1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 
41 #include <linux/slab.h>
42 #include <asm/param.h>		/* for timeouts in units of HZ */
43 
44 #include "sym_glue.h"
45 #include "sym_nvram.h"
46 
47 #if 0
48 #define SYM_DEBUG_GENERIC_SUPPORT
49 #endif
50 
51 /*
52  *  Needed function prototypes.
53  */
54 static void sym_int_ma (struct sym_hcb *np);
55 static void sym_int_sir (struct sym_hcb *np);
56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np);
57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa);
58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln);
59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp);
60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp);
61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp);
62 
63 /*
64  *  Print a buffer in hexadecimal format with a ".\n" at end.
65  */
66 static void sym_printl_hex(u_char *p, int n)
67 {
68 	while (n-- > 0)
69 		printf (" %x", *p++);
70 	printf (".\n");
71 }
72 
73 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg)
74 {
75 	if (label)
76 		sym_print_addr(cp->cmd, "%s: ", label);
77 	else
78 		sym_print_addr(cp->cmd, "");
79 
80 	spi_print_msg(msg);
81 	printf("\n");
82 }
83 
84 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg)
85 {
86 	struct sym_tcb *tp = &np->target[target];
87 	dev_info(&tp->starget->dev, "%s: ", label);
88 
89 	spi_print_msg(msg);
90 	printf("\n");
91 }
92 
93 /*
94  *  Print something that tells about extended errors.
95  */
96 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status)
97 {
98 	if (x_status & XE_PARITY_ERR) {
99 		sym_print_addr(cmd, "unrecovered SCSI parity error.\n");
100 	}
101 	if (x_status & XE_EXTRA_DATA) {
102 		sym_print_addr(cmd, "extraneous data discarded.\n");
103 	}
104 	if (x_status & XE_BAD_PHASE) {
105 		sym_print_addr(cmd, "illegal scsi phase (4/5).\n");
106 	}
107 	if (x_status & XE_SODL_UNRUN) {
108 		sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n");
109 	}
110 	if (x_status & XE_SWIDE_OVRUN) {
111 		sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n");
112 	}
113 }
114 
115 /*
116  *  Return a string for SCSI BUS mode.
117  */
118 static char *sym_scsi_bus_mode(int mode)
119 {
120 	switch(mode) {
121 	case SMODE_HVD:	return "HVD";
122 	case SMODE_SE:	return "SE";
123 	case SMODE_LVD: return "LVD";
124 	}
125 	return "??";
126 }
127 
128 /*
129  *  Soft reset the chip.
130  *
131  *  Raising SRST when the chip is running may cause
132  *  problems on dual function chips (see below).
133  *  On the other hand, LVD devices need some delay
134  *  to settle and report actual BUS mode in STEST4.
135  */
136 static void sym_chip_reset (struct sym_hcb *np)
137 {
138 	OUTB(np, nc_istat, SRST);
139 	INB(np, nc_mbox1);
140 	udelay(10);
141 	OUTB(np, nc_istat, 0);
142 	INB(np, nc_mbox1);
143 	udelay(2000);	/* For BUS MODE to settle */
144 }
145 
146 /*
147  *  Really soft reset the chip.:)
148  *
149  *  Some 896 and 876 chip revisions may hang-up if we set
150  *  the SRST (soft reset) bit at the wrong time when SCRIPTS
151  *  are running.
152  *  So, we need to abort the current operation prior to
153  *  soft resetting the chip.
154  */
155 static void sym_soft_reset (struct sym_hcb *np)
156 {
157 	u_char istat = 0;
158 	int i;
159 
160 	if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN))
161 		goto do_chip_reset;
162 
163 	OUTB(np, nc_istat, CABRT);
164 	for (i = 100000 ; i ; --i) {
165 		istat = INB(np, nc_istat);
166 		if (istat & SIP) {
167 			INW(np, nc_sist);
168 		}
169 		else if (istat & DIP) {
170 			if (INB(np, nc_dstat) & ABRT)
171 				break;
172 		}
173 		udelay(5);
174 	}
175 	OUTB(np, nc_istat, 0);
176 	if (!i)
177 		printf("%s: unable to abort current chip operation, "
178 		       "ISTAT=0x%02x.\n", sym_name(np), istat);
179 do_chip_reset:
180 	sym_chip_reset(np);
181 }
182 
183 /*
184  *  Start reset process.
185  *
186  *  The interrupt handler will reinitialize the chip.
187  */
188 static void sym_start_reset(struct sym_hcb *np)
189 {
190 	sym_reset_scsi_bus(np, 1);
191 }
192 
193 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int)
194 {
195 	u32 term;
196 	int retv = 0;
197 
198 	sym_soft_reset(np);	/* Soft reset the chip */
199 	if (enab_int)
200 		OUTW(np, nc_sien, RST);
201 	/*
202 	 *  Enable Tolerant, reset IRQD if present and
203 	 *  properly set IRQ mode, prior to resetting the bus.
204 	 */
205 	OUTB(np, nc_stest3, TE);
206 	OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM));
207 	OUTB(np, nc_scntl1, CRST);
208 	INB(np, nc_mbox1);
209 	udelay(200);
210 
211 	if (!SYM_SETUP_SCSI_BUS_CHECK)
212 		goto out;
213 	/*
214 	 *  Check for no terminators or SCSI bus shorts to ground.
215 	 *  Read SCSI data bus, data parity bits and control signals.
216 	 *  We are expecting RESET to be TRUE and other signals to be
217 	 *  FALSE.
218 	 */
219 	term =	INB(np, nc_sstat0);
220 	term =	((term & 2) << 7) + ((term & 1) << 17);	/* rst sdp0 */
221 	term |= ((INB(np, nc_sstat2) & 0x01) << 26) |	/* sdp1     */
222 		((INW(np, nc_sbdl) & 0xff)   << 9)  |	/* d7-0     */
223 		((INW(np, nc_sbdl) & 0xff00) << 10) |	/* d15-8    */
224 		INB(np, nc_sbcl);	/* req ack bsy sel atn msg cd io    */
225 
226 	if (!np->maxwide)
227 		term &= 0x3ffff;
228 
229 	if (term != (2<<7)) {
230 		printf("%s: suspicious SCSI data while resetting the BUS.\n",
231 			sym_name(np));
232 		printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = "
233 			"0x%lx, expecting 0x%lx\n",
234 			sym_name(np),
235 			(np->features & FE_WIDE) ? "dp1,d15-8," : "",
236 			(u_long)term, (u_long)(2<<7));
237 		if (SYM_SETUP_SCSI_BUS_CHECK == 1)
238 			retv = 1;
239 	}
240 out:
241 	OUTB(np, nc_scntl1, 0);
242 	return retv;
243 }
244 
245 /*
246  *  Select SCSI clock frequency
247  */
248 static void sym_selectclock(struct sym_hcb *np, u_char scntl3)
249 {
250 	/*
251 	 *  If multiplier not present or not selected, leave here.
252 	 */
253 	if (np->multiplier <= 1) {
254 		OUTB(np, nc_scntl3, scntl3);
255 		return;
256 	}
257 
258 	if (sym_verbose >= 2)
259 		printf ("%s: enabling clock multiplier\n", sym_name(np));
260 
261 	OUTB(np, nc_stest1, DBLEN);	   /* Enable clock multiplier */
262 	/*
263 	 *  Wait for the LCKFRQ bit to be set if supported by the chip.
264 	 *  Otherwise wait 50 micro-seconds (at least).
265 	 */
266 	if (np->features & FE_LCKFRQ) {
267 		int i = 20;
268 		while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0)
269 			udelay(20);
270 		if (!i)
271 			printf("%s: the chip cannot lock the frequency\n",
272 				sym_name(np));
273 	} else {
274 		INB(np, nc_mbox1);
275 		udelay(50+10);
276 	}
277 	OUTB(np, nc_stest3, HSC);		/* Halt the scsi clock	*/
278 	OUTB(np, nc_scntl3, scntl3);
279 	OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier	*/
280 	OUTB(np, nc_stest3, 0x00);		/* Restart scsi clock 	*/
281 }
282 
283 
284 /*
285  *  Determine the chip's clock frequency.
286  *
287  *  This is essential for the negotiation of the synchronous
288  *  transfer rate.
289  *
290  *  Note: we have to return the correct value.
291  *  THERE IS NO SAFE DEFAULT VALUE.
292  *
293  *  Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock.
294  *  53C860 and 53C875 rev. 1 support fast20 transfers but
295  *  do not have a clock doubler and so are provided with a
296  *  80 MHz clock. All other fast20 boards incorporate a doubler
297  *  and so should be delivered with a 40 MHz clock.
298  *  The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base
299  *  clock and provide a clock quadrupler (160 Mhz).
300  */
301 
302 /*
303  *  calculate SCSI clock frequency (in KHz)
304  */
305 static unsigned getfreq (struct sym_hcb *np, int gen)
306 {
307 	unsigned int ms = 0;
308 	unsigned int f;
309 
310 	/*
311 	 * Measure GEN timer delay in order
312 	 * to calculate SCSI clock frequency
313 	 *
314 	 * This code will never execute too
315 	 * many loop iterations (if DELAY is
316 	 * reasonably correct). It could get
317 	 * too low a delay (too high a freq.)
318 	 * if the CPU is slow executing the
319 	 * loop for some reason (an NMI, for
320 	 * example). For this reason we will
321 	 * if multiple measurements are to be
322 	 * performed trust the higher delay
323 	 * (lower frequency returned).
324 	 */
325 	OUTW(np, nc_sien, 0);	/* mask all scsi interrupts */
326 	INW(np, nc_sist);	/* clear pending scsi interrupt */
327 	OUTB(np, nc_dien, 0);	/* mask all dma interrupts */
328 	INW(np, nc_sist);	/* another one, just to be sure :) */
329 	/*
330 	 * The C1010-33 core does not report GEN in SIST,
331 	 * if this interrupt is masked in SIEN.
332 	 * I don't know yet if the C1010-66 behaves the same way.
333 	 */
334 	if (np->features & FE_C10) {
335 		OUTW(np, nc_sien, GEN);
336 		OUTB(np, nc_istat1, SIRQD);
337 	}
338 	OUTB(np, nc_scntl3, 4);	   /* set pre-scaler to divide by 3 */
339 	OUTB(np, nc_stime1, 0);	   /* disable general purpose timer */
340 	OUTB(np, nc_stime1, gen);  /* set to nominal delay of 1<<gen * 125us */
341 	while (!(INW(np, nc_sist) & GEN) && ms++ < 100000)
342 		udelay(1000/4);    /* count in 1/4 of ms */
343 	OUTB(np, nc_stime1, 0);    /* disable general purpose timer */
344 	/*
345 	 * Undo C1010-33 specific settings.
346 	 */
347 	if (np->features & FE_C10) {
348 		OUTW(np, nc_sien, 0);
349 		OUTB(np, nc_istat1, 0);
350 	}
351  	/*
352  	 * set prescaler to divide by whatever 0 means
353  	 * 0 ought to choose divide by 2, but appears
354  	 * to set divide by 3.5 mode in my 53c810 ...
355  	 */
356  	OUTB(np, nc_scntl3, 0);
357 
358   	/*
359  	 * adjust for prescaler, and convert into KHz
360   	 */
361 	f = ms ? ((1 << gen) * (4340*4)) / ms : 0;
362 
363 	/*
364 	 * The C1010-33 result is biased by a factor
365 	 * of 2/3 compared to earlier chips.
366 	 */
367 	if (np->features & FE_C10)
368 		f = (f * 2) / 3;
369 
370 	if (sym_verbose >= 2)
371 		printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n",
372 			sym_name(np), gen, ms/4, f);
373 
374 	return f;
375 }
376 
377 static unsigned sym_getfreq (struct sym_hcb *np)
378 {
379 	u_int f1, f2;
380 	int gen = 8;
381 
382 	getfreq (np, gen);	/* throw away first result */
383 	f1 = getfreq (np, gen);
384 	f2 = getfreq (np, gen);
385 	if (f1 > f2) f1 = f2;		/* trust lower result	*/
386 	return f1;
387 }
388 
389 /*
390  *  Get/probe chip SCSI clock frequency
391  */
392 static void sym_getclock (struct sym_hcb *np, int mult)
393 {
394 	unsigned char scntl3 = np->sv_scntl3;
395 	unsigned char stest1 = np->sv_stest1;
396 	unsigned f1;
397 
398 	np->multiplier = 1;
399 	f1 = 40000;
400 	/*
401 	 *  True with 875/895/896/895A with clock multiplier selected
402 	 */
403 	if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) {
404 		if (sym_verbose >= 2)
405 			printf ("%s: clock multiplier found\n", sym_name(np));
406 		np->multiplier = mult;
407 	}
408 
409 	/*
410 	 *  If multiplier not found or scntl3 not 7,5,3,
411 	 *  reset chip and get frequency from general purpose timer.
412 	 *  Otherwise trust scntl3 BIOS setting.
413 	 */
414 	if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) {
415 		OUTB(np, nc_stest1, 0);		/* make sure doubler is OFF */
416 		f1 = sym_getfreq (np);
417 
418 		if (sym_verbose)
419 			printf ("%s: chip clock is %uKHz\n", sym_name(np), f1);
420 
421 		if	(f1 <	45000)		f1 =  40000;
422 		else if (f1 <	55000)		f1 =  50000;
423 		else				f1 =  80000;
424 
425 		if (f1 < 80000 && mult > 1) {
426 			if (sym_verbose >= 2)
427 				printf ("%s: clock multiplier assumed\n",
428 					sym_name(np));
429 			np->multiplier	= mult;
430 		}
431 	} else {
432 		if	((scntl3 & 7) == 3)	f1 =  40000;
433 		else if	((scntl3 & 7) == 5)	f1 =  80000;
434 		else 				f1 = 160000;
435 
436 		f1 /= np->multiplier;
437 	}
438 
439 	/*
440 	 *  Compute controller synchronous parameters.
441 	 */
442 	f1		*= np->multiplier;
443 	np->clock_khz	= f1;
444 }
445 
446 /*
447  *  Get/probe PCI clock frequency
448  */
449 static int sym_getpciclock (struct sym_hcb *np)
450 {
451 	int f = 0;
452 
453 	/*
454 	 *  For now, we only need to know about the actual
455 	 *  PCI BUS clock frequency for C1010-66 chips.
456 	 */
457 #if 1
458 	if (np->features & FE_66MHZ) {
459 #else
460 	if (1) {
461 #endif
462 		OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */
463 		f = sym_getfreq(np);
464 		OUTB(np, nc_stest1, 0);
465 	}
466 	np->pciclk_khz = f;
467 
468 	return f;
469 }
470 
471 /*
472  *  SYMBIOS chip clock divisor table.
473  *
474  *  Divisors are multiplied by 10,000,000 in order to make
475  *  calculations more simple.
476  */
477 #define _5M 5000000
478 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M};
479 
480 /*
481  *  Get clock factor and sync divisor for a given
482  *  synchronous factor period.
483  */
484 static int
485 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp)
486 {
487 	u32	clk = np->clock_khz;	/* SCSI clock frequency in kHz	*/
488 	int	div = np->clock_divn;	/* Number of divisors supported	*/
489 	u32	fak;			/* Sync factor in sxfer		*/
490 	u32	per;			/* Period in tenths of ns	*/
491 	u32	kpc;			/* (per * clk)			*/
492 	int	ret;
493 
494 	/*
495 	 *  Compute the synchronous period in tenths of nano-seconds
496 	 */
497 	if (dt && sfac <= 9)	per = 125;
498 	else if	(sfac <= 10)	per = 250;
499 	else if	(sfac == 11)	per = 303;
500 	else if	(sfac == 12)	per = 500;
501 	else			per = 40 * sfac;
502 	ret = per;
503 
504 	kpc = per * clk;
505 	if (dt)
506 		kpc <<= 1;
507 
508 	/*
509 	 *  For earliest C10 revision 0, we cannot use extra
510 	 *  clocks for the setting of the SCSI clocking.
511 	 *  Note that this limits the lowest sync data transfer
512 	 *  to 5 Mega-transfers per second and may result in
513 	 *  using higher clock divisors.
514 	 */
515 #if 1
516 	if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) {
517 		/*
518 		 *  Look for the lowest clock divisor that allows an
519 		 *  output speed not faster than the period.
520 		 */
521 		while (div > 0) {
522 			--div;
523 			if (kpc > (div_10M[div] << 2)) {
524 				++div;
525 				break;
526 			}
527 		}
528 		fak = 0;			/* No extra clocks */
529 		if (div == np->clock_divn) {	/* Are we too fast ? */
530 			ret = -1;
531 		}
532 		*divp = div;
533 		*fakp = fak;
534 		return ret;
535 	}
536 #endif
537 
538 	/*
539 	 *  Look for the greatest clock divisor that allows an
540 	 *  input speed faster than the period.
541 	 */
542 	while (div-- > 0)
543 		if (kpc >= (div_10M[div] << 2)) break;
544 
545 	/*
546 	 *  Calculate the lowest clock factor that allows an output
547 	 *  speed not faster than the period, and the max output speed.
548 	 *  If fak >= 1 we will set both XCLKH_ST and XCLKH_DT.
549 	 *  If fak >= 2 we will also set XCLKS_ST and XCLKS_DT.
550 	 */
551 	if (dt) {
552 		fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2;
553 		/* ret = ((2+fak)*div_10M[div])/np->clock_khz; */
554 	} else {
555 		fak = (kpc - 1) / div_10M[div] + 1 - 4;
556 		/* ret = ((4+fak)*div_10M[div])/np->clock_khz; */
557 	}
558 
559 	/*
560 	 *  Check against our hardware limits, or bugs :).
561 	 */
562 	if (fak > 2) {
563 		fak = 2;
564 		ret = -1;
565 	}
566 
567 	/*
568 	 *  Compute and return sync parameters.
569 	 */
570 	*divp = div;
571 	*fakp = fak;
572 
573 	return ret;
574 }
575 
576 /*
577  *  SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64,
578  *  128 transfers. All chips support at least 16 transfers
579  *  bursts. The 825A, 875 and 895 chips support bursts of up
580  *  to 128 transfers and the 895A and 896 support bursts of up
581  *  to 64 transfers. All other chips support up to 16
582  *  transfers bursts.
583  *
584  *  For PCI 32 bit data transfers each transfer is a DWORD.
585  *  It is a QUADWORD (8 bytes) for PCI 64 bit data transfers.
586  *
587  *  We use log base 2 (burst length) as internal code, with
588  *  value 0 meaning "burst disabled".
589  */
590 
591 /*
592  *  Burst length from burst code.
593  */
594 #define burst_length(bc) (!(bc))? 0 : 1 << (bc)
595 
596 /*
597  *  Burst code from io register bits.
598  */
599 #define burst_code(dmode, ctest4, ctest5) \
600 	(ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1
601 
602 /*
603  *  Set initial io register bits from burst code.
604  */
605 static __inline void sym_init_burst(struct sym_hcb *np, u_char bc)
606 {
607 	np->rv_ctest4	&= ~0x80;
608 	np->rv_dmode	&= ~(0x3 << 6);
609 	np->rv_ctest5	&= ~0x4;
610 
611 	if (!bc) {
612 		np->rv_ctest4	|= 0x80;
613 	}
614 	else {
615 		--bc;
616 		np->rv_dmode	|= ((bc & 0x3) << 6);
617 		np->rv_ctest5	|= (bc & 0x4);
618 	}
619 }
620 
621 /*
622  *  Save initial settings of some IO registers.
623  *  Assumed to have been set by BIOS.
624  *  We cannot reset the chip prior to reading the
625  *  IO registers, since informations will be lost.
626  *  Since the SCRIPTS processor may be running, this
627  *  is not safe on paper, but it seems to work quite
628  *  well. :)
629  */
630 static void sym_save_initial_setting (struct sym_hcb *np)
631 {
632 	np->sv_scntl0	= INB(np, nc_scntl0) & 0x0a;
633 	np->sv_scntl3	= INB(np, nc_scntl3) & 0x07;
634 	np->sv_dmode	= INB(np, nc_dmode)  & 0xce;
635 	np->sv_dcntl	= INB(np, nc_dcntl)  & 0xa8;
636 	np->sv_ctest3	= INB(np, nc_ctest3) & 0x01;
637 	np->sv_ctest4	= INB(np, nc_ctest4) & 0x80;
638 	np->sv_gpcntl	= INB(np, nc_gpcntl);
639 	np->sv_stest1	= INB(np, nc_stest1);
640 	np->sv_stest2	= INB(np, nc_stest2) & 0x20;
641 	np->sv_stest4	= INB(np, nc_stest4);
642 	if (np->features & FE_C10) {	/* Always large DMA fifo + ultra3 */
643 		np->sv_scntl4	= INB(np, nc_scntl4);
644 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x04;
645 	}
646 	else
647 		np->sv_ctest5	= INB(np, nc_ctest5) & 0x24;
648 }
649 
650 /*
651  *  Set SCSI BUS mode.
652  *  - LVD capable chips (895/895A/896/1010) report the current BUS mode
653  *    through the STEST4 IO register.
654  *  - For previous generation chips (825/825A/875), the user has to tell us
655  *    how to check against HVD, since a 100% safe algorithm is not possible.
656  */
657 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram)
658 {
659 	if (np->scsi_mode)
660 		return;
661 
662 	np->scsi_mode = SMODE_SE;
663 	if (np->features & (FE_ULTRA2|FE_ULTRA3))
664 		np->scsi_mode = (np->sv_stest4 & SMODE);
665 	else if	(np->features & FE_DIFF) {
666 		if (SYM_SETUP_SCSI_DIFF == 1) {
667 			if (np->sv_scntl3) {
668 				if (np->sv_stest2 & 0x20)
669 					np->scsi_mode = SMODE_HVD;
670 			} else if (nvram->type == SYM_SYMBIOS_NVRAM) {
671 				if (!(INB(np, nc_gpreg) & 0x08))
672 					np->scsi_mode = SMODE_HVD;
673 			}
674 		} else if (SYM_SETUP_SCSI_DIFF == 2)
675 			np->scsi_mode = SMODE_HVD;
676 	}
677 	if (np->scsi_mode == SMODE_HVD)
678 		np->rv_stest2 |= 0x20;
679 }
680 
681 /*
682  *  Prepare io register values used by sym_start_up()
683  *  according to selected and supported features.
684  */
685 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram)
686 {
687 	u_char	burst_max;
688 	u32	period;
689 	int i;
690 
691 	np->maxwide = (np->features & FE_WIDE) ? 1 : 0;
692 
693 	/*
694 	 *  Guess the frequency of the chip's clock.
695 	 */
696 	if	(np->features & (FE_ULTRA3 | FE_ULTRA2))
697 		np->clock_khz = 160000;
698 	else if	(np->features & FE_ULTRA)
699 		np->clock_khz = 80000;
700 	else
701 		np->clock_khz = 40000;
702 
703 	/*
704 	 *  Get the clock multiplier factor.
705  	 */
706 	if	(np->features & FE_QUAD)
707 		np->multiplier	= 4;
708 	else if	(np->features & FE_DBLR)
709 		np->multiplier	= 2;
710 	else
711 		np->multiplier	= 1;
712 
713 	/*
714 	 *  Measure SCSI clock frequency for chips
715 	 *  it may vary from assumed one.
716 	 */
717 	if (np->features & FE_VARCLK)
718 		sym_getclock(np, np->multiplier);
719 
720 	/*
721 	 * Divisor to be used for async (timer pre-scaler).
722 	 */
723 	i = np->clock_divn - 1;
724 	while (--i >= 0) {
725 		if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) {
726 			++i;
727 			break;
728 		}
729 	}
730 	np->rv_scntl3 = i+1;
731 
732 	/*
733 	 * The C1010 uses hardwired divisors for async.
734 	 * So, we just throw away, the async. divisor.:-)
735 	 */
736 	if (np->features & FE_C10)
737 		np->rv_scntl3 = 0;
738 
739 	/*
740 	 * Minimum synchronous period factor supported by the chip.
741 	 * Btw, 'period' is in tenths of nanoseconds.
742 	 */
743 	period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz;
744 
745 	if	(period <= 250)		np->minsync = 10;
746 	else if	(period <= 303)		np->minsync = 11;
747 	else if	(period <= 500)		np->minsync = 12;
748 	else				np->minsync = (period + 40 - 1) / 40;
749 
750 	/*
751 	 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2).
752 	 */
753 	if	(np->minsync < 25 &&
754 		 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3)))
755 		np->minsync = 25;
756 	else if	(np->minsync < 12 &&
757 		 !(np->features & (FE_ULTRA2|FE_ULTRA3)))
758 		np->minsync = 12;
759 
760 	/*
761 	 * Maximum synchronous period factor supported by the chip.
