 } 952 953 return 0; 954 } 955 956 /* 957 * Test the pci bus snoop logic :-( 958 * 959 * Has to be called with interrupts disabled. 960 */ 961 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO 962 static int sym_regtest(struct sym_hcb *np) 963 { 964 register volatile u32 data; 965 /* 966 * chip registers may NOT be cached. 967 * write 0xffffffff to a read only register area, 968 * and try to read it back. 969 */ 970 data = 0xffffffff; 971 OUTL(np, nc_dstat, data); 972 data = INL(np, nc_dstat); 973 #if 1 974 if (data == 0xffffffff) { 975 #else 976 if ((data & 0xe2f0fffd) != 0x02000080) { 977 #endif 978 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 979 (unsigned) data); 980 return 0x10; 981 } 982 return 0; 983 } 984 #else 985 static inline int sym_regtest(struct sym_hcb *np) 986 { 987 return 0; 988 } 989 #endif 990 991 static int sym_snooptest(struct sym_hcb *np) 992 { 993 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 994 int i, err; 995 996 err = sym_regtest(np); 997 if (err) 998 return err; 999 restart_test: 1000 /* 1001 * Enable Master Parity Checking as we intend 1002 * to enable it for normal operations. 1003 */ 1004 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE)); 1005 /* 1006 * init 1007 */ 1008 pc = SCRIPTZ_BA(np, snooptest); 1009 host_wr = 1; 1010 sym_wr = 2; 1011 /* 1012 * Set memory and register. 1013 */ 1014 np->scratch = cpu_to_scr(host_wr); 1015 OUTL(np, nc_temp, sym_wr); 1016 /* 1017 * Start script (exchange values) 1018 */ 1019 OUTL(np, nc_dsa, np->hcb_ba); 1020 OUTL_DSP(np, pc); 1021 /* 1022 * Wait 'til done (with timeout) 1023 */ 1024 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 1025 if (INB(np, nc_istat) & (INTF|SIP|DIP)) 1026 break; 1027 if (i>=SYM_SNOOP_TIMEOUT) { 1028 printf ("CACHE TEST FAILED: timeout.\n"); 1029 return (0x20); 1030 } 1031 /* 1032 * Check for fatal DMA errors. 1033 */ 1034 dstat = INB(np, nc_dstat); 1035 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 1036 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 1037 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 1038 "DISABLING MASTER DATA PARITY CHECKING.\n", 1039 sym_name(np)); 1040 np->rv_ctest4 &= ~MPEE; 1041 goto restart_test; 1042 } 1043 #endif 1044 if (dstat & (MDPE|BF|IID)) { 1045 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 1046 return (0x80); 1047 } 1048 /* 1049 * Save termination position. 1050 */ 1051 pc = INL(np, nc_dsp); 1052 /* 1053 * Read memory and register. 1054 */ 1055 host_rd = scr_to_cpu(np->scratch); 1056 sym_rd = INL(np, nc_scratcha); 1057 sym_bk = INL(np, nc_temp); 1058 /* 1059 * Check termination position. 1060 */ 1061 if (pc != SCRIPTZ_BA(np, snoopend)+8) { 1062 printf ("CACHE TEST FAILED: script execution failed.\n"); 1063 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 1064 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc, 1065 (u_long) SCRIPTZ_BA(np, snoopend) +8); 1066 return (0x40); 1067 } 1068 /* 1069 * Show results. 1070 */ 1071 if (host_wr != sym_rd) { 1072 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 1073 (int) host_wr, (int) sym_rd); 1074 err |= 1; 1075 } 1076 if (host_rd != sym_wr) { 1077 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 1078 (int) sym_wr, (int) host_rd); 1079 err |= 2; 1080 } 1081 if (sym_bk != sym_wr) { 1082 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 1083 (int) sym_wr, (int) sym_bk); 1084 err |= 4; 1085 } 1086 1087 return err; 1088 } 1089 1090 /* 1091 * log message for real hard errors 1092 * 1093 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc). 1094 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 1095 * 1096 * exception register: 1097 * ds: dstat 1098 * si: sist 1099 * 1100 * SCSI bus lines: 1101 * so: control lines as driven by chip. 1102 * si: control lines as seen by chip. 1103 * sd: scsi data lines as seen by chip. 1104 * 1105 * wide/fastmode: 1106 * sx: sxfer (see the manual) 1107 * s3: scntl3 (see the manual) 1108 * s4: scntl4 (see the manual) 1109 * 1110 * current script command: 1111 * dsp: script address (relative to start of script). 1112 * dbc: first word of script command. 1113 * 1114 * First 24 register of the chip: 1115 * r0..rf 1116 */ 1117 static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat) 1118 { 1119 struct sym_hcb *np = sym_get_hcb(shost); 1120 u32 dsp; 1121 int script_ofs; 1122 int script_size; 1123 char *script_name; 1124 u_char *script_base; 1125 int i; 1126 1127 dsp = INL(np, nc_dsp); 1128 1129 if (dsp > np->scripta_ba && 1130 dsp <= np->scripta_ba + np->scripta_sz) { 1131 script_ofs = dsp - np->scripta_ba; 1132 script_size = np->scripta_sz; 1133 script_base = (u_char *) np->scripta0; 1134 script_name = "scripta"; 1135 } 1136 else if (np->scriptb_ba < dsp && 1137 dsp <= np->scriptb_ba + np->scriptb_sz) { 1138 script_ofs = dsp - np->scriptb_ba; 1139 script_size = np->scriptb_sz; 1140 script_base = (u_char *) np->scriptb0; 1141 script_name = "scriptb"; 1142 } else { 1143 script_ofs = dsp; 1144 script_size = 0; 1145 script_base = NULL; 1146 script_name = "mem"; 1147 } 1148 1149 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n", 1150 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist, 1151 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl), 1152 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer), 1153 (unsigned)INB(np, nc_scntl3), 1154 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0, 1155 script_name, script_ofs, (unsigned)INL(np, nc_dbc)); 1156 1157 if (((script_ofs & 3) == 0) && 1158 (unsigned)script_ofs < script_size) { 1159 printf ("%s: script cmd = %08x\n", sym_name(np), 1160 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 1161 } 1162 1163 printf("%s: regdump:", sym_name(np)); 1164 for (i = 0; i < 24; i++) 1165 printf(" %02x", (unsigned)INB_OFF(np, i)); 1166 printf(".\n"); 1167 1168 /* 1169 * PCI BUS error. 1170 */ 1171 if (dstat & (MDPE|BF)) 1172 sym_log_bus_error(shost); 1173 } 1174 1175 void sym_dump_registers(struct Scsi_Host *shost) 1176 { 1177 struct sym_hcb *np = sym_get_hcb(shost); 1178 u_short sist; 1179 u_char dstat; 1180 1181 sist = INW(np, nc_sist); 1182 dstat = INB(np, nc_dstat); 1183 sym_log_hard_error(shost, sist, dstat); 1184 } 1185 1186 static struct sym_chip sym_dev_table[] = { 1187 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64, 1188 FE_ERL} 1189 , 1190 #ifdef SYM_DEBUG_GENERIC_SUPPORT 1191 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, 1192 FE_BOF} 1193 , 1194 #else 1195 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, 1196 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 1197 , 1198 #endif 1199 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64, 1200 FE_BOF|FE_ERL} 1201 , 1202 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64, 1203 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 1204 , 1205 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2, 1206 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 1207 , 1208 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1, 1209 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 1210 , 1211 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2, 1212 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1213 FE_RAM|FE_DIFF|FE_VARCLK} 1214 , 1215 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2, 1216 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1217 FE_RAM|FE_DIFF|FE_VARCLK} 1218 , 1219 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2, 1220 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1221 FE_RAM|FE_DIFF|FE_VARCLK} 1222 , 1223 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2, 1224 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1225 FE_RAM|FE_DIFF|FE_VARCLK} 1226 , 1227 #ifdef SYM_DEBUG_GENERIC_SUPPORT 1228 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, 1229 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 1230 FE_RAM|FE_LCKFRQ} 1231 , 1232 #else 1233 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, 1234 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1235 FE_RAM|FE_LCKFRQ} 1236 , 1237 #endif 1238 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4, 1239 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1240 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 1241 , 1242 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4, 1243 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1244 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 1245 , 1246 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4, 1247 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1248 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 1249 , 1250 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8, 1251 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 1252 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 1253 FE_C10} 1254 , 1255 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8, 1256 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 1257 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 1258 FE_C10|FE_U3EN} 1259 , 1260 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8, 1261 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 1262 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 1263 FE_C10|FE_U3EN} 1264 , 1265 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4, 1266 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1267 FE_RAM|FE_IO256|FE_LEDC} 1268 }; 1269 1270 #define sym_num_devs (ARRAY_SIZE(sym_dev_table)) 1271 1272 /* 1273 * Look up the chip table. 1274 * 1275 * Return a pointer to the chip entry if found, 1276 * zero otherwise. 1277 */ 1278 struct sym_chip * 1279 sym_lookup_chip_table (u_short device_id, u_char revision) 1280 { 1281 struct sym_chip *chip; 1282 int i; 1283 1284 for (i = 0; i < sym_num_devs; i++) { 1285 chip = &sym_dev_table[i]; 1286 if (device_id != chip->device_id) 1287 continue; 1288 if (revision > chip->revision_id) 1289 continue; 1290 return chip; 1291 } 1292 1293 return NULL; 1294 } 1295 1296 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 1297 /* 1298 * Lookup the 64 bit DMA segments map. 1299 * This is only used if the direct mapping 1300 * has been unsuccessful. 1301 */ 1302 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s) 1303 { 1304 int i; 1305 1306 if (!use_dac(np)) 1307 goto weird; 1308 1309 /* Look up existing mappings */ 1310 for (i = SYM_DMAP_SIZE-1; i > 0; i--) { 1311 if (h == np->dmap_bah[i]) 1312 return i; 1313 } 1314 /* If direct mapping is free, get it */ 1315 if (!np->dmap_bah[s]) 1316 goto new; 1317 /* Collision -> lookup free mappings */ 1318 for (s = SYM_DMAP_SIZE-1; s > 0; s--) { 1319 if (!np->dmap_bah[s]) 1320 goto new; 1321 } 1322 weird: 1323 panic("sym: ran out of 64 bit DMA segment registers"); 1324 return -1; 1325 new: 1326 np->dmap_bah[s] = h; 1327 np->dmap_dirty = 1; 1328 return s; 1329 } 1330 1331 /* 1332 * Update IO registers scratch C..R so they will be 1333 * in sync. with queued CCB expectations. 1334 */ 1335 static void sym_update_dmap_regs(struct sym_hcb *np) 1336 { 1337 int o, i; 1338 1339 if (!np->dmap_dirty) 1340 return; 1341 o = offsetof(struct sym_reg, nc_scrx[0]); 1342 for (i = 0; i < SYM_DMAP_SIZE; i++) { 1343 OUTL_OFF(np, o, np->dmap_bah[i]); 1344 o += 4; 1345 } 1346 np->dmap_dirty = 0; 1347 } 1348 #endif 1349 1350 /* Enforce all the fiddly SPI rules and the chip limitations */ 1351 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget, 1352 struct sym_trans *goal) 1353 { 1354 if (!spi_support_wide(starget)) 1355 goal->width = 0; 1356 1357 if (!spi_support_sync(starget)) { 1358 goal->iu = 0; 1359 goal->dt = 0; 1360 goal->qas = 0; 1361 goal->offset = 0; 1362 return; 1363 } 1364 1365 if (spi_support_dt(starget)) { 1366 if (spi_support_dt_only(starget)) 1367 goal->dt = 1; 1368 1369 if (goal->offset == 0) 1370 goal->dt = 0; 1371 } else { 1372 goal->dt = 0; 1373 } 1374 1375 /* Some targets fail to properly negotiate DT in SE mode */ 1376 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN)) 1377 goal->dt = 0; 1378 1379 if (goal->dt) { 1380 /* all DT transfers must be wide */ 1381 goal->width = 1; 1382 if (goal->offset > np->maxoffs_dt) 1383 goal->offset = np->maxoffs_dt; 1384 if (goal->period < np->minsync_dt) 1385 goal->period = np->minsync_dt; 1386 if (goal->period > np->maxsync_dt) 1387 goal->period = np->maxsync_dt; 1388 } else { 1389 goal->iu = goal->qas = 0; 1390 if (goal->offset > np->maxoffs) 1391 goal->offset = np->maxoffs; 1392 if (goal->period < np->minsync) 1393 goal->period = np->minsync; 1394 if (goal->period > np->maxsync) 1395 goal->period = np->maxsync; 1396 } 1397 } 1398 1399 /* 1400 * Prepare the next negotiation message if needed. 1401 * 1402 * Fill in the part of message buffer that contains the 1403 * negotiation and the nego_status field of the CCB. 1404 * Returns the size of the message in bytes. 1405 */ 1406 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr) 1407 { 1408 struct sym_tcb *tp = &np->target[cp->target]; 1409 struct scsi_target *starget = tp->starget; 1410 struct sym_trans *goal = &tp->tgoal; 1411 int msglen = 0; 1412 int nego; 1413 1414 sym_check_goals(np, starget, goal); 1415 1416 /* 1417 * Many devices implement PPR in a buggy way, so only use it if we 1418 * really want to. 1419 */ 1420 if (goal->renego == NS_PPR || (goal->offset && 1421 (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) { 1422 nego = NS_PPR; 1423 } else if (goal->renego == NS_WIDE || goal->width) { 1424 nego = NS_WIDE; 1425 } else if (goal->renego == NS_SYNC || goal->offset) { 1426 nego = NS_SYNC; 1427 } else { 1428 goal->check_nego = 0; 1429 nego = 0; 1430 } 1431 1432 switch (nego) { 1433 case NS_SYNC: 1434 msglen += spi_populate_sync_msg(msgptr + msglen, goal->period, 1435 goal->offset); 1436 break; 1437 case NS_WIDE: 1438 msglen += spi_populate_width_msg(msgptr + msglen, goal->width); 1439 break; 1440 case NS_PPR: 1441 msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period, 1442 goal->offset, goal->width, 1443 (goal->iu ? PPR_OPT_IU : 0) | 1444 (goal->dt ? PPR_OPT_DT : 0) | 1445 (goal->qas ? PPR_OPT_QAS : 0)); 1446 break; 1447 } 1448 1449 cp->nego_status = nego; 1450 1451 if (nego) { 1452 tp->nego_cp = cp; /* Keep track a nego will be performed */ 1453 if (DEBUG_FLAGS & DEBUG_NEGO) { 1454 sym_print_nego_msg(np, cp->target, 1455 nego == NS_SYNC ? "sync msgout" : 1456 nego == NS_WIDE ? "wide msgout" : 1457 "ppr msgout", msgptr); 1458 } 1459 } 1460 1461 return msglen; 1462 } 1463 1464 /* 1465 * Insert a job into the start queue. 1466 */ 1467 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp) 1468 { 1469 u_short qidx; 1470 1471 #ifdef SYM_CONF_IARB_SUPPORT 1472 /* 1473 * If the previously queued CCB is not yet done, 1474 * set the IARB hint. The SCRIPTS will go with IARB 1475 * for this job when starting the previous one. 1476 * We leave devices a chance to win arbitration by 1477 * not using more than 'iarb_max' consecutive 1478 * immediate arbitrations. 1479 */ 1480 if (np->last_cp && np->iarb_count < np->iarb_max) { 1481 np->last_cp->host_flags |= HF_HINT_IARB; 1482 ++np->iarb_count; 1483 } 1484 else 1485 np->iarb_count = 0; 1486 np->last_cp = cp; 1487 #endif 1488 1489 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 1490 /* 1491 * Make SCRIPTS aware of the 64 bit DMA 1492 * segment registers not being up-to-date. 1493 */ 1494 if (np->dmap_dirty) 1495 cp->host_xflags |= HX_DMAP_DIRTY; 1496 #endif 1497 1498 /* 1499 * Insert first the idle task and then our job. 1500 * The MBs should ensure proper ordering. 1501 */ 1502 qidx = np->squeueput + 2; 1503 if (qidx >= MAX_QUEUE*2) qidx = 0; 1504 1505 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 1506 MEMORY_WRITE_BARRIER(); 1507 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 1508 1509 np->squeueput = qidx; 1510 1511 if (DEBUG_FLAGS & DEBUG_QUEUE) 1512 scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n", 1513 np->squeueput); 1514 1515 /* 1516 * Script processor may be waiting for reselect. 1517 * Wake it up. 1518 */ 1519 MEMORY_WRITE_BARRIER(); 1520 OUTB(np, nc_istat, SIGP|np->istat_sem); 1521 } 1522 1523 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 1524 /* 1525 * Start next ready-to-start CCBs. 1526 */ 1527 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn) 1528 { 1529 SYM_QUEHEAD *qp; 1530 struct sym_ccb *cp; 1531 1532 /* 1533 * Paranoia, as usual. :-) 1534 */ 1535 assert(!lp->started_tags || !lp->started_no_tag); 1536 1537 /* 1538 * Try to start as many commands as asked by caller. 1539 * Prevent from having both tagged and untagged 1540 * commands queued to the device at the same time. 1541 */ 1542 while (maxn--) { 1543 qp = sym_remque_head(&lp->waiting_ccbq); 1544 if (!qp) 1545 break; 1546 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq); 1547 if (cp->tag != NO_TAG) { 1548 if (lp->started_no_tag || 1549 lp->started_tags >= lp->started_max) { 1550 sym_insque_head(qp, &lp->waiting_ccbq); 1551 break; 1552 } 1553 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba); 1554 lp->head.resel_sa = 1555 cpu_to_scr(SCRIPTA_BA(np, resel_tag)); 1556 ++lp->started_tags; 1557 } else { 1558 if (lp->started_no_tag || lp->started_tags) { 1559 sym_insque_head(qp, &lp->waiting_ccbq); 1560 break; 1561 } 1562 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 1563 lp->head.resel_sa = 1564 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); 1565 ++lp->started_no_tag; 1566 } 1567 cp->started = 1; 1568 sym_insque_tail(qp, &lp->started_ccbq); 1569 sym_put_start_queue(np, cp); 1570 } 1571 } 1572 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */ 1573 1574 /* 1575 * The chip may have completed jobs. Look at the DONE QUEUE. 