1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 
41 #include <linux/slab.h>
42 #include <asm/param.h>		/* for timeouts in units of HZ */
43 
44 #include "sym_glue.h"
45 #include "sym_nvram.h"
46 
47 #if 0
48 #define SYM_DEBUG_GENERIC_SUPPORT
49 #endif
50 
51 /*
52  *  Needed function prototypes.
53  */
54 static void sym_int_ma (struct sym_hcb *np);
55 static void sym_int_sir(struct sym_hcb *);
56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
62 
63 /*
64  *  Print a buffer in hexadecimal format with a ".\n" at end.
65  */
66 static void sym_printl_hex(u_char *p, int n)
67 {
68 	while (n-- > 0)
69 		printf (" %x", *p++);
70 	printf (".\n");
71 }
72 
73 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
74 {
75 	if (label)
76 		sym_print_addr(cp->cmd, "%s: ", label);
77 	else
78 		sym_print_addr(cp->cmd, "");
79 
80 	spi_print_msg(msg);
81 	printf("\n");
82 }
83 
84 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
85 {
86 	struct sym_tcb *tp = &np->target[target];
87 	dev_info(&tp->starget->dev, "%s: ", label);
88 
89 	spi_print_msg(msg);
90 	printf("\n");
91 }
92 
93 /*
94  *  Print something that tells about extended errors.
95  */
96 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
97 {
98 	if (x_status & XE_PARITY_ERR) {
99 		sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
100 	}
101 	if (x_status & XE_EXTRA_DATA) {
102 		sym_print_addr(cmd, "extraneous data discarded.\n");
103 	}
104 	if (x_status & XE_BAD_PHASE) {
105 		sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
106 	}
107 	if (x_status & XE_SODL_UNRUN) {
108 		sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
109 	}
110 	if (x_status & XE_SWIDE_OVRUN) {
111 		sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
112 	}
113 }
114 
115 /*
116  *  Return a string for SCSI BUS mode.
117  */
118 static char *sym_scsi_bus_mode(int mode)
119 {
120 	switch(mode) {
121 	case SMODE_HVD:	return "HVD";
122 	case SMODE_SE:	return "SE";
123 	case SMODE_LVD: return "LVD";
124 	}
125 	return "??";
126 }
127 
128 /*
129  *  Soft reset the chip.
130  *
131  *  Raising SRST when the chip is running may cause
132  *  problems on dual function chips (see below).
133  *  On the other hand, LVD devices need some delay
134  *  to settle and report actual BUS mode in STEST4.
135  */
136 static void sym_chip_reset (struct sym_hcb *np)
137 {
138 	OUTB(np, nc_istat, SRST);
139 	INB(np, nc_mbox1);
140 	udelay(10);
141 	OUTB(np, nc_istat, 0);
142 	INB(np, nc_mbox1);
143 	udelay(2000);	/* For BUS MODE to settle */
144 }
145 
146 /*
147  *  Really soft reset the chip.:)
148  *
149  *  Some 896 and 876 chip revisions may hang-up if we set
150  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
151  *  are running.
152  *  So, we need to abort the current operation prior to
153  *  soft resetting the chip.
154  */
155 static void sym_soft_reset (struct sym_hcb *np)
156 {
157 	u_char istat = 0;
158 	int i;
159 
160 	if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
161 		goto do_chip_reset;
162 
163 	OUTB(np, nc_istat, CABRT);
164 	for (i = 100000 ; i ; --i) {
165 		istat = INB(np, nc_istat);
166 		if (istat & SIP) {
167 			INW(np, nc_sist);
168 		}
169 		else if (istat & DIP) {
170 			if (INB(np, nc_dstat) & ABRT)
171 				break;
172 		}
173 		udelay(5);
174 	}
175 	OUTB(np, nc_istat, 0);
176 	if (!i)
177 		printf("%s: unable to abort current chip operation, "
178 		       "ISTAT=0x%02x.\n", sym_name(np), istat);
179 do_chip_reset:
180 	sym_chip_reset(np);
181 }
182 
183 /*
184  *  Start reset process.
185  *
186  *  The interrupt handler will reinitialize the chip.
187  */
188 static void sym_start_reset(struct sym_hcb *np)
189 {
190 	sym_reset_scsi_bus(np, 1);
191 }
192 
193 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
194 {
195 	u32 term;
196 	int retv = 0;
197 
198 	sym_soft_reset(np);	/* Soft reset the chip */
199 	if (enab_int)
200 		OUTW(np, nc_sien, RST);
201 	/*
202 	 *  Enable Tolerant, reset IRQD if present and
203 	 *  properly set IRQ mode, prior to resetting the bus.
204 	 */
205 	OUTB(np, nc_stest3, TE);
206 	OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
207 	OUTB(np, nc_scntl1, CRST);
208 	INB(np, nc_mbox1);
209 	udelay(200);
210 
211 	if (!SYM_SETUP_SCSI_BUS_CHECK)
212 		goto out;
213 	/*
214 	 *  Check for no terminators or SCSI bus shorts to ground.
215 	 *  Read SCSI data bus, data parity bits and control signals.
216 	 *  We are expecting RESET to be TRUE and other signals to be
217 	 *  FALSE.
218 	 */
219 	term =	INB(np, nc_sstat0);
220 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
221 	term |= ((INB(np, nc_sstat2) & 0x01) << 26) |	/* sdp1     */
222 		((INW(np, nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
223 		((INW(np, nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
224 		INB(np, nc_sbcl);	/* req ack bsy sel atn msg cd io    */
225 
226 	if (!np->maxwide)
227 		term &= 0x3ffff;
228 
229 	if (term != (2<<7)) {
230 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
231 			sym_name(np));
232 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
233 			"0x%lx, expecting 0x%lx\n",
234 			sym_name(np),
235 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
236 			(u_long)term, (u_long)(2<<7));
237 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
238 			retv = 1;
239 	}
240 out:
241 	OUTB(np, nc_scntl1, 0);
242 	return retv;
243 }
244 
245 /*
246  *  Select SCSI clock frequency
247  */
248 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
249 {
250 	/*
251 	 *  If multiplier not present or not selected, leave here.
252 	 */
253 	if (np->multiplier <= 1) {
254 		OUTB(np, nc_scntl3, scntl3);
255 		return;
256 	}
257 
258 	if (sym_verbose >= 2)
259 		printf ("%s: enabling clock multiplier\n", sym_name(np));
260 
261 	OUTB(np, nc_stest1, DBLEN);	   /* Enable clock multiplier */
262 	/*
263 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
264 	 *  Otherwise wait 50 micro-seconds (at least).
265 	 */
266 	if (np->features & FE_LCKFRQ) {
267 		int i = 20;
268 		while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
269 			udelay(20);
270 		if (!i)
271 			printf("%s: the chip cannot lock the frequency\n",
272 				sym_name(np));
273 	} else {
274 		INB(np, nc_mbox1);
275 		udelay(50+10);
276 	}
277 	OUTB(np, nc_stest3, HSC);		/* Halt the scsi clock	*/
278 	OUTB(np, nc_scntl3, scntl3);
279 	OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
280 	OUTB(np, nc_stest3, 0x00);		/* Restart scsi clock 	*/
281 }
282 
283 
284 /*
285  *  Determine the chip's clock frequency.
286  *
287  *  This is essential for the negotiation of the synchronous
288  *  transfer rate.
289  *
290  *  Note: we have to return the correct value.
291  *  THERE IS NO SAFE DEFAULT VALUE.
292  *
293  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
294  *  53C860 and 53C875 rev. 1 support fast20 transfers but
295  *  do not have a clock doubler and so are provided with a
296  *  80 MHz clock. All other fast20 boards incorporate a doubler
297  *  and so should be delivered with a 40 MHz clock.
298  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
299  *  clock and provide a clock quadrupler (160 Mhz).
300  */
301 
302 /*
303  *  calculate SCSI clock frequency (in KHz)
304  */
305 static unsigned getfreq (struct sym_hcb *np, int gen)
306 {
307 	unsigned int ms = 0;
308 	unsigned int f;
309 
310 	/*
311 	 * Measure GEN timer delay in order
312 	 * to calculate SCSI clock frequency
313 	 *
314 	 * This code will never execute too
315 	 * many loop iterations (if DELAY is
316 	 * reasonably correct). It could get
317 	 * too low a delay (too high a freq.)
318 	 * if the CPU is slow executing the
319 	 * loop for some reason (an NMI, for
320 	 * example). For this reason we will
321 	 * if multiple measurements are to be
322 	 * performed trust the higher delay
323 	 * (lower frequency returned).
324 	 */
325 	OUTW(np, nc_sien, 0);	/* mask all scsi interrupts */
326 	INW(np, nc_sist);	/* clear pending scsi interrupt */
327 	OUTB(np, nc_dien, 0);	/* mask all dma interrupts */
328 	INW(np, nc_sist);	/* another one, just to be sure :) */
329 	/*
330 	 * The C1010-33 core does not report GEN in SIST,
331 	 * if this interrupt is masked in SIEN.
332 	 * I don't know yet if the C1010-66 behaves the same way.
333 	 */
334 	if (np->features & FE_C10) {
335 		OUTW(np, nc_sien, GEN);
336 		OUTB(np, nc_istat1, SIRQD);
337 	}
338 	OUTB(np, nc_scntl3, 4);	   /* set pre-scaler to divide by 3 */
339 	OUTB(np, nc_stime1, 0);	   /* disable general purpose timer */
340 	OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
341 	while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
342 		udelay(1000/4);    /* count in 1/4 of ms */
343 	OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
344 	/*
345 	 * Undo C1010-33 specific settings.
346 	 */
347 	if (np->features & FE_C10) {
348 		OUTW(np, nc_sien, 0);
349 		OUTB(np, nc_istat1, 0);
350 	}
351  	/*
352  	 * set prescaler to divide by whatever 0 means
353  	 * 0 ought to choose divide by 2, but appears
354  	 * to set divide by 3.5 mode in my 53c810 ...
355  	 */
356  	OUTB(np, nc_scntl3, 0);
357 
358   	/*
359  	 * adjust for prescaler, and convert into KHz
360   	 */
361 	f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
362 
363 	/*
364 	 * The C1010-33 result is biased by a factor
365 	 * of 2/3 compared to earlier chips.
366 	 */
367 	if (np->features & FE_C10)
368 		f = (f * 2) / 3;
369 
370 	if (sym_verbose >= 2)
371 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
372 			sym_name(np), gen, ms/4, f);
373 
374 	return f;
375 }
376 
377 static unsigned sym_getfreq (struct sym_hcb *np)
378 {
379 	u_int f1, f2;
380 	int gen = 8;
381 
382 	getfreq (np, gen);	/* throw away first result */
383 	f1 = getfreq (np, gen);
384 	f2 = getfreq (np, gen);
385 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
386 	return f1;
387 }
388 
389 /*
390  *  Get/probe chip SCSI clock frequency
391  */
392 static void sym_getclock (struct sym_hcb *np, int mult)
393 {
394 	unsigned char scntl3 = np->sv_scntl3;
395 	unsigned char stest1 = np->sv_stest1;
396 	unsigned f1;
397 
398 	np->multiplier = 1;
399 	f1 = 40000;
400 	/*
401 	 *  True with 875/895/896/895A with clock multiplier selected
402 	 */
403 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
404 		if (sym_verbose >= 2)
405 			printf ("%s: clock multiplier found\n", sym_name(np));
406 		np->multiplier = mult;
407 	}
408 
409 	/*
410 	 *  If multiplier not found or scntl3 not 7,5,3,
411 	 *  reset chip and get frequency from general purpose timer.
412 	 *  Otherwise trust scntl3 BIOS setting.
413 	 */
414 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
415 		OUTB(np, nc_stest1, 0);		/* make sure doubler is OFF */
416 		f1 = sym_getfreq (np);
417 
418 		if (sym_verbose)
419 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
420 
421 		if	(f1 <	45000)		f1 =  40000;
422 		else if (f1 <	55000)		f1 =  50000;
423 		else				f1 =  80000;
424 
425 		if (f1 < 80000 && mult > 1) {
426 			if (sym_verbose >= 2)
427 				printf ("%s: clock multiplier assumed\n",
428 					sym_name(np));
429 			np->multiplier	= mult;
430 		}
431 	} else {
432 		if	((scntl3 & 7) == 3)	f1 =  40000;
433 		else if	((scntl3 & 7) == 5)	f1 =  80000;
434 		else 				f1 = 160000;
435 
436 		f1 /= np->multiplier;
437 	}
438 
439 	/*
440 	 *  Compute controller synchronous parameters.
441 	 */
442 	f1		*= np->multiplier;
443 	np->clock_khz	= f1;
444 }
445 
446 /*
447  *  Get/probe PCI clock frequency
448  */
449 static int sym_getpciclock (struct sym_hcb *np)
450 {
451 	int f = 0;
452 
453 	/*
454 	 *  For now, we only need to know about the actual
455 	 *  PCI BUS clock frequency for C1010-66 chips.
456 	 */
457 #if 1
458 	if (np->features & FE_66MHZ) {
459 #else
460 	if (1) {
461 #endif
462 		OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
463 		f = sym_getfreq(np);
464 		OUTB(np, nc_stest1, 0);
465 	}
466 	np->pciclk_khz = f;
467 
468 	return f;
469 }
470 
471 /*
472  *  SYMBIOS chip clock divisor table.
473  *
474  *  Divisors are multiplied by 10,000,000 in order to make
475  *  calculations more simple.
476  */
477 #define _5M 5000000
478 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
479 
480 /*
481  *  Get clock factor and sync divisor for a given
482  *  synchronous factor period.
483  */
484 static int
485 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
486 {
487 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
488 	int	div = np->clock_divn;	/* Number of divisors supported	*/
489 	u32	fak;			/* Sync factor in sxfer		*/
490 	u32	per;			/* Period in tenths of ns	*/
491 	u32	kpc;			/* (per * clk)			*/
492 	int	ret;
493 
494 	/*
495 	 *  Compute the synchronous period in tenths of nano-seconds
496 	 */
497 	if (dt && sfac <= 9)	per = 125;
498 	else if	(sfac <= 10)	per = 250;
499 	else if	(sfac == 11)	per = 303;
500 	else if	(sfac == 12)	per = 500;
501 	else			per = 40 * sfac;
502 	ret = per;
503 
504 	kpc = per * clk;
505 	if (dt)
506 		kpc <<= 1;
507 
508 	/*
509 	 *  For earliest C10 revision 0, we cannot use extra
510 	 *  clocks for the setting of the SCSI clocking.
511 	 *  Note that this limits the lowest sync data transfer
512 	 *  to 5 Mega-transfers per second and may result in
513 	 *  using higher clock divisors.
514 	 */
515 #if 1
516 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
517 		/*
518 		 *  Look for the lowest clock divisor that allows an
519 		 *  output speed not faster than the period.
520 		 */
521 		while (div > 0) {
522 			--div;
523 			if (kpc > (div_10M[div] << 2)) {
524 				++div;
525 				break;
526 			}
527 		}
528 		fak = 0;			/* No extra clocks */
529 		if (div == np->clock_divn) {	/* Are we too fast ? */
530 			ret = -1;
531 		}
532 		*divp = div;
533 		*fakp = fak;
534 		return ret;
535 	}
536 #endif
537 
538 	/*
539 	 *  Look for the greatest clock divisor that allows an
540 	 *  input speed faster than the period.
541 	 */
542 	while (div-- > 0)
543 		if (kpc >= (div_10M[div] << 2)) break;
544 
545 	/*
546 	 *  Calculate the lowest clock factor that allows an output
547 	 *  speed not faster than the period, and the max output speed.
548 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
549 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
550 	 */
551 	if (dt) {
552 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
553 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
554 	} else {
555 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
556 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
557 	}
558 
559 	/*
560 	 *  Check against our hardware limits, or bugs :).
561 	 */
562 	if (fak > 2) {
563 		fak = 2;
564 		ret = -1;
565 	}
566 
567 	/*
568 	 *  Compute and return sync parameters.
569 	 */
570 	*divp = div;
571 	*fakp = fak;
572 
573 	return ret;
574 }
575 
576 /*
577  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
578  *  128 transfers. All chips support at least 16 transfers
579  *  bursts. The 825A, 875 and 895 chips support bursts of up
580  *  to 128 transfers and the 895A and 896 support bursts of up
581  *  to 64 transfers. All other chips support up to 16
582  *  transfers bursts.
583  *
584  *  For PCI 32 bit data transfers each transfer is a DWORD.
585  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
586  *
587  *  We use log base 2 (burst length) as internal code, with
588  *  value 0 meaning "burst disabled".
589  */
590 
591 /*
592  *  Burst length from burst code.
593  */
594 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
595 
596 /*
597  *  Burst code from io register bits.
598  */
599 #define burst_code(dmode, ctest4, ctest5) \
600 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
601 
602 /*
603  *  Set initial io register bits from burst code.
604  */
605 static inline void sym_init_burst(struct sym_hcb *np, u_char bc)
606 {
607 	np->rv_ctest4	&= ~0x80;
608 	np->rv_dmode	&= ~(0x3 << 6);
609 	np->rv_ctest5	&= ~0x4;
610 
611 	if (!bc) {
612 		np->rv_ctest4	|= 0x80;
613 	}
614 	else {
615 		--bc;
616 		np->rv_dmode	|= ((bc & 0x3) << 6);
617 		np->rv_ctest5	|= (bc & 0x4);
618 	}
619 }
620 
621 /*
622  *  Save initial settings of some IO registers.
623  *  Assumed to have been set by BIOS.
624  *  We cannot reset the chip prior to reading the
625  *  IO registers, since informations will be lost.
626  *  Since the SCRIPTS processor may be running, this
627  *  is not safe on paper, but it seems to work quite
628  *  well. :)
629  */
630 static void sym_save_initial_setting (struct sym_hcb *np)
631 {
632 	np->sv_scntl0	= INB(np, nc_scntl0) & 0x0a;
633 	np->sv_scntl3	= INB(np, nc_scntl3) & 0x07;
634 	np->sv_dmode	= INB(np, nc_dmode)  & 0xce;
635 	np->sv_dcntl	= INB(np, nc_dcntl)  & 0xa8;
636 	np->sv_ctest3	= INB(np, nc_ctest3) & 0x01;
637 	np->sv_ctest4	= INB(np, nc_ctest4) & 0x80;
638 	np->sv_gpcntl	= INB(np, nc_gpcntl);
639 	np->sv_stest1	= INB(np, nc_stest1);
640 	np->sv_stest2	= INB(np, nc_stest2) & 0x20;
641 	np->sv_stest4	= INB(np, nc_stest4);
642 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
643 		np->sv_scntl4	= INB(np, nc_scntl4);
644 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x04;
645 	}
646 	else
647 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x24;
648 }
649 
650 /*
651  *  Set SCSI BUS mode.
652  *  - LVD capable chips (895/895A/896/1010) report the current BUS mode
653  *    through the STEST4 IO register.
654  *  - For previous generation chips (825/825A/875), the user has to tell us
655  *    how to check against HVD, since a 100% safe algorithm is not possible.
656  */
657 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
658 {
659 	if (np->scsi_mode)
660 		return;
661 
662 	np->scsi_mode = SMODE_SE;
663 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
664 		np->scsi_mode = (np->sv_stest4 & SMODE);
665 	else if	(np->features & FE_DIFF) {
666 		if (SYM_SETUP_SCSI_DIFF == 1) {
667 			if (np->sv_scntl3) {
668 				if (np->sv_stest2 & 0x20)
669 					np->scsi_mode = SMODE_HVD;
670 			} else if (nvram->type == SYM_SYMBIOS_NVRAM) {
671 				if (!(INB(np, nc_gpreg) & 0x08))
672 					np->scsi_mode = SMODE_HVD;
673 			}
674 		} else if (SYM_SETUP_SCSI_DIFF == 2)
675 			np->scsi_mode = SMODE_HVD;
676 	}
677 	if (np->scsi_mode == SMODE_HVD)
678 		np->rv_stest2 |= 0x20;
679 }
680 
681 /*
682  *  Prepare io register values used by sym_start_up()
683  *  according to selected and supported features.
684  */
685 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
686 {
687 	struct sym_data *sym_data = shost_priv(shost);
688 	struct pci_dev *pdev = sym_data->pdev;
689 	u_char	burst_max;
690 	u32	period;
691 	int i;
692 
693 	np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
694 
695 	/*
696 	 *  Guess the frequency of the chip's clock.
697 	 */
698 	if	(np->features & (FE_ULTRA3 | FE_ULTRA2))
699 		np->clock_khz = 160000;
700 	else if	(np->features & FE_ULTRA)
701 		np->clock_khz = 80000;
702 	else
703 		np->clock_khz = 40000;
704 
705 	/*
706 	 *  Get the clock multiplier factor.
707  	 */
708 	if	(np->features & FE_QUAD)
709 		np->multiplier	= 4;
710 	else if	(np->features & FE_DBLR)
711 		np->multiplier	= 2;
712 	else
713 		np->multiplier	= 1;
714 
715 	/*
716 	 *  Measure SCSI clock frequency for chips
717 	 *  it may vary from assumed one.
718 	 */
719 	if (np->features & FE_VARCLK)
720 		sym_getclock(np, np->multiplier);
721 
722 	/*
723 	 * Divisor to be used for async (timer pre-scaler).
724 	 */
725 	i = np->clock_divn - 1;
726 	while (--i >= 0) {
727 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
728 			++i;
729 			break;
730 		}
731 	}
732 	np->rv_scntl3 = i+1;
733 
734 	/*
735 	 * The C1010 uses hardwired divisors for async.
736 	 * So, we just throw away, the async. divisor.:-)
737 	 */
738 	if (np->features & FE_C10)
739 		np->rv_scntl3 = 0;
740 
741 	/*
742 	 * Minimum synchronous period factor supported by the chip.
743 	 * Btw, 'period' is in tenths of nanoseconds.
744 	 */
745 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
746 
747 	if	(period <= 250)		np->minsync = 10;
748 	else if	(period <= 303)		np->minsync = 11;
749 	else if	(period <= 500)		np->minsync = 12;
750 	else				np->minsync = (period + 40 - 1) / 40;
751 
752 	/*
753 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
754 	 */
755 	if	(np->minsync < 25 &&
756 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
757 		np->minsync = 25;
758 	else if	(np->minsync < 12 &&
759 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
760 		np->minsync = 12;
761 
762 	/*
763 	 * Maximum synchronous period factor supported by the chip.
764 	 */
765 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
766 	np->maxsync = period > 2540 ? 254 : period / 10;
767 
768 	/*
769 	 * If chip is a C1010, guess the sync limits in DT mode.
770 	 */
771 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
772 		if (np->clock_khz == 160000) {
773 			np->minsync_dt = 9;
774 			np->maxsync_dt = 50;
775 			np->maxoffs_dt = nvram->type ? 62 : 31;
776 		}
777 	}
778 
779 	/*
780 	 *  64 bit addressing  (895A/896/1010) ?