762 	 */
763 	period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz);
764 	np->maxsync = period > 2540 ? 254 : period / 10;
765 
766 	/*
767 	 * If chip is a C1010, guess the sync limits in DT mode.
768 	 */
769 	if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) {
770 		if (np->clock_khz == 160000) {
771 			np->minsync_dt = 9;
772 			np->maxsync_dt = 50;
773 			np->maxoffs_dt = nvram->type ? 62 : 31;
774 		}
775 	}
776 
777 	/*
778 	 *  64 bit addressing  (895A/896/1010) ?
779 	 */
780 	if (np->features & FE_DAC) {
781 #if   SYM_CONF_DMA_ADDRESSING_MODE == 0
782 		np->rv_ccntl1	|= (DDAC);
783 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1
784 		if (!np->use_dac)
785 			np->rv_ccntl1	|= (DDAC);
786 		else
787 			np->rv_ccntl1	|= (XTIMOD | EXTIBMV);
788 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
789 		if (!np->use_dac)
790 			np->rv_ccntl1	|= (DDAC);
791 		else
792 			np->rv_ccntl1	|= (0 | EXTIBMV);
793 #endif
794 	}
795 
796 	/*
797 	 *  Phase mismatch handled by SCRIPTS (895A/896/1010) ?
798   	 */
799 	if (np->features & FE_NOPM)
800 		np->rv_ccntl0	|= (ENPMJ);
801 
802  	/*
803 	 *  C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed.
804 	 *  In dual channel mode, contention occurs if internal cycles
805 	 *  are used. Disable internal cycles.
806 	 */
807 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
808 	    np->revision_id < 0x1)
809 		np->rv_ccntl0	|=  DILS;
810 
811 	/*
812 	 *  Select burst length (dwords)
813 	 */
814 	burst_max	= SYM_SETUP_BURST_ORDER;
815 	if (burst_max == 255)
816 		burst_max = burst_code(np->sv_dmode, np->sv_ctest4,
817 				       np->sv_ctest5);
818 	if (burst_max > 7)
819 		burst_max = 7;
820 	if (burst_max > np->maxburst)
821 		burst_max = np->maxburst;
822 
823 	/*
824 	 *  DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2.
825 	 *  This chip and the 860 Rev 1 may wrongly use PCI cache line
826 	 *  based transactions on LOAD/STORE instructions. So we have
827 	 *  to prevent these chips from using such PCI transactions in
828 	 *  this driver. The generic ncr driver that does not use
829 	 *  LOAD/STORE instructions does not need this work-around.
830 	 */
831 	if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 &&
832 	     np->revision_id >= 0x10 && np->revision_id <= 0x11) ||
833 	    (np->device_id == PCI_DEVICE_ID_NCR_53C860 &&
834 	     np->revision_id <= 0x1))
835 		np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP);
836 
837 	/*
838 	 *  Select all supported special features.
839 	 *  If we are using on-board RAM for scripts, prefetch (PFEN)
840 	 *  does not help, but burst op fetch (BOF) does.
841 	 *  Disabling PFEN makes sure BOF will be used.
842 	 */
843 	if (np->features & FE_ERL)
844 		np->rv_dmode	|= ERL;		/* Enable Read Line */
845 	if (np->features & FE_BOF)
846 		np->rv_dmode	|= BOF;		/* Burst Opcode Fetch */
847 	if (np->features & FE_ERMP)
848 		np->rv_dmode	|= ERMP;	/* Enable Read Multiple */
849 #if 1
850 	if ((np->features & FE_PFEN) && !np->ram_ba)
851 #else
852 	if (np->features & FE_PFEN)
853 #endif
854 		np->rv_dcntl	|= PFEN;	/* Prefetch Enable */
855 	if (np->features & FE_CLSE)
856 		np->rv_dcntl	|= CLSE;	/* Cache Line Size Enable */
857 	if (np->features & FE_WRIE)
858 		np->rv_ctest3	|= WRIE;	/* Write and Invalidate */
859 	if (np->features & FE_DFS)
860 		np->rv_ctest5	|= DFS;		/* Dma Fifo Size */
861 
862 	/*
863 	 *  Select some other
864 	 */
865 	np->rv_ctest4	|= MPEE; /* Master parity checking */
866 	np->rv_scntl0	|= 0x0a; /*  full arb., ena parity, par->ATN  */
867 
868 	/*
869 	 *  Get parity checking, host ID and verbose mode from NVRAM
870 	 */
871 	np->myaddr = 255;
872 	np->scsi_mode = 0;
873 	sym_nvram_setup_host(shost, np, nvram);
874 
875 	/*
876 	 *  Get SCSI addr of host adapter (set by bios?).
877 	 */
878 	if (np->myaddr == 255) {
879 		np->myaddr = INB(np, nc_scid) & 0x07;
880 		if (!np->myaddr)
881 			np->myaddr = SYM_SETUP_HOST_ID;
882 	}
883 
884 	/*
885 	 *  Prepare initial io register bits for burst length
886 	 */
887 	sym_init_burst(np, burst_max);
888 
889 	sym_set_bus_mode(np, nvram);
890 
891 	/*
892 	 *  Set LED support from SCRIPTS.
893 	 *  Ignore this feature for boards known to use a
894 	 *  specific GPIO wiring and for the 895A, 896
895 	 *  and 1010 that drive the LED directly.
896 	 */
897 	if ((SYM_SETUP_SCSI_LED ||
898 	     (nvram->type == SYM_SYMBIOS_NVRAM ||
899 	      (nvram->type == SYM_TEKRAM_NVRAM &&
900 	       np->device_id == PCI_DEVICE_ID_NCR_53C895))) &&
901 	    !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01))
902 		np->features |= FE_LED0;
903 
904 	/*
905 	 *  Set irq mode.
906 	 */
907 	switch(SYM_SETUP_IRQ_MODE & 3) {
908 	case 2:
909 		np->rv_dcntl	|= IRQM;
910 		break;
911 	case 1:
912 		np->rv_dcntl	|= (np->sv_dcntl & IRQM);
913 		break;
914 	default:
915 		break;
916 	}
917 
918 	/*
919 	 *  Configure targets according to driver setup.
920 	 *  If NVRAM present get targets setup from NVRAM.
921 	 */
922 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
923 		struct sym_tcb *tp = &np->target[i];
924 
925 		tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
926 		tp->usrtags = SYM_SETUP_MAX_TAG;
927 		tp->usr_width = np->maxwide;
928 		tp->usr_period = 9;
929 
930 		sym_nvram_setup_target(tp, i, nvram);
931 
932 		if (!tp->usrtags)
933 			tp->usrflags &= ~SYM_TAGS_ENABLED;
934 	}
935 
936 	/*
937 	 *  Let user know about the settings.
938 	 */
939 	printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np),
940 		sym_nvram_type(nvram), np->myaddr,
941 		(np->features & FE_ULTRA3) ? 80 :
942 		(np->features & FE_ULTRA2) ? 40 :
943 		(np->features & FE_ULTRA)  ? 20 : 10,
944 		sym_scsi_bus_mode(np->scsi_mode),
945 		(np->rv_scntl0 & 0xa)	? "parity checking" : "NO parity");
946 	/*
947 	 *  Tell him more on demand.
948 	 */
949 	if (sym_verbose) {
950 		printf("%s: %s IRQ line driver%s\n",
951 			sym_name(np),
952 			np->rv_dcntl & IRQM ? "totem pole" : "open drain",
953 			np->ram_ba ? ", using on-chip SRAM" : "");
954 		printf("%s: using %s firmware.\n", sym_name(np), np->fw_name);
955 		if (np->features & FE_NOPM)
956 			printf("%s: handling phase mismatch from SCRIPTS.\n",
957 			       sym_name(np));
958 	}
959 	/*
960 	 *  And still more.
961 	 */
962 	if (sym_verbose >= 2) {
963 		printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
964 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
965 			sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl,
966 			np->sv_ctest3, np->sv_ctest4, np->sv_ctest5);
967 
968 		printf ("%s: final   SCNTL3/DMODE/DCNTL/CTEST3/4/5 = "
969 			"(hex) %02x/%02x/%02x/%02x/%02x/%02x\n",
970 			sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl,
971 			np->rv_ctest3, np->rv_ctest4, np->rv_ctest5);
972 	}
973 
974 	return 0;
975 }
976 
977 /*
978  *  Test the pci bus snoop logic :-(
979  *
980  *  Has to be called with interrupts disabled.
981  */
982 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
983 static int sym_regtest(struct sym_hcb *np)
984 {
985 	register volatile u32 data;
986 	/*
987 	 *  chip registers may NOT be cached.
988 	 *  write 0xffffffff to a read only register area,
989 	 *  and try to read it back.
990 	 */
991 	data = 0xffffffff;
992 	OUTL(np, nc_dstat, data);
993 	data = INL(np, nc_dstat);
994 #if 1
995 	if (data == 0xffffffff) {
996 #else
997 	if ((data & 0xe2f0fffd) != 0x02000080) {
998 #endif
999 		printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n",
1000 			(unsigned) data);
1001 		return 0x10;
1002 	}
1003 	return 0;
1004 }
1005 #else
1006 static inline int sym_regtest(struct sym_hcb *np)
1007 {
1008 	return 0;
1009 }
1010 #endif
1011 
1012 static int sym_snooptest(struct sym_hcb *np)
1013 {
1014 	u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat;
1015 	int i, err;
1016 
1017 	err = sym_regtest(np);
1018 	if (err)
1019 		return err;
1020 restart_test:
1021 	/*
1022 	 *  Enable Master Parity Checking as we intend
1023 	 *  to enable it for normal operations.
1024 	 */
1025 	OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE));
1026 	/*
1027 	 *  init
1028 	 */
1029 	pc  = SCRIPTZ_BA(np, snooptest);
1030 	host_wr = 1;
1031 	sym_wr  = 2;
1032 	/*
1033 	 *  Set memory and register.
1034 	 */
1035 	np->scratch = cpu_to_scr(host_wr);
1036 	OUTL(np, nc_temp, sym_wr);
1037 	/*
1038 	 *  Start script (exchange values)
1039 	 */
1040 	OUTL(np, nc_dsa, np->hcb_ba);
1041 	OUTL_DSP(np, pc);
1042 	/*
1043 	 *  Wait 'til done (with timeout)
1044 	 */
1045 	for (i=0; i<SYM_SNOOP_TIMEOUT; i++)
1046 		if (INB(np, nc_istat) & (INTF|SIP|DIP))
1047 			break;
1048 	if (i>=SYM_SNOOP_TIMEOUT) {
1049 		printf ("CACHE TEST FAILED: timeout.\n");
1050 		return (0x20);
1051 	}
1052 	/*
1053 	 *  Check for fatal DMA errors.
1054 	 */
1055 	dstat = INB(np, nc_dstat);
1056 #if 1	/* Band aiding for broken hardwares that fail PCI parity */
1057 	if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) {
1058 		printf ("%s: PCI DATA PARITY ERROR DETECTED - "
1059 			"DISABLING MASTER DATA PARITY CHECKING.\n",
1060 			sym_name(np));
1061 		np->rv_ctest4 &= ~MPEE;
1062 		goto restart_test;
1063 	}
1064 #endif
1065 	if (dstat & (MDPE|BF|IID)) {
1066 		printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat);
1067 		return (0x80);
1068 	}
1069 	/*
1070 	 *  Save termination position.
1071 	 */
1072 	pc = INL(np, nc_dsp);
1073 	/*
1074 	 *  Read memory and register.
1075 	 */
1076 	host_rd = scr_to_cpu(np->scratch);
1077 	sym_rd  = INL(np, nc_scratcha);
1078 	sym_bk  = INL(np, nc_temp);
1079 	/*
1080 	 *  Check termination position.
1081 	 */
1082 	if (pc != SCRIPTZ_BA(np, snoopend)+8) {
1083 		printf ("CACHE TEST FAILED: script execution failed.\n");
1084 		printf ("start=%08lx, pc=%08lx, end=%08lx\n",
1085 			(u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc,
1086 			(u_long) SCRIPTZ_BA(np, snoopend) +8);
1087 		return (0x40);
1088 	}
1089 	/*
1090 	 *  Show results.
1091 	 */
1092 	if (host_wr != sym_rd) {
1093 		printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n",
1094 			(int) host_wr, (int) sym_rd);
1095 		err |= 1;
1096 	}
1097 	if (host_rd != sym_wr) {
1098 		printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n",
1099 			(int) sym_wr, (int) host_rd);
1100 		err |= 2;
1101 	}
1102 	if (sym_bk != sym_wr) {
1103 		printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n",
1104 			(int) sym_wr, (int) sym_bk);
1105 		err |= 4;
1106 	}
1107 
1108 	return err;
1109 }
1110 
1111 /*
1112  *  log message for real hard errors
1113  *
1114  *  sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc).
1115  *  	      reg: r0 r1 r2 r3 r4 r5 r6 ..... rf.
1116  *
1117  *  exception register:
1118  *  	ds:	dstat
1119  *  	si:	sist
1120  *
1121  *  SCSI bus lines:
1122  *  	so:	control lines as driven by chip.
1123  *  	si:	control lines as seen by chip.
1124  *  	sd:	scsi data lines as seen by chip.
1125  *
1126  *  wide/fastmode:
1127  *  	sx:	sxfer  (see the manual)
1128  *  	s3:	scntl3 (see the manual)
1129  *  	s4:	scntl4 (see the manual)
1130  *
1131  *  current script command:
1132  *  	dsp:	script address (relative to start of script).
1133  *  	dbc:	first word of script command.
1134  *
1135  *  First 24 register of the chip:
1136  *  	r0..rf
1137  */
1138 static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat)
1139 {
1140 	u32	dsp;
1141 	int	script_ofs;
1142 	int	script_size;
1143 	char	*script_name;
1144 	u_char	*script_base;
1145 	int	i;
1146 
1147 	dsp	= INL(np, nc_dsp);
1148 
1149 	if	(dsp > np->scripta_ba &&
1150 		 dsp <= np->scripta_ba + np->scripta_sz) {
1151 		script_ofs	= dsp - np->scripta_ba;
1152 		script_size	= np->scripta_sz;
1153 		script_base	= (u_char *) np->scripta0;
1154 		script_name	= "scripta";
1155 	}
1156 	else if (np->scriptb_ba < dsp &&
1157 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
1158 		script_ofs	= dsp - np->scriptb_ba;
1159 		script_size	= np->scriptb_sz;
1160 		script_base	= (u_char *) np->scriptb0;
1161 		script_name	= "scriptb";
1162 	} else {
1163 		script_ofs	= dsp;
1164 		script_size	= 0;
1165 		script_base	= NULL;
1166 		script_name	= "mem";
1167 	}
1168 
1169 	printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n",
1170 		sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist,
1171 		(unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl),
1172 		(unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer),
1173 		(unsigned)INB(np, nc_scntl3),
1174 		(np->features & FE_C10) ?  (unsigned)INB(np, nc_scntl4) : 0,
1175 		script_name, script_ofs,   (unsigned)INL(np, nc_dbc));
1176 
1177 	if (((script_ofs & 3) == 0) &&
1178 	    (unsigned)script_ofs < script_size) {
1179 		printf ("%s: script cmd = %08x\n", sym_name(np),
1180 			scr_to_cpu((int) *(u32 *)(script_base + script_ofs)));
1181 	}
1182 
1183         printf ("%s: regdump:", sym_name(np));
1184         for (i=0; i<24;i++)
1185             printf (" %02x", (unsigned)INB_OFF(np, i));
1186         printf (".\n");
1187 
1188 	/*
1189 	 *  PCI BUS error.
1190 	 */
1191 	if (dstat & (MDPE|BF))
1192 		sym_log_bus_error(np);
1193 }
1194 
1195 static struct sym_chip sym_dev_table[] = {
1196  {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64,
1197  FE_ERL}
1198  ,
1199 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1200  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1201  FE_BOF}
1202  ,
1203 #else
1204  {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4,  8, 4, 1,
1205  FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF}
1206  ,
1207 #endif
1208  {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4,  8, 4, 64,
1209  FE_BOF|FE_ERL}
1210  ,
1211  {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6,  8, 4, 64,
1212  FE_WIDE|FE_BOF|FE_ERL|FE_DIFF}
1213  ,
1214  {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6,  8, 4, 2,
1215  FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF}
1216  ,
1217  {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4,  8, 5, 1,
1218  FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN}
1219  ,
1220  {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2,
1221  FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1222  FE_RAM|FE_DIFF|FE_VARCLK}
1223  ,
1224  {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2,
1225  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1226  FE_RAM|FE_DIFF|FE_VARCLK}
1227  ,
1228  {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2,
1229  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1230  FE_RAM|FE_DIFF|FE_VARCLK}
1231  ,
1232  {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2,
1233  FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1234  FE_RAM|FE_DIFF|FE_VARCLK}
1235  ,
1236 #ifdef SYM_DEBUG_GENERIC_SUPPORT
1237  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1238  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|
1239  FE_RAM|FE_LCKFRQ}
1240  ,
1241 #else
1242  {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2,
1243  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1244  FE_RAM|FE_LCKFRQ}
1245  ,
1246 #endif
1247  {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4,
1248  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1249  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1250  ,
1251  {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4,
1252  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1253  FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1254  ,
1255  {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4,
1256  FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1257  FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ}
1258  ,
1259  {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8,
1260  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1261  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1262  FE_C10}
1263  ,
1264  {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8,
1265  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1266  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC|
1267  FE_C10|FE_U3EN}
1268  ,
1269  {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8,
1270  FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN|
1271  FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC|
1272  FE_C10|FE_U3EN}
1273  ,
1274  {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4,
1275  FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|
1276  FE_RAM|FE_IO256|FE_LEDC}
1277 };
1278 
1279 #define sym_num_devs (ARRAY_SIZE(sym_dev_table))
1280 
1281 /*
1282  *  Look up the chip table.
1283  *
1284  *  Return a pointer to the chip entry if found,
1285  *  zero otherwise.
1286  */
1287 struct sym_chip *
1288 sym_lookup_chip_table (u_short device_id, u_char revision)
1289 {
1290 	struct	sym_chip *chip;
1291 	int	i;
1292 
1293 	for (i = 0; i < sym_num_devs; i++) {
1294 		chip = &sym_dev_table[i];
1295 		if (device_id != chip->device_id)
1296 			continue;
1297 		if (revision > chip->revision_id)
1298 			continue;
1299 		return chip;
1300 	}
1301 
1302 	return NULL;
1303 }
1304 
1305 #if SYM_CONF_DMA_ADDRESSING_MODE == 2
1306 /*
1307  *  Lookup the 64 bit DMA segments map.
1308  *  This is only used if the direct mapping
1309  *  has been unsuccessful.
1310  */
1311 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s)
1312 {
1313 	int i;
1314 
1315 	if (!np->use_dac)
1316 		goto weird;
1317 
1318 	/* Look up existing mappings */
1319 	for (i = SYM_DMAP_SIZE-1; i > 0; i--) {
1320 		if (h == np->dmap_bah[i])
1321 			return i;
1322 	}
1323 	/* If direct mapping is free, get it */
1324 	if (!np->dmap_bah[s])
1325 		goto new;
1326 	/* Collision -> lookup free mappings */
1327 	for (s = SYM_DMAP_SIZE-1; s > 0; s--) {
1328 		if (!np->dmap_bah[s])
1329 			goto new;
1330 	}
1331 weird:
1332 	panic("sym: ran out of 64 bit DMA segment registers");
1333 	return -1;
1334 new:
1335 	np->dmap_bah[s] = h;
1336 	np->dmap_dirty = 1;
1337 	return s;
1338 }
1339 
1340 /*
1341  *  Update IO registers scratch C..R so they will be
1342  *  in sync. with queued CCB expectations.
1343  */
1344 static void sym_update_dmap_regs(struct sym_hcb *np)
1345 {
1346 	int o, i;
1347 
1348 	if (!np->dmap_dirty)
1349 		return;
1350 	o = offsetof(struct sym_reg, nc_scrx[0]);
1351 	for (i = 0; i < SYM_DMAP_SIZE; i++) {
1352 		OUTL_OFF(np, o, np->dmap_bah[i]);
1353 		o += 4;
1354 	}
1355 	np->dmap_dirty = 0;
1356 }
1357 #endif
1358 
1359 /* Enforce all the fiddly SPI rules and the chip limitations */
1360 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget,
1361 		struct sym_trans *goal)
1362 {
1363 	if (!spi_support_wide(starget))
1364 		goal->width = 0;
1365 
1366 	if (!spi_support_sync(starget)) {
1367 		goal->iu = 0;
1368 		goal->dt = 0;
1369 		goal->qas = 0;
1370 		goal->offset = 0;
1371 		return;
1372 	}
1373 
1374 	if (spi_support_dt(starget)) {
1375 		if (spi_support_dt_only(starget))
1376 			goal->dt = 1;
1377 
1378 		if (goal->offset == 0)
1379 			goal->dt = 0;
1380 	} else {
1381 		goal->dt = 0;
1382 	}
1383 
1384 	/* Some targets fail to properly negotiate DT in SE mode */
1385 	if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN))
1386 		goal->dt = 0;
1387 
1388 	if (goal->dt) {
1389 		/* all DT transfers must be wide */
1390 		goal->width = 1;
1391 		if (goal->offset > np->maxoffs_dt)
1392 			goal->offset = np->maxoffs_dt;
1393 		if (goal->period < np->minsync_dt)
1394 			goal->period = np->minsync_dt;
1395 		if (goal->period > np->maxsync_dt)
1396 			goal->period = np->maxsync_dt;
1397 	} else {
1398 		goal->iu = goal->qas = 0;
1399 		if (goal->offset > np->maxoffs)
1400 			goal->offset = np->maxoffs;
1401 		if (goal->period < np->minsync)
1402 			goal->period = np->minsync;
1403 		if (goal->period > np->maxsync)
1404 			goal->period = np->maxsync;
1405 	}
1406 }
1407 
1408 /*
1409  *  Prepare the next negotiation message if needed.
1410  *
1411  *  Fill in the part of message buffer that contains the
1412  *  negotiation and the nego_status field of the CCB.
1413  *  Returns the size of the message in bytes.
1414  */
1415 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr)
1416 {
1417 	struct sym_tcb *tp = &np->target[cp->target];
1418 	struct scsi_target *starget = tp->starget;
1419 	struct sym_trans *goal = &tp->tgoal;
1420 	int msglen = 0;
1421 	int nego;
1422 
1423 	sym_check_goals(np, starget, goal);
1424 
1425 	/*
1426 	 * Many devices implement PPR in a buggy way, so only use it if we
1427 	 * really want to.
1428 	 */
1429 	if (goal->offset &&
1430 	    (goal->iu || goal->dt || goal->qas || (goal->period < 0xa))) {
1431 		nego = NS_PPR;
1432 	} else if (spi_width(starget) != goal->width) {
1433 		nego = NS_WIDE;
1434 	} else if (spi_period(starget) != goal->period ||
1435 		   spi_offset(starget) != goal->offset) {
1436 		nego = NS_SYNC;
1437 	} else {
1438 		goal->check_nego = 0;
1439 		nego = 0;
1440 	}
1441 
1442 	switch (nego) {
1443 	case NS_SYNC:
1444 		msglen += spi_populate_sync_msg(msgptr + msglen, goal->period,
1445 				goal->offset);
1446 		break;
1447 	case NS_WIDE:
1448 		msglen += spi_populate_width_msg(msgptr + msglen, goal->width);
1449 		break;
1450 	case NS_PPR:
1451 		msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period,
1452 				goal->offset, goal->width,
1453 				(goal->iu ? PPR_OPT_IU : 0) |
1454 					(goal->dt ? PPR_OPT_DT : 0) |
1455 					(goal->qas ? PPR_OPT_QAS : 0));
1456 		break;
1457 	}
1458 
1459 	cp->nego_status = nego;
1460 
1461 	if (nego) {
1462 		tp->nego_cp = cp; /* Keep track a nego will be performed */
1463 		if (DEBUG_FLAGS & DEBUG_NEGO) {
1464 			sym_print_nego_msg(np, cp->target,
1465 					  nego == NS_SYNC ? "sync msgout" :
1466 					  nego == NS_WIDE ? "wide msgout" :
1467 					  "ppr msgout", msgptr);
1468 		}
1469 	}
1470 
1471 	return msglen;
1472 }
1473 
1474 /*
1475  *  Insert a job into the start queue.
1476  */
1477 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp)
1478 {
1479 	u_short	qidx;
1480 
1481 #ifdef SYM_CONF_IARB_SUPPORT
1482 	/*
1483 	 *  If the previously queued CCB is not yet done,
1484 	 *  set the IARB hint. The SCRIPTS will go with IARB
1485 	 *  for this job when starting the previous one.