1576 * 1577 * On paper, memory read barriers may be needed here to 1578 * prevent out of order LOADs by the CPU from having 1579 * prefetched stale data prior to DMA having occurred. 1580 */ 1581 static int sym_wakeup_done (struct sym_hcb *np) 1582 { 1583 struct sym_ccb *cp; 1584 int i, n; 1585 u32 dsa; 1586 1587 n = 0; 1588 i = np->dqueueget; 1589 1590 /* MEMORY_READ_BARRIER(); */ 1591 while (1) { 1592 dsa = scr_to_cpu(np->dqueue[i]); 1593 if (!dsa) 1594 break; 1595 np->dqueue[i] = 0; 1596 if ((i = i+2) >= MAX_QUEUE*2) 1597 i = 0; 1598 1599 cp = sym_ccb_from_dsa(np, dsa); 1600 if (cp) { 1601 MEMORY_READ_BARRIER(); 1602 sym_complete_ok (np, cp); 1603 ++n; 1604 } 1605 else 1606 printf ("%s: bad DSA (%x) in done queue.\n", 1607 sym_name(np), (u_int) dsa); 1608 } 1609 np->dqueueget = i; 1610 1611 return n; 1612 } 1613 1614 /* 1615 * Complete all CCBs queued to the COMP queue. 1616 * 1617 * These CCBs are assumed: 1618 * - Not to be referenced either by devices or 1619 * SCRIPTS-related queues and datas. 1620 * - To have to be completed with an error condition 1621 * or requeued. 1622 * 1623 * The device queue freeze count is incremented 1624 * for each CCB that does not prevent this. 1625 * This function is called when all CCBs involved 1626 * in error handling/recovery have been reaped. 1627 */ 1628 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status) 1629 { 1630 SYM_QUEHEAD *qp; 1631 struct sym_ccb *cp; 1632 1633 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { 1634 struct scsi_cmnd *cmd; 1635 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 1636 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 1637 /* Leave quiet CCBs waiting for resources */ 1638 if (cp->host_status == HS_WAIT) 1639 continue; 1640 cmd = cp->cmd; 1641 if (cam_status) 1642 sym_set_cam_status(cmd, cam_status); 1643 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 1644 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) { 1645 struct sym_tcb *tp = &np->target[cp->target]; 1646 struct sym_lcb *lp = sym_lp(tp, cp->lun); 1647 if (lp) { 1648 sym_remque(&cp->link2_ccbq); 1649 sym_insque_tail(&cp->link2_ccbq, 1650 &lp->waiting_ccbq); 1651 if (cp->started) { 1652 if (cp->tag != NO_TAG) 1653 --lp->started_tags; 1654 else 1655 --lp->started_no_tag; 1656 } 1657 } 1658 cp->started = 0; 1659 continue; 1660 } 1661 #endif 1662 sym_free_ccb(np, cp); 1663 sym_xpt_done(np, cmd); 1664 } 1665 } 1666 1667 /* 1668 * Complete all active CCBs with error. 1669 * Used on CHIP/SCSI RESET. 1670 */ 1671 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status) 1672 { 1673 /* 1674 * Move all active CCBs to the COMP queue 1675 * and flush this queue. 1676 */ 1677 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 1678 sym_que_init(&np->busy_ccbq); 1679 sym_flush_comp_queue(np, cam_status); 1680 } 1681 1682 /* 1683 * Start chip. 1684 * 1685 * 'reason' means: 1686 * 0: initialisation. 1687 * 1: SCSI BUS RESET delivered or received. 1688 * 2: SCSI BUS MODE changed. 1689 */ 1690 void sym_start_up(struct Scsi_Host *shost, int reason) 1691 { 1692 struct sym_data *sym_data = shost_priv(shost); 1693 struct pci_dev *pdev = sym_data->pdev; 1694 struct sym_hcb *np = sym_data->ncb; 1695 int i; 1696 u32 phys; 1697 1698 /* 1699 * Reset chip if asked, otherwise just clear fifos. 1700 */ 1701 if (reason == 1) 1702 sym_soft_reset(np); 1703 else { 1704 OUTB(np, nc_stest3, TE|CSF); 1705 OUTONB(np, nc_ctest3, CLF); 1706 } 1707 1708 /* 1709 * Clear Start Queue 1710 */ 1711 phys = np->squeue_ba; 1712 for (i = 0; i < MAX_QUEUE*2; i += 2) { 1713 np->squeue[i] = cpu_to_scr(np->idletask_ba); 1714 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 1715 } 1716 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 1717 1718 /* 1719 * Start at first entry. 1720 */ 1721 np->squeueput = 0; 1722 1723 /* 1724 * Clear Done Queue 1725 */ 1726 phys = np->dqueue_ba; 1727 for (i = 0; i < MAX_QUEUE*2; i += 2) { 1728 np->dqueue[i] = 0; 1729 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 1730 } 1731 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 1732 1733 /* 1734 * Start at first entry. 1735 */ 1736 np->dqueueget = 0; 1737 1738 /* 1739 * Install patches in scripts. 1740 * This also let point to first position the start 1741 * and done queue pointers used from SCRIPTS. 1742 */ 1743 np->fw_patch(shost); 1744 1745 /* 1746 * Wakeup all pending jobs. 1747 */ 1748 sym_flush_busy_queue(np, DID_RESET); 1749 1750 /* 1751 * Init chip. 1752 */ 1753 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */ 1754 INB(np, nc_mbox1); 1755 udelay(2000); /* The 895 needs time for the bus mode to settle */ 1756 1757 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0); 1758 /* full arb., ena parity, par->ATN */ 1759 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 1760 1761 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 1762 1763 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 1764 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 1765 OUTB(np, nc_istat , SIGP ); /* Signal Process */ 1766 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 1767 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 1768 1769 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 1770 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 1771 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */ 1772 1773 /* Extended Sreq/Sack filtering not supported on the C10 */ 1774 if (np->features & FE_C10) 1775 OUTB(np, nc_stest2, np->rv_stest2); 1776 else 1777 OUTB(np, nc_stest2, EXT|np->rv_stest2); 1778 1779 OUTB(np, nc_stest3, TE); /* TolerANT enable */ 1780 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 1781 1782 /* 1783 * For now, disable AIP generation on C1010-66. 1784 */ 1785 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66) 1786 OUTB(np, nc_aipcntl1, DISAIP); 1787 1788 /* 1789 * C10101 rev. 0 errata. 1790 * Errant SGE's when in narrow. Write bits 4 & 5 of 1791 * STEST1 register to disable SGE. We probably should do 1792 * that from SCRIPTS for each selection/reselection, but 1793 * I just don't want. :) 1794 */ 1795 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 && 1796 pdev->revision < 1) 1797 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30); 1798 1799 /* 1800 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 1801 * Disable overlapped arbitration for some dual function devices, 1802 * regardless revision id (kind of post-chip-design feature. ;-)) 1803 */ 1804 if (pdev->device == PCI_DEVICE_ID_NCR_53C875) 1805 OUTB(np, nc_ctest0, (1<<5)); 1806 else if (pdev->device == PCI_DEVICE_ID_NCR_53C896) 1807 np->rv_ccntl0 |= DPR; 1808 1809 /* 1810 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 1811 * and/or hardware phase mismatch, since only such chips 1812 * seem to support those IO registers. 1813 */ 1814 if (np->features & (FE_DAC|FE_NOPM)) { 1815 OUTB(np, nc_ccntl0, np->rv_ccntl0); 1816 OUTB(np, nc_ccntl1, np->rv_ccntl1); 1817 } 1818 1819 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 1820 /* 1821 * Set up scratch C and DRS IO registers to map the 32 bit 1822 * DMA address range our data structures are located in. 1823 */ 1824 if (use_dac(np)) { 1825 np->dmap_bah[0] = 0; /* ??? */ 1826 OUTL(np, nc_scrx[0], np->dmap_bah[0]); 1827 OUTL(np, nc_drs, np->dmap_bah[0]); 1828 } 1829 #endif 1830 1831 /* 1832 * If phase mismatch handled by scripts (895A/896/1010), 1833 * set PM jump addresses. 1834 */ 1835 if (np->features & FE_NOPM) { 1836 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle)); 1837 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle)); 1838 } 1839 1840 /* 1841 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 1842 * Also set GPIO5 and clear GPIO6 if hardware LED control. 1843 */ 1844 if (np->features & FE_LED0) 1845 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01); 1846 else if (np->features & FE_LEDC) 1847 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20); 1848 1849 /* 1850 * enable ints 1851 */ 1852 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 1853 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID); 1854 1855 /* 1856 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 1857 * Try to eat the spurious SBMC interrupt that may occur when 1858 * we reset the chip but not the SCSI BUS (at initialization). 1859 */ 1860 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 1861 OUTONW(np, nc_sien, SBMC); 1862 if (reason == 0) { 1863 INB(np, nc_mbox1); 1864 mdelay(100); 1865 INW(np, nc_sist); 1866 } 1867 np->scsi_mode = INB(np, nc_stest4) & SMODE; 1868 } 1869 1870 /* 1871 * Fill in target structure. 1872 * Reinitialize usrsync. 1873 * Reinitialize usrwide. 1874 * Prepare sync negotiation according to actual SCSI bus mode. 1875 */ 1876 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 1877 struct sym_tcb *tp = &np->target[i]; 1878 1879 tp->to_reset = 0; 1880 tp->head.sval = 0; 1881 tp->head.wval = np->rv_scntl3; 1882 tp->head.uval = 0; 1883 if (tp->lun0p) 1884 tp->lun0p->to_clear = 0; 1885 if (tp->lunmp) { 1886 int ln; 1887 1888 for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++) 1889 if (tp->lunmp[ln]) 1890 tp->lunmp[ln]->to_clear = 0; 1891 } 1892 } 1893 1894 /* 1895 * Download SCSI SCRIPTS to on-chip RAM if present, 1896 * and start script processor. 1897 * We do the download preferently from the CPU. 1898 * For platforms that may not support PCI memory mapping, 1899 * we use simple SCRIPTS that performs MEMORY MOVEs. 1900 */ 1901 phys = SCRIPTA_BA(np, init); 1902 if (np->ram_ba) { 1903 if (sym_verbose >= 2) 1904 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np)); 1905 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz); 1906 if (np->features & FE_RAM8K) { 1907 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz); 1908 phys = scr_to_cpu(np->scr_ram_seg); 1909 OUTL(np, nc_mmws, phys); 1910 OUTL(np, nc_mmrs, phys); 1911 OUTL(np, nc_sfs, phys); 1912 phys = SCRIPTB_BA(np, start64); 1913 } 1914 } 1915 1916 np->istat_sem = 0; 1917 1918 OUTL(np, nc_dsa, np->hcb_ba); 1919 OUTL_DSP(np, phys); 1920 1921 /* 1922 * Notify the XPT about the RESET condition. 1923 */ 1924 if (reason != 0) 1925 sym_xpt_async_bus_reset(np); 1926 } 1927 1928 /* 1929 * Switch trans mode for current job and its target. 1930 */ 1931 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs, 1932 u_char per, u_char wide, u_char div, u_char fak) 1933 { 1934 SYM_QUEHEAD *qp; 1935 u_char sval, wval, uval; 1936 struct sym_tcb *tp = &np->target[target]; 1937 1938 assert(target == (INB(np, nc_sdid) & 0x0f)); 1939 1940 sval = tp->head.sval; 1941 wval = tp->head.wval; 1942 uval = tp->head.uval; 1943 1944 #if 0 1945 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 1946 sval, wval, uval, np->rv_scntl3); 1947 #endif 1948 /* 1949 * Set the offset. 1950 */ 1951 if (!(np->features & FE_C10)) 1952 sval = (sval & ~0x1f) | ofs; 1953 else 1954 sval = (sval & ~0x3f) | ofs; 1955 1956 /* 1957 * Set the sync divisor and extra clock factor. 1958 */ 1959 if (ofs != 0) { 1960 wval = (wval & ~0x70) | ((div+1) << 4); 1961 if (!(np->features & FE_C10)) 1962 sval = (sval & ~0xe0) | (fak << 5); 1963 else { 1964 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 1965 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 1966 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 1967 } 1968 } 1969 1970 /* 1971 * Set the bus width. 1972 */ 1973 wval = wval & ~EWS; 1974 if (wide != 0) 1975 wval |= EWS; 1976 1977 /* 1978 * Set misc. ultra enable bits. 1979 */ 1980 if (np->features & FE_C10) { 1981 uval = uval & ~(U3EN|AIPCKEN); 1982 if (opts) { 1983 assert(np->features & FE_U3EN); 1984 uval |= U3EN; 1985 } 1986 } else { 1987 wval = wval & ~ULTRA; 1988 if (per <= 12) wval |= ULTRA; 1989 } 1990 1991 /* 1992 * Stop there if sync parameters are unchanged. 1993 */ 1994 if (tp->head.sval == sval && 1995 tp->head.wval == wval && 1996 tp->head.uval == uval) 1997 return; 1998 tp->head.sval = sval; 1999 tp->head.wval = wval; 2000 tp->head.uval = uval; 2001 2002 /* 2003 * Disable extended Sreq/Sack filtering if per < 50. 2004 * Not supported on the C1010. 2005 */ 2006 if (per < 50 && !(np->features & FE_C10)) 2007 OUTOFFB(np, nc_stest2, EXT); 2008 2009 /* 2010 * set actual value and sync_status 2011 */ 2012 OUTB(np, nc_sxfer, tp->head.sval); 2013 OUTB(np, nc_scntl3, tp->head.wval); 2014 2015 if (np->features & FE_C10) { 2016 OUTB(np, nc_scntl4, tp->head.uval); 2017 } 2018 2019 /* 2020 * patch ALL busy ccbs of this target. 2021 */ 2022 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 2023 struct sym_ccb *cp; 2024 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 2025 if (cp->target != target) 2026 continue; 2027 cp->phys.select.sel_scntl3 = tp->head.wval; 2028 cp->phys.select.sel_sxfer = tp->head.sval; 2029 if (np->features & FE_C10) { 2030 cp->phys.select.sel_scntl4 = tp->head.uval; 2031 } 2032 } 2033 } 2034 2035 static void sym_announce_transfer_rate(struct sym_tcb *tp) 2036 { 2037 struct scsi_target *starget = tp->starget; 2038 2039 if (tp->tprint.period != spi_period(starget) || 2040 tp->tprint.offset != spi_offset(starget) || 2041 tp->tprint.width != spi_width(starget) || 2042 tp->tprint.iu != spi_iu(starget) || 2043 tp->tprint.dt != spi_dt(starget) || 2044 tp->tprint.qas != spi_qas(starget) || 2045 !tp->tprint.check_nego) { 2046 tp->tprint.period = spi_period(starget); 2047 tp->tprint.offset = spi_offset(starget); 2048 tp->tprint.width = spi_width(starget); 2049 tp->tprint.iu = spi_iu(starget); 2050 tp->tprint.dt = spi_dt(starget); 2051 tp->tprint.qas = spi_qas(starget); 2052 tp->tprint.check_nego = 1; 2053 2054 spi_display_xfer_agreement(starget); 2055 } 2056 } 2057 2058 /* 2059 * We received a WDTR. 2060 * Let everything be aware of the changes. 2061 */ 2062 static void sym_setwide(struct sym_hcb *np, int target, u_char wide) 2063 { 2064 struct sym_tcb *tp = &np->target[target]; 2065 struct scsi_target *starget = tp->starget; 2066 2067 sym_settrans(np, target, 0, 0, 0, wide, 0, 0); 2068 2069 if (wide) 2070 tp->tgoal.renego = NS_WIDE; 2071 else 2072 tp->tgoal.renego = 0; 2073 tp->tgoal.check_nego = 0; 2074 tp->tgoal.width = wide; 2075 spi_offset(starget) = 0; 2076 spi_period(starget) = 0; 2077 spi_width(starget) = wide; 2078 spi_iu(starget) = 0; 2079 spi_dt(starget) = 0; 2080 spi_qas(starget) = 0; 2081 2082 if (sym_verbose >= 3) 2083 sym_announce_transfer_rate(tp); 2084 } 2085 2086 /* 2087 * We received a SDTR. 2088 * Let everything be aware of the changes. 2089 */ 2090 static void 2091 sym_setsync(struct sym_hcb *np, int target, 2092 u_char ofs, u_char per, u_char div, u_char fak) 2093 { 2094 struct sym_tcb *tp = &np->target[target]; 2095 struct scsi_target *starget = tp->starget; 2096 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT; 2097 2098 sym_settrans(np, target, 0, ofs, per, wide, div, fak); 2099 2100 if (wide) 2101 tp->tgoal.renego = NS_WIDE; 2102 else if (ofs) 2103 tp->tgoal.renego = NS_SYNC; 2104 else 2105 tp->tgoal.renego = 0; 2106 spi_period(starget) = per; 2107 spi_offset(starget) = ofs; 2108 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0; 2109 2110 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) { 2111 tp->tgoal.period = per; 2112 tp->tgoal.offset = ofs; 2113 tp->tgoal.check_nego = 0; 2114 } 2115 2116 sym_announce_transfer_rate(tp); 2117 } 2118 2119 /* 2120 * We received a PPR. 2121 * Let everything be aware of the changes. 2122 */ 2123 static void 2124 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs, 2125 u_char per, u_char wide, u_char div, u_char fak) 2126 { 2127 struct sym_tcb *tp = &np->target[target]; 2128 struct scsi_target *starget = tp->starget; 2129 2130 sym_settrans(np, target, opts, ofs, per, wide, div, fak); 2131 2132 if (wide || ofs) 2133 tp->tgoal.renego = NS_PPR; 2134 else 2135 tp->tgoal.renego = 0; 2136 spi_width(starget) = tp->tgoal.width = wide; 2137 spi_period(starget) = tp->tgoal.period = per; 2138 spi_offset(starget) = tp->tgoal.offset = ofs; 2139 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU); 2140 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT); 2141 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS); 2142 tp->tgoal.check_nego = 0; 2143 2144 sym_announce_transfer_rate(tp); 2145 } 2146 2147 /* 2148 * generic recovery from scsi interrupt 2149 * 2150 * The doc says that when the chip gets an SCSI interrupt, 2151 * it tries to stop in an orderly fashion, by completing 2152 * an instruction fetch that had started or by flushing 2153 * the DMA fifo for a write to memory that was executing. 2154 * Such a fashion is not enough to know if the instruction 2155 * that was just before the current DSP value has been 2156 * executed or not. 2157 * 2158 * There are some small SCRIPTS sections that deal with 2159 * the start queue and the done queue that may break any 2160 * assomption from the C code if we are interrupted 2161 * inside, so we reset if this happens. Btw, since these 2162 * SCRIPTS sections are executed while the SCRIPTS hasn't 2163 * started SCSI operations, it is very unlikely to happen. 