1 /* 2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 3 * of PCI-SCSI IO processors. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx> 7 * 8 * This driver is derived from the Linux sym53c8xx driver. 9 * Copyright (C) 1998-2000 Gerard Roudier 10 * 11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 12 * a port of the FreeBSD ncr driver to Linux-1.2.13. 13 * 14 * The original ncr driver has been written for 386bsd and FreeBSD by 15 * Wolfgang Stanglmeier <wolf@cologne.de> 16 * Stefan Esser <se@mi.Uni-Koeln.de> 17 * Copyright (C) 1994 Wolfgang Stanglmeier 18 * 19 * Other major contributions: 20 * 21 * NVRAM detection and reading. 22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 23 * 24 *----------------------------------------------------------------------------- 25 * 26 * This program is free software; you can redistribute it and/or modify 27 * it under the terms of the GNU General Public License as published by 28 * the Free Software Foundation; either version 2 of the License, or 29 * (at your option) any later version. 30 * 31 * This program is distributed in the hope that it will be useful, 32 * but WITHOUT ANY WARRANTY; without even the implied warranty of 33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 34 * GNU General Public License for more details. 35 * 36 * You should have received a copy of the GNU General Public License 37 * along with this program; if not, write to the Free Software 38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 39 */ 40 41 #include <linux/slab.h> 42 #include <asm/param.h> /* for timeouts in units of HZ */ 43 44 #include "sym_glue.h" 45 #include "sym_nvram.h" 46 47 #if 0 48 #define SYM_DEBUG_GENERIC_SUPPORT 49 #endif 50 51 /* 52 * Needed function prototypes. 53 */ 54 static void sym_int_ma (struct sym_hcb *np); 55 static void sym_int_sir (struct sym_hcb *np); 56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np); 57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa); 58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln); 59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp); 60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp); 61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp); 62 63 /* 64 * Print a buffer in hexadecimal format with a ".\n" at end. 65 */ 66 static void sym_printl_hex(u_char *p, int n) 67 { 68 while (n-- > 0) 69 printf (" %x", *p++); 70 printf (".\n"); 71 } 72 73 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg) 74 { 75 if (label) 76 sym_print_addr(cp->cmd, "%s: ", label); 77 else 78 sym_print_addr(cp->cmd, ""); 79 80 spi_print_msg(msg); 81 printf("\n"); 82 } 83 84 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg) 85 { 86 struct sym_tcb *tp = &np->target[target]; 87 dev_info(&tp->starget->dev, "%s: ", label); 88 89 spi_print_msg(msg); 90 printf("\n"); 91 } 92 93 /* 94 * Print something that tells about extended errors. 95 */ 96 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status) 97 { 98 if (x_status & XE_PARITY_ERR) { 99 sym_print_addr(cmd, "unrecovered SCSI parity error.\n"); 100 } 101 if (x_status & XE_EXTRA_DATA) { 102 sym_print_addr(cmd, "extraneous data discarded.\n"); 103 } 104 if (x_status & XE_BAD_PHASE) { 105 sym_print_addr(cmd, "illegal scsi phase (4/5).\n"); 106 } 107 if (x_status & XE_SODL_UNRUN) { 108 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n"); 109 } 110 if (x_status & XE_SWIDE_OVRUN) { 111 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n"); 112 } 113 } 114 115 /* 116 * Return a string for SCSI BUS mode. 117 */ 118 static char *sym_scsi_bus_mode(int mode) 119 { 120 switch(mode) { 121 case SMODE_HVD: return "HVD"; 122 case SMODE_SE: return "SE"; 123 case SMODE_LVD: return "LVD"; 124 } 125 return "??"; 126 } 127 128 /* 129 * Soft reset the chip. 130 * 131 * Raising SRST when the chip is running may cause 132 * problems on dual function chips (see below). 133 * On the other hand, LVD devices need some delay 134 * to settle and report actual BUS mode in STEST4. 135 */ 136 static void sym_chip_reset (struct sym_hcb *np) 137 { 138 OUTB(np, nc_istat, SRST); 139 INB(np, nc_mbox1); 140 udelay(10); 141 OUTB(np, nc_istat, 0); 142 INB(np, nc_mbox1); 143 udelay(2000); /* For BUS MODE to settle */ 144 } 145 146 /* 147 * Really soft reset the chip.:) 148 * 149 * Some 896 and 876 chip revisions may hang-up if we set 150 * the SRST (soft reset) bit at the wrong time when SCRIPTS 151 * are running. 152 * So, we need to abort the current operation prior to 153 * soft resetting the chip. 154 */ 155 static void sym_soft_reset (struct sym_hcb *np) 156 { 157 u_char istat = 0; 158 int i; 159 160 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN)) 161 goto do_chip_reset; 162 163 OUTB(np, nc_istat, CABRT); 164 for (i = 100000 ; i ; --i) { 165 istat = INB(np, nc_istat); 166 if (istat & SIP) { 167 INW(np, nc_sist); 168 } 169 else if (istat & DIP) { 170 if (INB(np, nc_dstat) & ABRT) 171 break; 172 } 173 udelay(5); 174 } 175 OUTB(np, nc_istat, 0); 176 if (!i) 177 printf("%s: unable to abort current chip operation, " 178 "ISTAT=0x%02x.\n", sym_name(np), istat); 179 do_chip_reset: 180 sym_chip_reset(np); 181 } 182 183 /* 184 * Start reset process. 185 * 186 * The interrupt handler will reinitialize the chip. 187 */ 188 static void sym_start_reset(struct sym_hcb *np) 189 { 190 sym_reset_scsi_bus(np, 1); 191 } 192 193 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int) 194 { 195 u32 term; 196 int retv = 0; 197 198 sym_soft_reset(np); /* Soft reset the chip */ 199 if (enab_int) 200 OUTW(np, nc_sien, RST); 201 /* 202 * Enable Tolerant, reset IRQD if present and 203 * properly set IRQ mode, prior to resetting the bus. 204 */ 205 OUTB(np, nc_stest3, TE); 206 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM)); 207 OUTB(np, nc_scntl1, CRST); 208 INB(np, nc_mbox1); 209 udelay(200); 210 211 if (!SYM_SETUP_SCSI_BUS_CHECK) 212 goto out; 213 /* 214 * Check for no terminators or SCSI bus shorts to ground. 215 * Read SCSI data bus, data parity bits and control signals. 216 * We are expecting RESET to be TRUE and other signals to be 217 * FALSE. 218 */ 219 term = INB(np, nc_sstat0); 220 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 221 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */ 222 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */ 223 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 224 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */ 225 226 if (!np->maxwide) 227 term &= 0x3ffff; 228 229 if (term != (2<<7)) { 230 printf("%s: suspicious SCSI data while resetting the BUS.\n", 231 sym_name(np)); 232 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 233 "0x%lx, expecting 0x%lx\n", 234 sym_name(np), 235 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 236 (u_long)term, (u_long)(2<<7)); 237 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 238 retv = 1; 239 } 240 out: 241 OUTB(np, nc_scntl1, 0); 242 return retv; 243 } 244 245 /* 246 * Select SCSI clock frequency 247 */ 248 static void sym_selectclock(struct sym_hcb *np, u_char scntl3) 249 { 250 /* 251 * If multiplier not present or not selected, leave here. 252 */ 253 if (np->multiplier <= 1) { 254 OUTB(np, nc_scntl3, scntl3); 255 return; 256 } 257 258 if (sym_verbose >= 2) 259 printf ("%s: enabling clock multiplier\n", sym_name(np)); 260 261 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */ 262 /* 263 * Wait for the LCKFRQ bit to be set if supported by the chip. 264 * Otherwise wait 50 micro-seconds (at least). 265 */ 266 if (np->features & FE_LCKFRQ) { 267 int i = 20; 268 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0) 269 udelay(20); 270 if (!i) 271 printf("%s: the chip cannot lock the frequency\n", 272 sym_name(np)); 273 } else { 274 INB(np, nc_mbox1); 275 udelay(50+10); 276 } 277 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */ 278 OUTB(np, nc_scntl3, scntl3); 279 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 280 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */ 281 } 282 283 284 /* 285 * Determine the chip's clock frequency. 286 * 287 * This is essential for the negotiation of the synchronous 288 * transfer rate. 289 * 290 * Note: we have to return the correct value. 291 * THERE IS NO SAFE DEFAULT VALUE. 292 * 293 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 294 * 53C860 and 53C875 rev. 1 support fast20 transfers but 295 * do not have a clock doubler and so are provided with a 296 * 80 MHz clock. All other fast20 boards incorporate a doubler 297 * and so should be delivered with a 40 MHz clock. 298 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 299 * clock and provide a clock quadrupler (160 Mhz). 300 */ 301 302 /* 303 * calculate SCSI clock frequency (in KHz) 304 */ 305 static unsigned getfreq (struct sym_hcb *np, int gen) 306 { 307 unsigned int ms = 0; 308 unsigned int f; 309 310 /* 311 * Measure GEN timer delay in order 312 * to calculate SCSI clock frequency 313 * 314 * This code will never execute too 315 * many loop iterations (if DELAY is 316 * reasonably correct). It could get 317 * too low a delay (too high a freq.) 318 * if the CPU is slow executing the 319 * loop for some reason (an NMI, for 320 * example). For this reason we will 321 * if multiple measurements are to be 322 * performed trust the higher delay 323 * (lower frequency returned). 324 */ 325 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */ 326 INW(np, nc_sist); /* clear pending scsi interrupt */ 327 OUTB(np, nc_dien, 0); /* mask all dma interrupts */ 328 INW(np, nc_sist); /* another one, just to be sure :) */ 329 /* 330 * The C1010-33 core does not report GEN in SIST, 331 * if this interrupt is masked in SIEN. 332 * I don't know yet if the C1010-66 behaves the same way. 333 */ 334 if (np->features & FE_C10) { 335 OUTW(np, nc_sien, GEN); 336 OUTB(np, nc_istat1, SIRQD); 337 } 338 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 339 OUTB(np, nc_stime1, 0); /* disable general purpose timer */ 340 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 341 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000) 342 udelay(1000/4); /* count in 1/4 of ms */ 343 OUTB(np, nc_stime1, 0); /* disable general purpose timer */ 344 /* 345 * Undo C1010-33 specific settings. 346 */ 347 if (np->features & FE_C10) { 348 OUTW(np, nc_sien, 0); 349 OUTB(np, nc_istat1, 0); 350 } 351 /* 352 * set prescaler to divide by whatever 0 means 353 * 0 ought to choose divide by 2, but appears 354 * to set divide by 3.5 mode in my 53c810 ... 355 */ 356 OUTB(np, nc_scntl3, 0); 357 358 /* 359 * adjust for prescaler, and convert into KHz 360 */ 361 f = ms ? ((1 << gen) * (4340*4)) / ms : 0; 362 363 /* 364 * The C1010-33 result is biased by a factor 365 * of 2/3 compared to earlier chips. 