781 	 */
782 	if (np->features & FE_DAC) {
783 		if (!use_dac(np))
784 			np->rv_ccntl1 |= (DDAC);
785 		else if (SYM_CONF_DMA_ADDRESSING_MODE == 1)
786 			np->rv_ccntl1 |= (XTIMOD | EXTIBMV);
787 		else if (SYM_CONF_DMA_ADDRESSING_MODE == 2)
788 			np->rv_ccntl1 |= (0 | EXTIBMV);
789 	}
790 
791 	/*
792 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
793   	 */
794 	if (np->features & FE_NOPM)
795 		np->rv_ccntl0	|= (ENPMJ);
796 
797  	/*
798 	 *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
799 	 *  In dual channel mode, contention occurs if internal cycles
800 	 *  are used. Disable internal cycles.
801 	 */
802 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
803 	    pdev->revision < 0x1)
804 		np->rv_ccntl0	|=  DILS;
805 
806 	/*
807 	 *  Select burst length (dwords)
808 	 */
809 	burst_max	= SYM_SETUP_BURST_ORDER;
810 	if (burst_max == 255)
811 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
812 				       np->sv_ctest5);
813 	if (burst_max > 7)
814 		burst_max = 7;
815 	if (burst_max > np->maxburst)
816 		burst_max = np->maxburst;
817 
818 	/*
819 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
820 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
821 	 *  based transactions on LOAD/STORE instructions. So we have
822 	 *  to prevent these chips from using such PCI transactions in
823 	 *  this driver. The generic ncr driver that does not use
824 	 *  LOAD/STORE instructions does not need this work-around.
825 	 */
826 	if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 &&
827 	     pdev->revision >= 0x10 && pdev->revision <= 0x11) ||
828 	    (pdev->device == PCI_DEVICE_ID_NCR_53C860 &&
829 	     pdev->revision <= 0x1))
830 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
831 
832 	/*
833 	 *  Select all supported special features.
834 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
835 	 *  does not help, but burst op fetch (BOF) does.
836 	 *  Disabling PFEN makes sure BOF will be used.
837 	 */
838 	if (np->features & FE_ERL)
839 		np->rv_dmode	|= ERL;		/* Enable Read Line */
840 	if (np->features & FE_BOF)
841 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
842 	if (np->features & FE_ERMP)
843 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
844 #if 1
845 	if ((np->features & FE_PFEN) && !np->ram_ba)
846 #else
847 	if (np->features & FE_PFEN)
848 #endif
849 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
850 	if (np->features & FE_CLSE)
851 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
852 	if (np->features & FE_WRIE)
853 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
854 	if (np->features & FE_DFS)
855 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
856 
857 	/*
858 	 *  Select some other
859 	 */
860 	np->rv_ctest4	|= MPEE; /* Master parity checking */
861 	np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
862 
863 	/*
864 	 *  Get parity checking, host ID and verbose mode from NVRAM
865 	 */
866 	np->myaddr = 255;
867 	np->scsi_mode = 0;
868 	sym_nvram_setup_host(shost, np, nvram);
869 
870 	/*
871 	 *  Get SCSI addr of host adapter (set by bios?).
872 	 */
873 	if (np->myaddr == 255) {
874 		np->myaddr = INB(np, nc_scid) & 0x07;
875 		if (!np->myaddr)
876 			np->myaddr = SYM_SETUP_HOST_ID;
877 	}
878 
879 	/*
880 	 *  Prepare initial io register bits for burst length
881 	 */
882 	sym_init_burst(np, burst_max);
883 
884 	sym_set_bus_mode(np, nvram);
885 
886 	/*
887 	 *  Set LED support from SCRIPTS.
888 	 *  Ignore this feature for boards known to use a
889 	 *  specific GPIO wiring and for the 895A, 896
890 	 *  and 1010 that drive the LED directly.
891 	 */
892 	if ((SYM_SETUP_SCSI_LED ||
893 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
894 	      (nvram->type == SYM_TEKRAM_NVRAM &&
895 	       pdev->device == PCI_DEVICE_ID_NCR_53C895))) &&
896 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
897 		np->features |= FE_LED0;
898 
899 	/*
900 	 *  Set irq mode.
901 	 */
902 	switch(SYM_SETUP_IRQ_MODE & 3) {
903 	case 2:
904 		np->rv_dcntl	|= IRQM;
905 		break;
906 	case 1:
907 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
908 		break;
909 	default:
910 		break;
911 	}
912 
913 	/*
914 	 *  Configure targets according to driver setup.
915 	 *  If NVRAM present get targets setup from NVRAM.
916 	 */
917 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
918 		struct sym_tcb *tp = &np->target[i];
919 
920 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
921 		tp->usrtags = SYM_SETUP_MAX_TAG;
922 		tp->usr_width = np->maxwide;
923 		tp->usr_period = 9;
924 
925 		sym_nvram_setup_target(tp, i, nvram);
926 
927 		if (!tp->usrtags)
928 			tp->usrflags &= ~SYM_TAGS_ENABLED;
929 	}
930 
931 	/*
932 	 *  Let user know about the settings.
933 	 */
934 	printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
935 		sym_nvram_type(nvram), np->myaddr,
936 		(np->features & FE_ULTRA3) ? 80 :
937 		(np->features & FE_ULTRA2) ? 40 :
938 		(np->features & FE_ULTRA)  ? 20 : 10,
939 		sym_scsi_bus_mode(np->scsi_mode),
940 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
941 	/*
942 	 *  Tell him more on demand.
943 	 */
944 	if (sym_verbose) {
945 		printf("%s: %s IRQ line driver%s\n",
946 			sym_name(np),
947 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
948 			np->ram_ba ? ", using on-chip SRAM" : "");
949 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
950 		if (np->features & FE_NOPM)
951 			printf("%s: handling phase mismatch from SCRIPTS.\n",
952 			       sym_name(np));
953 	}
954 	/*
955 	 *  And still more.
956 	 */
957 	if (sym_verbose >= 2) {
958 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
959 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
960 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
961 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
962 
963 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
964 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
965 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
966 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
967 	}
968 
969 	return 0;
970 }
971 
972 /*
973  *  Test the pci bus snoop logic :-(
974  *
975  *  Has to be called with interrupts disabled.
976  */
977 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
978 static int sym_regtest(struct sym_hcb *np)
979 {
980 	register volatile u32 data;
981 	/*
982 	 *  chip registers may NOT be cached.
983 	 *  write 0xffffffff to a read only register area,
984 	 *  and try to read it back.
985 	 */
986 	data = 0xffffffff;
987 	OUTL(np, nc_dstat, data);
988 	data = INL(np, nc_dstat);
989 #if 1
990 	if (data == 0xffffffff) {
991 #else
992 	if ((data & 0xe2f0fffd) != 0x02000080) {
993 #endif
994 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
995 			(unsigned) data);
996 		return 0x10;
997 	}
998 	return 0;
999 }
1000 #else
1001 static inline int sym_regtest(struct sym_hcb *np)
1002 {
1003 	return 0;
1004 }
1005 #endif
1006 
1007 static int sym_snooptest(struct sym_hcb *np)
1008 {
1009 	u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1010 	int i, err;
1011 
1012 	err = sym_regtest(np);
1013 	if (err)
1014 		return err;
1015 restart_test:
1016 	/*
1017 	 *  Enable Master Parity Checking as we intend
1018 	 *  to enable it for normal operations.
1019 	 */
1020 	OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1021 	/*
1022 	 *  init
1023 	 */
1024 	pc  = SCRIPTZ_BA(np, snooptest);
1025 	host_wr = 1;
1026 	sym_wr  = 2;
1027 	/*
1028 	 *  Set memory and register.
1029 	 */
1030 	np->scratch = cpu_to_scr(host_wr);
1031 	OUTL(np, nc_temp, sym_wr);
1032 	/*
1033 	 *  Start script (exchange values)
1034 	 */
1035 	OUTL(np, nc_dsa, np->hcb_ba);
1036 	OUTL_DSP(np, pc);
1037 	/*
1038 	 *  Wait 'til done (with timeout)
1039 	 */
1040 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1041 		if (INB(np, nc_istat) & (INTF|SIP|DIP))
1042 			break;
1043 	if (i>=SYM_SNOOP_TIMEOUT) {
1044 		printf ("CACHE TEST FAILED: timeout.\n");
1045 		return (0x20);
1046 	}
1047 	/*
1048 	 *  Check for fatal DMA errors.
1049 	 */
1050 	dstat = INB(np, nc_dstat);
1051 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
1052 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1053 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1054 			"DISABLING MASTER DATA PARITY CHECKING.\n",
1055 			sym_name(np));
1056 		np->rv_ctest4 &= ~MPEE;
1057 		goto restart_test;
1058 	}
1059 #endif
1060 	if (dstat & (MDPE|BF|IID)) {
1061 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1062 		return (0x80);
1063 	}
1064 	/*
1065 	 *  Save termination position.
1066 	 */
1067 	pc = INL(np, nc_dsp);
1068 	/*
1069 	 *  Read memory and register.
1070 	 */
1071 	host_rd = scr_to_cpu(np->scratch);
1072 	sym_rd  = INL(np, nc_scratcha);
1073 	sym_bk  = INL(np, nc_temp);
1074 	/*
1075 	 *  Check termination position.
1076 	 */
1077 	if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1078 		printf ("CACHE TEST FAILED: script execution failed.\n");
1079 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1080 			(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1081 			(u_long) SCRIPTZ_BA(np, snoopend) +8);
1082 		return (0x40);
1083 	}
1084 	/*
1085 	 *  Show results.
1086 	 */
1087 	if (host_wr != sym_rd) {
1088 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1089 			(int) host_wr, (int) sym_rd);
1090 		err |= 1;
1091 	}
1092 	if (host_rd != sym_wr) {
1093 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1094 			(int) sym_wr, (int) host_rd);
1095 		err |= 2;
1096 	}
1097 	if (sym_bk != sym_wr) {
1098 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1099 			(int) sym_wr, (int) sym_bk);
1100 		err |= 4;
1101 	}
1102 
1103 	return err;
1104 }
1105 
1106 /*
1107  *  log message for real hard errors
1108  *
1109  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1110  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1111  *
1112  *  exception register:
1113  *  	ds:	dstat
1114  *  	si:	sist
1115  *
1116  *  SCSI bus lines:
1117  *  	so:	control lines as driven by chip.
1118  *  	si:	control lines as seen by chip.
1119  *  	sd:	scsi data lines as seen by chip.
1120  *
1121  *  wide/fastmode:
1122  *  	sx:	sxfer  (see the manual)
1123  *  	s3:	scntl3 (see the manual)
1124  *  	s4:	scntl4 (see the manual)
1125  *
1126  *  current script command:
1127  *  	dsp:	script address (relative to start of script).
1128  *  	dbc:	first word of script command.
1129  *
1130  *  First 24 register of the chip:
1131  *  	r0..rf
1132  */
1133 static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat)
1134 {
1135 	struct sym_hcb *np = sym_get_hcb(shost);
1136 	u32	dsp;
1137 	int	script_ofs;
1138 	int	script_size;
1139 	char	*script_name;
1140 	u_char	*script_base;
1141 	int	i;
1142 
1143 	dsp	= INL(np, nc_dsp);
1144 
1145 	if	(dsp > np->scripta_ba &&
1146 		 dsp <= np->scripta_ba + np->scripta_sz) {
1147 		script_ofs	= dsp - np->scripta_ba;
1148 		script_size	= np->scripta_sz;
1149 		script_base	= (u_char *) np->scripta0;
1150 		script_name	= "scripta";
1151 	}
1152 	else if (np->scriptb_ba < dsp &&
1153 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
1154 		script_ofs	= dsp - np->scriptb_ba;
1155 		script_size	= np->scriptb_sz;
1156 		script_base	= (u_char *) np->scriptb0;
1157 		script_name	= "scriptb";
1158 	} else {
1159 		script_ofs	= dsp;
1160 		script_size	= 0;
1161 		script_base	= NULL;
1162 		script_name	= "mem";
1163 	}
1164 
1165 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1166 		sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1167 		(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1168 		(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1169 		(unsigned)INB(np, nc_scntl3),
1170 		(np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1171 		script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1172 
1173 	if (((script_ofs & 3) == 0) &&
1174 	    (unsigned)script_ofs < script_size) {
1175 		printf ("%s: script cmd = %08x\n", sym_name(np),
1176 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1177 	}
1178 
1179 	printf("%s: regdump:", sym_name(np));
1180 	for (i = 0; i < 24; i++)
1181 		printf(" %02x", (unsigned)INB_OFF(np, i));
1182 	printf(".\n");
1183 
1184 	/*
1185 	 *  PCI BUS error.
1186 	 */
1187 	if (dstat & (MDPE|BF))
1188 		sym_log_bus_error(shost);
1189 }
1190 
1191 void sym_dump_registers(struct Scsi_Host *shost)
1192 {
1193 	struct sym_hcb *np = sym_get_hcb(shost);
1194 	u_short sist;
1195 	u_char dstat;
1196 
1197 	sist = INW(np, nc_sist);
1198 	dstat = INB(np, nc_dstat);
1199 	sym_log_hard_error(shost, sist, dstat);
1200 }
1201 
1202 static struct sym_chip sym_dev_table[] = {
1203  {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1204  FE_ERL}
1205  ,
1206 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1207  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1208  FE_BOF}
1209  ,
1210 #else
1211  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1212  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1213  ,
1214 #endif
1215  {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1216  FE_BOF|FE_ERL}
1217  ,
1218  {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1219  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1220  ,
1221  {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1222  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1223  ,
1224  {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1225  FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1226  ,
1227  {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1228  FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1229  FE_RAM|FE_DIFF|FE_VARCLK}
1230  ,
1231  {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1232  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1233  FE_RAM|FE_DIFF|FE_VARCLK}
1234  ,
1235  {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1236  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1237  FE_RAM|FE_DIFF|FE_VARCLK}
1238  ,
1239  {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1240  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1241  FE_RAM|FE_DIFF|FE_VARCLK}
1242  ,
1243 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1244  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1245  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1246  FE_RAM|FE_LCKFRQ}
1247  ,
1248 #else
1249  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1250  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1251  FE_RAM|FE_LCKFRQ}
1252  ,
1253 #endif
1254  {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1255  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1256  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1257  ,
1258  {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1259  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1260  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1261  ,
1262  {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1263  FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1264  FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1265  ,
1266  {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1267  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1268  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1269  FE_C10}
1270  ,
1271  {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1272  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1273  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1274  FE_C10|FE_U3EN}
1275  ,
1276  {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1277  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1278  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1279  FE_C10|FE_U3EN}
1280  ,
1281  {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1282  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1283  FE_RAM|FE_IO256|FE_LEDC}
1284 };
1285 
1286 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1287 
1288 /*
1289  *  Look up the chip table.
1290  *
1291  *  Return a pointer to the chip entry if found,
1292  *  zero otherwise.
1293  */
1294 struct sym_chip *
1295 sym_lookup_chip_table (u_short device_id, u_char revision)
1296 {
1297 	struct	sym_chip *chip;
1298 	int	i;
1299 
1300 	for (i = 0; i < sym_num_devs; i++) {
1301 		chip = &sym_dev_table[i];
1302 		if (device_id != chip->device_id)
1303 			continue;
1304 		if (revision > chip->revision_id)
1305 			continue;
1306 		return chip;
1307 	}
1308 
1309 	return NULL;
1310 }
1311 
1312 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1313 /*
1314  *  Lookup the 64 bit DMA segments map.
1315  *  This is only used if the direct mapping
1316  *  has been unsuccessful.
1317  */
1318 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1319 {
1320 	int i;
1321 
1322 	if (!use_dac(np))
1323 		goto weird;
1324 
1325 	/* Look up existing mappings */
1326 	for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1327 		if (h == np->dmap_bah[i])
1328 			return i;
1329 	}
1330 	/* If direct mapping is free, get it */
1331 	if (!np->dmap_bah[s])
1332 		goto new;
1333 	/* Collision -> lookup free mappings */
1334 	for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1335 		if (!np->dmap_bah[s])
1336 			goto new;
1337 	}
1338 weird:
1339 	panic("sym: ran out of 64 bit DMA segment registers");
1340 	return -1;
1341 new:
1342 	np->dmap_bah[s] = h;
1343 	np->dmap_dirty = 1;
1344 	return s;
1345 }
1346 
1347 /*
1348  *  Update IO registers scratch C..R so they will be
1349  *  in sync. with queued CCB expectations.
1350  */
1351 static void sym_update_dmap_regs(struct sym_hcb *np)
1352 {
1353 	int o, i;
1354 
1355 	if (!np->dmap_dirty)
1356 		return;
1357 	o = offsetof(struct sym_reg, nc_scrx[0]);
1358 	for (i = 0; i < SYM_DMAP_SIZE; i++) {
1359 		OUTL_OFF(np, o, np->dmap_bah[i]);
1360 		o += 4;
1361 	}
1362 	np->dmap_dirty = 0;
1363 }
1364 #endif
1365 
1366 /* Enforce all the fiddly SPI rules and the chip limitations */
1367 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1368 		struct sym_trans *goal)
1369 {
1370 	if (!spi_support_wide(starget))
1371 		goal->width = 0;
1372 
1373 	if (!spi_support_sync(starget)) {
1374 		goal->iu = 0;
1375 		goal->dt = 0;
1376 		goal->qas = 0;
1377 		goal->offset = 0;
1378 		return;
1379 	}
1380 
1381 	if (spi_support_dt(starget)) {
1382 		if (spi_support_dt_only(starget))
1383 			goal->dt = 1;
1384 
1385 		if (goal->offset == 0)
1386 			goal->dt = 0;
1387 	} else {
1388 		goal->dt = 0;
1389 	}
1390 
1391 	/* Some targets fail to properly negotiate DT in SE mode */
1392 	if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1393 		goal->dt = 0;
1394 
1395 	if (goal->dt) {
1396 		/* all DT transfers must be wide */
1397 		goal->width = 1;
1398 		if (goal->offset > np->maxoffs_dt)
1399 			goal->offset = np->maxoffs_dt;
1400 		if (goal->period < np->minsync_dt)
1401 			goal->period = np->minsync_dt;
1402 		if (goal->period > np->maxsync_dt)
1403 			goal->period = np->maxsync_dt;
1404 	} else {
1405 		goal->iu = goal->qas = 0;
1406 		if (goal->offset > np->maxoffs)
1407 			goal->offset = np->maxoffs;
1408 		if (goal->period < np->minsync)
1409 			goal->period = np->minsync;
1410 		if (goal->period > np->maxsync)
1411 			goal->period = np->maxsync;
1412 	}
1413 }
1414 
1415 /*
1416  *  Prepare the next negotiation message if needed.
1417  *
1418  *  Fill in the part of message buffer that contains the
1419  *  negotiation and the nego_status field of the CCB.
1420  *  Returns the size of the message in bytes.
1421  */
1422 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1423 {
1424 	struct sym_tcb *tp = &np->target[cp->target];
1425 	struct scsi_target *starget = tp->starget;
1426 	struct sym_trans *goal = &tp->tgoal;
1427 	int msglen = 0;
1428 	int nego;
1429 
1430 	sym_check_goals(np, starget, goal);
1431 
1432 	/*
1433 	 * Many devices implement PPR in a buggy way, so only use it if we
1434 	 * really want to.
1435 	 */
1436 	if (goal->renego == NS_PPR || (goal->offset &&
1437 	    (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) {
1438 		nego = NS_PPR;
1439 	} else if (goal->renego == NS_WIDE || goal->width) {
1440 		nego = NS_WIDE;
1441 	} else if (goal->renego == NS_SYNC || goal->offset) {
1442 		nego = NS_SYNC;
1443 	} else {
1444 		goal->check_nego = 0;
1445 		nego = 0;
1446 	}
1447 
1448 	switch (nego) {
1449 	case NS_SYNC:
1450 		msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1451 				goal->offset);
1452 		break;
1453 	case NS_WIDE:
1454 		msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1455 		break;
1456 	case NS_PPR:
1457 		msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1458 				goal->offset, goal->width,
1459 				(goal->iu ? PPR_OPT_IU : 0) |
1460 					(goal->dt ? PPR_OPT_DT : 0) |
1461 					(goal->qas ? PPR_OPT_QAS : 0));
1462 		break;
1463 	}
1464 
1465 	cp->nego_status = nego;
1466 
1467 	if (nego) {
1468 		tp->nego_cp = cp; /* Keep track a nego will be performed */
1469 		if (DEBUG_FLAGS & DEBUG_NEGO) {
1470 			sym_print_nego_msg(np, cp->target,
1471 					  nego == NS_SYNC ? "sync msgout" :
1472 					  nego == NS_WIDE ? "wide msgout" :
1473 					  "ppr msgout", msgptr);
1474 		}
1475 	}
1476 
1477 	return msglen;
1478 }
1479 
1480 /*
1481  *  Insert a job into the start queue.
1482  */
1483 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1484 {
1485 	u_short	qidx;
1486 
1487 #ifdef SYM_CONF_IARB_SUPPORT
1488 	/*
1489 	 *  If the previously queued CCB is not yet done,
1490 	 *  set the IARB hint. The SCRIPTS will go with IARB
1491 	 *  for this job when starting the previous one.
1492 	 *  We leave devices a chance to win arbitration by
1493 	 *  not using more than 'iarb_max' consecutive
1494 	 *  immediate arbitrations.
1495 	 */
1496 	if (np->last_cp && np->iarb_count < np->iarb_max) {
1497 		np->last_cp->host_flags |= HF_HINT_IARB;
1498 		++np->iarb_count;
1499 	}
1500 	else
1501 		np->iarb_count = 0;
1502 	np->last_cp = cp;
1503 #endif
1504 
1505 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1506 	/*
1507 	 *  Make SCRIPTS aware of the 64 bit DMA
1508 	 *  segment registers not being up-to-date.
1509 	 */
1510 	if (np->dmap_dirty)
1511 		cp->host_xflags |= HX_DMAP_DIRTY;
1512 #endif
1513 
1514 	/*
1515 	 *  Insert first the idle task and then our job.
1516 	 *  The MBs should ensure proper ordering.
1517 	 */
1518 	qidx = np->squeueput + 2;
1519 	if (qidx >= MAX_QUEUE*2) qidx = 0;
1520 
1521 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
1522 	MEMORY_WRITE_BARRIER();
1523 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1524 
1525 	np->squeueput = qidx;
1526 
1527 	if (DEBUG_FLAGS & DEBUG_QUEUE)
1528 		scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n",
1529 							np->squeueput);
1530 
1531 	/*
1532 	 *  Script processor may be waiting for reselect.
1533 	 *  Wake it up.
1534 	 */
1535 	MEMORY_WRITE_BARRIER();
1536 	OUTB(np, nc_istat, SIGP|np->istat_sem);
1537 }
1538 
1539 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1540 /*
1541  *  Start next ready-to-start CCBs.
