1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 
41 #include <linux/slab.h>
42 #include <asm/param.h>		/* for timeouts in units of HZ */
43 
44 #include "sym_glue.h"
45 #include "sym_nvram.h"
46 
47 #if 0
48 #define SYM_DEBUG_GENERIC_SUPPORT
49 #endif
50 
51 /*
52  *  Needed function prototypes.
53  */
54 static void sym_int_ma (struct sym_hcb *np);
55 static void sym_int_sir(struct sym_hcb *);
56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
62 
63 /*
64  *  Print a buffer in hexadecimal format with a ".\n" at end.
65  */
66 static void sym_printl_hex(u_char *p, int n)
67 {
68 	while (n-- > 0)
69 		printf (" %x", *p++);
70 	printf (".\n");
71 }
72 
73 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
74 {
75 	if (label)
76 		sym_print_addr(cp->cmd, "%s: ", label);
77 	else
78 		sym_print_addr(cp->cmd, "");
79 
80 	spi_print_msg(msg);
81 	printf("\n");
82 }
83 
84 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
85 {
86 	struct sym_tcb *tp = &np->target[target];
87 	dev_info(&tp->starget->dev, "%s: ", label);
88 
89 	spi_print_msg(msg);
90 	printf("\n");
91 }
92 
93 /*
94  *  Print something that tells about extended errors.
95  */
96 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
97 {
98 	if (x_status & XE_PARITY_ERR) {
99 		sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
100 	}
101 	if (x_status & XE_EXTRA_DATA) {
102 		sym_print_addr(cmd, "extraneous data discarded.\n");
103 	}
104 	if (x_status & XE_BAD_PHASE) {
105 		sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
106 	}
107 	if (x_status & XE_SODL_UNRUN) {
108 		sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
109 	}
110 	if (x_status & XE_SWIDE_OVRUN) {
111 		sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
112 	}
113 }
114 
115 /*
116  *  Return a string for SCSI BUS mode.
117  */
118 static char *sym_scsi_bus_mode(int mode)
119 {
120 	switch(mode) {
121 	case SMODE_HVD:	return "HVD";
122 	case SMODE_SE:	return "SE";
123 	case SMODE_LVD: return "LVD";
124 	}
125 	return "??";
126 }
127 
128 /*
129  *  Soft reset the chip.
130  *
131  *  Raising SRST when the chip is running may cause
132  *  problems on dual function chips (see below).
133  *  On the other hand, LVD devices need some delay
134  *  to settle and report actual BUS mode in STEST4.
135  */
136 static void sym_chip_reset (struct sym_hcb *np)
137 {
138 	OUTB(np, nc_istat, SRST);
139 	INB(np, nc_mbox1);
140 	udelay(10);
141 	OUTB(np, nc_istat, 0);
142 	INB(np, nc_mbox1);
143 	udelay(2000);	/* For BUS MODE to settle */
144 }
145 
146 /*
147  *  Really soft reset the chip.:)
148  *
149  *  Some 896 and 876 chip revisions may hang-up if we set
150  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
151  *  are running.
152  *  So, we need to abort the current operation prior to
153  *  soft resetting the chip.
154  */
155 static void sym_soft_reset (struct sym_hcb *np)
156 {
157 	u_char istat = 0;
158 	int i;
159 
160 	if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
161 		goto do_chip_reset;
162 
163 	OUTB(np, nc_istat, CABRT);
164 	for (i = 100000 ; i ; --i) {
165 		istat = INB(np, nc_istat);
166 		if (istat & SIP) {
167 			INW(np, nc_sist);
168 		}
169 		else if (istat & DIP) {
170 			if (INB(np, nc_dstat) & ABRT)
171 				break;
172 		}
173 		udelay(5);
174 	}
175 	OUTB(np, nc_istat, 0);
176 	if (!i)
177 		printf("%s: unable to abort current chip operation, "
178 		       "ISTAT=0x%02x.\n", sym_name(np), istat);
179 do_chip_reset:
180 	sym_chip_reset(np);
181 }
182 
183 /*
184  *  Start reset process.
185  *
186  *  The interrupt handler will reinitialize the chip.
187  */
188 static void sym_start_reset(struct sym_hcb *np)
189 {
190 	sym_reset_scsi_bus(np, 1);
191 }
192 
193 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
194 {
195 	u32 term;
196 	int retv = 0;
197 
198 	sym_soft_reset(np);	/* Soft reset the chip */
199 	if (enab_int)
200 		OUTW(np, nc_sien, RST);
201 	/*
202 	 *  Enable Tolerant, reset IRQD if present and
203 	 *  properly set IRQ mode, prior to resetting the bus.
204 	 */
205 	OUTB(np, nc_stest3, TE);
206 	OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
207 	OUTB(np, nc_scntl1, CRST);
208 	INB(np, nc_mbox1);
209 	udelay(200);
210 
211 	if (!SYM_SETUP_SCSI_BUS_CHECK)
212 		goto out;
213 	/*
214 	 *  Check for no terminators or SCSI bus shorts to ground.
215 	 *  Read SCSI data bus, data parity bits and control signals.
216 	 *  We are expecting RESET to be TRUE and other signals to be
217 	 *  FALSE.
218 	 */
219 	term =	INB(np, nc_sstat0);
220 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
221 	term |= ((INB(np, nc_sstat2) & 0x01) << 26) |	/* sdp1     */
222 		((INW(np, nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
223 		((INW(np, nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
224 		INB(np, nc_sbcl);	/* req ack bsy sel atn msg cd io    */
225 
226 	if (!np->maxwide)
227 		term &= 0x3ffff;
228 
229 	if (term != (2<<7)) {
230 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
231 			sym_name(np));
232 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
233 			"0x%lx, expecting 0x%lx\n",
234 			sym_name(np),
235 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
236 			(u_long)term, (u_long)(2<<7));
237 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
238 			retv = 1;
239 	}
240 out:
241 	OUTB(np, nc_scntl1, 0);
242 	return retv;
243 }
244 
245 /*
246  *  Select SCSI clock frequency
247  */
248 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
249 {
250 	/*
251 	 *  If multiplier not present or not selected, leave here.
252 	 */
253 	if (np->multiplier <= 1) {
254 		OUTB(np, nc_scntl3, scntl3);
255 		return;
256 	}
257 
258 	if (sym_verbose >= 2)
259 		printf ("%s: enabling clock multiplier\n", sym_name(np));
260 
261 	OUTB(np, nc_stest1, DBLEN);	   /* Enable clock multiplier */
262 	/*
263 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
264 	 *  Otherwise wait 50 micro-seconds (at least).
265 	 */
266 	if (np->features & FE_LCKFRQ) {
267 		int i = 20;
268 		while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
269 			udelay(20);
270 		if (!i)
271 			printf("%s: the chip cannot lock the frequency\n",
272 				sym_name(np));
273 	} else {
274 		INB(np, nc_mbox1);
275 		udelay(50+10);
276 	}
277 	OUTB(np, nc_stest3, HSC);		/* Halt the scsi clock	*/
278 	OUTB(np, nc_scntl3, scntl3);
279 	OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
280 	OUTB(np, nc_stest3, 0x00);		/* Restart scsi clock 	*/
281 }
282 
283 
284 /*
285  *  Determine the chip's clock frequency.
286  *
287  *  This is essential for the negotiation of the synchronous
288  *  transfer rate.
289  *
290  *  Note: we have to return the correct value.
291  *  THERE IS NO SAFE DEFAULT VALUE.
292  *
293  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
294  *  53C860 and 53C875 rev. 1 support fast20 transfers but
295  *  do not have a clock doubler and so are provided with a
296  *  80 MHz clock. All other fast20 boards incorporate a doubler
297  *  and so should be delivered with a 40 MHz clock.
298  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
299  *  clock and provide a clock quadrupler (160 Mhz).
300  */
301 
302 /*
303  *  calculate SCSI clock frequency (in KHz)
304  */
305 static unsigned getfreq (struct sym_hcb *np, int gen)
306 {
307 	unsigned int ms = 0;
308 	unsigned int f;
309 
310 	/*
311 	 * Measure GEN timer delay in order
312 	 * to calculate SCSI clock frequency
313 	 *
314 	 * This code will never execute too
315 	 * many loop iterations (if DELAY is
316 	 * reasonably correct). It could get
317 	 * too low a delay (too high a freq.)
318 	 * if the CPU is slow executing the
319 	 * loop for some reason (an NMI, for
320 	 * example). For this reason we will
321 	 * if multiple measurements are to be
322 	 * performed trust the higher delay
323 	 * (lower frequency returned).
324 	 */
325 	OUTW(np, nc_sien, 0);	/* mask all scsi interrupts */
326 	INW(np, nc_sist);	/* clear pending scsi interrupt */
327 	OUTB(np, nc_dien, 0);	/* mask all dma interrupts */
328 	INW(np, nc_sist);	/* another one, just to be sure :) */
329 	/*
330 	 * The C1010-33 core does not report GEN in SIST,
331 	 * if this interrupt is masked in SIEN.
332 	 * I don't know yet if the C1010-66 behaves the same way.
333 	 */
334 	if (np->features & FE_C10) {
335 		OUTW(np, nc_sien, GEN);
336 		OUTB(np, nc_istat1, SIRQD);
337 	}
338 	OUTB(np, nc_scntl3, 4);	   /* set pre-scaler to divide by 3 */
339 	OUTB(np, nc_stime1, 0);	   /* disable general purpose timer */
340 	OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
341 	while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
342 		udelay(1000/4);    /* count in 1/4 of ms */
343 	OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
344 	/*
345 	 * Undo C1010-33 specific settings.
346 	 */
347 	if (np->features & FE_C10) {
348 		OUTW(np, nc_sien, 0);
349 		OUTB(np, nc_istat1, 0);
350 	}
351  	/*
352  	 * set prescaler to divide by whatever 0 means
353  	 * 0 ought to choose divide by 2, but appears
354  	 * to set divide by 3.5 mode in my 53c810 ...
355  	 */
356  	OUTB(np, nc_scntl3, 0);
357 
358   	/*
359  	 * adjust for prescaler, and convert into KHz
360   	 */
361 	f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
362 
363 	/*
364 	 * The C1010-33 result is biased by a factor
365 	 * of 2/3 compared to earlier chips.
366 	 */
367 	if (np->features & FE_C10)
368 		f = (f * 2) / 3;
369 
370 	if (sym_verbose >= 2)
371 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
372 			sym_name(np), gen, ms/4, f);
373 
374 	return f;
375 }
376 
377 static unsigned sym_getfreq (struct sym_hcb *np)
378 {
379 	u_int f1, f2;
380 	int gen = 8;
381 
382 	getfreq (np, gen);	/* throw away first result */
383 	f1 = getfreq (np, gen);
384 	f2 = getfreq (np, gen);
385 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
386 	return f1;
387 }
388 
389 /*
390  *  Get/probe chip SCSI clock frequency
391  */
392 static void sym_getclock (struct sym_hcb *np, int mult)
393 {
394 	unsigned char scntl3 = np->sv_scntl3;
395 	unsigned char stest1 = np->sv_stest1;
396 	unsigned f1;
397 
398 	np->multiplier = 1;
399 	f1 = 40000;
400 	/*
401 	 *  True with 875/895/896/895A with clock multiplier selected
402 	 */
403 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
404 		if (sym_verbose >= 2)
405 			printf ("%s: clock multiplier found\n", sym_name(np));
406 		np->multiplier = mult;
407 	}
408 
409 	/*
410 	 *  If multiplier not found or scntl3 not 7,5,3,
411 	 *  reset chip and get frequency from general purpose timer.
412 	 *  Otherwise trust scntl3 BIOS setting.
413 	 */
414 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
415 		OUTB(np, nc_stest1, 0);		/* make sure doubler is OFF */
416 		f1 = sym_getfreq (np);
417 
418 		if (sym_verbose)
419 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
420 
421 		if	(f1 <	45000)		f1 =  40000;
422 		else if (f1 <	55000)		f1 =  50000;
423 		else				f1 =  80000;
424 
425 		if (f1 < 80000 && mult > 1) {
426 			if (sym_verbose >= 2)
427 				printf ("%s: clock multiplier assumed\n",
428 					sym_name(np));
429 			np->multiplier	= mult;
430 		}
431 	} else {
432 		if	((scntl3 & 7) == 3)	f1 =  40000;
433 		else if	((scntl3 & 7) == 5)	f1 =  80000;
434 		else 				f1 = 160000;
435 
436 		f1 /= np->multiplier;
437 	}
438 
439 	/*
440 	 *  Compute controller synchronous parameters.
441 	 */
442 	f1		*= np->multiplier;
443 	np->clock_khz	= f1;
444 }
445 
446 /*
447  *  Get/probe PCI clock frequency
448  */
449 static int sym_getpciclock (struct sym_hcb *np)
450 {
451 	int f = 0;
452 
453 	/*
454 	 *  For now, we only need to know about the actual
455 	 *  PCI BUS clock frequency for C1010-66 chips.
456 	 */
457 #if 1
458 	if (np->features & FE_66MHZ) {
459 #else
460 	if (1) {
461 #endif
462 		OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
463 		f = sym_getfreq(np);
464 		OUTB(np, nc_stest1, 0);
465 	}
466 	np->pciclk_khz = f;
467 
468 	return f;
469 }
470 
471 /*
472  *  SYMBIOS chip clock divisor table.
473  *
474  *  Divisors are multiplied by 10,000,000 in order to make
475  *  calculations more simple.
476  */
477 #define _5M 5000000
478 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
479 
480 /*
481  *  Get clock factor and sync divisor for a given
482  *  synchronous factor period.
483  */
484 static int
485 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
486 {
487 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
488 	int	div = np->clock_divn;	/* Number of divisors supported	*/
489 	u32	fak;			/* Sync factor in sxfer		*/
490 	u32	per;			/* Period in tenths of ns	*/
491 	u32	kpc;			/* (per * clk)			*/
492 	int	ret;
493 
494 	/*
495 	 *  Compute the synchronous period in tenths of nano-seconds
496 	 */
497 	if (dt && sfac <= 9)	per = 125;
498 	else if	(sfac <= 10)	per = 250;
499 	else if	(sfac == 11)	per = 303;
500 	else if	(sfac == 12)	per = 500;
501 	else			per = 40 * sfac;
502 	ret = per;
503 
504 	kpc = per * clk;
505 	if (dt)
506 		kpc <<= 1;
507 
508 	/*
509 	 *  For earliest C10 revision 0, we cannot use extra
510 	 *  clocks for the setting of the SCSI clocking.
511 	 *  Note that this limits the lowest sync data transfer
512 	 *  to 5 Mega-transfers per second and may result in
513 	 *  using higher clock divisors.
514 	 */
515 #if 1
516 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
517 		/*
518 		 *  Look for the lowest clock divisor that allows an
519 		 *  output speed not faster than the period.
520 		 */
521 		while (div > 0) {
522 			--div;
523 			if (kpc > (div_10M[div] << 2)) {
524 				++div;
525 				break;
526 			}
527 		}
528 		fak = 0;			/* No extra clocks */
529 		if (div == np->clock_divn) {	/* Are we too fast ? */
530 			ret = -1;
531 		}
532 		*divp = div;
533 		*fakp = fak;
534 		return ret;
535 	}
536 #endif
537 
538 	/*
539 	 *  Look for the greatest clock divisor that allows an
540 	 *  input speed faster than the period.
541 	 */
542 	while (div-- > 0)
543 		if (kpc >= (div_10M[div] << 2)) break;
544 
545 	/*
546 	 *  Calculate the lowest clock factor that allows an output
547 	 *  speed not faster than the period, and the max output speed.
548 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
549 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
550 	 */
551 	if (dt) {
552 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
553 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
554 	} else {
555 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
556 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
557 	}
558 
559 	/*
560 	 *  Check against our hardware limits, or bugs :).
561 	 */
562 	if (fak > 2) {
563 		fak = 2;
564 		ret = -1;
565 	}
566 
567 	/*
568 	 *  Compute and return sync parameters.
569 	 */
570 	*divp = div;
571 	*fakp = fak;
572 
573 	return ret;
574 }
575 
576 /*
577  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
578  *  128 transfers. All chips support at least 16 transfers
579  *  bursts. The 825A, 875 and 895 chips support bursts of up
580  *  to 128 transfers and the 895A and 896 support bursts of up
581  *  to 64 transfers. All other chips support up to 16
582  *  transfers bursts.
583  *
584  *  For PCI 32 bit data transfers each transfer is a DWORD.
585  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
586  *
587  *  We use log base 2 (burst length) as internal code, with
588  *  value 0 meaning "burst disabled".
589  */
590 
591 /*
592  *  Burst length from burst code.
593  */
594 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
595 
596 /*
597  *  Burst code from io register bits.
598  */
599 #define burst_code(dmode, ctest4, ctest5) \
600 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
601 
602 /*
603  *  Set initial io register bits from burst code.
604  */
605 static inline void sym_init_burst(struct sym_hcb *np, u_char bc)
606 {
607 	np->rv_ctest4	&= ~0x80;
608 	np->rv_dmode	&= ~(0x3 << 6);
609 	np->rv_ctest5	&= ~0x4;
610 
611 	if (!bc) {
612 		np->rv_ctest4	|= 0x80;
613 	}
614 	else {
615 		--bc;
616 		np->rv_dmode	|= ((bc & 0x3) << 6);
617 		np->rv_ctest5	|= (bc & 0x4);
618 	}
619 }
620 
621 /*
622  *  Save initial settings of some IO registers.
623  *  Assumed to have been set by BIOS.
624  *  We cannot reset the chip prior to reading the
625  *  IO registers, since informations will be lost.
626  *  Since the SCRIPTS processor may be running, this
627  *  is not safe on paper, but it seems to work quite
628  *  well. :)
629  */
630 static void sym_save_initial_setting (struct sym_hcb *np)
631 {
632 	np->sv_scntl0	= INB(np, nc_scntl0) & 0x0a;
633 	np->sv_scntl3	= INB(np, nc_scntl3) & 0x07;
634 	np->sv_dmode	= INB(np, nc_dmode)  & 0xce;
635 	np->sv_dcntl	= INB(np, nc_dcntl)  & 0xa8;
636 	np->sv_ctest3	= INB(np, nc_ctest3) & 0x01;
637 	np->sv_ctest4	= INB(np, nc_ctest4) & 0x80;
638 	np->sv_gpcntl	= INB(np, nc_gpcntl);
639 	np->sv_stest1	= INB(np, nc_stest1);
640 	np->sv_stest2	= INB(np, nc_stest2) & 0x20;
641 	np->sv_stest4	= INB(np, nc_stest4);
642 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
643 		np->sv_scntl4	= INB(np, nc_scntl4);
644 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x04;
645 	}
646 	else
647 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x24;
648 }
649 
650 /*
651  *  Set SCSI BUS mode.
652  *  - LVD capable chips (895/895A/896/1010) report the current BUS mode
653  *    through the STEST4 IO register.
654  *  - For previous generation chips (825/825A/875), the user has to tell us
655  *    how to check against HVD, since a 100% safe algorithm is not possible.
656  */
657 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
658 {
659 	if (np->scsi_mode)
660 		return;
661 
662 	np->scsi_mode = SMODE_SE;
663 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
664 		np->scsi_mode = (np->sv_stest4 & SMODE);
665 	else if	(np->features & FE_DIFF) {
666 		if (SYM_SETUP_SCSI_DIFF == 1) {
667 			if (np->sv_scntl3) {
668 				if (np->sv_stest2 & 0x20)
669 					np->scsi_mode = SMODE_HVD;
670 			} else if (nvram->type == SYM_SYMBIOS_NVRAM) {
671 				if (!(INB(np, nc_gpreg) & 0x08))
672 					np->scsi_mode = SMODE_HVD;
673 			}
674 		} else if (SYM_SETUP_SCSI_DIFF == 2)
675 			np->scsi_mode = SMODE_HVD;
676 	}
677 	if (np->scsi_mode == SMODE_HVD)
678 		np->rv_stest2 |= 0x20;
679 }
680 
681 /*
682  *  Prepare io register values used by sym_start_up()
683  *  according to selected and supported features.
684  */
685 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
686 {
687 	struct sym_data *sym_data = shost_priv(shost);
688 	struct pci_dev *pdev = sym_data->pdev;
689 	u_char	burst_max;
690 	u32	period;
691 	int i;
692 
693 	np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
694 
695 	/*
696 	 *  Guess the frequency of the chip's clock.
697 	 */
698 	if	(np->features & (FE_ULTRA3 | FE_ULTRA2))
699 		np->clock_khz = 160000;
700 	else if	(np->features & FE_ULTRA)
701 		np->clock_khz = 80000;
702 	else
703 		np->clock_khz = 40000;
704 
705 	/*
706 	 *  Get the clock multiplier factor.
707  	 */
708 	if	(np->features & FE_QUAD)
709 		np->multiplier	= 4;
710 	else if	(np->features & FE_DBLR)
711 		np->multiplier	= 2;
712 	else
713 		np->multiplier	= 1;
714 
715 	/*
716 	 *  Measure SCSI clock frequency for chips
717 	 *  it may vary from assumed one.
718 	 */
719 	if (np->features & FE_VARCLK)
720 		sym_getclock(np, np->multiplier);
721 
722 	/*
723 	 * Divisor to be used for async (timer pre-scaler).
724 	 */
725 	i = np->clock_divn - 1;
726 	while (--i >= 0) {
727 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
728 			++i;
729 			break;
730 		}
731 	}
732 	np->rv_scntl3 = i+1;
733 
734 	/*
735 	 * The C1010 uses hardwired divisors for async.
736 	 * So, we just throw away, the async. divisor.:-)
737 	 */
738 	if (np->features & FE_C10)
739 		np->rv_scntl3 = 0;
740 
741 	/*
742 	 * Minimum synchronous period factor supported by the chip.
743 	 * Btw, 'period' is in tenths of nanoseconds.
744 	 */
745 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
746 
747 	if	(period <= 250)		np->minsync = 10;
748 	else if	(period <= 303)		np->minsync = 11;
749 	else if	(period <= 500)		np->minsync = 12;
750 	else				np->minsync = (period + 40 - 1) / 40;
751 
752 	/*
753 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
754 	 */
755 	if	(np->minsync < 25 &&
756 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
757 		np->minsync = 25;
758 	else if	(np->minsync < 12 &&
759 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
760 		np->minsync = 12;
761 
762 	/*
763 	 * Maximum synchronous period factor supported by the chip.
764 	 */
765 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
766 	np->maxsync = period > 2540 ? 254 : period / 10;
767 
768 	/*
769 	 * If chip is a C1010, guess the sync limits in DT mode.