366 */ 367 if (np->features & FE_C10) 368 f = (f * 2) / 3; 369 370 if (sym_verbose >= 2) 371 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 372 sym_name(np), gen, ms/4, f); 373 374 return f; 375 } 376 377 static unsigned sym_getfreq (struct sym_hcb *np) 378 { 379 u_int f1, f2; 380 int gen = 8; 381 382 getfreq (np, gen); /* throw away first result */ 383 f1 = getfreq (np, gen); 384 f2 = getfreq (np, gen); 385 if (f1 > f2) f1 = f2; /* trust lower result */ 386 return f1; 387 } 388 389 /* 390 * Get/probe chip SCSI clock frequency 391 */ 392 static void sym_getclock (struct sym_hcb *np, int mult) 393 { 394 unsigned char scntl3 = np->sv_scntl3; 395 unsigned char stest1 = np->sv_stest1; 396 unsigned f1; 397 398 np->multiplier = 1; 399 f1 = 40000; 400 /* 401 * True with 875/895/896/895A with clock multiplier selected 402 */ 403 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 404 if (sym_verbose >= 2) 405 printf ("%s: clock multiplier found\n", sym_name(np)); 406 np->multiplier = mult; 407 } 408 409 /* 410 * If multiplier not found or scntl3 not 7,5,3, 411 * reset chip and get frequency from general purpose timer. 412 * Otherwise trust scntl3 BIOS setting. 413 */ 414 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 415 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */ 416 f1 = sym_getfreq (np); 417 418 if (sym_verbose) 419 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 420 421 if (f1 < 45000) f1 = 40000; 422 else if (f1 < 55000) f1 = 50000; 423 else f1 = 80000; 424 425 if (f1 < 80000 && mult > 1) { 426 if (sym_verbose >= 2) 427 printf ("%s: clock multiplier assumed\n", 428 sym_name(np)); 429 np->multiplier = mult; 430 } 431 } else { 432 if ((scntl3 & 7) == 3) f1 = 40000; 433 else if ((scntl3 & 7) == 5) f1 = 80000; 434 else f1 = 160000; 435 436 f1 /= np->multiplier; 437 } 438 439 /* 440 * Compute controller synchronous parameters. 441 */ 442 f1 *= np->multiplier; 443 np->clock_khz = f1; 444 } 445 446 /* 447 * Get/probe PCI clock frequency 448 */ 449 static int sym_getpciclock (struct sym_hcb *np) 450 { 451 int f = 0; 452 453 /* 454 * For now, we only need to know about the actual 455 * PCI BUS clock frequency for C1010-66 chips. 456 */ 457 #if 1 458 if (np->features & FE_66MHZ) { 459 #else 460 if (1) { 461 #endif 462 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 463 f = sym_getfreq(np); 464 OUTB(np, nc_stest1, 0); 465 } 466 np->pciclk_khz = f; 467 468 return f; 469 } 470 471 /* 472 * SYMBIOS chip clock divisor table. 473 * 474 * Divisors are multiplied by 10,000,000 in order to make 475 * calculations more simple. 476 */ 477 #define _5M 5000000 478 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 479 480 /* 481 * Get clock factor and sync divisor for a given 482 * synchronous factor period. 483 */ 484 static int 485 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 486 { 487 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 488 int div = np->clock_divn; /* Number of divisors supported */ 489 u32 fak; /* Sync factor in sxfer */ 490 u32 per; /* Period in tenths of ns */ 491 u32 kpc; /* (per * clk) */ 492 int ret; 493 494 /* 495 * Compute the synchronous period in tenths of nano-seconds 496 */ 497 if (dt && sfac <= 9) per = 125; 498 else if (sfac <= 10) per = 250; 499 else if (sfac == 11) per = 303; 500 else if (sfac == 12) per = 500; 501 else per = 40 * sfac; 502 ret = per; 503 504 kpc = per * clk; 505 if (dt) 506 kpc <<= 1; 507 508 /* 509 * For earliest C10 revision 0, we cannot use extra 510 * clocks for the setting of the SCSI clocking. 511 * Note that this limits the lowest sync data transfer 512 * to 5 Mega-transfers per second and may result in 513 * using higher clock divisors. 514 */ 515 #if 1 516 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 517 /* 518 * Look for the lowest clock divisor that allows an 519 * output speed not faster than the period. 520 */ 521 while (div > 0) { 522 --div; 523 if (kpc > (div_10M[div] << 2)) { 524 ++div; 525 break; 526 } 527 } 528 fak = 0; /* No extra clocks */ 529 if (div == np->clock_divn) { /* Are we too fast ? */ 530 ret = -1; 531 } 532 *divp = div; 533 *fakp = fak; 534 return ret; 535 } 536 #endif 537 538 /* 539 * Look for the greatest clock divisor that allows an 540 * input speed faster than the period. 541 */ 542 while (div-- > 0) 543 if (kpc >= (div_10M[div] << 2)) break; 544 545 /* 546 * Calculate the lowest clock factor that allows an output 547 * speed not faster than the period, and the max output speed. 548 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 549 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 550 */ 551 if (dt) { 552 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 553 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 554 } else { 555 fak = (kpc - 1) / div_10M[div] + 1 - 4; 556 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 557 } 558 559 /* 560 * Check against our hardware limits, or bugs :). 561 */ 562 if (fak > 2) { 563 fak = 2; 564 ret = -1; 565 } 566 567 /* 568 * Compute and return sync parameters. 569 */ 570 *divp = div; 571 *fakp = fak; 572 573 return ret; 574 } 575 576 /* 577 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 578 * 128 transfers. All chips support at least 16 transfers 579 * bursts. The 825A, 875 and 895 chips support bursts of up 580 * to 128 transfers and the 895A and 896 support bursts of up 581 * to 64 transfers. All other chips support up to 16 582 * transfers bursts. 583 * 584 * For PCI 32 bit data transfers each transfer is a DWORD. 585 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 586 * 587 * We use log base 2 (burst length) as internal code, with 588 * value 0 meaning "burst disabled". 589 */ 590 591 /* 592 * Burst length from burst code. 593 */ 594 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 595 596 /* 597 * Burst code from io register bits. 598 */ 599 #define burst_code(dmode, ctest4, ctest5) \ 600 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 601 602 /* 603 * Set initial io register bits from burst code. 604 */ 605 static __inline void sym_init_burst(struct sym_hcb *np, u_char bc) 606 { 607 np->rv_ctest4 &= ~0x80; 608 np->rv_dmode &= ~(0x3 << 6); 609 np->rv_ctest5 &= ~0x4; 610 611 if (!bc) { 612 np->rv_ctest4 |= 0x80; 613 } 614 else { 615 --bc; 616 np->rv_dmode |= ((bc & 0x3) << 6); 617 np->rv_ctest5 |= (bc & 0x4); 618 } 619 } 620 621 /* 622 * Save initial settings of some IO registers. 623 * Assumed to have been set by BIOS. 624 * We cannot reset the chip prior to reading the 625 * IO registers, since informations will be lost. 626 * Since the SCRIPTS processor may be running, this 627 * is not safe on paper, but it seems to work quite 628 * well. :) 629 */ 630 static void sym_save_initial_setting (struct sym_hcb *np) 631 { 632 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a; 633 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07; 634 np->sv_dmode = INB(np, nc_dmode) & 0xce; 635 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8; 636 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01; 637 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80; 638 np->sv_gpcntl = INB(np, nc_gpcntl); 639 np->sv_stest1 = INB(np, nc_stest1); 640 np->sv_stest2 = INB(np, nc_stest2) & 0x20; 641 np->sv_stest4 = INB(np, nc_stest4); 642 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 643 np->sv_scntl4 = INB(np, nc_scntl4); 644 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04; 645 } 646 else 647 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24; 648 } 649 650 /* 651 * Set SCSI BUS mode. 652 * - LVD capable chips (895/895A/896/1010) report the current BUS mode 653 * through the STEST4 IO register. 654 * - For previous generation chips (825/825A/875), the user has to tell us 655 * how to check against HVD, since a 100% safe algorithm is not possible. 656 */ 657 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram) 658 { 659 if (np->scsi_mode) 660 return; 661 662 np->scsi_mode = SMODE_SE; 663 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 664 np->scsi_mode = (np->sv_stest4 & SMODE); 665 else if (np->features & FE_DIFF) { 666 if (SYM_SETUP_SCSI_DIFF == 1) { 667 if (np->sv_scntl3) { 668 if (np->sv_stest2 & 0x20) 669 np->scsi_mode = SMODE_HVD; 670 } else if (nvram->type == SYM_SYMBIOS_NVRAM) { 671 if (!(INB(np, nc_gpreg) & 0x08)) 672 np->scsi_mode = SMODE_HVD; 673 } 674 } else if (SYM_SETUP_SCSI_DIFF == 2) 675 np->scsi_mode = SMODE_HVD; 676 } 677 if (np->scsi_mode == SMODE_HVD) 678 np->rv_stest2 |= 0x20; 679 } 680 681 /* 682 * Prepare io register values used by sym_start_up() 683 * according to selected and supported features. 684 */ 685 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram) 686 { 687 u_char burst_max; 688 u32 period; 689 int i; 690 691 np->maxwide = (np->features & FE_WIDE) ? 1 : 0; 692 693 /* 694 * Guess the frequency of the chip's clock. 695 */ 696 if (np->features & (FE_ULTRA3 | FE_ULTRA2)) 697 np->clock_khz = 160000; 698 else if (np->features & FE_ULTRA) 699 np->clock_khz = 80000; 700 else 701 np->clock_khz = 40000; 702 703 /* 704 * Get the clock multiplier factor. 705 */ 706 if (np->features & FE_QUAD) 707 np->multiplier = 4; 708 else if (np->features & FE_DBLR) 709 np->multiplier = 2; 710 else 711 np->multiplier = 1; 712 713 /* 714 * Measure SCSI clock frequency for chips 715 * it may vary from assumed one. 716 */ 717 if (np->features & FE_VARCLK) 718 sym_getclock(np, np->multiplier); 719 720 /* 721 * Divisor to be used for async (timer pre-scaler). 722 */ 723 i = np->clock_divn - 1; 724 while (--i >= 0) { 725 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 726 ++i; 727 break; 728 } 729 } 730 np->rv_scntl3 = i+1; 731 732 /* 733 * The C1010 uses hardwired divisors for async. 734 * So, we just throw away, the async. divisor.:-) 735 */ 736 if (np->features & FE_C10) 737 np->rv_scntl3 = 0; 738 739 /* 740 * Minimum synchronous period factor supported by the chip. 741 * Btw, 'period' is in tenths of nanoseconds. 742 */ 743 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 744 745 if (period <= 250) np->minsync = 10; 746 else if (period <= 303) np->minsync = 11; 747 else if (period <= 500) np->minsync = 12; 748 else np->minsync = (period + 40 - 1) / 40; 749 750 /* 751 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 752 */ 753 if (np->minsync < 25 && 754 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 755 np->minsync = 25; 756 else if (np->minsync < 12 && 757 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 758 np->minsync = 12; 759 760 /* 761 * Maximum synchronous period factor supported by the chip. 762 */ 763 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 764 np->maxsync = period > 2540 ? 254 : period / 10; 765 766 /* 767 * If chip is a C1010, guess the sync limits in DT mode. 768 */ 769 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 770 if (np->clock_khz == 160000) { 771 np->minsync_dt = 9; 772 np->maxsync_dt = 50; 773 np->maxoffs_dt = nvram->type ? 62 : 31; 774 } 775 } 776 777 /* 778 * 64 bit addressing (895A/896/1010) ? 