1542  */
1543 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1544 {
1545 	SYM_QUEHEAD *qp;
1546 	struct sym_ccb *cp;
1547 
1548 	/*
1549 	 *  Paranoia, as usual. :-)
1550 	 */
1551 	assert(!lp->started_tags || !lp->started_no_tag);
1552 
1553 	/*
1554 	 *  Try to start as many commands as asked by caller.
1555 	 *  Prevent from having both tagged and untagged
1556 	 *  commands queued to the device at the same time.
1557 	 */
1558 	while (maxn--) {
1559 		qp = sym_remque_head(&lp->waiting_ccbq);
1560 		if (!qp)
1561 			break;
1562 		cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1563 		if (cp->tag != NO_TAG) {
1564 			if (lp->started_no_tag ||
1565 			    lp->started_tags >= lp->started_max) {
1566 				sym_insque_head(qp, &lp->waiting_ccbq);
1567 				break;
1568 			}
1569 			lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1570 			lp->head.resel_sa =
1571 				cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1572 			++lp->started_tags;
1573 		} else {
1574 			if (lp->started_no_tag || lp->started_tags) {
1575 				sym_insque_head(qp, &lp->waiting_ccbq);
1576 				break;
1577 			}
1578 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1579 			lp->head.resel_sa =
1580 			      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1581 			++lp->started_no_tag;
1582 		}
1583 		cp->started = 1;
1584 		sym_insque_tail(qp, &lp->started_ccbq);
1585 		sym_put_start_queue(np, cp);
1586 	}
1587 }
1588 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1589 
1590 /*
1591  *  The chip may have completed jobs. Look at the DONE QUEUE.
1592  *
1593  *  On paper, memory read barriers may be needed here to
1594  *  prevent out of order LOADs by the CPU from having
1595  *  prefetched stale data prior to DMA having occurred.
1596  */
1597 static int sym_wakeup_done (struct sym_hcb *np)
1598 {
1599 	struct sym_ccb *cp;
1600 	int i, n;
1601 	u32 dsa;
1602 
1603 	n = 0;
1604 	i = np->dqueueget;
1605 
1606 	/* MEMORY_READ_BARRIER(); */
1607 	while (1) {
1608 		dsa = scr_to_cpu(np->dqueue[i]);
1609 		if (!dsa)
1610 			break;
1611 		np->dqueue[i] = 0;
1612 		if ((i = i+2) >= MAX_QUEUE*2)
1613 			i = 0;
1614 
1615 		cp = sym_ccb_from_dsa(np, dsa);
1616 		if (cp) {
1617 			MEMORY_READ_BARRIER();
1618 			sym_complete_ok (np, cp);
1619 			++n;
1620 		}
1621 		else
1622 			printf ("%s: bad DSA (%x) in done queue.\n",
1623 				sym_name(np), (u_int) dsa);
1624 	}
1625 	np->dqueueget = i;
1626 
1627 	return n;
1628 }
1629 
1630 /*
1631  *  Complete all CCBs queued to the COMP queue.
1632  *
1633  *  These CCBs are assumed:
1634  *  - Not to be referenced either by devices or
1635  *    SCRIPTS-related queues and datas.
1636  *  - To have to be completed with an error condition
1637  *    or requeued.
1638  *
1639  *  The device queue freeze count is incremented
1640  *  for each CCB that does not prevent this.
1641  *  This function is called when all CCBs involved
1642  *  in error handling/recovery have been reaped.
1643  */
1644 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1645 {
1646 	SYM_QUEHEAD *qp;
1647 	struct sym_ccb *cp;
1648 
1649 	while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) {
1650 		struct scsi_cmnd *cmd;
1651 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1652 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1653 		/* Leave quiet CCBs waiting for resources */
1654 		if (cp->host_status == HS_WAIT)
1655 			continue;
1656 		cmd = cp->cmd;
1657 		if (cam_status)
1658 			sym_set_cam_status(cmd, cam_status);
1659 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1660 		if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1661 			struct sym_tcb *tp = &np->target[cp->target];
1662 			struct sym_lcb *lp = sym_lp(tp, cp->lun);
1663 			if (lp) {
1664 				sym_remque(&cp->link2_ccbq);
1665 				sym_insque_tail(&cp->link2_ccbq,
1666 				                &lp->waiting_ccbq);
1667 				if (cp->started) {
1668 					if (cp->tag != NO_TAG)
1669 						--lp->started_tags;
1670 					else
1671 						--lp->started_no_tag;
1672 				}
1673 			}
1674 			cp->started = 0;
1675 			continue;
1676 		}
1677 #endif
1678 		sym_free_ccb(np, cp);
1679 		sym_xpt_done(np, cmd);
1680 	}
1681 }
1682 
1683 /*
1684  *  Complete all active CCBs with error.
1685  *  Used on CHIP/SCSI RESET.
1686  */
1687 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1688 {
1689 	/*
1690 	 *  Move all active CCBs to the COMP queue
1691 	 *  and flush this queue.
1692 	 */
1693 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1694 	sym_que_init(&np->busy_ccbq);
1695 	sym_flush_comp_queue(np, cam_status);
1696 }
1697 
1698 /*
1699  *  Start chip.
1700  *
1701  *  'reason' means:
1702  *     0: initialisation.
1703  *     1: SCSI BUS RESET delivered or received.
1704  *     2: SCSI BUS MODE changed.
1705  */
1706 void sym_start_up(struct Scsi_Host *shost, int reason)
1707 {
1708 	struct sym_data *sym_data = shost_priv(shost);
1709 	struct pci_dev *pdev = sym_data->pdev;
1710 	struct sym_hcb *np = sym_data->ncb;
1711  	int	i;
1712 	u32	phys;
1713 
1714  	/*
1715 	 *  Reset chip if asked, otherwise just clear fifos.
1716  	 */
1717 	if (reason == 1)
1718 		sym_soft_reset(np);
1719 	else {
1720 		OUTB(np, nc_stest3, TE|CSF);
1721 		OUTONB(np, nc_ctest3, CLF);
1722 	}
1723 
1724 	/*
1725 	 *  Clear Start Queue
1726 	 */
1727 	phys = np->squeue_ba;
1728 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1729 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1730 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1731 	}
1732 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1733 
1734 	/*
1735 	 *  Start at first entry.
1736 	 */
1737 	np->squeueput = 0;
1738 
1739 	/*
1740 	 *  Clear Done Queue
1741 	 */
1742 	phys = np->dqueue_ba;
1743 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1744 		np->dqueue[i]   = 0;
1745 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1746 	}
1747 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1748 
1749 	/*
1750 	 *  Start at first entry.
1751 	 */
1752 	np->dqueueget = 0;
1753 
1754 	/*
1755 	 *  Install patches in scripts.
1756 	 *  This also let point to first position the start
1757 	 *  and done queue pointers used from SCRIPTS.
1758 	 */
1759 	np->fw_patch(shost);
1760 
1761 	/*
1762 	 *  Wakeup all pending jobs.
1763 	 */
1764 	sym_flush_busy_queue(np, DID_RESET);
1765 
1766 	/*
1767 	 *  Init chip.
1768 	 */
1769 	OUTB(np, nc_istat,  0x00);			/*  Remove Reset, abort */
1770 	INB(np, nc_mbox1);
1771 	udelay(2000); /* The 895 needs time for the bus mode to settle */
1772 
1773 	OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1774 					/*  full arb., ena parity, par->ATN  */
1775 	OUTB(np, nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
1776 
1777 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
1778 
1779 	OUTB(np, nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
1780 	OUTW(np, nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
1781 	OUTB(np, nc_istat , SIGP	);		/*  Signal Process */
1782 	OUTB(np, nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
1783 	OUTB(np, nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
1784 
1785 	OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
1786 	OUTB(np, nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
1787 	OUTB(np, nc_ctest4, np->rv_ctest4);	/* Master parity checking */
1788 
1789 	/* Extended Sreq/Sack filtering not supported on the C10 */
1790 	if (np->features & FE_C10)
1791 		OUTB(np, nc_stest2, np->rv_stest2);
1792 	else
1793 		OUTB(np, nc_stest2, EXT|np->rv_stest2);
1794 
1795 	OUTB(np, nc_stest3, TE);			/* TolerANT enable */
1796 	OUTB(np, nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
1797 
1798 	/*
1799 	 *  For now, disable AIP generation on C1010-66.
1800 	 */
1801 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66)
1802 		OUTB(np, nc_aipcntl1, DISAIP);
1803 
1804 	/*
1805 	 *  C10101 rev. 0 errata.
1806 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
1807 	 *  STEST1 register to disable SGE. We probably should do
1808 	 *  that from SCRIPTS for each selection/reselection, but
1809 	 *  I just don't want. :)
1810 	 */
1811 	if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 &&
1812 	    pdev->revision < 1)
1813 		OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1814 
1815 	/*
1816 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1817 	 *  Disable overlapped arbitration for some dual function devices,
1818 	 *  regardless revision id (kind of post-chip-design feature. ;-))
1819 	 */
1820 	if (pdev->device == PCI_DEVICE_ID_NCR_53C875)
1821 		OUTB(np, nc_ctest0, (1<<5));
1822 	else if (pdev->device == PCI_DEVICE_ID_NCR_53C896)
1823 		np->rv_ccntl0 |= DPR;
1824 
1825 	/*
1826 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1827 	 *  and/or hardware phase mismatch, since only such chips
1828 	 *  seem to support those IO registers.
1829 	 */
1830 	if (np->features & (FE_DAC|FE_NOPM)) {
1831 		OUTB(np, nc_ccntl0, np->rv_ccntl0);
1832 		OUTB(np, nc_ccntl1, np->rv_ccntl1);
1833 	}
1834 
1835 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1836 	/*
1837 	 *  Set up scratch C and DRS IO registers to map the 32 bit
1838 	 *  DMA address range our data structures are located in.
1839 	 */
1840 	if (use_dac(np)) {
1841 		np->dmap_bah[0] = 0;	/* ??? */
1842 		OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1843 		OUTL(np, nc_drs, np->dmap_bah[0]);
1844 	}
1845 #endif
1846 
1847 	/*
1848 	 *  If phase mismatch handled by scripts (895A/896/1010),
1849 	 *  set PM jump addresses.
1850 	 */
1851 	if (np->features & FE_NOPM) {
1852 		OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1853 		OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1854 	}
1855 
1856 	/*
1857 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1858 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1859 	 */
1860 	if (np->features & FE_LED0)
1861 		OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1862 	else if (np->features & FE_LEDC)
1863 		OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1864 
1865 	/*
1866 	 *      enable ints
1867 	 */
1868 	OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1869 	OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1870 
1871 	/*
1872 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1873 	 *  Try to eat the spurious SBMC interrupt that may occur when
1874 	 *  we reset the chip but not the SCSI BUS (at initialization).
1875 	 */
1876 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1877 		OUTONW(np, nc_sien, SBMC);
1878 		if (reason == 0) {
1879 			INB(np, nc_mbox1);
1880 			mdelay(100);
1881 			INW(np, nc_sist);
1882 		}
1883 		np->scsi_mode = INB(np, nc_stest4) & SMODE;
1884 	}
1885 
1886 	/*
1887 	 *  Fill in target structure.
1888 	 *  Reinitialize usrsync.
1889 	 *  Reinitialize usrwide.
1890 	 *  Prepare sync negotiation according to actual SCSI bus mode.
1891 	 */
1892 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1893 		struct sym_tcb *tp = &np->target[i];
1894 
1895 		tp->to_reset  = 0;
1896 		tp->head.sval = 0;
1897 		tp->head.wval = np->rv_scntl3;
1898 		tp->head.uval = 0;
1899 		if (tp->lun0p)
1900 			tp->lun0p->to_clear = 0;
1901 		if (tp->lunmp) {
1902 			int ln;
1903 
1904 			for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++)
1905 				if (tp->lunmp[ln])
1906 					tp->lunmp[ln]->to_clear = 0;
1907 		}
1908 	}
1909 
1910 	/*
1911 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
1912 	 *  and start script processor.
1913 	 *  We do the download preferently from the CPU.
1914 	 *  For platforms that may not support PCI memory mapping,
1915 	 *  we use simple SCRIPTS that performs MEMORY MOVEs.
1916 	 */
1917 	phys = SCRIPTA_BA(np, init);
1918 	if (np->ram_ba) {
1919 		if (sym_verbose >= 2)
1920 			printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1921 		memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1922 		if (np->features & FE_RAM8K) {
1923 			memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1924 			phys = scr_to_cpu(np->scr_ram_seg);
1925 			OUTL(np, nc_mmws, phys);
1926 			OUTL(np, nc_mmrs, phys);
1927 			OUTL(np, nc_sfs,  phys);
1928 			phys = SCRIPTB_BA(np, start64);
1929 		}
1930 	}
1931 
1932 	np->istat_sem = 0;
1933 
1934 	OUTL(np, nc_dsa, np->hcb_ba);
1935 	OUTL_DSP(np, phys);
1936 
1937 	/*
1938 	 *  Notify the XPT about the RESET condition.
1939 	 */
1940 	if (reason != 0)
1941 		sym_xpt_async_bus_reset(np);
1942 }
1943 
1944 /*
1945  *  Switch trans mode for current job and its target.
1946  */
1947 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1948 			 u_char per, u_char wide, u_char div, u_char fak)
1949 {
1950 	SYM_QUEHEAD *qp;
1951 	u_char sval, wval, uval;
1952 	struct sym_tcb *tp = &np->target[target];
1953 
1954 	assert(target == (INB(np, nc_sdid) & 0x0f));
1955 
1956 	sval = tp->head.sval;
1957 	wval = tp->head.wval;
1958 	uval = tp->head.uval;
1959 
1960 #if 0
1961 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1962 		sval, wval, uval, np->rv_scntl3);
1963 #endif
1964 	/*
1965 	 *  Set the offset.
1966 	 */
1967 	if (!(np->features & FE_C10))
1968 		sval = (sval & ~0x1f) | ofs;
1969 	else
1970 		sval = (sval & ~0x3f) | ofs;
1971 
1972 	/*
1973 	 *  Set the sync divisor and extra clock factor.
1974 	 */
1975 	if (ofs != 0) {
1976 		wval = (wval & ~0x70) | ((div+1) << 4);
1977 		if (!(np->features & FE_C10))
1978 			sval = (sval & ~0xe0) | (fak << 5);
1979 		else {
1980 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1981 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1982 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1983 		}
1984 	}
1985 
1986 	/*
1987 	 *  Set the bus width.
1988 	 */
1989 	wval = wval & ~EWS;
1990 	if (wide != 0)
1991 		wval |= EWS;
1992 
1993 	/*
1994 	 *  Set misc. ultra enable bits.
1995 	 */
1996 	if (np->features & FE_C10) {
1997 		uval = uval & ~(U3EN|AIPCKEN);
1998 		if (opts)	{
1999 			assert(np->features & FE_U3EN);
2000 			uval |= U3EN;
2001 		}
2002 	} else {
2003 		wval = wval & ~ULTRA;
2004 		if (per <= 12)	wval |= ULTRA;
2005 	}
2006 
2007 	/*
2008 	 *   Stop there if sync parameters are unchanged.
2009 	 */
2010 	if (tp->head.sval == sval &&
2011 	    tp->head.wval == wval &&
2012 	    tp->head.uval == uval)
2013 		return;
2014 	tp->head.sval = sval;
2015 	tp->head.wval = wval;
2016 	tp->head.uval = uval;
2017 
2018 	/*
2019 	 *  Disable extended Sreq/Sack filtering if per < 50.
2020 	 *  Not supported on the C1010.
2021 	 */
2022 	if (per < 50 && !(np->features & FE_C10))
2023 		OUTOFFB(np, nc_stest2, EXT);
2024 
2025 	/*
2026 	 *  set actual value and sync_status
2027 	 */
2028 	OUTB(np, nc_sxfer,  tp->head.sval);
2029 	OUTB(np, nc_scntl3, tp->head.wval);
2030 
2031 	if (np->features & FE_C10) {
2032 		OUTB(np, nc_scntl4, tp->head.uval);
2033 	}
2034 
2035 	/*
2036 	 *  patch ALL busy ccbs of this target.
2037 	 */
2038 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2039 		struct sym_ccb *cp;
2040 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2041 		if (cp->target != target)
2042 			continue;
2043 		cp->phys.select.sel_scntl3 = tp->head.wval;
2044 		cp->phys.select.sel_sxfer  = tp->head.sval;
2045 		if (np->features & FE_C10) {
2046 			cp->phys.select.sel_scntl4 = tp->head.uval;
2047 		}
2048 	}
2049 }
2050 
2051 static void sym_announce_transfer_rate(struct sym_tcb *tp)
2052 {
2053 	struct scsi_target *starget = tp->starget;
2054 
2055 	if (tp->tprint.period != spi_period(starget) ||
2056 	    tp->tprint.offset != spi_offset(starget) ||
2057 	    tp->tprint.width != spi_width(starget) ||
2058 	    tp->tprint.iu != spi_iu(starget) ||
2059 	    tp->tprint.dt != spi_dt(starget) ||
2060 	    tp->tprint.qas != spi_qas(starget) ||
2061 	    !tp->tprint.check_nego) {
2062 		tp->tprint.period = spi_period(starget);
2063 		tp->tprint.offset = spi_offset(starget);
2064 		tp->tprint.width = spi_width(starget);
2065 		tp->tprint.iu = spi_iu(starget);
2066 		tp->tprint.dt = spi_dt(starget);
2067 		tp->tprint.qas = spi_qas(starget);
2068 		tp->tprint.check_nego = 1;
2069 
2070 		spi_display_xfer_agreement(starget);
2071 	}
2072 }
2073 
2074 /*
2075  *  We received a WDTR.
2076  *  Let everything be aware of the changes.
2077  */
2078 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2079 {
2080 	struct sym_tcb *tp = &np->target[target];
2081 	struct scsi_target *starget = tp->starget;
2082 
2083 	sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2084 
2085 	if (wide)
2086 		tp->tgoal.renego = NS_WIDE;
2087 	else
2088 		tp->tgoal.renego = 0;
2089 	tp->tgoal.check_nego = 0;
2090 	tp->tgoal.width = wide;
2091 	spi_offset(starget) = 0;
2092 	spi_period(starget) = 0;
2093 	spi_width(starget) = wide;
2094 	spi_iu(starget) = 0;
2095 	spi_dt(starget) = 0;
2096 	spi_qas(starget) = 0;
2097 
2098 	if (sym_verbose >= 3)
2099 		sym_announce_transfer_rate(tp);
2100 }
2101 
2102 /*
2103  *  We received a SDTR.
2104  *  Let everything be aware of the changes.
2105  */
2106 static void
2107 sym_setsync(struct sym_hcb *np, int target,
2108             u_char ofs, u_char per, u_char div, u_char fak)
2109 {
2110 	struct sym_tcb *tp = &np->target[target];
2111 	struct scsi_target *starget = tp->starget;
2112 	u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2113 
2114 	sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2115 
2116 	if (wide)
2117 		tp->tgoal.renego = NS_WIDE;
2118 	else if (ofs)
2119 		tp->tgoal.renego = NS_SYNC;
2120 	else
2121 		tp->tgoal.renego = 0;
2122 	spi_period(starget) = per;
2123 	spi_offset(starget) = ofs;
2124 	spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2125 
2126 	if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2127 		tp->tgoal.period = per;
2128 		tp->tgoal.offset = ofs;
2129 		tp->tgoal.check_nego = 0;
2130 	}
2131 
2132 	sym_announce_transfer_rate(tp);
2133 }
2134 
2135 /*
2136  *  We received a PPR.
2137  *  Let everything be aware of the changes.
2138  */
2139 static void
2140 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2141              u_char per, u_char wide, u_char div, u_char fak)
2142 {
2143 	struct sym_tcb *tp = &np->target[target];
2144 	struct scsi_target *starget = tp->starget;
2145 
2146 	sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2147 
2148 	if (wide || ofs)
2149 		tp->tgoal.renego = NS_PPR;
2150 	else
2151 		tp->tgoal.renego = 0;
2152 	spi_width(starget) = tp->tgoal.width = wide;
2153 	spi_period(starget) = tp->tgoal.period = per;
2154 	spi_offset(starget) = tp->tgoal.offset = ofs;
2155 	spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2156 	spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2157 	spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2158 	tp->tgoal.check_nego = 0;
2159 
2160 	sym_announce_transfer_rate(tp);
2161 }
2162 
2163 /*
2164  *  generic recovery from scsi interrupt
2165  *
2166  *  The doc says that when the chip gets an SCSI interrupt,
2167  *  it tries to stop in an orderly fashion, by completing
2168  *  an instruction fetch that had started or by flushing
2169  *  the DMA fifo for a write to memory that was executing.
2170  *  Such a fashion is not enough to know if the instruction
2171  *  that was just before the current DSP value has been
2172  *  executed or not.
2173  *
2174  *  There are some small SCRIPTS sections that deal with
2175  *  the start queue and the done queue that may break any
2176  *  assomption from the C code if we are interrupted
2177  *  inside, so we reset if this happens. Btw, since these
2178  *  SCRIPTS sections are executed while the SCRIPTS hasn't
2179  *  started SCSI operations, it is very unlikely to happen.
2180  *
2181  *  All the driver data structures are supposed to be
2182  *  allocated from the same 4 GB memory window, so there
2183  *  is a 1 to 1 relationship between DSA and driver data
2184  *  structures. Since we are careful :) to invalidate the
2185  *  DSA when we complete a command or when the SCRIPTS
2186  *  pushes a DSA into a queue, we can trust it when it
2187  *  points to a CCB.
2188  */
2189 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2190 {
2191 	u32	dsp	= INL(np, nc_dsp);
2192 	u32	dsa	= INL(np, nc_dsa);
2193 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2194 
2195 	/*
2196 	 *  If we haven't been interrupted inside the SCRIPTS
2197 	 *  critical pathes, we can safely restart the SCRIPTS
2198 	 *  and trust the DSA value if it matches a CCB.
2199 	 */
2200 	if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2201 	       dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2202 	    (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2203 	       dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2204 	    (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2205 	       dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2206 	    (!(dsp > SCRIPTA_BA(np, done) &&
2207 	       dsp < SCRIPTA_BA(np, done_end) + 1))) {
2208 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2209 		OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2210 		/*
2211 		 *  If we have a CCB, let the SCRIPTS call us back for
2212 		 *  the handling of the error with SCRATCHA filled with
2213 		 *  STARTPOS. This way, we will be able to freeze the
2214 		 *  device queue and requeue awaiting IOs.
2215 		 */
2216 		if (cp) {
2217 			cp->host_status = hsts;
2218 			OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2219 		}
2220 		/*
2221 		 *  Otherwise just restart the SCRIPTS.