770 	 */
771 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
772 		if (np->clock_khz == 160000) {
773 			np->minsync_dt = 9;
774 			np->maxsync_dt = 50;
775 			np->maxoffs_dt = nvram->type ? 62 : 31;
776 		}
777 	}
778 
779 	/*
780 	 *  64 bit addressing  (895A/896/1010) ?
781 	 */
782 	if (np->features & FE_DAC) {
783 		if (!use_dac(np))
784 			np->rv_ccntl1 |= (DDAC);
785 		else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
786 			np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
787 		else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
788 			np->rv_ccntl1 |= (0 | EXTIBMV);
789 	}
790 
791 	/*
792 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
793   	 */
794 	if (np->features & FE_NOPM)
795 		np->rv_ccntl0	|= (ENPMJ);
796 
797  	/*
798 	 *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
799 	 *  In dual channel mode, contention occurs if internal cycles
800 	 *  are used. Disable internal cycles.
801 	 */
802 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
803 	    pdev->revision < 0x1)
804 		np->rv_ccntl0	|=  DILS;
805 
806 	/*
807 	 *  Select burst length (dwords)
808 	 */
809 	burst_max	= SYM_SETUP_BURST_ORDER;
810 	if (burst_max == 255)
811 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
812 				       np->sv_ctest5);
813 	if (burst_max > 7)
814 		burst_max = 7;
815 	if (burst_max > np->maxburst)
816 		burst_max = np->maxburst;
817 
818 	/*
819 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
820 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
821 	 *  based transactions on LOAD/STORE instructions. So we have
822 	 *  to prevent these chips from using such PCI transactions in
823 	 *  this driver. The generic ncr driver that does not use
824 	 *  LOAD/STORE instructions does not need this work-around.
825 	 */
826 	if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
827 	     pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
828 	    (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
829 	     pdev->revision <= 0x1))
830 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
831 
832 	/*
833 	 *  Select all supported special features.
834 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
835 	 *  does not help, but burst op fetch (BOF) does.
836 	 *  Disabling PFEN makes sure BOF will be used.
837 	 */
838 	if (np->features & FE_ERL)
839 		np->rv_dmode	|= ERL;		/* Enable Read Line */
840 	if (np->features & FE_BOF)
841 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
842 	if (np->features & FE_ERMP)
843 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
844 #if 1
845 	if ((np->features & FE_PFEN) && !np->ram_ba)
846 #else
847 	if (np->features & FE_PFEN)
848 #endif
849 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
850 	if (np->features & FE_CLSE)
851 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
852 	if (np->features & FE_WRIE)
853 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
854 	if (np->features & FE_DFS)
855 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
856 
857 	/*
858 	 *  Select some other
859 	 */
860 	np->rv_ctest4	|= MPEE; /* Master parity checking */
861 	np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
862 
863 	/*
864 	 *  Get parity checking, host ID and verbose mode from NVRAM
865 	 */
866 	np->myaddr = 255;
867 	np->scsi_mode = 0;
868 	sym_nvram_setup_host(shost, np, nvram);
869 
870 	/*
871 	 *  Get SCSI addr of host adapter (set by bios?).
872 	 */
873 	if (np->myaddr == 255) {
874 		np->myaddr = INB(np, nc_scid) & 0x07;
875 		if (!np->myaddr)
876 			np->myaddr = SYM_SETUP_HOST_ID;
877 	}
878 
879 	/*
880 	 *  Prepare initial io register bits for burst length
881 	 */
882 	sym_init_burst(np, burst_max);
883 
884 	sym_set_bus_mode(np, nvram);
885 
886 	/*
887 	 *  Set LED support from SCRIPTS.
888 	 *  Ignore this feature for boards known to use a
889 	 *  specific GPIO wiring and for the 895A, 896
890 	 *  and 1010 that drive the LED directly.
891 	 */
892 	if ((SYM_SETUP_SCSI_LED ||
893 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
894 	      (nvram->type == SYM_TEKRAM_NVRAM &&
895 	       pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
896 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
897 		np->features |= FE_LED0;
898 
899 	/*
900 	 *  Set irq mode.
901 	 */
902 	switch(SYM_SETUP_IRQ_MODE & 3) {
903 	case 2:
904 		np->rv_dcntl	|= IRQM;
905 		break;
906 	case 1:
907 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
908 		break;
909 	default:
910 		break;
911 	}
912 
913 	/*
914 	 *  Configure targets according to driver setup.
915 	 *  If NVRAM present get targets setup from NVRAM.
916 	 */
917 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
918 		struct sym_tcb *tp = &np->target[i];
919 
920 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
921 		tp->usrtags = SYM_SETUP_MAX_TAG;
922 		tp->usr_width = np->maxwide;
923 		tp->usr_period = 9;
924 
925 		sym_nvram_setup_target(tp, i, nvram);
926 
927 		if (!tp->usrtags)
928 			tp->usrflags &= ~SYM_TAGS_ENABLED;
929 	}
930 
931 	/*
932 	 *  Let user know about the settings.
933 	 */
934 	printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
935 		sym_nvram_type(nvram), np->myaddr,
936 		(np->features & FE_ULTRA3) ? 80 :
937 		(np->features & FE_ULTRA2) ? 40 :
938 		(np->features & FE_ULTRA)  ? 20 : 10,
939 		sym_scsi_bus_mode(np->scsi_mode),
940 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
941 	/*
942 	 *  Tell him more on demand.
943 	 */
944 	if (sym_verbose) {
945 		printf("%s: %s IRQ line driver%s\n",
946 			sym_name(np),
947 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
948 			np->ram_ba ? ", using on-chip SRAM" : "");
949 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
950 		if (np->features & FE_NOPM)
951 			printf("%s: handling phase mismatch from SCRIPTS.\n",
952 			       sym_name(np));
953 	}
954 	/*
955 	 *  And still more.
956 	 */
957 	if (sym_verbose >= 2) {
958 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
959 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
960 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
961 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
962 
963 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
964 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
965 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
966 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
967 	}
968 
969 	return 0;
970 }
971 
972 /*
973  *  Test the pci bus snoop logic :-(
974  *
975  *  Has to be called with interrupts disabled.
976  */
977 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
978 static int sym_regtest(struct sym_hcb *np)
979 {
980 	register volatile u32 data;
981 	/*
982 	 *  chip registers may NOT be cached.
983 	 *  write 0xffffffff to a read only register area,
984 	 *  and try to read it back.
985 	 */
986 	data = 0xffffffff;
987 	OUTL(np, nc_dstat, data);
988 	data = INL(np, nc_dstat);
989 #if 1
990 	if (data == 0xffffffff) {
991 #else
992 	if ((data & 0xe2f0fffd) != 0x02000080) {
993 #endif
994 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
995 			(unsigned) data);
996 		return 0x10;
997 	}
998 	return 0;
999 }
1000 #else
1001 static inline int sym_regtest(struct sym_hcb *np)
1002 {
1003 	return 0;
1004 }
1005 #endif
1006 
1007 static int sym_snooptest(struct sym_hcb *np)
1008 {
1009 	u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1010 	int i, err;
1011 
1012 	err = sym_regtest(np);
1013 	if (err)
1014 		return err;
1015 restart_test:
1016 	/*
1017 	 *  Enable Master Parity Checking as we intend
1018 	 *  to enable it for normal operations.
1019 	 */
1020 	OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1021 	/*
1022 	 *  init
1023 	 */
1024 	pc  = SCRIPTZ_BA(np, snooptest);
1025 	host_wr = 1;
1026 	sym_wr  = 2;
1027 	/*
1028 	 *  Set memory and register.
1029 	 */
1030 	np->scratch = cpu_to_scr(host_wr);
1031 	OUTL(np, nc_temp, sym_wr);
1032 	/*
1033 	 *  Start script (exchange values)
1034 	 */
1035 	OUTL(np, nc_dsa, np->hcb_ba);
1036 	OUTL_DSP(np, pc);
1037 	/*
1038 	 *  Wait 'til done (with timeout)
1039 	 */
1040 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1041 		if (INB(np, nc_istat) & (INTF|SIP|DIP))
1042 			break;
1043 	if (i>=SYM_SNOOP_TIMEOUT) {
1044 		printf ("CACHE TEST FAILED: timeout.\n");
1045 		return (0x20);
1046 	}
1047 	/*
1048 	 *  Check for fatal DMA errors.
1049 	 */
1050 	dstat = INB(np, nc_dstat);
1051 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
1052 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1053 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1054 			"DISABLING MASTER DATA PARITY CHECKING.\n",
1055 			sym_name(np));
1056 		np->rv_ctest4 &= ~MPEE;
1057 		goto restart_test;
1058 	}
1059 #endif
1060 	if (dstat & (MDPE|BF|IID)) {
1061 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1062 		return (0x80);
1063 	}
1064 	/*
1065 	 *  Save termination position.
1066 	 */
1067 	pc = INL(np, nc_dsp);
1068 	/*
1069 	 *  Read memory and register.
1070 	 */
1071 	host_rd = scr_to_cpu(np->scratch);
1072 	sym_rd  = INL(np, nc_scratcha);
1073 	sym_bk  = INL(np, nc_temp);
1074 	/*
1075 	 *  Check termination position.
1076 	 */
1077 	if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1078 		printf ("CACHE TEST FAILED: script execution failed.\n");
1079 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1080 			(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1081 			(u_long) SCRIPTZ_BA(np, snoopend) +8);
1082 		return (0x40);
1083 	}
1084 	/*
1085 	 *  Show results.
1086 	 */
1087 	if (host_wr != sym_rd) {
1088 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1089 			(int) host_wr, (int) sym_rd);
1090 		err |= 1;
1091 	}
1092 	if (host_rd != sym_wr) {
1093 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1094 			(int) sym_wr, (int) host_rd);
1095 		err |= 2;
1096 	}
1097 	if (sym_bk != sym_wr) {
1098 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1099 			(int) sym_wr, (int) sym_bk);
1100 		err |= 4;
1101 	}
1102 
1103 	return err;
1104 }
1105 
1106 /*
1107  *  log message for real hard errors
1108  *
1109  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1110  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1111  *
1112  *  exception register:
1113  *  	ds:	dstat
1114  *  	si:	sist
1115  *
1116  *  SCSI bus lines:
1117  *  	so:	control lines as driven by chip.
1118  *  	si:	control lines as seen by chip.
1119  *  	sd:	scsi data lines as seen by chip.
1120  *
1121  *  wide/fastmode:
1122  *  	sx:	sxfer  (see the manual)
1123  *  	s3:	scntl3 (see the manual)
1124  *  	s4:	scntl4 (see the manual)
1125  *
1126  *  current script command:
1127  *  	dsp:	script address (relative to start of script).
1128  *  	dbc:	first word of script command.
1129  *
1130  *  First 24 register of the chip:
1131  *  	r0..rf
1132  */
1133 static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1134 {
1135 	struct sym_hcb *np = sym_get_hcb(shost);
1136 	u32	dsp;
1137 	int	script_ofs;
1138 	int	script_size;
1139 	char	*script_name;
1140 	u_char	*script_base;
1141 	int	i;
1142 
1143 	dsp	= INL(np, nc_dsp);
1144 
1145 	if	(dsp > np->scripta_ba &&
1146 		 dsp <= np->scripta_ba + np->scripta_sz) {
1147 		script_ofs	= dsp - np->scripta_ba;
1148 		script_size	= np->scripta_sz;
1149 		script_base	= (u_char *) np->scripta0;
1150 		script_name	= "scripta";
1151 	}
1152 	else if (np->scriptb_ba < dsp &&
1153 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
1154 		script_ofs	= dsp - np->scriptb_ba;
1155 		script_size	= np->scriptb_sz;
1156 		script_base	= (u_char *) np->scriptb0;
1157 		script_name	= "scriptb";
1158 	} else {
1159 		script_ofs	= dsp;
1160 		script_size	= 0;
1161 		script_base	= NULL;
1162 		script_name	= "mem";
1163 	}
1164 
1165 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1166 		sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1167 		(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1168 		(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1169 		(unsigned)INB(np, nc_scntl3),
1170 		(np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1171 		script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1172 
1173 	if (((script_ofs & 3) == 0) &&
1174 	    (unsigned)script_ofs < script_size) {
1175 		printf ("%s: script cmd = %08x\n", sym_name(np),
1176 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1177 	}
1178 
1179 	printf("%s: regdump:", sym_name(np));
1180 	for (i = 0; i < 24; i++)
1181 		printf(" %02x", (unsigned)INB_OFF(np, i));
1182 	printf(".\n");
1183 
1184 	/*
1185 	 *  PCI BUS error.
1186 	 */
1187 	if (dstat & (MDPE|BF))
1188 		sym_log_bus_error(shost);
1189 }
1190 
1191 void sym_dump_registers(struct Scsi_Host *shost)
1192 {
1193 	struct sym_hcb *np = sym_get_hcb(shost);
1194 	u_short sist;
1195 	u_char dstat;
1196 
1197 	sist = INW(np, nc_sist);
1198 	dstat = INB(np, nc_dstat);
1199 	sym_log_hard_error(shost, sist, dstat);
1200 }
1201 
1202 static struct sym_chip sym_dev_table[] = {
1203  {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1204  FE_ERL}
1205  ,
1206 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1207  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1208  FE_BOF}
1209  ,
1210 #else
1211  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1212  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1213  ,
1214 #endif
1215  {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1216  FE_BOF|FE_ERL}
1217  ,
1218  {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1219  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1220  ,
1221  {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1222  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1223  ,
1224  {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1225  FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1226  ,
1227  {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1228  FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1229  FE_RAM|FE_DIFF|FE_VARCLK}
1230  ,
1231  {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1232  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1233  FE_RAM|FE_DIFF|FE_VARCLK}
1234  ,
1235  {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1236  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1237  FE_RAM|FE_DIFF|FE_VARCLK}
1238  ,
1239  {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1240  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1241  FE_RAM|FE_DIFF|FE_VARCLK}
1242  ,
1243 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1244  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1245  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1246  FE_RAM|FE_LCKFRQ}
1247  ,
1248 #else
1249  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1250  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1251  FE_RAM|FE_LCKFRQ}
1252  ,
1253 #endif
1254  {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1255  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1256  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1257  ,
1258  {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1259  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1260  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1261  ,
1262  {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1263  FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1264  FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1265  ,
1266  {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1267  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1268  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1269  FE_C10}
1270  ,
1271  {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1272  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1273  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1274  FE_C10|FE_U3EN}
1275  ,
1276  {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1277  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1278  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1279  FE_C10|FE_U3EN}
1280  ,
1281  {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1282  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1283  FE_RAM|FE_IO256|FE_LEDC}
1284 };
1285 
1286 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1287 
1288 /*
1289  *  Look up the chip table.
1290  *
1291  *  Return a pointer to the chip entry if found,
1292  *  zero otherwise.
1293  */
1294 struct sym_chip *
1295 sym_lookup_chip_table (u_short device_id, u_char revision)
1296 {
1297 	struct	sym_chip *chip;
1298 	int	i;
1299 
1300 	for (i = 0; i < sym_num_devs; i++) {
1301 		chip = &sym_dev_table[i];
1302 		if (device_id != chip->device_id)
1303 			continue;
1304 		if (revision > chip->revision_id)
1305 			continue;
1306 		return chip;
1307 	}
1308 
1309 	return NULL;
1310 }
1311 
1312 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1313 /*
1314  *  Lookup the 64 bit DMA segments map.
1315  *  This is only used if the direct mapping
1316  *  has been unsuccessful.
1317  */
1318 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1319 {
1320 	int i;
1321 
1322 	if (!use_dac(np))
1323 		goto weird;
1324 
1325 	/* Look up existing mappings */
1326 	for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1327 		if (h == np->dmap_bah[i])
1328 			return i;
1329 	}
1330 	/* If direct mapping is free, get it */
1331 	if (!np->dmap_bah[s])
1332 		goto new;
1333 	/* Collision -> lookup free mappings */
1334 	for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1335 		if (!np->dmap_bah[s])
1336 			goto new;
1337 	}
1338 weird:
1339 	panic("sym: ran out of 64 bit DMA segment registers");
1340 	return -1;
1341 new:
1342 	np->dmap_bah[s] = h;
1343 	np->dmap_dirty = 1;
1344 	return s;
1345 }
1346 
1347 /*
1348  *  Update IO registers scratch C..R so they will be
1349  *  in sync. with queued CCB expectations.
1350  */
1351 static void sym_update_dmap_regs(struct sym_hcb *np)
1352 {
1353 	int o, i;
1354 
1355 	if (!np->dmap_dirty)
1356 		return;
1357 	o = offsetof(struct sym_reg, nc_scrx[0]);
1358 	for (i = 0; i < SYM_DMAP_SIZE; i++) {
1359 		OUTL_OFF(np, o, np->dmap_bah[i]);
1360 		o += 4;
1361 	}
1362 	np->dmap_dirty = 0;
1363 }
1364 #endif
1365 
1366 /* Enforce all the fiddly SPI rules and the chip limitations */
1367 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1368 		struct sym_trans *goal)
1369 {
1370 	if (!spi_support_wide(starget))
1371 		goal->width = 0;
1372 
1373 	if (!spi_support_sync(starget)) {
1374 		goal->iu = 0;
1375 		goal->dt = 0;
1376 		goal->qas = 0;
1377 		goal->offset = 0;
1378 		return;
1379 	}
1380 
1381 	if (spi_support_dt(starget)) {
1382 		if (spi_support_dt_only(starget))
1383 			goal->dt = 1;
1384 
1385 		if (goal->offset == 0)
1386 			goal->dt = 0;
1387 	} else {
1388 		goal->dt = 0;
1389 	}
1390 
1391 	/* Some targets fail to properly negotiate DT in SE mode */
1392 	if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1393 		goal->dt = 0;
1394 
1395 	if (goal->dt) {
1396 		/* all DT transfers must be wide */
1397 		goal->width = 1;
1398 		if (goal->offset > np->maxoffs_dt)
1399 			goal->offset = np->maxoffs_dt;
1400 		if (goal->period < np->minsync_dt)
1401 			goal->period = np->minsync_dt;
1402 		if (goal->period > np->maxsync_dt)
1403 			goal->period = np->maxsync_dt;
1404 	} else {
1405 		goal->iu = goal->qas = 0;
1406 		if (goal->offset > np->maxoffs)
1407 			goal->offset = np->maxoffs;
1408 		if (goal->period < np->minsync)
1409 			goal->period = np->minsync;
1410 		if (goal->period > np->maxsync)
1411 			goal->period = np->maxsync;
1412 	}
1413 }
1414 
1415 /*
1416  *  Prepare the next negotiation message if needed.
1417  *
1418  *  Fill in the part of message buffer that contains the
1419  *  negotiation and the nego_status field of the CCB.
1420  *  Returns the size of the message in bytes.
1421  */
1422 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1423 {
1424 	struct sym_tcb *tp = &np->target[cp->target];
1425 	struct scsi_target *starget = tp->starget;
1426 	struct sym_trans *goal = &tp->tgoal;
1427 	int msglen = 0;
1428 	int nego;
1429 
1430 	sym_check_goals(np, starget, goal);
1431 
1432 	/*
1433 	 * Many devices implement PPR in a buggy way, so only use it if we
1434 	 * really want to.
1435 	 */
1436 	if (goal->renego == NS_PPR || (goal->offset &&
1437 	    (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) {
1438 		nego = NS_PPR;
1439 	} else if (goal->renego == NS_WIDE || goal->width) {
1440 		nego = NS_WIDE;
1441 	} else if (goal->renego == NS_SYNC || goal->offset) {
1442 		nego = NS_SYNC;
1443 	} else {
1444 		goal->check_nego = 0;
1445 		nego = 0;
1446 	}
1447 
1448 	switch (nego) {
1449 	case NS_SYNC:
1450 		msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1451 				goal->offset);
1452 		break;
1453 	case NS_WIDE:
1454 		msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1455 		break;
1456 	case NS_PPR:
1457 		msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1458 				goal->offset, goal->width,
1459 				(goal->iu ? PPR_OPT_IU : 0) |
1460 					(goal->dt ? PPR_OPT_DT : 0) |
1461 					(goal->qas ? PPR_OPT_QAS : 0));
1462 		break;
1463 	}
1464 
1465 	cp->nego_status = nego;
1466 
1467 	if (nego) {
1468 		tp->nego_cp = cp; /* Keep track a nego will be performed */
1469 		if (DEBUG_FLAGS & DEBUG_NEGO) {
1470 			sym_print_nego_msg(np, cp->target,
1471 					  nego == NS_SYNC ? "sync msgout" :
1472 					  nego == NS_WIDE ? "wide msgout" :
1473 					  "ppr msgout", msgptr);
1474 		}
1475 	}
1476 
1477 	return msglen;
1478 }
1479 
1480 /*
1481  *  Insert a job into the start queue.
1482  */
1483 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1484 {
1485 	u_short	qidx;
1486 
1487 #ifdef SYM_CONF_IARB_SUPPORT
1488 	/*
1489 	 *  If the previously queued CCB is not yet done,
1490 	 *  set the IARB hint. The SCRIPTS will go with IARB
1491 	 *  for this job when starting the previous one.
1492 	 *  We leave devices a chance to win arbitration by
1493 	 *  not using more than 'iarb_max' consecutive
1494 	 *  immediate arbitrations.
1495 	 */
1496 	if (np->last_cp && np->iarb_count < np->iarb_max) {
1497 		np->last_cp->host_flags |= HF_HINT_IARB;
1498 		++np->iarb_count;
1499 	}
1500 	else
1501 		np->iarb_count = 0;
1502 	np->last_cp = cp;
1503 #endif
1504 
1505 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1506 	/*
1507 	 *  Make SCRIPTS aware of the 64 bit DMA
1508 	 *  segment registers not being up-to-date.
1509 	 */
1510 	if (np->dmap_dirty)
1511 		cp->host_xflags |= HX_DMAP_DIRTY;
1512 #endif
1513 
1514 	/*
1515 	 *  Insert first the idle task and then our job.
1516 	 *  The MBs should ensure proper ordering.
1517 	 */
1518 	qidx = np->squeueput + 2;
1519 	if (qidx >= MAX_QUEUE*2) qidx = 0;
1520 
1521 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
1522 	MEMORY_WRITE_BARRIER();
1523 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1524 
1525 	np->squeueput = qidx;
1526 
1527 	if (DEBUG_FLAGS & DEBUG_QUEUE)
1528 		scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1529 							np->squeueput);
1530 
1531 	/*
1532 	 *  Script processor may be waiting for reselect.
1533 	 *  Wake it up.