779 */ 780 if (np->features & FE_DAC) { 781 #if SYM_CONF_DMA_ADDRESSING_MODE == 0 782 np->rv_ccntl1 |= (DDAC); 783 #elif SYM_CONF_DMA_ADDRESSING_MODE == 1 784 if (!np->use_dac) 785 np->rv_ccntl1 |= (DDAC); 786 else 787 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 788 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2 789 if (!np->use_dac) 790 np->rv_ccntl1 |= (DDAC); 791 else 792 np->rv_ccntl1 |= (0 | EXTIBMV); 793 #endif 794 } 795 796 /* 797 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 798 */ 799 if (np->features & FE_NOPM) 800 np->rv_ccntl0 |= (ENPMJ); 801 802 /* 803 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed. 804 * In dual channel mode, contention occurs if internal cycles 805 * are used. Disable internal cycles. 806 */ 807 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 && 808 np->revision_id < 0x1) 809 np->rv_ccntl0 |= DILS; 810 811 /* 812 * Select burst length (dwords) 813 */ 814 burst_max = SYM_SETUP_BURST_ORDER; 815 if (burst_max == 255) 816 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 817 np->sv_ctest5); 818 if (burst_max > 7) 819 burst_max = 7; 820 if (burst_max > np->maxburst) 821 burst_max = np->maxburst; 822 823 /* 824 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 825 * This chip and the 860 Rev 1 may wrongly use PCI cache line 826 * based transactions on LOAD/STORE instructions. So we have 827 * to prevent these chips from using such PCI transactions in 828 * this driver. The generic ncr driver that does not use 829 * LOAD/STORE instructions does not need this work-around. 830 */ 831 if ((np->device_id == PCI_DEVICE_ID_NCR_53C810 && 832 np->revision_id >= 0x10 && np->revision_id <= 0x11) || 833 (np->device_id == PCI_DEVICE_ID_NCR_53C860 && 834 np->revision_id <= 0x1)) 835 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 836 837 /* 838 * Select all supported special features. 839 * If we are using on-board RAM for scripts, prefetch (PFEN) 840 * does not help, but burst op fetch (BOF) does. 841 * Disabling PFEN makes sure BOF will be used. 842 */ 843 if (np->features & FE_ERL) 844 np->rv_dmode |= ERL; /* Enable Read Line */ 845 if (np->features & FE_BOF) 846 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 847 if (np->features & FE_ERMP) 848 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 849 #if 1 850 if ((np->features & FE_PFEN) && !np->ram_ba) 851 #else 852 if (np->features & FE_PFEN) 853 #endif 854 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 855 if (np->features & FE_CLSE) 856 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 857 if (np->features & FE_WRIE) 858 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 859 if (np->features & FE_DFS) 860 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 861 862 /* 863 * Select some other 864 */ 865 np->rv_ctest4 |= MPEE; /* Master parity checking */ 866 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 867 868 /* 869 * Get parity checking, host ID and verbose mode from NVRAM 870 */ 871 np->myaddr = 255; 872 np->scsi_mode = 0; 873 sym_nvram_setup_host(shost, np, nvram); 874 875 /* 876 * Get SCSI addr of host adapter (set by bios?). 877 */ 878 if (np->myaddr == 255) { 879 np->myaddr = INB(np, nc_scid) & 0x07; 880 if (!np->myaddr) 881 np->myaddr = SYM_SETUP_HOST_ID; 882 } 883 884 /* 885 * Prepare initial io register bits for burst length 886 */ 887 sym_init_burst(np, burst_max); 888 889 sym_set_bus_mode(np, nvram); 890 891 /* 892 * Set LED support from SCRIPTS. 893 * Ignore this feature for boards known to use a 894 * specific GPIO wiring and for the 895A, 896 895 * and 1010 that drive the LED directly. 896 */ 897 if ((SYM_SETUP_SCSI_LED || 898 (nvram->type == SYM_SYMBIOS_NVRAM || 899 (nvram->type == SYM_TEKRAM_NVRAM && 900 np->device_id == PCI_DEVICE_ID_NCR_53C895))) && 901 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 902 np->features |= FE_LED0; 903 904 /* 905 * Set irq mode. 906 */ 907 switch(SYM_SETUP_IRQ_MODE & 3) { 908 case 2: 909 np->rv_dcntl |= IRQM; 910 break; 911 case 1: 912 np->rv_dcntl |= (np->sv_dcntl & IRQM); 913 break; 914 default: 915 break; 916 } 917 918 /* 919 * Configure targets according to driver setup. 920 * If NVRAM present get targets setup from NVRAM. 921 */ 922 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 923 struct sym_tcb *tp = &np->target[i]; 924 925 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 926 tp->usrtags = SYM_SETUP_MAX_TAG; 927 tp->usr_width = np->maxwide; 928 tp->usr_period = 9; 929 930 sym_nvram_setup_target(tp, i, nvram); 931 932 if (!tp->usrtags) 933 tp->usrflags &= ~SYM_TAGS_ENABLED; 934 } 935 936 /* 937 * Let user know about the settings. 938 */ 939 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np), 940 sym_nvram_type(nvram), np->myaddr, 941 (np->features & FE_ULTRA3) ? 80 : 942 (np->features & FE_ULTRA2) ? 40 : 943 (np->features & FE_ULTRA) ? 20 : 10, 944 sym_scsi_bus_mode(np->scsi_mode), 945 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 946 /* 947 * Tell him more on demand. 948 */ 949 if (sym_verbose) { 950 printf("%s: %s IRQ line driver%s\n", 951 sym_name(np), 952 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 953 np->ram_ba ? ", using on-chip SRAM" : ""); 954 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 955 if (np->features & FE_NOPM) 956 printf("%s: handling phase mismatch from SCRIPTS.\n", 957 sym_name(np)); 958 } 959 /* 960 * And still more. 961 */ 962 if (sym_verbose >= 2) { 963 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 964 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 965 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 966 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 967 968 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 969 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 970 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 971 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 972 } 973 974 return 0; 975 } 976 977 /* 978 * Test the pci bus snoop logic :-( 979 * 980 * Has to be called with interrupts disabled. 981 */ 982 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO 983 static int sym_regtest(struct sym_hcb *np) 984 { 985 register volatile u32 data; 986 /* 987 * chip registers may NOT be cached. 988 * write 0xffffffff to a read only register area, 989 * and try to read it back. 990 */ 991 data = 0xffffffff; 992 OUTL(np, nc_dstat, data); 993 data = INL(np, nc_dstat); 994 #if 1 995 if (data == 0xffffffff) { 996 #else 997 if ((data & 0xe2f0fffd) != 0x02000080) { 998 #endif 999 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 1000 (unsigned) data); 1001 return 0x10; 1002 } 1003 return 0; 1004 } 1005 #else 1006 static inline int sym_regtest(struct sym_hcb *np) 1007 { 1008 return 0; 1009 } 1010 #endif 1011 1012 static int sym_snooptest(struct sym_hcb *np) 1013 { 1014 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 1015 int i, err; 1016 1017 err = sym_regtest(np); 1018 if (err) 1019 return err; 1020 restart_test: 1021 /* 1022 * Enable Master Parity Checking as we intend 1023 * to enable it for normal operations. 1024 */ 1025 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE)); 1026 /* 1027 * init 1028 */ 1029 pc = SCRIPTZ_BA(np, snooptest); 1030 host_wr = 1; 1031 sym_wr = 2; 1032 /* 1033 * Set memory and register. 1034 */ 1035 np->scratch = cpu_to_scr(host_wr); 1036 OUTL(np, nc_temp, sym_wr); 1037 /* 1038 * Start script (exchange values) 1039 */ 1040 OUTL(np, nc_dsa, np->hcb_ba); 1041 OUTL_DSP(np, pc); 1042 /* 1043 * Wait 'til done (with timeout) 1044 */ 1045 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 1046 if (INB(np, nc_istat) & (INTF|SIP|DIP)) 1047 break; 1048 if (i>=SYM_SNOOP_TIMEOUT) { 1049 printf ("CACHE TEST FAILED: timeout.\n"); 1050 return (0x20); 1051 } 1052 /* 1053 * Check for fatal DMA errors. 1054 */ 1055 dstat = INB(np, nc_dstat); 1056 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 1057 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 1058 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 1059 "DISABLING MASTER DATA PARITY CHECKING.\n", 1060 sym_name(np)); 1061 np->rv_ctest4 &= ~MPEE; 1062 goto restart_test; 1063 } 1064 #endif 1065 if (dstat & (MDPE|BF|IID)) { 1066 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 1067 return (0x80); 1068 } 1069 /* 1070 * Save termination position. 1071 */ 1072 pc = INL(np, nc_dsp); 1073 /* 1074 * Read memory and register. 1075 */ 1076 host_rd = scr_to_cpu(np->scratch); 1077 sym_rd = INL(np, nc_scratcha); 1078 sym_bk = INL(np, nc_temp); 1079 /* 1080 * Check termination position. 1081 */ 1082 if (pc != SCRIPTZ_BA(np, snoopend)+8) { 1083 printf ("CACHE TEST FAILED: script execution failed.\n"); 1084 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 1085 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc, 1086 (u_long) SCRIPTZ_BA(np, snoopend) +8); 1087 return (0x40); 1088 } 1089 /* 1090 * Show results. 1091 */ 1092 if (host_wr != sym_rd) { 1093 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 1094 (int) host_wr, (int) sym_rd); 1095 err |= 1; 1096 } 1097 if (host_rd != sym_wr) { 1098 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 1099 (int) sym_wr, (int) host_rd); 1100 err |= 2; 1101 } 1102 if (sym_bk != sym_wr) { 1103 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 1104 (int) sym_wr, (int) sym_bk); 1105 err |= 4; 1106 } 1107 1108 return err; 1109 } 1110 1111 /* 1112 * log message for real hard errors 1113 * 1114 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc). 1115 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 1116 * 1117 * exception register: 1118 * ds: dstat 1119 * si: sist 1120 * 1121 * SCSI bus lines: 1122 * so: control lines as driven by chip. 1123 * si: control lines as seen by chip. 1124 * sd: scsi data lines as seen by chip. 1125 * 1126 * wide/fastmode: 1127 * sx: sxfer (see the manual) 1128 * s3: scntl3 (see the manual) 1129 * s4: scntl4 (see the manual) 1130 * 1131 * current script command: 1132 * dsp: script address (relative to start of script). 1133 * dbc: first word of script command. 1134 * 1135 * First 24 register of the chip: 1136 * r0..rf 1137 */ 1138 static void sym_log_hard_error(struct sym_hcb *np, u_short sist, u_char dstat) 1139 { 1140 u32 dsp; 1141 int script_ofs; 1142 int script_size; 1143 char *script_name; 1144 u_char *script_base; 1145 int i; 1146 1147 dsp = INL(np, nc_dsp); 1148 1149 if (dsp > np->scripta_ba && 1150 dsp <= np->scripta_ba + np->scripta_sz) { 1151 script_ofs = dsp - np->scripta_ba; 1152 script_size = np->scripta_sz; 1153 script_base = (u_char *) np->scripta0; 1154 script_name = "scripta"; 1155 } 1156 else if (np->scriptb_ba < dsp && 1157 dsp <= np->scriptb_ba + np->scriptb_sz) { 1158 script_ofs = dsp - np->scriptb_ba; 1159 script_size = np->scriptb_sz; 1160 script_base = (u_char *) np->scriptb0; 1161 script_name = "scriptb"; 1162 } else { 1163 script_ofs = dsp; 1164 script_size = 0; 1165 script_base = NULL; 1166 script_name = "mem"; 1167 } 1168 1169 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n", 1170 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist, 1171 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl), 1172 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer), 1173 (unsigned)INB(np, nc_scntl3), 1174 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0, 1175 script_name, script_ofs, (unsigned)INL(np, nc_dbc)); 1176 1177 if (((script_ofs & 3) == 0) && 1178 (unsigned)script_ofs < script_size) { 1179 printf ("%s: script cmd = %08x\n", sym_name(np), 1180 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 1181 } 1182 1183 printf ("%s: regdump:", sym_name(np)); 1184 for (i=0; i<24;i++) 1185 printf (" %02x", (unsigned)INB_OFF(np, i)); 1186 printf (".