2222 		 */
2223 		else {
2224 			OUTL(np, nc_dsa, 0xffffff);
2225 			OUTL_DSP(np, SCRIPTA_BA(np, start));
2226 		}
2227 	}
2228 	else
2229 		goto reset_all;
2230 
2231 	return;
2232 
2233 reset_all:
2234 	sym_start_reset(np);
2235 }
2236 
2237 /*
2238  *  chip exception handler for selection timeout
2239  */
2240 static void sym_int_sto (struct sym_hcb *np)
2241 {
2242 	u32 dsp	= INL(np, nc_dsp);
2243 
2244 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2245 
2246 	if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2247 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2248 	else
2249 		sym_start_reset(np);
2250 }
2251 
2252 /*
2253  *  chip exception handler for unexpected disconnect
2254  */
2255 static void sym_int_udc (struct sym_hcb *np)
2256 {
2257 	printf ("%s: unexpected disconnect\n", sym_name(np));
2258 	sym_recover_scsi_int(np, HS_UNEXPECTED);
2259 }
2260 
2261 /*
2262  *  chip exception handler for SCSI bus mode change
2263  *
2264  *  spi2-r12 11.2.3 says a transceiver mode change must
2265  *  generate a reset event and a device that detects a reset
2266  *  event shall initiate a hard reset. It says also that a
2267  *  device that detects a mode change shall set data transfer
2268  *  mode to eight bit asynchronous, etc...
2269  *  So, just reinitializing all except chip should be enough.
2270  */
2271 static void sym_int_sbmc(struct Scsi_Host *shost)
2272 {
2273 	struct sym_hcb *np = sym_get_hcb(shost);
2274 	u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2275 
2276 	/*
2277 	 *  Notify user.
2278 	 */
2279 	printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2280 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2281 
2282 	/*
2283 	 *  Should suspend command processing for a few seconds and
2284 	 *  reinitialize all except the chip.
2285 	 */
2286 	sym_start_up(shost, 2);
2287 }
2288 
2289 /*
2290  *  chip exception handler for SCSI parity error.
2291  *
2292  *  When the chip detects a SCSI parity error and is
2293  *  currently executing a (CH)MOV instruction, it does
2294  *  not interrupt immediately, but tries to finish the
2295  *  transfer of the current scatter entry before
2296  *  interrupting. The following situations may occur:
2297  *
2298  *  - The complete scatter entry has been transferred
2299  *    without the device having changed phase.
2300  *    The chip will then interrupt with the DSP pointing
2301  *    to the instruction that follows the MOV.
2302  *
2303  *  - A phase mismatch occurs before the MOV finished
2304  *    and phase errors are to be handled by the C code.
2305  *    The chip will then interrupt with both PAR and MA
2306  *    conditions set.
2307  *
2308  *  - A phase mismatch occurs before the MOV finished and
2309  *    phase errors are to be handled by SCRIPTS.
2310  *    The chip will load the DSP with the phase mismatch
2311  *    JUMP address and interrupt the host processor.
2312  */
2313 static void sym_int_par (struct sym_hcb *np, u_short sist)
2314 {
2315 	u_char	hsts	= INB(np, HS_PRT);
2316 	u32	dsp	= INL(np, nc_dsp);
2317 	u32	dbc	= INL(np, nc_dbc);
2318 	u32	dsa	= INL(np, nc_dsa);
2319 	u_char	sbcl	= INB(np, nc_sbcl);
2320 	u_char	cmd	= dbc >> 24;
2321 	int phase	= cmd & 7;
2322 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2323 
2324 	if (printk_ratelimit())
2325 		printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2326 			sym_name(np), hsts, dbc, sbcl);
2327 
2328 	/*
2329 	 *  Check that the chip is connected to the SCSI BUS.
2330 	 */
2331 	if (!(INB(np, nc_scntl1) & ISCON)) {
2332 		sym_recover_scsi_int(np, HS_UNEXPECTED);
2333 		return;
2334 	}
2335 
2336 	/*
2337 	 *  If the nexus is not clearly identified, reset the bus.
2338 	 *  We will try to do better later.
2339 	 */
2340 	if (!cp)
2341 		goto reset_all;
2342 
2343 	/*
2344 	 *  Check instruction was a MOV, direction was INPUT and
2345 	 *  ATN is asserted.
2346 	 */
2347 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2348 		goto reset_all;
2349 
2350 	/*
2351 	 *  Keep track of the parity error.
2352 	 */
2353 	OUTONB(np, HF_PRT, HF_EXT_ERR);
2354 	cp->xerr_status |= XE_PARITY_ERR;
2355 
2356 	/*
2357 	 *  Prepare the message to send to the device.
2358 	 */
2359 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2360 
2361 	/*
2362 	 *  If the old phase was DATA IN phase, we have to deal with
2363 	 *  the 3 situations described above.
2364 	 *  For other input phases (MSG IN and STATUS), the device
2365 	 *  must resend the whole thing that failed parity checking
2366 	 *  or signal error. So, jumping to dispatcher should be OK.
2367 	 */
2368 	if (phase == 1 || phase == 5) {
2369 		/* Phase mismatch handled by SCRIPTS */
2370 		if (dsp == SCRIPTB_BA(np, pm_handle))
2371 			OUTL_DSP(np, dsp);
2372 		/* Phase mismatch handled by the C code */
2373 		else if (sist & MA)
2374 			sym_int_ma (np);
2375 		/* No phase mismatch occurred */
2376 		else {
2377 			sym_set_script_dp (np, cp, dsp);
2378 			OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2379 		}
2380 	}
2381 	else if (phase == 7)	/* We definitely cannot handle parity errors */
2382 #if 1				/* in message-in phase due to the relection  */
2383 		goto reset_all; /* path and various message anticipations.   */
2384 #else
2385 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2386 #endif
2387 	else
2388 		OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2389 	return;
2390 
2391 reset_all:
2392 	sym_start_reset(np);
2393 	return;
2394 }
2395 
2396 /*
2397  *  chip exception handler for phase errors.
2398  *
2399  *  We have to construct a new transfer descriptor,
2400  *  to transfer the rest of the current block.
2401  */
2402 static void sym_int_ma (struct sym_hcb *np)
2403 {
2404 	u32	dbc;
2405 	u32	rest;
2406 	u32	dsp;
2407 	u32	dsa;
2408 	u32	nxtdsp;
2409 	u32	*vdsp;
2410 	u32	oadr, olen;
2411 	u32	*tblp;
2412         u32	newcmd;
2413 	u_int	delta;
2414 	u_char	cmd;
2415 	u_char	hflags, hflags0;
2416 	struct	sym_pmc *pm;
2417 	struct sym_ccb *cp;
2418 
2419 	dsp	= INL(np, nc_dsp);
2420 	dbc	= INL(np, nc_dbc);
2421 	dsa	= INL(np, nc_dsa);
2422 
2423 	cmd	= dbc >> 24;
2424 	rest	= dbc & 0xffffff;
2425 	delta	= 0;
2426 
2427 	/*
2428 	 *  locate matching cp if any.
2429 	 */
2430 	cp = sym_ccb_from_dsa(np, dsa);
2431 
2432 	/*
2433 	 *  Donnot take into account dma fifo and various buffers in
2434 	 *  INPUT phase since the chip flushes everything before
2435 	 *  raising the MA interrupt for interrupted INPUT phases.
2436 	 *  For DATA IN phase, we will check for the SWIDE later.
2437 	 */
2438 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2439 		u_char ss0, ss2;
2440 
2441 		if (np->features & FE_DFBC)
2442 			delta = INW(np, nc_dfbc);
2443 		else {
2444 			u32 dfifo;
2445 
2446 			/*
2447 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2448 			 */
2449 			dfifo = INL(np, nc_dfifo);
2450 
2451 			/*
2452 			 *  Calculate remaining bytes in DMA fifo.
2453 			 *  (CTEST5 = dfifo >> 16)
2454 			 */
2455 			if (dfifo & (DFS << 16))
2456 				delta = ((((dfifo >> 8) & 0x300) |
2457 				          (dfifo & 0xff)) - rest) & 0x3ff;
2458 			else
2459 				delta = ((dfifo & 0xff) - rest) & 0x7f;
2460 		}
2461 
2462 		/*
2463 		 *  The data in the dma fifo has not been transfered to
2464 		 *  the target -> add the amount to the rest
2465 		 *  and clear the data.
2466 		 *  Check the sstat2 register in case of wide transfer.
2467 		 */
2468 		rest += delta;
2469 		ss0  = INB(np, nc_sstat0);
2470 		if (ss0 & OLF) rest++;
2471 		if (!(np->features & FE_C10))
2472 			if (ss0 & ORF) rest++;
2473 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2474 			ss2 = INB(np, nc_sstat2);
2475 			if (ss2 & OLF1) rest++;
2476 			if (!(np->features & FE_C10))
2477 				if (ss2 & ORF1) rest++;
2478 		}
2479 
2480 		/*
2481 		 *  Clear fifos.
2482 		 */
2483 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
2484 		OUTB(np, nc_stest3, TE|CSF);		/* scsi fifo */
2485 	}
2486 
2487 	/*
2488 	 *  log the information
2489 	 */
2490 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2491 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2492 			(unsigned) rest, (unsigned) delta);
2493 
2494 	/*
2495 	 *  try to find the interrupted script command,
2496 	 *  and the address at which to continue.
2497 	 */
2498 	vdsp	= NULL;
2499 	nxtdsp	= 0;
2500 	if	(dsp >  np->scripta_ba &&
2501 		 dsp <= np->scripta_ba + np->scripta_sz) {
2502 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2503 		nxtdsp = dsp;
2504 	}
2505 	else if	(dsp >  np->scriptb_ba &&
2506 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
2507 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2508 		nxtdsp = dsp;
2509 	}
2510 
2511 	/*
2512 	 *  log the information
2513 	 */
2514 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2515 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2516 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2517 	}
2518 
2519 	if (!vdsp) {
2520 		printf ("%s: interrupted SCRIPT address not found.\n",
2521 			sym_name (np));
2522 		goto reset_all;
2523 	}
2524 
2525 	if (!cp) {
2526 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2527 			sym_name (np));
2528 		goto reset_all;
2529 	}
2530 
2531 	/*
2532 	 *  get old startaddress and old length.
2533 	 */
2534 	oadr = scr_to_cpu(vdsp[1]);
2535 
2536 	if (cmd & 0x10) {	/* Table indirect */
2537 		tblp = (u32 *) ((char*) &cp->phys + oadr);
2538 		olen = scr_to_cpu(tblp[0]);
2539 		oadr = scr_to_cpu(tblp[1]);
2540 	} else {
2541 		tblp = (u32 *) 0;
2542 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2543 	}
2544 
2545 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2546 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2547 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2548 			tblp,
2549 			(unsigned) olen,
2550 			(unsigned) oadr);
2551 	}
2552 
2553 	/*
2554 	 *  check cmd against assumed interrupted script command.
2555 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
2556 	 *  the phase.
2557 	 */
2558 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2559 		sym_print_addr(cp->cmd,
2560 			"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2561 			cmd, scr_to_cpu(vdsp[0]) >> 24);
2562 
2563 		goto reset_all;
2564 	}
2565 
2566 	/*
2567 	 *  if old phase not dataphase, leave here.
2568 	 */
2569 	if (cmd & 2) {
2570 		sym_print_addr(cp->cmd,
2571 			"phase change %x-%x %d@%08x resid=%d.\n",
2572 			cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2573 			(unsigned)oadr, (unsigned)rest);
2574 		goto unexpected_phase;
2575 	}
2576 
2577 	/*
2578 	 *  Choose the correct PM save area.
2579 	 *
2580 	 *  Look at the PM_SAVE SCRIPT if you want to understand
2581 	 *  this stuff. The equivalent code is implemented in
2582 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
2583 	 *  handle PM from the SCRIPTS processor.
2584 	 */
2585 	hflags0 = INB(np, HF_PRT);
2586 	hflags = hflags0;
2587 
2588 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2589 		if (hflags & HF_IN_PM0)
2590 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2591 		else if	(hflags & HF_IN_PM1)
2592 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2593 
2594 		if (hflags & HF_DP_SAVED)
2595 			hflags ^= HF_ACT_PM;
2596 	}
2597 
2598 	if (!(hflags & HF_ACT_PM)) {
2599 		pm = &cp->phys.pm0;
2600 		newcmd = SCRIPTA_BA(np, pm0_data);
2601 	}
2602 	else {
2603 		pm = &cp->phys.pm1;
2604 		newcmd = SCRIPTA_BA(np, pm1_data);
2605 	}
2606 
2607 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2608 	if (hflags != hflags0)
2609 		OUTB(np, HF_PRT, hflags);
2610 
2611 	/*
2612 	 *  fillin the phase mismatch context
2613 	 */
2614 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2615 	pm->sg.size = cpu_to_scr(rest);
2616 	pm->ret     = cpu_to_scr(nxtdsp);
2617 
2618 	/*
2619 	 *  If we have a SWIDE,
2620 	 *  - prepare the address to write the SWIDE from SCRIPTS,
2621 	 *  - compute the SCRIPTS address to restart from,
2622 	 *  - move current data pointer context by one byte.
2623 	 */
2624 	nxtdsp = SCRIPTA_BA(np, dispatch);
2625 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2626 	    (INB(np, nc_scntl2) & WSR)) {
2627 		u32 tmp;
2628 
2629 		/*
2630 		 *  Set up the table indirect for the MOVE
2631 		 *  of the residual byte and adjust the data
2632 		 *  pointer context.
2633 		 */
2634 		tmp = scr_to_cpu(pm->sg.addr);
2635 		cp->phys.wresid.addr = cpu_to_scr(tmp);
2636 		pm->sg.addr = cpu_to_scr(tmp + 1);
2637 		tmp = scr_to_cpu(pm->sg.size);
2638 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2639 		pm->sg.size = cpu_to_scr(tmp - 1);
2640 
2641 		/*
2642 		 *  If only the residual byte is to be moved,
2643 		 *  no PM context is needed.
2644 		 */
2645 		if ((tmp&0xffffff) == 1)
2646 			newcmd = pm->ret;
2647 
2648 		/*
2649 		 *  Prepare the address of SCRIPTS that will
2650 		 *  move the residual byte to memory.
2651 		 */
2652 		nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2653 	}
2654 
2655 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2656 		sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2657 			hflags0, hflags, newcmd,
2658 			(unsigned)scr_to_cpu(pm->sg.addr),
2659 			(unsigned)scr_to_cpu(pm->sg.size),
2660 			(unsigned)scr_to_cpu(pm->ret));
2661 	}
2662 
2663 	/*
2664 	 *  Restart the SCRIPTS processor.
2665 	 */
2666 	sym_set_script_dp (np, cp, newcmd);
2667 	OUTL_DSP(np, nxtdsp);
2668 	return;
2669 
2670 	/*
2671 	 *  Unexpected phase changes that occurs when the current phase
2672 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
2673 	 *  Such event may only happen when the SCRIPTS is using a
2674 	 *  multibyte SCSI MOVE.
2675 	 *
2676 	 *  Phase change		Some possible cause
2677 	 *
2678 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
2679 	 *  COMMAND  --> STATUS	Bad command or refused by target.
2680 	 *  MSG OUT  --> MSG IN     Message rejected by target.
2681 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
2682 	 *  			negotiation messages.
2683 	 *
2684 	 *  The code below does not care of the new phase and so
2685 	 *  trusts the target. Why to annoy it ?
2686 	 *  If the interrupted phase is COMMAND phase, we restart at
2687 	 *  dispatcher.
2688 	 *  If a target does not get all the messages after selection,
2689 	 *  the code assumes blindly that the target discards extended
2690 	 *  messages and clears the negotiation status.
2691 	 *  If the target does not want all our response to negotiation,
2692 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2693 	 *  bloat for such a should_not_happen situation).
2694 	 *  In all other situation, we reset the BUS.
2695 	 *  Are these assumptions reasonnable ? (Wait and see ...)
2696 	 */
2697 unexpected_phase:
2698 	dsp -= 8;
2699 	nxtdsp = 0;
2700 
2701 	switch (cmd & 7) {
2702 	case 2:	/* COMMAND phase */
2703 		nxtdsp = SCRIPTA_BA(np, dispatch);
2704 		break;
2705 #if 0
2706 	case 3:	/* STATUS  phase */
2707 		nxtdsp = SCRIPTA_BA(np, dispatch);
2708 		break;
2709 #endif
2710 	case 6:	/* MSG OUT phase */
2711 		/*
2712 		 *  If the device may want to use untagged when we want
2713 		 *  tagged, we prepare an IDENTIFY without disc. granted,
2714 		 *  since we will not be able to handle reselect.
2715 		 *  Otherwise, we just don't care.
2716 		 */
2717 		if	(dsp == SCRIPTA_BA(np, send_ident)) {
2718 			if (cp->tag != NO_TAG && olen - rest <= 3) {
2719 				cp->host_status = HS_BUSY;
2720 				np->msgout[0] = IDENTIFY(0, cp->lun);
2721 				nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2722 			}
2723 			else
2724 				nxtdsp = SCRIPTB_BA(np, ident_break);
2725 		}
2726 		else if	(dsp == SCRIPTB_BA(np, send_wdtr) ||
2727 			 dsp == SCRIPTB_BA(np, send_sdtr) ||
2728 			 dsp == SCRIPTB_BA(np, send_ppr)) {
2729 			nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2730 			if (dsp == SCRIPTB_BA(np, send_ppr)) {
2731 				struct scsi_device *dev = cp->cmd->device;
2732 				dev->ppr = 0;
2733 			}
2734 		}
2735 		break;
2736 #if 0
2737 	case 7:	/* MSG IN  phase */
2738 		nxtdsp = SCRIPTA_BA(np, clrack);
2739 		break;
2740 #endif
2741 	}
2742 
2743 	if (nxtdsp) {
2744 		OUTL_DSP(np, nxtdsp);
2745 		return;
2746 	}
2747 
2748 reset_all:
2749 	sym_start_reset(np);
2750 }
2751 
2752 /*
2753  *  chip interrupt handler
2754  *
2755  *  In normal situations, interrupt conditions occur one at
2756  *  a time. But when something bad happens on the SCSI BUS,
2757  *  the chip may raise several interrupt flags before
2758  *  stopping and interrupting the CPU. The additionnal
2759  *  interrupt flags are stacked in some extra registers
2760  *  after the SIP and/or DIP flag has been raised in the
2761  *  ISTAT. After the CPU has read the interrupt condition
2762  *  flag from SIST or DSTAT, the chip unstacks the other
2763  *  interrupt flags and sets the corresponding bits in
2764  *  SIST or DSTAT. Since the chip starts stacking once the
2765  *  SIP or DIP flag is set, there is a small window of time
2766  *  where the stacking does not occur.
2767  *
2768  *  Typically, multiple interrupt conditions may happen in
2769  *  the following situations:
2770  *
2771  *  - SCSI parity error + Phase mismatch  (PAR|MA)
2772  *    When an parity error is detected in input phase
2773  *    and the device switches to msg-in phase inside a
2774  *    block MOV.
2775  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2776  *    When a stupid device does not want to handle the
2777  *    recovery of an SCSI parity error.
2778  *  - Some combinations of STO, PAR, UDC, ...
2779  *    When using non compliant SCSI stuff, when user is
2780  *    doing non compliant hot tampering on the BUS, when
2781  *    something really bad happens to a device, etc ...
2782  *
2783  *  The heuristic suggested by SYMBIOS to handle
2784  *  multiple interrupts is to try unstacking all
2785  *  interrupts conditions and to handle them on some
2786  *  priority based on error severity.
2787  *  This will work when the unstacking has been
2788  *  successful, but we cannot be 100 % sure of that,
2789  *  since the CPU may have been faster to unstack than
2790  *  the chip is able to stack. Hmmm ... But it seems that
2791  *  such a situation is very unlikely to happen.
2792  *
2793  *  If this happen, for example STO caught by the CPU
2794  *  then UDC happenning before the CPU have restarted
2795  *  the SCRIPTS, the driver may wrongly complete the
2796  *  same command on UDC, since the SCRIPTS didn't restart
2797  *  and the DSA still points to the same command.
2798  *  We avoid this situation by setting the DSA to an
2799  *  invalid value when the CCB is completed and before
2800  *  restarting the SCRIPTS.
2801  *
2802  *  Another issue is that we need some section of our
2803  *  recovery procedures to be somehow uninterruptible but
2804  *  the SCRIPTS processor does not provides such a
2805  *  feature. For this reason, we handle recovery preferently
2806  *  from the C code and check against some SCRIPTS critical
2807  *  sections from the C code.
2808  *
2809  *  Hopefully, the interrupt handling of the driver is now
2810  *  able to resist to weird BUS error conditions, but donnot
2811  *  ask me for any guarantee that it will never fail. :-)
2812  *  Use at your own decision and risk.
2813  */
2814 
2815 irqreturn_t sym_interrupt(struct Scsi_Host *shost)
2816 {
2817 	struct sym_data *sym_data = shost_priv(shost);
2818 	struct sym_hcb *np = sym_data->ncb;
2819 	struct pci_dev *pdev = sym_data->pdev;
2820 	u_char	istat, istatc;
2821 	u_char	dstat;
2822 	u_short	sist;
2823 
2824 	/*
2825 	 *  interrupt on the fly ?
2826 	 *  (SCRIPTS may still be running)
2827 	 *
2828 	 *  A `dummy read' is needed to ensure that the
2829 	 *  clear of the INTF flag reaches the device
2830 	 *  and that posted writes are flushed to memory
2831 	 *  before the scanning of the DONE queue.
2832 	 *  Note that SCRIPTS also (dummy) read to memory
2833 	 *  prior to deliver the INTF interrupt condition.
2834 	 */
2835 	istat = INB(np, nc_istat);
2836 	if (istat & INTF) {
2837 		OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2838 		istat |= INB(np, nc_istat);		/* DUMMY READ */
2839 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2840 		sym_wakeup_done(np);
2841 	}
2842 
2843 	if (!(istat & (SIP|DIP)))
2844 		return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE;
2845 
2846 #if 0	/* We should never get this one */
2847 	if (istat & CABRT)
2848 		OUTB(np, nc_istat, CABRT);
2849 #endif
2850 
2851 	/*
2852 	 *  PAR and MA interrupts may occur at the same time,
2853 	 *  and we need to know of both in order to handle
2854 	 *  this situation properly. We try to unstack SCSI
2855 	 *  interrupts for that reason. BTW, I dislike a LOT
2856 	 *  such a loop inside the interrupt routine.
2857 	 *  Even if DMA interrupt stacking is very unlikely to
2858 	 *  happen, we also try unstacking these ones, since
2859 	 *  this has no performance impact.