1486 	 *  We leave devices a chance to win arbitration by
1487 	 *  not using more than 'iarb_max' consecutive
1488 	 *  immediate arbitrations.
1489 	 */
1490 	if (np->last_cp && np->iarb_count < np->iarb_max) {
1491 		np->last_cp->host_flags |= HF_HINT_IARB;
1492 		++np->iarb_count;
1493 	}
1494 	else
1495 		np->iarb_count = 0;
1496 	np->last_cp = cp;
1497 #endif
1498 
1499 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
1500 	/*
1501 	 *  Make SCRIPTS aware of the 64 bit DMA
1502 	 *  segment registers not being up-to-date.
1503 	 */
1504 	if (np->dmap_dirty)
1505 		cp->host_xflags |= HX_DMAP_DIRTY;
1506 #endif
1507 
1508 	/*
1509 	 *  Insert first the idle task and then our job.
1510 	 *  The MBs should ensure proper ordering.
1511 	 */
1512 	qidx = np->squeueput + 2;
1513 	if (qidx >= MAX_QUEUE*2) qidx = 0;
1514 
1515 	np->squeue [qidx]	   = cpu_to_scr(np->idletask_ba);
1516 	MEMORY_WRITE_BARRIER();
1517 	np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba);
1518 
1519 	np->squeueput = qidx;
1520 
1521 	if (DEBUG_FLAGS & DEBUG_QUEUE)
1522 		printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput);
1523 
1524 	/*
1525 	 *  Script processor may be waiting for reselect.
1526 	 *  Wake it up.
1527 	 */
1528 	MEMORY_WRITE_BARRIER();
1529 	OUTB(np, nc_istat, SIGP|np->istat_sem);
1530 }
1531 
1532 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1533 /*
1534  *  Start next ready-to-start CCBs.
1535  */
1536 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn)
1537 {
1538 	SYM_QUEHEAD *qp;
1539 	struct sym_ccb *cp;
1540 
1541 	/*
1542 	 *  Paranoia, as usual. :-)
1543 	 */
1544 	assert(!lp->started_tags || !lp->started_no_tag);
1545 
1546 	/*
1547 	 *  Try to start as many commands as asked by caller.
1548 	 *  Prevent from having both tagged and untagged
1549 	 *  commands queued to the device at the same time.
1550 	 */
1551 	while (maxn--) {
1552 		qp = sym_remque_head(&lp->waiting_ccbq);
1553 		if (!qp)
1554 			break;
1555 		cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq);
1556 		if (cp->tag != NO_TAG) {
1557 			if (lp->started_no_tag ||
1558 			    lp->started_tags >= lp->started_max) {
1559 				sym_insque_head(qp, &lp->waiting_ccbq);
1560 				break;
1561 			}
1562 			lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba);
1563 			lp->head.resel_sa =
1564 				cpu_to_scr(SCRIPTA_BA(np, resel_tag));
1565 			++lp->started_tags;
1566 		} else {
1567 			if (lp->started_no_tag || lp->started_tags) {
1568 				sym_insque_head(qp, &lp->waiting_ccbq);
1569 				break;
1570 			}
1571 			lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
1572 			lp->head.resel_sa =
1573 			      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
1574 			++lp->started_no_tag;
1575 		}
1576 		cp->started = 1;
1577 		sym_insque_tail(qp, &lp->started_ccbq);
1578 		sym_put_start_queue(np, cp);
1579 	}
1580 }
1581 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */
1582 
1583 /*
1584  *  The chip may have completed jobs. Look at the DONE QUEUE.
1585  *
1586  *  On paper, memory read barriers may be needed here to
1587  *  prevent out of order LOADs by the CPU from having
1588  *  prefetched stale data prior to DMA having occurred.
1589  */
1590 static int sym_wakeup_done (struct sym_hcb *np)
1591 {
1592 	struct sym_ccb *cp;
1593 	int i, n;
1594 	u32 dsa;
1595 
1596 	n = 0;
1597 	i = np->dqueueget;
1598 
1599 	/* MEMORY_READ_BARRIER(); */
1600 	while (1) {
1601 		dsa = scr_to_cpu(np->dqueue[i]);
1602 		if (!dsa)
1603 			break;
1604 		np->dqueue[i] = 0;
1605 		if ((i = i+2) >= MAX_QUEUE*2)
1606 			i = 0;
1607 
1608 		cp = sym_ccb_from_dsa(np, dsa);
1609 		if (cp) {
1610 			MEMORY_READ_BARRIER();
1611 			sym_complete_ok (np, cp);
1612 			++n;
1613 		}
1614 		else
1615 			printf ("%s: bad DSA (%x) in done queue.\n",
1616 				sym_name(np), (u_int) dsa);
1617 	}
1618 	np->dqueueget = i;
1619 
1620 	return n;
1621 }
1622 
1623 /*
1624  *  Complete all CCBs queued to the COMP queue.
1625  *
1626  *  These CCBs are assumed:
1627  *  - Not to be referenced either by devices or
1628  *    SCRIPTS-related queues and datas.
1629  *  - To have to be completed with an error condition
1630  *    or requeued.
1631  *
1632  *  The device queue freeze count is incremented
1633  *  for each CCB that does not prevent this.
1634  *  This function is called when all CCBs involved
1635  *  in error handling/recovery have been reaped.
1636  */
1637 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status)
1638 {
1639 	SYM_QUEHEAD *qp;
1640 	struct sym_ccb *cp;
1641 
1642 	while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) {
1643 		struct scsi_cmnd *cmd;
1644 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
1645 		sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
1646 		/* Leave quiet CCBs waiting for resources */
1647 		if (cp->host_status == HS_WAIT)
1648 			continue;
1649 		cmd = cp->cmd;
1650 		if (cam_status)
1651 			sym_set_cam_status(cmd, cam_status);
1652 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
1653 		if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) {
1654 			struct sym_tcb *tp = &np->target[cp->target];
1655 			struct sym_lcb *lp = sym_lp(tp, cp->lun);
1656 			if (lp) {
1657 				sym_remque(&cp->link2_ccbq);
1658 				sym_insque_tail(&cp->link2_ccbq,
1659 				                &lp->waiting_ccbq);
1660 				if (cp->started) {
1661 					if (cp->tag != NO_TAG)
1662 						--lp->started_tags;
1663 					else
1664 						--lp->started_no_tag;
1665 				}
1666 			}
1667 			cp->started = 0;
1668 			continue;
1669 		}
1670 #endif
1671 		sym_free_ccb(np, cp);
1672 		sym_xpt_done(np, cmd);
1673 	}
1674 }
1675 
1676 /*
1677  *  Complete all active CCBs with error.
1678  *  Used on CHIP/SCSI RESET.
1679  */
1680 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status)
1681 {
1682 	/*
1683 	 *  Move all active CCBs to the COMP queue
1684 	 *  and flush this queue.
1685 	 */
1686 	sym_que_splice(&np->busy_ccbq, &np->comp_ccbq);
1687 	sym_que_init(&np->busy_ccbq);
1688 	sym_flush_comp_queue(np, cam_status);
1689 }
1690 
1691 /*
1692  *  Start chip.
1693  *
1694  *  'reason' means:
1695  *     0: initialisation.
1696  *     1: SCSI BUS RESET delivered or received.
1697  *     2: SCSI BUS MODE changed.
1698  */
1699 void sym_start_up (struct sym_hcb *np, int reason)
1700 {
1701  	int	i;
1702 	u32	phys;
1703 
1704  	/*
1705 	 *  Reset chip if asked, otherwise just clear fifos.
1706  	 */
1707 	if (reason == 1)
1708 		sym_soft_reset(np);
1709 	else {
1710 		OUTB(np, nc_stest3, TE|CSF);
1711 		OUTONB(np, nc_ctest3, CLF);
1712 	}
1713 
1714 	/*
1715 	 *  Clear Start Queue
1716 	 */
1717 	phys = np->squeue_ba;
1718 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1719 		np->squeue[i]   = cpu_to_scr(np->idletask_ba);
1720 		np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4);
1721 	}
1722 	np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1723 
1724 	/*
1725 	 *  Start at first entry.
1726 	 */
1727 	np->squeueput = 0;
1728 
1729 	/*
1730 	 *  Clear Done Queue
1731 	 */
1732 	phys = np->dqueue_ba;
1733 	for (i = 0; i < MAX_QUEUE*2; i += 2) {
1734 		np->dqueue[i]   = 0;
1735 		np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4);
1736 	}
1737 	np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys);
1738 
1739 	/*
1740 	 *  Start at first entry.
1741 	 */
1742 	np->dqueueget = 0;
1743 
1744 	/*
1745 	 *  Install patches in scripts.
1746 	 *  This also let point to first position the start
1747 	 *  and done queue pointers used from SCRIPTS.
1748 	 */
1749 	np->fw_patch(np);
1750 
1751 	/*
1752 	 *  Wakeup all pending jobs.
1753 	 */
1754 	sym_flush_busy_queue(np, DID_RESET);
1755 
1756 	/*
1757 	 *  Init chip.
1758 	 */
1759 	OUTB(np, nc_istat,  0x00);			/*  Remove Reset, abort */
1760 	INB(np, nc_mbox1);
1761 	udelay(2000); /* The 895 needs time for the bus mode to settle */
1762 
1763 	OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0);
1764 					/*  full arb., ena parity, par->ATN  */
1765 	OUTB(np, nc_scntl1, 0x00);		/*  odd parity, and remove CRST!! */
1766 
1767 	sym_selectclock(np, np->rv_scntl3);	/* Select SCSI clock */
1768 
1769 	OUTB(np, nc_scid  , RRE|np->myaddr);	/* Adapter SCSI address */
1770 	OUTW(np, nc_respid, 1ul<<np->myaddr);	/* Id to respond to */
1771 	OUTB(np, nc_istat , SIGP	);		/*  Signal Process */
1772 	OUTB(np, nc_dmode , np->rv_dmode);		/* Burst length, dma mode */
1773 	OUTB(np, nc_ctest5, np->rv_ctest5);	/* Large fifo + large burst */
1774 
1775 	OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl);	/* Protect SFBR */
1776 	OUTB(np, nc_ctest3, np->rv_ctest3);	/* Write and invalidate */
1777 	OUTB(np, nc_ctest4, np->rv_ctest4);	/* Master parity checking */
1778 
1779 	/* Extended Sreq/Sack filtering not supported on the C10 */
1780 	if (np->features & FE_C10)
1781 		OUTB(np, nc_stest2, np->rv_stest2);
1782 	else
1783 		OUTB(np, nc_stest2, EXT|np->rv_stest2);
1784 
1785 	OUTB(np, nc_stest3, TE);			/* TolerANT enable */
1786 	OUTB(np, nc_stime0, 0x0c);			/* HTH disabled  STO 0.25 sec */
1787 
1788 	/*
1789 	 *  For now, disable AIP generation on C1010-66.
1790 	 */
1791 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66)
1792 		OUTB(np, nc_aipcntl1, DISAIP);
1793 
1794 	/*
1795 	 *  C10101 rev. 0 errata.
1796 	 *  Errant SGE's when in narrow. Write bits 4 & 5 of
1797 	 *  STEST1 register to disable SGE. We probably should do
1798 	 *  that from SCRIPTS for each selection/reselection, but
1799 	 *  I just don't want. :)
1800 	 */
1801 	if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 &&
1802 	    np->revision_id < 1)
1803 		OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30);
1804 
1805 	/*
1806 	 *  DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2.
1807 	 *  Disable overlapped arbitration for some dual function devices,
1808 	 *  regardless revision id (kind of post-chip-design feature. ;-))
1809 	 */
1810 	if (np->device_id == PCI_DEVICE_ID_NCR_53C875)
1811 		OUTB(np, nc_ctest0, (1<<5));
1812 	else if (np->device_id == PCI_DEVICE_ID_NCR_53C896)
1813 		np->rv_ccntl0 |= DPR;
1814 
1815 	/*
1816 	 *  Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing
1817 	 *  and/or hardware phase mismatch, since only such chips
1818 	 *  seem to support those IO registers.
1819 	 */
1820 	if (np->features & (FE_DAC|FE_NOPM)) {
1821 		OUTB(np, nc_ccntl0, np->rv_ccntl0);
1822 		OUTB(np, nc_ccntl1, np->rv_ccntl1);
1823 	}
1824 
1825 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
1826 	/*
1827 	 *  Set up scratch C and DRS IO registers to map the 32 bit
1828 	 *  DMA address range our data structures are located in.
1829 	 */
1830 	if (np->use_dac) {
1831 		np->dmap_bah[0] = 0;	/* ??? */
1832 		OUTL(np, nc_scrx[0], np->dmap_bah[0]);
1833 		OUTL(np, nc_drs, np->dmap_bah[0]);
1834 	}
1835 #endif
1836 
1837 	/*
1838 	 *  If phase mismatch handled by scripts (895A/896/1010),
1839 	 *  set PM jump addresses.
1840 	 */
1841 	if (np->features & FE_NOPM) {
1842 		OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle));
1843 		OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle));
1844 	}
1845 
1846 	/*
1847 	 *    Enable GPIO0 pin for writing if LED support from SCRIPTS.
1848 	 *    Also set GPIO5 and clear GPIO6 if hardware LED control.
1849 	 */
1850 	if (np->features & FE_LED0)
1851 		OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01);
1852 	else if (np->features & FE_LEDC)
1853 		OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20);
1854 
1855 	/*
1856 	 *      enable ints
1857 	 */
1858 	OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR);
1859 	OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID);
1860 
1861 	/*
1862 	 *  For 895/6 enable SBMC interrupt and save current SCSI bus mode.
1863 	 *  Try to eat the spurious SBMC interrupt that may occur when
1864 	 *  we reset the chip but not the SCSI BUS (at initialization).
1865 	 */
1866 	if (np->features & (FE_ULTRA2|FE_ULTRA3)) {
1867 		OUTONW(np, nc_sien, SBMC);
1868 		if (reason == 0) {
1869 			INB(np, nc_mbox1);
1870 			mdelay(100);
1871 			INW(np, nc_sist);
1872 		}
1873 		np->scsi_mode = INB(np, nc_stest4) & SMODE;
1874 	}
1875 
1876 	/*
1877 	 *  Fill in target structure.
1878 	 *  Reinitialize usrsync.
1879 	 *  Reinitialize usrwide.
1880 	 *  Prepare sync negotiation according to actual SCSI bus mode.
1881 	 */
1882 	for (i=0;i<SYM_CONF_MAX_TARGET;i++) {
1883 		struct sym_tcb *tp = &np->target[i];
1884 
1885 		tp->to_reset  = 0;
1886 		tp->head.sval = 0;
1887 		tp->head.wval = np->rv_scntl3;
1888 		tp->head.uval = 0;
1889 	}
1890 
1891 	/*
1892 	 *  Download SCSI SCRIPTS to on-chip RAM if present,
1893 	 *  and start script processor.
1894 	 *  We do the download preferently from the CPU.
1895 	 *  For platforms that may not support PCI memory mapping,
1896 	 *  we use simple SCRIPTS that performs MEMORY MOVEs.
1897 	 */
1898 	phys = SCRIPTA_BA(np, init);
1899 	if (np->ram_ba) {
1900 		if (sym_verbose >= 2)
1901 			printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np));
1902 		memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz);
1903 		if (np->ram_ws == 8192) {
1904 			memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz);
1905 			phys = scr_to_cpu(np->scr_ram_seg);
1906 			OUTL(np, nc_mmws, phys);
1907 			OUTL(np, nc_mmrs, phys);
1908 			OUTL(np, nc_sfs,  phys);
1909 			phys = SCRIPTB_BA(np, start64);
1910 		}
1911 	}
1912 
1913 	np->istat_sem = 0;
1914 
1915 	OUTL(np, nc_dsa, np->hcb_ba);
1916 	OUTL_DSP(np, phys);
1917 
1918 	/*
1919 	 *  Notify the XPT about the RESET condition.
1920 	 */
1921 	if (reason != 0)
1922 		sym_xpt_async_bus_reset(np);
1923 }
1924 
1925 /*
1926  *  Switch trans mode for current job and its target.
1927  */
1928 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs,
1929 			 u_char per, u_char wide, u_char div, u_char fak)
1930 {
1931 	SYM_QUEHEAD *qp;
1932 	u_char sval, wval, uval;
1933 	struct sym_tcb *tp = &np->target[target];
1934 
1935 	assert(target == (INB(np, nc_sdid) & 0x0f));
1936 
1937 	sval = tp->head.sval;
1938 	wval = tp->head.wval;
1939 	uval = tp->head.uval;
1940 
1941 #if 0
1942 	printf("XXXX sval=%x wval=%x uval=%x (%x)\n",
1943 		sval, wval, uval, np->rv_scntl3);
1944 #endif
1945 	/*
1946 	 *  Set the offset.
1947 	 */
1948 	if (!(np->features & FE_C10))
1949 		sval = (sval & ~0x1f) | ofs;
1950 	else
1951 		sval = (sval & ~0x3f) | ofs;
1952 
1953 	/*
1954 	 *  Set the sync divisor and extra clock factor.
1955 	 */
1956 	if (ofs != 0) {
1957 		wval = (wval & ~0x70) | ((div+1) << 4);
1958 		if (!(np->features & FE_C10))
1959 			sval = (sval & ~0xe0) | (fak << 5);
1960 		else {
1961 			uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT);
1962 			if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT);
1963 			if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT);
1964 		}
1965 	}
1966 
1967 	/*
1968 	 *  Set the bus width.
1969 	 */
1970 	wval = wval & ~EWS;
1971 	if (wide != 0)
1972 		wval |= EWS;
1973 
1974 	/*
1975 	 *  Set misc. ultra enable bits.
1976 	 */
1977 	if (np->features & FE_C10) {
1978 		uval = uval & ~(U3EN|AIPCKEN);
1979 		if (opts)	{
1980 			assert(np->features & FE_U3EN);
1981 			uval |= U3EN;
1982 		}
1983 	} else {
1984 		wval = wval & ~ULTRA;
1985 		if (per <= 12)	wval |= ULTRA;
1986 	}
1987 
1988 	/*
1989 	 *   Stop there if sync parameters are unchanged.
1990 	 */
1991 	if (tp->head.sval == sval &&
1992 	    tp->head.wval == wval &&
1993 	    tp->head.uval == uval)
1994 		return;
1995 	tp->head.sval = sval;
1996 	tp->head.wval = wval;
1997 	tp->head.uval = uval;
1998 
1999 	/*
2000 	 *  Disable extended Sreq/Sack filtering if per < 50.
2001 	 *  Not supported on the C1010.
2002 	 */
2003 	if (per < 50 && !(np->features & FE_C10))
2004 		OUTOFFB(np, nc_stest2, EXT);
2005 
2006 	/*
2007 	 *  set actual value and sync_status
2008 	 */
2009 	OUTB(np, nc_sxfer,  tp->head.sval);
2010 	OUTB(np, nc_scntl3, tp->head.wval);
2011 
2012 	if (np->features & FE_C10) {
2013 		OUTB(np, nc_scntl4, tp->head.uval);
2014 	}
2015 
2016 	/*
2017 	 *  patch ALL busy ccbs of this target.
2018 	 */
2019 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
2020 		struct sym_ccb *cp;
2021 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
2022 		if (cp->target != target)
2023 			continue;
2024 		cp->phys.select.sel_scntl3 = tp->head.wval;
2025 		cp->phys.select.sel_sxfer  = tp->head.sval;
2026 		if (np->features & FE_C10) {
2027 			cp->phys.select.sel_scntl4 = tp->head.uval;
2028 		}
2029 	}
2030 }
2031 
2032 /*
2033  *  We received a WDTR.
2034  *  Let everything be aware of the changes.
2035  */
2036 static void sym_setwide(struct sym_hcb *np, int target, u_char wide)
2037 {
2038 	struct sym_tcb *tp = &np->target[target];
2039 	struct scsi_target *starget = tp->starget;
2040 
2041 	if (spi_width(starget) == wide)
2042 		return;
2043 
2044 	sym_settrans(np, target, 0, 0, 0, wide, 0, 0);
2045 
2046 	tp->tgoal.width = wide;
2047 	spi_offset(starget) = 0;
2048 	spi_period(starget) = 0;
2049 	spi_width(starget) = wide;
2050 	spi_iu(starget) = 0;
2051 	spi_dt(starget) = 0;
2052 	spi_qas(starget) = 0;
2053 
2054 	if (sym_verbose >= 3)
2055 		spi_display_xfer_agreement(starget);
2056 }
2057 
2058 /*
2059  *  We received a SDTR.
2060  *  Let everything be aware of the changes.
2061  */
2062 static void
2063 sym_setsync(struct sym_hcb *np, int target,
2064             u_char ofs, u_char per, u_char div, u_char fak)
2065 {
2066 	struct sym_tcb *tp = &np->target[target];
2067 	struct scsi_target *starget = tp->starget;
2068 	u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT;
2069 
2070 	sym_settrans(np, target, 0, ofs, per, wide, div, fak);
2071 
2072 	spi_period(starget) = per;
2073 	spi_offset(starget) = ofs;
2074 	spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0;
2075 
2076 	if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) {
2077 		tp->tgoal.period = per;
2078 		tp->tgoal.offset = ofs;
2079 		tp->tgoal.check_nego = 0;
2080 	}
2081 
2082 	spi_display_xfer_agreement(starget);
2083 }
2084 
2085 /*
2086  *  We received a PPR.
2087  *  Let everything be aware of the changes.
2088  */
2089 static void
2090 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs,
2091              u_char per, u_char wide, u_char div, u_char fak)
2092 {
2093 	struct sym_tcb *tp = &np->target[target];
2094 	struct scsi_target *starget = tp->starget;
2095 
2096 	sym_settrans(np, target, opts, ofs, per, wide, div, fak);
2097 
2098 	spi_width(starget) = tp->tgoal.width = wide;
2099 	spi_period(starget) = tp->tgoal.period = per;
2100 	spi_offset(starget) = tp->tgoal.offset = ofs;
2101 	spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU);
2102 	spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT);
2103 	spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS);
2104 	tp->tgoal.check_nego = 0;
2105 
2106 	spi_display_xfer_agreement(starget);
2107 }
2108 
2109 /*
2110  *  generic recovery from scsi interrupt
2111  *
2112  *  The doc says that when the chip gets an SCSI interrupt,
2113  *  it tries to stop in an orderly fashion, by completing
2114  *  an instruction fetch that had started or by flushing
2115  *  the DMA fifo for a write to memory that was executing.
2116  *  Such a fashion is not enough to know if the instruction
2117  *  that was just before the current DSP value has been
2118  *  executed or not.
2119  *
2120  *  There are some small SCRIPTS sections that deal with
2121  *  the start queue and the done queue that may break any
2122  *  assomption from the C code if we are interrupted
2123  *  inside, so we reset if this happens. Btw, since these
2124  *  SCRIPTS sections are executed while the SCRIPTS hasn't
2125  *  started SCSI operations, it is very unlikely to happen.
2126  *
2127  *  All the driver data structures are supposed to be
2128  *  allocated from the same 4 GB memory window, so there
2129  *  is a 1 to 1 relationship between DSA and driver data
2130  *  structures. Since we are careful :) to invalidate the
2131  *  DSA when we complete a command or when the SCRIPTS
2132  *  pushes a DSA into a queue, we can trust it when it
2133  *  points to a CCB.
2134  */
2135 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts)
2136 {
2137 	u32	dsp	= INL(np, nc_dsp);
2138 	u32	dsa	= INL(np, nc_dsa);
2139 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2140 
2141 	/*
2142 	 *  If we haven't been interrupted inside the SCRIPTS
2143 	 *  critical pathes, we can safely restart the SCRIPTS
2144 	 *  and trust the DSA value if it matches a CCB.
2145 	 */
2146 	if ((!(dsp > SCRIPTA_BA(np, getjob_begin) &&
2147 	       dsp < SCRIPTA_BA(np, getjob_end) + 1)) &&
2148 	    (!(dsp > SCRIPTA_BA(np, ungetjob) &&
2149 	       dsp < SCRIPTA_BA(np, reselect) + 1)) &&
2150 	    (!(dsp > SCRIPTB_BA(np, sel_for_abort) &&
2151 	       dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) &&
2152 	    (!(dsp > SCRIPTA_BA(np, done) &&
2153 	       dsp < SCRIPTA_BA(np, done_end) + 1))) {
2154 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo  */
2155 		OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2156 		/*
2157 		 *  If we have a CCB, let the SCRIPTS call us back for
2158 		 *  the handling of the error with SCRATCHA filled with
2159 		 *  STARTPOS. This way, we will be able to freeze the
2160 		 *  device queue and requeue awaiting IOs.