\n"); 1187 1188 /* 1189 * PCI BUS error. 1190 */ 1191 if (dstat & (MDPE|BF)) 1192 sym_log_bus_error(np); 1193 } 1194 1195 static struct sym_chip sym_dev_table[] = { 1196 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64, 1197 FE_ERL} 1198 , 1199 #ifdef SYM_DEBUG_GENERIC_SUPPORT 1200 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, 1201 FE_BOF} 1202 , 1203 #else 1204 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, 1205 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 1206 , 1207 #endif 1208 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64, 1209 FE_BOF|FE_ERL} 1210 , 1211 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64, 1212 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 1213 , 1214 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2, 1215 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 1216 , 1217 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1, 1218 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 1219 , 1220 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2, 1221 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1222 FE_RAM|FE_DIFF|FE_VARCLK} 1223 , 1224 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2, 1225 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1226 FE_RAM|FE_DIFF|FE_VARCLK} 1227 , 1228 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2, 1229 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1230 FE_RAM|FE_DIFF|FE_VARCLK} 1231 , 1232 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2, 1233 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1234 FE_RAM|FE_DIFF|FE_VARCLK} 1235 , 1236 #ifdef SYM_DEBUG_GENERIC_SUPPORT 1237 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, 1238 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 1239 FE_RAM|FE_LCKFRQ} 1240 , 1241 #else 1242 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, 1243 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1244 FE_RAM|FE_LCKFRQ} 1245 , 1246 #endif 1247 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4, 1248 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1249 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 1250 , 1251 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4, 1252 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1253 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 1254 , 1255 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4, 1256 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1257 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 1258 , 1259 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8, 1260 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 1261 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 1262 FE_C10} 1263 , 1264 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8, 1265 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 1266 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 1267 FE_C10|FE_U3EN} 1268 , 1269 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8, 1270 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 1271 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 1272 FE_C10|FE_U3EN} 1273 , 1274 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4, 1275 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1276 FE_RAM|FE_IO256|FE_LEDC} 1277 }; 1278 1279 #define sym_num_devs (ARRAY_SIZE(sym_dev_table)) 1280 1281 /* 1282 * Look up the chip table. 1283 * 1284 * Return a pointer to the chip entry if found, 1285 * zero otherwise. 1286 */ 1287 struct sym_chip * 1288 sym_lookup_chip_table (u_short device_id, u_char revision) 1289 { 1290 struct sym_chip *chip; 1291 int i; 1292 1293 for (i = 0; i < sym_num_devs; i++) { 1294 chip = &sym_dev_table[i]; 1295 if (device_id != chip->device_id) 1296 continue; 1297 if (revision > chip->revision_id) 1298 continue; 1299 return chip; 1300 } 1301 1302 return NULL; 1303 } 1304 1305 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 1306 /* 1307 * Lookup the 64 bit DMA segments map. 1308 * This is only used if the direct mapping 1309 * has been unsuccessful. 1310 */ 1311 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s) 1312 { 1313 int i; 1314 1315 if (!np->use_dac) 1316 goto weird; 1317 1318 /* Look up existing mappings */ 1319 for (i = SYM_DMAP_SIZE-1; i > 0; i--) { 1320 if (h == np->dmap_bah[i]) 1321 return i; 1322 } 1323 /* If direct mapping is free, get it */ 1324 if (!np->dmap_bah[s]) 1325 goto new; 1326 /* Collision -> lookup free mappings */ 1327 for (s = SYM_DMAP_SIZE-1; s > 0; s--) { 1328 if (!np->dmap_bah[s]) 1329 goto new; 1330 } 1331 weird: 1332 panic("sym: ran out of 64 bit DMA segment registers"); 1333 return -1; 1334 new: 1335 np->dmap_bah[s] = h; 1336 np->dmap_dirty = 1; 1337 return s; 1338 } 1339 1340 /* 1341 * Update IO registers scratch C..R so they will be 1342 * in sync. with queued CCB expectations. 1343 */ 1344 static void sym_update_dmap_regs(struct sym_hcb *np) 1345 { 1346 int o, i; 1347 1348 if (!np->dmap_dirty) 1349 return; 1350 o = offsetof(struct sym_reg, nc_scrx[0]); 1351 for (i = 0; i < SYM_DMAP_SIZE; i++) { 1352 OUTL_OFF(np, o, np->dmap_bah[i]); 1353 o += 4; 1354 } 1355 np->dmap_dirty = 0; 1356 } 1357 #endif 1358 1359 /* Enforce all the fiddly SPI rules and the chip limitations */ 1360 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget, 1361 struct sym_trans *goal) 1362 { 1363 if (!spi_support_wide(starget)) 1364 goal->width = 0; 1365 1366 if (!spi_support_sync(starget)) { 1367 goal->iu = 0; 1368 goal->dt = 0; 1369 goal->qas = 0; 1370 goal->offset = 0; 1371 return; 1372 } 1373 1374 if (spi_support_dt(starget)) { 1375 if (spi_support_dt_only(starget)) 1376 goal->dt = 1; 1377 1378 if (goal->offset == 0) 1379 goal->dt = 0; 1380 } else { 1381 goal->dt = 0; 1382 } 1383 1384 /* Some targets fail to properly negotiate DT in SE mode */ 1385 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN)) 1386 goal->dt = 0; 1387 1388 if (goal->dt) { 1389 /* all DT transfers must be wide */ 1390 goal->width = 1; 1391 if (goal->offset > np->maxoffs_dt) 1392 goal->offset = np->maxoffs_dt; 1393 if (goal->period < np->minsync_dt) 1394 goal->period = np->minsync_dt; 1395 if (goal->period > np->maxsync_dt) 1396 goal->period = np->maxsync_dt; 1397 } else { 1398 goal->iu = goal->qas = 0; 1399 if (goal->offset > np->maxoffs) 1400 goal->offset = np->maxoffs; 1401 if (goal->period < np->minsync) 1402 goal->period = np->minsync; 1403 if (goal->period > np->maxsync) 1404 goal->period = np->maxsync; 1405 } 1406 } 1407 1408 /* 1409 * Prepare the next negotiation message if needed. 1410 * 1411 * Fill in the part of message buffer that contains the 1412 * negotiation and the nego_status field of the CCB. 1413 * Returns the size of the message in bytes. 1414 */ 1415 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr) 1416 { 1417 struct sym_tcb *tp = &np->target[cp->target]; 1418 struct scsi_target *starget = tp->starget; 1419 struct sym_trans *goal = &tp->tgoal; 1420 int msglen = 0; 1421 int nego; 1422 1423 sym_check_goals(np, starget, goal); 1424 1425 /* 1426 * Many devices implement PPR in a buggy way, so only use it if we 1427 * really want to. 1428 */ 1429 if (goal->offset && 1430 (goal->iu || goal->dt || goal->qas || (goal->period < 0xa))) { 1431 nego = NS_PPR; 1432 } else if (spi_width(starget) != goal->width) { 1433 nego = NS_WIDE; 1434 } else if (spi_period(starget) != goal->period || 1435 spi_offset(starget) != goal->offset) { 1436 nego = NS_SYNC; 1437 } else { 1438 goal->check_nego = 0; 1439 nego = 0; 1440 } 1441 1442 switch (nego) { 1443 case NS_SYNC: 1444 msglen += spi_populate_sync_msg(msgptr + msglen, goal->period, 1445 goal->offset); 1446 break; 1447 case NS_WIDE: 1448 msglen += spi_populate_width_msg(msgptr + msglen, goal->width); 1449 break; 1450 case NS_PPR: 1451 msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period, 1452 goal->offset, goal->width, 1453 (goal->iu ? PPR_OPT_IU : 0) | 1454 (goal->dt ? PPR_OPT_DT : 0) | 1455 (goal->qas ? PPR_OPT_QAS : 0)); 1456 break; 1457 } 1458 1459 cp->nego_status = nego; 1460 1461 if (nego) { 1462 tp->nego_cp = cp; /* Keep track a nego will be performed */ 1463 if (DEBUG_FLAGS & DEBUG_NEGO) { 1464 sym_print_nego_msg(np, cp->target, 1465 nego == NS_SYNC ? "sync msgout" : 1466 nego == NS_WIDE ? "wide msgout" : 1467 "ppr msgout", msgptr); 1468 } 1469 } 1470 1471 return msglen; 1472 } 1473 1474 /* 1475 * Insert a job into the start queue. 1476 */ 1477 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp) 1478 { 1479 u_short qidx; 1480 1481 #ifdef SYM_CONF_IARB_SUPPORT 1482 /* 1483 * If the previously queued CCB is not yet done, 1484 * set the IARB hint. The SCRIPTS will go with IARB 1485 * for this job when starting the previous one. 1486 * We leave devices a chance to win arbitration by 1487 * not using more than 'iarb_max' consecutive 1488 * immediate arbitrations. 1489 */ 1490 if (np->last_cp && np->iarb_count < np->iarb_max) { 1491 np->last_cp->host_flags |= HF_HINT_IARB; 1492 ++np->iarb_count; 1493 } 1494 else 1495 np->iarb_count = 0; 1496 np->last_cp = cp; 1497 #endif 1498 1499 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 1500 /* 1501 * Make SCRIPTS aware of the 64 bit DMA 1502 * segment registers not being up-to-date. 1503 */ 1504 if (np->dmap_dirty) 1505 cp->host_xflags |= HX_DMAP_DIRTY; 1506 #endif 1507 1508 /* 1509 * Insert first the idle task and then our job. 1510 * The MBs should ensure proper ordering. 1511 */ 1512 qidx = np->squeueput + 2; 1513 if (qidx >= MAX_QUEUE*2) qidx = 0; 1514 1515 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 1516 MEMORY_WRITE_BARRIER(); 1517 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 1518 1519 np->squeueput = qidx; 1520 1521 if (DEBUG_FLAGS & DEBUG_QUEUE) 1522 printf ("%s: queuepos=%d.\n", sym_name (np), np->squeueput); 1523 1524 /* 1525 * Script processor may be waiting for reselect. 1526 * Wake it up. 1527 */ 1528 MEMORY_WRITE_BARRIER(); 1529 OUTB(np, nc_istat, SIGP|np->istat_sem); 1530 } 1531 1532 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 1533 /* 1534 * Start next ready-to-start CCBs. 1535 */ 1536 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn) 1537 { 1538 SYM_QUEHEAD *qp; 1539 struct sym_ccb *cp; 1540 1541 /* 1542 * Paranoia, as usual. :-) 1543 */ 1544 assert(!lp->started_tags || !lp->started_no_tag); 1545 1546 /* 1547 * Try to start as many commands as asked by caller. 