2164 * 2165 * All the driver data structures are supposed to be 2166 * allocated from the same 4 GB memory window, so there 2167 * is a 1 to 1 relationship between DSA and driver data 2168 * structures. Since we are careful :) to invalidate the 2169 * DSA when we complete a command or when the SCRIPTS 2170 * pushes a DSA into a queue, we can trust it when it 2171 * points to a CCB. 2172 */ 2173 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts) 2174 { 2175 u32 dsp = INL(np, nc_dsp); 2176 u32 dsa = INL(np, nc_dsa); 2177 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); 2178 2179 /* 2180 * If we haven't been interrupted inside the SCRIPTS 2181 * critical pathes, we can safely restart the SCRIPTS 2182 * and trust the DSA value if it matches a CCB. 2183 */ 2184 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) && 2185 dsp < SCRIPTA_BA(np, getjob_end) + 1)) && 2186 (!(dsp > SCRIPTA_BA(np, ungetjob) && 2187 dsp < SCRIPTA_BA(np, reselect) + 1)) && 2188 (!(dsp > SCRIPTB_BA(np, sel_for_abort) && 2189 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) && 2190 (!(dsp > SCRIPTA_BA(np, done) && 2191 dsp < SCRIPTA_BA(np, done_end) + 1))) { 2192 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 2193 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ 2194 /* 2195 * If we have a CCB, let the SCRIPTS call us back for 2196 * the handling of the error with SCRATCHA filled with 2197 * STARTPOS. This way, we will be able to freeze the 2198 * device queue and requeue awaiting IOs. 2199 */ 2200 if (cp) { 2201 cp->host_status = hsts; 2202 OUTL_DSP(np, SCRIPTA_BA(np, complete_error)); 2203 } 2204 /* 2205 * Otherwise just restart the SCRIPTS. 2206 */ 2207 else { 2208 OUTL(np, nc_dsa, 0xffffff); 2209 OUTL_DSP(np, SCRIPTA_BA(np, start)); 2210 } 2211 } 2212 else 2213 goto reset_all; 2214 2215 return; 2216 2217 reset_all: 2218 sym_start_reset(np); 2219 } 2220 2221 /* 2222 * chip exception handler for selection timeout 2223 */ 2224 static void sym_int_sto (struct sym_hcb *np) 2225 { 2226 u32 dsp = INL(np, nc_dsp); 2227 2228 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 2229 2230 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8) 2231 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 2232 else 2233 sym_start_reset(np); 2234 } 2235 2236 /* 2237 * chip exception handler for unexpected disconnect 2238 */ 2239 static void sym_int_udc (struct sym_hcb *np) 2240 { 2241 printf ("%s: unexpected disconnect\n", sym_name(np)); 2242 sym_recover_scsi_int(np, HS_UNEXPECTED); 2243 } 2244 2245 /* 2246 * chip exception handler for SCSI bus mode change 2247 * 2248 * spi2-r12 11.2.3 says a transceiver mode change must 2249 * generate a reset event and a device that detects a reset 2250 * event shall initiate a hard reset. It says also that a 2251 * device that detects a mode change shall set data transfer 2252 * mode to eight bit asynchronous, etc... 2253 * So, just reinitializing all except chip should be enough. 2254 */ 2255 static void sym_int_sbmc(struct Scsi_Host *shost) 2256 { 2257 struct sym_hcb *np = sym_get_hcb(shost); 2258 u_char scsi_mode = INB(np, nc_stest4) & SMODE; 2259 2260 /* 2261 * Notify user. 2262 */ 2263 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np), 2264 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 2265 2266 /* 2267 * Should suspend command processing for a few seconds and 2268 * reinitialize all except the chip. 2269 */ 2270 sym_start_up(shost, 2); 2271 } 2272 2273 /* 2274 * chip exception handler for SCSI parity error. 2275 * 2276 * When the chip detects a SCSI parity error and is 2277 * currently executing a (CH)MOV instruction, it does 2278 * not interrupt immediately, but tries to finish the 2279 * transfer of the current scatter entry before 2280 * interrupting. The following situations may occur: 2281 * 2282 * - The complete scatter entry has been transferred 2283 * without the device having changed phase. 2284 * The chip will then interrupt with the DSP pointing 2285 * to the instruction that follows the MOV. 2286 * 2287 * - A phase mismatch occurs before the MOV finished 2288 * and phase errors are to be handled by the C code. 2289 * The chip will then interrupt with both PAR and MA 2290 * conditions set. 2291 * 2292 * - A phase mismatch occurs before the MOV finished and 2293 * phase errors are to be handled by SCRIPTS. 2294 * The chip will load the DSP with the phase mismatch 2295 * JUMP address and interrupt the host processor. 2296 */ 2297 static void sym_int_par (struct sym_hcb *np, u_short sist) 2298 { 2299 u_char hsts = INB(np, HS_PRT); 2300 u32 dsp = INL(np, nc_dsp); 2301 u32 dbc = INL(np, nc_dbc); 2302 u32 dsa = INL(np, nc_dsa); 2303 u_char sbcl = INB(np, nc_sbcl); 2304 u_char cmd = dbc >> 24; 2305 int phase = cmd & 7; 2306 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); 2307 2308 if (printk_ratelimit()) 2309 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 2310 sym_name(np), hsts, dbc, sbcl); 2311 2312 /* 2313 * Check that the chip is connected to the SCSI BUS. 2314 */ 2315 if (!(INB(np, nc_scntl1) & ISCON)) { 2316 sym_recover_scsi_int(np, HS_UNEXPECTED); 2317 return; 2318 } 2319 2320 /* 2321 * If the nexus is not clearly identified, reset the bus. 2322 * We will try to do better later. 2323 */ 2324 if (!cp) 2325 goto reset_all; 2326 2327 /* 2328 * Check instruction was a MOV, direction was INPUT and 2329 * ATN is asserted. 2330 */ 2331 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 2332 goto reset_all; 2333 2334 /* 2335 * Keep track of the parity error. 2336 */ 2337 OUTONB(np, HF_PRT, HF_EXT_ERR); 2338 cp->xerr_status |= XE_PARITY_ERR; 2339 2340 /* 2341 * Prepare the message to send to the device. 2342 */ 2343 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 2344 2345 /* 2346 * If the old phase was DATA IN phase, we have to deal with 2347 * the 3 situations described above. 2348 * For other input phases (MSG IN and STATUS), the device 2349 * must resend the whole thing that failed parity checking 2350 * or signal error. So, jumping to dispatcher should be OK. 2351 */ 2352 if (phase == 1 || phase == 5) { 2353 /* Phase mismatch handled by SCRIPTS */ 2354 if (dsp == SCRIPTB_BA(np, pm_handle)) 2355 OUTL_DSP(np, dsp); 2356 /* Phase mismatch handled by the C code */ 2357 else if (sist & MA) 2358 sym_int_ma (np); 2359 /* No phase mismatch occurred */ 2360 else { 2361 sym_set_script_dp (np, cp, dsp); 2362 OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); 2363 } 2364 } 2365 else if (phase == 7) /* We definitely cannot handle parity errors */ 2366 #if 1 /* in message-in phase due to the relection */ 2367 goto reset_all; /* path and various message anticipations. */ 2368 #else 2369 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 2370 #endif 2371 else 2372 OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); 2373 return; 2374 2375 reset_all: 2376 sym_start_reset(np); 2377 return; 2378 } 2379 2380 /* 2381 * chip exception handler for phase errors. 2382 * 2383 * We have to construct a new transfer descriptor, 2384 * to transfer the rest of the current block. 2385 */ 2386 static void sym_int_ma (struct sym_hcb *np) 2387 { 2388 u32 dbc; 2389 u32 rest; 2390 u32 dsp; 2391 u32 dsa; 2392 u32 nxtdsp; 2393 u32 *vdsp; 2394 u32 oadr, olen; 2395 u32 *tblp; 2396 u32 newcmd; 2397 u_int delta; 2398 u_char cmd; 2399 u_char hflags, hflags0; 2400 struct sym_pmc *pm; 2401 struct sym_ccb *cp; 2402 2403 dsp = INL(np, nc_dsp); 2404 dbc = INL(np, nc_dbc); 2405 dsa = INL(np, nc_dsa); 2406 2407 cmd = dbc >> 24; 2408 rest = dbc & 0xffffff; 2409 delta = 0; 2410 2411 /* 2412 * locate matching cp if any. 2413 */ 2414 cp = sym_ccb_from_dsa(np, dsa); 2415 2416 /* 2417 * Donnot take into account dma fifo and various buffers in 2418 * INPUT phase since the chip flushes everything before 2419 * raising the MA interrupt for interrupted INPUT phases. 2420 * For DATA IN phase, we will check for the SWIDE later. 2421 */ 2422 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 2423 u_char ss0, ss2; 2424 2425 if (np->features & FE_DFBC) 2426 delta = INW(np, nc_dfbc); 2427 else { 2428 u32 dfifo; 2429 2430 /* 2431 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 2432 */ 2433 dfifo = INL(np, nc_dfifo); 2434 2435 /* 2436 * Calculate remaining bytes in DMA fifo. 2437 * (CTEST5 = dfifo >> 16) 2438 */ 2439 if (dfifo & (DFS << 16)) 2440 delta = ((((dfifo >> 8) & 0x300) | 2441 (dfifo & 0xff)) - rest) & 0x3ff; 2442 else 2443 delta = ((dfifo & 0xff) - rest) & 0x7f; 2444 } 2445 2446 /* 2447 * The data in the dma fifo has not been transferred to 2448 * the target -> add the amount to the rest 2449 * and clear the data. 2450 * Check the sstat2 register in case of wide transfer. 2451 */ 2452 rest += delta; 2453 ss0 = INB(np, nc_sstat0); 2454 if (ss0 & OLF) rest++; 2455 if (!(np->features & FE_C10)) 2456 if (ss0 & ORF) rest++; 2457 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 2458 ss2 = INB(np, nc_sstat2); 2459 if (ss2 & OLF1) rest++; 2460 if (!(np->features & FE_C10)) 2461 if (ss2 & ORF1) rest++; 2462 } 2463 2464 /* 2465 * Clear fifos. 2466 */ 2467 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 2468 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */ 2469 } 2470 2471 /* 2472 * log the information 2473 */ 2474 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 2475 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7, 2476 (unsigned) rest, (unsigned) delta); 2477 2478 /* 2479 * try to find the interrupted script command, 2480 * and the address at which to continue. 2481 */ 2482 vdsp = NULL; 2483 nxtdsp = 0; 2484 if (dsp > np->scripta_ba && 2485 dsp <= np->scripta_ba + np->scripta_sz) { 2486 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 2487 nxtdsp = dsp; 2488 } 2489 else if (dsp > np->scriptb_ba && 2490 dsp <= np->scriptb_ba + np->scriptb_sz) { 2491 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 2492 nxtdsp = dsp; 2493 } 2494 2495 /* 2496 * log the information 2497 */ 2498 if (DEBUG_FLAGS & DEBUG_PHASE) { 2499 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 2500 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 2501 } 2502 2503 if (!vdsp) { 2504 printf ("%s: interrupted SCRIPT address not found.\n", 2505 sym_name (np)); 2506 goto reset_all; 2507 } 2508 2509 if (!cp) { 2510 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 2511 sym_name (np)); 2512 goto reset_all; 2513 } 2514 2515 /* 2516 * get old startaddress and old length. 2517 */ 2518 oadr = scr_to_cpu(vdsp[1]); 2519 2520 if (cmd & 0x10) { /* Table indirect */ 2521 tblp = (u32 *) ((char*) &cp->phys + oadr); 2522 olen = scr_to_cpu(tblp[0]); 2523 oadr = scr_to_cpu(tblp[1]); 2524 } else { 2525 tblp = (u32 *) 0; 2526 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 2527 } 2528 2529 if (DEBUG_FLAGS & DEBUG_PHASE) { 2530 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 2531 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 2532 tblp, 2533 (unsigned) olen, 2534 (unsigned) oadr); 2535 } 2536 2537 /* 2538 * check cmd against assumed interrupted script command. 2539 * If dt data phase, the MOVE instruction hasn't bit 4 of 2540 * the phase. 2541 */ 2542 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 2543 sym_print_addr(cp->cmd, 2544 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 2545 cmd, scr_to_cpu(vdsp[0]) >> 24); 2546 2547 goto reset_all; 2548 } 2549 2550 /* 2551 * if old phase not dataphase, leave here. 2552 */ 2553 if (cmd & 2) { 2554 sym_print_addr(cp->cmd, 2555 "phase change %x-%x %d@%08x resid=%d.\n", 2556 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen, 2557 (unsigned)oadr, (unsigned)rest); 2558 goto unexpected_phase; 2559 } 2560 2561 /* 2562 * Choose the correct PM save area. 2563 * 2564 * Look at the PM_SAVE SCRIPT if you want to understand 2565 * this stuff. The equivalent code is implemented in 2566 * SCRIPTS for the 895A, 896 and 1010 that are able to 2567 * handle PM from the SCRIPTS processor. 2568 */ 2569 hflags0 = INB(np, HF_PRT); 2570 hflags = hflags0; 2571 2572 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 2573 if (hflags & HF_IN_PM0) 2574 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 2575 else if (hflags & HF_IN_PM1) 2576 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 2577 2578 if (hflags & HF_DP_SAVED) 2579 hflags ^= HF_ACT_PM; 2580 } 2581 2582 if (!(hflags & HF_ACT_PM)) { 2583 pm = &cp->phys.pm0; 2584 newcmd = SCRIPTA_BA(np, pm0_data); 2585 } 2586 else { 2587 pm = &cp->phys.pm1; 2588 newcmd = SCRIPTA_BA(np, pm1_data); 2589 } 2590 2591 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 2592 if (hflags != hflags0) 2593 OUTB(np, HF_PRT, hflags); 2594 2595 /* 2596 * fillin the phase mismatch context 2597 */ 2598 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 2599 pm->sg.size = cpu_to_scr(rest); 2600 pm->ret = cpu_to_scr(nxtdsp); 2601 2602 /* 2603 * If we have a SWIDE, 2604 * - prepare the address to write the SWIDE from SCRIPTS, 2605 * - compute the SCRIPTS address to restart from, 2606 * - move current data pointer context by one byte. 2607 */ 2608 nxtdsp = SCRIPTA_BA(np, dispatch); 2609 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 2610 (INB(np, nc_scntl2) & WSR)) { 2611 u32 tmp; 2612 2613 /* 2614 * Set up the table indirect for the MOVE 2615 * of the residual byte and adjust the data 2616 * pointer context. 2617 */ 2618 tmp = scr_to_cpu(pm->sg.addr); 2619 cp->phys.wresid.addr = cpu_to_scr(tmp); 2620 pm->sg.addr = cpu_to_scr(tmp + 1); 2621 tmp = scr_to_cpu(pm->sg.size); 2622 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 2623 pm->sg.size = cpu_to_scr(tmp - 1); 2624 2625 /* 2626 * If only the residual byte is to be moved, 2627 * no PM context is needed. 2628 */ 2629 if ((tmp&0xffffff) == 1) 2630 newcmd = pm->ret; 2631 2632 /* 2633 * Prepare the address of SCRIPTS that will 2634 * move the residual byte to memory. 2635 */ 2636 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper); 2637 } 2638 2639 if (DEBUG_FLAGS & DEBUG_PHASE) { 2640 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n", 2641 hflags0, hflags, newcmd, 2642 (unsigned)scr_to_cpu(pm->sg.addr), 2643 (unsigned)scr_to_cpu(pm->sg.size), 2644 (unsigned)scr_to_cpu(pm->ret)); 2645 } 2646 2647 /* 2648 * Restart the SCRIPTS processor. 2649 */ 2650 sym_set_script_dp (np, cp, newcmd); 2651 OUTL_DSP(np, nxtdsp); 2652 return; 2653 2654 /* 2655 * Unexpected phase changes that occurs when the current phase 2656 * is not a DATA IN or DATA OUT phase are due to error conditions. 2657 * Such event may only happen when the SCRIPTS is using a 2658 * multibyte SCSI MOVE. 2659 * 2660 * Phase change Some possible cause 2661 * 2662 * COMMAND --> MSG IN SCSI parity error detected by target. 2663 * COMMAND --> STATUS Bad command or refused by target. 2664 * MSG OUT --> MSG IN Message rejected by target. 2665 * MSG OUT --> COMMAND Bogus target that discards extended 2666 * negotiation messages. 2667 * 2668 * The code below does not care of the new phase and so 2669 * trusts the target. Why to annoy it ? 2670 * If the interrupted phase is COMMAND phase, we restart at 2671 * dispatcher. 2672 * If a target does not get all the messages after selection, 2673 * the code assumes blindly that the target discards extended 2674 * messages and clears the negotiation status. 2675 * If the target does not want all our response to negotiation, 2676 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 2677 * bloat for such a should_not_happen situation). 2678 * In all other situation, we reset the BUS. 2679 * Are these assumptions reasonable ? (Wait and see ...) 2680 */ 2681 unexpected_phase: 2682 dsp -= 8; 2683 nxtdsp = 0; 2684 2685 switch (cmd & 7) { 2686 case 2: /* COMMAND phase */ 2687 nxtdsp = SCRIPTA_BA(np, dispatch); 2688 break; 2689 #if 0 2690 case 3: /* STATUS phase */ 2691 nxtdsp = SCRIPTA_BA(np, dispatch); 2692 break; 2693 #endif 2694 case 6: /* MSG OUT phase */ 2695 /* 2696 * If the device may want to use untagged when we want 2697 * tagged, we prepare an IDENTIFY without disc. granted, 2698 * since we will not be able to handle reselect. 2699 * Otherwise, we just don't care. 2700 */ 2701 if (dsp == SCRIPTA_BA(np, send_ident)) { 2702 if (cp->tag != NO_TAG && olen - rest <= 3) { 2703 cp->host_status = HS_BUSY; 2704 np->msgout[0] = IDENTIFY(0, cp->lun); 2705 nxtdsp = SCRIPTB_BA(np, ident_break_atn); 2706 } 2707 else 2708 nxtdsp = SCRIPTB_BA(np, ident_break); 2709 } 2710 else if (dsp == SCRIPTB_BA(np, send_wdtr) || 2711 dsp == SCRIPTB_BA(np, send_sdtr) || 2712 dsp == SCRIPTB_BA(np, send_ppr)) { 2713 nxtdsp = SCRIPTB_BA(np, nego_bad_phase); 2714 if (dsp == SCRIPTB_BA(np, send_ppr)) { 2715 struct scsi_device *dev = cp->cmd->device; 2716 dev->ppr = 0; 2717 } 2718 } 2719 break; 2720 #if 0 2721 case 7: /* MSG IN phase */ 2722 nxtdsp = SCRIPTA_BA(np, clrack); 2723 break; 2724 #endif 2725 } 2726 2727 if (nxtdsp) { 2728 OUTL_DSP(np, nxtdsp); 2729 return; 2730 } 2731 2732 reset_all: 2733 sym_start_reset(np); 2734 } 2735 2736 /* 2737 * chip interrupt handler 2738 * 2739 * In normal situations, interrupt conditions occur one at 2740 * a time. But when something bad happens on the SCSI BUS, 2741 * the chip may raise several interrupt flags before 2742 * stopping and interrupting the CPU. The additionnal 2743 * interrupt flags are stacked in some extra registers 2744 * after the SIP and/or DIP flag has been raised in the 2745 * ISTAT. After the CPU has read the interrupt condition 2746 * flag from SIST or DSTAT, the chip unstacks the other 2747 * interrupt flags and sets the corresponding bits in 2748 * SIST or DSTAT. Since the chip starts stacking once the 2749 * SIP or DIP flag is set, there is a small window of time 2750 * where the stacking does not occur. 