1534 	 */
1535 	MEMORY_WRITE_BARRIER();
1536 	OUTB(np, nc_istat, SIGP|np->istat_sem);
1537 }
1538 
1539 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1540 /*
1541  *  Start next ready-to-start CCBs.
1542  */
1543 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1544 {
1545 	SYM_QUEHEAD *qp;
1546 	struct sym_ccb *cp;
1547 
1548 	/*
1549 	 *  Paranoia, as usual. :-)
1550 	 */
1551 	assert(!lp->started_tags || !lp->started_no_tag);
1552 
1553 	/*
1554 	 *  Try to start as many commands as asked by caller.
1555 	 *  Prevent from having both tagged and untagged
1556 	 *  commands queued to the device at the same time.
1557 	 */
1558 	while (maxn--) {
1559 		qp = sym_remque_head(&lp->waiting_ccbq);
1560 		if (!qp)
1561 			break;
1562 		cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1563 		if (cp->tag != NO_TAG) {
1564 			if (lp->started_no_tag ||
1565 			    lp->started_tags >= lp->started_max) {
1566 				sym_insque_head(qp, &lp->waiting_ccbq);
1567 				break;
1568 			}
1569 			lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1570 			lp->head.resel_sa =
1571 				cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1572 			++lp->started_tags;
1573 		} else {
1574 			if (lp->started_no_tag || lp->started_tags) {
1575 				sym_insque_head(qp, &lp->waiting_ccbq);
1576 				break;
1577 			}
1578 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1579 			lp->head.resel_sa =
1580 			      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1581 			++lp->started_no_tag;
1582 		}
1583 		cp->started = 1;
1584 		sym_insque_tail(qp, &lp->started_ccbq);
1585 		sym_put_start_queue(np, cp);
1586 	}
1587 }
1588 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1589 
1590 /*
1591  *  The chip may have completed jobs. Look at the DONE QUEUE.
1592  *
1593  *  On paper, memory read barriers may be needed here to
1594  *  prevent out of order LOADs by the CPU from having
1595  *  prefetched stale data prior to DMA having occurred.
1596  */
1597 static int sym_wakeup_done (struct sym_hcb *np)
1598 {
1599 	struct sym_ccb *cp;
1600 	int i, n;
1601 	u32 dsa;
1602 
1603 	n = 0;
1604 	i = np->dqueueget;
1605 
1606 	/* MEMORY_READ_BARRIER(); */
1607 	while (1) {
1608 		dsa = scr_to_cpu(np->dqueue[i]);
1609 		if (!dsa)
1610 			break;
1611 		np->dqueue[i] = 0;
1612 		if ((i = i+2) >= MAX_QUEUE*2)
1613 			i = 0;
1614 
1615 		cp = sym_ccb_from_dsa(np, dsa);
1616 		if (cp) {
1617 			MEMORY_READ_BARRIER();
1618 			sym_complete_ok (np, cp);
1619 			++n;
1620 		}
1621 		else
1622 			printf ("%s: bad DSA (%x) in done queue.\n",
1623 				sym_name(np), (u_int) dsa);
1624 	}
1625 	np->dqueueget = i;
1626 
1627 	return n;
1628 }
1629 
1630 /*
1631  *  Complete all CCBs queued to the COMP queue.
1632  *
1633  *  These CCBs are assumed:
1634  *  - Not to be referenced either by devices or
1635  *    SCRIPTS-related queues and datas.
1636  *  - To have to be completed with an error condition
1637  *    or requeued.
1638  *
1639  *  The device queue freeze count is incremented
1640  *  for each CCB that does not prevent this.
1641  *  This function is called when all CCBs involved
1642  *  in error handling/recovery have been reaped.
1643  */
1644 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1645 {
1646 	SYM_QUEHEAD *qp;
1647 	struct sym_ccb *cp;
1648 
1649 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1650 		struct scsi_cmnd *cmd;
1651 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1652 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1653 		/* Leave quiet CCBs waiting for resources */
1654 		if (cp->host_status == HS_WAIT)
1655 			continue;
1656 		cmd = cp->cmd;
1657 		if (cam_status)
1658 			sym_set_cam_status(cmd, cam_status);
1659 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1660 		if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1661 			struct sym_tcb *tp = &np->target[cp->target];
1662 			struct sym_lcb *lp = sym_lp(tp, cp->lun);
1663 			if (lp) {
1664 				sym_remque(&cp->link2_ccbq);
1665 				sym_insque_tail(&cp->link2_ccbq,
1666 				                &lp->waiting_ccbq);
1667 				if (cp->started) {
1668 					if (cp->tag != NO_TAG)
1669 						--lp->started_tags;
1670 					else
1671 						--lp->started_no_tag;
1672 				}
1673 			}
1674 			cp->started = 0;
1675 			continue;
1676 		}
1677 #endif
1678 		sym_free_ccb(np, cp);
1679 		sym_xpt_done(np, cmd);
1680 	}
1681 }
1682 
1683 /*
1684  *  Complete all active CCBs with error.
1685  *  Used on CHIP/SCSI RESET.
1686  */
1687 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1688 {
1689 	/*
1690 	 *  Move all active CCBs to the COMP queue
1691 	 *  and flush this queue.
1692 	 */
1693 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1694 	sym_que_init(&np->busy_ccbq);
1695 	sym_flush_comp_queue(np, cam_status);
1696 }
1697 
1698 /*
1699  *  Start chip.
1700  *
1701  *  'reason' means:
1702  *     0: initialisation.
1703  *     1: SCSI BUS RESET delivered or received.
1704  *     2: SCSI BUS MODE changed.
1705  */
1706 void sym_start_up(struct Scsi_Host *shost, int reason)
1707 {
1708 	struct sym_data *sym_data = shost_priv(shost);
1709 	struct pci_dev *pdev = sym_data->pdev;
1710 	struct sym_hcb *np = sym_data->ncb;
1711  	int	i;
1712 	u32	phys;
1713 
1714  	/*
1715 	 *  Reset chip if asked, otherwise just clear fifos.
1716  	 */
1717 	if (reason == 1)
1718 		sym_soft_reset(np);
1719 	else {
1720 		OUTB(np, nc_stest3, TE|CSF);
1721 		OUTONB(np, nc_ctest3, CLF);
1722 	}
1723 
1724 	/*
1725 	 *  Clear Start Queue
1726 	 */
1727 	phys = np->squeue_ba;
1728 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1729 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1730 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1731 	}
1732 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1733 
1734 	/*
1735 	 *  Start at first entry.
1736 	 */
1737 	np->squeueput = 0;
1738 
1739 	/*
1740 	 *  Clear Done Queue
1741 	 */
1742 	phys = np->dqueue_ba;
1743 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1744 		np->dqueue[i]   = 0;
1745 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1746 	}
1747 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1748 
1749 	/*
1750 	 *  Start at first entry.
1751 	 */
1752 	np->dqueueget = 0;
1753 
1754 	/*
1755 	 *  Install patches in scripts.
1756 	 *  This also let point to first position the start
1757 	 *  and done queue pointers used from SCRIPTS.
1758 	 */
1759 	np->fw_patch(shost);
1760 
1761 	/*
1762 	 *  Wakeup all pending jobs.
1763 	 */
1764 	sym_flush_busy_queue(np, DID_RESET);
1765 
1766 	/*
1767 	 *  Init chip.
1768 	 */
1769 	OUTB(np, nc_istat,  0x00);			/*  Remove Reset, abort */
1770 	INB(np, nc_mbox1);
1771 	udelay(2000); /* The 895 needs time for the bus mode to settle */
1772 
1773 	OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1774 					/*  full arb., ena parity, par->ATN  */
1775 	OUTB(np, nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
1776 
1777 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
1778 
1779 	OUTB(np, nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
1780 	OUTW(np, nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
1781 	OUTB(np, nc_istat , SIGP	);		/*  Signal Process */
1782 	OUTB(np, nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
1783 	OUTB(np, nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
1784 
1785 	OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
1786 	OUTB(np, nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
1787 	OUTB(np, nc_ctest4, np->rv_ctest4);	/* Master parity checking */
1788 
1789 	/* Extended Sreq/Sack filtering not supported on the C10 */
1790 	if (np->features & FE_C10)
1791 		OUTB(np, nc_stest2, np->rv_stest2);
1792 	else
1793 		OUTB(np, nc_stest2, EXT|np->rv_stest2);
1794 
1795 	OUTB(np, nc_stest3, TE);			/* TolerANT enable */
1796 	OUTB(np, nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
1797 
1798 	/*
1799 	 *  For now, disable AIP generation on C1010-66.
1800 	 */
1801 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1802 		OUTB(np, nc_aipcntl1, DISAIP);
1803 
1804 	/*
1805 	 *  C10101 rev. 0 errata.
1806 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
1807 	 *  STEST1 register to disable SGE. We probably should do
1808 	 *  that from SCRIPTS for each selection/reselection, but
1809 	 *  I just don't want. :)
1810 	 */
1811 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1812 	    pdev->revision < 1)
1813 		OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1814 
1815 	/*
1816 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1817 	 *  Disable overlapped arbitration for some dual function devices,
1818 	 *  regardless revision id (kind of post-chip-design feature. ;-))
1819 	 */
1820 	if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1821 		OUTB(np, nc_ctest0, (1<<5));
1822 	else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1823 		np->rv_ccntl0 |= DPR;
1824 
1825 	/*
1826 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1827 	 *  and/or hardware phase mismatch, since only such chips
1828 	 *  seem to support those IO registers.
1829 	 */
1830 	if (np->features & (FE_DAC|FE_NOPM)) {
1831 		OUTB(np, nc_ccntl0, np->rv_ccntl0);
1832 		OUTB(np, nc_ccntl1, np->rv_ccntl1);
1833 	}
1834 
1835 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1836 	/*
1837 	 *  Set up scratch C and DRS IO registers to map the 32 bit
1838 	 *  DMA address range our data structures are located in.
1839 	 */
1840 	if (use_dac(np)) {
1841 		np->dmap_bah[0] = 0;	/* ??? */
1842 		OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1843 		OUTL(np, nc_drs, np->dmap_bah[0]);
1844 	}
1845 #endif
1846 
1847 	/*
1848 	 *  If phase mismatch handled by scripts (895A/896/1010),
1849 	 *  set PM jump addresses.
1850 	 */
1851 	if (np->features & FE_NOPM) {
1852 		OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1853 		OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1854 	}
1855 
1856 	/*
1857 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1858 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1859 	 */
1860 	if (np->features & FE_LED0)
1861 		OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1862 	else if (np->features & FE_LEDC)
1863 		OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1864 
1865 	/*
1866 	 *      enable ints
1867 	 */
1868 	OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1869 	OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1870 
1871 	/*
1872 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1873 	 *  Try to eat the spurious SBMC interrupt that may occur when
1874 	 *  we reset the chip but not the SCSI BUS (at initialization).
1875 	 */
1876 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1877 		OUTONW(np, nc_sien, SBMC);
1878 		if (reason == 0) {
1879 			INB(np, nc_mbox1);
1880 			mdelay(100);
1881 			INW(np, nc_sist);
1882 		}
1883 		np->scsi_mode = INB(np, nc_stest4) & SMODE;
1884 	}
1885 
1886 	/*
1887 	 *  Fill in target structure.
1888 	 *  Reinitialize usrsync.
1889 	 *  Reinitialize usrwide.
1890 	 *  Prepare sync negotiation according to actual SCSI bus mode.
1891 	 */
1892 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1893 		struct sym_tcb *tp = &np->target[i];
1894 
1895 		tp->to_reset  = 0;
1896 		tp->head.sval = 0;
1897 		tp->head.wval = np->rv_scntl3;
1898 		tp->head.uval = 0;
1899 	}
1900 
1901 	/*
1902 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
1903 	 *  and start script processor.
1904 	 *  We do the download preferently from the CPU.
1905 	 *  For platforms that may not support PCI memory mapping,
1906 	 *  we use simple SCRIPTS that performs MEMORY MOVEs.
1907 	 */
1908 	phys = SCRIPTA_BA(np, init);
1909 	if (np->ram_ba) {
1910 		if (sym_verbose >= 2)
1911 			printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1912 		memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1913 		if (np->features & FE_RAM8K) {
1914 			memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1915 			phys = scr_to_cpu(np->scr_ram_seg);
1916 			OUTL(np, nc_mmws, phys);
1917 			OUTL(np, nc_mmrs, phys);
1918 			OUTL(np, nc_sfs,  phys);
1919 			phys = SCRIPTB_BA(np, start64);
1920 		}
1921 	}
1922 
1923 	np->istat_sem = 0;
1924 
1925 	OUTL(np, nc_dsa, np->hcb_ba);
1926 	OUTL_DSP(np, phys);
1927 
1928 	/*
1929 	 *  Notify the XPT about the RESET condition.
1930 	 */
1931 	if (reason != 0)
1932 		sym_xpt_async_bus_reset(np);
1933 }
1934 
1935 /*
1936  *  Switch trans mode for current job and its target.
1937  */
1938 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1939 			 u_char per, u_char wide, u_char div, u_char fak)
1940 {
1941 	SYM_QUEHEAD *qp;
1942 	u_char sval, wval, uval;
1943 	struct sym_tcb *tp = &np->target[target];
1944 
1945 	assert(target == (INB(np, nc_sdid) & 0x0f));
1946 
1947 	sval = tp->head.sval;
1948 	wval = tp->head.wval;
1949 	uval = tp->head.uval;
1950 
1951 #if 0
1952 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1953 		sval, wval, uval, np->rv_scntl3);
1954 #endif
1955 	/*
1956 	 *  Set the offset.
1957 	 */
1958 	if (!(np->features & FE_C10))
1959 		sval = (sval & ~0x1f) | ofs;
1960 	else
1961 		sval = (sval & ~0x3f) | ofs;
1962 
1963 	/*
1964 	 *  Set the sync divisor and extra clock factor.
1965 	 */
1966 	if (ofs != 0) {
1967 		wval = (wval & ~0x70) | ((div+1) << 4);
1968 		if (!(np->features & FE_C10))
1969 			sval = (sval & ~0xe0) | (fak << 5);
1970 		else {
1971 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1972 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1973 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1974 		}
1975 	}
1976 
1977 	/*
1978 	 *  Set the bus width.
1979 	 */
1980 	wval = wval & ~EWS;
1981 	if (wide != 0)
1982 		wval |= EWS;
1983 
1984 	/*
1985 	 *  Set misc. ultra enable bits.
1986 	 */
1987 	if (np->features & FE_C10) {
1988 		uval = uval & ~(U3EN|AIPCKEN);
1989 		if (opts)	{
1990 			assert(np->features & FE_U3EN);
1991 			uval |= U3EN;
1992 		}
1993 	} else {
1994 		wval = wval & ~ULTRA;
1995 		if (per <= 12)	wval |= ULTRA;
1996 	}
1997 
1998 	/*
1999 	 *   Stop there if sync parameters are unchanged.
2000 	 */
2001 	if (tp->head.sval == sval &&
2002 	    tp->head.wval == wval &&
2003 	    tp->head.uval == uval)
2004 		return;
2005 	tp->head.sval = sval;
2006 	tp->head.wval = wval;
2007 	tp->head.uval = uval;
2008 
2009 	/*
2010 	 *  Disable extended Sreq/Sack filtering if per < 50.
2011 	 *  Not supported on the C1010.
2012 	 */
2013 	if (per < 50 && !(np->features & FE_C10))
2014 		OUTOFFB(np, nc_stest2, EXT);
2015 
2016 	/*
2017 	 *  set actual value and sync_status
2018 	 */
2019 	OUTB(np, nc_sxfer,  tp->head.sval);
2020 	OUTB(np, nc_scntl3, tp->head.wval);
2021 
2022 	if (np->features & FE_C10) {
2023 		OUTB(np, nc_scntl4, tp->head.uval);
2024 	}
2025 
2026 	/*
2027 	 *  patch ALL busy ccbs of this target.
2028 	 */
2029 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2030 		struct sym_ccb *cp;
2031 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2032 		if (cp->target != target)
2033 			continue;
2034 		cp->phys.select.sel_scntl3 = tp->head.wval;
2035 		cp->phys.select.sel_sxfer  = tp->head.sval;
2036 		if (np->features & FE_C10) {
2037 			cp->phys.select.sel_scntl4 = tp->head.uval;
2038 		}
2039 	}
2040 }
2041 
2042 static void sym_announce_transfer_rate(struct sym_tcb *tp)
2043 {
2044 	struct scsi_target *starget = tp->starget;
2045 
2046 	if (tp->tprint.period != spi_period(starget) ||
2047 	    tp->tprint.offset != spi_offset(starget) ||
2048 	    tp->tprint.width != spi_width(starget) ||
2049 	    tp->tprint.iu != spi_iu(starget) ||
2050 	    tp->tprint.dt != spi_dt(starget) ||
2051 	    tp->tprint.qas != spi_qas(starget) ||
2052 	    !tp->tprint.check_nego) {
2053 		tp->tprint.period = spi_period(starget);
2054 		tp->tprint.offset = spi_offset(starget);
2055 		tp->tprint.width = spi_width(starget);
2056 		tp->tprint.iu = spi_iu(starget);
2057 		tp->tprint.dt = spi_dt(starget);
2058 		tp->tprint.qas = spi_qas(starget);
2059 		tp->tprint.check_nego = 1;
2060 
2061 		spi_display_xfer_agreement(starget);
2062 	}
2063 }
2064 
2065 /*
2066  *  We received a WDTR.
2067  *  Let everything be aware of the changes.
2068  */
2069 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2070 {
2071 	struct sym_tcb *tp = &np->target[target];
2072 	struct scsi_target *starget = tp->starget;
2073 
2074 	sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2075 
2076 	if (wide)
2077 		tp->tgoal.renego = NS_WIDE;
2078 	else
2079 		tp->tgoal.renego = 0;
2080 	tp->tgoal.check_nego = 0;
2081 	tp->tgoal.width = wide;
2082 	spi_offset(starget) = 0;
2083 	spi_period(starget) = 0;
2084 	spi_width(starget) = wide;
2085 	spi_iu(starget) = 0;
2086 	spi_dt(starget) = 0;
2087 	spi_qas(starget) = 0;
2088 
2089 	if (sym_verbose >= 3)
2090 		sym_announce_transfer_rate(tp);
2091 }
2092 
2093 /*
2094  *  We received a SDTR.
2095  *  Let everything be aware of the changes.
2096  */
2097 static void
2098 sym_setsync(struct sym_hcb *np, int target,
2099             u_char ofs, u_char per, u_char div, u_char fak)
2100 {
2101 	struct sym_tcb *tp = &np->target[target];
2102 	struct scsi_target *starget = tp->starget;
2103 	u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2104 
2105 	sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2106 
2107 	if (wide)
2108 		tp->tgoal.renego = NS_WIDE;
2109 	else if (ofs)
2110 		tp->tgoal.renego = NS_SYNC;
2111 	else
2112 		tp->tgoal.renego = 0;
2113 	spi_period(starget) = per;
2114 	spi_offset(starget) = ofs;
2115 	spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2116 
2117 	if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2118 		tp->tgoal.period = per;
2119 		tp->tgoal.offset = ofs;
2120 		tp->tgoal.check_nego = 0;
2121 	}
2122 
2123 	sym_announce_transfer_rate(tp);
2124 }
2125 
2126 /*
2127  *  We received a PPR.
2128  *  Let everything be aware of the changes.
2129  */
2130 static void
2131 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2132              u_char per, u_char wide, u_char div, u_char fak)
2133 {
2134 	struct sym_tcb *tp = &np->target[target];
2135 	struct scsi_target *starget = tp->starget;
2136 
2137 	sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2138 
2139 	if (wide || ofs)
2140 		tp->tgoal.renego = NS_PPR;
2141 	else
2142 		tp->tgoal.renego = 0;
2143 	spi_width(starget) = tp->tgoal.width = wide;
2144 	spi_period(starget) = tp->tgoal.period = per;
2145 	spi_offset(starget) = tp->tgoal.offset = ofs;
2146 	spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2147 	spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2148 	spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2149 	tp->tgoal.check_nego = 0;
2150 
2151 	sym_announce_transfer_rate(tp);
2152 }
2153 
2154 /*
2155  *  generic recovery from scsi interrupt
2156  *
2157  *  The doc says that when the chip gets an SCSI interrupt,
2158  *  it tries to stop in an orderly fashion, by completing
2159  *  an instruction fetch that had started or by flushing
2160  *  the DMA fifo for a write to memory that was executing.
2161  *  Such a fashion is not enough to know if the instruction
2162  *  that was just before the current DSP value has been
2163  *  executed or not.
2164  *
2165  *  There are some small SCRIPTS sections that deal with
2166  *  the start queue and the done queue that may break any
2167  *  assomption from the C code if we are interrupted
2168  *  inside, so we reset if this happens. Btw, since these
2169  *  SCRIPTS sections are executed while the SCRIPTS hasn't
2170  *  started SCSI operations, it is very unlikely to happen.
2171  *
2172  *  All the driver data structures are supposed to be
2173  *  allocated from the same 4 GB memory window, so there
2174  *  is a 1 to 1 relationship between DSA and driver data
2175  *  structures. Since we are careful :) to invalidate the
2176  *  DSA when we complete a command or when the SCRIPTS
2177  *  pushes a DSA into a queue, we can trust it when it
2178  *  points to a CCB.
2179  */
2180 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2181 {
2182 	u32	dsp	= INL(np, nc_dsp);
2183 	u32	dsa	= INL(np, nc_dsa);
2184 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2185 
2186 	/*
2187 	 *  If we haven't been interrupted inside the SCRIPTS
2188 	 *  critical pathes, we can safely restart the SCRIPTS
2189 	 *  and trust the DSA value if it matches a CCB.
2190 	 */
2191 	if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2192 	       dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2193 	    (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2194 	       dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2195 	    (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2196 	       dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2197 	    (!(dsp > SCRIPTA_BA(np, done) &&
2198 	       dsp < SCRIPTA_BA(np, done_end) + 1))) {
2199 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2200 		OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2201 		/*
2202 		 *  If we have a CCB, let the SCRIPTS call us back for
2203 		 *  the handling of the error with SCRATCHA filled with
2204 		 *  STARTPOS. This way, we will be able to freeze the
2205 		 *  device queue and requeue awaiting IOs.
2206 		 */
2207 		if (cp) {
2208 			cp->host_status = hsts;
2209 			OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2210 		}
2211 		/*
2212 		 *  Otherwise just restart the SCRIPTS.