2860 	 */
2861 	sist	= 0;
2862 	dstat	= 0;
2863 	istatc	= istat;
2864 	do {
2865 		if (istatc & SIP)
2866 			sist  |= INW(np, nc_sist);
2867 		if (istatc & DIP)
2868 			dstat |= INB(np, nc_dstat);
2869 		istatc = INB(np, nc_istat);
2870 		istat |= istatc;
2871 
2872 		/* Prevent deadlock waiting on a condition that may
2873 		 * never clear. */
2874 		if (unlikely(sist == 0xffff && dstat == 0xff)) {
2875 			if (pci_channel_offline(pdev))
2876 				return IRQ_NONE;
2877 		}
2878 	} while (istatc & (SIP|DIP));
2879 
2880 	if (DEBUG_FLAGS & DEBUG_TINY)
2881 		printf ("<%d|%x:%x|%x:%x>",
2882 			(int)INB(np, nc_scr0),
2883 			dstat,sist,
2884 			(unsigned)INL(np, nc_dsp),
2885 			(unsigned)INL(np, nc_dbc));
2886 	/*
2887 	 *  On paper, a memory read barrier may be needed here to
2888 	 *  prevent out of order LOADs by the CPU from having
2889 	 *  prefetched stale data prior to DMA having occurred.
2890 	 *  And since we are paranoid ... :)
2891 	 */
2892 	MEMORY_READ_BARRIER();
2893 
2894 	/*
2895 	 *  First, interrupts we want to service cleanly.
2896 	 *
2897 	 *  Phase mismatch (MA) is the most frequent interrupt
2898 	 *  for chip earlier than the 896 and so we have to service
2899 	 *  it as quickly as possible.
2900 	 *  A SCSI parity error (PAR) may be combined with a phase
2901 	 *  mismatch condition (MA).
2902 	 *  Programmed interrupts (SIR) are used to call the C code
2903 	 *  from SCRIPTS.
2904 	 *  The single step interrupt (SSI) is not used in this
2905 	 *  driver.
2906 	 */
2907 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2908 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2909 		if	(sist & PAR)	sym_int_par (np, sist);
2910 		else if (sist & MA)	sym_int_ma (np);
2911 		else if (dstat & SIR)	sym_int_sir(np);
2912 		else if (dstat & SSI)	OUTONB_STD();
2913 		else			goto unknown_int;
2914 		return IRQ_HANDLED;
2915 	}
2916 
2917 	/*
2918 	 *  Now, interrupts that donnot happen in normal
2919 	 *  situations and that we may need to recover from.
2920 	 *
2921 	 *  On SCSI RESET (RST), we reset everything.
2922 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
2923 	 *  active CCBs with RESET status, prepare all devices
2924 	 *  for negotiating again and restart the SCRIPTS.
2925 	 *  On STO and UDC, we complete the CCB with the corres-
2926 	 *  ponding status and restart the SCRIPTS.
2927 	 */
2928 	if (sist & RST) {
2929 		printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2930 		sym_start_up(shost, 1);
2931 		return IRQ_HANDLED;
2932 	}
2933 
2934 	OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
2935 	OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2936 
2937 	if (!(sist  & (GEN|HTH|SGE)) &&
2938 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2939 		if	(sist & SBMC)	sym_int_sbmc(shost);
2940 		else if (sist & STO)	sym_int_sto (np);
2941 		else if (sist & UDC)	sym_int_udc (np);
2942 		else			goto unknown_int;
2943 		return IRQ_HANDLED;
2944 	}
2945 
2946 	/*
2947 	 *  Now, interrupts we are not able to recover cleanly.
2948 	 *
2949 	 *  Log message for hard errors.
2950 	 *  Reset everything.
2951 	 */
2952 
2953 	sym_log_hard_error(shost, sist, dstat);
2954 
2955 	if ((sist & (GEN|HTH|SGE)) ||
2956 		(dstat & (MDPE|BF|ABRT|IID))) {
2957 		sym_start_reset(np);
2958 		return IRQ_HANDLED;
2959 	}
2960 
2961 unknown_int:
2962 	/*
2963 	 *  We just miss the cause of the interrupt. :(
2964 	 *  Print a message. The timeout will do the real work.
2965 	 */
2966 	printf(	"%s: unknown interrupt(s) ignored, "
2967 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2968 		sym_name(np), istat, dstat, sist);
2969 	return IRQ_NONE;
2970 }
2971 
2972 /*
2973  *  Dequeue from the START queue all CCBs that match
2974  *  a given target/lun/task condition (-1 means all),
2975  *  and move them from the BUSY queue to the COMP queue
2976  *  with DID_SOFT_ERROR status condition.
2977  *  This function is used during error handling/recovery.
2978  *  It is called with SCRIPTS not running.
2979  */
2980 static int
2981 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2982 {
2983 	int j;
2984 	struct sym_ccb *cp;
2985 
2986 	/*
2987 	 *  Make sure the starting index is within range.
2988 	 */
2989 	assert((i >= 0) && (i < 2*MAX_QUEUE));
2990 
2991 	/*
2992 	 *  Walk until end of START queue and dequeue every job
2993 	 *  that matches the target/lun/task condition.
2994 	 */
2995 	j = i;
2996 	while (i != np->squeueput) {
2997 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2998 		assert(cp);
2999 #ifdef SYM_CONF_IARB_SUPPORT
3000 		/* Forget hints for IARB, they may be no longer relevant */
3001 		cp->host_flags &= ~HF_HINT_IARB;
3002 #endif
3003 		if ((target == -1 || cp->target == target) &&
3004 		    (lun    == -1 || cp->lun    == lun)    &&
3005 		    (task   == -1 || cp->tag    == task)) {
3006 			sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
3007 			sym_remque(&cp->link_ccbq);
3008 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3009 		}
3010 		else {
3011 			if (i != j)
3012 				np->squeue[j] = np->squeue[i];
3013 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
3014 		}
3015 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
3016 	}
3017 	if (i != j)		/* Copy back the idle task if needed */
3018 		np->squeue[j] = np->squeue[i];
3019 	np->squeueput = j;	/* Update our current start queue pointer */
3020 
3021 	return (i - j) / 2;
3022 }
3023 
3024 /*
3025  *  chip handler for bad SCSI status condition
3026  *
3027  *  In case of bad SCSI status, we unqueue all the tasks
3028  *  currently queued to the controller but not yet started
3029  *  and then restart the SCRIPTS processor immediately.
3030  *
3031  *  QUEUE FULL and BUSY conditions are handled the same way.
3032  *  Basically all the not yet started tasks are requeued in
3033  *  device queue and the queue is frozen until a completion.
3034  *
3035  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
3036  *  the CCB of the failed command to prepare a REQUEST SENSE
3037  *  SCSI command and queue it to the controller queue.
3038  *
3039  *  SCRATCHA is assumed to have been loaded with STARTPOS
3040  *  before the SCRIPTS called the C code.
3041  */
3042 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
3043 {
3044 	u32		startp;
3045 	u_char		s_status = cp->ssss_status;
3046 	u_char		h_flags  = cp->host_flags;
3047 	int		msglen;
3048 	int		i;
3049 
3050 	/*
3051 	 *  Compute the index of the next job to start from SCRIPTS.
3052 	 */
3053 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3054 
3055 	/*
3056 	 *  The last CCB queued used for IARB hint may be
3057 	 *  no longer relevant. Forget it.
3058 	 */
3059 #ifdef SYM_CONF_IARB_SUPPORT
3060 	if (np->last_cp)
3061 		np->last_cp = 0;
3062 #endif
3063 
3064 	/*
3065 	 *  Now deal with the SCSI status.
3066 	 */
3067 	switch(s_status) {
3068 	case S_BUSY:
3069 	case S_QUEUE_FULL:
3070 		if (sym_verbose >= 2) {
3071 			sym_print_addr(cp->cmd, "%s\n",
3072 			        s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3073 		}
3074 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
3075 		sym_complete_error (np, cp);
3076 		break;
3077 	case S_TERMINATED:
3078 	case S_CHECK_COND:
3079 		/*
3080 		 *  If we get an SCSI error when requesting sense, give up.
3081 		 */
3082 		if (h_flags & HF_SENSE) {
3083 			sym_complete_error (np, cp);
3084 			break;
3085 		}
3086 
3087 		/*
3088 		 *  Dequeue all queued CCBs for that device not yet started,
3089 		 *  and restart the SCRIPTS processor immediately.
3090 		 */
3091 		sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3092 		OUTL_DSP(np, SCRIPTA_BA(np, start));
3093 
3094  		/*
3095 		 *  Save some info of the actual IO.
3096 		 *  Compute the data residual.
3097 		 */
3098 		cp->sv_scsi_status = cp->ssss_status;
3099 		cp->sv_xerr_status = cp->xerr_status;
3100 		cp->sv_resid = sym_compute_residual(np, cp);
3101 
3102 		/*
3103 		 *  Prepare all needed data structures for
3104 		 *  requesting sense data.
3105 		 */
3106 
3107 		cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3108 		msglen = 1;
3109 
3110 		/*
3111 		 *  If we are currently using anything different from
3112 		 *  async. 8 bit data transfers with that target,
3113 		 *  start a negotiation, since the device may want
3114 		 *  to report us a UNIT ATTENTION condition due to
3115 		 *  a cause we currently ignore, and we donnot want
3116 		 *  to be stuck with WIDE and/or SYNC data transfer.
3117 		 *
3118 		 *  cp->nego_status is filled by sym_prepare_nego().
3119 		 */
3120 		cp->nego_status = 0;
3121 		msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3122 		/*
3123 		 *  Message table indirect structure.
3124 		 */
3125 		cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg2);
3126 		cp->phys.smsg.size	= cpu_to_scr(msglen);
3127 
3128 		/*
3129 		 *  sense command
3130 		 */
3131 		cp->phys.cmd.addr	= CCB_BA(cp, sensecmd);
3132 		cp->phys.cmd.size	= cpu_to_scr(6);
3133 
3134 		/*
3135 		 *  patch requested size into sense command
3136 		 */
3137 		cp->sensecmd[0]		= REQUEST_SENSE;
3138 		cp->sensecmd[1]		= 0;
3139 		if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3140 			cp->sensecmd[1]	= cp->lun << 5;
3141 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
3142 		cp->data_len		= SYM_SNS_BBUF_LEN;
3143 
3144 		/*
3145 		 *  sense data
3146 		 */
3147 		memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3148 		cp->phys.sense.addr	= CCB_BA(cp, sns_bbuf);
3149 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
3150 
3151 		/*
3152 		 *  requeue the command.
3153 		 */
3154 		startp = SCRIPTB_BA(np, sdata_in);
3155 
3156 		cp->phys.head.savep	= cpu_to_scr(startp);
3157 		cp->phys.head.lastp	= cpu_to_scr(startp);
3158 		cp->startp		= cpu_to_scr(startp);
3159 		cp->goalp		= cpu_to_scr(startp + 16);
3160 
3161 		cp->host_xflags = 0;
3162 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3163 		cp->ssss_status = S_ILLEGAL;
3164 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
3165 		cp->xerr_status = 0;
3166 		cp->extra_bytes = 0;
3167 
3168 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3169 
3170 		/*
3171 		 *  Requeue the command.
3172 		 */
3173 		sym_put_start_queue(np, cp);
3174 
3175 		/*
3176 		 *  Give back to upper layer everything we have dequeued.
3177 		 */
3178 		sym_flush_comp_queue(np, 0);
3179 		break;
3180 	}
3181 }
3182 
3183 /*
3184  *  After a device has accepted some management message
3185  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3186  *  a device signals a UNIT ATTENTION condition, some
3187  *  tasks are thrown away by the device. We are required
3188  *  to reflect that on our tasks list since the device
3189  *  will never complete these tasks.
3190  *
3191  *  This function move from the BUSY queue to the COMP
3192  *  queue all disconnected CCBs for a given target that
3193  *  match the following criteria:
3194  *  - lun=-1  means any logical UNIT otherwise a given one.
3195  *  - task=-1 means any task, otherwise a given one.
3196  */
3197 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3198 {
3199 	SYM_QUEHEAD qtmp, *qp;
3200 	int i = 0;
3201 	struct sym_ccb *cp;
3202 
3203 	/*
3204 	 *  Move the entire BUSY queue to our temporary queue.
3205 	 */
3206 	sym_que_init(&qtmp);
3207 	sym_que_splice(&np->busy_ccbq, &qtmp);
3208 	sym_que_init(&np->busy_ccbq);
3209 
3210 	/*
3211 	 *  Put all CCBs that matches our criteria into
3212 	 *  the COMP queue and put back other ones into
3213 	 *  the BUSY queue.
3214 	 */
3215 	while ((qp = sym_remque_head(&qtmp)) != NULL) {
3216 		struct scsi_cmnd *cmd;
3217 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3218 		cmd = cp->cmd;
3219 		if (cp->host_status != HS_DISCONNECT ||
3220 		    cp->target != target	     ||
3221 		    (lun  != -1 && cp->lun != lun)   ||
3222 		    (task != -1 &&
3223 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3224 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3225 			continue;
3226 		}
3227 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3228 
3229 		/* Preserve the software timeout condition */
3230 		if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3231 			sym_set_cam_status(cmd, cam_status);
3232 		++i;
3233 #if 0
3234 printf("XXXX TASK @%p CLEARED\n", cp);
3235 #endif
3236 	}
3237 	return i;
3238 }
3239 
3240 /*
3241  *  chip handler for TASKS recovery
3242  *
3243  *  We cannot safely abort a command, while the SCRIPTS
3244  *  processor is running, since we just would be in race
3245  *  with it.
3246  *
3247  *  As long as we have tasks to abort, we keep the SEM
3248  *  bit set in the ISTAT. When this bit is set, the
3249  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3250  *  each time it enters the scheduler.
3251  *
3252  *  If we have to reset a target, clear tasks of a unit,
3253  *  or to perform the abort of a disconnected job, we
3254  *  restart the SCRIPTS for selecting the target. Once
3255  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3256  *  If it loses arbitration, the SCRIPTS will interrupt again
3257  *  the next time it will enter its scheduler, and so on ...
3258  *
3259  *  On SIR_TARGET_SELECTED, we scan for the more
3260  *  appropriate thing to do:
3261  *
3262  *  - If nothing, we just sent a M_ABORT message to the
3263  *    target to get rid of the useless SCSI bus ownership.
3264  *    According to the specs, no tasks shall be affected.
3265  *  - If the target is to be reset, we send it a M_RESET
3266  *    message.
3267  *  - If a logical UNIT is to be cleared , we send the
3268  *    IDENTIFY(lun) + M_ABORT.
3269  *  - If an untagged task is to be aborted, we send the
3270  *    IDENTIFY(lun) + M_ABORT.
3271  *  - If a tagged task is to be aborted, we send the
3272  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3273  *
3274  *  Once our 'kiss of death' :) message has been accepted
3275  *  by the target, the SCRIPTS interrupts again
3276  *  (SIR_ABORT_SENT). On this interrupt, we complete
3277  *  all the CCBs that should have been aborted by the
3278  *  target according to our message.
3279  */
3280 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3281 {
3282 	SYM_QUEHEAD *qp;
3283 	struct sym_ccb *cp;
3284 	struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3285 	struct scsi_target *starget;
3286 	int target=-1, lun=-1, task;
3287 	int i, k;
3288 
3289 	switch(num) {
3290 	/*
3291 	 *  The SCRIPTS processor stopped before starting
3292 	 *  the next command in order to allow us to perform
3293 	 *  some task recovery.
3294 	 */
3295 	case SIR_SCRIPT_STOPPED:
3296 		/*
3297 		 *  Do we have any target to reset or unit to clear ?
3298 		 */
3299 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3300 			tp = &np->target[i];
3301 			if (tp->to_reset ||
3302 			    (tp->lun0p && tp->lun0p->to_clear)) {
3303 				target = i;
3304 				break;
3305 			}
3306 			if (!tp->lunmp)
3307 				continue;
3308 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3309 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3310 					target	= i;
3311 					break;
3312 				}
3313 			}
3314 			if (target != -1)
3315 				break;
3316 		}
3317 
3318 		/*
3319 		 *  If not, walk the busy queue for any
3320 		 *  disconnected CCB to be aborted.
3321 		 */
3322 		if (target == -1) {
3323 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3324 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3325 				if (cp->host_status != HS_DISCONNECT)
3326 					continue;
3327 				if (cp->to_abort) {
3328 					target = cp->target;
3329 					break;
3330 				}
3331 			}
3332 		}
3333 
3334 		/*
3335 		 *  If some target is to be selected,
3336 		 *  prepare and start the selection.
3337 		 */
3338 		if (target != -1) {
3339 			tp = &np->target[target];
3340 			np->abrt_sel.sel_id	= target;
3341 			np->abrt_sel.sel_scntl3 = tp->head.wval;
3342 			np->abrt_sel.sel_sxfer  = tp->head.sval;
3343 			OUTL(np, nc_dsa, np->hcb_ba);
3344 			OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3345 			return;
3346 		}
3347 
3348 		/*
3349 		 *  Now look for a CCB to abort that haven't started yet.
3350 		 *  Btw, the SCRIPTS processor is still stopped, so
3351 		 *  we are not in race.
3352 		 */
3353 		i = 0;
3354 		cp = NULL;
3355 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3356 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3357 			if (cp->host_status != HS_BUSY &&
3358 			    cp->host_status != HS_NEGOTIATE)
3359 				continue;
3360 			if (!cp->to_abort)
3361 				continue;
3362 #ifdef SYM_CONF_IARB_SUPPORT
3363 			/*
3364 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
3365 			 *    want to cancel the last queued CCB, since the
3366 			 *    SCRIPTS may have anticipated the selection.
3367 			 */
3368 			if (cp == np->last_cp) {
3369 				cp->to_abort = 0;
3370 				continue;
3371 			}
3372 #endif
3373 			i = 1;	/* Means we have found some */
3374 			break;
3375 		}
3376 		if (!i) {
3377 			/*
3378 			 *  We are done, so we donnot need
3379 			 *  to synchronize with the SCRIPTS anylonger.
3380 			 *  Remove the SEM flag from the ISTAT.
3381 			 */
3382 			np->istat_sem = 0;
3383 			OUTB(np, nc_istat, SIGP);
3384 			break;
3385 		}
3386 		/*
3387 		 *  Compute index of next position in the start
3388 		 *  queue the SCRIPTS intends to start and dequeue
3389 		 *  all CCBs for that device that haven't been started.
3390 		 */
3391 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3392 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3393 
3394 		/*
3395 		 *  Make sure at least our IO to abort has been dequeued.
3396 		 */
3397 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3398 		assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3399 #else
3400 		sym_remque(&cp->link_ccbq);
3401 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3402 #endif
3403 		/*
3404 		 *  Keep track in cam status of the reason of the abort.
3405 		 */
3406 		if (cp->to_abort == 2)
3407 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3408 		else
3409 			sym_set_cam_status(cp->cmd, DID_ABORT);
3410 
3411 		/*
3412 		 *  Complete with error everything that we have dequeued.
3413 	 	 */
3414 		sym_flush_comp_queue(np, 0);
3415 		break;
3416 	/*
3417 	 *  The SCRIPTS processor has selected a target
3418 	 *  we may have some manual recovery to perform for.
3419 	 */
3420 	case SIR_TARGET_SELECTED:
3421 		target = INB(np, nc_sdid) & 0xf;
3422 		tp = &np->target[target];
3423 
3424 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3425 
3426 		/*
3427 		 *  If the target is to be reset, prepare a
3428 		 *  M_RESET message and clear the to_reset flag
3429 		 *  since we donnot expect this operation to fail.
3430 		 */
3431 		if (tp->to_reset) {
3432 			np->abrt_msg[0] = M_RESET;
3433 			np->abrt_tbl.size = 1;
3434 			tp->to_reset = 0;
3435 			break;
3436 		}
3437 
3438 		/*
3439 		 *  Otherwise, look for some logical unit to be cleared.
3440 		 */
3441 		if (tp->lun0p && tp->lun0p->to_clear)
3442 			lun = 0;
3443 		else if (tp->lunmp) {
3444 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3445 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3446 					lun = k;
3447 					break;
3448 				}
3449 			}
3450 		}
3451 
3452 		/*
3453 		 *  If a logical unit is to be cleared, prepare
3454 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
3455 		 */
3456 		if (lun != -1) {
3457 			struct sym_lcb *lp = sym_lp(tp, lun);
3458 			lp->to_clear = 0; /* We don't expect to fail here */
3459 			np->abrt_msg[0] = IDENTIFY(0, lun);
3460 			np->abrt_msg[1] = M_ABORT;
3461 			np->abrt_tbl.size = 2;
3462 			break;
3463 		}
3464 
3465 		/*
3466 		 *  Otherwise, look for some disconnected job to
3467 		 *  abort for this target.
3468 		 */
3469 		i = 0;
3470 		cp = NULL;
3471 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3472 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3473 			if (cp->host_status != HS_DISCONNECT)
3474 				continue;
3475 			if (cp->target != target)
3476 				continue;
3477 			if (!cp->to_abort)
3478 				continue;
3479 			i = 1;	/* Means we have some */
3480 			break;
3481 		}
3482 
3483 		/*
3484 		 *  If we have none, probably since the device has
3485 		 *  completed the command before we won abitration,
3486 		 *  send a M_ABORT message without IDENTIFY.
3487 		 *  According to the specs, the device must just
3488 		 *  disconnect the BUS and not abort any task.
3489 		 */
3490 		if (!i) {
3491 			np->abrt_msg[0] = M_ABORT;
3492 			np->abrt_tbl.size = 1;
3493 			break;
3494 		}
3495 
3496 		/*
3497 		 *  We have some task to abort.
3498 		 *  Set the IDENTIFY(lun)
3499 		 */
3500 		np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3501 
3502 		/*
3503 		 *  If we want to abort an untagged command, we
3504 		 *  will send a IDENTIFY + M_ABORT.
3505 		 *  Otherwise (tagged command), we will send
3506 		 *  a IDENTITFY + task attributes + ABORT TAG.
3507 		 */
3508 		if (cp->tag == NO_TAG) {
3509 			np->abrt_msg[1] = M_ABORT;
3510 			np->abrt_tbl.size = 2;
3511 		} else {
3512 			np->abrt_msg[1] = cp->scsi_smsg[1];
3513 			np->abrt_msg[2] = cp->scsi_smsg[2];
3514 			np->abrt_msg[3] = M_ABORT_TAG;
3515 			np->abrt_tbl.size = 4;
3516 		}
3517 		/*
3518 		 *  Keep track of software timeout condition, since the
3519 		 *  peripheral driver may not count retries on abort
3520 		 *  conditions not due to timeout.
3521 		 */
3522 		if (cp->to_abort == 2)
3523 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3524 		cp->to_abort = 0; /* We donnot expect to fail here */
3525 		break;
3526 
3527 	/*
3528 	 *  The target has accepted our message and switched
3529 	 *  to BUS FREE phase as we expected.
3530 	 */
3531 	case SIR_ABORT_SENT:
3532 		target = INB(np, nc_sdid) & 0xf;
3533 		tp = &np->target[target];
3534 		starget = tp->starget;
3535 
3536 		/*
3537 		**  If we didn't abort anything, leave here.
3538 		*/
3539 		if (np->abrt_msg[0] == M_ABORT)
3540 			break;
3541 
3542 		/*
3543 		 *  If we sent a M_RESET, then a hardware reset has
3544 		 *  been performed by the target.