2161 		 */
2162 		if (cp) {
2163 			cp->host_status = hsts;
2164 			OUTL_DSP(np, SCRIPTA_BA(np, complete_error));
2165 		}
2166 		/*
2167 		 *  Otherwise just restart the SCRIPTS.
2168 		 */
2169 		else {
2170 			OUTL(np, nc_dsa, 0xffffff);
2171 			OUTL_DSP(np, SCRIPTA_BA(np, start));
2172 		}
2173 	}
2174 	else
2175 		goto reset_all;
2176 
2177 	return;
2178 
2179 reset_all:
2180 	sym_start_reset(np);
2181 }
2182 
2183 /*
2184  *  chip exception handler for selection timeout
2185  */
2186 static void sym_int_sto (struct sym_hcb *np)
2187 {
2188 	u32 dsp	= INL(np, nc_dsp);
2189 
2190 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("T");
2191 
2192 	if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8)
2193 		sym_recover_scsi_int(np, HS_SEL_TIMEOUT);
2194 	else
2195 		sym_start_reset(np);
2196 }
2197 
2198 /*
2199  *  chip exception handler for unexpected disconnect
2200  */
2201 static void sym_int_udc (struct sym_hcb *np)
2202 {
2203 	printf ("%s: unexpected disconnect\n", sym_name(np));
2204 	sym_recover_scsi_int(np, HS_UNEXPECTED);
2205 }
2206 
2207 /*
2208  *  chip exception handler for SCSI bus mode change
2209  *
2210  *  spi2-r12 11.2.3 says a transceiver mode change must
2211  *  generate a reset event and a device that detects a reset
2212  *  event shall initiate a hard reset. It says also that a
2213  *  device that detects a mode change shall set data transfer
2214  *  mode to eight bit asynchronous, etc...
2215  *  So, just reinitializing all except chip should be enough.
2216  */
2217 static void sym_int_sbmc (struct sym_hcb *np)
2218 {
2219 	u_char scsi_mode = INB(np, nc_stest4) & SMODE;
2220 
2221 	/*
2222 	 *  Notify user.
2223 	 */
2224 	printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np),
2225 		sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode));
2226 
2227 	/*
2228 	 *  Should suspend command processing for a few seconds and
2229 	 *  reinitialize all except the chip.
2230 	 */
2231 	sym_start_up (np, 2);
2232 }
2233 
2234 /*
2235  *  chip exception handler for SCSI parity error.
2236  *
2237  *  When the chip detects a SCSI parity error and is
2238  *  currently executing a (CH)MOV instruction, it does
2239  *  not interrupt immediately, but tries to finish the
2240  *  transfer of the current scatter entry before
2241  *  interrupting. The following situations may occur:
2242  *
2243  *  - The complete scatter entry has been transferred
2244  *    without the device having changed phase.
2245  *    The chip will then interrupt with the DSP pointing
2246  *    to the instruction that follows the MOV.
2247  *
2248  *  - A phase mismatch occurs before the MOV finished
2249  *    and phase errors are to be handled by the C code.
2250  *    The chip will then interrupt with both PAR and MA
2251  *    conditions set.
2252  *
2253  *  - A phase mismatch occurs before the MOV finished and
2254  *    phase errors are to be handled by SCRIPTS.
2255  *    The chip will load the DSP with the phase mismatch
2256  *    JUMP address and interrupt the host processor.
2257  */
2258 static void sym_int_par (struct sym_hcb *np, u_short sist)
2259 {
2260 	u_char	hsts	= INB(np, HS_PRT);
2261 	u32	dsp	= INL(np, nc_dsp);
2262 	u32	dbc	= INL(np, nc_dbc);
2263 	u32	dsa	= INL(np, nc_dsa);
2264 	u_char	sbcl	= INB(np, nc_sbcl);
2265 	u_char	cmd	= dbc >> 24;
2266 	int phase	= cmd & 7;
2267 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
2268 
2269 	printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n",
2270 		sym_name(np), hsts, dbc, sbcl);
2271 
2272 	/*
2273 	 *  Check that the chip is connected to the SCSI BUS.
2274 	 */
2275 	if (!(INB(np, nc_scntl1) & ISCON)) {
2276 		sym_recover_scsi_int(np, HS_UNEXPECTED);
2277 		return;
2278 	}
2279 
2280 	/*
2281 	 *  If the nexus is not clearly identified, reset the bus.
2282 	 *  We will try to do better later.
2283 	 */
2284 	if (!cp)
2285 		goto reset_all;
2286 
2287 	/*
2288 	 *  Check instruction was a MOV, direction was INPUT and
2289 	 *  ATN is asserted.
2290 	 */
2291 	if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8))
2292 		goto reset_all;
2293 
2294 	/*
2295 	 *  Keep track of the parity error.
2296 	 */
2297 	OUTONB(np, HF_PRT, HF_EXT_ERR);
2298 	cp->xerr_status |= XE_PARITY_ERR;
2299 
2300 	/*
2301 	 *  Prepare the message to send to the device.
2302 	 */
2303 	np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR;
2304 
2305 	/*
2306 	 *  If the old phase was DATA IN phase, we have to deal with
2307 	 *  the 3 situations described above.
2308 	 *  For other input phases (MSG IN and STATUS), the device
2309 	 *  must resend the whole thing that failed parity checking
2310 	 *  or signal error. So, jumping to dispatcher should be OK.
2311 	 */
2312 	if (phase == 1 || phase == 5) {
2313 		/* Phase mismatch handled by SCRIPTS */
2314 		if (dsp == SCRIPTB_BA(np, pm_handle))
2315 			OUTL_DSP(np, dsp);
2316 		/* Phase mismatch handled by the C code */
2317 		else if (sist & MA)
2318 			sym_int_ma (np);
2319 		/* No phase mismatch occurred */
2320 		else {
2321 			sym_set_script_dp (np, cp, dsp);
2322 			OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2323 		}
2324 	}
2325 	else if (phase == 7)	/* We definitely cannot handle parity errors */
2326 #if 1				/* in message-in phase due to the relection  */
2327 		goto reset_all; /* path and various message anticipations.   */
2328 #else
2329 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
2330 #endif
2331 	else
2332 		OUTL_DSP(np, SCRIPTA_BA(np, dispatch));
2333 	return;
2334 
2335 reset_all:
2336 	sym_start_reset(np);
2337 	return;
2338 }
2339 
2340 /*
2341  *  chip exception handler for phase errors.
2342  *
2343  *  We have to construct a new transfer descriptor,
2344  *  to transfer the rest of the current block.
2345  */
2346 static void sym_int_ma (struct sym_hcb *np)
2347 {
2348 	u32	dbc;
2349 	u32	rest;
2350 	u32	dsp;
2351 	u32	dsa;
2352 	u32	nxtdsp;
2353 	u32	*vdsp;
2354 	u32	oadr, olen;
2355 	u32	*tblp;
2356         u32	newcmd;
2357 	u_int	delta;
2358 	u_char	cmd;
2359 	u_char	hflags, hflags0;
2360 	struct	sym_pmc *pm;
2361 	struct sym_ccb *cp;
2362 
2363 	dsp	= INL(np, nc_dsp);
2364 	dbc	= INL(np, nc_dbc);
2365 	dsa	= INL(np, nc_dsa);
2366 
2367 	cmd	= dbc >> 24;
2368 	rest	= dbc & 0xffffff;
2369 	delta	= 0;
2370 
2371 	/*
2372 	 *  locate matching cp if any.
2373 	 */
2374 	cp = sym_ccb_from_dsa(np, dsa);
2375 
2376 	/*
2377 	 *  Donnot take into account dma fifo and various buffers in
2378 	 *  INPUT phase since the chip flushes everything before
2379 	 *  raising the MA interrupt for interrupted INPUT phases.
2380 	 *  For DATA IN phase, we will check for the SWIDE later.
2381 	 */
2382 	if ((cmd & 7) != 1 && (cmd & 7) != 5) {
2383 		u_char ss0, ss2;
2384 
2385 		if (np->features & FE_DFBC)
2386 			delta = INW(np, nc_dfbc);
2387 		else {
2388 			u32 dfifo;
2389 
2390 			/*
2391 			 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership.
2392 			 */
2393 			dfifo = INL(np, nc_dfifo);
2394 
2395 			/*
2396 			 *  Calculate remaining bytes in DMA fifo.
2397 			 *  (CTEST5 = dfifo >> 16)
2398 			 */
2399 			if (dfifo & (DFS << 16))
2400 				delta = ((((dfifo >> 8) & 0x300) |
2401 				          (dfifo & 0xff)) - rest) & 0x3ff;
2402 			else
2403 				delta = ((dfifo & 0xff) - rest) & 0x7f;
2404 		}
2405 
2406 		/*
2407 		 *  The data in the dma fifo has not been transfered to
2408 		 *  the target -> add the amount to the rest
2409 		 *  and clear the data.
2410 		 *  Check the sstat2 register in case of wide transfer.
2411 		 */
2412 		rest += delta;
2413 		ss0  = INB(np, nc_sstat0);
2414 		if (ss0 & OLF) rest++;
2415 		if (!(np->features & FE_C10))
2416 			if (ss0 & ORF) rest++;
2417 		if (cp && (cp->phys.select.sel_scntl3 & EWS)) {
2418 			ss2 = INB(np, nc_sstat2);
2419 			if (ss2 & OLF1) rest++;
2420 			if (!(np->features & FE_C10))
2421 				if (ss2 & ORF1) rest++;
2422 		}
2423 
2424 		/*
2425 		 *  Clear fifos.
2426 		 */
2427 		OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* dma fifo  */
2428 		OUTB(np, nc_stest3, TE|CSF);		/* scsi fifo */
2429 	}
2430 
2431 	/*
2432 	 *  log the information
2433 	 */
2434 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE))
2435 		printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7,
2436 			(unsigned) rest, (unsigned) delta);
2437 
2438 	/*
2439 	 *  try to find the interrupted script command,
2440 	 *  and the address at which to continue.
2441 	 */
2442 	vdsp	= NULL;
2443 	nxtdsp	= 0;
2444 	if	(dsp >  np->scripta_ba &&
2445 		 dsp <= np->scripta_ba + np->scripta_sz) {
2446 		vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8));
2447 		nxtdsp = dsp;
2448 	}
2449 	else if	(dsp >  np->scriptb_ba &&
2450 		 dsp <= np->scriptb_ba + np->scriptb_sz) {
2451 		vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8));
2452 		nxtdsp = dsp;
2453 	}
2454 
2455 	/*
2456 	 *  log the information
2457 	 */
2458 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2459 		printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ",
2460 			cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd);
2461 	}
2462 
2463 	if (!vdsp) {
2464 		printf ("%s: interrupted SCRIPT address not found.\n",
2465 			sym_name (np));
2466 		goto reset_all;
2467 	}
2468 
2469 	if (!cp) {
2470 		printf ("%s: SCSI phase error fixup: CCB already dequeued.\n",
2471 			sym_name (np));
2472 		goto reset_all;
2473 	}
2474 
2475 	/*
2476 	 *  get old startaddress and old length.
2477 	 */
2478 	oadr = scr_to_cpu(vdsp[1]);
2479 
2480 	if (cmd & 0x10) {	/* Table indirect */
2481 		tblp = (u32 *) ((char*) &cp->phys + oadr);
2482 		olen = scr_to_cpu(tblp[0]);
2483 		oadr = scr_to_cpu(tblp[1]);
2484 	} else {
2485 		tblp = (u32 *) 0;
2486 		olen = scr_to_cpu(vdsp[0]) & 0xffffff;
2487 	}
2488 
2489 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2490 		printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n",
2491 			(unsigned) (scr_to_cpu(vdsp[0]) >> 24),
2492 			tblp,
2493 			(unsigned) olen,
2494 			(unsigned) oadr);
2495 	}
2496 
2497 	/*
2498 	 *  check cmd against assumed interrupted script command.
2499 	 *  If dt data phase, the MOVE instruction hasn't bit 4 of
2500 	 *  the phase.
2501 	 */
2502 	if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) {
2503 		sym_print_addr(cp->cmd,
2504 			"internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n",
2505 			cmd, scr_to_cpu(vdsp[0]) >> 24);
2506 
2507 		goto reset_all;
2508 	}
2509 
2510 	/*
2511 	 *  if old phase not dataphase, leave here.
2512 	 */
2513 	if (cmd & 2) {
2514 		sym_print_addr(cp->cmd,
2515 			"phase change %x-%x %d@%08x resid=%d.\n",
2516 			cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen,
2517 			(unsigned)oadr, (unsigned)rest);
2518 		goto unexpected_phase;
2519 	}
2520 
2521 	/*
2522 	 *  Choose the correct PM save area.
2523 	 *
2524 	 *  Look at the PM_SAVE SCRIPT if you want to understand
2525 	 *  this stuff. The equivalent code is implemented in
2526 	 *  SCRIPTS for the 895A, 896 and 1010 that are able to
2527 	 *  handle PM from the SCRIPTS processor.
2528 	 */
2529 	hflags0 = INB(np, HF_PRT);
2530 	hflags = hflags0;
2531 
2532 	if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) {
2533 		if (hflags & HF_IN_PM0)
2534 			nxtdsp = scr_to_cpu(cp->phys.pm0.ret);
2535 		else if	(hflags & HF_IN_PM1)
2536 			nxtdsp = scr_to_cpu(cp->phys.pm1.ret);
2537 
2538 		if (hflags & HF_DP_SAVED)
2539 			hflags ^= HF_ACT_PM;
2540 	}
2541 
2542 	if (!(hflags & HF_ACT_PM)) {
2543 		pm = &cp->phys.pm0;
2544 		newcmd = SCRIPTA_BA(np, pm0_data);
2545 	}
2546 	else {
2547 		pm = &cp->phys.pm1;
2548 		newcmd = SCRIPTA_BA(np, pm1_data);
2549 	}
2550 
2551 	hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED);
2552 	if (hflags != hflags0)
2553 		OUTB(np, HF_PRT, hflags);
2554 
2555 	/*
2556 	 *  fillin the phase mismatch context
2557 	 */
2558 	pm->sg.addr = cpu_to_scr(oadr + olen - rest);
2559 	pm->sg.size = cpu_to_scr(rest);
2560 	pm->ret     = cpu_to_scr(nxtdsp);
2561 
2562 	/*
2563 	 *  If we have a SWIDE,
2564 	 *  - prepare the address to write the SWIDE from SCRIPTS,
2565 	 *  - compute the SCRIPTS address to restart from,
2566 	 *  - move current data pointer context by one byte.
2567 	 */
2568 	nxtdsp = SCRIPTA_BA(np, dispatch);
2569 	if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) &&
2570 	    (INB(np, nc_scntl2) & WSR)) {
2571 		u32 tmp;
2572 
2573 		/*
2574 		 *  Set up the table indirect for the MOVE
2575 		 *  of the residual byte and adjust the data
2576 		 *  pointer context.
2577 		 */
2578 		tmp = scr_to_cpu(pm->sg.addr);
2579 		cp->phys.wresid.addr = cpu_to_scr(tmp);
2580 		pm->sg.addr = cpu_to_scr(tmp + 1);
2581 		tmp = scr_to_cpu(pm->sg.size);
2582 		cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1);
2583 		pm->sg.size = cpu_to_scr(tmp - 1);
2584 
2585 		/*
2586 		 *  If only the residual byte is to be moved,
2587 		 *  no PM context is needed.
2588 		 */
2589 		if ((tmp&0xffffff) == 1)
2590 			newcmd = pm->ret;
2591 
2592 		/*
2593 		 *  Prepare the address of SCRIPTS that will
2594 		 *  move the residual byte to memory.
2595 		 */
2596 		nxtdsp = SCRIPTB_BA(np, wsr_ma_helper);
2597 	}
2598 
2599 	if (DEBUG_FLAGS & DEBUG_PHASE) {
2600 		sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n",
2601 			hflags0, hflags, newcmd,
2602 			(unsigned)scr_to_cpu(pm->sg.addr),
2603 			(unsigned)scr_to_cpu(pm->sg.size),
2604 			(unsigned)scr_to_cpu(pm->ret));
2605 	}
2606 
2607 	/*
2608 	 *  Restart the SCRIPTS processor.
2609 	 */
2610 	sym_set_script_dp (np, cp, newcmd);
2611 	OUTL_DSP(np, nxtdsp);
2612 	return;
2613 
2614 	/*
2615 	 *  Unexpected phase changes that occurs when the current phase
2616 	 *  is not a DATA IN or DATA OUT phase are due to error conditions.
2617 	 *  Such event may only happen when the SCRIPTS is using a
2618 	 *  multibyte SCSI MOVE.
2619 	 *
2620 	 *  Phase change		Some possible cause
2621 	 *
2622 	 *  COMMAND  --> MSG IN	SCSI parity error detected by target.
2623 	 *  COMMAND  --> STATUS	Bad command or refused by target.
2624 	 *  MSG OUT  --> MSG IN     Message rejected by target.
2625 	 *  MSG OUT  --> COMMAND    Bogus target that discards extended
2626 	 *  			negotiation messages.
2627 	 *
2628 	 *  The code below does not care of the new phase and so
2629 	 *  trusts the target. Why to annoy it ?
2630 	 *  If the interrupted phase is COMMAND phase, we restart at
2631 	 *  dispatcher.
2632 	 *  If a target does not get all the messages after selection,
2633 	 *  the code assumes blindly that the target discards extended
2634 	 *  messages and clears the negotiation status.
2635 	 *  If the target does not want all our response to negotiation,
2636 	 *  we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids
2637 	 *  bloat for such a should_not_happen situation).
2638 	 *  In all other situation, we reset the BUS.
2639 	 *  Are these assumptions reasonnable ? (Wait and see ...)
2640 	 */
2641 unexpected_phase:
2642 	dsp -= 8;
2643 	nxtdsp = 0;
2644 
2645 	switch (cmd & 7) {
2646 	case 2:	/* COMMAND phase */
2647 		nxtdsp = SCRIPTA_BA(np, dispatch);
2648 		break;
2649 #if 0
2650 	case 3:	/* STATUS  phase */
2651 		nxtdsp = SCRIPTA_BA(np, dispatch);
2652 		break;
2653 #endif
2654 	case 6:	/* MSG OUT phase */
2655 		/*
2656 		 *  If the device may want to use untagged when we want
2657 		 *  tagged, we prepare an IDENTIFY without disc. granted,
2658 		 *  since we will not be able to handle reselect.
2659 		 *  Otherwise, we just don't care.
2660 		 */
2661 		if	(dsp == SCRIPTA_BA(np, send_ident)) {
2662 			if (cp->tag != NO_TAG && olen - rest <= 3) {
2663 				cp->host_status = HS_BUSY;
2664 				np->msgout[0] = IDENTIFY(0, cp->lun);
2665 				nxtdsp = SCRIPTB_BA(np, ident_break_atn);
2666 			}
2667 			else
2668 				nxtdsp = SCRIPTB_BA(np, ident_break);
2669 		}
2670 		else if	(dsp == SCRIPTB_BA(np, send_wdtr) ||
2671 			 dsp == SCRIPTB_BA(np, send_sdtr) ||
2672 			 dsp == SCRIPTB_BA(np, send_ppr)) {
2673 			nxtdsp = SCRIPTB_BA(np, nego_bad_phase);
2674 			if (dsp == SCRIPTB_BA(np, send_ppr)) {
2675 				struct scsi_device *dev = cp->cmd->device;
2676 				dev->ppr = 0;
2677 			}
2678 		}
2679 		break;
2680 #if 0
2681 	case 7:	/* MSG IN  phase */
2682 		nxtdsp = SCRIPTA_BA(np, clrack);
2683 		break;
2684 #endif
2685 	}
2686 
2687 	if (nxtdsp) {
2688 		OUTL_DSP(np, nxtdsp);
2689 		return;
2690 	}
2691 
2692 reset_all:
2693 	sym_start_reset(np);
2694 }
2695 
2696 /*
2697  *  chip interrupt handler
2698  *
2699  *  In normal situations, interrupt conditions occur one at
2700  *  a time. But when something bad happens on the SCSI BUS,
2701  *  the chip may raise several interrupt flags before
2702  *  stopping and interrupting the CPU. The additionnal
2703  *  interrupt flags are stacked in some extra registers
2704  *  after the SIP and/or DIP flag has been raised in the
2705  *  ISTAT. After the CPU has read the interrupt condition
2706  *  flag from SIST or DSTAT, the chip unstacks the other
2707  *  interrupt flags and sets the corresponding bits in
2708  *  SIST or DSTAT. Since the chip starts stacking once the
2709  *  SIP or DIP flag is set, there is a small window of time
2710  *  where the stacking does not occur.
2711  *
2712  *  Typically, multiple interrupt conditions may happen in
2713  *  the following situations:
2714  *
2715  *  - SCSI parity error + Phase mismatch  (PAR|MA)
2716  *    When an parity error is detected in input phase
2717  *    and the device switches to msg-in phase inside a
2718  *    block MOV.
2719  *  - SCSI parity error + Unexpected disconnect (PAR|UDC)
2720  *    When a stupid device does not want to handle the
2721  *    recovery of an SCSI parity error.
2722  *  - Some combinations of STO, PAR, UDC, ...
2723  *    When using non compliant SCSI stuff, when user is
2724  *    doing non compliant hot tampering on the BUS, when
2725  *    something really bad happens to a device, etc ...
2726  *
2727  *  The heuristic suggested by SYMBIOS to handle
2728  *  multiple interrupts is to try unstacking all
2729  *  interrupts conditions and to handle them on some
2730  *  priority based on error severity.
2731  *  This will work when the unstacking has been
2732  *  successful, but we cannot be 100 % sure of that,
2733  *  since the CPU may have been faster to unstack than
2734  *  the chip is able to stack. Hmmm ... But it seems that
2735  *  such a situation is very unlikely to happen.
2736  *
2737  *  If this happen, for example STO caught by the CPU
2738  *  then UDC happenning before the CPU have restarted
2739  *  the SCRIPTS, the driver may wrongly complete the
2740  *  same command on UDC, since the SCRIPTS didn't restart
2741  *  and the DSA still points to the same command.
2742  *  We avoid this situation by setting the DSA to an
2743  *  invalid value when the CCB is completed and before
2744  *  restarting the SCRIPTS.
2745  *
2746  *  Another issue is that we need some section of our
2747  *  recovery procedures to be somehow uninterruptible but
2748  *  the SCRIPTS processor does not provides such a
2749  *  feature. For this reason, we handle recovery preferently
2750  *  from the C code and check against some SCRIPTS critical
2751  *  sections from the C code.
2752  *
2753  *  Hopefully, the interrupt handling of the driver is now
2754  *  able to resist to weird BUS error conditions, but donnot
2755  *  ask me for any guarantee that it will never fail. :-)
2756  *  Use at your own decision and risk.
2757  */
2758 
2759 void sym_interrupt (struct sym_hcb *np)
2760 {
2761 	u_char	istat, istatc;
2762 	u_char	dstat;
2763 	u_short	sist;
2764 
2765 	/*
2766 	 *  interrupt on the fly ?
2767 	 *  (SCRIPTS may still be running)
2768 	 *
2769 	 *  A `dummy read' is needed to ensure that the
2770 	 *  clear of the INTF flag reaches the device
2771 	 *  and that posted writes are flushed to memory
2772 	 *  before the scanning of the DONE queue.
2773 	 *  Note that SCRIPTS also (dummy) read to memory
2774 	 *  prior to deliver the INTF interrupt condition.
2775 	 */
2776 	istat = INB(np, nc_istat);
2777 	if (istat & INTF) {
2778 		OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem);
2779 		istat = INB(np, nc_istat);		/* DUMMY READ */
2780 		if (DEBUG_FLAGS & DEBUG_TINY) printf ("F ");
2781 		sym_wakeup_done(np);
2782 	}
2783 
2784 	if (!(istat & (SIP|DIP)))
2785 		return;
2786 
2787 #if 0	/* We should never get this one */
2788 	if (istat & CABRT)
2789 		OUTB(np, nc_istat, CABRT);
2790 #endif
2791 
2792 	/*
2793 	 *  PAR and MA interrupts may occur at the same time,
2794 	 *  and we need to know of both in order to handle
2795 	 *  this situation properly. We try to unstack SCSI
2796 	 *  interrupts for that reason. BTW, I dislike a LOT
2797 	 *  such a loop inside the interrupt routine.
2798 	 *  Even if DMA interrupt stacking is very unlikely to
2799 	 *  happen, we also try unstacking these ones, since
2800 	 *  this has no performance impact.