2213 		 */
2214 		else {
2215 			OUTL(np, nc_dsa, 0xffffff);
2216 			OUTL_DSP(np, SCRIPTA_BA(np, start));
2217 		}
2218 	}
2219 	else
2220 		goto reset_all;
2221 
2222 	return;
2223 
2224 reset_all:
2225 	sym_start_reset(np);
2226 }
2227 
2228 /*
2229  *  chip exception handler for selection timeout
2230  */
2231 static void sym_int_sto (struct sym_hcb *np)
2232 {
2233 	u32 dsp	= INL(np, nc_dsp);
2234 
2235 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2236 
2237 	if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2238 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2239 	else
2240 		sym_start_reset(np);
2241 }
2242 
2243 /*
2244  *  chip exception handler for unexpected disconnect
2245  */
2246 static void sym_int_udc (struct sym_hcb *np)
2247 {
2248 	printf ("%s: unexpected disconnect\n", sym_name(np));
2249 	sym_recover_scsi_int(np, HS_UNEXPECTED);
2250 }
2251 
2252 /*
2253  *  chip exception handler for SCSI bus mode change
2254  *
2255  *  spi2-r12 11.2.3 says a transceiver mode change must
2256  *  generate a reset event and a device that detects a reset
2257  *  event shall initiate a hard reset. It says also that a
2258  *  device that detects a mode change shall set data transfer
2259  *  mode to eight bit asynchronous, etc...
2260  *  So, just reinitializing all except chip should be enough.
2261  */
2262 static void sym_int_sbmc(struct Scsi_Host *shost)
2263 {
2264 	struct sym_hcb *np = sym_get_hcb(shost);
2265 	u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2266 
2267 	/*
2268 	 *  Notify user.
2269 	 */
2270 	printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2271 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2272 
2273 	/*
2274 	 *  Should suspend command processing for a few seconds and
2275 	 *  reinitialize all except the chip.
2276 	 */
2277 	sym_start_up(shost, 2);
2278 }
2279 
2280 /*
2281  *  chip exception handler for SCSI parity error.
2282  *
2283  *  When the chip detects a SCSI parity error and is
2284  *  currently executing a (CH)MOV instruction, it does
2285  *  not interrupt immediately, but tries to finish the
2286  *  transfer of the current scatter entry before
2287  *  interrupting. The following situations may occur:
2288  *
2289  *  - The complete scatter entry has been transferred
2290  *    without the device having changed phase.
2291  *    The chip will then interrupt with the DSP pointing
2292  *    to the instruction that follows the MOV.
2293  *
2294  *  - A phase mismatch occurs before the MOV finished
2295  *    and phase errors are to be handled by the C code.
2296  *    The chip will then interrupt with both PAR and MA
2297  *    conditions set.
2298  *
2299  *  - A phase mismatch occurs before the MOV finished and
2300  *    phase errors are to be handled by SCRIPTS.
2301  *    The chip will load the DSP with the phase mismatch
2302  *    JUMP address and interrupt the host processor.
2303  */
2304 static void sym_int_par (struct sym_hcb *np, u_short sist)
2305 {
2306 	u_char	hsts	= INB(np, HS_PRT);
2307 	u32	dsp	= INL(np, nc_dsp);
2308 	u32	dbc	= INL(np, nc_dbc);
2309 	u32	dsa	= INL(np, nc_dsa);
2310 	u_char	sbcl	= INB(np, nc_sbcl);
2311 	u_char	cmd	= dbc >> 24;
2312 	int phase	= cmd & 7;
2313 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2314 
2315 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2316 		sym_name(np), hsts, dbc, sbcl);
2317 
2318 	/*
2319 	 *  Check that the chip is connected to the SCSI BUS.
2320 	 */
2321 	if (!(INB(np, nc_scntl1) & ISCON)) {
2322 		sym_recover_scsi_int(np, HS_UNEXPECTED);
2323 		return;
2324 	}
2325 
2326 	/*
2327 	 *  If the nexus is not clearly identified, reset the bus.
2328 	 *  We will try to do better later.
2329 	 */
2330 	if (!cp)
2331 		goto reset_all;
2332 
2333 	/*
2334 	 *  Check instruction was a MOV, direction was INPUT and
2335 	 *  ATN is asserted.
2336 	 */
2337 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2338 		goto reset_all;
2339 
2340 	/*
2341 	 *  Keep track of the parity error.
2342 	 */
2343 	OUTONB(np, HF_PRT, HF_EXT_ERR);
2344 	cp->xerr_status |= XE_PARITY_ERR;
2345 
2346 	/*
2347 	 *  Prepare the message to send to the device.
2348 	 */
2349 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2350 
2351 	/*
2352 	 *  If the old phase was DATA IN phase, we have to deal with
2353 	 *  the 3 situations described above.
2354 	 *  For other input phases (MSG IN and STATUS), the device
2355 	 *  must resend the whole thing that failed parity checking
2356 	 *  or signal error. So, jumping to dispatcher should be OK.
2357 	 */
2358 	if (phase == 1 || phase == 5) {
2359 		/* Phase mismatch handled by SCRIPTS */
2360 		if (dsp == SCRIPTB_BA(np, pm_handle))
2361 			OUTL_DSP(np, dsp);
2362 		/* Phase mismatch handled by the C code */
2363 		else if (sist & MA)
2364 			sym_int_ma (np);
2365 		/* No phase mismatch occurred */
2366 		else {
2367 			sym_set_script_dp (np, cp, dsp);
2368 			OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2369 		}
2370 	}
2371 	else if (phase == 7)	/* We definitely cannot handle parity errors */
2372 #if 1				/* in message-in phase due to the relection  */
2373 		goto reset_all; /* path and various message anticipations.   */
2374 #else
2375 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2376 #endif
2377 	else
2378 		OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2379 	return;
2380 
2381 reset_all:
2382 	sym_start_reset(np);
2383 	return;
2384 }
2385 
2386 /*
2387  *  chip exception handler for phase errors.
2388  *
2389  *  We have to construct a new transfer descriptor,
2390  *  to transfer the rest of the current block.
2391  */
2392 static void sym_int_ma (struct sym_hcb *np)
2393 {
2394 	u32	dbc;
2395 	u32	rest;
2396 	u32	dsp;
2397 	u32	dsa;
2398 	u32	nxtdsp;
2399 	u32	*vdsp;
2400 	u32	oadr, olen;
2401 	u32	*tblp;
2402         u32	newcmd;
2403 	u_int	delta;
2404 	u_char	cmd;
2405 	u_char	hflags, hflags0;
2406 	struct	sym_pmc *pm;
2407 	struct sym_ccb *cp;
2408 
2409 	dsp	= INL(np, nc_dsp);
2410 	dbc	= INL(np, nc_dbc);
2411 	dsa	= INL(np, nc_dsa);
2412 
2413 	cmd	= dbc >> 24;
2414 	rest	= dbc & 0xffffff;
2415 	delta	= 0;
2416 
2417 	/*
2418 	 *  locate matching cp if any.
2419 	 */
2420 	cp = sym_ccb_from_dsa(np, dsa);
2421 
2422 	/*
2423 	 *  Donnot take into account dma fifo and various buffers in
2424 	 *  INPUT phase since the chip flushes everything before
2425 	 *  raising the MA interrupt for interrupted INPUT phases.
2426 	 *  For DATA IN phase, we will check for the SWIDE later.
2427 	 */
2428 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2429 		u_char ss0, ss2;
2430 
2431 		if (np->features & FE_DFBC)
2432 			delta = INW(np, nc_dfbc);
2433 		else {
2434 			u32 dfifo;
2435 
2436 			/*
2437 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2438 			 */
2439 			dfifo = INL(np, nc_dfifo);
2440 
2441 			/*
2442 			 *  Calculate remaining bytes in DMA fifo.
2443 			 *  (CTEST5 = dfifo >> 16)
2444 			 */
2445 			if (dfifo & (DFS << 16))
2446 				delta = ((((dfifo >> 8) & 0x300) |
2447 				          (dfifo & 0xff)) - rest) & 0x3ff;
2448 			else
2449 				delta = ((dfifo & 0xff) - rest) & 0x7f;
2450 		}
2451 
2452 		/*
2453 		 *  The data in the dma fifo has not been transfered to
2454 		 *  the target -> add the amount to the rest
2455 		 *  and clear the data.
2456 		 *  Check the sstat2 register in case of wide transfer.
2457 		 */
2458 		rest += delta;
2459 		ss0  = INB(np, nc_sstat0);
2460 		if (ss0 & OLF) rest++;
2461 		if (!(np->features & FE_C10))
2462 			if (ss0 & ORF) rest++;
2463 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2464 			ss2 = INB(np, nc_sstat2);
2465 			if (ss2 & OLF1) rest++;
2466 			if (!(np->features & FE_C10))
2467 				if (ss2 & ORF1) rest++;
2468 		}
2469 
2470 		/*
2471 		 *  Clear fifos.
2472 		 */
2473 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
2474 		OUTB(np, nc_stest3, TE|CSF);		/* scsi fifo */
2475 	}
2476 
2477 	/*
2478 	 *  log the information
2479 	 */
2480 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2481 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2482 			(unsigned) rest, (unsigned) delta);
2483 
2484 	/*
2485 	 *  try to find the interrupted script command,
2486 	 *  and the address at which to continue.
2487 	 */
2488 	vdsp	= NULL;
2489 	nxtdsp	= 0;
2490 	if	(dsp >  np->scripta_ba &&
2491 		 dsp <= np->scripta_ba + np->scripta_sz) {
2492 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2493 		nxtdsp = dsp;
2494 	}
2495 	else if	(dsp >  np->scriptb_ba &&
2496 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
2497 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2498 		nxtdsp = dsp;
2499 	}
2500 
2501 	/*
2502 	 *  log the information
2503 	 */
2504 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2505 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2506 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2507 	}
2508 
2509 	if (!vdsp) {
2510 		printf ("%s: interrupted SCRIPT address not found.\n",
2511 			sym_name (np));
2512 		goto reset_all;
2513 	}
2514 
2515 	if (!cp) {
2516 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2517 			sym_name (np));
2518 		goto reset_all;
2519 	}
2520 
2521 	/*
2522 	 *  get old startaddress and old length.
2523 	 */
2524 	oadr = scr_to_cpu(vdsp[1]);
2525 
2526 	if (cmd & 0x10) {	/* Table indirect */
2527 		tblp = (u32 *) ((char*) &cp->phys + oadr);
2528 		olen = scr_to_cpu(tblp[0]);
2529 		oadr = scr_to_cpu(tblp[1]);
2530 	} else {
2531 		tblp = (u32 *) 0;
2532 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2533 	}
2534 
2535 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2536 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2537 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2538 			tblp,
2539 			(unsigned) olen,
2540 			(unsigned) oadr);
2541 	}
2542 
2543 	/*
2544 	 *  check cmd against assumed interrupted script command.
2545 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
2546 	 *  the phase.
2547 	 */
2548 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2549 		sym_print_addr(cp->cmd,
2550 			"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2551 			cmd, scr_to_cpu(vdsp[0]) >> 24);
2552 
2553 		goto reset_all;
2554 	}
2555 
2556 	/*
2557 	 *  if old phase not dataphase, leave here.
2558 	 */
2559 	if (cmd & 2) {
2560 		sym_print_addr(cp->cmd,
2561 			"phase change %x-%x %d@%08x resid=%d.\n",
2562 			cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2563 			(unsigned)oadr, (unsigned)rest);
2564 		goto unexpected_phase;
2565 	}
2566 
2567 	/*
2568 	 *  Choose the correct PM save area.
2569 	 *
2570 	 *  Look at the PM_SAVE SCRIPT if you want to understand
2571 	 *  this stuff. The equivalent code is implemented in
2572 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
2573 	 *  handle PM from the SCRIPTS processor.
2574 	 */
2575 	hflags0 = INB(np, HF_PRT);
2576 	hflags = hflags0;
2577 
2578 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2579 		if (hflags & HF_IN_PM0)
2580 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2581 		else if	(hflags & HF_IN_PM1)
2582 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2583 
2584 		if (hflags & HF_DP_SAVED)
2585 			hflags ^= HF_ACT_PM;
2586 	}
2587 
2588 	if (!(hflags & HF_ACT_PM)) {
2589 		pm = &cp->phys.pm0;
2590 		newcmd = SCRIPTA_BA(np, pm0_data);
2591 	}
2592 	else {
2593 		pm = &cp->phys.pm1;
2594 		newcmd = SCRIPTA_BA(np, pm1_data);
2595 	}
2596 
2597 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2598 	if (hflags != hflags0)
2599 		OUTB(np, HF_PRT, hflags);
2600 
2601 	/*
2602 	 *  fillin the phase mismatch context
2603 	 */
2604 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2605 	pm->sg.size = cpu_to_scr(rest);
2606 	pm->ret     = cpu_to_scr(nxtdsp);
2607 
2608 	/*
2609 	 *  If we have a SWIDE,
2610 	 *  - prepare the address to write the SWIDE from SCRIPTS,
2611 	 *  - compute the SCRIPTS address to restart from,
2612 	 *  - move current data pointer context by one byte.
2613 	 */
2614 	nxtdsp = SCRIPTA_BA(np, dispatch);
2615 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2616 	    (INB(np, nc_scntl2) & WSR)) {
2617 		u32 tmp;
2618 
2619 		/*
2620 		 *  Set up the table indirect for the MOVE
2621 		 *  of the residual byte and adjust the data
2622 		 *  pointer context.
2623 		 */
2624 		tmp = scr_to_cpu(pm->sg.addr);
2625 		cp->phys.wresid.addr = cpu_to_scr(tmp);
2626 		pm->sg.addr = cpu_to_scr(tmp + 1);
2627 		tmp = scr_to_cpu(pm->sg.size);
2628 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2629 		pm->sg.size = cpu_to_scr(tmp - 1);
2630 
2631 		/*
2632 		 *  If only the residual byte is to be moved,
2633 		 *  no PM context is needed.
2634 		 */
2635 		if ((tmp&0xffffff) == 1)
2636 			newcmd = pm->ret;
2637 
2638 		/*
2639 		 *  Prepare the address of SCRIPTS that will
2640 		 *  move the residual byte to memory.
2641 		 */
2642 		nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2643 	}
2644 
2645 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2646 		sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2647 			hflags0, hflags, newcmd,
2648 			(unsigned)scr_to_cpu(pm->sg.addr),
2649 			(unsigned)scr_to_cpu(pm->sg.size),
2650 			(unsigned)scr_to_cpu(pm->ret));
2651 	}
2652 
2653 	/*
2654 	 *  Restart the SCRIPTS processor.
2655 	 */
2656 	sym_set_script_dp (np, cp, newcmd);
2657 	OUTL_DSP(np, nxtdsp);
2658 	return;
2659 
2660 	/*
2661 	 *  Unexpected phase changes that occurs when the current phase
2662 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
2663 	 *  Such event may only happen when the SCRIPTS is using a
2664 	 *  multibyte SCSI MOVE.
2665 	 *
2666 	 *  Phase change		Some possible cause
2667 	 *
2668 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
2669 	 *  COMMAND  --> STATUS	Bad command or refused by target.
2670 	 *  MSG OUT  --> MSG IN     Message rejected by target.
2671 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
2672 	 *  			negotiation messages.
2673 	 *
2674 	 *  The code below does not care of the new phase and so
2675 	 *  trusts the target. Why to annoy it ?
2676 	 *  If the interrupted phase is COMMAND phase, we restart at
2677 	 *  dispatcher.
2678 	 *  If a target does not get all the messages after selection,
2679 	 *  the code assumes blindly that the target discards extended
2680 	 *  messages and clears the negotiation status.
2681 	 *  If the target does not want all our response to negotiation,
2682 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2683 	 *  bloat for such a should_not_happen situation).
2684 	 *  In all other situation, we reset the BUS.
2685 	 *  Are these assumptions reasonnable ? (Wait and see ...)
2686 	 */
2687 unexpected_phase:
2688 	dsp -= 8;
2689 	nxtdsp = 0;
2690 
2691 	switch (cmd & 7) {
2692 	case 2:	/* COMMAND phase */
2693 		nxtdsp = SCRIPTA_BA(np, dispatch);
2694 		break;
2695 #if 0
2696 	case 3:	/* STATUS  phase */
2697 		nxtdsp = SCRIPTA_BA(np, dispatch);
2698 		break;
2699 #endif
2700 	case 6:	/* MSG OUT phase */
2701 		/*
2702 		 *  If the device may want to use untagged when we want
2703 		 *  tagged, we prepare an IDENTIFY without disc. granted,
2704 		 *  since we will not be able to handle reselect.
2705 		 *  Otherwise, we just don't care.
2706 		 */
2707 		if	(dsp == SCRIPTA_BA(np, send_ident)) {
2708 			if (cp->tag != NO_TAG && olen - rest <= 3) {
2709 				cp->host_status = HS_BUSY;
2710 				np->msgout[0] = IDENTIFY(0, cp->lun);
2711 				nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2712 			}
2713 			else
2714 				nxtdsp = SCRIPTB_BA(np, ident_break);
2715 		}
2716 		else if	(dsp == SCRIPTB_BA(np, send_wdtr) ||
2717 			 dsp == SCRIPTB_BA(np, send_sdtr) ||
2718 			 dsp == SCRIPTB_BA(np, send_ppr)) {
2719 			nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2720 			if (dsp == SCRIPTB_BA(np, send_ppr)) {
2721 				struct scsi_device *dev = cp->cmd->device;
2722 				dev->ppr = 0;
2723 			}
2724 		}
2725 		break;
2726 #if 0
2727 	case 7:	/* MSG IN  phase */
2728 		nxtdsp = SCRIPTA_BA(np, clrack);
2729 		break;
2730 #endif
2731 	}
2732 
2733 	if (nxtdsp) {
2734 		OUTL_DSP(np, nxtdsp);
2735 		return;
2736 	}
2737 
2738 reset_all:
2739 	sym_start_reset(np);
2740 }
2741 
2742 /*
2743  *  chip interrupt handler
2744  *
2745  *  In normal situations, interrupt conditions occur one at
2746  *  a time. But when something bad happens on the SCSI BUS,
2747  *  the chip may raise several interrupt flags before
2748  *  stopping and interrupting the CPU. The additionnal
2749  *  interrupt flags are stacked in some extra registers
2750  *  after the SIP and/or DIP flag has been raised in the
2751  *  ISTAT. After the CPU has read the interrupt condition
2752  *  flag from SIST or DSTAT, the chip unstacks the other
2753  *  interrupt flags and sets the corresponding bits in
2754  *  SIST or DSTAT. Since the chip starts stacking once the
2755  *  SIP or DIP flag is set, there is a small window of time
2756  *  where the stacking does not occur.
2757  *
2758  *  Typically, multiple interrupt conditions may happen in
2759  *  the following situations:
2760  *
2761  *  - SCSI parity error + Phase mismatch  (PAR|MA)
2762  *    When an parity error is detected in input phase
2763  *    and the device switches to msg-in phase inside a
2764  *    block MOV.
2765  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2766  *    When a stupid device does not want to handle the
2767  *    recovery of an SCSI parity error.
2768  *  - Some combinations of STO, PAR, UDC, ...
2769  *    When using non compliant SCSI stuff, when user is
2770  *    doing non compliant hot tampering on the BUS, when
2771  *    something really bad happens to a device, etc ...
2772  *
2773  *  The heuristic suggested by SYMBIOS to handle
2774  *  multiple interrupts is to try unstacking all
2775  *  interrupts conditions and to handle them on some
2776  *  priority based on error severity.
2777  *  This will work when the unstacking has been
2778  *  successful, but we cannot be 100 % sure of that,
2779  *  since the CPU may have been faster to unstack than
2780  *  the chip is able to stack. Hmmm ... But it seems that
2781  *  such a situation is very unlikely to happen.
2782  *
2783  *  If this happen, for example STO caught by the CPU
2784  *  then UDC happenning before the CPU have restarted
2785  *  the SCRIPTS, the driver may wrongly complete the
2786  *  same command on UDC, since the SCRIPTS didn't restart
2787  *  and the DSA still points to the same command.
2788  *  We avoid this situation by setting the DSA to an
2789  *  invalid value when the CCB is completed and before
2790  *  restarting the SCRIPTS.
2791  *
2792  *  Another issue is that we need some section of our
2793  *  recovery procedures to be somehow uninterruptible but
2794  *  the SCRIPTS processor does not provides such a
2795  *  feature. For this reason, we handle recovery preferently
2796  *  from the C code and check against some SCRIPTS critical
2797  *  sections from the C code.
2798  *
2799  *  Hopefully, the interrupt handling of the driver is now
2800  *  able to resist to weird BUS error conditions, but donnot
2801  *  ask me for any guarantee that it will never fail. :-)
2802  *  Use at your own decision and risk.
2803  */
2804 
2805 irqreturn_t sym_interrupt(struct Scsi_Host *shost)
2806 {
2807 	struct sym_data *sym_data = shost_priv(shost);
2808 	struct sym_hcb *np = sym_data->ncb;
2809 	struct pci_dev *pdev = sym_data->pdev;
2810 	u_char	istat, istatc;
2811 	u_char	dstat;
2812 	u_short	sist;
2813 
2814 	/*
2815 	 *  interrupt on the fly ?
2816 	 *  (SCRIPTS may still be running)
2817 	 *
2818 	 *  A `dummy read' is needed to ensure that the
2819 	 *  clear of the INTF flag reaches the device
2820 	 *  and that posted writes are flushed to memory
2821 	 *  before the scanning of the DONE queue.
2822 	 *  Note that SCRIPTS also (dummy) read to memory
2823 	 *  prior to deliver the INTF interrupt condition.
2824 	 */
2825 	istat = INB(np, nc_istat);
2826 	if (istat & INTF) {
2827 		OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2828 		istat |= INB(np, nc_istat);		/* DUMMY READ */
2829 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2830 		sym_wakeup_done(np);
2831 	}
2832 
2833 	if (!(istat & (SIP|DIP)))
2834 		return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
2835 
2836 #if 0	/* We should never get this one */
2837 	if (istat & CABRT)
2838 		OUTB(np, nc_istat, CABRT);
2839 #endif
2840 
2841 	/*
2842 	 *  PAR and MA interrupts may occur at the same time,
2843 	 *  and we need to know of both in order to handle
2844 	 *  this situation properly. We try to unstack SCSI
2845 	 *  interrupts for that reason. BTW, I dislike a LOT
2846 	 *  such a loop inside the interrupt routine.
2847 	 *  Even if DMA interrupt stacking is very unlikely to
2848 	 *  happen, we also try unstacking these ones, since
2849 	 *  this has no performance impact.