3545 		 *  - Reset everything to async 8 bit
3546 		 *  - Tell ourself to negotiate next time :-)
3547 		 *  - Prepare to clear all disconnected CCBs for
3548 		 *    this target from our task list (lun=task=-1)
3549 		 */
3550 		lun = -1;
3551 		task = -1;
3552 		if (np->abrt_msg[0] == M_RESET) {
3553 			tp->head.sval = 0;
3554 			tp->head.wval = np->rv_scntl3;
3555 			tp->head.uval = 0;
3556 			spi_period(starget) = 0;
3557 			spi_offset(starget) = 0;
3558 			spi_width(starget) = 0;
3559 			spi_iu(starget) = 0;
3560 			spi_dt(starget) = 0;
3561 			spi_qas(starget) = 0;
3562 			tp->tgoal.check_nego = 1;
3563 			tp->tgoal.renego = 0;
3564 		}
3565 
3566 		/*
3567 		 *  Otherwise, check for the LUN and TASK(s)
3568 		 *  concerned by the cancelation.
3569 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
3570 		 *  or an ABORT message :-)
3571 		 */
3572 		else {
3573 			lun = np->abrt_msg[0] & 0x3f;
3574 			if (np->abrt_msg[1] == M_ABORT_TAG)
3575 				task = np->abrt_msg[2];
3576 		}
3577 
3578 		/*
3579 		 *  Complete all the CCBs the device should have
3580 		 *  aborted due to our 'kiss of death' message.
3581 		 */
3582 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3583 		sym_dequeue_from_squeue(np, i, target, lun, -1);
3584 		sym_clear_tasks(np, DID_ABORT, target, lun, task);
3585 		sym_flush_comp_queue(np, 0);
3586 
3587  		/*
3588 		 *  If we sent a BDR, make upper layer aware of that.
3589  		 */
3590 		if (np->abrt_msg[0] == M_RESET)
3591 			starget_printk(KERN_NOTICE, starget,
3592 							"has been reset\n");
3593 		break;
3594 	}
3595 
3596 	/*
3597 	 *  Print to the log the message we intend to send.
3598 	 */
3599 	if (num == SIR_TARGET_SELECTED) {
3600 		dev_info(&tp->starget->dev, "control msgout:");
3601 		sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3602 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3603 	}
3604 
3605 	/*
3606 	 *  Let the SCRIPTS processor continue.
3607 	 */
3608 	OUTONB_STD();
3609 }
3610 
3611 /*
3612  *  Gerard's alchemy:) that deals with with the data
3613  *  pointer for both MDP and the residual calculation.
3614  *
3615  *  I didn't want to bloat the code by more than 200
3616  *  lines for the handling of both MDP and the residual.
3617  *  This has been achieved by using a data pointer
3618  *  representation consisting in an index in the data
3619  *  array (dp_sg) and a negative offset (dp_ofs) that
3620  *  have the following meaning:
3621  *
3622  *  - dp_sg = SYM_CONF_MAX_SG
3623  *    we are at the end of the data script.
3624  *  - dp_sg < SYM_CONF_MAX_SG
3625  *    dp_sg points to the next entry of the scatter array
3626  *    we want to transfer.
3627  *  - dp_ofs < 0
3628  *    dp_ofs represents the residual of bytes of the
3629  *    previous entry scatter entry we will send first.
3630  *  - dp_ofs = 0
3631  *    no residual to send first.
3632  *
3633  *  The function sym_evaluate_dp() accepts an arbitray
3634  *  offset (basically from the MDP message) and returns
3635  *  the corresponding values of dp_sg and dp_ofs.
3636  */
3637 
3638 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3639 {
3640 	u32	dp_scr;
3641 	int	dp_ofs, dp_sg, dp_sgmin;
3642 	int	tmp;
3643 	struct sym_pmc *pm;
3644 
3645 	/*
3646 	 *  Compute the resulted data pointer in term of a script
3647 	 *  address within some DATA script and a signed byte offset.
3648 	 */
3649 	dp_scr = scr;
3650 	dp_ofs = *ofs;
3651 	if	(dp_scr == SCRIPTA_BA(np, pm0_data))
3652 		pm = &cp->phys.pm0;
3653 	else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3654 		pm = &cp->phys.pm1;
3655 	else
3656 		pm = NULL;
3657 
3658 	if (pm) {
3659 		dp_scr  = scr_to_cpu(pm->ret);
3660 		dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3661 	}
3662 
3663 	/*
3664 	 *  If we are auto-sensing, then we are done.
3665 	 */
3666 	if (cp->host_flags & HF_SENSE) {
3667 		*ofs = dp_ofs;
3668 		return 0;
3669 	}
3670 
3671 	/*
3672 	 *  Deduce the index of the sg entry.
3673 	 *  Keep track of the index of the first valid entry.
3674 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3675 	 *  end of the data.
3676 	 */
3677 	tmp = scr_to_cpu(cp->goalp);
3678 	dp_sg = SYM_CONF_MAX_SG;
3679 	if (dp_scr != tmp)
3680 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3681 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3682 
3683 	/*
3684 	 *  Move to the sg entry the data pointer belongs to.
3685 	 *
3686 	 *  If we are inside the data area, we expect result to be:
3687 	 *
3688 	 *  Either,
3689 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
3690 	 *      the data pointer belongs to (or the end of the data)
3691 	 *  Or,
3692 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
3693 	 *      the data pointer belongs to + 1.
3694 	 */
3695 	if (dp_ofs < 0) {
3696 		int n;
3697 		while (dp_sg > dp_sgmin) {
3698 			--dp_sg;
3699 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3700 			n = dp_ofs + (tmp & 0xffffff);
3701 			if (n > 0) {
3702 				++dp_sg;
3703 				break;
3704 			}
3705 			dp_ofs = n;
3706 		}
3707 	}
3708 	else if (dp_ofs > 0) {
3709 		while (dp_sg < SYM_CONF_MAX_SG) {
3710 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3711 			dp_ofs -= (tmp & 0xffffff);
3712 			++dp_sg;
3713 			if (dp_ofs <= 0)
3714 				break;
3715 		}
3716 	}
3717 
3718 	/*
3719 	 *  Make sure the data pointer is inside the data area.
3720 	 *  If not, return some error.
3721 	 */
3722 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3723 		goto out_err;
3724 	else if	(dp_sg > SYM_CONF_MAX_SG ||
3725 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3726 		goto out_err;
3727 
3728 	/*
3729 	 *  Save the extreme pointer if needed.
3730 	 */
3731 	if (dp_sg > cp->ext_sg ||
3732             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3733 		cp->ext_sg  = dp_sg;
3734 		cp->ext_ofs = dp_ofs;
3735 	}
3736 
3737 	/*
3738 	 *  Return data.
3739 	 */
3740 	*ofs = dp_ofs;
3741 	return dp_sg;
3742 
3743 out_err:
3744 	return -1;
3745 }
3746 
3747 /*
3748  *  chip handler for MODIFY DATA POINTER MESSAGE
3749  *
3750  *  We also call this function on IGNORE WIDE RESIDUE
3751  *  messages that do not match a SWIDE full condition.
3752  *  Btw, we assume in that situation that such a message
3753  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3754  */
3755 
3756 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3757 {
3758 	int dp_ofs	= ofs;
3759 	u32	dp_scr	= sym_get_script_dp (np, cp);
3760 	u32	dp_ret;
3761 	u32	tmp;
3762 	u_char	hflags;
3763 	int	dp_sg;
3764 	struct	sym_pmc *pm;
3765 
3766 	/*
3767 	 *  Not supported for auto-sense.
3768 	 */
3769 	if (cp->host_flags & HF_SENSE)
3770 		goto out_reject;
3771 
3772 	/*
3773 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
3774 	 *  to the resulted data pointer.
3775 	 */
3776 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3777 	if (dp_sg < 0)
3778 		goto out_reject;
3779 
3780 	/*
3781 	 *  And our alchemy:) allows to easily calculate the data
3782 	 *  script address we want to return for the next data phase.
3783 	 */
3784 	dp_ret = cpu_to_scr(cp->goalp);
3785 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3786 
3787 	/*
3788 	 *  If offset / scatter entry is zero we donnot need
3789 	 *  a context for the new current data pointer.
3790 	 */
3791 	if (dp_ofs == 0) {
3792 		dp_scr = dp_ret;
3793 		goto out_ok;
3794 	}
3795 
3796 	/*
3797 	 *  Get a context for the new current data pointer.
3798 	 */
3799 	hflags = INB(np, HF_PRT);
3800 
3801 	if (hflags & HF_DP_SAVED)
3802 		hflags ^= HF_ACT_PM;
3803 
3804 	if (!(hflags & HF_ACT_PM)) {
3805 		pm  = &cp->phys.pm0;
3806 		dp_scr = SCRIPTA_BA(np, pm0_data);
3807 	}
3808 	else {
3809 		pm = &cp->phys.pm1;
3810 		dp_scr = SCRIPTA_BA(np, pm1_data);
3811 	}
3812 
3813 	hflags &= ~(HF_DP_SAVED);
3814 
3815 	OUTB(np, HF_PRT, hflags);
3816 
3817 	/*
3818 	 *  Set up the new current data pointer.
3819 	 *  ofs < 0 there, and for the next data phase, we
3820 	 *  want to transfer part of the data of the sg entry
3821 	 *  corresponding to index dp_sg-1 prior to returning
3822 	 *  to the main data script.
3823 	 */
3824 	pm->ret = cpu_to_scr(dp_ret);
3825 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3826 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3827 	pm->sg.addr = cpu_to_scr(tmp);
3828 	pm->sg.size = cpu_to_scr(-dp_ofs);
3829 
3830 out_ok:
3831 	sym_set_script_dp (np, cp, dp_scr);
3832 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3833 	return;
3834 
3835 out_reject:
3836 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3837 }
3838 
3839 
3840 /*
3841  *  chip calculation of the data residual.
3842  *
3843  *  As I used to say, the requirement of data residual
3844  *  in SCSI is broken, useless and cannot be achieved
3845  *  without huge complexity.
3846  *  But most OSes and even the official CAM require it.
3847  *  When stupidity happens to be so widely spread inside
3848  *  a community, it gets hard to convince.
3849  *
3850  *  Anyway, I don't care, since I am not going to use
3851  *  any software that considers this data residual as
3852  *  a relevant information. :)
3853  */
3854 
3855 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3856 {
3857 	int dp_sg, dp_sgmin, resid = 0;
3858 	int dp_ofs = 0;
3859 
3860 	/*
3861 	 *  Check for some data lost or just thrown away.
3862 	 *  We are not required to be quite accurate in this
3863 	 *  situation. Btw, if we are odd for output and the
3864 	 *  device claims some more data, it may well happen
3865 	 *  than our residual be zero. :-)
3866 	 */
3867 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3868 		if (cp->xerr_status & XE_EXTRA_DATA)
3869 			resid -= cp->extra_bytes;
3870 		if (cp->xerr_status & XE_SODL_UNRUN)
3871 			++resid;
3872 		if (cp->xerr_status & XE_SWIDE_OVRUN)
3873 			--resid;
3874 	}
3875 
3876 	/*
3877 	 *  If all data has been transferred,
3878 	 *  there is no residual.
3879 	 */
3880 	if (cp->phys.head.lastp == cp->goalp)
3881 		return resid;
3882 
3883 	/*
3884 	 *  If no data transfer occurs, or if the data
3885 	 *  pointer is weird, return full residual.
3886 	 */
3887 	if (cp->startp == cp->phys.head.lastp ||
3888 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3889 			    &dp_ofs) < 0) {
3890 		return cp->data_len - cp->odd_byte_adjustment;
3891 	}
3892 
3893 	/*
3894 	 *  If we were auto-sensing, then we are done.
3895 	 */
3896 	if (cp->host_flags & HF_SENSE) {
3897 		return -dp_ofs;
3898 	}
3899 
3900 	/*
3901 	 *  We are now full comfortable in the computation
3902 	 *  of the data residual (2's complement).
3903 	 */
3904 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3905 	resid = -cp->ext_ofs;
3906 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3907 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3908 		resid += (tmp & 0xffffff);
3909 	}
3910 
3911 	resid -= cp->odd_byte_adjustment;
3912 
3913 	/*
3914 	 *  Hopefully, the result is not too wrong.
3915 	 */
3916 	return resid;
3917 }
3918 
3919 /*
3920  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3921  *
3922  *  When we try to negotiate, we append the negotiation message
3923  *  to the identify and (maybe) simple tag message.
3924  *  The host status field is set to HS_NEGOTIATE to mark this
3925  *  situation.
3926  *
3927  *  If the target doesn't answer this message immediately
3928  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3929  *  will be raised eventually.
3930  *  The handler removes the HS_NEGOTIATE status, and sets the
3931  *  negotiated value to the default (async / nowide).
3932  *
3933  *  If we receive a matching answer immediately, we check it
3934  *  for validity, and set the values.
3935  *
3936  *  If we receive a Reject message immediately, we assume the
3937  *  negotiation has failed, and fall back to standard values.
3938  *
3939  *  If we receive a negotiation message while not in HS_NEGOTIATE
3940  *  state, it's a target initiated negotiation. We prepare a
3941  *  (hopefully) valid answer, set our parameters, and send back
3942  *  this answer to the target.
3943  *
3944  *  If the target doesn't fetch the answer (no message out phase),
3945  *  we assume the negotiation has failed, and fall back to default
3946  *  settings (SIR_NEGO_PROTO interrupt).
3947  *
3948  *  When we set the values, we adjust them in all ccbs belonging
3949  *  to this target, in the controller's register, and in the "phys"
3950  *  field of the controller's struct sym_hcb.
3951  */
3952 
3953 /*
3954  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3955  */
3956 static int
3957 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3958 {
3959 	int target = cp->target;
3960 	u_char	chg, ofs, per, fak, div;
3961 
3962 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3963 		sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3964 	}
3965 
3966 	/*
3967 	 *  Get requested values.
3968 	 */
3969 	chg = 0;
3970 	per = np->msgin[3];
3971 	ofs = np->msgin[4];
3972 
3973 	/*
3974 	 *  Check values against our limits.
3975 	 */
3976 	if (ofs) {
3977 		if (ofs > np->maxoffs)
3978 			{chg = 1; ofs = np->maxoffs;}
3979 	}
3980 
3981 	if (ofs) {
3982 		if (per < np->minsync)
3983 			{chg = 1; per = np->minsync;}
3984 	}
3985 
3986 	/*
3987 	 *  Get new chip synchronous parameters value.
3988 	 */
3989 	div = fak = 0;
3990 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3991 		goto reject_it;
3992 
3993 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3994 		sym_print_addr(cp->cmd,
3995 				"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3996 				ofs, per, div, fak, chg);
3997 	}
3998 
3999 	/*
4000 	 *  If it was an answer we want to change,
4001 	 *  then it isn't acceptable. Reject it.
4002 	 */
4003 	if (!req && chg)
4004 		goto reject_it;
4005 
4006 	/*
4007 	 *  Apply new values.
4008 	 */
4009 	sym_setsync (np, target, ofs, per, div, fak);
4010 
4011 	/*
4012 	 *  It was an answer. We are done.
4013 	 */
4014 	if (!req)
4015 		return 0;
4016 
4017 	/*
4018 	 *  It was a request. Prepare an answer message.
4019 	 */
4020 	spi_populate_sync_msg(np->msgout, per, ofs);
4021 
4022 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4023 		sym_print_nego_msg(np, target, "sync msgout", np->msgout);
4024 	}
4025 
4026 	np->msgin [0] = M_NOOP;
4027 
4028 	return 0;
4029 
4030 reject_it:
4031 	sym_setsync (np, target, 0, 0, 0, 0);
4032 	return -1;
4033 }
4034 
4035 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4036 {
4037 	int req = 1;
4038 	int result;
4039 
4040 	/*
4041 	 *  Request or answer ?
4042 	 */
4043 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4044 		OUTB(np, HS_PRT, HS_BUSY);
4045 		if (cp->nego_status && cp->nego_status != NS_SYNC)
4046 			goto reject_it;
4047 		req = 0;
4048 	}
4049 
4050 	/*
4051 	 *  Check and apply new values.
4052 	 */
4053 	result = sym_sync_nego_check(np, req, cp);
4054 	if (result)	/* Not acceptable, reject it */
4055 		goto reject_it;
4056 	if (req) {	/* Was a request, send response. */
4057 		cp->nego_status = NS_SYNC;
4058 		OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4059 	}
4060 	else		/* Was a response, we are done. */
4061 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4062 	return;
4063 
4064 reject_it:
4065 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4066 }
4067 
4068 /*
4069  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4070  */
4071 static int
4072 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4073 {
4074 	struct sym_tcb *tp = &np->target[target];
4075 	unsigned char fak, div;
4076 	int dt, chg = 0;
4077 
4078 	unsigned char per = np->msgin[3];
4079 	unsigned char ofs = np->msgin[5];
4080 	unsigned char wide = np->msgin[6];
4081 	unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4082 
4083 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4084 		sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4085 	}
4086 
4087 	/*
4088 	 *  Check values against our limits.
4089 	 */
4090 	if (wide > np->maxwide) {
4091 		chg = 1;
4092 		wide = np->maxwide;
4093 	}
4094 	if (!wide || !(np->features & FE_U3EN))
4095 		opts = 0;
4096 
4097 	if (opts != (np->msgin[7] & PPR_OPT_MASK))
4098 		chg = 1;
4099 
4100 	dt = opts & PPR_OPT_DT;
4101 
4102 	if (ofs) {
4103 		unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4104 		if (ofs > maxoffs) {
4105 			chg = 1;
4106 			ofs = maxoffs;
4107 		}
4108 	}
4109 
4110 	if (ofs) {
4111 		unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4112 		if (per < minsync) {
4113 			chg = 1;
4114 			per = minsync;
4115 		}
4116 	}
4117 
4118 	/*
4119 	 *  Get new chip synchronous parameters value.
4120 	 */
4121 	div = fak = 0;
4122 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4123 		goto reject_it;
4124 
4125 	/*
4126 	 *  If it was an answer we want to change,
4127 	 *  then it isn't acceptable. Reject it.
4128 	 */
4129 	if (!req && chg)
4130 		goto reject_it;
4131 
4132 	/*
4133 	 *  Apply new values.
4134 	 */
4135 	sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4136 
4137 	/*
4138 	 *  It was an answer. We are done.
4139 	 */
4140 	if (!req)
4141 		return 0;
4142 
4143 	/*
4144 	 *  It was a request. Prepare an answer message.
4145 	 */
4146 	spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4147 
4148 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4149 		sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4150 	}
4151 
4152 	np->msgin [0] = M_NOOP;
4153 
4154 	return 0;
4155 
4156 reject_it:
4157 	sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4158 	/*
4159 	 *  If it is a device response that should result in
4160 	 *  ST, we may want to try a legacy negotiation later.
4161 	 */
4162 	if (!req && !opts) {
4163 		tp->tgoal.period = per;
4164 		tp->tgoal.offset = ofs;
4165 		tp->tgoal.width = wide;
4166 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4167 		tp->tgoal.check_nego = 1;
4168 	}
4169 	return -1;
4170 }
4171 
4172 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4173 {
4174 	int req = 1;
4175 	int result;
4176 
4177 	/*
4178 	 *  Request or answer ?
4179 	 */
4180 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4181 		OUTB(np, HS_PRT, HS_BUSY);
4182 		if (cp->nego_status && cp->nego_status != NS_PPR)
4183 			goto reject_it;
4184 		req = 0;
4185 	}
4186 
4187 	/*
4188 	 *  Check and apply new values.
4189 	 */
4190 	result = sym_ppr_nego_check(np, req, cp->target);
4191 	if (result)	/* Not acceptable, reject it */
4192 		goto reject_it;
4193 	if (req) {	/* Was a request, send response. */
4194 		cp->nego_status = NS_PPR;
4195 		OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4196 	}
4197 	else		/* Was a response, we are done. */
4198 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4199 	return;
4200 
4201 reject_it:
4202 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4203 }
4204 
4205 /*
4206  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4207  */
4208 static int
4209 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4210 {
4211 	int target = cp->target;
4212 	u_char	chg, wide;
4213 
4214 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4215 		sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4216 	}
4217 
4218 	/*
4219 	 *  Get requested values.
4220 	 */
4221 	chg  = 0;
4222 	wide = np->msgin[3];
4223 
4224 	/*
4225 	 *  Check values against our limits.
4226 	 */
4227 	if (wide > np->maxwide) {
4228 		chg = 1;
4229 		wide = np->maxwide;
4230 	}
4231 
4232 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4233 		sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4234 				wide, chg);
4235 	}
4236 
4237 	/*
4238 	 *  If it was an answer we want to change,
4239 	 *  then it isn't acceptable. Reject it.
4240 	 */
4241 	if (!req && chg)
4242 		goto reject_it;
4243 
4244 	/*
4245 	 *  Apply new values.
4246 	 */
4247 	sym_setwide (np, target, wide);
4248 
4249 	/*
4250 	 *  It was an answer. We are done.
4251 	 */
4252 	if (!req)
4253 		return 0;
4254 
4255 	/*
4256 	 *  It was a request. Prepare an answer message.
4257 	 */
4258 	spi_populate_width_msg(np->msgout, wide);
4259 
4260 	np->msgin [0] = M_NOOP;
4261 
4262 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4263 		sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4264 	}
4265 
4266 	return 0;
4267 
4268 reject_it:
4269 	return -1;
4270 }
4271 
4272 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4273 {
4274 	int req = 1;
4275 	int result;
4276 
4277 	/*
4278 	 *  Request or answer ?
4279 	 */
4280 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4281 		OUTB(np, HS_PRT, HS_BUSY);
4282 		if (cp->nego_status && cp->nego_status != NS_WIDE)
4283 			goto reject_it;
4284 		req = 0;
4285 	}
4286 
4287 	/*
4288 	 *  Check and apply new values.
4289 	 */
4290 	result = sym_wide_nego_check(np, req, cp);
4291 	if (result)	/* Not acceptable, reject it */
4292 		goto reject_it;
4293 	if (req) {	/* Was a request, send response. */
4294 		cp->nego_status = NS_WIDE;
4295 		OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4296 	} else {		/* Was a response. */
4297 		/*
4298 		 * Negotiate for SYNC immediately after WIDE response.
4299 		 * This allows to negotiate for both WIDE and SYNC on
4300 		 * a single SCSI command (Suggested by Justin Gibbs).
4301 		 */
4302 		if (tp->tgoal.offset) {
4303 			spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4304 					tp->tgoal.offset);
4305 
4306 			if (DEBUG_FLAGS & DEBUG_NEGO) {
4307 				sym_print_nego_msg(np, cp->target,
4308 				                   "sync msgout", np->msgout);
4309 			}
4310 
4311 			cp->nego_status = NS_SYNC;
4312 			OUTB(np, HS_PRT, HS_NEGOTIATE);
4313 			OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4314 			return;
4315 		} else
4316 			OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4317 	}
4318 
4319 	return;
4320 
4321 reject_it:
4322 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4323 }
4324 
4325 /*
4326  *  Reset DT, SYNC or WIDE to default settings.