2801 	 */
2802 	sist	= 0;
2803 	dstat	= 0;
2804 	istatc	= istat;
2805 	do {
2806 		if (istatc & SIP)
2807 			sist  |= INW(np, nc_sist);
2808 		if (istatc & DIP)
2809 			dstat |= INB(np, nc_dstat);
2810 		istatc = INB(np, nc_istat);
2811 		istat |= istatc;
2812 	} while (istatc & (SIP|DIP));
2813 
2814 	if (DEBUG_FLAGS & DEBUG_TINY)
2815 		printf ("<%d|%x:%x|%x:%x>",
2816 			(int)INB(np, nc_scr0),
2817 			dstat,sist,
2818 			(unsigned)INL(np, nc_dsp),
2819 			(unsigned)INL(np, nc_dbc));
2820 	/*
2821 	 *  On paper, a memory read barrier may be needed here to
2822 	 *  prevent out of order LOADs by the CPU from having
2823 	 *  prefetched stale data prior to DMA having occurred.
2824 	 *  And since we are paranoid ... :)
2825 	 */
2826 	MEMORY_READ_BARRIER();
2827 
2828 	/*
2829 	 *  First, interrupts we want to service cleanly.
2830 	 *
2831 	 *  Phase mismatch (MA) is the most frequent interrupt
2832 	 *  for chip earlier than the 896 and so we have to service
2833 	 *  it as quickly as possible.
2834 	 *  A SCSI parity error (PAR) may be combined with a phase
2835 	 *  mismatch condition (MA).
2836 	 *  Programmed interrupts (SIR) are used to call the C code
2837 	 *  from SCRIPTS.
2838 	 *  The single step interrupt (SSI) is not used in this
2839 	 *  driver.
2840 	 */
2841 	if (!(sist  & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) &&
2842 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2843 		if	(sist & PAR)	sym_int_par (np, sist);
2844 		else if (sist & MA)	sym_int_ma (np);
2845 		else if (dstat & SIR)	sym_int_sir (np);
2846 		else if (dstat & SSI)	OUTONB_STD();
2847 		else			goto unknown_int;
2848 		return;
2849 	}
2850 
2851 	/*
2852 	 *  Now, interrupts that donnot happen in normal
2853 	 *  situations and that we may need to recover from.
2854 	 *
2855 	 *  On SCSI RESET (RST), we reset everything.
2856 	 *  On SCSI BUS MODE CHANGE (SBMC), we complete all
2857 	 *  active CCBs with RESET status, prepare all devices
2858 	 *  for negotiating again and restart the SCRIPTS.
2859 	 *  On STO and UDC, we complete the CCB with the corres-
2860 	 *  ponding status and restart the SCRIPTS.
2861 	 */
2862 	if (sist & RST) {
2863 		printf("%s: SCSI BUS reset detected.\n", sym_name(np));
2864 		sym_start_up (np, 1);
2865 		return;
2866 	}
2867 
2868 	OUTB(np, nc_ctest3, np->rv_ctest3 | CLF);	/* clear dma fifo  */
2869 	OUTB(np, nc_stest3, TE|CSF);		/* clear scsi fifo */
2870 
2871 	if (!(sist  & (GEN|HTH|SGE)) &&
2872 	    !(dstat & (MDPE|BF|ABRT|IID))) {
2873 		if	(sist & SBMC)	sym_int_sbmc (np);
2874 		else if (sist & STO)	sym_int_sto (np);
2875 		else if (sist & UDC)	sym_int_udc (np);
2876 		else			goto unknown_int;
2877 		return;
2878 	}
2879 
2880 	/*
2881 	 *  Now, interrupts we are not able to recover cleanly.
2882 	 *
2883 	 *  Log message for hard errors.
2884 	 *  Reset everything.
2885 	 */
2886 
2887 	sym_log_hard_error(np, sist, dstat);
2888 
2889 	if ((sist & (GEN|HTH|SGE)) ||
2890 		(dstat & (MDPE|BF|ABRT|IID))) {
2891 		sym_start_reset(np);
2892 		return;
2893 	}
2894 
2895 unknown_int:
2896 	/*
2897 	 *  We just miss the cause of the interrupt. :(
2898 	 *  Print a message. The timeout will do the real work.
2899 	 */
2900 	printf(	"%s: unknown interrupt(s) ignored, "
2901 		"ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n",
2902 		sym_name(np), istat, dstat, sist);
2903 }
2904 
2905 /*
2906  *  Dequeue from the START queue all CCBs that match
2907  *  a given target/lun/task condition (-1 means all),
2908  *  and move them from the BUSY queue to the COMP queue
2909  *  with DID_SOFT_ERROR status condition.
2910  *  This function is used during error handling/recovery.
2911  *  It is called with SCRIPTS not running.
2912  */
2913 static int
2914 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task)
2915 {
2916 	int j;
2917 	struct sym_ccb *cp;
2918 
2919 	/*
2920 	 *  Make sure the starting index is within range.
2921 	 */
2922 	assert((i >= 0) && (i < 2*MAX_QUEUE));
2923 
2924 	/*
2925 	 *  Walk until end of START queue and dequeue every job
2926 	 *  that matches the target/lun/task condition.
2927 	 */
2928 	j = i;
2929 	while (i != np->squeueput) {
2930 		cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i]));
2931 		assert(cp);
2932 #ifdef SYM_CONF_IARB_SUPPORT
2933 		/* Forget hints for IARB, they may be no longer relevant */
2934 		cp->host_flags &= ~HF_HINT_IARB;
2935 #endif
2936 		if ((target == -1 || cp->target == target) &&
2937 		    (lun    == -1 || cp->lun    == lun)    &&
2938 		    (task   == -1 || cp->tag    == task)) {
2939 			sym_set_cam_status(cp->cmd, DID_SOFT_ERROR);
2940 			sym_remque(&cp->link_ccbq);
2941 			sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
2942 		}
2943 		else {
2944 			if (i != j)
2945 				np->squeue[j] = np->squeue[i];
2946 			if ((j += 2) >= MAX_QUEUE*2) j = 0;
2947 		}
2948 		if ((i += 2) >= MAX_QUEUE*2) i = 0;
2949 	}
2950 	if (i != j)		/* Copy back the idle task if needed */
2951 		np->squeue[j] = np->squeue[i];
2952 	np->squeueput = j;	/* Update our current start queue pointer */
2953 
2954 	return (i - j) / 2;
2955 }
2956 
2957 /*
2958  *  chip handler for bad SCSI status condition
2959  *
2960  *  In case of bad SCSI status, we unqueue all the tasks
2961  *  currently queued to the controller but not yet started
2962  *  and then restart the SCRIPTS processor immediately.
2963  *
2964  *  QUEUE FULL and BUSY conditions are handled the same way.
2965  *  Basically all the not yet started tasks are requeued in
2966  *  device queue and the queue is frozen until a completion.
2967  *
2968  *  For CHECK CONDITION and COMMAND TERMINATED status, we use
2969  *  the CCB of the failed command to prepare a REQUEST SENSE
2970  *  SCSI command and queue it to the controller queue.
2971  *
2972  *  SCRATCHA is assumed to have been loaded with STARTPOS
2973  *  before the SCRIPTS called the C code.
2974  */
2975 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp)
2976 {
2977 	u32		startp;
2978 	u_char		s_status = cp->ssss_status;
2979 	u_char		h_flags  = cp->host_flags;
2980 	int		msglen;
2981 	int		i;
2982 
2983 	/*
2984 	 *  Compute the index of the next job to start from SCRIPTS.
2985 	 */
2986 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
2987 
2988 	/*
2989 	 *  The last CCB queued used for IARB hint may be
2990 	 *  no longer relevant. Forget it.
2991 	 */
2992 #ifdef SYM_CONF_IARB_SUPPORT
2993 	if (np->last_cp)
2994 		np->last_cp = 0;
2995 #endif
2996 
2997 	/*
2998 	 *  Now deal with the SCSI status.
2999 	 */
3000 	switch(s_status) {
3001 	case S_BUSY:
3002 	case S_QUEUE_FULL:
3003 		if (sym_verbose >= 2) {
3004 			sym_print_addr(cp->cmd, "%s\n",
3005 			        s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n");
3006 		}
3007 	default:	/* S_INT, S_INT_COND_MET, S_CONFLICT */
3008 		sym_complete_error (np, cp);
3009 		break;
3010 	case S_TERMINATED:
3011 	case S_CHECK_COND:
3012 		/*
3013 		 *  If we get an SCSI error when requesting sense, give up.
3014 		 */
3015 		if (h_flags & HF_SENSE) {
3016 			sym_complete_error (np, cp);
3017 			break;
3018 		}
3019 
3020 		/*
3021 		 *  Dequeue all queued CCBs for that device not yet started,
3022 		 *  and restart the SCRIPTS processor immediately.
3023 		 */
3024 		sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3025 		OUTL_DSP(np, SCRIPTA_BA(np, start));
3026 
3027  		/*
3028 		 *  Save some info of the actual IO.
3029 		 *  Compute the data residual.
3030 		 */
3031 		cp->sv_scsi_status = cp->ssss_status;
3032 		cp->sv_xerr_status = cp->xerr_status;
3033 		cp->sv_resid = sym_compute_residual(np, cp);
3034 
3035 		/*
3036 		 *  Prepare all needed data structures for
3037 		 *  requesting sense data.
3038 		 */
3039 
3040 		cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun);
3041 		msglen = 1;
3042 
3043 		/*
3044 		 *  If we are currently using anything different from
3045 		 *  async. 8 bit data transfers with that target,
3046 		 *  start a negotiation, since the device may want
3047 		 *  to report us a UNIT ATTENTION condition due to
3048 		 *  a cause we currently ignore, and we donnot want
3049 		 *  to be stuck with WIDE and/or SYNC data transfer.
3050 		 *
3051 		 *  cp->nego_status is filled by sym_prepare_nego().
3052 		 */
3053 		cp->nego_status = 0;
3054 		msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]);
3055 		/*
3056 		 *  Message table indirect structure.
3057 		 */
3058 		cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg2);
3059 		cp->phys.smsg.size	= cpu_to_scr(msglen);
3060 
3061 		/*
3062 		 *  sense command
3063 		 */
3064 		cp->phys.cmd.addr	= CCB_BA(cp, sensecmd);
3065 		cp->phys.cmd.size	= cpu_to_scr(6);
3066 
3067 		/*
3068 		 *  patch requested size into sense command
3069 		 */
3070 		cp->sensecmd[0]		= REQUEST_SENSE;
3071 		cp->sensecmd[1]		= 0;
3072 		if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7)
3073 			cp->sensecmd[1]	= cp->lun << 5;
3074 		cp->sensecmd[4]		= SYM_SNS_BBUF_LEN;
3075 		cp->data_len		= SYM_SNS_BBUF_LEN;
3076 
3077 		/*
3078 		 *  sense data
3079 		 */
3080 		memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN);
3081 		cp->phys.sense.addr	= CCB_BA(cp, sns_bbuf);
3082 		cp->phys.sense.size	= cpu_to_scr(SYM_SNS_BBUF_LEN);
3083 
3084 		/*
3085 		 *  requeue the command.
3086 		 */
3087 		startp = SCRIPTB_BA(np, sdata_in);
3088 
3089 		cp->phys.head.savep	= cpu_to_scr(startp);
3090 		cp->phys.head.lastp	= cpu_to_scr(startp);
3091 		cp->startp		= cpu_to_scr(startp);
3092 		cp->goalp		= cpu_to_scr(startp + 16);
3093 
3094 		cp->host_xflags = 0;
3095 		cp->host_status	= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
3096 		cp->ssss_status = S_ILLEGAL;
3097 		cp->host_flags	= (HF_SENSE|HF_DATA_IN);
3098 		cp->xerr_status = 0;
3099 		cp->extra_bytes = 0;
3100 
3101 		cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select));
3102 
3103 		/*
3104 		 *  Requeue the command.
3105 		 */
3106 		sym_put_start_queue(np, cp);
3107 
3108 		/*
3109 		 *  Give back to upper layer everything we have dequeued.
3110 		 */
3111 		sym_flush_comp_queue(np, 0);
3112 		break;
3113 	}
3114 }
3115 
3116 /*
3117  *  After a device has accepted some management message
3118  *  as BUS DEVICE RESET, ABORT TASK, etc ..., or when
3119  *  a device signals a UNIT ATTENTION condition, some
3120  *  tasks are thrown away by the device. We are required
3121  *  to reflect that on our tasks list since the device
3122  *  will never complete these tasks.
3123  *
3124  *  This function move from the BUSY queue to the COMP
3125  *  queue all disconnected CCBs for a given target that
3126  *  match the following criteria:
3127  *  - lun=-1  means any logical UNIT otherwise a given one.
3128  *  - task=-1 means any task, otherwise a given one.
3129  */
3130 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task)
3131 {
3132 	SYM_QUEHEAD qtmp, *qp;
3133 	int i = 0;
3134 	struct sym_ccb *cp;
3135 
3136 	/*
3137 	 *  Move the entire BUSY queue to our temporary queue.
3138 	 */
3139 	sym_que_init(&qtmp);
3140 	sym_que_splice(&np->busy_ccbq, &qtmp);
3141 	sym_que_init(&np->busy_ccbq);
3142 
3143 	/*
3144 	 *  Put all CCBs that matches our criteria into
3145 	 *  the COMP queue and put back other ones into
3146 	 *  the BUSY queue.
3147 	 */
3148 	while ((qp = sym_remque_head(&qtmp)) != 0) {
3149 		struct scsi_cmnd *cmd;
3150 		cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3151 		cmd = cp->cmd;
3152 		if (cp->host_status != HS_DISCONNECT ||
3153 		    cp->target != target	     ||
3154 		    (lun  != -1 && cp->lun != lun)   ||
3155 		    (task != -1 &&
3156 			(cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) {
3157 			sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
3158 			continue;
3159 		}
3160 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3161 
3162 		/* Preserve the software timeout condition */
3163 		if (sym_get_cam_status(cmd) != DID_TIME_OUT)
3164 			sym_set_cam_status(cmd, cam_status);
3165 		++i;
3166 #if 0
3167 printf("XXXX TASK @%p CLEARED\n", cp);
3168 #endif
3169 	}
3170 	return i;
3171 }
3172 
3173 /*
3174  *  chip handler for TASKS recovery
3175  *
3176  *  We cannot safely abort a command, while the SCRIPTS
3177  *  processor is running, since we just would be in race
3178  *  with it.
3179  *
3180  *  As long as we have tasks to abort, we keep the SEM
3181  *  bit set in the ISTAT. When this bit is set, the
3182  *  SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED)
3183  *  each time it enters the scheduler.
3184  *
3185  *  If we have to reset a target, clear tasks of a unit,
3186  *  or to perform the abort of a disconnected job, we
3187  *  restart the SCRIPTS for selecting the target. Once
3188  *  selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED).
3189  *  If it loses arbitration, the SCRIPTS will interrupt again
3190  *  the next time it will enter its scheduler, and so on ...
3191  *
3192  *  On SIR_TARGET_SELECTED, we scan for the more
3193  *  appropriate thing to do:
3194  *
3195  *  - If nothing, we just sent a M_ABORT message to the
3196  *    target to get rid of the useless SCSI bus ownership.
3197  *    According to the specs, no tasks shall be affected.
3198  *  - If the target is to be reset, we send it a M_RESET
3199  *    message.
3200  *  - If a logical UNIT is to be cleared , we send the
3201  *    IDENTIFY(lun) + M_ABORT.
3202  *  - If an untagged task is to be aborted, we send the
3203  *    IDENTIFY(lun) + M_ABORT.
3204  *  - If a tagged task is to be aborted, we send the
3205  *    IDENTIFY(lun) + task attributes + M_ABORT_TAG.
3206  *
3207  *  Once our 'kiss of death' :) message has been accepted
3208  *  by the target, the SCRIPTS interrupts again
3209  *  (SIR_ABORT_SENT). On this interrupt, we complete
3210  *  all the CCBs that should have been aborted by the
3211  *  target according to our message.
3212  */
3213 static void sym_sir_task_recovery(struct sym_hcb *np, int num)
3214 {
3215 	SYM_QUEHEAD *qp;
3216 	struct sym_ccb *cp;
3217 	struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */
3218 	struct scsi_target *starget;
3219 	int target=-1, lun=-1, task;
3220 	int i, k;
3221 
3222 	switch(num) {
3223 	/*
3224 	 *  The SCRIPTS processor stopped before starting
3225 	 *  the next command in order to allow us to perform
3226 	 *  some task recovery.
3227 	 */
3228 	case SIR_SCRIPT_STOPPED:
3229 		/*
3230 		 *  Do we have any target to reset or unit to clear ?
3231 		 */
3232 		for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
3233 			tp = &np->target[i];
3234 			if (tp->to_reset ||
3235 			    (tp->lun0p && tp->lun0p->to_clear)) {
3236 				target = i;
3237 				break;
3238 			}
3239 			if (!tp->lunmp)
3240 				continue;
3241 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3242 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3243 					target	= i;
3244 					break;
3245 				}
3246 			}
3247 			if (target != -1)
3248 				break;
3249 		}
3250 
3251 		/*
3252 		 *  If not, walk the busy queue for any
3253 		 *  disconnected CCB to be aborted.
3254 		 */
3255 		if (target == -1) {
3256 			FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3257 				cp = sym_que_entry(qp,struct sym_ccb,link_ccbq);
3258 				if (cp->host_status != HS_DISCONNECT)
3259 					continue;
3260 				if (cp->to_abort) {
3261 					target = cp->target;
3262 					break;
3263 				}
3264 			}
3265 		}
3266 
3267 		/*
3268 		 *  If some target is to be selected,
3269 		 *  prepare and start the selection.
3270 		 */
3271 		if (target != -1) {
3272 			tp = &np->target[target];
3273 			np->abrt_sel.sel_id	= target;
3274 			np->abrt_sel.sel_scntl3 = tp->head.wval;
3275 			np->abrt_sel.sel_sxfer  = tp->head.sval;
3276 			OUTL(np, nc_dsa, np->hcb_ba);
3277 			OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort));
3278 			return;
3279 		}
3280 
3281 		/*
3282 		 *  Now look for a CCB to abort that haven't started yet.
3283 		 *  Btw, the SCRIPTS processor is still stopped, so
3284 		 *  we are not in race.
3285 		 */
3286 		i = 0;
3287 		cp = NULL;
3288 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3289 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3290 			if (cp->host_status != HS_BUSY &&
3291 			    cp->host_status != HS_NEGOTIATE)
3292 				continue;
3293 			if (!cp->to_abort)
3294 				continue;
3295 #ifdef SYM_CONF_IARB_SUPPORT
3296 			/*
3297 			 *    If we are using IMMEDIATE ARBITRATION, we donnot
3298 			 *    want to cancel the last queued CCB, since the
3299 			 *    SCRIPTS may have anticipated the selection.
3300 			 */
3301 			if (cp == np->last_cp) {
3302 				cp->to_abort = 0;
3303 				continue;
3304 			}
3305 #endif
3306 			i = 1;	/* Means we have found some */
3307 			break;
3308 		}
3309 		if (!i) {
3310 			/*
3311 			 *  We are done, so we donnot need
3312 			 *  to synchronize with the SCRIPTS anylonger.
3313 			 *  Remove the SEM flag from the ISTAT.
3314 			 */
3315 			np->istat_sem = 0;
3316 			OUTB(np, nc_istat, SIGP);
3317 			break;
3318 		}
3319 		/*
3320 		 *  Compute index of next position in the start
3321 		 *  queue the SCRIPTS intends to start and dequeue
3322 		 *  all CCBs for that device that haven't been started.
3323 		 */
3324 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3325 		i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1);
3326 
3327 		/*
3328 		 *  Make sure at least our IO to abort has been dequeued.
3329 		 */
3330 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
3331 		assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR);
3332 #else
3333 		sym_remque(&cp->link_ccbq);
3334 		sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq);
3335 #endif
3336 		/*
3337 		 *  Keep track in cam status of the reason of the abort.
3338 		 */
3339 		if (cp->to_abort == 2)
3340 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3341 		else
3342 			sym_set_cam_status(cp->cmd, DID_ABORT);
3343 
3344 		/*
3345 		 *  Complete with error everything that we have dequeued.
3346 	 	 */
3347 		sym_flush_comp_queue(np, 0);
3348 		break;
3349 	/*
3350 	 *  The SCRIPTS processor has selected a target
3351 	 *  we may have some manual recovery to perform for.
3352 	 */
3353 	case SIR_TARGET_SELECTED:
3354 		target = INB(np, nc_sdid) & 0xf;
3355 		tp = &np->target[target];
3356 
3357 		np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg));
3358 
3359 		/*
3360 		 *  If the target is to be reset, prepare a
3361 		 *  M_RESET message and clear the to_reset flag
3362 		 *  since we donnot expect this operation to fail.
3363 		 */
3364 		if (tp->to_reset) {
3365 			np->abrt_msg[0] = M_RESET;
3366 			np->abrt_tbl.size = 1;
3367 			tp->to_reset = 0;
3368 			break;
3369 		}
3370 
3371 		/*
3372 		 *  Otherwise, look for some logical unit to be cleared.
3373 		 */
3374 		if (tp->lun0p && tp->lun0p->to_clear)
3375 			lun = 0;
3376 		else if (tp->lunmp) {
3377 			for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) {
3378 				if (tp->lunmp[k] && tp->lunmp[k]->to_clear) {
3379 					lun = k;
3380 					break;
3381 				}
3382 			}
3383 		}
3384 
3385 		/*
3386 		 *  If a logical unit is to be cleared, prepare
3387 		 *  an IDENTIFY(lun) + ABORT MESSAGE.
3388 		 */
3389 		if (lun != -1) {
3390 			struct sym_lcb *lp = sym_lp(tp, lun);
3391 			lp->to_clear = 0; /* We don't expect to fail here */
3392 			np->abrt_msg[0] = IDENTIFY(0, lun);
3393 			np->abrt_msg[1] = M_ABORT;
3394 			np->abrt_tbl.size = 2;
3395 			break;
3396 		}
3397 
3398 		/*
3399 		 *  Otherwise, look for some disconnected job to
3400 		 *  abort for this target.
3401 		 */
3402 		i = 0;
3403 		cp = NULL;
3404 		FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
3405 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
3406 			if (cp->host_status != HS_DISCONNECT)
3407 				continue;
3408 			if (cp->target != target)
3409 				continue;
3410 			if (!cp->to_abort)
3411 				continue;
3412 			i = 1;	/* Means we have some */
3413 			break;
3414 		}
3415 
3416 		/*
3417 		 *  If we have none, probably since the device has
3418 		 *  completed the command before we won abitration,
3419 		 *  send a M_ABORT message without IDENTIFY.
3420 		 *  According to the specs, the device must just
3421 		 *  disconnect the BUS and not abort any task.
3422 		 */
3423 		if (!i) {
3424 			np->abrt_msg[0] = M_ABORT;
3425 			np->abrt_tbl.size = 1;
3426 			break;
3427 		}
3428 
3429 		/*
3430 		 *  We have some task to abort.
3431 		 *  Set the IDENTIFY(lun)
3432 		 */
3433 		np->abrt_msg[0] = IDENTIFY(0, cp->lun);
3434 
3435 		/*
3436 		 *  If we want to abort an untagged command, we
3437 		 *  will send a IDENTIFY + M_ABORT.
3438 		 *  Otherwise (tagged command), we will send
3439 		 *  a IDENTITFY + task attributes + ABORT TAG.
3440 		 */
3441 		if (cp->tag == NO_TAG) {
3442 			np->abrt_msg[1] = M_ABORT;
3443 			np->abrt_tbl.size = 2;
3444 		} else {
3445 			np->abrt_msg[1] = cp->scsi_smsg[1];
3446 			np->abrt_msg[2] = cp->scsi_smsg[2];
3447 			np->abrt_msg[3] = M_ABORT_TAG;
3448 			np->abrt_tbl.size = 4;
3449 		}
3450 		/*
3451 		 *  Keep track of software timeout condition, since the
3452 		 *  peripheral driver may not count retries on abort
3453 		 *  conditions not due to timeout.
3454 		 */
3455 		if (cp->to_abort == 2)
3456 			sym_set_cam_status(cp->cmd, DID_TIME_OUT);
3457 		cp->to_abort = 0; /* We donnot expect to fail here */
3458 		break;
3459 
3460 	/*
3461 	 *  The target has accepted our message and switched
3462 	 *  to BUS FREE phase as we expected.
3463 	 */
3464 	case SIR_ABORT_SENT:
3465 		target = INB(np, nc_sdid) & 0xf;
3466 		tp = &np->target[target];
3467 		starget = tp->starget;
3468 
3469 		/*
3470 		**  If we didn't abort anything, leave here.
3471 		*/
3472 		if (np->abrt_msg[0] == M_ABORT)
3473 			break;
3474 
3475 		/*
3476 		 *  If we sent a M_RESET, then a hardware reset has
3477 		 *  been performed by the target.