1548 * Prevent from having both tagged and untagged 1549 * commands queued to the device at the same time. 1550 */ 1551 while (maxn--) { 1552 qp = sym_remque_head(&lp->waiting_ccbq); 1553 if (!qp) 1554 break; 1555 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq); 1556 if (cp->tag != NO_TAG) { 1557 if (lp->started_no_tag || 1558 lp->started_tags >= lp->started_max) { 1559 sym_insque_head(qp, &lp->waiting_ccbq); 1560 break; 1561 } 1562 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba); 1563 lp->head.resel_sa = 1564 cpu_to_scr(SCRIPTA_BA(np, resel_tag)); 1565 ++lp->started_tags; 1566 } else { 1567 if (lp->started_no_tag || lp->started_tags) { 1568 sym_insque_head(qp, &lp->waiting_ccbq); 1569 break; 1570 } 1571 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 1572 lp->head.resel_sa = 1573 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); 1574 ++lp->started_no_tag; 1575 } 1576 cp->started = 1; 1577 sym_insque_tail(qp, &lp->started_ccbq); 1578 sym_put_start_queue(np, cp); 1579 } 1580 } 1581 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */ 1582 1583 /* 1584 * The chip may have completed jobs. Look at the DONE QUEUE. 1585 * 1586 * On paper, memory read barriers may be needed here to 1587 * prevent out of order LOADs by the CPU from having 1588 * prefetched stale data prior to DMA having occurred. 1589 */ 1590 static int sym_wakeup_done (struct sym_hcb *np) 1591 { 1592 struct sym_ccb *cp; 1593 int i, n; 1594 u32 dsa; 1595 1596 n = 0; 1597 i = np->dqueueget; 1598 1599 /* MEMORY_READ_BARRIER(); */ 1600 while (1) { 1601 dsa = scr_to_cpu(np->dqueue[i]); 1602 if (!dsa) 1603 break; 1604 np->dqueue[i] = 0; 1605 if ((i = i+2) >= MAX_QUEUE*2) 1606 i = 0; 1607 1608 cp = sym_ccb_from_dsa(np, dsa); 1609 if (cp) { 1610 MEMORY_READ_BARRIER(); 1611 sym_complete_ok (np, cp); 1612 ++n; 1613 } 1614 else 1615 printf ("%s: bad DSA (%x) in done queue.\n", 1616 sym_name(np), (u_int) dsa); 1617 } 1618 np->dqueueget = i; 1619 1620 return n; 1621 } 1622 1623 /* 1624 * Complete all CCBs queued to the COMP queue. 1625 * 1626 * These CCBs are assumed: 1627 * - Not to be referenced either by devices or 1628 * SCRIPTS-related queues and datas. 1629 * - To have to be completed with an error condition 1630 * or requeued. 1631 * 1632 * The device queue freeze count is incremented 1633 * for each CCB that does not prevent this. 1634 * This function is called when all CCBs involved 1635 * in error handling/recovery have been reaped. 1636 */ 1637 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status) 1638 { 1639 SYM_QUEHEAD *qp; 1640 struct sym_ccb *cp; 1641 1642 while ((qp = sym_remque_head(&np->comp_ccbq)) != 0) { 1643 struct scsi_cmnd *cmd; 1644 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 1645 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 1646 /* Leave quiet CCBs waiting for resources */ 1647 if (cp->host_status == HS_WAIT) 1648 continue; 1649 cmd = cp->cmd; 1650 if (cam_status) 1651 sym_set_cam_status(cmd, cam_status); 1652 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 1653 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) { 1654 struct sym_tcb *tp = &np->target[cp->target]; 1655 struct sym_lcb *lp = sym_lp(tp, cp->lun); 1656 if (lp) { 1657 sym_remque(&cp->link2_ccbq); 1658 sym_insque_tail(&cp->link2_ccbq, 1659 &lp->waiting_ccbq); 1660 if (cp->started) { 1661 if (cp->tag != NO_TAG) 1662 --lp->started_tags; 1663 else 1664 --lp->started_no_tag; 1665 } 1666 } 1667 cp->started = 0; 1668 continue; 1669 } 1670 #endif 1671 sym_free_ccb(np, cp); 1672 sym_xpt_done(np, cmd); 1673 } 1674 } 1675 1676 /* 1677 * Complete all active CCBs with error. 1678 * Used on CHIP/SCSI RESET. 1679 */ 1680 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status) 1681 { 1682 /* 1683 * Move all active CCBs to the COMP queue 1684 * and flush this queue. 1685 */ 1686 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 1687 sym_que_init(&np->busy_ccbq); 1688 sym_flush_comp_queue(np, cam_status); 1689 } 1690 1691 /* 1692 * Start chip. 1693 * 1694 * 'reason' means: 1695 * 0: initialisation. 1696 * 1: SCSI BUS RESET delivered or received. 1697 * 2: SCSI BUS MODE changed. 1698 */ 1699 void sym_start_up (struct sym_hcb *np, int reason) 1700 { 1701 int i; 1702 u32 phys; 1703 1704 /* 1705 * Reset chip if asked, otherwise just clear fifos. 1706 */ 1707 if (reason == 1) 1708 sym_soft_reset(np); 1709 else { 1710 OUTB(np, nc_stest3, TE|CSF); 1711 OUTONB(np, nc_ctest3, CLF); 1712 } 1713 1714 /* 1715 * Clear Start Queue 1716 */ 1717 phys = np->squeue_ba; 1718 for (i = 0; i < MAX_QUEUE*2; i += 2) { 1719 np->squeue[i] = cpu_to_scr(np->idletask_ba); 1720 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 1721 } 1722 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 1723 1724 /* 1725 * Start at first entry. 1726 */ 1727 np->squeueput = 0; 1728 1729 /* 1730 * Clear Done Queue 1731 */ 1732 phys = np->dqueue_ba; 1733 for (i = 0; i < MAX_QUEUE*2; i += 2) { 1734 np->dqueue[i] = 0; 1735 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 1736 } 1737 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 1738 1739 /* 1740 * Start at first entry. 1741 */ 1742 np->dqueueget = 0; 1743 1744 /* 1745 * Install patches in scripts. 1746 * This also let point to first position the start 1747 * and done queue pointers used from SCRIPTS. 1748 */ 1749 np->fw_patch(np); 1750 1751 /* 1752 * Wakeup all pending jobs. 1753 */ 1754 sym_flush_busy_queue(np, DID_RESET); 1755 1756 /* 1757 * Init chip. 1758 */ 1759 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */ 1760 INB(np, nc_mbox1); 1761 udelay(2000); /* The 895 needs time for the bus mode to settle */ 1762 1763 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0); 1764 /* full arb., ena parity, par->ATN */ 1765 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 1766 1767 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 1768 1769 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 1770 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 1771 OUTB(np, nc_istat , SIGP ); /* Signal Process */ 1772 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 1773 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 1774 1775 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 1776 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 1777 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */ 1778 1779 /* Extended Sreq/Sack filtering not supported on the C10 */ 1780 if (np->features & FE_C10) 1781 OUTB(np, nc_stest2, np->rv_stest2); 1782 else 1783 OUTB(np, nc_stest2, EXT|np->rv_stest2); 1784 1785 OUTB(np, nc_stest3, TE); /* TolerANT enable */ 1786 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 1787 1788 /* 1789 * For now, disable AIP generation on C1010-66. 1790 */ 1791 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_66) 1792 OUTB(np, nc_aipcntl1, DISAIP); 1793 1794 /* 1795 * C10101 rev. 0 errata. 1796 * Errant SGE's when in narrow. Write bits 4 & 5 of 1797 * STEST1 register to disable SGE. We probably should do 1798 * that from SCRIPTS for each selection/reselection, but 1799 * I just don't want. :) 1800 */ 1801 if (np->device_id == PCI_DEVICE_ID_LSI_53C1010_33 && 1802 np->revision_id < 1) 1803 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30); 1804 1805 /* 1806 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 1807 * Disable overlapped arbitration for some dual function devices, 1808 * regardless revision id (kind of post-chip-design feature. ;-)) 1809 */ 1810 if (np->device_id == PCI_DEVICE_ID_NCR_53C875) 1811 OUTB(np, nc_ctest0, (1<<5)); 1812 else if (np->device_id == PCI_DEVICE_ID_NCR_53C896) 1813 np->rv_ccntl0 |= DPR; 1814 1815 /* 1816 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 1817 * and/or hardware phase mismatch, since only such chips 1818 * seem to support those IO registers. 1819 */ 1820 if (np->features & (FE_DAC|FE_NOPM)) { 1821 OUTB(np, nc_ccntl0, np->rv_ccntl0); 1822 OUTB(np, nc_ccntl1, np->rv_ccntl1); 1823 } 1824 1825 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 1826 /* 1827 * Set up scratch C and DRS IO registers to map the 32 bit 1828 * DMA address range our data structures are located in. 1829 */ 1830 if (np->use_dac) { 1831 np->dmap_bah[0] = 0; /* ??? */ 1832 OUTL(np, nc_scrx[0], np->dmap_bah[0]); 1833 OUTL(np, nc_drs, np->dmap_bah[0]); 1834 } 1835 #endif 1836 1837 /* 1838 * If phase mismatch handled by scripts (895A/896/1010), 1839 * set PM jump addresses. 1840 */ 1841 if (np->features & FE_NOPM) { 1842 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle)); 1843 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle)); 1844 } 1845 1846 /* 1847 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 1848 * Also set GPIO5 and clear GPIO6 if hardware LED control. 1849 */ 1850 if (np->features & FE_LED0) 1851 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01); 1852 else if (np->features & FE_LEDC) 1853 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20); 1854 1855 /* 1856 * enable ints 1857 */ 1858 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 1859 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID); 1860 1861 /* 1862 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 1863 * Try to eat the spurious SBMC interrupt that may occur when 1864 * we reset the chip but not the SCSI BUS (at initialization). 1865 */ 1866 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 1867 OUTONW(np, nc_sien, SBMC); 1868 if (reason == 0) { 1869 INB(np, nc_mbox1); 1870 mdelay(100); 1871 INW(np, nc_sist); 1872 } 1873 np->scsi_mode = INB(np, nc_stest4) & SMODE; 1874 } 1875 1876 /* 1877 * Fill in target structure. 1878 * Reinitialize usrsync. 1879 * Reinitialize usrwide. 1880 * Prepare sync negotiation according to actual SCSI bus mode. 1881 */ 1882 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 1883 struct sym_tcb *tp = &np->target[i]; 1884 1885 tp->to_reset = 0; 1886 tp->head.sval = 0; 1887 tp->head.wval = np->rv_scntl3; 1888 tp->head.uval = 0; 1889 } 1890 1891 /* 1892 * Download SCSI SCRIPTS to on-chip RAM if present, 1893 * and start script processor. 1894 * We do the download preferently from the CPU. 1895 * For platforms that may not support PCI memory mapping, 1896 * we use simple SCRIPTS that performs MEMORY MOVEs. 1897 */ 1898 phys = SCRIPTA_BA(np, init); 1899 if (np->ram_ba) { 1900 if (sym_verbose >= 2) 1901 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np)); 1902 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz); 1903 if (np->ram_ws == 8192) { 1904 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz); 1905 phys = scr_to_cpu(np->scr_ram_seg); 1906 OUTL(np, nc_mmws, phys); 1907 OUTL(np, nc_mmrs, phys); 1908 OUTL(np, nc_sfs, phys); 1909 phys = SCRIPTB_BA(np, start64); 1910 } 1911 } 1912 1913 np->istat_sem = 0; 1914 1915 OUTL(np, nc_dsa, np->hcb_ba); 1916 OUTL_DSP(np, phys); 1917 1918 /* 1919 * Notify the XPT about the RESET condition. 1920 */ 1921 if (reason != 0) 1922 sym_xpt_async_bus_reset(np); 1923 } 1924 1925 /* 1926 * Switch trans mode for current job and its target. 1927 */ 1928 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs, 1929 u_char per, u_char wide, u_char div, u_char fak) 1930 { 1931 SYM_QUEHEAD *qp; 1932 u_char sval, wval, uval; 1933 struct sym_tcb *tp = &np->target[target]; 1934 1935 assert(target == (INB(np, nc_sdid) & 0x0f)); 1936 1937 sval = tp->head.sval; 1938 wval = tp->head.wval; 1939 uval = tp->head.uval; 1940 1941 #if 0 1942 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 1943 sval, wval, uval, np->rv_scntl3); 1944 #endif 1945 /* 1946 * Set the offset. 