2850 	 */
2851 	sist	= 0;
2852 	dstat	= 0;
2853 	istatc	= istat;
2854 	do {
2855 		if (istatc & SIP)
2856 			sist  |= INW(np, nc_sist);
2857 		if (istatc & DIP)
2858 			dstat |= INB(np, nc_dstat);
2859 		istatc = INB(np, nc_istat);
2860 		istat |= istatc;
2861 
2862 		/* Prevent deadlock waiting on a condition that may
2863 		 * never clear. */
2864 		if (unlikely(sist == 0xffff && dstat == 0xff)) {
2865 			if (pci_channel_offline(pdev))
2866 				return IRQ_NONE;
2867 		}
2868 	} while (istatc & (SIP|DIP));
2869 
2870 	if (DEBUG_FLAGS & DEBUG_TINY)
2871 		printf ("<%d|%x:%x|%x:%x>",
2872 			(int)INB(np, nc_scr0),
2873 			dstat,sist,
2874 			(unsigned)INL(np, nc_dsp),
2875 			(unsigned)INL(np, nc_dbc));
2876 	/*
2877 	 *  On paper, a memory read barrier may be needed here to
2878 	 *  prevent out of order LOADs by the CPU from having
2879 	 *  prefetched stale data prior to DMA having occurred.
2880 	 *  And since we are paranoid ... :)
2881 	 */
2882 	MEMORY_READ_BARRIER();
2883 
2884 	/*
2885 	 *  First, interrupts we want to service cleanly.
2886 	 *
2887 	 *  Phase mismatch (MA) is the most frequent interrupt
2888 	 *  for chip earlier than the 896 and so we have to service
2889 	 *  it as quickly as possible.
2890 	 *  A SCSI parity error (PAR) may be combined with a phase
2891 	 *  mismatch condition (MA).
2892 	 *  Programmed interrupts (SIR) are used to call the C code
2893 	 *  from SCRIPTS.
2894 	 *  The single step interrupt (SSI) is not used in this
2895 	 *  driver.
2896 	 */
2897 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2898 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2899 		if	(sist & PAR)	sym_int_par (np, sist);
2900 		else if (sist & MA)	sym_int_ma (np);
2901 		else if (dstat & SIR)	sym_int_sir(np);
2902 		else if (dstat & SSI)	OUTONB_STD();
2903 		else			goto unknown_int;
2904 		return IRQ_HANDLED;
2905 	}
2906 
2907 	/*
2908 	 *  Now, interrupts that donnot happen in normal
2909 	 *  situations and that we may need to recover from.
2910 	 *
2911 	 *  On SCSI RESET (RST), we reset everything.
2912 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
2913 	 *  active CCBs with RESET status, prepare all devices
2914 	 *  for negotiating again and restart the SCRIPTS.
2915 	 *  On STO and UDC, we complete the CCB with the corres-
2916 	 *  ponding status and restart the SCRIPTS.
2917 	 */
2918 	if (sist & RST) {
2919 		printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2920 		sym_start_up(shost, 1);
2921 		return IRQ_HANDLED;
2922 	}
2923 
2924 	OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
2925 	OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2926 
2927 	if (!(sist  & (GEN|HTH|SGE)) &&
2928 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2929 		if	(sist & SBMC)	sym_int_sbmc(shost);
2930 		else if (sist & STO)	sym_int_sto (np);
2931 		else if (sist & UDC)	sym_int_udc (np);
2932 		else			goto unknown_int;
2933 		return IRQ_HANDLED;
2934 	}
2935 
2936 	/*
2937 	 *  Now, interrupts we are not able to recover cleanly.
2938 	 *
2939 	 *  Log message for hard errors.
2940 	 *  Reset everything.
2941 	 */
2942 
2943 	sym_log_hard_error(shost, sist, dstat);
2944 
2945 	if ((sist & (GEN|HTH|SGE)) ||
2946 		(dstat & (MDPE|BF|ABRT|IID))) {
2947 		sym_start_reset(np);
2948 		return IRQ_HANDLED;
2949 	}
2950 
2951 unknown_int:
2952 	/*
2953 	 *  We just miss the cause of the interrupt. :(
2954 	 *  Print a message. The timeout will do the real work.
2955 	 */
2956 	printf(	"%s: unknown interrupt(s) ignored, "
2957 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2958 		sym_name(np), istat, dstat, sist);
2959 	return IRQ_NONE;
2960 }
2961 
2962 /*
2963  *  Dequeue from the START queue all CCBs that match
2964  *  a given target/lun/task condition (-1 means all),
2965  *  and move them from the BUSY queue to the COMP queue
2966  *  with DID_SOFT_ERROR status condition.
2967  *  This function is used during error handling/recovery.
2968  *  It is called with SCRIPTS not running.
2969  */
2970 static int
2971 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2972 {
2973 	int j;
2974 	struct sym_ccb *cp;
2975 
2976 	/*
2977 	 *  Make sure the starting index is within range.
2978 	 */
2979 	assert((i >= 0) && (i < 2*MAX_QUEUE));
2980 
2981 	/*
2982 	 *  Walk until end of START queue and dequeue every job
2983 	 *  that matches the target/lun/task condition.
2984 	 */
2985 	j = i;
2986 	while (i != np->squeueput) {
2987 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2988 		assert(cp);
2989 #ifdef SYM_CONF_IARB_SUPPORT
2990 		/* Forget hints for IARB, they may be no longer relevant */
2991 		cp->host_flags &= ~HF_HINT_IARB;
2992 #endif
2993 		if ((target == -1 || cp->target == target) &&
2994 		    (lun    == -1 || cp->lun    == lun)    &&
2995 		    (task   == -1 || cp->tag    == task)) {
2996 			sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2997 			sym_remque(&cp->link_ccbq);
2998 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2999 		}
3000 		else {
3001 			if (i != j)
3002 				np->squeue[j] = np->squeue[i];
3003 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
3004 		}
3005 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
3006 	}
3007 	if (i != j)		/* Copy back the idle task if needed */
3008 		np->squeue[j] = np->squeue[i];
3009 	np->squeueput = j;	/* Update our current start queue pointer */
3010 
3011 	return (i - j) / 2;
3012 }
3013 
3014 /*
3015  *  chip handler for bad SCSI status condition
3016  *
3017  *  In case of bad SCSI status, we unqueue all the tasks
3018  *  currently queued to the controller but not yet started
3019  *  and then restart the SCRIPTS processor immediately.
3020  *
3021  *  QUEUE FULL and BUSY conditions are handled the same way.
3022  *  Basically all the not yet started tasks are requeued in
3023  *  device queue and the queue is frozen until a completion.
3024  *
3025  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
3026  *  the CCB of the failed command to prepare a REQUEST SENSE
3027  *  SCSI command and queue it to the controller queue.
3028  *
3029  *  SCRATCHA is assumed to have been loaded with STARTPOS
3030  *  before the SCRIPTS called the C code.
3031  */
3032 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3033 {
3034 	u32		startp;
3035 	u_char		s_status = cp->ssss_status;
3036 	u_char		h_flags  = cp->host_flags;
3037 	int		msglen;
3038 	int		i;
3039 
3040 	/*
3041 	 *  Compute the index of the next job to start from SCRIPTS.
3042 	 */
3043 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3044 
3045 	/*
3046 	 *  The last CCB queued used for IARB hint may be
3047 	 *  no longer relevant. Forget it.
3048 	 */
3049 #ifdef SYM_CONF_IARB_SUPPORT
3050 	if (np->last_cp)
3051 		np->last_cp = 0;
3052 #endif
3053 
3054 	/*
3055 	 *  Now deal with the SCSI status.
3056 	 */
3057 	switch(s_status) {
3058 	case S_BUSY:
3059 	case S_QUEUE_FULL:
3060 		if (sym_verbose >= 2) {
3061 			sym_print_addr(cp->cmd, "%s\n",
3062 			        s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3063 		}
3064 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
3065 		sym_complete_error (np, cp);
3066 		break;
3067 	case S_TERMINATED:
3068 	case S_CHECK_COND:
3069 		/*
3070 		 *  If we get an SCSI error when requesting sense, give up.
3071 		 */
3072 		if (h_flags & HF_SENSE) {
3073 			sym_complete_error (np, cp);
3074 			break;
3075 		}
3076 
3077 		/*
3078 		 *  Dequeue all queued CCBs for that device not yet started,
3079 		 *  and restart the SCRIPTS processor immediately.
3080 		 */
3081 		sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3082 		OUTL_DSP(np, SCRIPTA_BA(np, start));
3083 
3084  		/*
3085 		 *  Save some info of the actual IO.
3086 		 *  Compute the data residual.
3087 		 */
3088 		cp->sv_scsi_status = cp->ssss_status;
3089 		cp->sv_xerr_status = cp->xerr_status;
3090 		cp->sv_resid = sym_compute_residual(np, cp);
3091 
3092 		/*
3093 		 *  Prepare all needed data structures for
3094 		 *  requesting sense data.
3095 		 */
3096 
3097 		cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3098 		msglen = 1;
3099 
3100 		/*
3101 		 *  If we are currently using anything different from
3102 		 *  async. 8 bit data transfers with that target,
3103 		 *  start a negotiation, since the device may want
3104 		 *  to report us a UNIT ATTENTION condition due to
3105 		 *  a cause we currently ignore, and we donnot want
3106 		 *  to be stuck with WIDE and/or SYNC data transfer.
3107 		 *
3108 		 *  cp->nego_status is filled by sym_prepare_nego().
3109 		 */
3110 		cp->nego_status = 0;
3111 		msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3112 		/*
3113 		 *  Message table indirect structure.
3114 		 */
3115 		cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg2);
3116 		cp->phys.smsg.size	= cpu_to_scr(msglen);
3117 
3118 		/*
3119 		 *  sense command
3120 		 */
3121 		cp->phys.cmd.addr	= CCB_BA(cp, sensecmd);
3122 		cp->phys.cmd.size	= cpu_to_scr(6);
3123 
3124 		/*
3125 		 *  patch requested size into sense command
3126 		 */
3127 		cp->sensecmd[0]		= REQUEST_SENSE;
3128 		cp->sensecmd[1]		= 0;
3129 		if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3130 			cp->sensecmd[1]	= cp->lun << 5;
3131 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
3132 		cp->data_len		= SYM_SNS_BBUF_LEN;
3133 
3134 		/*
3135 		 *  sense data
3136 		 */
3137 		memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3138 		cp->phys.sense.addr	= CCB_BA(cp, sns_bbuf);
3139 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
3140 
3141 		/*
3142 		 *  requeue the command.
3143 		 */
3144 		startp = SCRIPTB_BA(np, sdata_in);
3145 
3146 		cp->phys.head.savep	= cpu_to_scr(startp);
3147 		cp->phys.head.lastp	= cpu_to_scr(startp);
3148 		cp->startp		= cpu_to_scr(startp);
3149 		cp->goalp		= cpu_to_scr(startp + 16);
3150 
3151 		cp->host_xflags = 0;
3152 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3153 		cp->ssss_status = S_ILLEGAL;
3154 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
3155 		cp->xerr_status = 0;
3156 		cp->extra_bytes = 0;
3157 
3158 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3159 
3160 		/*
3161 		 *  Requeue the command.
3162 		 */
3163 		sym_put_start_queue(np, cp);
3164 
3165 		/*
3166 		 *  Give back to upper layer everything we have dequeued.
3167 		 */
3168 		sym_flush_comp_queue(np, 0);
3169 		break;
3170 	}
3171 }
3172 
3173 /*
3174  *  After a device has accepted some management message
3175  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3176  *  a device signals a UNIT ATTENTION condition, some
3177  *  tasks are thrown away by the device. We are required
3178  *  to reflect that on our tasks list since the device
3179  *  will never complete these tasks.
3180  *
3181  *  This function move from the BUSY queue to the COMP
3182  *  queue all disconnected CCBs for a given target that
3183  *  match the following criteria:
3184  *  - lun=-1  means any logical UNIT otherwise a given one.
3185  *  - task=-1 means any task, otherwise a given one.
3186  */
3187 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3188 {
3189 	SYM_QUEHEAD qtmp, *qp;
3190 	int i = 0;
3191 	struct sym_ccb *cp;
3192 
3193 	/*
3194 	 *  Move the entire BUSY queue to our temporary queue.
3195 	 */
3196 	sym_que_init(&qtmp);
3197 	sym_que_splice(&np->busy_ccbq, &qtmp);
3198 	sym_que_init(&np->busy_ccbq);
3199 
3200 	/*
3201 	 *  Put all CCBs that matches our criteria into
3202 	 *  the COMP queue and put back other ones into
3203 	 *  the BUSY queue.
3204 	 */
3205 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
3206 		struct scsi_cmnd *cmd;
3207 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3208 		cmd = cp->cmd;
3209 		if (cp->host_status != HS_DISCONNECT ||
3210 		    cp->target != target	     ||
3211 		    (lun  != -1 && cp->lun != lun)   ||
3212 		    (task != -1 &&
3213 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3214 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3215 			continue;
3216 		}
3217 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3218 
3219 		/* Preserve the software timeout condition */
3220 		if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3221 			sym_set_cam_status(cmd, cam_status);
3222 		++i;
3223 #if 0
3224 printf("XXXX TASK @%p CLEARED\n", cp);
3225 #endif
3226 	}
3227 	return i;
3228 }
3229 
3230 /*
3231  *  chip handler for TASKS recovery
3232  *
3233  *  We cannot safely abort a command, while the SCRIPTS
3234  *  processor is running, since we just would be in race
3235  *  with it.
3236  *
3237  *  As long as we have tasks to abort, we keep the SEM
3238  *  bit set in the ISTAT. When this bit is set, the
3239  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3240  *  each time it enters the scheduler.
3241  *
3242  *  If we have to reset a target, clear tasks of a unit,
3243  *  or to perform the abort of a disconnected job, we
3244  *  restart the SCRIPTS for selecting the target. Once
3245  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3246  *  If it loses arbitration, the SCRIPTS will interrupt again
3247  *  the next time it will enter its scheduler, and so on ...
3248  *
3249  *  On SIR_TARGET_SELECTED, we scan for the more
3250  *  appropriate thing to do:
3251  *
3252  *  - If nothing, we just sent a M_ABORT message to the
3253  *    target to get rid of the useless SCSI bus ownership.
3254  *    According to the specs, no tasks shall be affected.
3255  *  - If the target is to be reset, we send it a M_RESET
3256  *    message.
3257  *  - If a logical UNIT is to be cleared , we send the
3258  *    IDENTIFY(lun) + M_ABORT.
3259  *  - If an untagged task is to be aborted, we send the
3260  *    IDENTIFY(lun) + M_ABORT.
3261  *  - If a tagged task is to be aborted, we send the
3262  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3263  *
3264  *  Once our 'kiss of death' :) message has been accepted
3265  *  by the target, the SCRIPTS interrupts again
3266  *  (SIR_ABORT_SENT). On this interrupt, we complete
3267  *  all the CCBs that should have been aborted by the
3268  *  target according to our message.
3269  */
3270 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3271 {
3272 	SYM_QUEHEAD *qp;
3273 	struct sym_ccb *cp;
3274 	struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3275 	struct scsi_target *starget;
3276 	int target=-1, lun=-1, task;
3277 	int i, k;
3278 
3279 	switch(num) {
3280 	/*
3281 	 *  The SCRIPTS processor stopped before starting
3282 	 *  the next command in order to allow us to perform
3283 	 *  some task recovery.
3284 	 */
3285 	case SIR_SCRIPT_STOPPED:
3286 		/*
3287 		 *  Do we have any target to reset or unit to clear ?
3288 		 */
3289 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3290 			tp = &np->target[i];
3291 			if (tp->to_reset ||
3292 			    (tp->lun0p && tp->lun0p->to_clear)) {
3293 				target = i;
3294 				break;
3295 			}
3296 			if (!tp->lunmp)
3297 				continue;
3298 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3299 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3300 					target	= i;
3301 					break;
3302 				}
3303 			}
3304 			if (target != -1)
3305 				break;
3306 		}
3307 
3308 		/*
3309 		 *  If not, walk the busy queue for any
3310 		 *  disconnected CCB to be aborted.
3311 		 */
3312 		if (target == -1) {
3313 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3314 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3315 				if (cp->host_status != HS_DISCONNECT)
3316 					continue;
3317 				if (cp->to_abort) {
3318 					target = cp->target;
3319 					break;
3320 				}
3321 			}
3322 		}
3323 
3324 		/*
3325 		 *  If some target is to be selected,
3326 		 *  prepare and start the selection.
3327 		 */
3328 		if (target != -1) {
3329 			tp = &np->target[target];
3330 			np->abrt_sel.sel_id	= target;
3331 			np->abrt_sel.sel_scntl3 = tp->head.wval;
3332 			np->abrt_sel.sel_sxfer  = tp->head.sval;
3333 			OUTL(np, nc_dsa, np->hcb_ba);
3334 			OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3335 			return;
3336 		}
3337 
3338 		/*
3339 		 *  Now look for a CCB to abort that haven't started yet.
3340 		 *  Btw, the SCRIPTS processor is still stopped, so
3341 		 *  we are not in race.
3342 		 */
3343 		i = 0;
3344 		cp = NULL;
3345 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3346 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3347 			if (cp->host_status != HS_BUSY &&
3348 			    cp->host_status != HS_NEGOTIATE)
3349 				continue;
3350 			if (!cp->to_abort)
3351 				continue;
3352 #ifdef SYM_CONF_IARB_SUPPORT
3353 			/*
3354 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
3355 			 *    want to cancel the last queued CCB, since the
3356 			 *    SCRIPTS may have anticipated the selection.
3357 			 */
3358 			if (cp == np->last_cp) {
3359 				cp->to_abort = 0;
3360 				continue;
3361 			}
3362 #endif
3363 			i = 1;	/* Means we have found some */
3364 			break;
3365 		}
3366 		if (!i) {
3367 			/*
3368 			 *  We are done, so we donnot need
3369 			 *  to synchronize with the SCRIPTS anylonger.
3370 			 *  Remove the SEM flag from the ISTAT.
3371 			 */
3372 			np->istat_sem = 0;
3373 			OUTB(np, nc_istat, SIGP);
3374 			break;
3375 		}
3376 		/*
3377 		 *  Compute index of next position in the start
3378 		 *  queue the SCRIPTS intends to start and dequeue
3379 		 *  all CCBs for that device that haven't been started.
3380 		 */
3381 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3382 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3383 
3384 		/*
3385 		 *  Make sure at least our IO to abort has been dequeued.
3386 		 */
3387 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3388 		assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3389 #else
3390 		sym_remque(&cp->link_ccbq);
3391 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3392 #endif
3393 		/*
3394 		 *  Keep track in cam status of the reason of the abort.
3395 		 */
3396 		if (cp->to_abort == 2)
3397 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3398 		else
3399 			sym_set_cam_status(cp->cmd, DID_ABORT);
3400 
3401 		/*
3402 		 *  Complete with error everything that we have dequeued.
3403 	 	 */
3404 		sym_flush_comp_queue(np, 0);
3405 		break;
3406 	/*
3407 	 *  The SCRIPTS processor has selected a target
3408 	 *  we may have some manual recovery to perform for.
3409 	 */
3410 	case SIR_TARGET_SELECTED:
3411 		target = INB(np, nc_sdid) & 0xf;
3412 		tp = &np->target[target];
3413 
3414 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3415 
3416 		/*
3417 		 *  If the target is to be reset, prepare a
3418 		 *  M_RESET message and clear the to_reset flag
3419 		 *  since we donnot expect this operation to fail.
3420 		 */
3421 		if (tp->to_reset) {
3422 			np->abrt_msg[0] = M_RESET;
3423 			np->abrt_tbl.size = 1;
3424 			tp->to_reset = 0;
3425 			break;
3426 		}
3427 
3428 		/*
3429 		 *  Otherwise, look for some logical unit to be cleared.
3430 		 */
3431 		if (tp->lun0p && tp->lun0p->to_clear)
3432 			lun = 0;
3433 		else if (tp->lunmp) {
3434 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3435 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3436 					lun = k;
3437 					break;
3438 				}
3439 			}
3440 		}
3441 
3442 		/*
3443 		 *  If a logical unit is to be cleared, prepare
3444 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
3445 		 */
3446 		if (lun != -1) {
3447 			struct sym_lcb *lp = sym_lp(tp, lun);
3448 			lp->to_clear = 0; /* We don't expect to fail here */
3449 			np->abrt_msg[0] = IDENTIFY(0, lun);
3450 			np->abrt_msg[1] = M_ABORT;
3451 			np->abrt_tbl.size = 2;
3452 			break;
3453 		}
3454 
3455 		/*
3456 		 *  Otherwise, look for some disconnected job to
3457 		 *  abort for this target.
3458 		 */
3459 		i = 0;
3460 		cp = NULL;
3461 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3462 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3463 			if (cp->host_status != HS_DISCONNECT)
3464 				continue;
3465 			if (cp->target != target)
3466 				continue;
3467 			if (!cp->to_abort)
3468 				continue;
3469 			i = 1;	/* Means we have some */
3470 			break;
3471 		}
3472 
3473 		/*
3474 		 *  If we have none, probably since the device has
3475 		 *  completed the command before we won abitration,
3476 		 *  send a M_ABORT message without IDENTIFY.
3477 		 *  According to the specs, the device must just
3478 		 *  disconnect the BUS and not abort any task.
3479 		 */
3480 		if (!i) {
3481 			np->abrt_msg[0] = M_ABORT;
3482 			np->abrt_tbl.size = 1;
3483 			break;
3484 		}
3485 
3486 		/*
3487 		 *  We have some task to abort.
3488 		 *  Set the IDENTIFY(lun)
3489 		 */
3490 		np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3491 
3492 		/*
3493 		 *  If we want to abort an untagged command, we
3494 		 *  will send a IDENTIFY + M_ABORT.
3495 		 *  Otherwise (tagged command), we will send
3496 		 *  a IDENTITFY + task attributes + ABORT TAG.
3497 		 */
3498 		if (cp->tag == NO_TAG) {
3499 			np->abrt_msg[1] = M_ABORT;
3500 			np->abrt_tbl.size = 2;
3501 		} else {
3502 			np->abrt_msg[1] = cp->scsi_smsg[1];
3503 			np->abrt_msg[2] = cp->scsi_smsg[2];
3504 			np->abrt_msg[3] = M_ABORT_TAG;
3505 			np->abrt_tbl.size = 4;
3506 		}
3507 		/*
3508 		 *  Keep track of software timeout condition, since the
3509 		 *  peripheral driver may not count retries on abort
3510 		 *  conditions not due to timeout.
3511 		 */
3512 		if (cp->to_abort == 2)
3513 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3514 		cp->to_abort = 0; /* We donnot expect to fail here */
3515 		break;
3516 
3517 	/*
3518 	 *  The target has accepted our message and switched
3519 	 *  to BUS FREE phase as we expected.