3478 		 *  - Reset everything to async 8 bit
3479 		 *  - Tell ourself to negotiate next time :-)
3480 		 *  - Prepare to clear all disconnected CCBs for
3481 		 *    this target from our task list (lun=task=-1)
3482 		 */
3483 		lun = -1;
3484 		task = -1;
3485 		if (np->abrt_msg[0] == M_RESET) {
3486 			tp->head.sval = 0;
3487 			tp->head.wval = np->rv_scntl3;
3488 			tp->head.uval = 0;
3489 			spi_period(starget) = 0;
3490 			spi_offset(starget) = 0;
3491 			spi_width(starget) = 0;
3492 			spi_iu(starget) = 0;
3493 			spi_dt(starget) = 0;
3494 			spi_qas(starget) = 0;
3495 			tp->tgoal.check_nego = 1;
3496 		}
3497 
3498 		/*
3499 		 *  Otherwise, check for the LUN and TASK(s)
3500 		 *  concerned by the cancelation.
3501 		 *  If it is not ABORT_TAG then it is CLEAR_QUEUE
3502 		 *  or an ABORT message :-)
3503 		 */
3504 		else {
3505 			lun = np->abrt_msg[0] & 0x3f;
3506 			if (np->abrt_msg[1] == M_ABORT_TAG)
3507 				task = np->abrt_msg[2];
3508 		}
3509 
3510 		/*
3511 		 *  Complete all the CCBs the device should have
3512 		 *  aborted due to our 'kiss of death' message.
3513 		 */
3514 		i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
3515 		sym_dequeue_from_squeue(np, i, target, lun, -1);
3516 		sym_clear_tasks(np, DID_ABORT, target, lun, task);
3517 		sym_flush_comp_queue(np, 0);
3518 
3519  		/*
3520 		 *  If we sent a BDR, make upper layer aware of that.
3521  		 */
3522 		if (np->abrt_msg[0] == M_RESET)
3523 			sym_xpt_async_sent_bdr(np, target);
3524 		break;
3525 	}
3526 
3527 	/*
3528 	 *  Print to the log the message we intend to send.
3529 	 */
3530 	if (num == SIR_TARGET_SELECTED) {
3531 		dev_info(&tp->starget->dev, "control msgout:");
3532 		sym_printl_hex(np->abrt_msg, np->abrt_tbl.size);
3533 		np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size);
3534 	}
3535 
3536 	/*
3537 	 *  Let the SCRIPTS processor continue.
3538 	 */
3539 	OUTONB_STD();
3540 }
3541 
3542 /*
3543  *  Gerard's alchemy:) that deals with with the data
3544  *  pointer for both MDP and the residual calculation.
3545  *
3546  *  I didn't want to bloat the code by more than 200
3547  *  lines for the handling of both MDP and the residual.
3548  *  This has been achieved by using a data pointer
3549  *  representation consisting in an index in the data
3550  *  array (dp_sg) and a negative offset (dp_ofs) that
3551  *  have the following meaning:
3552  *
3553  *  - dp_sg = SYM_CONF_MAX_SG
3554  *    we are at the end of the data script.
3555  *  - dp_sg < SYM_CONF_MAX_SG
3556  *    dp_sg points to the next entry of the scatter array
3557  *    we want to transfer.
3558  *  - dp_ofs < 0
3559  *    dp_ofs represents the residual of bytes of the
3560  *    previous entry scatter entry we will send first.
3561  *  - dp_ofs = 0
3562  *    no residual to send first.
3563  *
3564  *  The function sym_evaluate_dp() accepts an arbitray
3565  *  offset (basically from the MDP message) and returns
3566  *  the corresponding values of dp_sg and dp_ofs.
3567  */
3568 
3569 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs)
3570 {
3571 	u32	dp_scr;
3572 	int	dp_ofs, dp_sg, dp_sgmin;
3573 	int	tmp;
3574 	struct sym_pmc *pm;
3575 
3576 	/*
3577 	 *  Compute the resulted data pointer in term of a script
3578 	 *  address within some DATA script and a signed byte offset.
3579 	 */
3580 	dp_scr = scr;
3581 	dp_ofs = *ofs;
3582 	if	(dp_scr == SCRIPTA_BA(np, pm0_data))
3583 		pm = &cp->phys.pm0;
3584 	else if (dp_scr == SCRIPTA_BA(np, pm1_data))
3585 		pm = &cp->phys.pm1;
3586 	else
3587 		pm = NULL;
3588 
3589 	if (pm) {
3590 		dp_scr  = scr_to_cpu(pm->ret);
3591 		dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff;
3592 	}
3593 
3594 	/*
3595 	 *  If we are auto-sensing, then we are done.
3596 	 */
3597 	if (cp->host_flags & HF_SENSE) {
3598 		*ofs = dp_ofs;
3599 		return 0;
3600 	}
3601 
3602 	/*
3603 	 *  Deduce the index of the sg entry.
3604 	 *  Keep track of the index of the first valid entry.
3605 	 *  If result is dp_sg = SYM_CONF_MAX_SG, then we are at the
3606 	 *  end of the data.
3607 	 */
3608 	tmp = scr_to_cpu(cp->goalp);
3609 	dp_sg = SYM_CONF_MAX_SG;
3610 	if (dp_scr != tmp)
3611 		dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4);
3612 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3613 
3614 	/*
3615 	 *  Move to the sg entry the data pointer belongs to.
3616 	 *
3617 	 *  If we are inside the data area, we expect result to be:
3618 	 *
3619 	 *  Either,
3620 	 *      dp_ofs = 0 and dp_sg is the index of the sg entry
3621 	 *      the data pointer belongs to (or the end of the data)
3622 	 *  Or,
3623 	 *      dp_ofs < 0 and dp_sg is the index of the sg entry
3624 	 *      the data pointer belongs to + 1.
3625 	 */
3626 	if (dp_ofs < 0) {
3627 		int n;
3628 		while (dp_sg > dp_sgmin) {
3629 			--dp_sg;
3630 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3631 			n = dp_ofs + (tmp & 0xffffff);
3632 			if (n > 0) {
3633 				++dp_sg;
3634 				break;
3635 			}
3636 			dp_ofs = n;
3637 		}
3638 	}
3639 	else if (dp_ofs > 0) {
3640 		while (dp_sg < SYM_CONF_MAX_SG) {
3641 			tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3642 			dp_ofs -= (tmp & 0xffffff);
3643 			++dp_sg;
3644 			if (dp_ofs <= 0)
3645 				break;
3646 		}
3647 	}
3648 
3649 	/*
3650 	 *  Make sure the data pointer is inside the data area.
3651 	 *  If not, return some error.
3652 	 */
3653 	if	(dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0))
3654 		goto out_err;
3655 	else if	(dp_sg > SYM_CONF_MAX_SG ||
3656 		 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0))
3657 		goto out_err;
3658 
3659 	/*
3660 	 *  Save the extreme pointer if needed.
3661 	 */
3662 	if (dp_sg > cp->ext_sg ||
3663             (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) {
3664 		cp->ext_sg  = dp_sg;
3665 		cp->ext_ofs = dp_ofs;
3666 	}
3667 
3668 	/*
3669 	 *  Return data.
3670 	 */
3671 	*ofs = dp_ofs;
3672 	return dp_sg;
3673 
3674 out_err:
3675 	return -1;
3676 }
3677 
3678 /*
3679  *  chip handler for MODIFY DATA POINTER MESSAGE
3680  *
3681  *  We also call this function on IGNORE WIDE RESIDUE
3682  *  messages that do not match a SWIDE full condition.
3683  *  Btw, we assume in that situation that such a message
3684  *  is equivalent to a MODIFY DATA POINTER (offset=-1).
3685  */
3686 
3687 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs)
3688 {
3689 	int dp_ofs	= ofs;
3690 	u32	dp_scr	= sym_get_script_dp (np, cp);
3691 	u32	dp_ret;
3692 	u32	tmp;
3693 	u_char	hflags;
3694 	int	dp_sg;
3695 	struct	sym_pmc *pm;
3696 
3697 	/*
3698 	 *  Not supported for auto-sense.
3699 	 */
3700 	if (cp->host_flags & HF_SENSE)
3701 		goto out_reject;
3702 
3703 	/*
3704 	 *  Apply our alchemy:) (see comments in sym_evaluate_dp()),
3705 	 *  to the resulted data pointer.
3706 	 */
3707 	dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs);
3708 	if (dp_sg < 0)
3709 		goto out_reject;
3710 
3711 	/*
3712 	 *  And our alchemy:) allows to easily calculate the data
3713 	 *  script address we want to return for the next data phase.
3714 	 */
3715 	dp_ret = cpu_to_scr(cp->goalp);
3716 	dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4);
3717 
3718 	/*
3719 	 *  If offset / scatter entry is zero we donnot need
3720 	 *  a context for the new current data pointer.
3721 	 */
3722 	if (dp_ofs == 0) {
3723 		dp_scr = dp_ret;
3724 		goto out_ok;
3725 	}
3726 
3727 	/*
3728 	 *  Get a context for the new current data pointer.
3729 	 */
3730 	hflags = INB(np, HF_PRT);
3731 
3732 	if (hflags & HF_DP_SAVED)
3733 		hflags ^= HF_ACT_PM;
3734 
3735 	if (!(hflags & HF_ACT_PM)) {
3736 		pm  = &cp->phys.pm0;
3737 		dp_scr = SCRIPTA_BA(np, pm0_data);
3738 	}
3739 	else {
3740 		pm = &cp->phys.pm1;
3741 		dp_scr = SCRIPTA_BA(np, pm1_data);
3742 	}
3743 
3744 	hflags &= ~(HF_DP_SAVED);
3745 
3746 	OUTB(np, HF_PRT, hflags);
3747 
3748 	/*
3749 	 *  Set up the new current data pointer.
3750 	 *  ofs < 0 there, and for the next data phase, we
3751 	 *  want to transfer part of the data of the sg entry
3752 	 *  corresponding to index dp_sg-1 prior to returning
3753 	 *  to the main data script.
3754 	 */
3755 	pm->ret = cpu_to_scr(dp_ret);
3756 	tmp  = scr_to_cpu(cp->phys.data[dp_sg-1].addr);
3757 	tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs;
3758 	pm->sg.addr = cpu_to_scr(tmp);
3759 	pm->sg.size = cpu_to_scr(-dp_ofs);
3760 
3761 out_ok:
3762 	sym_set_script_dp (np, cp, dp_scr);
3763 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3764 	return;
3765 
3766 out_reject:
3767 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3768 }
3769 
3770 
3771 /*
3772  *  chip calculation of the data residual.
3773  *
3774  *  As I used to say, the requirement of data residual
3775  *  in SCSI is broken, useless and cannot be achieved
3776  *  without huge complexity.
3777  *  But most OSes and even the official CAM require it.
3778  *  When stupidity happens to be so widely spread inside
3779  *  a community, it gets hard to convince.
3780  *
3781  *  Anyway, I don't care, since I am not going to use
3782  *  any software that considers this data residual as
3783  *  a relevant information. :)
3784  */
3785 
3786 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp)
3787 {
3788 	int dp_sg, dp_sgmin, resid = 0;
3789 	int dp_ofs = 0;
3790 
3791 	/*
3792 	 *  Check for some data lost or just thrown away.
3793 	 *  We are not required to be quite accurate in this
3794 	 *  situation. Btw, if we are odd for output and the
3795 	 *  device claims some more data, it may well happen
3796 	 *  than our residual be zero. :-)
3797 	 */
3798 	if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) {
3799 		if (cp->xerr_status & XE_EXTRA_DATA)
3800 			resid -= cp->extra_bytes;
3801 		if (cp->xerr_status & XE_SODL_UNRUN)
3802 			++resid;
3803 		if (cp->xerr_status & XE_SWIDE_OVRUN)
3804 			--resid;
3805 	}
3806 
3807 	/*
3808 	 *  If all data has been transferred,
3809 	 *  there is no residual.
3810 	 */
3811 	if (cp->phys.head.lastp == cp->goalp)
3812 		return resid;
3813 
3814 	/*
3815 	 *  If no data transfer occurs, or if the data
3816 	 *  pointer is weird, return full residual.
3817 	 */
3818 	if (cp->startp == cp->phys.head.lastp ||
3819 	    sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp),
3820 			    &dp_ofs) < 0) {
3821 		return cp->data_len;
3822 	}
3823 
3824 	/*
3825 	 *  If we were auto-sensing, then we are done.
3826 	 */
3827 	if (cp->host_flags & HF_SENSE) {
3828 		return -dp_ofs;
3829 	}
3830 
3831 	/*
3832 	 *  We are now full comfortable in the computation
3833 	 *  of the data residual (2's complement).
3834 	 */
3835 	dp_sgmin = SYM_CONF_MAX_SG - cp->segments;
3836 	resid = -cp->ext_ofs;
3837 	for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) {
3838 		u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size);
3839 		resid += (tmp & 0xffffff);
3840 	}
3841 
3842 	resid -= cp->odd_byte_adjustment;
3843 
3844 	/*
3845 	 *  Hopefully, the result is not too wrong.
3846 	 */
3847 	return resid;
3848 }
3849 
3850 /*
3851  *  Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER.
3852  *
3853  *  When we try to negotiate, we append the negotiation message
3854  *  to the identify and (maybe) simple tag message.
3855  *  The host status field is set to HS_NEGOTIATE to mark this
3856  *  situation.
3857  *
3858  *  If the target doesn't answer this message immediately
3859  *  (as required by the standard), the SIR_NEGO_FAILED interrupt
3860  *  will be raised eventually.
3861  *  The handler removes the HS_NEGOTIATE status, and sets the
3862  *  negotiated value to the default (async / nowide).
3863  *
3864  *  If we receive a matching answer immediately, we check it
3865  *  for validity, and set the values.
3866  *
3867  *  If we receive a Reject message immediately, we assume the
3868  *  negotiation has failed, and fall back to standard values.
3869  *
3870  *  If we receive a negotiation message while not in HS_NEGOTIATE
3871  *  state, it's a target initiated negotiation. We prepare a
3872  *  (hopefully) valid answer, set our parameters, and send back
3873  *  this answer to the target.
3874  *
3875  *  If the target doesn't fetch the answer (no message out phase),
3876  *  we assume the negotiation has failed, and fall back to default
3877  *  settings (SIR_NEGO_PROTO interrupt).
3878  *
3879  *  When we set the values, we adjust them in all ccbs belonging
3880  *  to this target, in the controller's register, and in the "phys"
3881  *  field of the controller's struct sym_hcb.
3882  */
3883 
3884 /*
3885  *  chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message.
3886  */
3887 static int
3888 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
3889 {
3890 	int target = cp->target;
3891 	u_char	chg, ofs, per, fak, div;
3892 
3893 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3894 		sym_print_nego_msg(np, target, "sync msgin", np->msgin);
3895 	}
3896 
3897 	/*
3898 	 *  Get requested values.
3899 	 */
3900 	chg = 0;
3901 	per = np->msgin[3];
3902 	ofs = np->msgin[4];
3903 
3904 	/*
3905 	 *  Check values against our limits.
3906 	 */
3907 	if (ofs) {
3908 		if (ofs > np->maxoffs)
3909 			{chg = 1; ofs = np->maxoffs;}
3910 	}
3911 
3912 	if (ofs) {
3913 		if (per < np->minsync)
3914 			{chg = 1; per = np->minsync;}
3915 	}
3916 
3917 	/*
3918 	 *  Get new chip synchronous parameters value.
3919 	 */
3920 	div = fak = 0;
3921 	if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0)
3922 		goto reject_it;
3923 
3924 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3925 		sym_print_addr(cp->cmd,
3926 				"sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n",
3927 				ofs, per, div, fak, chg);
3928 	}
3929 
3930 	/*
3931 	 *  If it was an answer we want to change,
3932 	 *  then it isn't acceptable. Reject it.
3933 	 */
3934 	if (!req && chg)
3935 		goto reject_it;
3936 
3937 	/*
3938 	 *  Apply new values.
3939 	 */
3940 	sym_setsync (np, target, ofs, per, div, fak);
3941 
3942 	/*
3943 	 *  It was an answer. We are done.
3944 	 */
3945 	if (!req)
3946 		return 0;
3947 
3948 	/*
3949 	 *  It was a request. Prepare an answer message.
3950 	 */
3951 	spi_populate_sync_msg(np->msgout, per, ofs);
3952 
3953 	if (DEBUG_FLAGS & DEBUG_NEGO) {
3954 		sym_print_nego_msg(np, target, "sync msgout", np->msgout);
3955 	}
3956 
3957 	np->msgin [0] = M_NOOP;
3958 
3959 	return 0;
3960 
3961 reject_it:
3962 	sym_setsync (np, target, 0, 0, 0, 0);
3963 	return -1;
3964 }
3965 
3966 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
3967 {
3968 	int req = 1;
3969 	int result;
3970 
3971 	/*
3972 	 *  Request or answer ?
3973 	 */
3974 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
3975 		OUTB(np, HS_PRT, HS_BUSY);
3976 		if (cp->nego_status && cp->nego_status != NS_SYNC)
3977 			goto reject_it;
3978 		req = 0;
3979 	}
3980 
3981 	/*
3982 	 *  Check and apply new values.
3983 	 */
3984 	result = sym_sync_nego_check(np, req, cp);
3985 	if (result)	/* Not acceptable, reject it */
3986 		goto reject_it;
3987 	if (req) {	/* Was a request, send response. */
3988 		cp->nego_status = NS_SYNC;
3989 		OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
3990 	}
3991 	else		/* Was a response, we are done. */
3992 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
3993 	return;
3994 
3995 reject_it:
3996 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
3997 }
3998 
3999 /*
4000  *  chip handler for PARALLEL PROTOCOL REQUEST (PPR) message.
4001  */
4002 static int
4003 sym_ppr_nego_check(struct sym_hcb *np, int req, int target)
4004 {
4005 	struct sym_tcb *tp = &np->target[target];
4006 	unsigned char fak, div;
4007 	int dt, chg = 0;
4008 
4009 	unsigned char per = np->msgin[3];
4010 	unsigned char ofs = np->msgin[5];
4011 	unsigned char wide = np->msgin[6];
4012 	unsigned char opts = np->msgin[7] & PPR_OPT_MASK;
4013 
4014 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4015 		sym_print_nego_msg(np, target, "ppr msgin", np->msgin);
4016 	}
4017 
4018 	/*
4019 	 *  Check values against our limits.
4020 	 */
4021 	if (wide > np->maxwide) {
4022 		chg = 1;
4023 		wide = np->maxwide;
4024 	}
4025 	if (!wide || !(np->features & FE_U3EN))
4026 		opts = 0;
4027 
4028 	if (opts != (np->msgin[7] & PPR_OPT_MASK))
4029 		chg = 1;
4030 
4031 	dt = opts & PPR_OPT_DT;
4032 
4033 	if (ofs) {
4034 		unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs;
4035 		if (ofs > maxoffs) {
4036 			chg = 1;
4037 			ofs = maxoffs;
4038 		}
4039 	}
4040 
4041 	if (ofs) {
4042 		unsigned char minsync = dt ? np->minsync_dt : np->minsync;
4043 		if (per < minsync) {
4044 			chg = 1;
4045 			per = minsync;
4046 		}
4047 	}
4048 
4049 	/*
4050 	 *  Get new chip synchronous parameters value.
4051 	 */
4052 	div = fak = 0;
4053 	if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0)
4054 		goto reject_it;
4055 
4056 	/*
4057 	 *  If it was an answer we want to change,
4058 	 *  then it isn't acceptable. Reject it.
4059 	 */
4060 	if (!req && chg)
4061 		goto reject_it;
4062 
4063 	/*
4064 	 *  Apply new values.
4065 	 */
4066 	sym_setpprot(np, target, opts, ofs, per, wide, div, fak);
4067 
4068 	/*
4069 	 *  It was an answer. We are done.
4070 	 */
4071 	if (!req)
4072 		return 0;
4073 
4074 	/*
4075 	 *  It was a request. Prepare an answer message.
4076 	 */
4077 	spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts);
4078 
4079 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4080 		sym_print_nego_msg(np, target, "ppr msgout", np->msgout);
4081 	}
4082 
4083 	np->msgin [0] = M_NOOP;
4084 
4085 	return 0;
4086 
4087 reject_it:
4088 	sym_setpprot (np, target, 0, 0, 0, 0, 0, 0);
4089 	/*
4090 	 *  If it is a device response that should result in
4091 	 *  ST, we may want to try a legacy negotiation later.
4092 	 */
4093 	if (!req && !opts) {
4094 		tp->tgoal.period = per;
4095 		tp->tgoal.offset = ofs;
4096 		tp->tgoal.width = wide;
4097 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4098 		tp->tgoal.check_nego = 1;
4099 	}
4100 	return -1;
4101 }
4102 
4103 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4104 {
4105 	int req = 1;
4106 	int result;
4107 
4108 	/*
4109 	 *  Request or answer ?
4110 	 */
4111 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4112 		OUTB(np, HS_PRT, HS_BUSY);
4113 		if (cp->nego_status && cp->nego_status != NS_PPR)
4114 			goto reject_it;
4115 		req = 0;
4116 	}
4117 
4118 	/*
4119 	 *  Check and apply new values.
4120 	 */
4121 	result = sym_ppr_nego_check(np, req, cp->target);
4122 	if (result)	/* Not acceptable, reject it */
4123 		goto reject_it;
4124 	if (req) {	/* Was a request, send response. */
4125 		cp->nego_status = NS_PPR;
4126 		OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp));
4127 	}
4128 	else		/* Was a response, we are done. */
4129 		OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4130 	return;
4131 
4132 reject_it:
4133 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4134 }
4135 
4136 /*
4137  *  chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message.
4138  */
4139 static int
4140 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp)
4141 {
4142 	int target = cp->target;
4143 	u_char	chg, wide;
4144 
4145 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4146 		sym_print_nego_msg(np, target, "wide msgin", np->msgin);
4147 	}
4148 
4149 	/*
4150 	 *  Get requested values.
4151 	 */
4152 	chg  = 0;
4153 	wide = np->msgin[3];
4154 
4155 	/*
4156 	 *  Check values against our limits.
4157 	 */
4158 	if (wide > np->maxwide) {
4159 		chg = 1;
4160 		wide = np->maxwide;
4161 	}
4162 
4163 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4164 		sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n",
4165 				wide, chg);
4166 	}
4167 
4168 	/*
4169 	 *  If it was an answer we want to change,
4170 	 *  then it isn't acceptable. Reject it.
4171 	 */
4172 	if (!req && chg)
4173 		goto reject_it;
4174 
4175 	/*
4176 	 *  Apply new values.
4177 	 */
4178 	sym_setwide (np, target, wide);
4179 
4180 	/*
4181 	 *  It was an answer. We are done.
4182 	 */
4183 	if (!req)
4184 		return 0;
4185 
4186 	/*
4187 	 *  It was a request. Prepare an answer message.
4188 	 */
4189 	spi_populate_width_msg(np->msgout, wide);
4190 
4191 	np->msgin [0] = M_NOOP;
4192 
4193 	if (DEBUG_FLAGS & DEBUG_NEGO) {
4194 		sym_print_nego_msg(np, target, "wide msgout", np->msgout);
4195 	}
4196 
4197 	return 0;
4198 
4199 reject_it:
4200 	return -1;
4201 }
4202 
4203 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4204 {
4205 	int req = 1;
4206 	int result;
4207 
4208 	/*
4209 	 *  Request or answer ?
4210 	 */
4211 	if (INB(np, HS_PRT) == HS_NEGOTIATE) {
4212 		OUTB(np, HS_PRT, HS_BUSY);
4213 		if (cp->nego_status && cp->nego_status != NS_WIDE)
4214 			goto reject_it;
4215 		req = 0;
4216 	}
4217 
4218 	/*
4219 	 *  Check and apply new values.
4220 	 */
4221 	result = sym_wide_nego_check(np, req, cp);
4222 	if (result)	/* Not acceptable, reject it */
4223 		goto reject_it;
4224 	if (req) {	/* Was a request, send response. */
4225 		cp->nego_status = NS_WIDE;
4226 		OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp));
4227 	} else {		/* Was a response. */
4228 		/*
4229 		 * Negotiate for SYNC immediately after WIDE response.
4230 		 * This allows to negotiate for both WIDE and SYNC on
4231 		 * a single SCSI command (Suggested by Justin Gibbs).