1947 */ 1948 if (!(np->features & FE_C10)) 1949 sval = (sval & ~0x1f) | ofs; 1950 else 1951 sval = (sval & ~0x3f) | ofs; 1952 1953 /* 1954 * Set the sync divisor and extra clock factor. 1955 */ 1956 if (ofs != 0) { 1957 wval = (wval & ~0x70) | ((div+1) << 4); 1958 if (!(np->features & FE_C10)) 1959 sval = (sval & ~0xe0) | (fak << 5); 1960 else { 1961 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 1962 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 1963 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 1964 } 1965 } 1966 1967 /* 1968 * Set the bus width. 1969 */ 1970 wval = wval & ~EWS; 1971 if (wide != 0) 1972 wval |= EWS; 1973 1974 /* 1975 * Set misc. ultra enable bits. 1976 */ 1977 if (np->features & FE_C10) { 1978 uval = uval & ~(U3EN|AIPCKEN); 1979 if (opts) { 1980 assert(np->features & FE_U3EN); 1981 uval |= U3EN; 1982 } 1983 } else { 1984 wval = wval & ~ULTRA; 1985 if (per <= 12) wval |= ULTRA; 1986 } 1987 1988 /* 1989 * Stop there if sync parameters are unchanged. 1990 */ 1991 if (tp->head.sval == sval && 1992 tp->head.wval == wval && 1993 tp->head.uval == uval) 1994 return; 1995 tp->head.sval = sval; 1996 tp->head.wval = wval; 1997 tp->head.uval = uval; 1998 1999 /* 2000 * Disable extended Sreq/Sack filtering if per < 50. 2001 * Not supported on the C1010. 2002 */ 2003 if (per < 50 && !(np->features & FE_C10)) 2004 OUTOFFB(np, nc_stest2, EXT); 2005 2006 /* 2007 * set actual value and sync_status 2008 */ 2009 OUTB(np, nc_sxfer, tp->head.sval); 2010 OUTB(np, nc_scntl3, tp->head.wval); 2011 2012 if (np->features & FE_C10) { 2013 OUTB(np, nc_scntl4, tp->head.uval); 2014 } 2015 2016 /* 2017 * patch ALL busy ccbs of this target. 2018 */ 2019 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 2020 struct sym_ccb *cp; 2021 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 2022 if (cp->target != target) 2023 continue; 2024 cp->phys.select.sel_scntl3 = tp->head.wval; 2025 cp->phys.select.sel_sxfer = tp->head.sval; 2026 if (np->features & FE_C10) { 2027 cp->phys.select.sel_scntl4 = tp->head.uval; 2028 } 2029 } 2030 } 2031 2032 /* 2033 * We received a WDTR. 2034 * Let everything be aware of the changes. 2035 */ 2036 static void sym_setwide(struct sym_hcb *np, int target, u_char wide) 2037 { 2038 struct sym_tcb *tp = &np->target[target]; 2039 struct scsi_target *starget = tp->starget; 2040 2041 if (spi_width(starget) == wide) 2042 return; 2043 2044 sym_settrans(np, target, 0, 0, 0, wide, 0, 0); 2045 2046 tp->tgoal.width = wide; 2047 spi_offset(starget) = 0; 2048 spi_period(starget) = 0; 2049 spi_width(starget) = wide; 2050 spi_iu(starget) = 0; 2051 spi_dt(starget) = 0; 2052 spi_qas(starget) = 0; 2053 2054 if (sym_verbose >= 3) 2055 spi_display_xfer_agreement(starget); 2056 } 2057 2058 /* 2059 * We received a SDTR. 2060 * Let everything be aware of the changes. 2061 */ 2062 static void 2063 sym_setsync(struct sym_hcb *np, int target, 2064 u_char ofs, u_char per, u_char div, u_char fak) 2065 { 2066 struct sym_tcb *tp = &np->target[target]; 2067 struct scsi_target *starget = tp->starget; 2068 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT; 2069 2070 sym_settrans(np, target, 0, ofs, per, wide, div, fak); 2071 2072 spi_period(starget) = per; 2073 spi_offset(starget) = ofs; 2074 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0; 2075 2076 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) { 2077 tp->tgoal.period = per; 2078 tp->tgoal.offset = ofs; 2079 tp->tgoal.check_nego = 0; 2080 } 2081 2082 spi_display_xfer_agreement(starget); 2083 } 2084 2085 /* 2086 * We received a PPR. 2087 * Let everything be aware of the changes. 2088 */ 2089 static void 2090 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs, 2091 u_char per, u_char wide, u_char div, u_char fak) 2092 { 2093 struct sym_tcb *tp = &np->target[target]; 2094 struct scsi_target *starget = tp->starget; 2095 2096 sym_settrans(np, target, opts, ofs, per, wide, div, fak); 2097 2098 spi_width(starget) = tp->tgoal.width = wide; 2099 spi_period(starget) = tp->tgoal.period = per; 2100 spi_offset(starget) = tp->tgoal.offset = ofs; 2101 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU); 2102 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT); 2103 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS); 2104 tp->tgoal.check_nego = 0; 2105 2106 spi_display_xfer_agreement(starget); 2107 } 2108 2109 /* 2110 * generic recovery from scsi interrupt 2111 * 2112 * The doc says that when the chip gets an SCSI interrupt, 2113 * it tries to stop in an orderly fashion, by completing 2114 * an instruction fetch that had started or by flushing 2115 * the DMA fifo for a write to memory that was executing. 2116 * Such a fashion is not enough to know if the instruction 2117 * that was just before the current DSP value has been 2118 * executed or not. 2119 * 2120 * There are some small SCRIPTS sections that deal with 2121 * the start queue and the done queue that may break any 2122 * assomption from the C code if we are interrupted 2123 * inside, so we reset if this happens. Btw, since these 2124 * SCRIPTS sections are executed while the SCRIPTS hasn't 2125 * started SCSI operations, it is very unlikely to happen. 2126 * 2127 * All the driver data structures are supposed to be 2128 * allocated from the same 4 GB memory window, so there 2129 * is a 1 to 1 relationship between DSA and driver data 2130 * structures. Since we are careful :) to invalidate the 2131 * DSA when we complete a command or when the SCRIPTS 2132 * pushes a DSA into a queue, we can trust it when it 2133 * points to a CCB. 2134 */ 2135 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts) 2136 { 2137 u32 dsp = INL(np, nc_dsp); 2138 u32 dsa = INL(np, nc_dsa); 2139 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); 2140 2141 /* 2142 * If we haven't been interrupted inside the SCRIPTS 2143 * critical pathes, we can safely restart the SCRIPTS 2144 * and trust the DSA value if it matches a CCB. 2145 */ 2146 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) && 2147 dsp < SCRIPTA_BA(np, getjob_end) + 1)) && 2148 (!(dsp > SCRIPTA_BA(np, ungetjob) && 2149 dsp < SCRIPTA_BA(np, reselect) + 1)) && 2150 (!(dsp > SCRIPTB_BA(np, sel_for_abort) && 2151 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) && 2152 (!(dsp > SCRIPTA_BA(np, done) && 2153 dsp < SCRIPTA_BA(np, done_end) + 1))) { 2154 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 2155 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ 2156 /* 2157 * If we have a CCB, let the SCRIPTS call us back for 2158 * the handling of the error with SCRATCHA filled with 2159 * STARTPOS. This way, we will be able to freeze the 2160 * device queue and requeue awaiting IOs. 2161 */ 2162 if (cp) { 2163 cp->host_status = hsts; 2164 OUTL_DSP(np, SCRIPTA_BA(np, complete_error)); 2165 } 2166 /* 2167 * Otherwise just restart the SCRIPTS. 2168 */ 2169 else { 2170 OUTL(np, nc_dsa, 0xffffff); 2171 OUTL_DSP(np, SCRIPTA_BA(np, start)); 2172 } 2173 } 2174 else 2175 goto reset_all; 2176 2177 return; 2178 2179 reset_all: 2180 sym_start_reset(np); 2181 } 2182 2183 /* 2184 * chip exception handler for selection timeout 2185 */ 2186 static void sym_int_sto (struct sym_hcb *np) 2187 { 2188 u32 dsp = INL(np, nc_dsp); 2189 2190 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 2191 2192 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8) 2193 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 2194 else 2195 sym_start_reset(np); 2196 } 2197 2198 /* 2199 * chip exception handler for unexpected disconnect 2200 */ 2201 static void sym_int_udc (struct sym_hcb *np) 2202 { 2203 printf ("%s: unexpected disconnect\n", sym_name(np)); 2204 sym_recover_scsi_int(np, HS_UNEXPECTED); 2205 } 2206 2207 /* 2208 * chip exception handler for SCSI bus mode change 2209 * 2210 * spi2-r12 11.2.3 says a transceiver mode change must 2211 * generate a reset event and a device that detects a reset 2212 * event shall initiate a hard reset. It says also that a 2213 * device that detects a mode change shall set data transfer 2214 * mode to eight bit asynchronous, etc... 2215 * So, just reinitializing all except chip should be enough. 2216 */ 2217 static void sym_int_sbmc (struct sym_hcb *np) 2218 { 2219 u_char scsi_mode = INB(np, nc_stest4) & SMODE; 2220 2221 /* 2222 * Notify user. 2223 */ 2224 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np), 2225 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 2226 2227 /* 2228 * Should suspend command processing for a few seconds and 2229 * reinitialize all except the chip. 2230 */ 2231 sym_start_up (np, 2); 2232 } 2233 2234 /* 2235 * chip exception handler for SCSI parity error. 2236 * 2237 * When the chip detects a SCSI parity error and is 2238 * currently executing a (CH)MOV instruction, it does 2239 * not interrupt immediately, but tries to finish the 2240 * transfer of the current scatter entry before 2241 * interrupting. The following situations may occur: 2242 * 2243 * - The complete scatter entry has been transferred 2244 * without the device having changed phase. 2245 * The chip will then interrupt with the DSP pointing 2246 * to the instruction that follows the MOV. 2247 * 2248 * - A phase mismatch occurs before the MOV finished 2249 * and phase errors are to be handled by the C code. 2250 * The chip will then interrupt with both PAR and MA 2251 * conditions set. 2252 * 2253 * - A phase mismatch occurs before the MOV finished and 2254 * phase errors are to be handled by SCRIPTS. 2255 * The chip will load the DSP with the phase mismatch 2256 * JUMP address and interrupt the host processor. 2257 */ 2258 static void sym_int_par (struct sym_hcb *np, u_short sist) 2259 { 2260 u_char hsts = INB(np, HS_PRT); 2261 u32 dsp = INL(np, nc_dsp); 2262 u32 dbc = INL(np, nc_dbc); 2263 u32 dsa = INL(np, nc_dsa); 2264 u_char sbcl = INB(np, nc_sbcl); 2265 u_char cmd = dbc >> 24; 2266 int phase = cmd & 7; 2267 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); 2268 2269 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 2270 sym_name(np), hsts, dbc, sbcl); 2271 2272 /* 2273 * Check that the chip is connected to the SCSI BUS. 2274 */ 2275 if (!(INB(np, nc_scntl1) & ISCON)) { 2276 sym_recover_scsi_int(np, HS_UNEXPECTED); 2277 return; 2278 } 2279 2280 /* 2281 * If the nexus is not clearly identified, reset the bus. 2282 * We will try to do better later. 2283 */ 2284 if (!cp) 2285 goto reset_all; 2286 2287 /* 2288 * Check instruction was a MOV, direction was INPUT and 2289 * ATN is asserted. 2290 */ 2291 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 2292 goto reset_all; 2293 2294 /* 2295 * Keep track of the parity error. 2296 */ 2297 OUTONB(np, HF_PRT, HF_EXT_ERR); 2298 cp->xerr_status |= XE_PARITY_ERR; 2299 2300 /* 2301 * Prepare the message to send to the device. 