2751 * 2752 * Typically, multiple interrupt conditions may happen in 2753 * the following situations: 2754 * 2755 * - SCSI parity error + Phase mismatch (PAR|MA) 2756 * When an parity error is detected in input phase 2757 * and the device switches to msg-in phase inside a 2758 * block MOV. 2759 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 2760 * When a stupid device does not want to handle the 2761 * recovery of an SCSI parity error. 2762 * - Some combinations of STO, PAR, UDC, ... 2763 * When using non compliant SCSI stuff, when user is 2764 * doing non compliant hot tampering on the BUS, when 2765 * something really bad happens to a device, etc ... 2766 * 2767 * The heuristic suggested by SYMBIOS to handle 2768 * multiple interrupts is to try unstacking all 2769 * interrupts conditions and to handle them on some 2770 * priority based on error severity. 2771 * This will work when the unstacking has been 2772 * successful, but we cannot be 100 % sure of that, 2773 * since the CPU may have been faster to unstack than 2774 * the chip is able to stack. Hmmm ... But it seems that 2775 * such a situation is very unlikely to happen. 2776 * 2777 * If this happen, for example STO caught by the CPU 2778 * then UDC happenning before the CPU have restarted 2779 * the SCRIPTS, the driver may wrongly complete the 2780 * same command on UDC, since the SCRIPTS didn't restart 2781 * and the DSA still points to the same command. 2782 * We avoid this situation by setting the DSA to an 2783 * invalid value when the CCB is completed and before 2784 * restarting the SCRIPTS. 2785 * 2786 * Another issue is that we need some section of our 2787 * recovery procedures to be somehow uninterruptible but 2788 * the SCRIPTS processor does not provides such a 2789 * feature. For this reason, we handle recovery preferently 2790 * from the C code and check against some SCRIPTS critical 2791 * sections from the C code. 2792 * 2793 * Hopefully, the interrupt handling of the driver is now 2794 * able to resist to weird BUS error conditions, but donnot 2795 * ask me for any guarantee that it will never fail. :-) 2796 * Use at your own decision and risk. 2797 */ 2798 2799 irqreturn_t sym_interrupt(struct Scsi_Host *shost) 2800 { 2801 struct sym_data *sym_data = shost_priv(shost); 2802 struct sym_hcb *np = sym_data->ncb; 2803 struct pci_dev *pdev = sym_data->pdev; 2804 u_char istat, istatc; 2805 u_char dstat; 2806 u_short sist; 2807 2808 /* 2809 * interrupt on the fly ? 2810 * (SCRIPTS may still be running) 2811 * 2812 * A `dummy read' is needed to ensure that the 2813 * clear of the INTF flag reaches the device 2814 * and that posted writes are flushed to memory 2815 * before the scanning of the DONE queue. 2816 * Note that SCRIPTS also (dummy) read to memory 2817 * prior to deliver the INTF interrupt condition. 2818 */ 2819 istat = INB(np, nc_istat); 2820 if (istat & INTF) { 2821 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem); 2822 istat |= INB(np, nc_istat); /* DUMMY READ */ 2823 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 2824 sym_wakeup_done(np); 2825 } 2826 2827 if (!(istat & (SIP|DIP))) 2828 return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE; 2829 2830 #if 0 /* We should never get this one */ 2831 if (istat & CABRT) 2832 OUTB(np, nc_istat, CABRT); 2833 #endif 2834 2835 /* 2836 * PAR and MA interrupts may occur at the same time, 2837 * and we need to know of both in order to handle 2838 * this situation properly. We try to unstack SCSI 2839 * interrupts for that reason. BTW, I dislike a LOT 2840 * such a loop inside the interrupt routine. 2841 * Even if DMA interrupt stacking is very unlikely to 2842 * happen, we also try unstacking these ones, since 2843 * this has no performance impact. 2844 */ 2845 sist = 0; 2846 dstat = 0; 2847 istatc = istat; 2848 do { 2849 if (istatc & SIP) 2850 sist |= INW(np, nc_sist); 2851 if (istatc & DIP) 2852 dstat |= INB(np, nc_dstat); 2853 istatc = INB(np, nc_istat); 2854 istat |= istatc; 2855 2856 /* Prevent deadlock waiting on a condition that may 2857 * never clear. */ 2858 if (unlikely(sist == 0xffff && dstat == 0xff)) { 2859 if (pci_channel_offline(pdev)) 2860 return IRQ_NONE; 2861 } 2862 } while (istatc & (SIP|DIP)); 2863 2864 if (DEBUG_FLAGS & DEBUG_TINY) 2865 printf ("<%d|%x:%x|%x:%x>", 2866 (int)INB(np, nc_scr0), 2867 dstat,sist, 2868 (unsigned)INL(np, nc_dsp), 2869 (unsigned)INL(np, nc_dbc)); 2870 /* 2871 * On paper, a memory read barrier may be needed here to 2872 * prevent out of order LOADs by the CPU from having 2873 * prefetched stale data prior to DMA having occurred. 2874 * And since we are paranoid ... :) 2875 */ 2876 MEMORY_READ_BARRIER(); 2877 2878 /* 2879 * First, interrupts we want to service cleanly. 2880 * 2881 * Phase mismatch (MA) is the most frequent interrupt 2882 * for chip earlier than the 896 and so we have to service 2883 * it as quickly as possible. 2884 * A SCSI parity error (PAR) may be combined with a phase 2885 * mismatch condition (MA). 2886 * Programmed interrupts (SIR) are used to call the C code 2887 * from SCRIPTS. 2888 * The single step interrupt (SSI) is not used in this 2889 * driver. 2890 */ 2891 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 2892 !(dstat & (MDPE|BF|ABRT|IID))) { 2893 if (sist & PAR) sym_int_par (np, sist); 2894 else if (sist & MA) sym_int_ma (np); 2895 else if (dstat & SIR) sym_int_sir(np); 2896 else if (dstat & SSI) OUTONB_STD(); 2897 else goto unknown_int; 2898 return IRQ_HANDLED; 2899 } 2900 2901 /* 2902 * Now, interrupts that donnot happen in normal 2903 * situations and that we may need to recover from. 2904 * 2905 * On SCSI RESET (RST), we reset everything. 2906 * On SCSI BUS MODE CHANGE (SBMC), we complete all 2907 * active CCBs with RESET status, prepare all devices 2908 * for negotiating again and restart the SCRIPTS. 2909 * On STO and UDC, we complete the CCB with the corres- 2910 * ponding status and restart the SCRIPTS. 2911 */ 2912 if (sist & RST) { 2913 printf("%s: SCSI BUS reset detected.\n", sym_name(np)); 2914 sym_start_up(shost, 1); 2915 return IRQ_HANDLED; 2916 } 2917 2918 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 2919 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ 2920 2921 if (!(sist & (GEN|HTH|SGE)) && 2922 !(dstat & (MDPE|BF|ABRT|IID))) { 2923 if (sist & SBMC) sym_int_sbmc(shost); 2924 else if (sist & STO) sym_int_sto (np); 2925 else if (sist & UDC) sym_int_udc (np); 2926 else goto unknown_int; 2927 return IRQ_HANDLED; 2928 } 2929 2930 /* 2931 * Now, interrupts we are not able to recover cleanly. 2932 * 2933 * Log message for hard errors. 2934 * Reset everything. 2935 */ 2936 2937 sym_log_hard_error(shost, sist, dstat); 2938 2939 if ((sist & (GEN|HTH|SGE)) || 2940 (dstat & (MDPE|BF|ABRT|IID))) { 2941 sym_start_reset(np); 2942 return IRQ_HANDLED; 2943 } 2944 2945 unknown_int: 2946 /* 2947 * We just miss the cause of the interrupt. :( 2948 * Print a message. The timeout will do the real work. 2949 */ 2950 printf( "%s: unknown interrupt(s) ignored, " 2951 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 2952 sym_name(np), istat, dstat, sist); 2953 return IRQ_NONE; 2954 } 2955 2956 /* 2957 * Dequeue from the START queue all CCBs that match 2958 * a given target/lun/task condition (-1 means all), 2959 * and move them from the BUSY queue to the COMP queue 2960 * with DID_SOFT_ERROR status condition. 2961 * This function is used during error handling/recovery. 2962 * It is called with SCRIPTS not running. 2963 */ 2964 static int 2965 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task) 2966 { 2967 int j; 2968 struct sym_ccb *cp; 2969 2970 /* 2971 * Make sure the starting index is within range. 2972 */ 2973 assert((i >= 0) && (i < 2*MAX_QUEUE)); 2974 2975 /* 2976 * Walk until end of START queue and dequeue every job 2977 * that matches the target/lun/task condition. 2978 */ 2979 j = i; 2980 while (i != np->squeueput) { 2981 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 2982 assert(cp); 2983 #ifdef SYM_CONF_IARB_SUPPORT 2984 /* Forget hints for IARB, they may be no longer relevant */ 2985 cp->host_flags &= ~HF_HINT_IARB; 2986 #endif 2987 if ((target == -1 || cp->target == target) && 2988 (lun == -1 || cp->lun == lun) && 2989 (task == -1 || cp->tag == task)) { 2990 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 2991 sym_set_cam_status(cp->cmd, DID_SOFT_ERROR); 2992 #else 2993 sym_set_cam_status(cp->cmd, DID_REQUEUE); 2994 #endif 2995 sym_remque(&cp->link_ccbq); 2996 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 2997 } 2998 else { 2999 if (i != j) 3000 np->squeue[j] = np->squeue[i]; 3001 if ((j += 2) >= MAX_QUEUE*2) j = 0; 3002 } 3003 if ((i += 2) >= MAX_QUEUE*2) i = 0; 3004 } 3005 if (i != j) /* Copy back the idle task if needed */ 3006 np->squeue[j] = np->squeue[i]; 3007 np->squeueput = j; /* Update our current start queue pointer */ 3008 3009 return (i - j) / 2; 3010 } 3011 3012 /* 3013 * chip handler for bad SCSI status condition 3014 * 3015 * In case of bad SCSI status, we unqueue all the tasks 3016 * currently queued to the controller but not yet started 3017 * and then restart the SCRIPTS processor immediately. 3018 * 3019 * QUEUE FULL and BUSY conditions are handled the same way. 3020 * Basically all the not yet started tasks are requeued in 3021 * device queue and the queue is frozen until a completion. 3022 * 3023 * For CHECK CONDITION and COMMAND TERMINATED status, we use 3024 * the CCB of the failed command to prepare a REQUEST SENSE 3025 * SCSI command and queue it to the controller queue. 3026 * 3027 * SCRATCHA is assumed to have been loaded with STARTPOS 3028 * before the SCRIPTS called the C code. 3029 */ 3030 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp) 3031 { 3032 u32 startp; 3033 u_char s_status = cp->ssss_status; 3034 u_char h_flags = cp->host_flags; 3035 int msglen; 3036 int i; 3037 3038 /* 3039 * Compute the index of the next job to start from SCRIPTS. 3040 */ 3041 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; 3042 3043 /* 3044 * The last CCB queued used for IARB hint may be 3045 * no longer relevant. Forget it. 3046 */ 3047 #ifdef SYM_CONF_IARB_SUPPORT 3048 if (np->last_cp) 3049 np->last_cp = 0; 3050 #endif 3051 3052 /* 3053 * Now deal with the SCSI status. 3054 */ 3055 switch(s_status) { 3056 case S_BUSY: 3057 case S_QUEUE_FULL: 3058 if (sym_verbose >= 2) { 3059 sym_print_addr(cp->cmd, "%s\n", 3060 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 3061 } 3062 fallthrough; 3063 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 3064 sym_complete_error (np, cp); 3065 break; 3066 case S_TERMINATED: 3067 case S_CHECK_COND: 3068 /* 3069 * If we get an SCSI error when requesting sense, give up. 3070 */ 3071 if (h_flags & HF_SENSE) { 3072 sym_complete_error (np, cp); 3073 break; 3074 } 3075 3076 /* 3077 * Dequeue all queued CCBs for that device not yet started, 3078 * and restart the SCRIPTS processor immediately. 3079 */ 3080 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 3081 OUTL_DSP(np, SCRIPTA_BA(np, start)); 3082 3083 /* 3084 * Save some info of the actual IO. 3085 * Compute the data residual. 3086 */ 3087 cp->sv_scsi_status = cp->ssss_status; 3088 cp->sv_xerr_status = cp->xerr_status; 3089 cp->sv_resid = sym_compute_residual(np, cp); 3090 3091 /* 3092 * Prepare all needed data structures for 3093 * requesting sense data. 3094 */ 3095 3096 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun); 3097 msglen = 1; 3098 3099 /* 3100 * If we are currently using anything different from 3101 * async. 8 bit data transfers with that target, 3102 * start a negotiation, since the device may want 3103 * to report us a UNIT ATTENTION condition due to 3104 * a cause we currently ignore, and we donnot want 3105 * to be stuck with WIDE and/or SYNC data transfer. 3106 * 3107 * cp->nego_status is filled by sym_prepare_nego(). 3108 */ 3109 cp->nego_status = 0; 3110 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]); 3111 /* 3112 * Message table indirect structure. 3113 */ 3114 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2); 3115 cp->phys.smsg.size = cpu_to_scr(msglen); 3116 3117 /* 3118 * sense command 3119 */ 3120 cp->phys.cmd.addr = CCB_BA(cp, sensecmd); 3121 cp->phys.cmd.size = cpu_to_scr(6); 3122 3123 /* 3124 * patch requested size into sense command 3125 */ 3126 cp->sensecmd[0] = REQUEST_SENSE; 3127 cp->sensecmd[1] = 0; 3128 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7) 3129 cp->sensecmd[1] = cp->lun << 5; 3130 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 3131 cp->data_len = SYM_SNS_BBUF_LEN; 3132 3133 /* 3134 * sense data 3135 */ 3136 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN); 3137 cp->phys.sense.addr = CCB_BA(cp, sns_bbuf); 3138 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 3139 3140 /* 3141 * requeue the command. 3142 */ 3143 startp = SCRIPTB_BA(np, sdata_in); 3144 3145 cp->phys.head.savep = cpu_to_scr(startp); 3146 cp->phys.head.lastp = cpu_to_scr(startp); 3147 cp->startp = cpu_to_scr(startp); 3148 cp->goalp = cpu_to_scr(startp + 16); 3149 3150 cp->host_xflags = 0; 3151 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 3152 cp->ssss_status = S_ILLEGAL; 3153 cp->host_flags = (HF_SENSE|HF_DATA_IN); 3154 cp->xerr_status = 0; 3155 cp->extra_bytes = 0; 3156 3157 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); 3158 3159 /* 3160 * Requeue the command. 3161 */ 3162 sym_put_start_queue(np, cp); 3163 3164 /* 3165 * Give back to upper layer everything we have dequeued. 3166 */ 3167 sym_flush_comp_queue(np, 0); 3168 break; 3169 } 3170 } 3171 3172 /* 3173 * After a device has accepted some management message 3174 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 3175 * a device signals a UNIT ATTENTION condition, some 3176 * tasks are thrown away by the device. We are required 3177 * to reflect that on our tasks list since the device 3178 * will never complete these tasks. 3179 * 3180 * This function move from the BUSY queue to the COMP 3181 * queue all disconnected CCBs for a given target that 3182 * match the following criteria: 3183 * - lun=-1 means any logical UNIT otherwise a given one. 3184 * - task=-1 means any task, otherwise a given one. 3185 */ 3186 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task) 3187 { 3188 SYM_QUEHEAD qtmp, *qp; 3189 int i = 0; 3190 struct sym_ccb *cp; 3191 3192 /* 3193 * Move the entire BUSY queue to our temporary queue. 3194 */ 3195 sym_que_init(&qtmp); 3196 sym_que_splice(&np->busy_ccbq, &qtmp); 3197 sym_que_init(&np->busy_ccbq); 3198 3199 /* 3200 * Put all CCBs that matches our criteria into 3201 * the COMP queue and put back other ones into 3202 * the BUSY queue. 3203 */ 3204 while ((qp = sym_remque_head(&qtmp)) != NULL) { 3205 struct scsi_cmnd *cmd; 3206 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3207 cmd = cp->cmd; 3208 if (cp->host_status != HS_DISCONNECT || 3209 cp->target != target || 3210 (lun != -1 && cp->lun != lun) || 3211 (task != -1 && 3212 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 3213 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 3214 continue; 3215 } 3216 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 3217 3218 /* Preserve the software timeout condition */ 3219 if (sym_get_cam_status(cmd) != DID_TIME_OUT) 3220 sym_set_cam_status(cmd, cam_status); 3221 ++i; 3222 #if 0 3223 printf("XXXX TASK @%p CLEARED\n", cp); 3224 #endif 3225 } 3226 return i; 3227 } 3228 3229 /* 3230 * chip handler for TASKS recovery 3231 * 3232 * We cannot safely abort a command, while the SCRIPTS 3233 * processor is running, since we just would be in race 3234 * with it. 3235 * 3236 * As long as we have tasks to abort, we keep the SEM 3237 * bit set in the ISTAT. When this bit is set, the 3238 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 3239 * each time it enters the scheduler. 3240 * 3241 * If we have to reset a target, clear tasks of a unit, 3242 * or to perform the abort of a disconnected job, we 3243 * restart the SCRIPTS for selecting the target. Once 3244 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 3245 * If it loses arbitration, the SCRIPTS will interrupt again 3246 * the next time it will enter its scheduler, and so on ... 3247 * 3248 * On SIR_TARGET_SELECTED, we scan for the more 3249 * appropriate thing to do: 3250 * 3251 * - If nothing, we just sent a M_ABORT message to the 3252 * target to get rid of the useless SCSI bus ownership. 3253 * According to the specs, no tasks shall be affected. 