4232 		 */
4233 		if (tp->tgoal.offset) {
4234 			spi_populate_sync_msg(np->msgout, tp->tgoal.period,
4235 					tp->tgoal.offset);
4236 
4237 			if (DEBUG_FLAGS & DEBUG_NEGO) {
4238 				sym_print_nego_msg(np, cp->target,
4239 				                   "sync msgout", np->msgout);
4240 			}
4241 
4242 			cp->nego_status = NS_SYNC;
4243 			OUTB(np, HS_PRT, HS_NEGOTIATE);
4244 			OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp));
4245 			return;
4246 		} else
4247 			OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4248 	}
4249 
4250 	return;
4251 
4252 reject_it:
4253 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4254 }
4255 
4256 /*
4257  *  Reset DT, SYNC or WIDE to default settings.
4258  *
4259  *  Called when a negotiation does not succeed either
4260  *  on rejection or on protocol error.
4261  *
4262  *  A target that understands a PPR message should never
4263  *  reject it, and messing with it is very unlikely.
4264  *  So, if a PPR makes problems, we may just want to
4265  *  try a legacy negotiation later.
4266  */
4267 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4268 {
4269 	switch (cp->nego_status) {
4270 	case NS_PPR:
4271 #if 0
4272 		sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0);
4273 #else
4274 		if (tp->tgoal.period < np->minsync)
4275 			tp->tgoal.period = np->minsync;
4276 		if (tp->tgoal.offset > np->maxoffs)
4277 			tp->tgoal.offset = np->maxoffs;
4278 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
4279 		tp->tgoal.check_nego = 1;
4280 #endif
4281 		break;
4282 	case NS_SYNC:
4283 		sym_setsync (np, cp->target, 0, 0, 0, 0);
4284 		break;
4285 	case NS_WIDE:
4286 		sym_setwide (np, cp->target, 0);
4287 		break;
4288 	}
4289 	np->msgin [0] = M_NOOP;
4290 	np->msgout[0] = M_NOOP;
4291 	cp->nego_status = 0;
4292 }
4293 
4294 /*
4295  *  chip handler for MESSAGE REJECT received in response to
4296  *  PPR, WIDE or SYNCHRONOUS negotiation.
4297  */
4298 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp)
4299 {
4300 	sym_nego_default(np, tp, cp);
4301 	OUTB(np, HS_PRT, HS_BUSY);
4302 }
4303 
4304 /*
4305  *  chip exception handler for programmed interrupts.
4306  */
4307 static void sym_int_sir (struct sym_hcb *np)
4308 {
4309 	u_char	num	= INB(np, nc_dsps);
4310 	u32	dsa	= INL(np, nc_dsa);
4311 	struct sym_ccb *cp	= sym_ccb_from_dsa(np, dsa);
4312 	u_char	target	= INB(np, nc_sdid) & 0x0f;
4313 	struct sym_tcb *tp	= &np->target[target];
4314 	int	tmp;
4315 
4316 	if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num);
4317 
4318 	switch (num) {
4319 #if   SYM_CONF_DMA_ADDRESSING_MODE == 2
4320 	/*
4321 	 *  SCRIPTS tell us that we may have to update
4322 	 *  64 bit DMA segment registers.
4323 	 */
4324 	case SIR_DMAP_DIRTY:
4325 		sym_update_dmap_regs(np);
4326 		goto out;
4327 #endif
4328 	/*
4329 	 *  Command has been completed with error condition
4330 	 *  or has been auto-sensed.
4331 	 */
4332 	case SIR_COMPLETE_ERROR:
4333 		sym_complete_error(np, cp);
4334 		return;
4335 	/*
4336 	 *  The C code is currently trying to recover from something.
4337 	 *  Typically, user want to abort some command.
4338 	 */
4339 	case SIR_SCRIPT_STOPPED:
4340 	case SIR_TARGET_SELECTED:
4341 	case SIR_ABORT_SENT:
4342 		sym_sir_task_recovery(np, num);
4343 		return;
4344 	/*
4345 	 *  The device didn't go to MSG OUT phase after having
4346 	 *  been selected with ATN. We donnot want to handle
4347 	 *  that.
4348 	 */
4349 	case SIR_SEL_ATN_NO_MSG_OUT:
4350 		printf ("%s:%d: No MSG OUT phase after selection with ATN.\n",
4351 			sym_name (np), target);
4352 		goto out_stuck;
4353 	/*
4354 	 *  The device didn't switch to MSG IN phase after
4355 	 *  having reseleted the initiator.
4356 	 */
4357 	case SIR_RESEL_NO_MSG_IN:
4358 		printf ("%s:%d: No MSG IN phase after reselection.\n",
4359 			sym_name (np), target);
4360 		goto out_stuck;
4361 	/*
4362 	 *  After reselection, the device sent a message that wasn't
4363 	 *  an IDENTIFY.
4364 	 */
4365 	case SIR_RESEL_NO_IDENTIFY:
4366 		printf ("%s:%d: No IDENTIFY after reselection.\n",
4367 			sym_name (np), target);
4368 		goto out_stuck;
4369 	/*
4370 	 *  The device reselected a LUN we donnot know about.
4371 	 */
4372 	case SIR_RESEL_BAD_LUN:
4373 		np->msgout[0] = M_RESET;
4374 		goto out;
4375 	/*
4376 	 *  The device reselected for an untagged nexus and we
4377 	 *  haven't any.
4378 	 */
4379 	case SIR_RESEL_BAD_I_T_L:
4380 		np->msgout[0] = M_ABORT;
4381 		goto out;
4382 	/*
4383 	 *  The device reselected for a tagged nexus that we donnot
4384 	 *  have.
4385 	 */
4386 	case SIR_RESEL_BAD_I_T_L_Q:
4387 		np->msgout[0] = M_ABORT_TAG;
4388 		goto out;
4389 	/*
4390 	 *  The SCRIPTS let us know that the device has grabbed
4391 	 *  our message and will abort the job.
4392 	 */
4393 	case SIR_RESEL_ABORTED:
4394 		np->lastmsg = np->msgout[0];
4395 		np->msgout[0] = M_NOOP;
4396 		printf ("%s:%d: message %x sent on bad reselection.\n",
4397 			sym_name (np), target, np->lastmsg);
4398 		goto out;
4399 	/*
4400 	 *  The SCRIPTS let us know that a message has been
4401 	 *  successfully sent to the device.
4402 	 */
4403 	case SIR_MSG_OUT_DONE:
4404 		np->lastmsg = np->msgout[0];
4405 		np->msgout[0] = M_NOOP;
4406 		/* Should we really care of that */
4407 		if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) {
4408 			if (cp) {
4409 				cp->xerr_status &= ~XE_PARITY_ERR;
4410 				if (!cp->xerr_status)
4411 					OUTOFFB(np, HF_PRT, HF_EXT_ERR);
4412 			}
4413 		}
4414 		goto out;
4415 	/*
4416 	 *  The device didn't send a GOOD SCSI status.
4417 	 *  We may have some work to do prior to allow
4418 	 *  the SCRIPTS processor to continue.
4419 	 */
4420 	case SIR_BAD_SCSI_STATUS:
4421 		if (!cp)
4422 			goto out;
4423 		sym_sir_bad_scsi_status(np, num, cp);
4424 		return;
4425 	/*
4426 	 *  We are asked by the SCRIPTS to prepare a
4427 	 *  REJECT message.
4428 	 */
4429 	case SIR_REJECT_TO_SEND:
4430 		sym_print_msg(cp, "M_REJECT to send for ", np->msgin);
4431 		np->msgout[0] = M_REJECT;
4432 		goto out;
4433 	/*
4434 	 *  We have been ODD at the end of a DATA IN
4435 	 *  transfer and the device didn't send a
4436 	 *  IGNORE WIDE RESIDUE message.
4437 	 *  It is a data overrun condition.
4438 	 */
4439 	case SIR_SWIDE_OVERRUN:
4440 		if (cp) {
4441 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4442 			cp->xerr_status |= XE_SWIDE_OVRUN;
4443 		}
4444 		goto out;
4445 	/*
4446 	 *  We have been ODD at the end of a DATA OUT
4447 	 *  transfer.
4448 	 *  It is a data underrun condition.
4449 	 */
4450 	case SIR_SODL_UNDERRUN:
4451 		if (cp) {
4452 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4453 			cp->xerr_status |= XE_SODL_UNRUN;
4454 		}
4455 		goto out;
4456 	/*
4457 	 *  The device wants us to tranfer more data than
4458 	 *  expected or in the wrong direction.
4459 	 *  The number of extra bytes is in scratcha.
4460 	 *  It is a data overrun condition.
4461 	 */
4462 	case SIR_DATA_OVERRUN:
4463 		if (cp) {
4464 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4465 			cp->xerr_status |= XE_EXTRA_DATA;
4466 			cp->extra_bytes += INL(np, nc_scratcha);
4467 		}
4468 		goto out;
4469 	/*
4470 	 *  The device switched to an illegal phase (4/5).
4471 	 */
4472 	case SIR_BAD_PHASE:
4473 		if (cp) {
4474 			OUTONB(np, HF_PRT, HF_EXT_ERR);
4475 			cp->xerr_status |= XE_BAD_PHASE;
4476 		}
4477 		goto out;
4478 	/*
4479 	 *  We received a message.
4480 	 */
4481 	case SIR_MSG_RECEIVED:
4482 		if (!cp)
4483 			goto out_stuck;
4484 		switch (np->msgin [0]) {
4485 		/*
4486 		 *  We received an extended message.
4487 		 *  We handle MODIFY DATA POINTER, SDTR, WDTR
4488 		 *  and reject all other extended messages.
4489 		 */
4490 		case M_EXTENDED:
4491 			switch (np->msgin [2]) {
4492 			case M_X_MODIFY_DP:
4493 				if (DEBUG_FLAGS & DEBUG_POINTER)
4494 					sym_print_msg(cp, NULL, np->msgin);
4495 				tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) +
4496 				      (np->msgin[5]<<8)  + (np->msgin[6]);
4497 				sym_modify_dp(np, tp, cp, tmp);
4498 				return;
4499 			case M_X_SYNC_REQ:
4500 				sym_sync_nego(np, tp, cp);
4501 				return;
4502 			case M_X_PPR_REQ:
4503 				sym_ppr_nego(np, tp, cp);
4504 				return;
4505 			case M_X_WIDE_REQ:
4506 				sym_wide_nego(np, tp, cp);
4507 				return;
4508 			default:
4509 				goto out_reject;
4510 			}
4511 			break;
4512 		/*
4513 		 *  We received a 1/2 byte message not handled from SCRIPTS.
4514 		 *  We are only expecting MESSAGE REJECT and IGNORE WIDE
4515 		 *  RESIDUE messages that haven't been anticipated by
4516 		 *  SCRIPTS on SWIDE full condition. Unanticipated IGNORE
4517 		 *  WIDE RESIDUE messages are aliased as MODIFY DP (-1).
4518 		 */
4519 		case M_IGN_RESIDUE:
4520 			if (DEBUG_FLAGS & DEBUG_POINTER)
4521 				sym_print_msg(cp, NULL, np->msgin);
4522 			if (cp->host_flags & HF_SENSE)
4523 				OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4524 			else
4525 				sym_modify_dp(np, tp, cp, -1);
4526 			return;
4527 		case M_REJECT:
4528 			if (INB(np, HS_PRT) == HS_NEGOTIATE)
4529 				sym_nego_rejected(np, tp, cp);
4530 			else {
4531 				sym_print_addr(cp->cmd,
4532 					"M_REJECT received (%x:%x).\n",
4533 					scr_to_cpu(np->lastmsg), np->msgout[0]);
4534 			}
4535 			goto out_clrack;
4536 			break;
4537 		default:
4538 			goto out_reject;
4539 		}
4540 		break;
4541 	/*
4542 	 *  We received an unknown message.
4543 	 *  Ignore all MSG IN phases and reject it.
4544 	 */
4545 	case SIR_MSG_WEIRD:
4546 		sym_print_msg(cp, "WEIRD message received", np->msgin);
4547 		OUTL_DSP(np, SCRIPTB_BA(np, msg_weird));
4548 		return;
4549 	/*
4550 	 *  Negotiation failed.
4551 	 *  Target does not send us the reply.
4552 	 *  Remove the HS_NEGOTIATE status.
4553 	 */
4554 	case SIR_NEGO_FAILED:
4555 		OUTB(np, HS_PRT, HS_BUSY);
4556 	/*
4557 	 *  Negotiation failed.
4558 	 *  Target does not want answer message.
4559 	 */
4560 	case SIR_NEGO_PROTO:
4561 		sym_nego_default(np, tp, cp);
4562 		goto out;
4563 	}
4564 
4565 out:
4566 	OUTONB_STD();
4567 	return;
4568 out_reject:
4569 	OUTL_DSP(np, SCRIPTB_BA(np, msg_bad));
4570 	return;
4571 out_clrack:
4572 	OUTL_DSP(np, SCRIPTA_BA(np, clrack));
4573 	return;
4574 out_stuck:
4575 	return;
4576 }
4577 
4578 /*
4579  *  Acquire a control block
4580  */
4581 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order)
4582 {
4583 	u_char tn = cmd->device->id;
4584 	u_char ln = cmd->device->lun;
4585 	struct sym_tcb *tp = &np->target[tn];
4586 	struct sym_lcb *lp = sym_lp(tp, ln);
4587 	u_short tag = NO_TAG;
4588 	SYM_QUEHEAD *qp;
4589 	struct sym_ccb *cp = NULL;
4590 
4591 	/*
4592 	 *  Look for a free CCB
4593 	 */
4594 	if (sym_que_empty(&np->free_ccbq))
4595 		sym_alloc_ccb(np);
4596 	qp = sym_remque_head(&np->free_ccbq);
4597 	if (!qp)
4598 		goto out;
4599 	cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
4600 
4601 	{
4602 		/*
4603 		 *  If we have been asked for a tagged command.
4604 		 */
4605 		if (tag_order) {
4606 			/*
4607 			 *  Debugging purpose.
4608 			 */
4609 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4610 			if (lp->busy_itl != 0)
4611 				goto out_free;
4612 #endif
4613 			/*
4614 			 *  Allocate resources for tags if not yet.
4615 			 */
4616 			if (!lp->cb_tags) {
4617 				sym_alloc_lcb_tags(np, tn, ln);
4618 				if (!lp->cb_tags)
4619 					goto out_free;
4620 			}
4621 			/*
4622 			 *  Get a tag for this SCSI IO and set up
4623 			 *  the CCB bus address for reselection,
4624 			 *  and count it for this LUN.
4625 			 *  Toggle reselect path to tagged.
4626 			 */
4627 			if (lp->busy_itlq < SYM_CONF_MAX_TASK) {
4628 				tag = lp->cb_tags[lp->ia_tag];
4629 				if (++lp->ia_tag == SYM_CONF_MAX_TASK)
4630 					lp->ia_tag = 0;
4631 				++lp->busy_itlq;
4632 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4633 				lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba);
4634 				lp->head.resel_sa =
4635 					cpu_to_scr(SCRIPTA_BA(np, resel_tag));
4636 #endif
4637 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4638 				cp->tags_si = lp->tags_si;
4639 				++lp->tags_sum[cp->tags_si];
4640 				++lp->tags_since;
4641 #endif
4642 			}
4643 			else
4644 				goto out_free;
4645 		}
4646 		/*
4647 		 *  This command will not be tagged.
4648 		 *  If we already have either a tagged or untagged
4649 		 *  one, refuse to overlap this untagged one.
4650 		 */
4651 		else {
4652 			/*
4653 			 *  Debugging purpose.
4654 			 */
4655 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4656 			if (lp->busy_itl != 0 || lp->busy_itlq != 0)
4657 				goto out_free;
4658 #endif
4659 			/*
4660 			 *  Count this nexus for this LUN.
4661 			 *  Set up the CCB bus address for reselection.
4662 			 *  Toggle reselect path to untagged.
4663 			 */
4664 			++lp->busy_itl;
4665 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING
4666 			if (lp->busy_itl == 1) {
4667 				lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba);
4668 				lp->head.resel_sa =
4669 				      cpu_to_scr(SCRIPTA_BA(np, resel_no_tag));
4670 			}
4671 			else
4672 				goto out_free;
4673 #endif
4674 		}
4675 	}
4676 	/*
4677 	 *  Put the CCB into the busy queue.
4678 	 */
4679 	sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq);
4680 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4681 	if (lp) {
4682 		sym_remque(&cp->link2_ccbq);
4683 		sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq);
4684 	}
4685 
4686 #endif
4687 	cp->to_abort = 0;
4688 	cp->odd_byte_adjustment = 0;
4689 	cp->tag	   = tag;
4690 	cp->order  = tag_order;
4691 	cp->target = tn;
4692 	cp->lun    = ln;
4693 
4694 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4695 		sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag);
4696 	}
4697 
4698 out:
4699 	return cp;
4700 out_free:
4701 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4702 	return NULL;
4703 }
4704 
4705 /*
4706  *  Release one control block
4707  */
4708 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp)
4709 {
4710 	struct sym_tcb *tp = &np->target[cp->target];
4711 	struct sym_lcb *lp = sym_lp(tp, cp->lun);
4712 
4713 	if (DEBUG_FLAGS & DEBUG_TAGS) {
4714 		sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n",
4715 				cp, cp->tag);
4716 	}
4717 
4718 	/*
4719 	 *  If LCB available,
4720 	 */
4721 	if (lp) {
4722 		/*
4723 		 *  If tagged, release the tag, set the relect path
4724 		 */
4725 		if (cp->tag != NO_TAG) {
4726 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
4727 			--lp->tags_sum[cp->tags_si];
4728 #endif
4729 			/*
4730 			 *  Free the tag value.
4731 			 */
4732 			lp->cb_tags[lp->if_tag] = cp->tag;
4733 			if (++lp->if_tag == SYM_CONF_MAX_TASK)
4734 				lp->if_tag = 0;
4735 			/*
4736 			 *  Make the reselect path invalid,
4737 			 *  and uncount this CCB.
4738 			 */
4739 			lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba);
4740 			--lp->busy_itlq;
4741 		} else {	/* Untagged */
4742 			/*
4743 			 *  Make the reselect path invalid,
4744 			 *  and uncount this CCB.
4745 			 */
4746 			lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4747 			--lp->busy_itl;
4748 		}
4749 		/*
4750 		 *  If no JOB active, make the LUN reselect path invalid.
4751 		 */
4752 		if (lp->busy_itlq == 0 && lp->busy_itl == 0)
4753 			lp->head.resel_sa =
4754 				cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4755 	}
4756 
4757 	/*
4758 	 *  We donnot queue more than 1 ccb per target
4759 	 *  with negotiation at any time. If this ccb was
4760 	 *  used for negotiation, clear this info in the tcb.
4761 	 */
4762 	if (cp == tp->nego_cp)
4763 		tp->nego_cp = NULL;
4764 
4765 #ifdef SYM_CONF_IARB_SUPPORT
4766 	/*
4767 	 *  If we just complete the last queued CCB,
4768 	 *  clear this info that is no longer relevant.
4769 	 */
4770 	if (cp == np->last_cp)
4771 		np->last_cp = 0;
4772 #endif
4773 
4774 	/*
4775 	 *  Make this CCB available.
4776 	 */
4777 	cp->cmd = NULL;
4778 	cp->host_status = HS_IDLE;
4779 	sym_remque(&cp->link_ccbq);
4780 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4781 
4782 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4783 	if (lp) {
4784 		sym_remque(&cp->link2_ccbq);
4785 		sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq);
4786 		if (cp->started) {
4787 			if (cp->tag != NO_TAG)
4788 				--lp->started_tags;
4789 			else
4790 				--lp->started_no_tag;
4791 		}
4792 	}
4793 	cp->started = 0;
4794 #endif
4795 }
4796 
4797 /*
4798  *  Allocate a CCB from memory and initialize its fixed part.
4799  */
4800 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np)
4801 {
4802 	struct sym_ccb *cp = NULL;
4803 	int hcode;
4804 
4805 	/*
4806 	 *  Prevent from allocating more CCBs than we can
4807 	 *  queue to the controller.
4808 	 */
4809 	if (np->actccbs >= SYM_CONF_MAX_START)
4810 		return NULL;
4811 
4812 	/*
4813 	 *  Allocate memory for this CCB.
4814 	 */
4815 	cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB");
4816 	if (!cp)
4817 		goto out_free;
4818 
4819 	/*
4820 	 *  Count it.
4821 	 */
4822 	np->actccbs++;
4823 
4824 	/*
4825 	 *  Compute the bus address of this ccb.
4826 	 */
4827 	cp->ccb_ba = vtobus(cp);
4828 
4829 	/*
4830 	 *  Insert this ccb into the hashed list.
4831 	 */
4832 	hcode = CCB_HASH_CODE(cp->ccb_ba);
4833 	cp->link_ccbh = np->ccbh[hcode];
4834 	np->ccbh[hcode] = cp;
4835 
4836 	/*
4837 	 *  Initialyze the start and restart actions.
4838 	 */
4839 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, idle));
4840 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
4841 
4842  	/*
4843 	 *  Initilialyze some other fields.
4844 	 */
4845 	cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2]));
4846 
4847 	/*
4848 	 *  Chain into free ccb queue.
4849 	 */
4850 	sym_insque_head(&cp->link_ccbq, &np->free_ccbq);
4851 
4852 	/*
4853 	 *  Chain into optionnal lists.
4854 	 */
4855 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4856 	sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq);
4857 #endif
4858 	return cp;
4859 out_free:
4860 	if (cp)
4861 		sym_mfree_dma(cp, sizeof(*cp), "CCB");
4862 	return NULL;
4863 }
4864 
4865 /*
4866  *  Look up a CCB from a DSA value.
4867  */
4868 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa)
4869 {
4870 	int hcode;
4871 	struct sym_ccb *cp;
4872 
4873 	hcode = CCB_HASH_CODE(dsa);
4874 	cp = np->ccbh[hcode];
4875 	while (cp) {
4876 		if (cp->ccb_ba == dsa)
4877 			break;
4878 		cp = cp->link_ccbh;
4879 	}
4880 
4881 	return cp;
4882 }
4883 
4884 /*
4885  *  Target control block initialisation.
4886  *  Nothing important to do at the moment.
4887  */
4888 static void sym_init_tcb (struct sym_hcb *np, u_char tn)
4889 {
4890 #if 0	/*  Hmmm... this checking looks paranoid. */
4891 	/*
4892 	 *  Check some alignments required by the chip.
4893 	 */
4894 	assert (((offsetof(struct sym_reg, nc_sxfer) ^
4895 		offsetof(struct sym_tcb, head.sval)) &3) == 0);
4896 	assert (((offsetof(struct sym_reg, nc_scntl3) ^
4897 		offsetof(struct sym_tcb, head.wval)) &3) == 0);
4898 #endif
4899 }
4900 
4901 /*
4902  *  Lun control block allocation and initialization.
4903  */
4904 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln)
4905 {
4906 	struct sym_tcb *tp = &np->target[tn];
4907 	struct sym_lcb *lp = NULL;
4908 
4909 	/*
4910 	 *  Initialize the target control block if not yet.
4911 	 */
4912 	sym_init_tcb (np, tn);
4913 
4914 	/*
4915 	 *  Allocate the LCB bus address array.
4916 	 *  Compute the bus address of this table.
4917 	 */
4918 	if (ln && !tp->luntbl) {
4919 		int i;
4920 
4921 		tp->luntbl = sym_calloc_dma(256, "LUNTBL");
4922 		if (!tp->luntbl)
4923 			goto fail;
4924 		for (i = 0 ; i < 64 ; i++)
4925 			tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
4926 		tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl));
4927 	}
4928 
4929 	/*
4930 	 *  Allocate the table of pointers for LUN(s) > 0, if needed.
4931 	 */
4932 	if (ln && !tp->lunmp) {
4933 		tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *),
4934 				GFP_KERNEL);
4935 		if (!tp->lunmp)
4936 			goto fail;
4937 	}
4938 
4939 	/*
4940 	 *  Allocate the lcb.
4941 	 *  Make it available to the chip.
4942 	 */
4943 	lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB");
4944 	if (!lp)
4945 		goto fail;
4946 	if (ln) {
4947 		tp->lunmp[ln] = lp;
4948 		tp->luntbl[ln] = cpu_to_scr(vtobus(lp));
4949 	}
4950 	else {
4951 		tp->lun0p = lp;
4952 		tp->head.lun0_sa = cpu_to_scr(vtobus(lp));
4953 	}
4954 
4955 	/*
4956 	 *  Let the itl task point to error handling.
4957 	 */
4958 	lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba);
4959 
4960 	/*
4961 	 *  Set the reselect pattern to our default. :)
4962 	 */
4963 	lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
4964 
4965 	/*
4966 	 *  Set user capabilities.
4967 	 */
4968 	lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED);
4969 
4970 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
4971 	/*
4972 	 *  Initialize device queueing.