3520 	 */
3521 	case SIR_ABORT_SENT:
3522 		target = INB(np, nc_sdid) & 0xf;
3523 		tp = &np->target[target];
3524 		starget = tp->starget;
3525 
3526 		/*
3527 		**  If we didn't abort anything, leave here.
3528 		*/
3529 		if (np->abrt_msg[0] == M_ABORT)
3530 			break;
3531 
3532 		/*
3533 		 *  If we sent a M_RESET, then a hardware reset has
3534 		 *  been performed by the target.
3535 		 *  - Reset everything to async 8 bit
3536 		 *  - Tell ourself to negotiate next time :-)
3537 		 *  - Prepare to clear all disconnected CCBs for
3538 		 *    this target from our task list (lun=task=-1)
3539 		 */
3540 		lun = -1;
3541 		task = -1;
3542 		if (np->abrt_msg[0] == M_RESET) {
3543 			tp->head.sval = 0;
3544 			tp->head.wval = np->rv_scntl3;
3545 			tp->head.uval = 0;
3546 			spi_period(starget) = 0;
3547 			spi_offset(starget) = 0;
3548 			spi_width(starget) = 0;
3549 			spi_iu(starget) = 0;
3550 			spi_dt(starget) = 0;
3551 			spi_qas(starget) = 0;
3552 			tp->tgoal.check_nego = 1;
3553 			tp->tgoal.renego = 0;
3554 		}
3555 
3556 		/*
3557 		 *  Otherwise, check for the LUN and TASK(s)
3558 		 *  concerned by the cancelation.
3559 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
3560 		 *  or an ABORT message :-)
3561 		 */
3562 		else {
3563 			lun = np->abrt_msg[0] & 0x3f;
3564 			if (np->abrt_msg[1] == M_ABORT_TAG)
3565 				task = np->abrt_msg[2];
3566 		}
3567 
3568 		/*
3569 		 *  Complete all the CCBs the device should have
3570 		 *  aborted due to our 'kiss of death' message.
3571 		 */
3572 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3573 		sym_dequeue_from_squeue(np, i, target, lun, -1);
3574 		sym_clear_tasks(np, DID_ABORT, target, lun, task);
3575 		sym_flush_comp_queue(np, 0);
3576 
3577  		/*
3578 		 *  If we sent a BDR, make upper layer aware of that.
3579  		 */
3580 		if (np->abrt_msg[0] == M_RESET)
3581 			starget_printk(KERN_NOTICE, starget,
3582 							"has been reset\n");
3583 		break;
3584 	}
3585 
3586 	/*
3587 	 *  Print to the log the message we intend to send.
3588 	 */
3589 	if (num == SIR_TARGET_SELECTED) {
3590 		dev_info(&tp->starget->dev, "control msgout:");
3591 		sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3592 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3593 	}
3594 
3595 	/*
3596 	 *  Let the SCRIPTS processor continue.
3597 	 */
3598 	OUTONB_STD();
3599 }
3600 
3601 /*
3602  *  Gerard's alchemy:) that deals with with the data
3603  *  pointer for both MDP and the residual calculation.
3604  *
3605  *  I didn't want to bloat the code by more than 200
3606  *  lines for the handling of both MDP and the residual.
3607  *  This has been achieved by using a data pointer
3608  *  representation consisting in an index in the data
3609  *  array (dp_sg) and a negative offset (dp_ofs) that
3610  *  have the following meaning:
3611  *
3612  *  - dp_sg = SYM_CONF_MAX_SG
3613  *    we are at the end of the data script.
3614  *  - dp_sg < SYM_CONF_MAX_SG
3615  *    dp_sg points to the next entry of the scatter array
3616  *    we want to transfer.
3617  *  - dp_ofs < 0
3618  *    dp_ofs represents the residual of bytes of the
3619  *    previous entry scatter entry we will send first.
3620  *  - dp_ofs = 0
3621  *    no residual to send first.
3622  *
3623  *  The function sym_evaluate_dp() accepts an arbitray
3624  *  offset (basically from the MDP message) and returns
3625  *  the corresponding values of dp_sg and dp_ofs.
3626  */
3627 
3628 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3629 {
3630 	u32	dp_scr;
3631 	int	dp_ofs, dp_sg, dp_sgmin;
3632 	int	tmp;
3633 	struct sym_pmc *pm;
3634 
3635 	/*
3636 	 *  Compute the resulted data pointer in term of a script
3637 	 *  address within some DATA script and a signed byte offset.
3638 	 */
3639 	dp_scr = scr;
3640 	dp_ofs = *ofs;
3641 	if	(dp_scr == SCRIPTA_BA(np, pm0_data))
3642 		pm = &cp->phys.pm0;
3643 	else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3644 		pm = &cp->phys.pm1;
3645 	else
3646 		pm = NULL;
3647 
3648 	if (pm) {
3649 		dp_scr  = scr_to_cpu(pm->ret);
3650 		dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3651 	}
3652 
3653 	/*
3654 	 *  If we are auto-sensing, then we are done.
3655 	 */
3656 	if (cp->host_flags & HF_SENSE) {
3657 		*ofs = dp_ofs;
3658 		return 0;
3659 	}
3660 
3661 	/*
3662 	 *  Deduce the index of the sg entry.
3663 	 *  Keep track of the index of the first valid entry.
3664 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3665 	 *  end of the data.
3666 	 */
3667 	tmp = scr_to_cpu(cp->goalp);
3668 	dp_sg = SYM_CONF_MAX_SG;
3669 	if (dp_scr != tmp)
3670 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3671 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3672 
3673 	/*
3674 	 *  Move to the sg entry the data pointer belongs to.
3675 	 *
3676 	 *  If we are inside the data area, we expect result to be:
3677 	 *
3678 	 *  Either,
3679 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
3680 	 *      the data pointer belongs to (or the end of the data)
3681 	 *  Or,
3682 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
3683 	 *      the data pointer belongs to + 1.
3684 	 */
3685 	if (dp_ofs < 0) {
3686 		int n;
3687 		while (dp_sg > dp_sgmin) {
3688 			--dp_sg;
3689 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3690 			n = dp_ofs + (tmp & 0xffffff);
3691 			if (n > 0) {
3692 				++dp_sg;
3693 				break;
3694 			}
3695 			dp_ofs = n;
3696 		}
3697 	}
3698 	else if (dp_ofs > 0) {
3699 		while (dp_sg < SYM_CONF_MAX_SG) {
3700 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3701 			dp_ofs -= (tmp & 0xffffff);
3702 			++dp_sg;
3703 			if (dp_ofs <= 0)
3704 				break;
3705 		}
3706 	}
3707 
3708 	/*
3709 	 *  Make sure the data pointer is inside the data area.
3710 	 *  If not, return some error.
3711 	 */
3712 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3713 		goto out_err;
3714 	else if	(dp_sg > SYM_CONF_MAX_SG ||
3715 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3716 		goto out_err;
3717 
3718 	/*
3719 	 *  Save the extreme pointer if needed.
3720 	 */
3721 	if (dp_sg > cp->ext_sg ||
3722             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3723 		cp->ext_sg  = dp_sg;
3724 		cp->ext_ofs = dp_ofs;
3725 	}
3726 
3727 	/*
3728 	 *  Return data.
3729 	 */
3730 	*ofs = dp_ofs;
3731 	return dp_sg;
3732 
3733 out_err:
3734 	return -1;
3735 }
3736 
3737 /*
3738  *  chip handler for MODIFY DATA POINTER MESSAGE
3739  *
3740  *  We also call this function on IGNORE WIDE RESIDUE
3741  *  messages that do not match a SWIDE full condition.
3742  *  Btw, we assume in that situation that such a message
3743  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3744  */
3745 
3746 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3747 {
3748 	int dp_ofs	= ofs;
3749 	u32	dp_scr	= sym_get_script_dp (np, cp);
3750 	u32	dp_ret;
3751 	u32	tmp;
3752 	u_char	hflags;
3753 	int	dp_sg;
3754 	struct	sym_pmc *pm;
3755 
3756 	/*
3757 	 *  Not supported for auto-sense.
3758 	 */
3759 	if (cp->host_flags & HF_SENSE)
3760 		goto out_reject;
3761 
3762 	/*
3763 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
3764 	 *  to the resulted data pointer.
3765 	 */
3766 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3767 	if (dp_sg < 0)
3768 		goto out_reject;
3769 
3770 	/*
3771 	 *  And our alchemy:) allows to easily calculate the data
3772 	 *  script address we want to return for the next data phase.
3773 	 */
3774 	dp_ret = cpu_to_scr(cp->goalp);
3775 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3776 
3777 	/*
3778 	 *  If offset / scatter entry is zero we donnot need
3779 	 *  a context for the new current data pointer.
3780 	 */
3781 	if (dp_ofs == 0) {
3782 		dp_scr = dp_ret;
3783 		goto out_ok;
3784 	}
3785 
3786 	/*
3787 	 *  Get a context for the new current data pointer.
3788 	 */
3789 	hflags = INB(np, HF_PRT);
3790 
3791 	if (hflags & HF_DP_SAVED)
3792 		hflags ^= HF_ACT_PM;
3793 
3794 	if (!(hflags & HF_ACT_PM)) {
3795 		pm  = &cp->phys.pm0;
3796 		dp_scr = SCRIPTA_BA(np, pm0_data);
3797 	}
3798 	else {
3799 		pm = &cp->phys.pm1;
3800 		dp_scr = SCRIPTA_BA(np, pm1_data);
3801 	}
3802 
3803 	hflags &= ~(HF_DP_SAVED);
3804 
3805 	OUTB(np, HF_PRT, hflags);
3806 
3807 	/*
3808 	 *  Set up the new current data pointer.
3809 	 *  ofs < 0 there, and for the next data phase, we
3810 	 *  want to transfer part of the data of the sg entry
3811 	 *  corresponding to index dp_sg-1 prior to returning
3812 	 *  to the main data script.
3813 	 */
3814 	pm->ret = cpu_to_scr(dp_ret);
3815 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3816 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3817 	pm->sg.addr = cpu_to_scr(tmp);
3818 	pm->sg.size = cpu_to_scr(-dp_ofs);
3819 
3820 out_ok:
3821 	sym_set_script_dp (np, cp, dp_scr);
3822 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3823 	return;
3824 
3825 out_reject:
3826 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3827 }
3828 
3829 
3830 /*
3831  *  chip calculation of the data residual.
3832  *
3833  *  As I used to say, the requirement of data residual
3834  *  in SCSI is broken, useless and cannot be achieved
3835  *  without huge complexity.
3836  *  But most OSes and even the official CAM require it.
3837  *  When stupidity happens to be so widely spread inside
3838  *  a community, it gets hard to convince.
3839  *
3840  *  Anyway, I don't care, since I am not going to use
3841  *  any software that considers this data residual as
3842  *  a relevant information. :)
3843  */
3844 
3845 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3846 {
3847 	int dp_sg, dp_sgmin, resid = 0;
3848 	int dp_ofs = 0;
3849 
3850 	/*
3851 	 *  Check for some data lost or just thrown away.
3852 	 *  We are not required to be quite accurate in this
3853 	 *  situation. Btw, if we are odd for output and the
3854 	 *  device claims some more data, it may well happen
3855 	 *  than our residual be zero. :-)
3856 	 */
3857 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3858 		if (cp->xerr_status & XE_EXTRA_DATA)
3859 			resid -= cp->extra_bytes;
3860 		if (cp->xerr_status & XE_SODL_UNRUN)
3861 			++resid;
3862 		if (cp->xerr_status & XE_SWIDE_OVRUN)
3863 			--resid;
3864 	}
3865 
3866 	/*
3867 	 *  If all data has been transferred,
3868 	 *  there is no residual.
3869 	 */
3870 	if (cp->phys.head.lastp == cp->goalp)
3871 		return resid;
3872 
3873 	/*
3874 	 *  If no data transfer occurs, or if the data
3875 	 *  pointer is weird, return full residual.
3876 	 */
3877 	if (cp->startp == cp->phys.head.lastp ||
3878 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3879 			    &dp_ofs) < 0) {
3880 		return cp->data_len - cp->odd_byte_adjustment;
3881 	}
3882 
3883 	/*
3884 	 *  If we were auto-sensing, then we are done.
3885 	 */
3886 	if (cp->host_flags & HF_SENSE) {
3887 		return -dp_ofs;
3888 	}
3889 
3890 	/*
3891 	 *  We are now full comfortable in the computation
3892 	 *  of the data residual (2's complement).
3893 	 */
3894 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3895 	resid = -cp->ext_ofs;
3896 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3897 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3898 		resid += (tmp & 0xffffff);
3899 	}
3900 
3901 	resid -= cp->odd_byte_adjustment;
3902 
3903 	/*
3904 	 *  Hopefully, the result is not too wrong.
3905 	 */
3906 	return resid;
3907 }
3908 
3909 /*
3910  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3911  *
3912  *  When we try to negotiate, we append the negotiation message
3913  *  to the identify and (maybe) simple tag message.
3914  *  The host status field is set to HS_NEGOTIATE to mark this
3915  *  situation.
3916  *
3917  *  If the target doesn't answer this message immediately
3918  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3919  *  will be raised eventually.
3920  *  The handler removes the HS_NEGOTIATE status, and sets the
3921  *  negotiated value to the default (async / nowide).
3922  *
3923  *  If we receive a matching answer immediately, we check it
3924  *  for validity, and set the values.
3925  *
3926  *  If we receive a Reject message immediately, we assume the
3927  *  negotiation has failed, and fall back to standard values.
3928  *
3929  *  If we receive a negotiation message while not in HS_NEGOTIATE
3930  *  state, it's a target initiated negotiation. We prepare a
3931  *  (hopefully) valid answer, set our parameters, and send back
3932  *  this answer to the target.
3933  *
3934  *  If the target doesn't fetch the answer (no message out phase),
3935  *  we assume the negotiation has failed, and fall back to default
3936  *  settings (SIR_NEGO_PROTO interrupt).
3937  *
3938  *  When we set the values, we adjust them in all ccbs belonging
3939  *  to this target, in the controller's register, and in the "phys"
3940  *  field of the controller's struct sym_hcb.
3941  */
3942 
3943 /*
3944  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3945  */
3946 static int
3947 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3948 {
3949 	int target = cp->target;
3950 	u_char	chg, ofs, per, fak, div;
3951 
3952 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3953 		sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3954 	}
3955 
3956 	/*
3957 	 *  Get requested values.
3958 	 */
3959 	chg = 0;
3960 	per = np->msgin[3];
3961 	ofs = np->msgin[4];
3962 
3963 	/*
3964 	 *  Check values against our limits.
3965 	 */
3966 	if (ofs) {
3967 		if (ofs > np->maxoffs)
3968 			{chg = 1; ofs = np->maxoffs;}
3969 	}
3970 
3971 	if (ofs) {
3972 		if (per < np->minsync)
3973 			{chg = 1; per = np->minsync;}
3974 	}
3975 
3976 	/*
3977 	 *  Get new chip synchronous parameters value.
3978 	 */
3979 	div = fak = 0;
3980 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3981 		goto reject_it;
3982 
3983 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3984 		sym_print_addr(cp->cmd,
3985 				"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3986 				ofs, per, div, fak, chg);
3987 	}
3988 
3989 	/*
3990 	 *  If it was an answer we want to change,
3991 	 *  then it isn't acceptable. Reject it.
3992 	 */
3993 	if (!req && chg)
3994 		goto reject_it;
3995 
3996 	/*
3997 	 *  Apply new values.
3998 	 */
3999 	sym_setsync (np, target, ofs, per, div, fak);
4000 
4001 	/*
4002 	 *  It was an answer. We are done.
4003 	 */
4004 	if (!req)
4005 		return 0;
4006 
4007 	/*
4008 	 *  It was a request. Prepare an answer message.
4009 	 */
4010 	spi_populate_sync_msg(np->msgout, per, ofs);
4011 
4012 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4013 		sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4014 	}
4015 
4016 	np->msgin [0] = M_NOOP;
4017 
4018 	return 0;
4019 
4020 reject_it:
4021 	sym_setsync (np, target, 0, 0, 0, 0);
4022 	return -1;
4023 }
4024 
4025 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4026 {
4027 	int req = 1;
4028 	int result;
4029 
4030 	/*
4031 	 *  Request or answer ?
4032 	 */
4033 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4034 		OUTB(np, HS_PRT, HS_BUSY);
4035 		if (cp->nego_status && cp->nego_status != NS_SYNC)
4036 			goto reject_it;
4037 		req = 0;
4038 	}
4039 
4040 	/*
4041 	 *  Check and apply new values.
4042 	 */
4043 	result = sym_sync_nego_check(np, req, cp);
4044 	if (result)	/* Not acceptable, reject it */
4045 		goto reject_it;
4046 	if (req) {	/* Was a request, send response. */
4047 		cp->nego_status = NS_SYNC;
4048 		OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4049 	}
4050 	else		/* Was a response, we are done. */
4051 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4052 	return;
4053 
4054 reject_it:
4055 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4056 }
4057 
4058 /*
4059  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4060  */
4061 static int
4062 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4063 {
4064 	struct sym_tcb *tp = &np->target[target];
4065 	unsigned char fak, div;
4066 	int dt, chg = 0;
4067 
4068 	unsigned char per = np->msgin[3];
4069 	unsigned char ofs = np->msgin[5];
4070 	unsigned char wide = np->msgin[6];
4071 	unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4072 
4073 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4074 		sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4075 	}
4076 
4077 	/*
4078 	 *  Check values against our limits.
4079 	 */
4080 	if (wide > np->maxwide) {
4081 		chg = 1;
4082 		wide = np->maxwide;
4083 	}
4084 	if (!wide || !(np->features & FE_U3EN))
4085 		opts = 0;
4086 
4087 	if (opts != (np->msgin[7] & PPR_OPT_MASK))
4088 		chg = 1;
4089 
4090 	dt = opts & PPR_OPT_DT;
4091 
4092 	if (ofs) {
4093 		unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4094 		if (ofs > maxoffs) {
4095 			chg = 1;
4096 			ofs = maxoffs;
4097 		}
4098 	}
4099 
4100 	if (ofs) {
4101 		unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4102 		if (per < minsync) {
4103 			chg = 1;
4104 			per = minsync;
4105 		}
4106 	}
4107 
4108 	/*
4109 	 *  Get new chip synchronous parameters value.
4110 	 */
4111 	div = fak = 0;
4112 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4113 		goto reject_it;
4114 
4115 	/*
4116 	 *  If it was an answer we want to change,
4117 	 *  then it isn't acceptable. Reject it.
4118 	 */
4119 	if (!req && chg)
4120 		goto reject_it;
4121 
4122 	/*
4123 	 *  Apply new values.
4124 	 */
4125 	sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4126 
4127 	/*
4128 	 *  It was an answer. We are done.
4129 	 */
4130 	if (!req)
4131 		return 0;
4132 
4133 	/*
4134 	 *  It was a request. Prepare an answer message.
4135 	 */
4136 	spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4137 
4138 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4139 		sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4140 	}
4141 
4142 	np->msgin [0] = M_NOOP;
4143 
4144 	return 0;
4145 
4146 reject_it:
4147 	sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4148 	/*
4149 	 *  If it is a device response that should result in
4150 	 *  ST, we may want to try a legacy negotiation later.
4151 	 */
4152 	if (!req && !opts) {
4153 		tp->tgoal.period = per;
4154 		tp->tgoal.offset = ofs;
4155 		tp->tgoal.width = wide;
4156 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4157 		tp->tgoal.check_nego = 1;
4158 	}
4159 	return -1;
4160 }
4161 
4162 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4163 {
4164 	int req = 1;
4165 	int result;
4166 
4167 	/*
4168 	 *  Request or answer ?
4169 	 */
4170 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4171 		OUTB(np, HS_PRT, HS_BUSY);
4172 		if (cp->nego_status && cp->nego_status != NS_PPR)
4173 			goto reject_it;
4174 		req = 0;
4175 	}
4176 
4177 	/*
4178 	 *  Check and apply new values.
4179 	 */
4180 	result = sym_ppr_nego_check(np, req, cp->target);
4181 	if (result)	/* Not acceptable, reject it */
4182 		goto reject_it;
4183 	if (req) {	/* Was a request, send response. */
4184 		cp->nego_status = NS_PPR;
4185 		OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4186 	}
4187 	else		/* Was a response, we are done. */
4188 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4189 	return;
4190 
4191 reject_it:
4192 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4193 }
4194 
4195 /*
4196  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4197  */
4198 static int
4199 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4200 {
4201 	int target = cp->target;
4202 	u_char	chg, wide;
4203 
4204 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4205 		sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4206 	}
4207 
4208 	/*
4209 	 *  Get requested values.
4210 	 */
4211 	chg  = 0;
4212 	wide = np->msgin[3];
4213 
4214 	/*
4215 	 *  Check values against our limits.
4216 	 */
4217 	if (wide > np->maxwide) {
4218 		chg = 1;
4219 		wide = np->maxwide;
4220 	}
4221 
4222 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4223 		sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4224 				wide, chg);
4225 	}
4226 
4227 	/*
4228 	 *  If it was an answer we want to change,
4229 	 *  then it isn't acceptable. Reject it.
4230 	 */
4231 	if (!req && chg)
4232 		goto reject_it;
4233 
4234 	/*
4235 	 *  Apply new values.
4236 	 */
4237 	sym_setwide (np, target, wide);
4238 
4239 	/*
4240 	 *  It was an answer. We are done.
4241 	 */
4242 	if (!req)
4243 		return 0;
4244 
4245 	/*
4246 	 *  It was a request. Prepare an answer message.
4247 	 */
4248 	spi_populate_width_msg(np->msgout, wide);
4249 
4250 	np->msgin [0] = M_NOOP;
4251 
4252 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4253 		sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4254 	}
4255 
4256 	return 0;
4257 
4258 reject_it:
4259 	return -1;
4260 }
4261 
4262 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4263 {
4264 	int req = 1;
4265 	int result;
4266 
4267 	/*
4268 	 *  Request or answer ?
4269 	 */
4270 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4271 		OUTB(np, HS_PRT, HS_BUSY);
4272 		if (cp->nego_status && cp->nego_status != NS_WIDE)
4273 			goto reject_it;
4274 		req = 0;
4275 	}
4276 
4277 	/*
4278 	 *  Check and apply new values.
4279 	 */
4280 	result = sym_wide_nego_check(np, req, cp);
4281 	if (result)	/* Not acceptable, reject it */
4282 		goto reject_it;
4283 	if (req) {	/* Was a request, send response. */
4284 		cp->nego_status = NS_WIDE;
4285 		OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4286 	} else {		/* Was a response. */
4287 		/*
4288 		 * Negotiate for SYNC immediately after WIDE response.