2302 */ 2303 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 2304 2305 /* 2306 * If the old phase was DATA IN phase, we have to deal with 2307 * the 3 situations described above. 2308 * For other input phases (MSG IN and STATUS), the device 2309 * must resend the whole thing that failed parity checking 2310 * or signal error. So, jumping to dispatcher should be OK. 2311 */ 2312 if (phase == 1 || phase == 5) { 2313 /* Phase mismatch handled by SCRIPTS */ 2314 if (dsp == SCRIPTB_BA(np, pm_handle)) 2315 OUTL_DSP(np, dsp); 2316 /* Phase mismatch handled by the C code */ 2317 else if (sist & MA) 2318 sym_int_ma (np); 2319 /* No phase mismatch occurred */ 2320 else { 2321 sym_set_script_dp (np, cp, dsp); 2322 OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); 2323 } 2324 } 2325 else if (phase == 7) /* We definitely cannot handle parity errors */ 2326 #if 1 /* in message-in phase due to the relection */ 2327 goto reset_all; /* path and various message anticipations. */ 2328 #else 2329 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 2330 #endif 2331 else 2332 OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); 2333 return; 2334 2335 reset_all: 2336 sym_start_reset(np); 2337 return; 2338 } 2339 2340 /* 2341 * chip exception handler for phase errors. 2342 * 2343 * We have to construct a new transfer descriptor, 2344 * to transfer the rest of the current block. 2345 */ 2346 static void sym_int_ma (struct sym_hcb *np) 2347 { 2348 u32 dbc; 2349 u32 rest; 2350 u32 dsp; 2351 u32 dsa; 2352 u32 nxtdsp; 2353 u32 *vdsp; 2354 u32 oadr, olen; 2355 u32 *tblp; 2356 u32 newcmd; 2357 u_int delta; 2358 u_char cmd; 2359 u_char hflags, hflags0; 2360 struct sym_pmc *pm; 2361 struct sym_ccb *cp; 2362 2363 dsp = INL(np, nc_dsp); 2364 dbc = INL(np, nc_dbc); 2365 dsa = INL(np, nc_dsa); 2366 2367 cmd = dbc >> 24; 2368 rest = dbc & 0xffffff; 2369 delta = 0; 2370 2371 /* 2372 * locate matching cp if any. 2373 */ 2374 cp = sym_ccb_from_dsa(np, dsa); 2375 2376 /* 2377 * Donnot take into account dma fifo and various buffers in 2378 * INPUT phase since the chip flushes everything before 2379 * raising the MA interrupt for interrupted INPUT phases. 2380 * For DATA IN phase, we will check for the SWIDE later. 2381 */ 2382 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 2383 u_char ss0, ss2; 2384 2385 if (np->features & FE_DFBC) 2386 delta = INW(np, nc_dfbc); 2387 else { 2388 u32 dfifo; 2389 2390 /* 2391 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 2392 */ 2393 dfifo = INL(np, nc_dfifo); 2394 2395 /* 2396 * Calculate remaining bytes in DMA fifo. 2397 * (CTEST5 = dfifo >> 16) 2398 */ 2399 if (dfifo & (DFS << 16)) 2400 delta = ((((dfifo >> 8) & 0x300) | 2401 (dfifo & 0xff)) - rest) & 0x3ff; 2402 else 2403 delta = ((dfifo & 0xff) - rest) & 0x7f; 2404 } 2405 2406 /* 2407 * The data in the dma fifo has not been transfered to 2408 * the target -> add the amount to the rest 2409 * and clear the data. 2410 * Check the sstat2 register in case of wide transfer. 2411 */ 2412 rest += delta; 2413 ss0 = INB(np, nc_sstat0); 2414 if (ss0 & OLF) rest++; 2415 if (!(np->features & FE_C10)) 2416 if (ss0 & ORF) rest++; 2417 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 2418 ss2 = INB(np, nc_sstat2); 2419 if (ss2 & OLF1) rest++; 2420 if (!(np->features & FE_C10)) 2421 if (ss2 & ORF1) rest++; 2422 } 2423 2424 /* 2425 * Clear fifos. 2426 */ 2427 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 2428 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */ 2429 } 2430 2431 /* 2432 * log the information 2433 */ 2434 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 2435 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7, 2436 (unsigned) rest, (unsigned) delta); 2437 2438 /* 2439 * try to find the interrupted script command, 2440 * and the address at which to continue. 2441 */ 2442 vdsp = NULL; 2443 nxtdsp = 0; 2444 if (dsp > np->scripta_ba && 2445 dsp <= np->scripta_ba + np->scripta_sz) { 2446 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 2447 nxtdsp = dsp; 2448 } 2449 else if (dsp > np->scriptb_ba && 2450 dsp <= np->scriptb_ba + np->scriptb_sz) { 2451 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 2452 nxtdsp = dsp; 2453 } 2454 2455 /* 2456 * log the information 2457 */ 2458 if (DEBUG_FLAGS & DEBUG_PHASE) { 2459 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 2460 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 2461 } 2462 2463 if (!vdsp) { 2464 printf ("%s: interrupted SCRIPT address not found.\n", 2465 sym_name (np)); 2466 goto reset_all; 2467 } 2468 2469 if (!cp) { 2470 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 2471 sym_name (np)); 2472 goto reset_all; 2473 } 2474 2475 /* 2476 * get old startaddress and old length. 2477 */ 2478 oadr = scr_to_cpu(vdsp[1]); 2479 2480 if (cmd & 0x10) { /* Table indirect */ 2481 tblp = (u32 *) ((char*) &cp->phys + oadr); 2482 olen = scr_to_cpu(tblp[0]); 2483 oadr = scr_to_cpu(tblp[1]); 2484 } else { 2485 tblp = (u32 *) 0; 2486 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 2487 } 2488 2489 if (DEBUG_FLAGS & DEBUG_PHASE) { 2490 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 2491 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 2492 tblp, 2493 (unsigned) olen, 2494 (unsigned) oadr); 2495 } 2496 2497 /* 2498 * check cmd against assumed interrupted script command. 2499 * If dt data phase, the MOVE instruction hasn't bit 4 of 2500 * the phase. 2501 */ 2502 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 2503 sym_print_addr(cp->cmd, 2504 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 2505 cmd, scr_to_cpu(vdsp[0]) >> 24); 2506 2507 goto reset_all; 2508 } 2509 2510 /* 2511 * if old phase not dataphase, leave here. 2512 */ 2513 if (cmd & 2) { 2514 sym_print_addr(cp->cmd, 2515 "phase change %x-%x %d@%08x resid=%d.\n", 2516 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen, 2517 (unsigned)oadr, (unsigned)rest); 2518 goto unexpected_phase; 2519 } 2520 2521 /* 2522 * Choose the correct PM save area. 2523 * 2524 * Look at the PM_SAVE SCRIPT if you want to understand 2525 * this stuff. The equivalent code is implemented in 2526 * SCRIPTS for the 895A, 896 and 1010 that are able to 2527 * handle PM from the SCRIPTS processor. 2528 */ 2529 hflags0 = INB(np, HF_PRT); 2530 hflags = hflags0; 2531 2532 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 2533 if (hflags & HF_IN_PM0) 2534 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 2535 else if (hflags & HF_IN_PM1) 2536 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 2537 2538 if (hflags & HF_DP_SAVED) 2539 hflags ^= HF_ACT_PM; 2540 } 2541 2542 if (!(hflags & HF_ACT_PM)) { 2543 pm = &cp->phys.pm0; 2544 newcmd = SCRIPTA_BA(np, pm0_data); 2545 } 2546 else { 2547 pm = &cp->phys.pm1; 2548 newcmd = SCRIPTA_BA(np, pm1_data); 2549 } 2550 2551 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 2552 if (hflags != hflags0) 2553 OUTB(np, HF_PRT, hflags); 2554 2555 /* 2556 * fillin the phase mismatch context 2557 */ 2558 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 2559 pm->sg.size = cpu_to_scr(rest); 2560 pm->ret = cpu_to_scr(nxtdsp); 2561 2562 /* 2563 * If we have a SWIDE, 2564 * - prepare the address to write the SWIDE from SCRIPTS, 2565 * - compute the SCRIPTS address to restart from, 2566 * - move current data pointer context by one byte. 2567 */ 2568 nxtdsp = SCRIPTA_BA(np, dispatch); 2569 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 2570 (INB(np, nc_scntl2) & WSR)) { 2571 u32 tmp; 2572 2573 /* 2574 * Set up the table indirect for the MOVE 2575 * of the residual byte and adjust the data 2576 * pointer context. 2577 */ 2578 tmp = scr_to_cpu(pm->sg.addr); 2579 cp->phys.wresid.addr = cpu_to_scr(tmp); 2580 pm->sg.addr = cpu_to_scr(tmp + 1); 2581 tmp = scr_to_cpu(pm->sg.size); 2582 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 2583 pm->sg.size = cpu_to_scr(tmp - 1); 2584 2585 /* 2586 * If only the residual byte is to be moved, 2587 * no PM context is needed. 2588 */ 2589 if ((tmp&0xffffff) == 1) 2590 newcmd = pm->ret; 2591 2592 /* 2593 * Prepare the address of SCRIPTS that will 2594 * move the residual byte to memory. 2595 */ 2596 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper); 2597 } 2598 2599 if (DEBUG_FLAGS & DEBUG_PHASE) { 2600 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n", 2601 hflags0, hflags, newcmd, 2602 (unsigned)scr_to_cpu(pm->sg.addr), 2603 (unsigned)scr_to_cpu(pm->sg.size), 2604 (unsigned)scr_to_cpu(pm->ret)); 2605 } 2606 2607 /* 2608 * Restart the SCRIPTS processor. 2609 */ 2610 sym_set_script_dp (np, cp, newcmd); 2611 OUTL_DSP(np, nxtdsp); 2612 return; 2613 2614 /* 2615 * Unexpected phase changes that occurs when the current phase 2616 * is not a DATA IN or DATA OUT phase are due to error conditions. 2617 * Such event may only happen when the SCRIPTS is using a 2618 * multibyte SCSI MOVE. 2619 * 2620 * Phase change Some possible cause 2621 * 2622 * COMMAND --> MSG IN SCSI parity error detected by target. 2623 * COMMAND --> STATUS Bad command or refused by target. 2624 * MSG OUT --> MSG IN Message rejected by target. 2625 * MSG OUT --> COMMAND Bogus target that discards extended 2626 * negotiation messages. 2627 * 2628 * The code below does not care of the new phase and so 2629 * trusts the target. Why to annoy it ? 2630 * If the interrupted phase is COMMAND phase, we restart at 2631 * dispatcher. 2632 * If a target does not get all the messages after selection, 2633 * the code assumes blindly that the target discards extended 2634 * messages and clears the negotiation status. 2635 * If the target does not want all our response to negotiation, 2636 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 2637 * bloat for such a should_not_happen situation). 2638 * In all other situation, we reset the BUS. 2639 * Are these assumptions reasonnable ? (Wait and see ...) 2640 */ 2641 unexpected_phase: 2642 dsp -= 8; 2643 nxtdsp = 0; 2644 2645 switch (cmd & 7) { 2646 case 2: /* COMMAND phase */ 2647 nxtdsp = SCRIPTA_BA(np, dispatch); 2648 break; 2649 #if 0 2650 case 3: /* STATUS phase */ 2651 nxtdsp = SCRIPTA_BA(np, dispatch); 2652 break; 2653 #endif 2654 case 6: /* MSG OUT phase */ 2655 /* 2656 * If the device may want to use untagged when we want 2657 * tagged, we prepare an IDENTIFY without disc. granted, 2658 * since we will not be able to handle reselect. 