3254 * - If the target is to be reset, we send it a M_RESET 3255 * message. 3256 * - If a logical UNIT is to be cleared , we send the 3257 * IDENTIFY(lun) + M_ABORT. 3258 * - If an untagged task is to be aborted, we send the 3259 * IDENTIFY(lun) + M_ABORT. 3260 * - If a tagged task is to be aborted, we send the 3261 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 3262 * 3263 * Once our 'kiss of death' :) message has been accepted 3264 * by the target, the SCRIPTS interrupts again 3265 * (SIR_ABORT_SENT). On this interrupt, we complete 3266 * all the CCBs that should have been aborted by the 3267 * target according to our message. 3268 */ 3269 static void sym_sir_task_recovery(struct sym_hcb *np, int num) 3270 { 3271 SYM_QUEHEAD *qp; 3272 struct sym_ccb *cp; 3273 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */ 3274 struct scsi_target *starget; 3275 int target=-1, lun=-1, task; 3276 int i, k; 3277 3278 switch(num) { 3279 /* 3280 * The SCRIPTS processor stopped before starting 3281 * the next command in order to allow us to perform 3282 * some task recovery. 3283 */ 3284 case SIR_SCRIPT_STOPPED: 3285 /* 3286 * Do we have any target to reset or unit to clear ? 3287 */ 3288 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 3289 tp = &np->target[i]; 3290 if (tp->to_reset || 3291 (tp->lun0p && tp->lun0p->to_clear)) { 3292 target = i; 3293 break; 3294 } 3295 if (!tp->lunmp) 3296 continue; 3297 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 3298 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 3299 target = i; 3300 break; 3301 } 3302 } 3303 if (target != -1) 3304 break; 3305 } 3306 3307 /* 3308 * If not, walk the busy queue for any 3309 * disconnected CCB to be aborted. 3310 */ 3311 if (target == -1) { 3312 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3313 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 3314 if (cp->host_status != HS_DISCONNECT) 3315 continue; 3316 if (cp->to_abort) { 3317 target = cp->target; 3318 break; 3319 } 3320 } 3321 } 3322 3323 /* 3324 * If some target is to be selected, 3325 * prepare and start the selection. 3326 */ 3327 if (target != -1) { 3328 tp = &np->target[target]; 3329 np->abrt_sel.sel_id = target; 3330 np->abrt_sel.sel_scntl3 = tp->head.wval; 3331 np->abrt_sel.sel_sxfer = tp->head.sval; 3332 OUTL(np, nc_dsa, np->hcb_ba); 3333 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort)); 3334 return; 3335 } 3336 3337 /* 3338 * Now look for a CCB to abort that haven't started yet. 3339 * Btw, the SCRIPTS processor is still stopped, so 3340 * we are not in race. 3341 */ 3342 i = 0; 3343 cp = NULL; 3344 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3345 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3346 if (cp->host_status != HS_BUSY && 3347 cp->host_status != HS_NEGOTIATE) 3348 continue; 3349 if (!cp->to_abort) 3350 continue; 3351 #ifdef SYM_CONF_IARB_SUPPORT 3352 /* 3353 * If we are using IMMEDIATE ARBITRATION, we donnot 3354 * want to cancel the last queued CCB, since the 3355 * SCRIPTS may have anticipated the selection. 3356 */ 3357 if (cp == np->last_cp) { 3358 cp->to_abort = 0; 3359 continue; 3360 } 3361 #endif 3362 i = 1; /* Means we have found some */ 3363 break; 3364 } 3365 if (!i) { 3366 /* 3367 * We are done, so we donnot need 3368 * to synchronize with the SCRIPTS anylonger. 3369 * Remove the SEM flag from the ISTAT. 3370 */ 3371 np->istat_sem = 0; 3372 OUTB(np, nc_istat, SIGP); 3373 break; 3374 } 3375 /* 3376 * Compute index of next position in the start 3377 * queue the SCRIPTS intends to start and dequeue 3378 * all CCBs for that device that haven't been started. 3379 */ 3380 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; 3381 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 3382 3383 /* 3384 * Make sure at least our IO to abort has been dequeued. 3385 */ 3386 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 3387 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR); 3388 #else 3389 sym_remque(&cp->link_ccbq); 3390 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 3391 #endif 3392 /* 3393 * Keep track in cam status of the reason of the abort. 3394 */ 3395 if (cp->to_abort == 2) 3396 sym_set_cam_status(cp->cmd, DID_TIME_OUT); 3397 else 3398 sym_set_cam_status(cp->cmd, DID_ABORT); 3399 3400 /* 3401 * Complete with error everything that we have dequeued. 3402 */ 3403 sym_flush_comp_queue(np, 0); 3404 break; 3405 /* 3406 * The SCRIPTS processor has selected a target 3407 * we may have some manual recovery to perform for. 3408 */ 3409 case SIR_TARGET_SELECTED: 3410 target = INB(np, nc_sdid) & 0xf; 3411 tp = &np->target[target]; 3412 3413 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 3414 3415 /* 3416 * If the target is to be reset, prepare a 3417 * M_RESET message and clear the to_reset flag 3418 * since we donnot expect this operation to fail. 3419 */ 3420 if (tp->to_reset) { 3421 np->abrt_msg[0] = M_RESET; 3422 np->abrt_tbl.size = 1; 3423 tp->to_reset = 0; 3424 break; 3425 } 3426 3427 /* 3428 * Otherwise, look for some logical unit to be cleared. 3429 */ 3430 if (tp->lun0p && tp->lun0p->to_clear) 3431 lun = 0; 3432 else if (tp->lunmp) { 3433 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 3434 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 3435 lun = k; 3436 break; 3437 } 3438 } 3439 } 3440 3441 /* 3442 * If a logical unit is to be cleared, prepare 3443 * an IDENTIFY(lun) + ABORT MESSAGE. 3444 */ 3445 if (lun != -1) { 3446 struct sym_lcb *lp = sym_lp(tp, lun); 3447 lp->to_clear = 0; /* We don't expect to fail here */ 3448 np->abrt_msg[0] = IDENTIFY(0, lun); 3449 np->abrt_msg[1] = M_ABORT; 3450 np->abrt_tbl.size = 2; 3451 break; 3452 } 3453 3454 /* 3455 * Otherwise, look for some disconnected job to 3456 * abort for this target. 3457 */ 3458 i = 0; 3459 cp = NULL; 3460 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3461 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3462 if (cp->host_status != HS_DISCONNECT) 3463 continue; 3464 if (cp->target != target) 3465 continue; 3466 if (!cp->to_abort) 3467 continue; 3468 i = 1; /* Means we have some */ 3469 break; 3470 } 3471 3472 /* 3473 * If we have none, probably since the device has 3474 * completed the command before we won abitration, 3475 * send a M_ABORT message without IDENTIFY. 3476 * According to the specs, the device must just 3477 * disconnect the BUS and not abort any task. 3478 */ 3479 if (!i) { 3480 np->abrt_msg[0] = M_ABORT; 3481 np->abrt_tbl.size = 1; 3482 break; 3483 } 3484 3485 /* 3486 * We have some task to abort. 3487 * Set the IDENTIFY(lun) 3488 */ 3489 np->abrt_msg[0] = IDENTIFY(0, cp->lun); 3490 3491 /* 3492 * If we want to abort an untagged command, we 3493 * will send a IDENTIFY + M_ABORT. 3494 * Otherwise (tagged command), we will send 3495 * a IDENTITFY + task attributes + ABORT TAG. 3496 */ 3497 if (cp->tag == NO_TAG) { 3498 np->abrt_msg[1] = M_ABORT; 3499 np->abrt_tbl.size = 2; 3500 } else { 3501 np->abrt_msg[1] = cp->scsi_smsg[1]; 3502 np->abrt_msg[2] = cp->scsi_smsg[2]; 3503 np->abrt_msg[3] = M_ABORT_TAG; 3504 np->abrt_tbl.size = 4; 3505 } 3506 /* 3507 * Keep track of software timeout condition, since the 3508 * peripheral driver may not count retries on abort 3509 * conditions not due to timeout. 3510 */ 3511 if (cp->to_abort == 2) 3512 sym_set_cam_status(cp->cmd, DID_TIME_OUT); 3513 cp->to_abort = 0; /* We donnot expect to fail here */ 3514 break; 3515 3516 /* 3517 * The target has accepted our message and switched 3518 * to BUS FREE phase as we expected. 3519 */ 3520 case SIR_ABORT_SENT: 3521 target = INB(np, nc_sdid) & 0xf; 3522 tp = &np->target[target]; 3523 starget = tp->starget; 3524 3525 /* 3526 ** If we didn't abort anything, leave here. 3527 */ 3528 if (np->abrt_msg[0] == M_ABORT) 3529 break; 3530 3531 /* 3532 * If we sent a M_RESET, then a hardware reset has 3533 * been performed by the target. 3534 * - Reset everything to async 8 bit 3535 * - Tell ourself to negotiate next time :-) 3536 * - Prepare to clear all disconnected CCBs for 3537 * this target from our task list (lun=task=-1) 3538 */ 3539 lun = -1; 3540 task = -1; 3541 if (np->abrt_msg[0] == M_RESET) { 3542 tp->head.sval = 0; 3543 tp->head.wval = np->rv_scntl3; 3544 tp->head.uval = 0; 3545 spi_period(starget) = 0; 3546 spi_offset(starget) = 0; 3547 spi_width(starget) = 0; 3548 spi_iu(starget) = 0; 3549 spi_dt(starget) = 0; 3550 spi_qas(starget) = 0; 3551 tp->tgoal.check_nego = 1; 3552 tp->tgoal.renego = 0; 3553 } 3554 3555 /* 3556 * Otherwise, check for the LUN and TASK(s) 3557 * concerned by the cancelation. 3558 * If it is not ABORT_TAG then it is CLEAR_QUEUE 3559 * or an ABORT message :-) 3560 */ 3561 else { 3562 lun = np->abrt_msg[0] & 0x3f; 3563 if (np->abrt_msg[1] == M_ABORT_TAG) 3564 task = np->abrt_msg[2]; 3565 } 3566 3567 /* 3568 * Complete all the CCBs the device should have 3569 * aborted due to our 'kiss of death' message. 3570 */ 3571 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; 3572 sym_dequeue_from_squeue(np, i, target, lun, -1); 3573 sym_clear_tasks(np, DID_ABORT, target, lun, task); 3574 sym_flush_comp_queue(np, 0); 3575 3576 /* 3577 * If we sent a BDR, make upper layer aware of that. 3578 */ 3579 if (np->abrt_msg[0] == M_RESET) 3580 starget_printk(KERN_NOTICE, starget, 3581 "has been reset\n"); 3582 break; 3583 } 3584 3585 /* 3586 * Print to the log the message we intend to send. 3587 */ 3588 if (num == SIR_TARGET_SELECTED) { 3589 dev_info(&tp->starget->dev, "control msgout:"); 3590 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size); 3591 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 3592 } 3593 3594 /* 3595 * Let the SCRIPTS processor continue. 3596 */ 3597 OUTONB_STD(); 3598 } 3599 3600 /* 3601 * Gerard's alchemy:) that deals with with the data 3602 * pointer for both MDP and the residual calculation. 3603 * 3604 * I didn't want to bloat the code by more than 200 3605 * lines for the handling of both MDP and the residual. 3606 * This has been achieved by using a data pointer 3607 * representation consisting in an index in the data 3608 * array (dp_sg) and a negative offset (dp_ofs) that 3609 * have the following meaning: 3610 * 3611 * - dp_sg = SYM_CONF_MAX_SG 3612 * we are at the end of the data script. 3613 * - dp_sg < SYM_CONF_MAX_SG 3614 * dp_sg points to the next entry of the scatter array 3615 * we want to transfer. 3616 * - dp_ofs < 0 3617 * dp_ofs represents the residual of bytes of the 3618 * previous entry scatter entry we will send first. 3619 * - dp_ofs = 0 3620 * no residual to send first. 3621 * 3622 * The function sym_evaluate_dp() accepts an arbitray 3623 * offset (basically from the MDP message) and returns 3624 * the corresponding values of dp_sg and dp_ofs. 3625 */ 3626 3627 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs) 3628 { 3629 u32 dp_scr; 3630 int dp_ofs, dp_sg, dp_sgmin; 3631 int tmp; 3632 struct sym_pmc *pm; 3633 3634 /* 3635 * Compute the resulted data pointer in term of a script 3636 * address within some DATA script and a signed byte offset. 3637 */ 3638 dp_scr = scr; 3639 dp_ofs = *ofs; 3640 if (dp_scr == SCRIPTA_BA(np, pm0_data)) 3641 pm = &cp->phys.pm0; 3642 else if (dp_scr == SCRIPTA_BA(np, pm1_data)) 3643 pm = &cp->phys.pm1; 3644 else 3645 pm = NULL; 3646 3647 if (pm) { 3648 dp_scr = scr_to_cpu(pm->ret); 3649 dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff; 3650 } 3651 3652 /* 3653 * If we are auto-sensing, then we are done. 3654 */ 3655 if (cp->host_flags & HF_SENSE) { 3656 *ofs = dp_ofs; 3657 return 0; 3658 } 3659 3660 /* 3661 * Deduce the index of the sg entry. 3662 * Keep track of the index of the first valid entry. 3663 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 3664 * end of the data. 3665 */ 3666 tmp = scr_to_cpu(cp->goalp); 3667 dp_sg = SYM_CONF_MAX_SG; 3668 if (dp_scr != tmp) 3669 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 3670 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 3671 3672 /* 3673 * Move to the sg entry the data pointer belongs to. 3674 * 3675 * If we are inside the data area, we expect result to be: 3676 * 3677 * Either, 3678 * dp_ofs = 0 and dp_sg is the index of the sg entry 3679 * the data pointer belongs to (or the end of the data) 3680 * Or, 3681 * dp_ofs < 0 and dp_sg is the index of the sg entry 3682 * the data pointer belongs to + 1. 3683 */ 3684 if (dp_ofs < 0) { 3685 int n; 3686 while (dp_sg > dp_sgmin) { 3687 --dp_sg; 3688 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 3689 n = dp_ofs + (tmp & 0xffffff); 3690 if (n > 0) { 3691 ++dp_sg; 3692 break; 3693 } 3694 dp_ofs = n; 3695 } 3696 } 3697 else if (dp_ofs > 0) { 3698 while (dp_sg < SYM_CONF_MAX_SG) { 3699 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 3700 dp_ofs -= (tmp & 0xffffff); 3701 ++dp_sg; 3702 if (dp_ofs <= 0) 3703 break; 3704 } 3705 } 3706 3707 /* 3708 * Make sure the data pointer is inside the data area. 3709 * If not, return some error. 3710 */ 3711 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 3712 goto out_err; 3713 else if (dp_sg > SYM_CONF_MAX_SG || 3714 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 3715 goto out_err; 3716 3717 /* 3718 * Save the extreme pointer if needed. 3719 */ 3720 if (dp_sg > cp->ext_sg || 3721 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 3722 cp->ext_sg = dp_sg; 3723 cp->ext_ofs = dp_ofs; 3724 } 3725 3726 /* 3727 * Return data. 3728 */ 3729 *ofs = dp_ofs; 3730 return dp_sg; 3731 3732 out_err: 3733 return -1; 3734 } 3735 3736 /* 3737 * chip handler for MODIFY DATA POINTER MESSAGE 3738 * 3739 * We also call this function on IGNORE WIDE RESIDUE 3740 * messages that do not match a SWIDE full condition. 3741 * Btw, we assume in that situation that such a message 3742 * is equivalent to a MODIFY DATA POINTER (offset=-1). 3743 */ 3744 3745 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs) 3746 { 3747 int dp_ofs = ofs; 3748 u32 dp_scr = sym_get_script_dp (np, cp); 3749 u32 dp_ret; 3750 u32 tmp; 3751 u_char hflags; 3752 int dp_sg; 3753 struct sym_pmc *pm; 3754 3755 /* 3756 * Not supported for auto-sense. 3757 */ 3758 if (cp->host_flags & HF_SENSE) 3759 goto out_reject; 3760 3761 /* 3762 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 3763 * to the resulted data pointer. 3764 */ 3765 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 3766 if (dp_sg < 0) 3767 goto out_reject; 3768 3769 /* 3770 * And our alchemy:) allows to easily calculate the data 3771 * script address we want to return for the next data phase. 3772 */ 3773 dp_ret = cpu_to_scr(cp->goalp); 3774 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 3775 3776 /* 3777 * If offset / scatter entry is zero we donnot need 3778 * a context for the new current data pointer. 3779 */ 3780 if (dp_ofs == 0) { 3781 dp_scr = dp_ret; 3782 goto out_ok; 3783 } 3784 3785 /* 3786 * Get a context for the new current data pointer. 3787 */ 3788 hflags = INB(np, HF_PRT); 3789 3790 if (hflags & HF_DP_SAVED) 3791 hflags ^= HF_ACT_PM; 3792 3793 if (!(hflags & HF_ACT_PM)) { 3794 pm = &cp->phys.pm0; 3795 dp_scr = SCRIPTA_BA(np, pm0_data); 3796 } 3797 else { 3798 pm = &cp->phys.pm1; 3799 dp_scr = SCRIPTA_BA(np, pm1_data); 3800 } 3801 3802 hflags &= ~(HF_DP_SAVED); 3803 3804 OUTB(np, HF_PRT, hflags); 3805 3806 /* 3807 * Set up the new current data pointer. 3808 * ofs < 0 there, and for the next data phase, we 3809 * want to transfer part of the data of the sg entry 3810 * corresponding to index dp_sg-1 prior to returning 3811 * to the main data script. 3812 */ 3813 pm->ret = cpu_to_scr(dp_ret); 3814 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 3815 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 3816 pm->sg.addr = cpu_to_scr(tmp); 3817 pm->sg.size = cpu_to_scr(-dp_ofs); 3818 3819 out_ok: 3820 sym_set_script_dp (np, cp, dp_scr); 3821 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 3822 return; 3823 3824 out_reject: 3825 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 3826 } 3827 3828 3829 /* 3830 * chip calculation of the data residual. 3831 * 3832 * As I used to say, the requirement of data residual 3833 * in SCSI is broken, useless and cannot be achieved 3834 * without huge complexity. 3835 * But most OSes and even the official CAM require it. 3836 * When stupidity happens to be so widely spread inside 3837 * a community, it gets hard to convince. 3838 * 3839 * Anyway, I don't care, since I am not going to use 3840 * any software that considers this data residual as 3841 * a relevant information. :) 3842 */ 3843 3844 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp) 3845 { 3846 int dp_sg, resid = 0; 3847 int dp_ofs = 0; 3848 3849 /* 3850 * Check for some data lost or just thrown away. 3851 * We are not required to be quite accurate in this 3852 * situation. Btw, if we are odd for output and the 3853 * device claims some more data, it may well happen 3854 * than our residual be zero. :-) 3855 */ 3856 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 3857 if (cp->xerr_status & XE_EXTRA_DATA) 3858 resid -= cp->extra_bytes; 3859 if (cp->xerr_status & XE_SODL_UNRUN) 3860 ++resid; 3861 if (cp->xerr_status & XE_SWIDE_OVRUN) 3862 --resid; 3863 } 3864 3865 /* 3866 * If all data has been transferred, 3867 * there is no residual. 