4289 		 * This allows to negotiate for both WIDE and SYNC on
4290 		 * a single SCSI command (Suggested by Justin Gibbs).
4291 		 */
4292 		if (tp->tgoal.offset) {
4293 			spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4294 					tp->tgoal.offset);
4295 
4296 			if (DEBUG_FLAGS & DEBUG_NEGO) {
4297 				sym_print_nego_msg(np, cp->target,
4298 				                   "sync msgout", np->msgout);
4299 			}
4300 
4301 			cp->nego_status = NS_SYNC;
4302 			OUTB(np, HS_PRT, HS_NEGOTIATE);
4303 			OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4304 			return;
4305 		} else
4306 			OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4307 	}
4308 
4309 	return;
4310 
4311 reject_it:
4312 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4313 }
4314 
4315 /*
4316  *  Reset DT, SYNC or WIDE to default settings.
4317  *
4318  *  Called when a negotiation does not succeed either
4319  *  on rejection or on protocol error.
4320  *
4321  *  A target that understands a PPR message should never
4322  *  reject it, and messing with it is very unlikely.
4323  *  So, if a PPR makes problems, we may just want to
4324  *  try a legacy negotiation later.
4325  */
4326 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4327 {
4328 	switch (cp->nego_status) {
4329 	case NS_PPR:
4330 #if 0
4331 		sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4332 #else
4333 		if (tp->tgoal.period < np->minsync)
4334 			tp->tgoal.period = np->minsync;
4335 		if (tp->tgoal.offset > np->maxoffs)
4336 			tp->tgoal.offset = np->maxoffs;
4337 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4338 		tp->tgoal.check_nego = 1;
4339 #endif
4340 		break;
4341 	case NS_SYNC:
4342 		sym_setsync (np, cp->target, 0, 0, 0, 0);
4343 		break;
4344 	case NS_WIDE:
4345 		sym_setwide (np, cp->target, 0);
4346 		break;
4347 	}
4348 	np->msgin [0] = M_NOOP;
4349 	np->msgout[0] = M_NOOP;
4350 	cp->nego_status = 0;
4351 }
4352 
4353 /*
4354  *  chip handler for MESSAGE REJECT received in response to
4355  *  PPR, WIDE or SYNCHRONOUS negotiation.
4356  */
4357 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4358 {
4359 	sym_nego_default(np, tp, cp);
4360 	OUTB(np, HS_PRT, HS_BUSY);
4361 }
4362 
4363 /*
4364  *  chip exception handler for programmed interrupts.
4365  */
4366 static void sym_int_sir(struct sym_hcb *np)
4367 {
4368 	u_char	num	= INB(np, nc_dsps);
4369 	u32	dsa	= INL(np, nc_dsa);
4370 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
4371 	u_char	target	= INB(np, nc_sdid) & 0x0f;
4372 	struct sym_tcb *tp	= &np->target[target];
4373 	int	tmp;
4374 
4375 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4376 
4377 	switch (num) {
4378 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4379 	/*
4380 	 *  SCRIPTS tell us that we may have to update
4381 	 *  64 bit DMA segment registers.
4382 	 */
4383 	case SIR_DMAP_DIRTY:
4384 		sym_update_dmap_regs(np);
4385 		goto out;
4386 #endif
4387 	/*
4388 	 *  Command has been completed with error condition
4389 	 *  or has been auto-sensed.
4390 	 */
4391 	case SIR_COMPLETE_ERROR:
4392 		sym_complete_error(np, cp);
4393 		return;
4394 	/*
4395 	 *  The C code is currently trying to recover from something.
4396 	 *  Typically, user want to abort some command.
4397 	 */
4398 	case SIR_SCRIPT_STOPPED:
4399 	case SIR_TARGET_SELECTED:
4400 	case SIR_ABORT_SENT:
4401 		sym_sir_task_recovery(np, num);
4402 		return;
4403 	/*
4404 	 *  The device didn't go to MSG OUT phase after having
4405 	 *  been selected with ATN.  We do not want to handle that.
4406 	 */
4407 	case SIR_SEL_ATN_NO_MSG_OUT:
4408 		scmd_printk(KERN_WARNING, cp->cmd,
4409 				"No MSG OUT phase after selection with ATN\n");
4410 		goto out_stuck;
4411 	/*
4412 	 *  The device didn't switch to MSG IN phase after
4413 	 *  having reselected the initiator.
4414 	 */
4415 	case SIR_RESEL_NO_MSG_IN:
4416 		scmd_printk(KERN_WARNING, cp->cmd,
4417 				"No MSG IN phase after reselection\n");
4418 		goto out_stuck;
4419 	/*
4420 	 *  After reselection, the device sent a message that wasn't
4421 	 *  an IDENTIFY.
4422 	 */
4423 	case SIR_RESEL_NO_IDENTIFY:
4424 		scmd_printk(KERN_WARNING, cp->cmd,
4425 				"No IDENTIFY after reselection\n");
4426 		goto out_stuck;
4427 	/*
4428 	 *  The device reselected a LUN we do not know about.
4429 	 */
4430 	case SIR_RESEL_BAD_LUN:
4431 		np->msgout[0] = M_RESET;
4432 		goto out;
4433 	/*
4434 	 *  The device reselected for an untagged nexus and we
4435 	 *  haven't any.
4436 	 */
4437 	case SIR_RESEL_BAD_I_T_L:
4438 		np->msgout[0] = M_ABORT;
4439 		goto out;
4440 	/*
4441 	 * The device reselected for a tagged nexus that we do not have.
4442 	 */
4443 	case SIR_RESEL_BAD_I_T_L_Q:
4444 		np->msgout[0] = M_ABORT_TAG;
4445 		goto out;
4446 	/*
4447 	 *  The SCRIPTS let us know that the device has grabbed
4448 	 *  our message and will abort the job.
4449 	 */
4450 	case SIR_RESEL_ABORTED:
4451 		np->lastmsg = np->msgout[0];
4452 		np->msgout[0] = M_NOOP;
4453 		scmd_printk(KERN_WARNING, cp->cmd,
4454 			"message %x sent on bad reselection\n", np->lastmsg);
4455 		goto out;
4456 	/*
4457 	 *  The SCRIPTS let us know that a message has been
4458 	 *  successfully sent to the device.
4459 	 */
4460 	case SIR_MSG_OUT_DONE:
4461 		np->lastmsg = np->msgout[0];
4462 		np->msgout[0] = M_NOOP;
4463 		/* Should we really care of that */
4464 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4465 			if (cp) {
4466 				cp->xerr_status &= ~XE_PARITY_ERR;
4467 				if (!cp->xerr_status)
4468 					OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4469 			}
4470 		}
4471 		goto out;
4472 	/*
4473 	 *  The device didn't send a GOOD SCSI status.
4474 	 *  We may have some work to do prior to allow
4475 	 *  the SCRIPTS processor to continue.
4476 	 */
4477 	case SIR_BAD_SCSI_STATUS:
4478 		if (!cp)
4479 			goto out;
4480 		sym_sir_bad_scsi_status(np, num, cp);
4481 		return;
4482 	/*
4483 	 *  We are asked by the SCRIPTS to prepare a
4484 	 *  REJECT message.
4485 	 */
4486 	case SIR_REJECT_TO_SEND:
4487 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4488 		np->msgout[0] = M_REJECT;
4489 		goto out;
4490 	/*
4491 	 *  We have been ODD at the end of a DATA IN
4492 	 *  transfer and the device didn't send a
4493 	 *  IGNORE WIDE RESIDUE message.
4494 	 *  It is a data overrun condition.
4495 	 */
4496 	case SIR_SWIDE_OVERRUN:
4497 		if (cp) {
4498 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4499 			cp->xerr_status |= XE_SWIDE_OVRUN;
4500 		}
4501 		goto out;
4502 	/*
4503 	 *  We have been ODD at the end of a DATA OUT
4504 	 *  transfer.
4505 	 *  It is a data underrun condition.
4506 	 */
4507 	case SIR_SODL_UNDERRUN:
4508 		if (cp) {
4509 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4510 			cp->xerr_status |= XE_SODL_UNRUN;
4511 		}
4512 		goto out;
4513 	/*
4514 	 *  The device wants us to tranfer more data than
4515 	 *  expected or in the wrong direction.
4516 	 *  The number of extra bytes is in scratcha.
4517 	 *  It is a data overrun condition.
4518 	 */
4519 	case SIR_DATA_OVERRUN:
4520 		if (cp) {
4521 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4522 			cp->xerr_status |= XE_EXTRA_DATA;
4523 			cp->extra_bytes += INL(np, nc_scratcha);
4524 		}
4525 		goto out;
4526 	/*
4527 	 *  The device switched to an illegal phase (4/5).
4528 	 */
4529 	case SIR_BAD_PHASE:
4530 		if (cp) {
4531 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4532 			cp->xerr_status |= XE_BAD_PHASE;
4533 		}
4534 		goto out;
4535 	/*
4536 	 *  We received a message.
4537 	 */
4538 	case SIR_MSG_RECEIVED:
4539 		if (!cp)
4540 			goto out_stuck;
4541 		switch (np->msgin [0]) {
4542 		/*
4543 		 *  We received an extended message.
4544 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
4545 		 *  and reject all other extended messages.
4546 		 */
4547 		case M_EXTENDED:
4548 			switch (np->msgin [2]) {
4549 			case M_X_MODIFY_DP:
4550 				if (DEBUG_FLAGS & DEBUG_POINTER)
4551 					sym_print_msg(cp, NULL, np->msgin);
4552 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4553 				      (np->msgin[5]<<8)  + (np->msgin[6]);
4554 				sym_modify_dp(np, tp, cp, tmp);
4555 				return;
4556 			case M_X_SYNC_REQ:
4557 				sym_sync_nego(np, tp, cp);
4558 				return;
4559 			case M_X_PPR_REQ:
4560 				sym_ppr_nego(np, tp, cp);
4561 				return;
4562 			case M_X_WIDE_REQ:
4563 				sym_wide_nego(np, tp, cp);
4564 				return;
4565 			default:
4566 				goto out_reject;
4567 			}
4568 			break;
4569 		/*
4570 		 *  We received a 1/2 byte message not handled from SCRIPTS.
4571 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
4572 		 *  RESIDUE messages that haven't been anticipated by
4573 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4574 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4575 		 */
4576 		case M_IGN_RESIDUE:
4577 			if (DEBUG_FLAGS & DEBUG_POINTER)
4578 				sym_print_msg(cp, NULL, np->msgin);
4579 			if (cp->host_flags & HF_SENSE)
4580 				OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4581 			else
4582 				sym_modify_dp(np, tp, cp, -1);
4583 			return;
4584 		case M_REJECT:
4585 			if (INB(np, HS_PRT) == HS_NEGOTIATE)
4586 				sym_nego_rejected(np, tp, cp);
4587 			else {
4588 				sym_print_addr(cp->cmd,
4589 					"M_REJECT received (%x:%x).\n",
4590 					scr_to_cpu(np->lastmsg), np->msgout[0]);
4591 			}
4592 			goto out_clrack;
4593 			break;
4594 		default:
4595 			goto out_reject;
4596 		}
4597 		break;
4598 	/*
4599 	 *  We received an unknown message.
4600 	 *  Ignore all MSG IN phases and reject it.
4601 	 */
4602 	case SIR_MSG_WEIRD:
4603 		sym_print_msg(cp, "WEIRD message received", np->msgin);
4604 		OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4605 		return;
4606 	/*
4607 	 *  Negotiation failed.
4608 	 *  Target does not send us the reply.
4609 	 *  Remove the HS_NEGOTIATE status.
4610 	 */
4611 	case SIR_NEGO_FAILED:
4612 		OUTB(np, HS_PRT, HS_BUSY);
4613 	/*
4614 	 *  Negotiation failed.
4615 	 *  Target does not want answer message.
4616 	 */
4617 	case SIR_NEGO_PROTO:
4618 		sym_nego_default(np, tp, cp);
4619 		goto out;
4620 	}
4621 
4622 out:
4623 	OUTONB_STD();
4624 	return;
4625 out_reject:
4626 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4627 	return;
4628 out_clrack:
4629 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4630 	return;
4631 out_stuck:
4632 	return;
4633 }
4634 
4635 /*
4636  *  Acquire a control block
4637  */
4638 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4639 {
4640 	u_char tn = cmd->device->id;
4641 	u_char ln = cmd->device->lun;
4642 	struct sym_tcb *tp = &np->target[tn];
4643 	struct sym_lcb *lp = sym_lp(tp, ln);
4644 	u_short tag = NO_TAG;
4645 	SYM_QUEHEAD *qp;
4646 	struct sym_ccb *cp = NULL;
4647 
4648 	/*
4649 	 *  Look for a free CCB
4650 	 */
4651 	if (sym_que_empty(&np->free_ccbq))
4652 		sym_alloc_ccb(np);
4653 	qp = sym_remque_head(&np->free_ccbq);
4654 	if (!qp)
4655 		goto out;
4656 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4657 
4658 	{
4659 		/*
4660 		 *  If we have been asked for a tagged command.
4661 		 */
4662 		if (tag_order) {
4663 			/*
4664 			 *  Debugging purpose.
4665 			 */
4666 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4667 			if (lp->busy_itl != 0)
4668 				goto out_free;
4669 #endif
4670 			/*
4671 			 *  Allocate resources for tags if not yet.
4672 			 */
4673 			if (!lp->cb_tags) {
4674 				sym_alloc_lcb_tags(np, tn, ln);
4675 				if (!lp->cb_tags)
4676 					goto out_free;
4677 			}
4678 			/*
4679 			 *  Get a tag for this SCSI IO and set up
4680 			 *  the CCB bus address for reselection,
4681 			 *  and count it for this LUN.
4682 			 *  Toggle reselect path to tagged.
4683 			 */
4684 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4685 				tag = lp->cb_tags[lp->ia_tag];
4686 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4687 					lp->ia_tag = 0;
4688 				++lp->busy_itlq;
4689 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4690 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4691 				lp->head.resel_sa =
4692 					cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4693 #endif
4694 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4695 				cp->tags_si = lp->tags_si;
4696 				++lp->tags_sum[cp->tags_si];
4697 				++lp->tags_since;
4698 #endif
4699 			}
4700 			else
4701 				goto out_free;
4702 		}
4703 		/*
4704 		 *  This command will not be tagged.
4705 		 *  If we already have either a tagged or untagged
4706 		 *  one, refuse to overlap this untagged one.
4707 		 */
4708 		else {
4709 			/*
4710 			 *  Debugging purpose.
4711 			 */
4712 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4713 			if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4714 				goto out_free;
4715 #endif
4716 			/*
4717 			 *  Count this nexus for this LUN.
4718 			 *  Set up the CCB bus address for reselection.
4719 			 *  Toggle reselect path to untagged.
4720 			 */
4721 			++lp->busy_itl;
4722 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4723 			if (lp->busy_itl == 1) {
4724 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4725 				lp->head.resel_sa =
4726 				      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4727 			}
4728 			else
4729 				goto out_free;
4730 #endif
4731 		}
4732 	}
4733 	/*
4734 	 *  Put the CCB into the busy queue.
4735 	 */
4736 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4737 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4738 	if (lp) {
4739 		sym_remque(&cp->link2_ccbq);
4740 		sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4741 	}
4742 
4743 #endif
4744 	cp->to_abort = 0;
4745 	cp->odd_byte_adjustment = 0;
4746 	cp->tag	   = tag;
4747 	cp->order  = tag_order;
4748 	cp->target = tn;
4749 	cp->lun    = ln;
4750 
4751 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4752 		sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4753 	}
4754 
4755 out:
4756 	return cp;
4757 out_free:
4758 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4759 	return NULL;
4760 }
4761 
4762 /*
4763  *  Release one control block
4764  */
4765 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4766 {
4767 	struct sym_tcb *tp = &np->target[cp->target];
4768 	struct sym_lcb *lp = sym_lp(tp, cp->lun);
4769 
4770 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4771 		sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4772 				cp, cp->tag);
4773 	}
4774 
4775 	/*
4776 	 *  If LCB available,
4777 	 */
4778 	if (lp) {
4779 		/*
4780 		 *  If tagged, release the tag, set the relect path
4781 		 */
4782 		if (cp->tag != NO_TAG) {
4783 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4784 			--lp->tags_sum[cp->tags_si];
4785 #endif
4786 			/*
4787 			 *  Free the tag value.
4788 			 */
4789 			lp->cb_tags[lp->if_tag] = cp->tag;
4790 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
4791 				lp->if_tag = 0;
4792 			/*
4793 			 *  Make the reselect path invalid,
4794 			 *  and uncount this CCB.
4795 			 */
4796 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4797 			--lp->busy_itlq;
4798 		} else {	/* Untagged */
4799 			/*
4800 			 *  Make the reselect path invalid,
4801 			 *  and uncount this CCB.
4802 			 */
4803 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4804 			--lp->busy_itl;
4805 		}
4806 		/*
4807 		 *  If no JOB active, make the LUN reselect path invalid.
4808 		 */
4809 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4810 			lp->head.resel_sa =
4811 				cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4812 	}
4813 
4814 	/*
4815 	 *  We donnot queue more than 1 ccb per target
4816 	 *  with negotiation at any time. If this ccb was
4817 	 *  used for negotiation, clear this info in the tcb.
4818 	 */
4819 	if (cp == tp->nego_cp)
4820 		tp->nego_cp = NULL;
4821 
4822 #ifdef SYM_CONF_IARB_SUPPORT
4823 	/*
4824 	 *  If we just complete the last queued CCB,
4825 	 *  clear this info that is no longer relevant.
4826 	 */
4827 	if (cp == np->last_cp)
4828 		np->last_cp = 0;
4829 #endif
4830 
4831 	/*
4832 	 *  Make this CCB available.
4833 	 */
4834 	cp->cmd = NULL;
4835 	cp->host_status = HS_IDLE;
4836 	sym_remque(&cp->link_ccbq);
4837 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4838 
4839 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4840 	if (lp) {
4841 		sym_remque(&cp->link2_ccbq);
4842 		sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4843 		if (cp->started) {
4844 			if (cp->tag != NO_TAG)
4845 				--lp->started_tags;
4846 			else
4847 				--lp->started_no_tag;
4848 		}
4849 	}
4850 	cp->started = 0;
4851 #endif
4852 }
4853 
4854 /*
4855  *  Allocate a CCB from memory and initialize its fixed part.
4856  */
4857 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4858 {
4859 	struct sym_ccb *cp = NULL;
4860 	int hcode;
4861 
4862 	/*
4863 	 *  Prevent from allocating more CCBs than we can
4864 	 *  queue to the controller.
4865 	 */
4866 	if (np->actccbs >= SYM_CONF_MAX_START)
4867 		return NULL;
4868 
4869 	/*
4870 	 *  Allocate memory for this CCB.
4871 	 */
4872 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4873 	if (!cp)
4874 		goto out_free;
4875 
4876 	/*
4877 	 *  Count it.
4878 	 */
4879 	np->actccbs++;
4880 
4881 	/*
4882 	 *  Compute the bus address of this ccb.
4883 	 */
4884 	cp->ccb_ba = vtobus(cp);
4885 
4886 	/*
4887 	 *  Insert this ccb into the hashed list.
4888 	 */
4889 	hcode = CCB_HASH_CODE(cp->ccb_ba);
4890 	cp->link_ccbh = np->ccbh[hcode];
4891 	np->ccbh[hcode] = cp;
4892 
4893 	/*
4894 	 *  Initialyze the start and restart actions.
4895 	 */
4896 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4897 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4898 
4899  	/*
4900 	 *  Initilialyze some other fields.
4901 	 */
4902 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4903 
4904 	/*
4905 	 *  Chain into free ccb queue.
4906 	 */
4907 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4908 
4909 	/*
4910 	 *  Chain into optionnal lists.
4911 	 */
4912 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4913 	sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4914 #endif
4915 	return cp;
4916 out_free:
4917 	if (cp)
4918 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
4919 	return NULL;
4920 }
4921 
4922 /*
4923  *  Look up a CCB from a DSA value.
4924  */
4925 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4926 {
4927 	int hcode;
4928 	struct sym_ccb *cp;
4929 
4930 	hcode = CCB_HASH_CODE(dsa);
4931 	cp = np->ccbh[hcode];
4932 	while (cp) {
4933 		if (cp->ccb_ba == dsa)
4934 			break;
4935 		cp = cp->link_ccbh;
4936 	}
4937 
4938 	return cp;
4939 }
4940 
4941 /*
4942  *  Target control block initialisation.
4943  *  Nothing important to do at the moment.
4944  */
4945 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4946 {
4947 #if 0	/*  Hmmm... this checking looks paranoid. */
4948 	/*
4949 	 *  Check some alignments required by the chip.
4950 	 */
4951 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
4952 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
4953 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
4954 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
4955 #endif
4956 }
4957 
4958 /*
4959  *  Lun control block allocation and initialization.
4960  */
4961 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4962 {
4963 	struct sym_tcb *tp = &np->target[tn];
4964 	struct sym_lcb *lp = NULL;
4965 
4966 	/*
4967 	 *  Initialize the target control block if not yet.
4968 	 */
4969 	sym_init_tcb (np, tn);
4970 
4971 	/*
4972 	 *  Allocate the LCB bus address array.
4973 	 *  Compute the bus address of this table.
4974 	 */
4975 	if (ln && !tp->luntbl) {
4976 		int i;
4977 
4978 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4979 		if (!tp->luntbl)
4980 			goto fail;
4981 		for (i = 0 ; i < 64 ; i++)
4982 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4983 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4984 	}
4985 
4986 	/*
4987 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
4988 	 */
4989 	if (ln && !tp->lunmp) {
4990 		tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4991 				GFP_KERNEL);
4992 		if (!tp->lunmp)
4993 			goto fail;
4994 	}
4995 
4996 	/*
4997 	 *  Allocate the lcb.
4998 	 *  Make it available to the chip.
4999 	 */
5000 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5001 	if (!lp)
5002 		goto fail;
5003 	if (ln) {
5004 		tp->lunmp[ln] = lp;
5005 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5006 	}
5007 	else {
5008 		tp->lun0p = lp;
5009 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5010 	}
5011 
5012 	/*
5013 	 *  Let the itl task point to error handling.
5014 	 */
5015 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5016 
5017 	/*
5018 	 *  Set the reselect pattern to our default. :)
5019 	 */
5020 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5021 
5022 	/*
5023 	 *  Set user capabilities.
5024 	 */
5025 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5026 
5027 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5028 	/*
5029 	 *  Initialize device queueing.