4327  *
4328  *  Called when a negotiation does not succeed either
4329  *  on rejection or on protocol error.
4330  *
4331  *  A target that understands a PPR message should never
4332  *  reject it, and messing with it is very unlikely.
4333  *  So, if a PPR makes problems, we may just want to
4334  *  try a legacy negotiation later.
4335  */
4336 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4337 {
4338 	switch (cp->nego_status) {
4339 	case NS_PPR:
4340 #if 0
4341 		sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4342 #else
4343 		if (tp->tgoal.period < np->minsync)
4344 			tp->tgoal.period = np->minsync;
4345 		if (tp->tgoal.offset > np->maxoffs)
4346 			tp->tgoal.offset = np->maxoffs;
4347 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4348 		tp->tgoal.check_nego = 1;
4349 #endif
4350 		break;
4351 	case NS_SYNC:
4352 		sym_setsync (np, cp->target, 0, 0, 0, 0);
4353 		break;
4354 	case NS_WIDE:
4355 		sym_setwide (np, cp->target, 0);
4356 		break;
4357 	}
4358 	np->msgin [0] = M_NOOP;
4359 	np->msgout[0] = M_NOOP;
4360 	cp->nego_status = 0;
4361 }
4362 
4363 /*
4364  *  chip handler for MESSAGE REJECT received in response to
4365  *  PPR, WIDE or SYNCHRONOUS negotiation.
4366  */
4367 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4368 {
4369 	sym_nego_default(np, tp, cp);
4370 	OUTB(np, HS_PRT, HS_BUSY);
4371 }
4372 
4373 /*
4374  *  chip exception handler for programmed interrupts.
4375  */
4376 static void sym_int_sir(struct sym_hcb *np)
4377 {
4378 	u_char	num	= INB(np, nc_dsps);
4379 	u32	dsa	= INL(np, nc_dsa);
4380 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
4381 	u_char	target	= INB(np, nc_sdid) & 0x0f;
4382 	struct sym_tcb *tp	= &np->target[target];
4383 	int	tmp;
4384 
4385 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4386 
4387 	switch (num) {
4388 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4389 	/*
4390 	 *  SCRIPTS tell us that we may have to update
4391 	 *  64 bit DMA segment registers.
4392 	 */
4393 	case SIR_DMAP_DIRTY:
4394 		sym_update_dmap_regs(np);
4395 		goto out;
4396 #endif
4397 	/*
4398 	 *  Command has been completed with error condition
4399 	 *  or has been auto-sensed.
4400 	 */
4401 	case SIR_COMPLETE_ERROR:
4402 		sym_complete_error(np, cp);
4403 		return;
4404 	/*
4405 	 *  The C code is currently trying to recover from something.
4406 	 *  Typically, user want to abort some command.
4407 	 */
4408 	case SIR_SCRIPT_STOPPED:
4409 	case SIR_TARGET_SELECTED:
4410 	case SIR_ABORT_SENT:
4411 		sym_sir_task_recovery(np, num);
4412 		return;
4413 	/*
4414 	 *  The device didn't go to MSG OUT phase after having
4415 	 *  been selected with ATN.  We do not want to handle that.
4416 	 */
4417 	case SIR_SEL_ATN_NO_MSG_OUT:
4418 		scmd_printk(KERN_WARNING, cp->cmd,
4419 				"No MSG OUT phase after selection with ATN\n");
4420 		goto out_stuck;
4421 	/*
4422 	 *  The device didn't switch to MSG IN phase after
4423 	 *  having reselected the initiator.
4424 	 */
4425 	case SIR_RESEL_NO_MSG_IN:
4426 		scmd_printk(KERN_WARNING, cp->cmd,
4427 				"No MSG IN phase after reselection\n");
4428 		goto out_stuck;
4429 	/*
4430 	 *  After reselection, the device sent a message that wasn't
4431 	 *  an IDENTIFY.
4432 	 */
4433 	case SIR_RESEL_NO_IDENTIFY:
4434 		scmd_printk(KERN_WARNING, cp->cmd,
4435 				"No IDENTIFY after reselection\n");
4436 		goto out_stuck;
4437 	/*
4438 	 *  The device reselected a LUN we do not know about.
4439 	 */
4440 	case SIR_RESEL_BAD_LUN:
4441 		np->msgout[0] = M_RESET;
4442 		goto out;
4443 	/*
4444 	 *  The device reselected for an untagged nexus and we
4445 	 *  haven't any.
4446 	 */
4447 	case SIR_RESEL_BAD_I_T_L:
4448 		np->msgout[0] = M_ABORT;
4449 		goto out;
4450 	/*
4451 	 * The device reselected for a tagged nexus that we do not have.
4452 	 */
4453 	case SIR_RESEL_BAD_I_T_L_Q:
4454 		np->msgout[0] = M_ABORT_TAG;
4455 		goto out;
4456 	/*
4457 	 *  The SCRIPTS let us know that the device has grabbed
4458 	 *  our message and will abort the job.
4459 	 */
4460 	case SIR_RESEL_ABORTED:
4461 		np->lastmsg = np->msgout[0];
4462 		np->msgout[0] = M_NOOP;
4463 		scmd_printk(KERN_WARNING, cp->cmd,
4464 			"message %x sent on bad reselection\n", np->lastmsg);
4465 		goto out;
4466 	/*
4467 	 *  The SCRIPTS let us know that a message has been
4468 	 *  successfully sent to the device.
4469 	 */
4470 	case SIR_MSG_OUT_DONE:
4471 		np->lastmsg = np->msgout[0];
4472 		np->msgout[0] = M_NOOP;
4473 		/* Should we really care of that */
4474 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4475 			if (cp) {
4476 				cp->xerr_status &= ~XE_PARITY_ERR;
4477 				if (!cp->xerr_status)
4478 					OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4479 			}
4480 		}
4481 		goto out;
4482 	/*
4483 	 *  The device didn't send a GOOD SCSI status.
4484 	 *  We may have some work to do prior to allow
4485 	 *  the SCRIPTS processor to continue.
4486 	 */
4487 	case SIR_BAD_SCSI_STATUS:
4488 		if (!cp)
4489 			goto out;
4490 		sym_sir_bad_scsi_status(np, num, cp);
4491 		return;
4492 	/*
4493 	 *  We are asked by the SCRIPTS to prepare a
4494 	 *  REJECT message.
4495 	 */
4496 	case SIR_REJECT_TO_SEND:
4497 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4498 		np->msgout[0] = M_REJECT;
4499 		goto out;
4500 	/*
4501 	 *  We have been ODD at the end of a DATA IN
4502 	 *  transfer and the device didn't send a
4503 	 *  IGNORE WIDE RESIDUE message.
4504 	 *  It is a data overrun condition.
4505 	 */
4506 	case SIR_SWIDE_OVERRUN:
4507 		if (cp) {
4508 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4509 			cp->xerr_status |= XE_SWIDE_OVRUN;
4510 		}
4511 		goto out;
4512 	/*
4513 	 *  We have been ODD at the end of a DATA OUT
4514 	 *  transfer.
4515 	 *  It is a data underrun condition.
4516 	 */
4517 	case SIR_SODL_UNDERRUN:
4518 		if (cp) {
4519 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4520 			cp->xerr_status |= XE_SODL_UNRUN;
4521 		}
4522 		goto out;
4523 	/*
4524 	 *  The device wants us to tranfer more data than
4525 	 *  expected or in the wrong direction.
4526 	 *  The number of extra bytes is in scratcha.
4527 	 *  It is a data overrun condition.
4528 	 */
4529 	case SIR_DATA_OVERRUN:
4530 		if (cp) {
4531 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4532 			cp->xerr_status |= XE_EXTRA_DATA;
4533 			cp->extra_bytes += INL(np, nc_scratcha);
4534 		}
4535 		goto out;
4536 	/*
4537 	 *  The device switched to an illegal phase (4/5).
4538 	 */
4539 	case SIR_BAD_PHASE:
4540 		if (cp) {
4541 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4542 			cp->xerr_status |= XE_BAD_PHASE;
4543 		}
4544 		goto out;
4545 	/*
4546 	 *  We received a message.
4547 	 */
4548 	case SIR_MSG_RECEIVED:
4549 		if (!cp)
4550 			goto out_stuck;
4551 		switch (np->msgin [0]) {
4552 		/*
4553 		 *  We received an extended message.
4554 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
4555 		 *  and reject all other extended messages.
4556 		 */
4557 		case M_EXTENDED:
4558 			switch (np->msgin [2]) {
4559 			case M_X_MODIFY_DP:
4560 				if (DEBUG_FLAGS & DEBUG_POINTER)
4561 					sym_print_msg(cp, NULL, np->msgin);
4562 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4563 				      (np->msgin[5]<<8)  + (np->msgin[6]);
4564 				sym_modify_dp(np, tp, cp, tmp);
4565 				return;
4566 			case M_X_SYNC_REQ:
4567 				sym_sync_nego(np, tp, cp);
4568 				return;
4569 			case M_X_PPR_REQ:
4570 				sym_ppr_nego(np, tp, cp);
4571 				return;
4572 			case M_X_WIDE_REQ:
4573 				sym_wide_nego(np, tp, cp);
4574 				return;
4575 			default:
4576 				goto out_reject;
4577 			}
4578 			break;
4579 		/*
4580 		 *  We received a 1/2 byte message not handled from SCRIPTS.
4581 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
4582 		 *  RESIDUE messages that haven't been anticipated by
4583 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4584 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4585 		 */
4586 		case M_IGN_RESIDUE:
4587 			if (DEBUG_FLAGS & DEBUG_POINTER)
4588 				sym_print_msg(cp, NULL, np->msgin);
4589 			if (cp->host_flags & HF_SENSE)
4590 				OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4591 			else
4592 				sym_modify_dp(np, tp, cp, -1);
4593 			return;
4594 		case M_REJECT:
4595 			if (INB(np, HS_PRT) == HS_NEGOTIATE)
4596 				sym_nego_rejected(np, tp, cp);
4597 			else {
4598 				sym_print_addr(cp->cmd,
4599 					"M_REJECT received (%x:%x).\n",
4600 					scr_to_cpu(np->lastmsg), np->msgout[0]);
4601 			}
4602 			goto out_clrack;
4603 			break;
4604 		default:
4605 			goto out_reject;
4606 		}
4607 		break;
4608 	/*
4609 	 *  We received an unknown message.
4610 	 *  Ignore all MSG IN phases and reject it.
4611 	 */
4612 	case SIR_MSG_WEIRD:
4613 		sym_print_msg(cp, "WEIRD message received", np->msgin);
4614 		OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4615 		return;
4616 	/*
4617 	 *  Negotiation failed.
4618 	 *  Target does not send us the reply.
4619 	 *  Remove the HS_NEGOTIATE status.
4620 	 */
4621 	case SIR_NEGO_FAILED:
4622 		OUTB(np, HS_PRT, HS_BUSY);
4623 	/*
4624 	 *  Negotiation failed.
4625 	 *  Target does not want answer message.
4626 	 */
4627 	case SIR_NEGO_PROTO:
4628 		sym_nego_default(np, tp, cp);
4629 		goto out;
4630 	}
4631 
4632 out:
4633 	OUTONB_STD();
4634 	return;
4635 out_reject:
4636 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4637 	return;
4638 out_clrack:
4639 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4640 	return;
4641 out_stuck:
4642 	return;
4643 }
4644 
4645 /*
4646  *  Acquire a control block
4647  */
4648 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4649 {
4650 	u_char tn = cmd->device->id;
4651 	u_char ln = cmd->device->lun;
4652 	struct sym_tcb *tp = &np->target[tn];
4653 	struct sym_lcb *lp = sym_lp(tp, ln);
4654 	u_short tag = NO_TAG;
4655 	SYM_QUEHEAD *qp;
4656 	struct sym_ccb *cp = NULL;
4657 
4658 	/*
4659 	 *  Look for a free CCB
4660 	 */
4661 	if (sym_que_empty(&np->free_ccbq))
4662 		sym_alloc_ccb(np);
4663 	qp = sym_remque_head(&np->free_ccbq);
4664 	if (!qp)
4665 		goto out;
4666 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4667 
4668 	{
4669 		/*
4670 		 *  If we have been asked for a tagged command.
4671 		 */
4672 		if (tag_order) {
4673 			/*
4674 			 *  Debugging purpose.
4675 			 */
4676 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4677 			if (lp->busy_itl != 0)
4678 				goto out_free;
4679 #endif
4680 			/*
4681 			 *  Allocate resources for tags if not yet.
4682 			 */
4683 			if (!lp->cb_tags) {
4684 				sym_alloc_lcb_tags(np, tn, ln);
4685 				if (!lp->cb_tags)
4686 					goto out_free;
4687 			}
4688 			/*
4689 			 *  Get a tag for this SCSI IO and set up
4690 			 *  the CCB bus address for reselection,
4691 			 *  and count it for this LUN.
4692 			 *  Toggle reselect path to tagged.
4693 			 */
4694 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4695 				tag = lp->cb_tags[lp->ia_tag];
4696 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4697 					lp->ia_tag = 0;
4698 				++lp->busy_itlq;
4699 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4700 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4701 				lp->head.resel_sa =
4702 					cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4703 #endif
4704 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4705 				cp->tags_si = lp->tags_si;
4706 				++lp->tags_sum[cp->tags_si];
4707 				++lp->tags_since;
4708 #endif
4709 			}
4710 			else
4711 				goto out_free;
4712 		}
4713 		/*
4714 		 *  This command will not be tagged.
4715 		 *  If we already have either a tagged or untagged
4716 		 *  one, refuse to overlap this untagged one.
4717 		 */
4718 		else {
4719 			/*
4720 			 *  Debugging purpose.
4721 			 */
4722 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4723 			if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4724 				goto out_free;
4725 #endif
4726 			/*
4727 			 *  Count this nexus for this LUN.
4728 			 *  Set up the CCB bus address for reselection.
4729 			 *  Toggle reselect path to untagged.
4730 			 */
4731 			++lp->busy_itl;
4732 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4733 			if (lp->busy_itl == 1) {
4734 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4735 				lp->head.resel_sa =
4736 				      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4737 			}
4738 			else
4739 				goto out_free;
4740 #endif
4741 		}
4742 	}
4743 	/*
4744 	 *  Put the CCB into the busy queue.
4745 	 */
4746 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4747 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4748 	if (lp) {
4749 		sym_remque(&cp->link2_ccbq);
4750 		sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4751 	}
4752 
4753 #endif
4754 	cp->to_abort = 0;
4755 	cp->odd_byte_adjustment = 0;
4756 	cp->tag	   = tag;
4757 	cp->order  = tag_order;
4758 	cp->target = tn;
4759 	cp->lun    = ln;
4760 
4761 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4762 		sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4763 	}
4764 
4765 out:
4766 	return cp;
4767 out_free:
4768 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4769 	return NULL;
4770 }
4771 
4772 /*
4773  *  Release one control block
4774  */
4775 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4776 {
4777 	struct sym_tcb *tp = &np->target[cp->target];
4778 	struct sym_lcb *lp = sym_lp(tp, cp->lun);
4779 
4780 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4781 		sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4782 				cp, cp->tag);
4783 	}
4784 
4785 	/*
4786 	 *  If LCB available,
4787 	 */
4788 	if (lp) {
4789 		/*
4790 		 *  If tagged, release the tag, set the relect path
4791 		 */
4792 		if (cp->tag != NO_TAG) {
4793 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4794 			--lp->tags_sum[cp->tags_si];
4795 #endif
4796 			/*
4797 			 *  Free the tag value.
4798 			 */
4799 			lp->cb_tags[lp->if_tag] = cp->tag;
4800 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
4801 				lp->if_tag = 0;
4802 			/*
4803 			 *  Make the reselect path invalid,
4804 			 *  and uncount this CCB.
4805 			 */
4806 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4807 			--lp->busy_itlq;
4808 		} else {	/* Untagged */
4809 			/*
4810 			 *  Make the reselect path invalid,
4811 			 *  and uncount this CCB.
4812 			 */
4813 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4814 			--lp->busy_itl;
4815 		}
4816 		/*
4817 		 *  If no JOB active, make the LUN reselect path invalid.
4818 		 */
4819 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4820 			lp->head.resel_sa =
4821 				cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4822 	}
4823 
4824 	/*
4825 	 *  We donnot queue more than 1 ccb per target
4826 	 *  with negotiation at any time. If this ccb was
4827 	 *  used for negotiation, clear this info in the tcb.
4828 	 */
4829 	if (cp == tp->nego_cp)
4830 		tp->nego_cp = NULL;
4831 
4832 #ifdef SYM_CONF_IARB_SUPPORT
4833 	/*
4834 	 *  If we just complete the last queued CCB,
4835 	 *  clear this info that is no longer relevant.
4836 	 */
4837 	if (cp == np->last_cp)
4838 		np->last_cp = 0;
4839 #endif
4840 
4841 	/*
4842 	 *  Make this CCB available.
4843 	 */
4844 	cp->cmd = NULL;
4845 	cp->host_status = HS_IDLE;
4846 	sym_remque(&cp->link_ccbq);
4847 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4848 
4849 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4850 	if (lp) {
4851 		sym_remque(&cp->link2_ccbq);
4852 		sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4853 		if (cp->started) {
4854 			if (cp->tag != NO_TAG)
4855 				--lp->started_tags;
4856 			else
4857 				--lp->started_no_tag;
4858 		}
4859 	}
4860 	cp->started = 0;
4861 #endif
4862 }
4863 
4864 /*
4865  *  Allocate a CCB from memory and initialize its fixed part.
4866  */
4867 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4868 {
4869 	struct sym_ccb *cp = NULL;
4870 	int hcode;
4871 
4872 	/*
4873 	 *  Prevent from allocating more CCBs than we can
4874 	 *  queue to the controller.
4875 	 */
4876 	if (np->actccbs >= SYM_CONF_MAX_START)
4877 		return NULL;
4878 
4879 	/*
4880 	 *  Allocate memory for this CCB.
4881 	 */
4882 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4883 	if (!cp)
4884 		goto out_free;
4885 
4886 	/*
4887 	 *  Count it.
4888 	 */
4889 	np->actccbs++;
4890 
4891 	/*
4892 	 *  Compute the bus address of this ccb.
4893 	 */
4894 	cp->ccb_ba = vtobus(cp);
4895 
4896 	/*
4897 	 *  Insert this ccb into the hashed list.
4898 	 */
4899 	hcode = CCB_HASH_CODE(cp->ccb_ba);
4900 	cp->link_ccbh = np->ccbh[hcode];
4901 	np->ccbh[hcode] = cp;
4902 
4903 	/*
4904 	 *  Initialyze the start and restart actions.
4905 	 */
4906 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4907 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4908 
4909  	/*
4910 	 *  Initilialyze some other fields.
4911 	 */
4912 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4913 
4914 	/*
4915 	 *  Chain into free ccb queue.
4916 	 */
4917 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4918 
4919 	/*
4920 	 *  Chain into optionnal lists.
4921 	 */
4922 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4923 	sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4924 #endif
4925 	return cp;
4926 out_free:
4927 	if (cp)
4928 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
4929 	return NULL;
4930 }
4931 
4932 /*
4933  *  Look up a CCB from a DSA value.
4934  */
4935 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4936 {
4937 	int hcode;
4938 	struct sym_ccb *cp;
4939 
4940 	hcode = CCB_HASH_CODE(dsa);
4941 	cp = np->ccbh[hcode];
4942 	while (cp) {
4943 		if (cp->ccb_ba == dsa)
4944 			break;
4945 		cp = cp->link_ccbh;
4946 	}
4947 
4948 	return cp;
4949 }
4950 
4951 /*
4952  *  Target control block initialisation.
4953  *  Nothing important to do at the moment.
4954  */
4955 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4956 {
4957 #if 0	/*  Hmmm... this checking looks paranoid. */
4958 	/*
4959 	 *  Check some alignments required by the chip.
4960 	 */
4961 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
4962 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
4963 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
4964 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
4965 #endif
4966 }
4967 
4968 /*
4969  *  Lun control block allocation and initialization.
4970  */
4971 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4972 {
4973 	struct sym_tcb *tp = &np->target[tn];
4974 	struct sym_lcb *lp = NULL;
4975 
4976 	/*
4977 	 *  Initialize the target control block if not yet.
4978 	 */
4979 	sym_init_tcb (np, tn);
4980 
4981 	/*
4982 	 *  Allocate the LCB bus address array.
4983 	 *  Compute the bus address of this table.
4984 	 */
4985 	if (ln && !tp->luntbl) {
4986 		int i;
4987 
4988 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4989 		if (!tp->luntbl)
4990 			goto fail;
4991 		for (i = 0 ; i < 64 ; i++)
4992 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4993 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4994 	}
4995 
4996 	/*
4997 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
4998 	 */
4999 	if (ln && !tp->lunmp) {
5000 		tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
5001 				GFP_ATOMIC);
5002 		if (!tp->lunmp)
5003 			goto fail;
5004 	}
5005 
5006 	/*
5007 	 *  Allocate the lcb.
5008 	 *  Make it available to the chip.
5009 	 */
5010 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
5011 	if (!lp)
5012 		goto fail;
5013 	if (ln) {
5014 		tp->lunmp[ln] = lp;
5015 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
5016 	}
5017 	else {
5018 		tp->lun0p = lp;
5019 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
5020 	}
5021 	tp->nlcb++;
5022 
5023 	/*
5024 	 *  Let the itl task point to error handling.
5025 	 */
5026 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
5027 
5028 	/*
5029 	 *  Set the reselect pattern to our default. :)
5030 	 */
5031 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5032 
5033 	/*
5034 	 *  Set user capabilities.
5035 	 */
5036 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
5037 
5038 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5039 	/*
5040 	 *  Initialize device queueing.
5041 	 */
5042 	sym_que_init(&lp->waiting_ccbq);
5043 	sym_que_init(&lp->started_ccbq);
5044 	lp->started_max   = SYM_CONF_MAX_TASK;
5045 	lp->started_limit = SYM_CONF_MAX_TASK;
5046 #endif
5047 
5048 fail:
5049 	return lp;
5050 }
5051 
5052 /*
5053  *  Allocate LCB resources for tagged command queuing.
5054  */
5055 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
5056 {
5057 	struct sym_tcb *tp = &np->target[tn];
5058 	struct sym_lcb *lp = sym_lp(tp, ln);
5059 	int i;
5060 
5061 	/*
5062 	 *  Allocate the task table and and the tag allocation
5063 	 *  circular buffer. We want both or none.