3868 */ 3869 if (cp->phys.head.lastp == cp->goalp) 3870 return resid; 3871 3872 /* 3873 * If no data transfer occurs, or if the data 3874 * pointer is weird, return full residual. 3875 */ 3876 if (cp->startp == cp->phys.head.lastp || 3877 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 3878 &dp_ofs) < 0) { 3879 return cp->data_len - cp->odd_byte_adjustment; 3880 } 3881 3882 /* 3883 * If we were auto-sensing, then we are done. 3884 */ 3885 if (cp->host_flags & HF_SENSE) { 3886 return -dp_ofs; 3887 } 3888 3889 /* 3890 * We are now full comfortable in the computation 3891 * of the data residual (2's complement). 3892 */ 3893 resid = -cp->ext_ofs; 3894 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 3895 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 3896 resid += (tmp & 0xffffff); 3897 } 3898 3899 resid -= cp->odd_byte_adjustment; 3900 3901 /* 3902 * Hopefully, the result is not too wrong. 3903 */ 3904 return resid; 3905 } 3906 3907 /* 3908 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 3909 * 3910 * When we try to negotiate, we append the negotiation message 3911 * to the identify and (maybe) simple tag message. 3912 * The host status field is set to HS_NEGOTIATE to mark this 3913 * situation. 3914 * 3915 * If the target doesn't answer this message immediately 3916 * (as required by the standard), the SIR_NEGO_FAILED interrupt 3917 * will be raised eventually. 3918 * The handler removes the HS_NEGOTIATE status, and sets the 3919 * negotiated value to the default (async / nowide). 3920 * 3921 * If we receive a matching answer immediately, we check it 3922 * for validity, and set the values. 3923 * 3924 * If we receive a Reject message immediately, we assume the 3925 * negotiation has failed, and fall back to standard values. 3926 * 3927 * If we receive a negotiation message while not in HS_NEGOTIATE 3928 * state, it's a target initiated negotiation. We prepare a 3929 * (hopefully) valid answer, set our parameters, and send back 3930 * this answer to the target. 3931 * 3932 * If the target doesn't fetch the answer (no message out phase), 3933 * we assume the negotiation has failed, and fall back to default 3934 * settings (SIR_NEGO_PROTO interrupt). 3935 * 3936 * When we set the values, we adjust them in all ccbs belonging 3937 * to this target, in the controller's register, and in the "phys" 3938 * field of the controller's struct sym_hcb. 3939 */ 3940 3941 /* 3942 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 3943 */ 3944 static int 3945 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) 3946 { 3947 int target = cp->target; 3948 u_char chg, ofs, per, fak, div; 3949 3950 if (DEBUG_FLAGS & DEBUG_NEGO) { 3951 sym_print_nego_msg(np, target, "sync msgin", np->msgin); 3952 } 3953 3954 /* 3955 * Get requested values. 3956 */ 3957 chg = 0; 3958 per = np->msgin[3]; 3959 ofs = np->msgin[4]; 3960 3961 /* 3962 * Check values against our limits. 3963 */ 3964 if (ofs) { 3965 if (ofs > np->maxoffs) 3966 {chg = 1; ofs = np->maxoffs;} 3967 } 3968 3969 if (ofs) { 3970 if (per < np->minsync) 3971 {chg = 1; per = np->minsync;} 3972 } 3973 3974 /* 3975 * Get new chip synchronous parameters value. 3976 */ 3977 div = fak = 0; 3978 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 3979 goto reject_it; 3980 3981 if (DEBUG_FLAGS & DEBUG_NEGO) { 3982 sym_print_addr(cp->cmd, 3983 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 3984 ofs, per, div, fak, chg); 3985 } 3986 3987 /* 3988 * If it was an answer we want to change, 3989 * then it isn't acceptable. Reject it. 3990 */ 3991 if (!req && chg) 3992 goto reject_it; 3993 3994 /* 3995 * Apply new values. 3996 */ 3997 sym_setsync (np, target, ofs, per, div, fak); 3998 3999 /* 4000 * It was an answer. We are done. 4001 */ 4002 if (!req) 4003 return 0; 4004 4005 /* 4006 * It was a request. Prepare an answer message. 4007 */ 4008 spi_populate_sync_msg(np->msgout, per, ofs); 4009 4010 if (DEBUG_FLAGS & DEBUG_NEGO) { 4011 sym_print_nego_msg(np, target, "sync msgout", np->msgout); 4012 } 4013 4014 np->msgin [0] = M_NOOP; 4015 4016 return 0; 4017 4018 reject_it: 4019 sym_setsync (np, target, 0, 0, 0, 0); 4020 return -1; 4021 } 4022 4023 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4024 { 4025 int req = 1; 4026 int result; 4027 4028 /* 4029 * Request or answer ? 4030 */ 4031 if (INB(np, HS_PRT) == HS_NEGOTIATE) { 4032 OUTB(np, HS_PRT, HS_BUSY); 4033 if (cp->nego_status && cp->nego_status != NS_SYNC) 4034 goto reject_it; 4035 req = 0; 4036 } 4037 4038 /* 4039 * Check and apply new values. 4040 */ 4041 result = sym_sync_nego_check(np, req, cp); 4042 if (result) /* Not acceptable, reject it */ 4043 goto reject_it; 4044 if (req) { /* Was a request, send response. */ 4045 cp->nego_status = NS_SYNC; 4046 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); 4047 } 4048 else /* Was a response, we are done. */ 4049 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4050 return; 4051 4052 reject_it: 4053 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 4054 } 4055 4056 /* 4057 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 4058 */ 4059 static int 4060 sym_ppr_nego_check(struct sym_hcb *np, int req, int target) 4061 { 4062 struct sym_tcb *tp = &np->target[target]; 4063 unsigned char fak, div; 4064 int dt, chg = 0; 4065 4066 unsigned char per = np->msgin[3]; 4067 unsigned char ofs = np->msgin[5]; 4068 unsigned char wide = np->msgin[6]; 4069 unsigned char opts = np->msgin[7] & PPR_OPT_MASK; 4070 4071 if (DEBUG_FLAGS & DEBUG_NEGO) { 4072 sym_print_nego_msg(np, target, "ppr msgin", np->msgin); 4073 } 4074 4075 /* 4076 * Check values against our limits. 4077 */ 4078 if (wide > np->maxwide) { 4079 chg = 1; 4080 wide = np->maxwide; 4081 } 4082 if (!wide || !(np->features & FE_U3EN)) 4083 opts = 0; 4084 4085 if (opts != (np->msgin[7] & PPR_OPT_MASK)) 4086 chg = 1; 4087 4088 dt = opts & PPR_OPT_DT; 4089 4090 if (ofs) { 4091 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs; 4092 if (ofs > maxoffs) { 4093 chg = 1; 4094 ofs = maxoffs; 4095 } 4096 } 4097 4098 if (ofs) { 4099 unsigned char minsync = dt ? np->minsync_dt : np->minsync; 4100 if (per < minsync) { 4101 chg = 1; 4102 per = minsync; 4103 } 4104 } 4105 4106 /* 4107 * Get new chip synchronous parameters value. 4108 */ 4109 div = fak = 0; 4110 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 4111 goto reject_it; 4112 4113 /* 4114 * If it was an answer we want to change, 4115 * then it isn't acceptable. Reject it. 4116 */ 4117 if (!req && chg) 4118 goto reject_it; 4119 4120 /* 4121 * Apply new values. 4122 */ 4123 sym_setpprot(np, target, opts, ofs, per, wide, div, fak); 4124 4125 /* 4126 * It was an answer. We are done. 4127 */ 4128 if (!req) 4129 return 0; 4130 4131 /* 4132 * It was a request. Prepare an answer message. 4133 */ 4134 spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts); 4135 4136 if (DEBUG_FLAGS & DEBUG_NEGO) { 4137 sym_print_nego_msg(np, target, "ppr msgout", np->msgout); 4138 } 4139 4140 np->msgin [0] = M_NOOP; 4141 4142 return 0; 4143 4144 reject_it: 4145 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0); 4146 /* 4147 * If it is a device response that should result in 4148 * ST, we may want to try a legacy negotiation later. 4149 */ 4150 if (!req && !opts) { 4151 tp->tgoal.period = per; 4152 tp->tgoal.offset = ofs; 4153 tp->tgoal.width = wide; 4154 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 4155 tp->tgoal.check_nego = 1; 4156 } 4157 return -1; 4158 } 4159 4160 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4161 { 4162 int req = 1; 4163 int result; 4164 4165 /* 4166 * Request or answer ? 4167 */ 4168 if (INB(np, HS_PRT) == HS_NEGOTIATE) { 4169 OUTB(np, HS_PRT, HS_BUSY); 4170 if (cp->nego_status && cp->nego_status != NS_PPR) 4171 goto reject_it; 4172 req = 0; 4173 } 4174 4175 /* 4176 * Check and apply new values. 4177 */ 4178 result = sym_ppr_nego_check(np, req, cp->target); 4179 if (result) /* Not acceptable, reject it */ 4180 goto reject_it; 4181 if (req) { /* Was a request, send response. */ 4182 cp->nego_status = NS_PPR; 4183 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp)); 4184 } 4185 else /* Was a response, we are done. */ 4186 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4187 return; 4188 4189 reject_it: 4190 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 4191 } 4192 4193 /* 4194 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 4195 */ 4196 static int 4197 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) 4198 { 4199 int target = cp->target; 4200 u_char chg, wide; 4201 4202 if (DEBUG_FLAGS & DEBUG_NEGO) { 4203 sym_print_nego_msg(np, target, "wide msgin", np->msgin); 4204 } 4205 4206 /* 4207 * Get requested values. 4208 */ 4209 chg = 0; 4210 wide = np->msgin[3]; 4211 4212 /* 4213 * Check values against our limits. 4214 */ 4215 if (wide > np->maxwide) { 4216 chg = 1; 4217 wide = np->maxwide; 4218 } 4219 4220 if (DEBUG_FLAGS & DEBUG_NEGO) { 4221 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n", 4222 wide, chg); 4223 } 4224 4225 /* 4226 * If it was an answer we want to change, 4227 * then it isn't acceptable. Reject it. 4228 */ 4229 if (!req && chg) 4230 goto reject_it; 4231 4232 /* 4233 * Apply new values. 4234 */ 4235 sym_setwide (np, target, wide); 4236 4237 /* 4238 * It was an answer. We are done. 4239 */ 4240 if (!req) 4241 return 0; 4242 4243 /* 4244 * It was a request. Prepare an answer message. 4245 */ 4246 spi_populate_width_msg(np->msgout, wide); 4247 4248 np->msgin [0] = M_NOOP; 4249 4250 if (DEBUG_FLAGS & DEBUG_NEGO) { 4251 sym_print_nego_msg(np, target, "wide msgout", np->msgout); 4252 } 4253 4254 return 0; 4255 4256 reject_it: 4257 return -1; 4258 } 4259 4260 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4261 { 4262 int req = 1; 4263 int result; 4264 4265 /* 4266 * Request or answer ? 4267 */ 4268 if (INB(np, HS_PRT) == HS_NEGOTIATE) { 4269 OUTB(np, HS_PRT, HS_BUSY); 4270 if (cp->nego_status && cp->nego_status != NS_WIDE) 4271 goto reject_it; 4272 req = 0; 4273 } 4274 4275 /* 4276 * Check and apply new values. 4277 */ 4278 result = sym_wide_nego_check(np, req, cp); 4279 if (result) /* Not acceptable, reject it */ 4280 goto reject_it; 4281 if (req) { /* Was a request, send response. */ 4282 cp->nego_status = NS_WIDE; 4283 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp)); 4284 } else { /* Was a response. */ 4285 /* 4286 * Negotiate for SYNC immediately after WIDE response. 4287 * This allows to negotiate for both WIDE and SYNC on 4288 * a single SCSI command (Suggested by Justin Gibbs). 4289 */ 4290 if (tp->tgoal.offset) { 4291 spi_populate_sync_msg(np->msgout, tp->tgoal.period, 4292 tp->tgoal.offset); 4293 4294 if (DEBUG_FLAGS & DEBUG_NEGO) { 4295 sym_print_nego_msg(np, cp->target, 4296 "sync msgout", np->msgout); 4297 } 4298 4299 cp->nego_status = NS_SYNC; 4300 OUTB(np, HS_PRT, HS_NEGOTIATE); 4301 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); 4302 return; 4303 } else 4304 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4305 } 4306 4307 return; 4308 4309 reject_it: 4310 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 4311 } 4312 4313 /* 4314 * Reset DT, SYNC or WIDE to default settings. 4315 * 4316 * Called when a negotiation does not succeed either 4317 * on rejection or on protocol error. 4318 * 4319 * A target that understands a PPR message should never 4320 * reject it, and messing with it is very unlikely. 4321 * So, if a PPR makes problems, we may just want to 4322 * try a legacy negotiation later. 4323 */ 4324 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4325 { 4326 switch (cp->nego_status) { 4327 case NS_PPR: 4328 #if 0 4329 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0); 4330 #else 4331 if (tp->tgoal.period < np->minsync) 4332 tp->tgoal.period = np->minsync; 4333 if (tp->tgoal.offset > np->maxoffs) 4334 tp->tgoal.offset = np->maxoffs; 4335 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 4336 tp->tgoal.check_nego = 1; 4337 #endif 4338 break; 4339 case NS_SYNC: 4340 sym_setsync (np, cp->target, 0, 0, 0, 0); 4341 break; 4342 case NS_WIDE: 4343 sym_setwide (np, cp->target, 0); 4344 break; 4345 } 4346 np->msgin [0] = M_NOOP; 4347 np->msgout[0] = M_NOOP; 4348 cp->nego_status = 0; 4349 } 4350 4351 /* 4352 * chip handler for MESSAGE REJECT received in response to 4353 * PPR, WIDE or SYNCHRONOUS negotiation. 4354 */ 4355 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4356 { 4357 sym_nego_default(np, tp, cp); 4358 OUTB(np, HS_PRT, HS_BUSY); 4359 } 4360 4361 #define sym_printk(lvl, tp, cp, fmt, v...) do { \ 4362 if (cp) \ 4363 scmd_printk(lvl, cp->cmd, fmt, ##v); \ 4364 else \ 4365 starget_printk(lvl, tp->starget, fmt, ##v); \ 4366 } while (0) 4367 4368 /* 4369 * chip exception handler for programmed interrupts. 4370 */ 4371 static void sym_int_sir(struct sym_hcb *np) 4372 { 4373 u_char num = INB(np, nc_dsps); 4374 u32 dsa = INL(np, nc_dsa); 4375 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); 4376 u_char target = INB(np, nc_sdid) & 0x0f; 4377 struct sym_tcb *tp = &np->target[target]; 4378 int tmp; 4379 4380 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 4381 4382 switch (num) { 4383 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 4384 /* 4385 * SCRIPTS tell us that we may have to update 4386 * 64 bit DMA segment registers. 4387 */ 4388 case SIR_DMAP_DIRTY: 4389 sym_update_dmap_regs(np); 4390 goto out; 4391 #endif 4392 /* 4393 * Command has been completed with error condition 4394 * or has been auto-sensed. 4395 */ 4396 case SIR_COMPLETE_ERROR: 4397 sym_complete_error(np, cp); 4398 return; 4399 /* 4400 * The C code is currently trying to recover from something. 4401 * Typically, user want to abort some command. 4402 */ 4403 case SIR_SCRIPT_STOPPED: 4404 case SIR_TARGET_SELECTED: 4405 case SIR_ABORT_SENT: 4406 sym_sir_task_recovery(np, num); 4407 return; 4408 /* 4409 * The device didn't go to MSG OUT phase after having 4410 * been selected with ATN. We do not want to handle that. 4411 */ 4412 case SIR_SEL_ATN_NO_MSG_OUT: 4413 sym_printk(KERN_WARNING, tp, cp, 4414 "No MSG OUT phase after selection with ATN\n"); 4415 goto out_stuck; 4416 /* 4417 * The device didn't switch to MSG IN phase after 4418 * having reselected the initiator. 4419 */ 4420 case SIR_RESEL_NO_MSG_IN: 4421 sym_printk(KERN_WARNING, tp, cp, 4422 "No MSG IN phase after reselection\n"); 4423 goto out_stuck; 4424 /* 4425 * After reselection, the device sent a message that wasn't 4426 * an IDENTIFY. 4427 */ 4428 case SIR_RESEL_NO_IDENTIFY: 4429 sym_printk(KERN_WARNING, tp, cp, 4430 "No IDENTIFY after reselection\n"); 4431 goto out_stuck; 4432 /* 4433 * The device reselected a LUN we do not know about. 4434 */ 4435 case SIR_RESEL_BAD_LUN: 4436 np->msgout[0] = M_RESET; 4437 goto out; 4438 /* 4439 * The device reselected for an untagged nexus and we 4440 * haven't any. 4441 */ 4442 case SIR_RESEL_BAD_I_T_L: 4443 np->msgout[0] = M_ABORT; 4444 goto out; 4445 /* 4446 * The device reselected for a tagged nexus that we do not have. 4447 */ 4448 case SIR_RESEL_BAD_I_T_L_Q: 4449 np->msgout[0] = M_ABORT_TAG; 4450 goto out; 4451 /* 4452 * The SCRIPTS let us know that the device has grabbed 4453 * our message and will abort the job. 4454 */ 4455 case SIR_RESEL_ABORTED: 4456 np->lastmsg = np->msgout[0]; 4457 np->msgout[0] = M_NOOP; 4458 sym_printk(KERN_WARNING, tp, cp, 4459 "message %x sent on bad reselection\n", np->lastmsg); 4460 goto out; 4461 /* 4462 * The SCRIPTS let us know that a message has been 4463 * successfully sent to the device. 4464 */ 4465 case SIR_MSG_OUT_DONE: 4466 np->lastmsg = np->msgout[0]; 4467 np->msgout[0] = M_NOOP; 4468 /* Should we really care of that */ 4469 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 4470 if (cp) { 4471 cp->xerr_status &= ~XE_PARITY_ERR; 4472 if (!cp->xerr_status) 4473 OUTOFFB(np, HF_PRT, HF_EXT_ERR); 4474 } 4475 } 4476 goto out; 4477 /* 4478 * The device didn't send a GOOD SCSI status. 4479 * We may have some work to do prior to allow 4480 * the SCRIPTS processor to continue. 4481 */ 4482 case SIR_BAD_SCSI_STATUS: 4483 if (!cp) 4484 goto out; 4485 sym_sir_bad_scsi_status(np, num, cp); 4486 return; 4487 /* 4488 * We are asked by the SCRIPTS to prepare a 4489 * REJECT message. 4490 */ 4491 case SIR_REJECT_TO_SEND: 4492 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 4493 np->msgout[0] = M_REJECT; 4494 goto out; 4495 /* 4496 * We have been ODD at the end of a DATA IN 4497 * transfer and the device didn't send a 4498 * IGNORE WIDE RESIDUE message. 4499 * It is a data overrun condition. 4500 */ 4501 case SIR_SWIDE_OVERRUN: 4502 if (cp) { 4503 OUTONB(np, HF_PRT, HF_EXT_ERR); 4504 cp->xerr_status |= XE_SWIDE_OVRUN; 4505 } 4506 goto out; 4507 /* 4508 * We have been ODD at the end of a DATA OUT 4509 * transfer. 4510 * It is a data underrun condition. 4511 */ 4512 case SIR_SODL_UNDERRUN: 4513 if (cp) { 4514 OUTONB(np, HF_PRT, HF_EXT_ERR); 4515 cp->xerr_status |= XE_SODL_UNRUN; 4516 } 4517 goto out; 4518 /* 4519 * The device wants us to tranfer more data than 4520 * expected or in the wrong direction. 4521 * The number of extra bytes is in scratcha. 4522 * It is a data overrun condition. 