5030 	 */
5031 	sym_que_init(&lp->waiting_ccbq);
5032 	sym_que_init(&lp->started_ccbq);
5033 	lp->started_max   = SYM_CONF_MAX_TASK;
5034 	lp->started_limit = SYM_CONF_MAX_TASK;
5035 #endif
5036 
5037 fail:
5038 	return lp;
5039 }
5040 
5041 /*
5042  *  Allocate LCB resources for tagged command queuing.
5043  */
5044 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5045 {
5046 	struct sym_tcb *tp = &np->target[tn];
5047 	struct sym_lcb *lp = sym_lp(tp, ln);
5048 	int i;
5049 
5050 	/*
5051 	 *  Allocate the task table and and the tag allocation
5052 	 *  circular buffer. We want both or none.
5053 	 */
5054 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5055 	if (!lp->itlq_tbl)
5056 		goto fail;
5057 	lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5058 	if (!lp->cb_tags) {
5059 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5060 		lp->itlq_tbl = NULL;
5061 		goto fail;
5062 	}
5063 
5064 	/*
5065 	 *  Initialize the task table with invalid entries.
5066 	 */
5067 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5068 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5069 
5070 	/*
5071 	 *  Fill up the tag buffer with tag numbers.
5072 	 */
5073 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5074 		lp->cb_tags[i] = i;
5075 
5076 	/*
5077 	 *  Make the task table available to SCRIPTS,
5078 	 *  And accept tagged commands now.
5079 	 */
5080 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5081 
5082 	return;
5083 fail:
5084 	return;
5085 }
5086 
5087 /*
5088  *  Queue a SCSI IO to the controller.
5089  */
5090 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5091 {
5092 	struct scsi_device *sdev = cmd->device;
5093 	struct sym_tcb *tp;
5094 	struct sym_lcb *lp;
5095 	u_char	*msgptr;
5096 	u_int   msglen;
5097 	int can_disconnect;
5098 
5099 	/*
5100 	 *  Keep track of the IO in our CCB.
5101 	 */
5102 	cp->cmd = cmd;
5103 
5104 	/*
5105 	 *  Retrieve the target descriptor.
5106 	 */
5107 	tp = &np->target[cp->target];
5108 
5109 	/*
5110 	 *  Retrieve the lun descriptor.
5111 	 */
5112 	lp = sym_lp(tp, sdev->lun);
5113 
5114 	can_disconnect = (cp->tag != NO_TAG) ||
5115 		(lp && (lp->curr_flags & SYM_DISC_ENABLED));
5116 
5117 	msgptr = cp->scsi_smsg;
5118 	msglen = 0;
5119 	msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5120 
5121 	/*
5122 	 *  Build the tag message if present.
5123 	 */
5124 	if (cp->tag != NO_TAG) {
5125 		u_char order = cp->order;
5126 
5127 		switch(order) {
5128 		case M_ORDERED_TAG:
5129 			break;
5130 		case M_HEAD_TAG:
5131 			break;
5132 		default:
5133 			order = M_SIMPLE_TAG;
5134 		}
5135 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5136 		/*
5137 		 *  Avoid too much reordering of SCSI commands.
5138 		 *  The algorithm tries to prevent completion of any
5139 		 *  tagged command from being delayed against more
5140 		 *  than 3 times the max number of queued commands.
5141 		 */
5142 		if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5143 			lp->tags_si = !(lp->tags_si);
5144 			if (lp->tags_sum[lp->tags_si]) {
5145 				order = M_ORDERED_TAG;
5146 				if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5147 					sym_print_addr(cmd,
5148 						"ordered tag forced.\n");
5149 				}
5150 			}
5151 			lp->tags_since = 0;
5152 		}
5153 #endif
5154 		msgptr[msglen++] = order;
5155 
5156 		/*
5157 		 *  For less than 128 tags, actual tags are numbered
5158 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
5159 		 *  with devices that have problems with #TAG 0 or too
5160 		 *  great #TAG numbers. For more tags (up to 256),
5161 		 *  we use directly our tag number.
5162 		 */
5163 #if SYM_CONF_MAX_TASK > (512/4)
5164 		msgptr[msglen++] = cp->tag;
5165 #else
5166 		msgptr[msglen++] = (cp->tag << 1) + 1;
5167 #endif
5168 	}
5169 
5170 	/*
5171 	 *  Build a negotiation message if needed.
5172 	 *  (nego_status is filled by sym_prepare_nego())
5173 	 *
5174 	 *  Always negotiate on INQUIRY and REQUEST SENSE.
5175 	 *
5176 	 */
5177 	cp->nego_status = 0;
5178 	if ((tp->tgoal.check_nego ||
5179 	     cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) &&
5180 	    !tp->nego_cp && lp) {
5181 		msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5182 	}
5183 
5184 	/*
5185 	 *  Startqueue
5186 	 */
5187 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5188 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5189 
5190 	/*
5191 	 *  select
5192 	 */
5193 	cp->phys.select.sel_id		= cp->target;
5194 	cp->phys.select.sel_scntl3	= tp->head.wval;
5195 	cp->phys.select.sel_sxfer	= tp->head.sval;
5196 	cp->phys.select.sel_scntl4	= tp->head.uval;
5197 
5198 	/*
5199 	 *  message
5200 	 */
5201 	cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg);
5202 	cp->phys.smsg.size	= cpu_to_scr(msglen);
5203 
5204 	/*
5205 	 *  status
5206 	 */
5207 	cp->host_xflags		= 0;
5208 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5209 	cp->ssss_status		= S_ILLEGAL;
5210 	cp->xerr_status		= 0;
5211 	cp->host_flags		= 0;
5212 	cp->extra_bytes		= 0;
5213 
5214 	/*
5215 	 *  extreme data pointer.
5216 	 *  shall be positive, so -1 is lower than lowest.:)
5217 	 */
5218 	cp->ext_sg  = -1;
5219 	cp->ext_ofs = 0;
5220 
5221 	/*
5222 	 *  Build the CDB and DATA descriptor block
5223 	 *  and start the IO.
5224 	 */
5225 	return sym_setup_data_and_start(np, cmd, cp);
5226 }
5227 
5228 /*
5229  *  Reset a SCSI target (all LUNs of this target).
5230  */
5231 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5232 {
5233 	struct sym_tcb *tp;
5234 
5235 	if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5236 		return -1;
5237 
5238 	tp = &np->target[target];
5239 	tp->to_reset = 1;
5240 
5241 	np->istat_sem = SEM;
5242 	OUTB(np, nc_istat, SIGP|SEM);
5243 
5244 	return 0;
5245 }
5246 
5247 /*
5248  *  Abort a SCSI IO.
5249  */
5250 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5251 {
5252 	/*
5253 	 *  Check that the IO is active.
5254 	 */
5255 	if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5256 		return -1;
5257 
5258 	/*
5259 	 *  If a previous abort didn't succeed in time,
5260 	 *  perform a BUS reset.
5261 	 */
5262 	if (cp->to_abort) {
5263 		sym_reset_scsi_bus(np, 1);
5264 		return 0;
5265 	}
5266 
5267 	/*
5268 	 *  Mark the CCB for abort and allow time for.
5269 	 */
5270 	cp->to_abort = timed_out ? 2 : 1;
5271 
5272 	/*
5273 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
5274 	 */
5275 	np->istat_sem = SEM;
5276 	OUTB(np, nc_istat, SIGP|SEM);
5277 	return 0;
5278 }
5279 
5280 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5281 {
5282 	struct sym_ccb *cp;
5283 	SYM_QUEHEAD *qp;
5284 
5285 	/*
5286 	 *  Look up our CCB control block.
5287 	 */
5288 	cp = NULL;
5289 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5290 		struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5291 		if (cp2->cmd == cmd) {
5292 			cp = cp2;
5293 			break;
5294 		}
5295 	}
5296 
5297 	return sym_abort_ccb(np, cp, timed_out);
5298 }
5299 
5300 /*
5301  *  Complete execution of a SCSI command with extended
5302  *  error, SCSI status error, or having been auto-sensed.
5303  *
5304  *  The SCRIPTS processor is not running there, so we
5305  *  can safely access IO registers and remove JOBs from
5306  *  the START queue.
5307  *  SCRATCHA is assumed to have been loaded with STARTPOS
5308  *  before the SCRIPTS called the C code.
5309  */
5310 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5311 {
5312 	struct scsi_device *sdev;
5313 	struct scsi_cmnd *cmd;
5314 	struct sym_tcb *tp;
5315 	struct sym_lcb *lp;
5316 	int resid;
5317 	int i;
5318 
5319 	/*
5320 	 *  Paranoid check. :)
5321 	 */
5322 	if (!cp || !cp->cmd)
5323 		return;
5324 
5325 	cmd = cp->cmd;
5326 	sdev = cmd->device;
5327 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5328 		dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5329 			cp->host_status, cp->ssss_status, cp->host_flags);
5330 	}
5331 
5332 	/*
5333 	 *  Get target and lun pointers.
5334 	 */
5335 	tp = &np->target[cp->target];
5336 	lp = sym_lp(tp, sdev->lun);
5337 
5338 	/*
5339 	 *  Check for extended errors.
5340 	 */
5341 	if (cp->xerr_status) {
5342 		if (sym_verbose)
5343 			sym_print_xerr(cmd, cp->xerr_status);
5344 		if (cp->host_status == HS_COMPLETE)
5345 			cp->host_status = HS_COMP_ERR;
5346 	}
5347 
5348 	/*
5349 	 *  Calculate the residual.
5350 	 */
5351 	resid = sym_compute_residual(np, cp);
5352 
5353 	if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5354 		resid  = 0;		 /* throw them away. :)		    */
5355 		cp->sv_resid = 0;
5356 	}
5357 #ifdef DEBUG_2_0_X
5358 if (resid)
5359 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5360 #endif
5361 
5362 	/*
5363 	 *  Dequeue all queued CCBs for that device
5364 	 *  not yet started by SCRIPTS.
5365 	 */
5366 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5367 	i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5368 
5369 	/*
5370 	 *  Restart the SCRIPTS processor.
5371 	 */
5372 	OUTL_DSP(np, SCRIPTA_BA(np, start));
5373 
5374 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5375 	if (cp->host_status == HS_COMPLETE &&
5376 	    cp->ssss_status == S_QUEUE_FULL) {
5377 		if (!lp || lp->started_tags - i < 2)
5378 			goto weirdness;
5379 		/*
5380 		 *  Decrease queue depth as needed.
5381 		 */
5382 		lp->started_max = lp->started_tags - i - 1;
5383 		lp->num_sgood = 0;
5384 
5385 		if (sym_verbose >= 2) {
5386 			sym_print_addr(cmd, " queue depth is now %d\n",
5387 					lp->started_max);
5388 		}
5389 
5390 		/*
5391 		 *  Repair the CCB.
5392 		 */
5393 		cp->host_status = HS_BUSY;
5394 		cp->ssss_status = S_ILLEGAL;
5395 
5396 		/*
5397 		 *  Let's requeue it to device.
5398 		 */
5399 		sym_set_cam_status(cmd, DID_SOFT_ERROR);
5400 		goto finish;
5401 	}
5402 weirdness:
5403 #endif
5404 	/*
5405 	 *  Build result in CAM ccb.
5406 	 */
5407 	sym_set_cam_result_error(np, cp, resid);
5408 
5409 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5410 finish:
5411 #endif
5412 	/*
5413 	 *  Add this one to the COMP queue.
5414 	 */
5415 	sym_remque(&cp->link_ccbq);
5416 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5417 
5418 	/*
5419 	 *  Complete all those commands with either error
5420 	 *  or requeue condition.
5421 	 */
5422 	sym_flush_comp_queue(np, 0);
5423 
5424 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5425 	/*
5426 	 *  Donnot start more than 1 command after an error.
5427 	 */
5428 	sym_start_next_ccbs(np, lp, 1);
5429 #endif
5430 }
5431 
5432 /*
5433  *  Complete execution of a successful SCSI command.
5434  *
5435  *  Only successful commands go to the DONE queue,
5436  *  since we need to have the SCRIPTS processor
5437  *  stopped on any error condition.
5438  *  The SCRIPTS processor is running while we are
5439  *  completing successful commands.
5440  */
5441 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5442 {
5443 	struct sym_tcb *tp;
5444 	struct sym_lcb *lp;
5445 	struct scsi_cmnd *cmd;
5446 	int resid;
5447 
5448 	/*
5449 	 *  Paranoid check. :)
5450 	 */
5451 	if (!cp || !cp->cmd)
5452 		return;
5453 	assert (cp->host_status == HS_COMPLETE);
5454 
5455 	/*
5456 	 *  Get user command.
5457 	 */
5458 	cmd = cp->cmd;
5459 
5460 	/*
5461 	 *  Get target and lun pointers.
5462 	 */
5463 	tp = &np->target[cp->target];
5464 	lp = sym_lp(tp, cp->lun);
5465 
5466 	/*
5467 	 *  If all data have been transferred, given than no
5468 	 *  extended error did occur, there is no residual.
5469 	 */
5470 	resid = 0;
5471 	if (cp->phys.head.lastp != cp->goalp)
5472 		resid = sym_compute_residual(np, cp);
5473 
5474 	/*
5475 	 *  Wrong transfer residuals may be worse than just always
5476 	 *  returning zero. User can disable this feature in
5477 	 *  sym53c8xx.h. Residual support is enabled by default.
5478 	 */
5479 	if (!SYM_SETUP_RESIDUAL_SUPPORT)
5480 		resid  = 0;
5481 #ifdef DEBUG_2_0_X
5482 if (resid)
5483 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5484 #endif
5485 
5486 	/*
5487 	 *  Build result in CAM ccb.
5488 	 */
5489 	sym_set_cam_result_ok(cp, cmd, resid);
5490 
5491 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5492 	/*
5493 	 *  If max number of started ccbs had been reduced,
5494 	 *  increase it if 200 good status received.
5495 	 */
5496 	if (lp && lp->started_max < lp->started_limit) {
5497 		++lp->num_sgood;
5498 		if (lp->num_sgood >= 200) {
5499 			lp->num_sgood = 0;
5500 			++lp->started_max;
5501 			if (sym_verbose >= 2) {
5502 				sym_print_addr(cmd, " queue depth is now %d\n",
5503 				       lp->started_max);
5504 			}
5505 		}
5506 	}
5507 #endif
5508 
5509 	/*
5510 	 *  Free our CCB.
5511 	 */
5512 	sym_free_ccb (np, cp);
5513 
5514 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5515 	/*
5516 	 *  Requeue a couple of awaiting scsi commands.
5517 	 */
5518 	if (!sym_que_empty(&lp->waiting_ccbq))
5519 		sym_start_next_ccbs(np, lp, 2);
5520 #endif
5521 	/*
5522 	 *  Complete the command.
5523 	 */
5524 	sym_xpt_done(np, cmd);
5525 }
5526 
5527 /*
5528  *  Soft-attach the controller.
5529  */
5530 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5531 {
5532 	struct sym_hcb *np = sym_get_hcb(shost);
5533 	int i;
5534 
5535 	/*
5536 	 *  Get some info about the firmware.
5537 	 */
5538 	np->scripta_sz	 = fw->a_size;
5539 	np->scriptb_sz	 = fw->b_size;
5540 	np->scriptz_sz	 = fw->z_size;
5541 	np->fw_setup	 = fw->setup;
5542 	np->fw_patch	 = fw->patch;
5543 	np->fw_name	 = fw->name;
5544 
5545 	/*
5546 	 *  Save setting of some IO registers, so we will
5547 	 *  be able to probe specific implementations.
5548 	 */
5549 	sym_save_initial_setting (np);
5550 
5551 	/*
5552 	 *  Reset the chip now, since it has been reported
5553 	 *  that SCSI clock calibration may not work properly
5554 	 *  if the chip is currently active.
5555 	 */
5556 	sym_chip_reset(np);
5557 
5558 	/*
5559 	 *  Prepare controller and devices settings, according
5560 	 *  to chip features, user set-up and driver set-up.
5561 	 */
5562 	sym_prepare_setting(shost, np, nvram);
5563 
5564 	/*
5565 	 *  Check the PCI clock frequency.
5566 	 *  Must be performed after prepare_setting since it destroys
5567 	 *  STEST1 that is used to probe for the clock doubler.
5568 	 */
5569 	i = sym_getpciclock(np);
5570 	if (i > 37000 && !(np->features & FE_66MHZ))
5571 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5572 			sym_name(np), i);
5573 
5574 	/*
5575 	 *  Allocate the start queue.
5576 	 */
5577 	np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5578 	if (!np->squeue)
5579 		goto attach_failed;
5580 	np->squeue_ba = vtobus(np->squeue);
5581 
5582 	/*
5583 	 *  Allocate the done queue.
5584 	 */
5585 	np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5586 	if (!np->dqueue)
5587 		goto attach_failed;
5588 	np->dqueue_ba = vtobus(np->dqueue);
5589 
5590 	/*
5591 	 *  Allocate the target bus address array.
5592 	 */
5593 	np->targtbl = sym_calloc_dma(256, "TARGTBL");
5594 	if (!np->targtbl)
5595 		goto attach_failed;
5596 	np->targtbl_ba = vtobus(np->targtbl);
5597 
5598 	/*
5599 	 *  Allocate SCRIPTS areas.
5600 	 */
5601 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5602 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5603 	np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5604 	if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5605 		goto attach_failed;
5606 
5607 	/*
5608 	 *  Allocate the array of lists of CCBs hashed by DSA.
5609 	 */
5610 	np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
5611 	if (!np->ccbh)
5612 		goto attach_failed;
5613 
5614 	/*
5615 	 *  Initialyze the CCB free and busy queues.
5616 	 */
5617 	sym_que_init(&np->free_ccbq);
5618 	sym_que_init(&np->busy_ccbq);
5619 	sym_que_init(&np->comp_ccbq);
5620 
5621 	/*
5622 	 *  Initialization for optional handling
5623 	 *  of device queueing.
5624 	 */
5625 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5626 	sym_que_init(&np->dummy_ccbq);
5627 #endif
5628 	/*
5629 	 *  Allocate some CCB. We need at least ONE.
5630 	 */
5631 	if (!sym_alloc_ccb(np))
5632 		goto attach_failed;
5633 
5634 	/*
5635 	 *  Calculate BUS addresses where we are going
5636 	 *  to load the SCRIPTS.
5637 	 */
5638 	np->scripta_ba	= vtobus(np->scripta0);
5639 	np->scriptb_ba	= vtobus(np->scriptb0);
5640 	np->scriptz_ba	= vtobus(np->scriptz0);
5641 
5642 	if (np->ram_ba) {
5643 		np->scripta_ba = np->ram_ba;
5644 		if (np->features & FE_RAM8K) {
5645 			np->scriptb_ba = np->scripta_ba + 4096;
5646 #if 0	/* May get useful for 64 BIT PCI addressing */
5647 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5648 #endif
5649 		}
5650 	}
5651 
5652 	/*
5653 	 *  Copy scripts to controller instance.
5654 	 */
5655 	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5656 	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5657 	memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5658 
5659 	/*
5660 	 *  Setup variable parts in scripts and compute
5661 	 *  scripts bus addresses used from the C code.
5662 	 */
5663 	np->fw_setup(np, fw);
5664 
5665 	/*
5666 	 *  Bind SCRIPTS with physical addresses usable by the
5667 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5668 	 */
5669 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5670 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5671 	sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5672 
5673 #ifdef SYM_CONF_IARB_SUPPORT
5674 	/*
5675 	 *    If user wants IARB to be set when we win arbitration
5676 	 *    and have other jobs, compute the max number of consecutive
5677 	 *    settings of IARB hints before we leave devices a chance to
5678 	 *    arbitrate for reselection.
5679 	 */
5680 #ifdef	SYM_SETUP_IARB_MAX
5681 	np->iarb_max = SYM_SETUP_IARB_MAX;
5682 #else
5683 	np->iarb_max = 4;
5684 #endif
5685 #endif
5686 
5687 	/*
5688 	 *  Prepare the idle and invalid task actions.
5689 	 */
5690 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5691 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5692 	np->idletask_ba		= vtobus(&np->idletask);
5693 
5694 	np->notask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5695 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5696 	np->notask_ba		= vtobus(&np->notask);
5697 
5698 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5699 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5700 	np->bad_itl_ba		= vtobus(&np->bad_itl);
5701 
5702 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5703 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5704 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
5705 
5706 	/*
5707 	 *  Allocate and prepare the lun JUMP table that is used
5708 	 *  for a target prior the probing of devices (bad lun table).
5709 	 *  A private table will be allocated for the target on the
5710 	 *  first INQUIRY response received.
5711 	 */
5712 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5713 	if (!np->badluntbl)
5714 		goto attach_failed;
5715 
5716 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5717 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
5718 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5719 
5720 	/*
5721 	 *  Prepare the bus address array that contains the bus
5722 	 *  address of each target control block.
5723 	 *  For now, assume all logical units are wrong. :)
5724 	 */
5725 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5726 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5727 		np->target[i].head.luntbl_sa =
5728 				cpu_to_scr(vtobus(np->badluntbl));
5729 		np->target[i].head.lun0_sa =
5730 				cpu_to_scr(vtobus(&np->badlun_sa));
5731 	}
5732 
5733 	/*
5734 	 *  Now check the cache handling of the pci chipset.
5735 	 */
5736 	if (sym_snooptest (np)) {
5737 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5738 		goto attach_failed;
5739 	}
5740 
5741 	/*
5742 	 *  Sigh! we are done.
5743 	 */
5744 	return 0;
5745 
5746 attach_failed:
5747 	return -ENXIO;
5748 }
5749 
5750 /*
5751  *  Free everything that has been allocated for this device.
5752  */
5753 void sym_hcb_free(struct sym_hcb *np)
5754 {
5755 	SYM_QUEHEAD *qp;
5756 	struct sym_ccb *cp;
5757 	struct sym_tcb *tp;
5758 	int target;
5759 
5760 	if (np->scriptz0)
5761 		sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5762 	if (np->scriptb0)
5763 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5764 	if (np->scripta0)
5765 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5766 	if (np->squeue)
5767 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5768 	if (np->dqueue)
5769 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5770 
5771 	if (np->actccbs) {
5772 		while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
5773 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5774 			sym_mfree_dma(cp, sizeof(*cp), "CCB");
5775 		}
5776 	}
5777 	kfree(np->ccbh);
5778 
5779 	if (np->badluntbl)
5780 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5781 
5782 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5783 		tp = &np->target[target];
5784 		if (tp->luntbl)
5785 			sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5786 #if SYM_CONF_MAX_LUN > 1
5787 		kfree(tp->lunmp);
5788 #endif
5789 	}
5790 	if (np->targtbl)
5791 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5792 }
5793