5064 	 */
5065 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5066 	if (!lp->itlq_tbl)
5067 		goto fail;
5068 	lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5069 	if (!lp->cb_tags) {
5070 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5071 		lp->itlq_tbl = NULL;
5072 		goto fail;
5073 	}
5074 
5075 	/*
5076 	 *  Initialize the task table with invalid entries.
5077 	 */
5078 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5079 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5080 
5081 	/*
5082 	 *  Fill up the tag buffer with tag numbers.
5083 	 */
5084 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5085 		lp->cb_tags[i] = i;
5086 
5087 	/*
5088 	 *  Make the task table available to SCRIPTS,
5089 	 *  And accept tagged commands now.
5090 	 */
5091 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5092 
5093 	return;
5094 fail:
5095 	return;
5096 }
5097 
5098 /*
5099  *  Lun control block deallocation. Returns the number of valid remaing LCBs
5100  *  for the target.
5101  */
5102 int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln)
5103 {
5104 	struct sym_tcb *tp = &np->target[tn];
5105 	struct sym_lcb *lp = sym_lp(tp, ln);
5106 
5107 	tp->nlcb--;
5108 
5109 	if (ln) {
5110 		if (!tp->nlcb) {
5111 			kfree(tp->lunmp);
5112 			sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5113 			tp->lunmp = NULL;
5114 			tp->luntbl = NULL;
5115 			tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl));
5116 		} else {
5117 			tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa));
5118 			tp->lunmp[ln] = NULL;
5119 		}
5120 	} else {
5121 		tp->lun0p = NULL;
5122 		tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa));
5123 	}
5124 
5125 	if (lp->itlq_tbl) {
5126 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5127 		kfree(lp->cb_tags);
5128 	}
5129 
5130 	sym_mfree_dma(lp, sizeof(*lp), "LCB");
5131 
5132 	return tp->nlcb;
5133 }
5134 
5135 /*
5136  *  Queue a SCSI IO to the controller.
5137  */
5138 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5139 {
5140 	struct scsi_device *sdev = cmd->device;
5141 	struct sym_tcb *tp;
5142 	struct sym_lcb *lp;
5143 	u_char	*msgptr;
5144 	u_int   msglen;
5145 	int can_disconnect;
5146 
5147 	/*
5148 	 *  Keep track of the IO in our CCB.
5149 	 */
5150 	cp->cmd = cmd;
5151 
5152 	/*
5153 	 *  Retrieve the target descriptor.
5154 	 */
5155 	tp = &np->target[cp->target];
5156 
5157 	/*
5158 	 *  Retrieve the lun descriptor.
5159 	 */
5160 	lp = sym_lp(tp, sdev->lun);
5161 
5162 	can_disconnect = (cp->tag != NO_TAG) ||
5163 		(lp && (lp->curr_flags & SYM_DISC_ENABLED));
5164 
5165 	msgptr = cp->scsi_smsg;
5166 	msglen = 0;
5167 	msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5168 
5169 	/*
5170 	 *  Build the tag message if present.
5171 	 */
5172 	if (cp->tag != NO_TAG) {
5173 		u_char order = cp->order;
5174 
5175 		switch(order) {
5176 		case M_ORDERED_TAG:
5177 			break;
5178 		case M_HEAD_TAG:
5179 			break;
5180 		default:
5181 			order = M_SIMPLE_TAG;
5182 		}
5183 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5184 		/*
5185 		 *  Avoid too much reordering of SCSI commands.
5186 		 *  The algorithm tries to prevent completion of any
5187 		 *  tagged command from being delayed against more
5188 		 *  than 3 times the max number of queued commands.
5189 		 */
5190 		if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5191 			lp->tags_si = !(lp->tags_si);
5192 			if (lp->tags_sum[lp->tags_si]) {
5193 				order = M_ORDERED_TAG;
5194 				if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5195 					sym_print_addr(cmd,
5196 						"ordered tag forced.\n");
5197 				}
5198 			}
5199 			lp->tags_since = 0;
5200 		}
5201 #endif
5202 		msgptr[msglen++] = order;
5203 
5204 		/*
5205 		 *  For less than 128 tags, actual tags are numbered
5206 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
5207 		 *  with devices that have problems with #TAG 0 or too
5208 		 *  great #TAG numbers. For more tags (up to 256),
5209 		 *  we use directly our tag number.
5210 		 */
5211 #if SYM_CONF_MAX_TASK > (512/4)
5212 		msgptr[msglen++] = cp->tag;
5213 #else
5214 		msgptr[msglen++] = (cp->tag << 1) + 1;
5215 #endif
5216 	}
5217 
5218 	/*
5219 	 *  Build a negotiation message if needed.
5220 	 *  (nego_status is filled by sym_prepare_nego())
5221 	 *
5222 	 *  Always negotiate on INQUIRY and REQUEST SENSE.
5223 	 *
5224 	 */
5225 	cp->nego_status = 0;
5226 	if ((tp->tgoal.check_nego ||
5227 	     cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) &&
5228 	    !tp->nego_cp && lp) {
5229 		msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5230 	}
5231 
5232 	/*
5233 	 *  Startqueue
5234 	 */
5235 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5236 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5237 
5238 	/*
5239 	 *  select
5240 	 */
5241 	cp->phys.select.sel_id		= cp->target;
5242 	cp->phys.select.sel_scntl3	= tp->head.wval;
5243 	cp->phys.select.sel_sxfer	= tp->head.sval;
5244 	cp->phys.select.sel_scntl4	= tp->head.uval;
5245 
5246 	/*
5247 	 *  message
5248 	 */
5249 	cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg);
5250 	cp->phys.smsg.size	= cpu_to_scr(msglen);
5251 
5252 	/*
5253 	 *  status
5254 	 */
5255 	cp->host_xflags		= 0;
5256 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5257 	cp->ssss_status		= S_ILLEGAL;
5258 	cp->xerr_status		= 0;
5259 	cp->host_flags		= 0;
5260 	cp->extra_bytes		= 0;
5261 
5262 	/*
5263 	 *  extreme data pointer.
5264 	 *  shall be positive, so -1 is lower than lowest.:)
5265 	 */
5266 	cp->ext_sg  = -1;
5267 	cp->ext_ofs = 0;
5268 
5269 	/*
5270 	 *  Build the CDB and DATA descriptor block
5271 	 *  and start the IO.
5272 	 */
5273 	return sym_setup_data_and_start(np, cmd, cp);
5274 }
5275 
5276 /*
5277  *  Reset a SCSI target (all LUNs of this target).
5278  */
5279 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5280 {
5281 	struct sym_tcb *tp;
5282 
5283 	if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5284 		return -1;
5285 
5286 	tp = &np->target[target];
5287 	tp->to_reset = 1;
5288 
5289 	np->istat_sem = SEM;
5290 	OUTB(np, nc_istat, SIGP|SEM);
5291 
5292 	return 0;
5293 }
5294 
5295 /*
5296  *  Abort a SCSI IO.
5297  */
5298 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5299 {
5300 	/*
5301 	 *  Check that the IO is active.
5302 	 */
5303 	if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5304 		return -1;
5305 
5306 	/*
5307 	 *  If a previous abort didn't succeed in time,
5308 	 *  perform a BUS reset.
5309 	 */
5310 	if (cp->to_abort) {
5311 		sym_reset_scsi_bus(np, 1);
5312 		return 0;
5313 	}
5314 
5315 	/*
5316 	 *  Mark the CCB for abort and allow time for.
5317 	 */
5318 	cp->to_abort = timed_out ? 2 : 1;
5319 
5320 	/*
5321 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
5322 	 */
5323 	np->istat_sem = SEM;
5324 	OUTB(np, nc_istat, SIGP|SEM);
5325 	return 0;
5326 }
5327 
5328 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5329 {
5330 	struct sym_ccb *cp;
5331 	SYM_QUEHEAD *qp;
5332 
5333 	/*
5334 	 *  Look up our CCB control block.
5335 	 */
5336 	cp = NULL;
5337 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5338 		struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5339 		if (cp2->cmd == cmd) {
5340 			cp = cp2;
5341 			break;
5342 		}
5343 	}
5344 
5345 	return sym_abort_ccb(np, cp, timed_out);
5346 }
5347 
5348 /*
5349  *  Complete execution of a SCSI command with extended
5350  *  error, SCSI status error, or having been auto-sensed.
5351  *
5352  *  The SCRIPTS processor is not running there, so we
5353  *  can safely access IO registers and remove JOBs from
5354  *  the START queue.
5355  *  SCRATCHA is assumed to have been loaded with STARTPOS
5356  *  before the SCRIPTS called the C code.
5357  */
5358 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5359 {
5360 	struct scsi_device *sdev;
5361 	struct scsi_cmnd *cmd;
5362 	struct sym_tcb *tp;
5363 	struct sym_lcb *lp;
5364 	int resid;
5365 	int i;
5366 
5367 	/*
5368 	 *  Paranoid check. :)
5369 	 */
5370 	if (!cp || !cp->cmd)
5371 		return;
5372 
5373 	cmd = cp->cmd;
5374 	sdev = cmd->device;
5375 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5376 		dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5377 			cp->host_status, cp->ssss_status, cp->host_flags);
5378 	}
5379 
5380 	/*
5381 	 *  Get target and lun pointers.
5382 	 */
5383 	tp = &np->target[cp->target];
5384 	lp = sym_lp(tp, sdev->lun);
5385 
5386 	/*
5387 	 *  Check for extended errors.
5388 	 */
5389 	if (cp->xerr_status) {
5390 		if (sym_verbose)
5391 			sym_print_xerr(cmd, cp->xerr_status);
5392 		if (cp->host_status == HS_COMPLETE)
5393 			cp->host_status = HS_COMP_ERR;
5394 	}
5395 
5396 	/*
5397 	 *  Calculate the residual.
5398 	 */
5399 	resid = sym_compute_residual(np, cp);
5400 
5401 	if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5402 		resid  = 0;		 /* throw them away. :)		    */
5403 		cp->sv_resid = 0;
5404 	}
5405 #ifdef DEBUG_2_0_X
5406 if (resid)
5407 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5408 #endif
5409 
5410 	/*
5411 	 *  Dequeue all queued CCBs for that device
5412 	 *  not yet started by SCRIPTS.
5413 	 */
5414 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5415 	i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5416 
5417 	/*
5418 	 *  Restart the SCRIPTS processor.
5419 	 */
5420 	OUTL_DSP(np, SCRIPTA_BA(np, start));
5421 
5422 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5423 	if (cp->host_status == HS_COMPLETE &&
5424 	    cp->ssss_status == S_QUEUE_FULL) {
5425 		if (!lp || lp->started_tags - i < 2)
5426 			goto weirdness;
5427 		/*
5428 		 *  Decrease queue depth as needed.
5429 		 */
5430 		lp->started_max = lp->started_tags - i - 1;
5431 		lp->num_sgood = 0;
5432 
5433 		if (sym_verbose >= 2) {
5434 			sym_print_addr(cmd, " queue depth is now %d\n",
5435 					lp->started_max);
5436 		}
5437 
5438 		/*
5439 		 *  Repair the CCB.
5440 		 */
5441 		cp->host_status = HS_BUSY;
5442 		cp->ssss_status = S_ILLEGAL;
5443 
5444 		/*
5445 		 *  Let's requeue it to device.
5446 		 */
5447 		sym_set_cam_status(cmd, DID_SOFT_ERROR);
5448 		goto finish;
5449 	}
5450 weirdness:
5451 #endif
5452 	/*
5453 	 *  Build result in CAM ccb.
5454 	 */
5455 	sym_set_cam_result_error(np, cp, resid);
5456 
5457 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5458 finish:
5459 #endif
5460 	/*
5461 	 *  Add this one to the COMP queue.
5462 	 */
5463 	sym_remque(&cp->link_ccbq);
5464 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5465 
5466 	/*
5467 	 *  Complete all those commands with either error
5468 	 *  or requeue condition.
5469 	 */
5470 	sym_flush_comp_queue(np, 0);
5471 
5472 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5473 	/*
5474 	 *  Donnot start more than 1 command after an error.
5475 	 */
5476 	sym_start_next_ccbs(np, lp, 1);
5477 #endif
5478 }
5479 
5480 /*
5481  *  Complete execution of a successful SCSI command.
5482  *
5483  *  Only successful commands go to the DONE queue,
5484  *  since we need to have the SCRIPTS processor
5485  *  stopped on any error condition.
5486  *  The SCRIPTS processor is running while we are
5487  *  completing successful commands.
5488  */
5489 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5490 {
5491 	struct sym_tcb *tp;
5492 	struct sym_lcb *lp;
5493 	struct scsi_cmnd *cmd;
5494 	int resid;
5495 
5496 	/*
5497 	 *  Paranoid check. :)
5498 	 */
5499 	if (!cp || !cp->cmd)
5500 		return;
5501 	assert (cp->host_status == HS_COMPLETE);
5502 
5503 	/*
5504 	 *  Get user command.
5505 	 */
5506 	cmd = cp->cmd;
5507 
5508 	/*
5509 	 *  Get target and lun pointers.
5510 	 */
5511 	tp = &np->target[cp->target];
5512 	lp = sym_lp(tp, cp->lun);
5513 
5514 	/*
5515 	 *  If all data have been transferred, given than no
5516 	 *  extended error did occur, there is no residual.
5517 	 */
5518 	resid = 0;
5519 	if (cp->phys.head.lastp != cp->goalp)
5520 		resid = sym_compute_residual(np, cp);
5521 
5522 	/*
5523 	 *  Wrong transfer residuals may be worse than just always
5524 	 *  returning zero. User can disable this feature in
5525 	 *  sym53c8xx.h. Residual support is enabled by default.
5526 	 */
5527 	if (!SYM_SETUP_RESIDUAL_SUPPORT)
5528 		resid  = 0;
5529 #ifdef DEBUG_2_0_X
5530 if (resid)
5531 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5532 #endif
5533 
5534 	/*
5535 	 *  Build result in CAM ccb.
5536 	 */
5537 	sym_set_cam_result_ok(cp, cmd, resid);
5538 
5539 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5540 	/*
5541 	 *  If max number of started ccbs had been reduced,
5542 	 *  increase it if 200 good status received.
5543 	 */
5544 	if (lp && lp->started_max < lp->started_limit) {
5545 		++lp->num_sgood;
5546 		if (lp->num_sgood >= 200) {
5547 			lp->num_sgood = 0;
5548 			++lp->started_max;
5549 			if (sym_verbose >= 2) {
5550 				sym_print_addr(cmd, " queue depth is now %d\n",
5551 				       lp->started_max);
5552 			}
5553 		}
5554 	}
5555 #endif
5556 
5557 	/*
5558 	 *  Free our CCB.
5559 	 */
5560 	sym_free_ccb (np, cp);
5561 
5562 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5563 	/*
5564 	 *  Requeue a couple of awaiting scsi commands.
5565 	 */
5566 	if (!sym_que_empty(&lp->waiting_ccbq))
5567 		sym_start_next_ccbs(np, lp, 2);
5568 #endif
5569 	/*
5570 	 *  Complete the command.
5571 	 */
5572 	sym_xpt_done(np, cmd);
5573 }
5574 
5575 /*
5576  *  Soft-attach the controller.
5577  */
5578 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5579 {
5580 	struct sym_hcb *np = sym_get_hcb(shost);
5581 	int i;
5582 
5583 	/*
5584 	 *  Get some info about the firmware.
5585 	 */
5586 	np->scripta_sz	 = fw->a_size;
5587 	np->scriptb_sz	 = fw->b_size;
5588 	np->scriptz_sz	 = fw->z_size;
5589 	np->fw_setup	 = fw->setup;
5590 	np->fw_patch	 = fw->patch;
5591 	np->fw_name	 = fw->name;
5592 
5593 	/*
5594 	 *  Save setting of some IO registers, so we will
5595 	 *  be able to probe specific implementations.
5596 	 */
5597 	sym_save_initial_setting (np);
5598 
5599 	/*
5600 	 *  Reset the chip now, since it has been reported
5601 	 *  that SCSI clock calibration may not work properly
5602 	 *  if the chip is currently active.
5603 	 */
5604 	sym_chip_reset(np);
5605 
5606 	/*
5607 	 *  Prepare controller and devices settings, according
5608 	 *  to chip features, user set-up and driver set-up.
5609 	 */
5610 	sym_prepare_setting(shost, np, nvram);
5611 
5612 	/*
5613 	 *  Check the PCI clock frequency.
5614 	 *  Must be performed after prepare_setting since it destroys
5615 	 *  STEST1 that is used to probe for the clock doubler.
5616 	 */
5617 	i = sym_getpciclock(np);
5618 	if (i > 37000 && !(np->features & FE_66MHZ))
5619 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5620 			sym_name(np), i);
5621 
5622 	/*
5623 	 *  Allocate the start queue.
5624 	 */
5625 	np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5626 	if (!np->squeue)
5627 		goto attach_failed;
5628 	np->squeue_ba = vtobus(np->squeue);
5629 
5630 	/*
5631 	 *  Allocate the done queue.
5632 	 */
5633 	np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5634 	if (!np->dqueue)
5635 		goto attach_failed;
5636 	np->dqueue_ba = vtobus(np->dqueue);
5637 
5638 	/*
5639 	 *  Allocate the target bus address array.
5640 	 */
5641 	np->targtbl = sym_calloc_dma(256, "TARGTBL");
5642 	if (!np->targtbl)
5643 		goto attach_failed;
5644 	np->targtbl_ba = vtobus(np->targtbl);
5645 
5646 	/*
5647 	 *  Allocate SCRIPTS areas.
5648 	 */
5649 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5650 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5651 	np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5652 	if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5653 		goto attach_failed;
5654 
5655 	/*
5656 	 *  Allocate the array of lists of CCBs hashed by DSA.
5657 	 */
5658 	np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
5659 	if (!np->ccbh)
5660 		goto attach_failed;
5661 
5662 	/*
5663 	 *  Initialyze the CCB free and busy queues.
5664 	 */
5665 	sym_que_init(&np->free_ccbq);
5666 	sym_que_init(&np->busy_ccbq);
5667 	sym_que_init(&np->comp_ccbq);
5668 
5669 	/*
5670 	 *  Initialization for optional handling
5671 	 *  of device queueing.
5672 	 */
5673 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5674 	sym_que_init(&np->dummy_ccbq);
5675 #endif
5676 	/*
5677 	 *  Allocate some CCB. We need at least ONE.
5678 	 */
5679 	if (!sym_alloc_ccb(np))
5680 		goto attach_failed;
5681 
5682 	/*
5683 	 *  Calculate BUS addresses where we are going
5684 	 *  to load the SCRIPTS.
5685 	 */
5686 	np->scripta_ba	= vtobus(np->scripta0);
5687 	np->scriptb_ba	= vtobus(np->scriptb0);
5688 	np->scriptz_ba	= vtobus(np->scriptz0);
5689 
5690 	if (np->ram_ba) {
5691 		np->scripta_ba = np->ram_ba;
5692 		if (np->features & FE_RAM8K) {
5693 			np->scriptb_ba = np->scripta_ba + 4096;
5694 #if 0	/* May get useful for 64 BIT PCI addressing */
5695 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5696 #endif
5697 		}
5698 	}
5699 
5700 	/*
5701 	 *  Copy scripts to controller instance.
5702 	 */
5703 	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5704 	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5705 	memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5706 
5707 	/*
5708 	 *  Setup variable parts in scripts and compute
5709 	 *  scripts bus addresses used from the C code.
5710 	 */
5711 	np->fw_setup(np, fw);
5712 
5713 	/*
5714 	 *  Bind SCRIPTS with physical addresses usable by the
5715 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5716 	 */
5717 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5718 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5719 	sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5720 
5721 #ifdef SYM_CONF_IARB_SUPPORT
5722 	/*
5723 	 *    If user wants IARB to be set when we win arbitration
5724 	 *    and have other jobs, compute the max number of consecutive
5725 	 *    settings of IARB hints before we leave devices a chance to
5726 	 *    arbitrate for reselection.
5727 	 */
5728 #ifdef	SYM_SETUP_IARB_MAX
5729 	np->iarb_max = SYM_SETUP_IARB_MAX;
5730 #else
5731 	np->iarb_max = 4;
5732 #endif
5733 #endif
5734 
5735 	/*
5736 	 *  Prepare the idle and invalid task actions.
5737 	 */
5738 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5739 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5740 	np->idletask_ba		= vtobus(&np->idletask);
5741 
5742 	np->notask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5743 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5744 	np->notask_ba		= vtobus(&np->notask);
5745 
5746 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5747 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5748 	np->bad_itl_ba		= vtobus(&np->bad_itl);
5749 
5750 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5751 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5752 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
5753 
5754 	/*
5755 	 *  Allocate and prepare the lun JUMP table that is used
5756 	 *  for a target prior the probing of devices (bad lun table).
5757 	 *  A private table will be allocated for the target on the
5758 	 *  first INQUIRY response received.
5759 	 */
5760 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5761 	if (!np->badluntbl)
5762 		goto attach_failed;
5763 
5764 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5765 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
5766 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5767 
5768 	/*
5769 	 *  Prepare the bus address array that contains the bus
5770 	 *  address of each target control block.
5771 	 *  For now, assume all logical units are wrong. :)
5772 	 */
5773 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5774 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5775 		np->target[i].head.luntbl_sa =
5776 				cpu_to_scr(vtobus(np->badluntbl));
5777 		np->target[i].head.lun0_sa =
5778 				cpu_to_scr(vtobus(&np->badlun_sa));
5779 	}
5780 
5781 	/*
5782 	 *  Now check the cache handling of the pci chipset.
5783 	 */
5784 	if (sym_snooptest (np)) {
5785 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5786 		goto attach_failed;
5787 	}
5788 
5789 	/*
5790 	 *  Sigh! we are done.
5791 	 */
5792 	return 0;
5793 
5794 attach_failed:
5795 	return -ENXIO;
5796 }
5797 
5798 /*
5799  *  Free everything that has been allocated for this device.
5800  */
5801 void sym_hcb_free(struct sym_hcb *np)
5802 {
5803 	SYM_QUEHEAD *qp;
5804 	struct sym_ccb *cp;
5805 	struct sym_tcb *tp;
5806 	int target;
5807 
5808 	if (np->scriptz0)
5809 		sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5810 	if (np->scriptb0)
5811 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5812 	if (np->scripta0)
5813 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5814 	if (np->squeue)
5815 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5816 	if (np->dqueue)
5817 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5818 
5819 	if (np->actccbs) {
5820 		while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) {
5821 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5822 			sym_mfree_dma(cp, sizeof(*cp), "CCB");
5823 		}
5824 	}
5825 	kfree(np->ccbh);
5826 
5827 	if (np->badluntbl)
5828 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5829 
5830 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5831 		tp = &np->target[target];
5832 		if (tp->luntbl)
5833 			sym_mfree_dma(tp->luntbl, 256, "LUNTBL");
5834 #if SYM_CONF_MAX_LUN > 1
5835 		kfree(tp->lunmp);
5836 #endif
5837 	}
5838 	if (np->targtbl)
5839 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5840 }
5841