4523 */ 4524 case SIR_DATA_OVERRUN: 4525 if (cp) { 4526 OUTONB(np, HF_PRT, HF_EXT_ERR); 4527 cp->xerr_status |= XE_EXTRA_DATA; 4528 cp->extra_bytes += INL(np, nc_scratcha); 4529 } 4530 goto out; 4531 /* 4532 * The device switched to an illegal phase (4/5). 4533 */ 4534 case SIR_BAD_PHASE: 4535 if (cp) { 4536 OUTONB(np, HF_PRT, HF_EXT_ERR); 4537 cp->xerr_status |= XE_BAD_PHASE; 4538 } 4539 goto out; 4540 /* 4541 * We received a message. 4542 */ 4543 case SIR_MSG_RECEIVED: 4544 if (!cp) 4545 goto out_stuck; 4546 switch (np->msgin [0]) { 4547 /* 4548 * We received an extended message. 4549 * We handle MODIFY DATA POINTER, SDTR, WDTR 4550 * and reject all other extended messages. 4551 */ 4552 case M_EXTENDED: 4553 switch (np->msgin [2]) { 4554 case M_X_MODIFY_DP: 4555 if (DEBUG_FLAGS & DEBUG_POINTER) 4556 sym_print_msg(cp, "extended msg ", 4557 np->msgin); 4558 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 4559 (np->msgin[5]<<8) + (np->msgin[6]); 4560 sym_modify_dp(np, tp, cp, tmp); 4561 return; 4562 case M_X_SYNC_REQ: 4563 sym_sync_nego(np, tp, cp); 4564 return; 4565 case M_X_PPR_REQ: 4566 sym_ppr_nego(np, tp, cp); 4567 return; 4568 case M_X_WIDE_REQ: 4569 sym_wide_nego(np, tp, cp); 4570 return; 4571 default: 4572 goto out_reject; 4573 } 4574 break; 4575 /* 4576 * We received a 1/2 byte message not handled from SCRIPTS. 4577 * We are only expecting MESSAGE REJECT and IGNORE WIDE 4578 * RESIDUE messages that haven't been anticipated by 4579 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 4580 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 4581 */ 4582 case M_IGN_RESIDUE: 4583 if (DEBUG_FLAGS & DEBUG_POINTER) 4584 sym_print_msg(cp, "1 or 2 byte ", np->msgin); 4585 if (cp->host_flags & HF_SENSE) 4586 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4587 else 4588 sym_modify_dp(np, tp, cp, -1); 4589 return; 4590 case M_REJECT: 4591 if (INB(np, HS_PRT) == HS_NEGOTIATE) 4592 sym_nego_rejected(np, tp, cp); 4593 else { 4594 sym_print_addr(cp->cmd, 4595 "M_REJECT received (%x:%x).\n", 4596 scr_to_cpu(np->lastmsg), np->msgout[0]); 4597 } 4598 goto out_clrack; 4599 default: 4600 goto out_reject; 4601 } 4602 break; 4603 /* 4604 * We received an unknown message. 4605 * Ignore all MSG IN phases and reject it. 4606 */ 4607 case SIR_MSG_WEIRD: 4608 sym_print_msg(cp, "WEIRD message received", np->msgin); 4609 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird)); 4610 return; 4611 /* 4612 * Negotiation failed. 4613 * Target does not send us the reply. 4614 * Remove the HS_NEGOTIATE status. 4615 */ 4616 case SIR_NEGO_FAILED: 4617 OUTB(np, HS_PRT, HS_BUSY); 4618 /* 4619 * Negotiation failed. 4620 * Target does not want answer message. 4621 */ 4622 fallthrough; 4623 case SIR_NEGO_PROTO: 4624 sym_nego_default(np, tp, cp); 4625 goto out; 4626 } 4627 4628 out: 4629 OUTONB_STD(); 4630 return; 4631 out_reject: 4632 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 4633 return; 4634 out_clrack: 4635 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4636 return; 4637 out_stuck: 4638 return; 4639 } 4640 4641 /* 4642 * Acquire a control block 4643 */ 4644 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order) 4645 { 4646 u_char tn = cmd->device->id; 4647 u_char ln = cmd->device->lun; 4648 struct sym_tcb *tp = &np->target[tn]; 4649 struct sym_lcb *lp = sym_lp(tp, ln); 4650 u_short tag = NO_TAG; 4651 SYM_QUEHEAD *qp; 4652 struct sym_ccb *cp = NULL; 4653 4654 /* 4655 * Look for a free CCB 4656 */ 4657 if (sym_que_empty(&np->free_ccbq)) 4658 sym_alloc_ccb(np); 4659 qp = sym_remque_head(&np->free_ccbq); 4660 if (!qp) 4661 goto out; 4662 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4663 4664 { 4665 /* 4666 * If we have been asked for a tagged command. 4667 */ 4668 if (tag_order) { 4669 /* 4670 * Debugging purpose. 4671 */ 4672 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 4673 if (lp->busy_itl != 0) 4674 goto out_free; 4675 #endif 4676 /* 4677 * Allocate resources for tags if not yet. 4678 */ 4679 if (!lp->cb_tags) { 4680 sym_alloc_lcb_tags(np, tn, ln); 4681 if (!lp->cb_tags) 4682 goto out_free; 4683 } 4684 /* 4685 * Get a tag for this SCSI IO and set up 4686 * the CCB bus address for reselection, 4687 * and count it for this LUN. 4688 * Toggle reselect path to tagged. 4689 */ 4690 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 4691 tag = lp->cb_tags[lp->ia_tag]; 4692 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 4693 lp->ia_tag = 0; 4694 ++lp->busy_itlq; 4695 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 4696 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 4697 lp->head.resel_sa = 4698 cpu_to_scr(SCRIPTA_BA(np, resel_tag)); 4699 #endif 4700 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING 4701 cp->tags_si = lp->tags_si; 4702 ++lp->tags_sum[cp->tags_si]; 4703 ++lp->tags_since; 4704 #endif 4705 } 4706 else 4707 goto out_free; 4708 } 4709 /* 4710 * This command will not be tagged. 4711 * If we already have either a tagged or untagged 4712 * one, refuse to overlap this untagged one. 4713 */ 4714 else { 4715 /* 4716 * Debugging purpose. 4717 */ 4718 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 4719 if (lp->busy_itl != 0 || lp->busy_itlq != 0) 4720 goto out_free; 4721 #endif 4722 /* 4723 * Count this nexus for this LUN. 4724 * Set up the CCB bus address for reselection. 4725 * Toggle reselect path to untagged. 4726 */ 4727 ++lp->busy_itl; 4728 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 4729 if (lp->busy_itl == 1) { 4730 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 4731 lp->head.resel_sa = 4732 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); 4733 } 4734 else 4735 goto out_free; 4736 #endif 4737 } 4738 } 4739 /* 4740 * Put the CCB into the busy queue. 4741 */ 4742 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4743 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 4744 if (lp) { 4745 sym_remque(&cp->link2_ccbq); 4746 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq); 4747 } 4748 4749 #endif 4750 cp->to_abort = 0; 4751 cp->odd_byte_adjustment = 0; 4752 cp->tag = tag; 4753 cp->order = tag_order; 4754 cp->target = tn; 4755 cp->lun = ln; 4756 4757 if (DEBUG_FLAGS & DEBUG_TAGS) { 4758 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag); 4759 } 4760 4761 out: 4762 return cp; 4763 out_free: 4764 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 4765 return NULL; 4766 } 4767 4768 /* 4769 * Release one control block 4770 */ 4771 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp) 4772 { 4773 struct sym_tcb *tp = &np->target[cp->target]; 4774 struct sym_lcb *lp = sym_lp(tp, cp->lun); 4775 4776 if (DEBUG_FLAGS & DEBUG_TAGS) { 4777 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n", 4778 cp, cp->tag); 4779 } 4780 4781 /* 4782 * If LCB available, 4783 */ 4784 if (lp) { 4785 /* 4786 * If tagged, release the tag, set the relect path 4787 */ 4788 if (cp->tag != NO_TAG) { 4789 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING 4790 --lp->tags_sum[cp->tags_si]; 4791 #endif 4792 /* 4793 * Free the tag value. 4794 */ 4795 lp->cb_tags[lp->if_tag] = cp->tag; 4796 if (++lp->if_tag == SYM_CONF_MAX_TASK) 4797 lp->if_tag = 0; 4798 /* 4799 * Make the reselect path invalid, 4800 * and uncount this CCB. 4801 */ 4802 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 4803 --lp->busy_itlq; 4804 } else { /* Untagged */ 4805 /* 4806 * Make the reselect path invalid, 4807 * and uncount this CCB. 4808 */ 4809 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 4810 --lp->busy_itl; 4811 } 4812 /* 4813 * If no JOB active, make the LUN reselect path invalid. 4814 */ 4815 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 4816 lp->head.resel_sa = 4817 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); 4818 } 4819 4820 /* 4821 * We donnot queue more than 1 ccb per target 4822 * with negotiation at any time. If this ccb was 4823 * used for negotiation, clear this info in the tcb. 4824 */ 4825 if (cp == tp->nego_cp) 4826 tp->nego_cp = NULL; 4827 4828 #ifdef SYM_CONF_IARB_SUPPORT 4829 /* 4830 * If we just complete the last queued CCB, 4831 * clear this info that is no longer relevant. 4832 */ 4833 if (cp == np->last_cp) 4834 np->last_cp = 0; 4835 #endif 4836 4837 /* 4838 * Make this CCB available. 4839 */ 4840 cp->cmd = NULL; 4841 cp->host_status = HS_IDLE; 4842 sym_remque(&cp->link_ccbq); 4843 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 4844 4845 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 4846 if (lp) { 4847 sym_remque(&cp->link2_ccbq); 4848 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq); 4849 if (cp->started) { 4850 if (cp->tag != NO_TAG) 4851 --lp->started_tags; 4852 else 4853 --lp->started_no_tag; 4854 } 4855 } 4856 cp->started = 0; 4857 #endif 4858 } 4859 4860 /* 4861 * Allocate a CCB from memory and initialize its fixed part. 4862 */ 4863 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np) 4864 { 4865 struct sym_ccb *cp = NULL; 4866 int hcode; 4867 4868 /* 4869 * Prevent from allocating more CCBs than we can 4870 * queue to the controller. 4871 */ 4872 if (np->actccbs >= SYM_CONF_MAX_START) 4873 return NULL; 4874 4875 /* 4876 * Allocate memory for this CCB. 4877 */ 4878 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 4879 if (!cp) 4880 goto out_free; 4881 4882 /* 4883 * Count it. 4884 */ 4885 np->actccbs++; 4886 4887 /* 4888 * Compute the bus address of this ccb. 4889 */ 4890 cp->ccb_ba = vtobus(cp); 4891 4892 /* 4893 * Insert this ccb into the hashed list. 4894 */ 4895 hcode = CCB_HASH_CODE(cp->ccb_ba); 4896 cp->link_ccbh = np->ccbh[hcode]; 4897 np->ccbh[hcode] = cp; 4898 4899 /* 4900 * Initialyze the start and restart actions. 4901 */ 4902 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 4903 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); 4904 4905 /* 4906 * Initilialyze some other fields. 4907 */ 4908 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 4909 4910 /* 4911 * Chain into free ccb queue. 4912 */ 4913 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 4914 4915 /* 4916 * Chain into optionnal lists. 4917 */ 4918 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 4919 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq); 4920 #endif 4921 return cp; 4922 out_free: 4923 if (cp) 4924 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 4925 return NULL; 4926 } 4927 4928 /* 4929 * Look up a CCB from a DSA value. 4930 */ 4931 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa) 4932 { 4933 int hcode; 4934 struct sym_ccb *cp; 4935 4936 hcode = CCB_HASH_CODE(dsa); 4937 cp = np->ccbh[hcode]; 4938 while (cp) { 4939 if (cp->ccb_ba == dsa) 4940 break; 4941 cp = cp->link_ccbh; 4942 } 4943 4944 return cp; 4945 } 4946 4947 /* 4948 * Target control block initialisation. 4949 * Nothing important to do at the moment. 4950 */ 4951 static void sym_init_tcb (struct sym_hcb *np, u_char tn) 4952 { 4953 #if 0 /* Hmmm... this checking looks paranoid. */ 4954 /* 4955 * Check some alignments required by the chip. 4956 */ 4957 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 4958 offsetof(struct sym_tcb, head.sval)) &3) == 0); 4959 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 4960 offsetof(struct sym_tcb, head.wval)) &3) == 0); 4961 #endif 4962 } 4963 4964 /* 4965 * Lun control block allocation and initialization. 4966 */ 4967 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln) 4968 { 4969 struct sym_tcb *tp = &np->target[tn]; 4970 struct sym_lcb *lp = NULL; 4971 4972 /* 4973 * Initialize the target control block if not yet. 4974 */ 4975 sym_init_tcb (np, tn); 4976 4977 /* 4978 * Allocate the LCB bus address array. 4979 * Compute the bus address of this table. 4980 */ 4981 if (ln && !tp->luntbl) { 4982 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 4983 if (!tp->luntbl) 4984 goto fail; 4985 memset32(tp->luntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64); 4986 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 4987 } 4988 4989 /* 4990 * Allocate the table of pointers for LUN(s) > 0, if needed. 4991 */ 4992 if (ln && !tp->lunmp) { 4993 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *), 4994 GFP_ATOMIC); 4995 if (!tp->lunmp) 4996 goto fail; 4997 } 4998 4999 /* 5000 * Allocate the lcb. 5001 * Make it available to the chip. 5002 */ 5003 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 5004 if (!lp) 5005 goto fail; 5006 if (ln) { 5007 tp->lunmp[ln] = lp; 5008 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 5009 } 5010 else { 5011 tp->lun0p = lp; 5012 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 5013 } 5014 tp->nlcb++; 5015 5016 /* 5017 * Let the itl task point to error handling. 5018 */ 5019 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 5020 5021 /* 5022 * Set the reselect pattern to our default. :) 5023 */ 5024 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); 5025 5026 /* 5027 * Set user capabilities. 5028 */ 5029 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 5030 5031 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5032 /* 5033 * Initialize device queueing. 5034 */ 5035 sym_que_init(&lp->waiting_ccbq); 5036 sym_que_init(&lp->started_ccbq); 5037 lp->started_max = SYM_CONF_MAX_TASK; 5038 lp->started_limit = SYM_CONF_MAX_TASK; 5039 #endif 5040 5041 fail: 5042 return lp; 5043 } 5044 5045 /* 5046 * Allocate LCB resources for tagged command queuing. 5047 */ 5048 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln) 5049 { 5050 struct sym_tcb *tp = &np->target[tn]; 5051 struct sym_lcb *lp = sym_lp(tp, ln); 5052 int i; 5053 5054 /* 5055 * Allocate the task table and and the tag allocation 5056 * circular buffer. We want both or none. 5057 */ 5058 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 5059 if (!lp->itlq_tbl) 5060 goto fail; 5061 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC); 5062 if (!lp->cb_tags) { 5063 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 5064 lp->itlq_tbl = NULL; 5065 goto fail; 5066 } 5067 5068 /* 5069 * Initialize the task table with invalid entries. 5070 */ 5071 memset32(lp->itlq_tbl, cpu_to_scr(np->notask_ba), SYM_CONF_MAX_TASK); 5072 5073 /* 5074 * Fill up the tag buffer with tag numbers. 5075 */ 5076 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 5077 lp->cb_tags[i] = i; 5078 5079 /* 5080 * Make the task table available to SCRIPTS, 5081 * And accept tagged commands now. 5082 */ 5083 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 5084 5085 return; 5086 fail: 5087 return; 5088 } 5089 5090 /* 5091 * Lun control block deallocation. Returns the number of valid remaining LCBs 5092 * for the target. 5093 */ 5094 int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln) 5095 { 5096 struct sym_tcb *tp = &np->target[tn]; 5097 struct sym_lcb *lp = sym_lp(tp, ln); 5098 5099 tp->nlcb--; 5100 5101 if (ln) { 5102 if (!tp->nlcb) { 5103 kfree(tp->lunmp); 5104 sym_mfree_dma(tp->luntbl, 256, "LUNTBL"); 5105 tp->lunmp = NULL; 5106 tp->luntbl = NULL; 5107 tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl)); 5108 } else { 5109 tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa)); 5110 tp->lunmp[ln] = NULL; 5111 } 5112 } else { 5113 tp->lun0p = NULL; 5114 tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa)); 5115 } 5116 5117 if (lp->itlq_tbl) { 5118 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 5119 kfree(lp->cb_tags); 5120 } 5121 5122 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 5123 5124 return tp->nlcb; 5125 } 5126 5127 /* 5128 * Queue a SCSI IO to the controller. 5129 */ 5130 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 5131 { 5132 struct scsi_device *sdev = cmd->device; 5133 struct sym_tcb *tp; 5134 struct sym_lcb *lp; 5135 u_char *msgptr; 5136 u_int msglen; 5137 int can_disconnect; 5138 5139 /* 5140 * Keep track of the IO in our CCB. 5141 */ 5142 cp->cmd = cmd; 5143 5144 /* 5145 * Retrieve the target descriptor. 5146 */ 5147 tp = &np->target[cp->target]; 5148 5149 /* 5150 * Retrieve the lun descriptor. 5151 */ 5152 lp = sym_lp(tp, sdev->lun); 5153 5154 can_disconnect = (cp->tag != NO_TAG) || 5155 (lp && (lp->curr_flags & SYM_DISC_ENABLED)); 5156 5157 msgptr = cp->scsi_smsg; 5158 msglen = 0; 5159 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun); 5160 5161 /* 5162 * Build the tag message if present. 5163 */ 5164 if (cp->tag != NO_TAG) { 5165 u_char order = cp->order; 5166 5167 switch(order) { 5168 case M_ORDERED_TAG: 5169 break; 5170 case M_HEAD_TAG: 5171 break; 5172 default: 5173 order = M_SIMPLE_TAG; 5174 } 5175 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING 5176 /* 5177 * Avoid too much reordering of SCSI commands. 5178 * The algorithm tries to prevent completion of any 5179 * tagged command from being delayed against more 5180 * than 3 times the max number of queued commands. 5181 */ 5182 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) { 5183 lp->tags_si = !(lp->tags_si); 5184 if (lp->tags_sum[lp->tags_si]) { 5185 order = M_ORDERED_TAG; 5186 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) { 5187 sym_print_addr(cmd, 5188 "ordered tag forced.\n"); 5189 } 5190 } 5191 lp->tags_since = 0; 5192 } 5193 #endif 5194 msgptr[msglen++] = order; 5195 5196 /* 5197 * For less than 128 tags, actual tags are numbered 5198 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 5199 * with devices that have problems with #TAG 0 or too 5200 * great #TAG numbers. For more tags (up to 256), 5201 * we use directly our tag number. 