4973 	 */
4974 	sym_que_init(&lp->waiting_ccbq);
4975 	sym_que_init(&lp->started_ccbq);
4976 	lp->started_max   = SYM_CONF_MAX_TASK;
4977 	lp->started_limit = SYM_CONF_MAX_TASK;
4978 #endif
4979 
4980 fail:
4981 	return lp;
4982 }
4983 
4984 /*
4985  *  Allocate LCB resources for tagged command queuing.
4986  */
4987 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln)
4988 {
4989 	struct sym_tcb *tp = &np->target[tn];
4990 	struct sym_lcb *lp = sym_lp(tp, ln);
4991 	int i;
4992 
4993 	/*
4994 	 *  Allocate the task table and and the tag allocation
4995 	 *  circular buffer. We want both or none.
4996 	 */
4997 	lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
4998 	if (!lp->itlq_tbl)
4999 		goto fail;
5000 	lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC);
5001 	if (!lp->cb_tags) {
5002 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL");
5003 		lp->itlq_tbl = NULL;
5004 		goto fail;
5005 	}
5006 
5007 	/*
5008 	 *  Initialize the task table with invalid entries.
5009 	 */
5010 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5011 		lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba);
5012 
5013 	/*
5014 	 *  Fill up the tag buffer with tag numbers.
5015 	 */
5016 	for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++)
5017 		lp->cb_tags[i] = i;
5018 
5019 	/*
5020 	 *  Make the task table available to SCRIPTS,
5021 	 *  And accept tagged commands now.
5022 	 */
5023 	lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl));
5024 
5025 	return;
5026 fail:
5027 	return;
5028 }
5029 
5030 /*
5031  *  Queue a SCSI IO to the controller.
5032  */
5033 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
5034 {
5035 	struct scsi_device *sdev = cmd->device;
5036 	struct sym_tcb *tp;
5037 	struct sym_lcb *lp;
5038 	u_char	*msgptr;
5039 	u_int   msglen;
5040 	int can_disconnect;
5041 
5042 	/*
5043 	 *  Keep track of the IO in our CCB.
5044 	 */
5045 	cp->cmd = cmd;
5046 
5047 	/*
5048 	 *  Retrieve the target descriptor.
5049 	 */
5050 	tp = &np->target[cp->target];
5051 
5052 	/*
5053 	 *  Retrieve the lun descriptor.
5054 	 */
5055 	lp = sym_lp(tp, sdev->lun);
5056 
5057 	can_disconnect = (cp->tag != NO_TAG) ||
5058 		(lp && (lp->curr_flags & SYM_DISC_ENABLED));
5059 
5060 	msgptr = cp->scsi_smsg;
5061 	msglen = 0;
5062 	msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun);
5063 
5064 	/*
5065 	 *  Build the tag message if present.
5066 	 */
5067 	if (cp->tag != NO_TAG) {
5068 		u_char order = cp->order;
5069 
5070 		switch(order) {
5071 		case M_ORDERED_TAG:
5072 			break;
5073 		case M_HEAD_TAG:
5074 			break;
5075 		default:
5076 			order = M_SIMPLE_TAG;
5077 		}
5078 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING
5079 		/*
5080 		 *  Avoid too much reordering of SCSI commands.
5081 		 *  The algorithm tries to prevent completion of any
5082 		 *  tagged command from being delayed against more
5083 		 *  than 3 times the max number of queued commands.
5084 		 */
5085 		if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) {
5086 			lp->tags_si = !(lp->tags_si);
5087 			if (lp->tags_sum[lp->tags_si]) {
5088 				order = M_ORDERED_TAG;
5089 				if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) {
5090 					sym_print_addr(cmd,
5091 						"ordered tag forced.\n");
5092 				}
5093 			}
5094 			lp->tags_since = 0;
5095 		}
5096 #endif
5097 		msgptr[msglen++] = order;
5098 
5099 		/*
5100 		 *  For less than 128 tags, actual tags are numbered
5101 		 *  1,3,5,..2*MAXTAGS+1,since we may have to deal
5102 		 *  with devices that have problems with #TAG 0 or too
5103 		 *  great #TAG numbers. For more tags (up to 256),
5104 		 *  we use directly our tag number.
5105 		 */
5106 #if SYM_CONF_MAX_TASK > (512/4)
5107 		msgptr[msglen++] = cp->tag;
5108 #else
5109 		msgptr[msglen++] = (cp->tag << 1) + 1;
5110 #endif
5111 	}
5112 
5113 	/*
5114 	 *  Build a negotiation message if needed.
5115 	 *  (nego_status is filled by sym_prepare_nego())
5116 	 */
5117 	cp->nego_status = 0;
5118 	if (tp->tgoal.check_nego && !tp->nego_cp && lp) {
5119 		msglen += sym_prepare_nego(np, cp, msgptr + msglen);
5120 	}
5121 
5122 	/*
5123 	 *  Startqueue
5124 	 */
5125 	cp->phys.head.go.start   = cpu_to_scr(SCRIPTA_BA(np, select));
5126 	cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa));
5127 
5128 	/*
5129 	 *  select
5130 	 */
5131 	cp->phys.select.sel_id		= cp->target;
5132 	cp->phys.select.sel_scntl3	= tp->head.wval;
5133 	cp->phys.select.sel_sxfer	= tp->head.sval;
5134 	cp->phys.select.sel_scntl4	= tp->head.uval;
5135 
5136 	/*
5137 	 *  message
5138 	 */
5139 	cp->phys.smsg.addr	= CCB_BA(cp, scsi_smsg);
5140 	cp->phys.smsg.size	= cpu_to_scr(msglen);
5141 
5142 	/*
5143 	 *  status
5144 	 */
5145 	cp->host_xflags		= 0;
5146 	cp->host_status		= cp->nego_status ? HS_NEGOTIATE : HS_BUSY;
5147 	cp->ssss_status		= S_ILLEGAL;
5148 	cp->xerr_status		= 0;
5149 	cp->host_flags		= 0;
5150 	cp->extra_bytes		= 0;
5151 
5152 	/*
5153 	 *  extreme data pointer.
5154 	 *  shall be positive, so -1 is lower than lowest.:)
5155 	 */
5156 	cp->ext_sg  = -1;
5157 	cp->ext_ofs = 0;
5158 
5159 	/*
5160 	 *  Build the CDB and DATA descriptor block
5161 	 *  and start the IO.
5162 	 */
5163 	return sym_setup_data_and_start(np, cmd, cp);
5164 }
5165 
5166 /*
5167  *  Reset a SCSI target (all LUNs of this target).
5168  */
5169 int sym_reset_scsi_target(struct sym_hcb *np, int target)
5170 {
5171 	struct sym_tcb *tp;
5172 
5173 	if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET)
5174 		return -1;
5175 
5176 	tp = &np->target[target];
5177 	tp->to_reset = 1;
5178 
5179 	np->istat_sem = SEM;
5180 	OUTB(np, nc_istat, SIGP|SEM);
5181 
5182 	return 0;
5183 }
5184 
5185 /*
5186  *  Abort a SCSI IO.
5187  */
5188 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out)
5189 {
5190 	/*
5191 	 *  Check that the IO is active.
5192 	 */
5193 	if (!cp || !cp->host_status || cp->host_status == HS_WAIT)
5194 		return -1;
5195 
5196 	/*
5197 	 *  If a previous abort didn't succeed in time,
5198 	 *  perform a BUS reset.
5199 	 */
5200 	if (cp->to_abort) {
5201 		sym_reset_scsi_bus(np, 1);
5202 		return 0;
5203 	}
5204 
5205 	/*
5206 	 *  Mark the CCB for abort and allow time for.
5207 	 */
5208 	cp->to_abort = timed_out ? 2 : 1;
5209 
5210 	/*
5211 	 *  Tell the SCRIPTS processor to stop and synchronize with us.
5212 	 */
5213 	np->istat_sem = SEM;
5214 	OUTB(np, nc_istat, SIGP|SEM);
5215 	return 0;
5216 }
5217 
5218 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out)
5219 {
5220 	struct sym_ccb *cp;
5221 	SYM_QUEHEAD *qp;
5222 
5223 	/*
5224 	 *  Look up our CCB control block.
5225 	 */
5226 	cp = NULL;
5227 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
5228 		struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5229 		if (cp2->cmd == cmd) {
5230 			cp = cp2;
5231 			break;
5232 		}
5233 	}
5234 
5235 	return sym_abort_ccb(np, cp, timed_out);
5236 }
5237 
5238 /*
5239  *  Complete execution of a SCSI command with extended
5240  *  error, SCSI status error, or having been auto-sensed.
5241  *
5242  *  The SCRIPTS processor is not running there, so we
5243  *  can safely access IO registers and remove JOBs from
5244  *  the START queue.
5245  *  SCRATCHA is assumed to have been loaded with STARTPOS
5246  *  before the SCRIPTS called the C code.
5247  */
5248 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp)
5249 {
5250 	struct scsi_device *sdev;
5251 	struct scsi_cmnd *cmd;
5252 	struct sym_tcb *tp;
5253 	struct sym_lcb *lp;
5254 	int resid;
5255 	int i;
5256 
5257 	/*
5258 	 *  Paranoid check. :)
5259 	 */
5260 	if (!cp || !cp->cmd)
5261 		return;
5262 
5263 	cmd = cp->cmd;
5264 	sdev = cmd->device;
5265 	if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) {
5266 		dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp,
5267 			cp->host_status, cp->ssss_status, cp->host_flags);
5268 	}
5269 
5270 	/*
5271 	 *  Get target and lun pointers.
5272 	 */
5273 	tp = &np->target[cp->target];
5274 	lp = sym_lp(tp, sdev->lun);
5275 
5276 	/*
5277 	 *  Check for extended errors.
5278 	 */
5279 	if (cp->xerr_status) {
5280 		if (sym_verbose)
5281 			sym_print_xerr(cmd, cp->xerr_status);
5282 		if (cp->host_status == HS_COMPLETE)
5283 			cp->host_status = HS_COMP_ERR;
5284 	}
5285 
5286 	/*
5287 	 *  Calculate the residual.
5288 	 */
5289 	resid = sym_compute_residual(np, cp);
5290 
5291 	if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */
5292 		resid  = 0;		 /* throw them away. :)		    */
5293 		cp->sv_resid = 0;
5294 	}
5295 #ifdef DEBUG_2_0_X
5296 if (resid)
5297 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5298 #endif
5299 
5300 	/*
5301 	 *  Dequeue all queued CCBs for that device
5302 	 *  not yet started by SCRIPTS.
5303 	 */
5304 	i = (INL(np, nc_scratcha) - np->squeue_ba) / 4;
5305 	i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1);
5306 
5307 	/*
5308 	 *  Restart the SCRIPTS processor.
5309 	 */
5310 	OUTL_DSP(np, SCRIPTA_BA(np, start));
5311 
5312 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5313 	if (cp->host_status == HS_COMPLETE &&
5314 	    cp->ssss_status == S_QUEUE_FULL) {
5315 		if (!lp || lp->started_tags - i < 2)
5316 			goto weirdness;
5317 		/*
5318 		 *  Decrease queue depth as needed.
5319 		 */
5320 		lp->started_max = lp->started_tags - i - 1;
5321 		lp->num_sgood = 0;
5322 
5323 		if (sym_verbose >= 2) {
5324 			sym_print_addr(cmd, " queue depth is now %d\n",
5325 					lp->started_max);
5326 		}
5327 
5328 		/*
5329 		 *  Repair the CCB.
5330 		 */
5331 		cp->host_status = HS_BUSY;
5332 		cp->ssss_status = S_ILLEGAL;
5333 
5334 		/*
5335 		 *  Let's requeue it to device.
5336 		 */
5337 		sym_set_cam_status(cmd, DID_SOFT_ERROR);
5338 		goto finish;
5339 	}
5340 weirdness:
5341 #endif
5342 	/*
5343 	 *  Build result in CAM ccb.
5344 	 */
5345 	sym_set_cam_result_error(np, cp, resid);
5346 
5347 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5348 finish:
5349 #endif
5350 	/*
5351 	 *  Add this one to the COMP queue.
5352 	 */
5353 	sym_remque(&cp->link_ccbq);
5354 	sym_insque_head(&cp->link_ccbq, &np->comp_ccbq);
5355 
5356 	/*
5357 	 *  Complete all those commands with either error
5358 	 *  or requeue condition.
5359 	 */
5360 	sym_flush_comp_queue(np, 0);
5361 
5362 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5363 	/*
5364 	 *  Donnot start more than 1 command after an error.
5365 	 */
5366 	sym_start_next_ccbs(np, lp, 1);
5367 #endif
5368 }
5369 
5370 /*
5371  *  Complete execution of a successful SCSI command.
5372  *
5373  *  Only successful commands go to the DONE queue,
5374  *  since we need to have the SCRIPTS processor
5375  *  stopped on any error condition.
5376  *  The SCRIPTS processor is running while we are
5377  *  completing successful commands.
5378  */
5379 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp)
5380 {
5381 	struct sym_tcb *tp;
5382 	struct sym_lcb *lp;
5383 	struct scsi_cmnd *cmd;
5384 	int resid;
5385 
5386 	/*
5387 	 *  Paranoid check. :)
5388 	 */
5389 	if (!cp || !cp->cmd)
5390 		return;
5391 	assert (cp->host_status == HS_COMPLETE);
5392 
5393 	/*
5394 	 *  Get user command.
5395 	 */
5396 	cmd = cp->cmd;
5397 
5398 	/*
5399 	 *  Get target and lun pointers.
5400 	 */
5401 	tp = &np->target[cp->target];
5402 	lp = sym_lp(tp, cp->lun);
5403 
5404 	/*
5405 	 *  If all data have been transferred, given than no
5406 	 *  extended error did occur, there is no residual.
5407 	 */
5408 	resid = 0;
5409 	if (cp->phys.head.lastp != cp->goalp)
5410 		resid = sym_compute_residual(np, cp);
5411 
5412 	/*
5413 	 *  Wrong transfer residuals may be worse than just always
5414 	 *  returning zero. User can disable this feature in
5415 	 *  sym53c8xx.h. Residual support is enabled by default.
5416 	 */
5417 	if (!SYM_SETUP_RESIDUAL_SUPPORT)
5418 		resid  = 0;
5419 #ifdef DEBUG_2_0_X
5420 if (resid)
5421 	printf("XXXX RESID= %d - 0x%x\n", resid, resid);
5422 #endif
5423 
5424 	/*
5425 	 *  Build result in CAM ccb.
5426 	 */
5427 	sym_set_cam_result_ok(cp, cmd, resid);
5428 
5429 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5430 	/*
5431 	 *  If max number of started ccbs had been reduced,
5432 	 *  increase it if 200 good status received.
5433 	 */
5434 	if (lp && lp->started_max < lp->started_limit) {
5435 		++lp->num_sgood;
5436 		if (lp->num_sgood >= 200) {
5437 			lp->num_sgood = 0;
5438 			++lp->started_max;
5439 			if (sym_verbose >= 2) {
5440 				sym_print_addr(cmd, " queue depth is now %d\n",
5441 				       lp->started_max);
5442 			}
5443 		}
5444 	}
5445 #endif
5446 
5447 	/*
5448 	 *  Free our CCB.
5449 	 */
5450 	sym_free_ccb (np, cp);
5451 
5452 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5453 	/*
5454 	 *  Requeue a couple of awaiting scsi commands.
5455 	 */
5456 	if (!sym_que_empty(&lp->waiting_ccbq))
5457 		sym_start_next_ccbs(np, lp, 2);
5458 #endif
5459 	/*
5460 	 *  Complete the command.
5461 	 */
5462 	sym_xpt_done(np, cmd);
5463 }
5464 
5465 /*
5466  *  Soft-attach the controller.
5467  */
5468 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram)
5469 {
5470 	struct sym_hcb *np = sym_get_hcb(shost);
5471 	int i;
5472 
5473 	/*
5474 	 *  Get some info about the firmware.
5475 	 */
5476 	np->scripta_sz	 = fw->a_size;
5477 	np->scriptb_sz	 = fw->b_size;
5478 	np->scriptz_sz	 = fw->z_size;
5479 	np->fw_setup	 = fw->setup;
5480 	np->fw_patch	 = fw->patch;
5481 	np->fw_name	 = fw->name;
5482 
5483 	/*
5484 	 *  Save setting of some IO registers, so we will
5485 	 *  be able to probe specific implementations.
5486 	 */
5487 	sym_save_initial_setting (np);
5488 
5489 	/*
5490 	 *  Reset the chip now, since it has been reported
5491 	 *  that SCSI clock calibration may not work properly
5492 	 *  if the chip is currently active.
5493 	 */
5494 	sym_chip_reset(np);
5495 
5496 	/*
5497 	 *  Prepare controller and devices settings, according
5498 	 *  to chip features, user set-up and driver set-up.
5499 	 */
5500 	sym_prepare_setting(shost, np, nvram);
5501 
5502 	/*
5503 	 *  Check the PCI clock frequency.
5504 	 *  Must be performed after prepare_setting since it destroys
5505 	 *  STEST1 that is used to probe for the clock doubler.
5506 	 */
5507 	i = sym_getpciclock(np);
5508 	if (i > 37000 && !(np->features & FE_66MHZ))
5509 		printf("%s: PCI BUS clock seems too high: %u KHz.\n",
5510 			sym_name(np), i);
5511 
5512 	/*
5513 	 *  Allocate the start queue.
5514 	 */
5515 	np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE");
5516 	if (!np->squeue)
5517 		goto attach_failed;
5518 	np->squeue_ba = vtobus(np->squeue);
5519 
5520 	/*
5521 	 *  Allocate the done queue.
5522 	 */
5523 	np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE");
5524 	if (!np->dqueue)
5525 		goto attach_failed;
5526 	np->dqueue_ba = vtobus(np->dqueue);
5527 
5528 	/*
5529 	 *  Allocate the target bus address array.
5530 	 */
5531 	np->targtbl = sym_calloc_dma(256, "TARGTBL");
5532 	if (!np->targtbl)
5533 		goto attach_failed;
5534 	np->targtbl_ba = vtobus(np->targtbl);
5535 
5536 	/*
5537 	 *  Allocate SCRIPTS areas.
5538 	 */
5539 	np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0");
5540 	np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0");
5541 	np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0");
5542 	if (!np->scripta0 || !np->scriptb0 || !np->scriptz0)
5543 		goto attach_failed;
5544 
5545 	/*
5546 	 *  Allocate the array of lists of CCBs hashed by DSA.
5547 	 */
5548 	np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL);
5549 	if (!np->ccbh)
5550 		goto attach_failed;
5551 
5552 	/*
5553 	 *  Initialyze the CCB free and busy queues.
5554 	 */
5555 	sym_que_init(&np->free_ccbq);
5556 	sym_que_init(&np->busy_ccbq);
5557 	sym_que_init(&np->comp_ccbq);
5558 
5559 	/*
5560 	 *  Initialization for optional handling
5561 	 *  of device queueing.
5562 	 */
5563 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING
5564 	sym_que_init(&np->dummy_ccbq);
5565 #endif
5566 	/*
5567 	 *  Allocate some CCB. We need at least ONE.
5568 	 */
5569 	if (!sym_alloc_ccb(np))
5570 		goto attach_failed;
5571 
5572 	/*
5573 	 *  Calculate BUS addresses where we are going
5574 	 *  to load the SCRIPTS.
5575 	 */
5576 	np->scripta_ba	= vtobus(np->scripta0);
5577 	np->scriptb_ba	= vtobus(np->scriptb0);
5578 	np->scriptz_ba	= vtobus(np->scriptz0);
5579 
5580 	if (np->ram_ba) {
5581 		np->scripta_ba	= np->ram_ba;
5582 		if (np->features & FE_RAM8K) {
5583 			np->ram_ws = 8192;
5584 			np->scriptb_ba = np->scripta_ba + 4096;
5585 #if 0	/* May get useful for 64 BIT PCI addressing */
5586 			np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32);
5587 #endif
5588 		}
5589 		else
5590 			np->ram_ws = 4096;
5591 	}
5592 
5593 	/*
5594 	 *  Copy scripts to controller instance.
5595 	 */
5596 	memcpy(np->scripta0, fw->a_base, np->scripta_sz);
5597 	memcpy(np->scriptb0, fw->b_base, np->scriptb_sz);
5598 	memcpy(np->scriptz0, fw->z_base, np->scriptz_sz);
5599 
5600 	/*
5601 	 *  Setup variable parts in scripts and compute
5602 	 *  scripts bus addresses used from the C code.
5603 	 */
5604 	np->fw_setup(np, fw);
5605 
5606 	/*
5607 	 *  Bind SCRIPTS with physical addresses usable by the
5608 	 *  SCRIPTS processor (as seen from the BUS = BUS addresses).
5609 	 */
5610 	sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz);
5611 	sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz);
5612 	sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz);
5613 
5614 #ifdef SYM_CONF_IARB_SUPPORT
5615 	/*
5616 	 *    If user wants IARB to be set when we win arbitration
5617 	 *    and have other jobs, compute the max number of consecutive
5618 	 *    settings of IARB hints before we leave devices a chance to
5619 	 *    arbitrate for reselection.
5620 	 */
5621 #ifdef	SYM_SETUP_IARB_MAX
5622 	np->iarb_max = SYM_SETUP_IARB_MAX;
5623 #else
5624 	np->iarb_max = 4;
5625 #endif
5626 #endif
5627 
5628 	/*
5629 	 *  Prepare the idle and invalid task actions.
5630 	 */
5631 	np->idletask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5632 	np->idletask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5633 	np->idletask_ba		= vtobus(&np->idletask);
5634 
5635 	np->notask.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5636 	np->notask.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5637 	np->notask_ba		= vtobus(&np->notask);
5638 
5639 	np->bad_itl.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5640 	np->bad_itl.restart	= cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l));
5641 	np->bad_itl_ba		= vtobus(&np->bad_itl);
5642 
5643 	np->bad_itlq.start	= cpu_to_scr(SCRIPTA_BA(np, idle));
5644 	np->bad_itlq.restart	= cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q));
5645 	np->bad_itlq_ba		= vtobus(&np->bad_itlq);
5646 
5647 	/*
5648 	 *  Allocate and prepare the lun JUMP table that is used
5649 	 *  for a target prior the probing of devices (bad lun table).
5650 	 *  A private table will be allocated for the target on the
5651 	 *  first INQUIRY response received.
5652 	 */
5653 	np->badluntbl = sym_calloc_dma(256, "BADLUNTBL");
5654 	if (!np->badluntbl)
5655 		goto attach_failed;
5656 
5657 	np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun));
5658 	for (i = 0 ; i < 64 ; i++)	/* 64 luns/target, no less */
5659 		np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa));
5660 
5661 	/*
5662 	 *  Prepare the bus address array that contains the bus
5663 	 *  address of each target control block.
5664 	 *  For now, assume all logical units are wrong. :)
5665 	 */
5666 	for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) {
5667 		np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i]));
5668 		np->target[i].head.luntbl_sa =
5669 				cpu_to_scr(vtobus(np->badluntbl));
5670 		np->target[i].head.lun0_sa =
5671 				cpu_to_scr(vtobus(&np->badlun_sa));
5672 	}
5673 
5674 	/*
5675 	 *  Now check the cache handling of the pci chipset.
5676 	 */
5677 	if (sym_snooptest (np)) {
5678 		printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np));
5679 		goto attach_failed;
5680 	}
5681 
5682 	/*
5683 	 *  Sigh! we are done.
5684 	 */
5685 	return 0;
5686 
5687 attach_failed:
5688 	return -ENXIO;
5689 }
5690 
5691 /*
5692  *  Free everything that has been allocated for this device.
5693  */
5694 void sym_hcb_free(struct sym_hcb *np)
5695 {
5696 	SYM_QUEHEAD *qp;
5697 	struct sym_ccb *cp;
5698 	struct sym_tcb *tp;
5699 	int target;
5700 
5701 	if (np->scriptz0)
5702 		sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0");
5703 	if (np->scriptb0)
5704 		sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0");
5705 	if (np->scripta0)
5706 		sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0");
5707 	if (np->squeue)
5708 		sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE");
5709 	if (np->dqueue)
5710 		sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE");
5711 
5712 	if (np->actccbs) {
5713 		while ((qp = sym_remque_head(&np->free_ccbq)) != 0) {
5714 			cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
5715 			sym_mfree_dma(cp, sizeof(*cp), "CCB");
5716 		}
5717 	}
5718 	kfree(np->ccbh);
5719 
5720 	if (np->badluntbl)
5721 		sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL");
5722 
5723 	for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) {
5724 		tp = &np->target[target];
5725 #if SYM_CONF_MAX_LUN > 1
5726 		kfree(tp->lunmp);
5727 #endif
5728 	}
5729 	if (np->targtbl)
5730 		sym_mfree_dma(np->targtbl, 256, "TARGTBL");
5731 }
5732