5202 */ 5203 #if SYM_CONF_MAX_TASK > (512/4) 5204 msgptr[msglen++] = cp->tag; 5205 #else 5206 msgptr[msglen++] = (cp->tag << 1) + 1; 5207 #endif 5208 } 5209 5210 /* 5211 * Build a negotiation message if needed. 5212 * (nego_status is filled by sym_prepare_nego()) 5213 * 5214 * Always negotiate on INQUIRY and REQUEST SENSE. 5215 * 5216 */ 5217 cp->nego_status = 0; 5218 if ((tp->tgoal.check_nego || 5219 cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) && 5220 !tp->nego_cp && lp) { 5221 msglen += sym_prepare_nego(np, cp, msgptr + msglen); 5222 } 5223 5224 /* 5225 * Startqueue 5226 */ 5227 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); 5228 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa)); 5229 5230 /* 5231 * select 5232 */ 5233 cp->phys.select.sel_id = cp->target; 5234 cp->phys.select.sel_scntl3 = tp->head.wval; 5235 cp->phys.select.sel_sxfer = tp->head.sval; 5236 cp->phys.select.sel_scntl4 = tp->head.uval; 5237 5238 /* 5239 * message 5240 */ 5241 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg); 5242 cp->phys.smsg.size = cpu_to_scr(msglen); 5243 5244 /* 5245 * status 5246 */ 5247 cp->host_xflags = 0; 5248 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 5249 cp->ssss_status = S_ILLEGAL; 5250 cp->xerr_status = 0; 5251 cp->host_flags = 0; 5252 cp->extra_bytes = 0; 5253 5254 /* 5255 * extreme data pointer. 5256 * shall be positive, so -1 is lower than lowest.:) 5257 */ 5258 cp->ext_sg = -1; 5259 cp->ext_ofs = 0; 5260 5261 /* 5262 * Build the CDB and DATA descriptor block 5263 * and start the IO. 5264 */ 5265 return sym_setup_data_and_start(np, cmd, cp); 5266 } 5267 5268 /* 5269 * Reset a SCSI target (all LUNs of this target). 5270 */ 5271 int sym_reset_scsi_target(struct sym_hcb *np, int target) 5272 { 5273 struct sym_tcb *tp; 5274 5275 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET) 5276 return -1; 5277 5278 tp = &np->target[target]; 5279 tp->to_reset = 1; 5280 5281 np->istat_sem = SEM; 5282 OUTB(np, nc_istat, SIGP|SEM); 5283 5284 return 0; 5285 } 5286 5287 /* 5288 * Abort a SCSI IO. 5289 */ 5290 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out) 5291 { 5292 /* 5293 * Check that the IO is active. 5294 */ 5295 if (!cp || !cp->host_status || cp->host_status == HS_WAIT) 5296 return -1; 5297 5298 /* 5299 * If a previous abort didn't succeed in time, 5300 * perform a BUS reset. 5301 */ 5302 if (cp->to_abort) { 5303 sym_reset_scsi_bus(np, 1); 5304 return 0; 5305 } 5306 5307 /* 5308 * Mark the CCB for abort and allow time for. 5309 */ 5310 cp->to_abort = timed_out ? 2 : 1; 5311 5312 /* 5313 * Tell the SCRIPTS processor to stop and synchronize with us. 5314 */ 5315 np->istat_sem = SEM; 5316 OUTB(np, nc_istat, SIGP|SEM); 5317 return 0; 5318 } 5319 5320 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out) 5321 { 5322 struct sym_ccb *cp; 5323 SYM_QUEHEAD *qp; 5324 5325 /* 5326 * Look up our CCB control block. 5327 */ 5328 cp = NULL; 5329 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5330 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5331 if (cp2->cmd == cmd) { 5332 cp = cp2; 5333 break; 5334 } 5335 } 5336 5337 return sym_abort_ccb(np, cp, timed_out); 5338 } 5339 5340 /* 5341 * Complete execution of a SCSI command with extended 5342 * error, SCSI status error, or having been auto-sensed. 5343 * 5344 * The SCRIPTS processor is not running there, so we 5345 * can safely access IO registers and remove JOBs from 5346 * the START queue. 5347 * SCRATCHA is assumed to have been loaded with STARTPOS 5348 * before the SCRIPTS called the C code. 5349 */ 5350 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp) 5351 { 5352 struct scsi_device *sdev; 5353 struct scsi_cmnd *cmd; 5354 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5355 struct sym_tcb *tp; 5356 struct sym_lcb *lp; 5357 #endif 5358 int resid; 5359 int i; 5360 5361 /* 5362 * Paranoid check. :) 5363 */ 5364 if (!cp || !cp->cmd) 5365 return; 5366 5367 cmd = cp->cmd; 5368 sdev = cmd->device; 5369 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 5370 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp, 5371 cp->host_status, cp->ssss_status, cp->host_flags); 5372 } 5373 5374 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5375 /* 5376 * Get target and lun pointers. 5377 */ 5378 tp = &np->target[cp->target]; 5379 lp = sym_lp(tp, sdev->lun); 5380 #endif 5381 5382 /* 5383 * Check for extended errors. 5384 */ 5385 if (cp->xerr_status) { 5386 if (sym_verbose) 5387 sym_print_xerr(cmd, cp->xerr_status); 5388 if (cp->host_status == HS_COMPLETE) 5389 cp->host_status = HS_COMP_ERR; 5390 } 5391 5392 /* 5393 * Calculate the residual. 5394 */ 5395 resid = sym_compute_residual(np, cp); 5396 5397 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 5398 resid = 0; /* throw them away. :) */ 5399 cp->sv_resid = 0; 5400 } 5401 #ifdef DEBUG_2_0_X 5402 if (resid) 5403 printf("XXXX RESID= %d - 0x%x\n", resid, resid); 5404 #endif 5405 5406 /* 5407 * Dequeue all queued CCBs for that device 5408 * not yet started by SCRIPTS. 5409 */ 5410 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; 5411 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1); 5412 5413 /* 5414 * Restart the SCRIPTS processor. 5415 */ 5416 OUTL_DSP(np, SCRIPTA_BA(np, start)); 5417 5418 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5419 if (cp->host_status == HS_COMPLETE && 5420 cp->ssss_status == S_QUEUE_FULL) { 5421 if (!lp || lp->started_tags - i < 2) 5422 goto weirdness; 5423 /* 5424 * Decrease queue depth as needed. 5425 */ 5426 lp->started_max = lp->started_tags - i - 1; 5427 lp->num_sgood = 0; 5428 5429 if (sym_verbose >= 2) { 5430 sym_print_addr(cmd, " queue depth is now %d\n", 5431 lp->started_max); 5432 } 5433 5434 /* 5435 * Repair the CCB. 5436 */ 5437 cp->host_status = HS_BUSY; 5438 cp->ssss_status = S_ILLEGAL; 5439 5440 /* 5441 * Let's requeue it to device. 5442 */ 5443 sym_set_cam_status(cmd, DID_SOFT_ERROR); 5444 goto finish; 5445 } 5446 weirdness: 5447 #endif 5448 /* 5449 * Build result in CAM ccb. 5450 */ 5451 sym_set_cam_result_error(np, cp, resid); 5452 5453 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5454 finish: 5455 #endif 5456 /* 5457 * Add this one to the COMP queue. 5458 */ 5459 sym_remque(&cp->link_ccbq); 5460 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 5461 5462 /* 5463 * Complete all those commands with either error 5464 * or requeue condition. 5465 */ 5466 sym_flush_comp_queue(np, 0); 5467 5468 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5469 /* 5470 * Donnot start more than 1 command after an error. 5471 */ 5472 sym_start_next_ccbs(np, lp, 1); 5473 #endif 5474 } 5475 5476 /* 5477 * Complete execution of a successful SCSI command. 5478 * 5479 * Only successful commands go to the DONE queue, 5480 * since we need to have the SCRIPTS processor 5481 * stopped on any error condition. 5482 * The SCRIPTS processor is running while we are 5483 * completing successful commands. 5484 */ 5485 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp) 5486 { 5487 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5488 struct sym_tcb *tp; 5489 struct sym_lcb *lp; 5490 #endif 5491 struct scsi_cmnd *cmd; 5492 int resid; 5493 5494 /* 5495 * Paranoid check. :) 5496 */ 5497 if (!cp || !cp->cmd) 5498 return; 5499 assert (cp->host_status == HS_COMPLETE); 5500 5501 /* 5502 * Get user command. 5503 */ 5504 cmd = cp->cmd; 5505 5506 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5507 /* 5508 * Get target and lun pointers. 5509 */ 5510 tp = &np->target[cp->target]; 5511 lp = sym_lp(tp, cp->lun); 5512 #endif 5513 5514 /* 5515 * If all data have been transferred, given than no 5516 * extended error did occur, there is no residual. 5517 */ 5518 resid = 0; 5519 if (cp->phys.head.lastp != cp->goalp) 5520 resid = sym_compute_residual(np, cp); 5521 5522 /* 5523 * Wrong transfer residuals may be worse than just always 5524 * returning zero. User can disable this feature in 5525 * sym53c8xx.h. Residual support is enabled by default. 5526 */ 5527 if (!SYM_SETUP_RESIDUAL_SUPPORT) 5528 resid = 0; 5529 #ifdef DEBUG_2_0_X 5530 if (resid) 5531 printf("XXXX RESID= %d - 0x%x\n", resid, resid); 5532 #endif 5533 5534 /* 5535 * Build result in CAM ccb. 5536 */ 5537 sym_set_cam_result_ok(cp, cmd, resid); 5538 5539 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5540 /* 5541 * If max number of started ccbs had been reduced, 5542 * increase it if 200 good status received. 5543 */ 5544 if (lp && lp->started_max < lp->started_limit) { 5545 ++lp->num_sgood; 5546 if (lp->num_sgood >= 200) { 5547 lp->num_sgood = 0; 5548 ++lp->started_max; 5549 if (sym_verbose >= 2) { 5550 sym_print_addr(cmd, " queue depth is now %d\n", 5551 lp->started_max); 5552 } 5553 } 5554 } 5555 #endif 5556 5557 /* 5558 * Free our CCB. 5559 */ 5560 sym_free_ccb (np, cp); 5561 5562 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5563 /* 5564 * Requeue a couple of awaiting scsi commands. 5565 */ 5566 if (!sym_que_empty(&lp->waiting_ccbq)) 5567 sym_start_next_ccbs(np, lp, 2); 5568 #endif 5569 /* 5570 * Complete the command. 5571 */ 5572 sym_xpt_done(np, cmd); 5573 } 5574 5575 /* 5576 * Soft-attach the controller. 5577 */ 5578 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram) 5579 { 5580 struct sym_hcb *np = sym_get_hcb(shost); 5581 int i; 5582 5583 /* 5584 * Get some info about the firmware. 5585 */ 5586 np->scripta_sz = fw->a_size; 5587 np->scriptb_sz = fw->b_size; 5588 np->scriptz_sz = fw->z_size; 5589 np->fw_setup = fw->setup; 5590 np->fw_patch = fw->patch; 5591 np->fw_name = fw->name; 5592 5593 /* 5594 * Save setting of some IO registers, so we will 5595 * be able to probe specific implementations. 5596 */ 5597 sym_save_initial_setting (np); 5598 5599 /* 5600 * Reset the chip now, since it has been reported 5601 * that SCSI clock calibration may not work properly 5602 * if the chip is currently active. 5603 */ 5604 sym_chip_reset(np); 5605 5606 /* 5607 * Prepare controller and devices settings, according 5608 * to chip features, user set-up and driver set-up. 5609 */ 5610 sym_prepare_setting(shost, np, nvram); 5611 5612 /* 5613 * Check the PCI clock frequency. 5614 * Must be performed after prepare_setting since it destroys 5615 * STEST1 that is used to probe for the clock doubler. 5616 */ 5617 i = sym_getpciclock(np); 5618 if (i > 37000 && !(np->features & FE_66MHZ)) 5619 printf("%s: PCI BUS clock seems too high: %u KHz.\n", 5620 sym_name(np), i); 5621 5622 /* 5623 * Allocate the start queue. 5624 */ 5625 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 5626 if (!np->squeue) 5627 goto attach_failed; 5628 np->squeue_ba = vtobus(np->squeue); 5629 5630 /* 5631 * Allocate the done queue. 5632 */ 5633 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 5634 if (!np->dqueue) 5635 goto attach_failed; 5636 np->dqueue_ba = vtobus(np->dqueue); 5637 5638 /* 5639 * Allocate the target bus address array. 5640 */ 5641 np->targtbl = sym_calloc_dma(256, "TARGTBL"); 5642 if (!np->targtbl) 5643 goto attach_failed; 5644 np->targtbl_ba = vtobus(np->targtbl); 5645 5646 /* 5647 * Allocate SCRIPTS areas. 5648 */ 5649 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 5650 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 5651 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0"); 5652 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0) 5653 goto attach_failed; 5654 5655 /* 5656 * Allocate the array of lists of CCBs hashed by DSA. 5657 */ 5658 np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(*np->ccbh), GFP_KERNEL); 5659 if (!np->ccbh) 5660 goto attach_failed; 5661 5662 /* 5663 * Initialyze the CCB free and busy queues. 5664 */ 5665 sym_que_init(&np->free_ccbq); 5666 sym_que_init(&np->busy_ccbq); 5667 sym_que_init(&np->comp_ccbq); 5668 5669 /* 5670 * Initialization for optional handling 5671 * of device queueing. 5672 */ 5673 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5674 sym_que_init(&np->dummy_ccbq); 5675 #endif 5676 /* 5677 * Allocate some CCB. We need at least ONE. 5678 */ 5679 if (!sym_alloc_ccb(np)) 5680 goto attach_failed; 5681 5682 /* 5683 * Calculate BUS addresses where we are going 5684 * to load the SCRIPTS. 5685 */ 5686 np->scripta_ba = vtobus(np->scripta0); 5687 np->scriptb_ba = vtobus(np->scriptb0); 5688 np->scriptz_ba = vtobus(np->scriptz0); 5689 5690 if (np->ram_ba) { 5691 np->scripta_ba = np->ram_ba; 5692 if (np->features & FE_RAM8K) { 5693 np->scriptb_ba = np->scripta_ba + 4096; 5694 #if 0 /* May get useful for 64 BIT PCI addressing */ 5695 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 5696 #endif 5697 } 5698 } 5699 5700 /* 5701 * Copy scripts to controller instance. 5702 */ 5703 memcpy(np->scripta0, fw->a_base, np->scripta_sz); 5704 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz); 5705 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz); 5706 5707 /* 5708 * Setup variable parts in scripts and compute 5709 * scripts bus addresses used from the C code. 5710 */ 5711 np->fw_setup(np, fw); 5712 5713 /* 5714 * Bind SCRIPTS with physical addresses usable by the 5715 * SCRIPTS processor (as seen from the BUS = BUS addresses). 5716 */ 5717 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 5718 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 5719 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz); 5720 5721 #ifdef SYM_CONF_IARB_SUPPORT 5722 /* 5723 * If user wants IARB to be set when we win arbitration 5724 * and have other jobs, compute the max number of consecutive 5725 * settings of IARB hints before we leave devices a chance to 5726 * arbitrate for reselection. 5727 */ 5728 #ifdef SYM_SETUP_IARB_MAX 5729 np->iarb_max = SYM_SETUP_IARB_MAX; 5730 #else 5731 np->iarb_max = 4; 5732 #endif 5733 #endif 5734 5735 /* 5736 * Prepare the idle and invalid task actions. 5737 */ 5738 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 5739 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); 5740 np->idletask_ba = vtobus(&np->idletask); 5741 5742 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 5743 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); 5744 np->notask_ba = vtobus(&np->notask); 5745 5746 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 5747 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); 5748 np->bad_itl_ba = vtobus(&np->bad_itl); 5749 5750 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 5751 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q)); 5752 np->bad_itlq_ba = vtobus(&np->bad_itlq); 5753 5754 /* 5755 * Allocate and prepare the lun JUMP table that is used 5756 * for a target prior the probing of devices (bad lun table). 5757 * A private table will be allocated for the target on the 5758 * first INQUIRY response received. 5759 */ 5760 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 5761 if (!np->badluntbl) 5762 goto attach_failed; 5763 5764 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); 5765 memset32(np->badluntbl, cpu_to_scr(vtobus(&np->badlun_sa)), 64); 5766 5767 /* 5768 * Prepare the bus address array that contains the bus 5769 * address of each target control block. 5770 * For now, assume all logical units are wrong. :) 5771 */ 5772 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 5773 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 5774 np->target[i].head.luntbl_sa = 5775 cpu_to_scr(vtobus(np->badluntbl)); 5776 np->target[i].head.lun0_sa = 5777 cpu_to_scr(vtobus(&np->badlun_sa)); 5778 } 5779 5780 /* 5781 * Now check the cache handling of the pci chipset. 5782 */ 5783 if (sym_snooptest (np)) { 5784 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); 5785 goto attach_failed; 5786 } 5787 5788 /* 5789 * Sigh! we are done. 5790 */ 5791 return 0; 5792 5793 attach_failed: 5794 return -ENXIO; 5795 } 5796 5797 /* 5798 * Free everything that has been allocated for this device. 5799 */ 5800 void sym_hcb_free(struct sym_hcb *np) 5801 { 5802 SYM_QUEHEAD *qp; 5803 struct sym_ccb *cp; 5804 struct sym_tcb *tp; 5805 int target; 5806 5807 if (np->scriptz0) 5808 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0"); 5809 if (np->scriptb0) 5810 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 5811 if (np->scripta0) 5812 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 5813 if (np->squeue) 5814 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 5815 if (np->dqueue) 5816 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 5817 5818 if (np->actccbs) { 5819 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { 5820 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5821 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 5822 } 5823 } 5824 kfree(np->ccbh); 5825 5826 if (np->badluntbl) 5827 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 5828 5829 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 5830 tp = &np->target[target]; 5831 if (tp->luntbl) 5832 sym_mfree_dma(tp->luntbl, 256, "LUNTBL"); 5833 #if SYM_CONF_MAX_LUN > 1 5834 kfree(tp->lunmp); 5835 #endif 5836 } 5837 if (np->targtbl) 5838 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 5839 } 5840