2659 * Otherwise, we just don't care. 2660 */ 2661 if (dsp == SCRIPTA_BA(np, send_ident)) { 2662 if (cp->tag != NO_TAG && olen - rest <= 3) { 2663 cp->host_status = HS_BUSY; 2664 np->msgout[0] = IDENTIFY(0, cp->lun); 2665 nxtdsp = SCRIPTB_BA(np, ident_break_atn); 2666 } 2667 else 2668 nxtdsp = SCRIPTB_BA(np, ident_break); 2669 } 2670 else if (dsp == SCRIPTB_BA(np, send_wdtr) || 2671 dsp == SCRIPTB_BA(np, send_sdtr) || 2672 dsp == SCRIPTB_BA(np, send_ppr)) { 2673 nxtdsp = SCRIPTB_BA(np, nego_bad_phase); 2674 if (dsp == SCRIPTB_BA(np, send_ppr)) { 2675 struct scsi_device *dev = cp->cmd->device; 2676 dev->ppr = 0; 2677 } 2678 } 2679 break; 2680 #if 0 2681 case 7: /* MSG IN phase */ 2682 nxtdsp = SCRIPTA_BA(np, clrack); 2683 break; 2684 #endif 2685 } 2686 2687 if (nxtdsp) { 2688 OUTL_DSP(np, nxtdsp); 2689 return; 2690 } 2691 2692 reset_all: 2693 sym_start_reset(np); 2694 } 2695 2696 /* 2697 * chip interrupt handler 2698 * 2699 * In normal situations, interrupt conditions occur one at 2700 * a time. But when something bad happens on the SCSI BUS, 2701 * the chip may raise several interrupt flags before 2702 * stopping and interrupting the CPU. The additionnal 2703 * interrupt flags are stacked in some extra registers 2704 * after the SIP and/or DIP flag has been raised in the 2705 * ISTAT. After the CPU has read the interrupt condition 2706 * flag from SIST or DSTAT, the chip unstacks the other 2707 * interrupt flags and sets the corresponding bits in 2708 * SIST or DSTAT. Since the chip starts stacking once the 2709 * SIP or DIP flag is set, there is a small window of time 2710 * where the stacking does not occur. 2711 * 2712 * Typically, multiple interrupt conditions may happen in 2713 * the following situations: 2714 * 2715 * - SCSI parity error + Phase mismatch (PAR|MA) 2716 * When an parity error is detected in input phase 2717 * and the device switches to msg-in phase inside a 2718 * block MOV. 2719 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 2720 * When a stupid device does not want to handle the 2721 * recovery of an SCSI parity error. 2722 * - Some combinations of STO, PAR, UDC, ... 2723 * When using non compliant SCSI stuff, when user is 2724 * doing non compliant hot tampering on the BUS, when 2725 * something really bad happens to a device, etc ... 2726 * 2727 * The heuristic suggested by SYMBIOS to handle 2728 * multiple interrupts is to try unstacking all 2729 * interrupts conditions and to handle them on some 2730 * priority based on error severity. 2731 * This will work when the unstacking has been 2732 * successful, but we cannot be 100 % sure of that, 2733 * since the CPU may have been faster to unstack than 2734 * the chip is able to stack. Hmmm ... But it seems that 2735 * such a situation is very unlikely to happen. 2736 * 2737 * If this happen, for example STO caught by the CPU 2738 * then UDC happenning before the CPU have restarted 2739 * the SCRIPTS, the driver may wrongly complete the 2740 * same command on UDC, since the SCRIPTS didn't restart 2741 * and the DSA still points to the same command. 2742 * We avoid this situation by setting the DSA to an 2743 * invalid value when the CCB is completed and before 2744 * restarting the SCRIPTS. 2745 * 2746 * Another issue is that we need some section of our 2747 * recovery procedures to be somehow uninterruptible but 2748 * the SCRIPTS processor does not provides such a 2749 * feature. For this reason, we handle recovery preferently 2750 * from the C code and check against some SCRIPTS critical 2751 * sections from the C code. 2752 * 2753 * Hopefully, the interrupt handling of the driver is now 2754 * able to resist to weird BUS error conditions, but donnot 2755 * ask me for any guarantee that it will never fail. :-) 2756 * Use at your own decision and risk. 2757 */ 2758 2759 void sym_interrupt (struct sym_hcb *np) 2760 { 2761 u_char istat, istatc; 2762 u_char dstat; 2763 u_short sist; 2764 2765 /* 2766 * interrupt on the fly ? 2767 * (SCRIPTS may still be running) 2768 * 2769 * A `dummy read' is needed to ensure that the 2770 * clear of the INTF flag reaches the device 2771 * and that posted writes are flushed to memory 2772 * before the scanning of the DONE queue. 2773 * Note that SCRIPTS also (dummy) read to memory 2774 * prior to deliver the INTF interrupt condition. 2775 */ 2776 istat = INB(np, nc_istat); 2777 if (istat & INTF) { 2778 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem); 2779 istat = INB(np, nc_istat); /* DUMMY READ */ 2780 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 2781 sym_wakeup_done(np); 2782 } 2783 2784 if (!(istat & (SIP|DIP))) 2785 return; 2786 2787 #if 0 /* We should never get this one */ 2788 if (istat & CABRT) 2789 OUTB(np, nc_istat, CABRT); 2790 #endif 2791 2792 /* 2793 * PAR and MA interrupts may occur at the same time, 2794 * and we need to know of both in order to handle 2795 * this situation properly. We try to unstack SCSI 2796 * interrupts for that reason. BTW, I dislike a LOT 2797 * such a loop inside the interrupt routine. 2798 * Even if DMA interrupt stacking is very unlikely to 2799 * happen, we also try unstacking these ones, since 2800 * this has no performance impact. 2801 */ 2802 sist = 0; 2803 dstat = 0; 2804 istatc = istat; 2805 do { 2806 if (istatc & SIP) 2807 sist |= INW(np, nc_sist); 2808 if (istatc & DIP) 2809 dstat |= INB(np, nc_dstat); 2810 istatc = INB(np, nc_istat); 2811 istat |= istatc; 2812 } while (istatc & (SIP|DIP)); 2813 2814 if (DEBUG_FLAGS & DEBUG_TINY) 2815 printf ("<%d|%x:%x|%x:%x>", 2816 (int)INB(np, nc_scr0), 2817 dstat,sist, 2818 (unsigned)INL(np, nc_dsp), 2819 (unsigned)INL(np, nc_dbc)); 2820 /* 2821 * On paper, a memory read barrier may be needed here to 2822 * prevent out of order LOADs by the CPU from having 2823 * prefetched stale data prior to DMA having occurred. 2824 * And since we are paranoid ... :) 2825 */ 2826 MEMORY_READ_BARRIER(); 2827 2828 /* 2829 * First, interrupts we want to service cleanly. 2830 * 2831 * Phase mismatch (MA) is the most frequent interrupt 2832 * for chip earlier than the 896 and so we have to service 2833 * it as quickly as possible. 2834 * A SCSI parity error (PAR) may be combined with a phase 2835 * mismatch condition (MA). 2836 * Programmed interrupts (SIR) are used to call the C code 2837 * from SCRIPTS. 2838 * The single step interrupt (SSI) is not used in this 2839 * driver. 2840 */ 2841 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 2842 !(dstat & (MDPE|BF|ABRT|IID))) { 2843 if (sist & PAR) sym_int_par (np, sist); 2844 else if (sist & MA) sym_int_ma (np); 2845 else if (dstat & SIR) sym_int_sir (np); 2846 else if (dstat & SSI) OUTONB_STD(); 2847 else goto unknown_int; 2848 return; 2849 } 2850 2851 /* 2852 * Now, interrupts that donnot happen in normal 2853 * situations and that we may need to recover from. 2854 * 2855 * On SCSI RESET (RST), we reset everything. 2856 * On SCSI BUS MODE CHANGE (SBMC), we complete all 2857 * active CCBs with RESET status, prepare all devices 2858 * for negotiating again and restart the SCRIPTS. 2859 * On STO and UDC, we complete the CCB with the corres- 2860 * ponding status and restart the SCRIPTS. 2861 */ 2862 if (sist & RST) { 2863 printf("%s: SCSI BUS reset detected.\n", sym_name(np)); 2864 sym_start_up (np, 1); 2865 return; 2866 } 2867 2868 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 2869 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ 2870 2871 if (!(sist & (GEN|HTH|SGE)) && 2872 !(dstat & (MDPE|BF|ABRT|IID))) { 2873 if (sist & SBMC) sym_int_sbmc (np); 2874 else if (sist & STO) sym_int_sto (np); 2875 else if (sist & UDC) sym_int_udc (np); 2876 else goto unknown_int; 2877 return; 2878 } 2879 2880 /* 2881 * Now, interrupts we are not able to recover cleanly. 2882 * 2883 * Log message for hard errors. 2884 * Reset everything. 2885 */ 2886 2887 sym_log_hard_error(np, sist, dstat); 2888 2889 if ((sist & (GEN|HTH|SGE)) || 2890 (dstat & (MDPE|BF|ABRT|IID))) { 2891 sym_start_reset(np); 2892 return; 2893 } 2894 2895 unknown_int: 2896 /* 2897 * We just miss the cause of the interrupt. :( 2898 * Print a message. The timeout will do the real work. 2899 */ 2900 printf( "%s: unknown interrupt(s) ignored, " 2901 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 2902 sym_name(np), istat, dstat, sist); 2903 } 2904 2905 /* 2906 * Dequeue from the START queue all CCBs that match 2907 * a given target/lun/task condition (-1 means all), 2908 * and move them from the BUSY queue to the COMP queue 2909 * with DID_SOFT_ERROR status condition. 2910 * This function is used during error handling/recovery. 2911 * It is called with SCRIPTS not running. 2912 */ 2913 static int 2914 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task) 2915 { 2916 int j; 2917 struct sym_ccb *cp; 2918 2919 /* 2920 * Make sure the starting index is within range. 2921 */ 2922 assert((i >= 0) && (i < 2*MAX_QUEUE)); 2923 2924 /* 2925 * Walk until end of START queue and dequeue every job 2926 * that matches the target/lun/task condition. 2927 */ 2928 j = i; 2929 while (i != np->squeueput) { 2930 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 2931 assert(cp); 2932 #ifdef SYM_CONF_IARB_SUPPORT 2933 /* Forget hints for IARB, they may be no longer relevant */ 2934 cp->host_flags &= ~HF_HINT_IARB; 2935 #endif 2936 if ((target == -1 || cp->target == target) && 2937 (lun == -1 || cp->lun == lun) && 2938 (task == -1 || cp->tag == task)) { 2939 sym_set_cam_status(cp->cmd, DID_SOFT_ERROR); 2940 sym_remque(&cp->link_ccbq); 2941 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 2942 } 2943 else { 2944 if (i != j) 2945 np->squeue[j] = np->squeue[i]; 2946 if ((j += 2) >= MAX_QUEUE*2) j = 0; 2947 } 2948 if ((i += 2) >= MAX_QUEUE*2) i = 0; 2949 } 2950 if (i != j) /* Copy back the idle task if needed */ 2951 np->squeue[j] = np->squeue[i]; 2952 np->squeueput = j; /* Update our current start queue pointer */ 2953 2954 return (i - j) / 2; 2955 } 2956 2957 /* 2958 * chip handler for bad SCSI status condition 2959 * 2960 * In case of bad SCSI status, we unqueue all the tasks 2961 * currently queued to the controller but not yet started 2962 * and then restart the SCRIPTS processor immediately. 2963 * 2964 * QUEUE FULL and BUSY conditions are handled the same way. 2965 * Basically all the not yet started tasks are requeued in 2966 * device queue and the queue is frozen until a completion. 2967 * 2968 * For CHECK CONDITION and COMMAND TERMINATED status, we use 2969 * the CCB of the failed command to prepare a REQUEST SENSE 2970 * SCSI command and queue it to the controller queue. 2971 * 2972 * SCRATCHA is assumed to have been loaded with STARTPOS 2973 * before the SCRIPTS called the C code. 2974 */ 2975 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp) 2976 { 2977 u32 startp; 2978 u_char s_status = cp->ssss_status; 2979 u_char h_flags = cp->host_flags; 2980 int msglen; 2981 int i; 2982 2983 /* 2984 * Compute the index of the next job to start from SCRIPTS. 2985 */ 2986 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; 2987 2988 /* 2989 * The last CCB queued used for IARB hint may be 2990 * no longer relevant. Forget it. 2991 */ 2992 #ifdef SYM_CONF_IARB_SUPPORT 2993 if (np->last_cp) 2994 np->last_cp = 0; 2995 #endif 2996 2997 /* 2998 * Now deal with the SCSI status. 2999 */ 3000 switch(s_status) { 3001 case S_BUSY: 3002 case S_QUEUE_FULL: 3003 if (sym_verbose >= 2) { 3004 sym_print_addr(cp->cmd, "%s\n", 3005 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 3006 } 3007 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 3008 sym_complete_error (np, cp); 3009 break; 3010 case S_TERMINATED: 3011 case S_CHECK_COND: 3012 /* 3013 * If we get an SCSI error when requesting sense, give up. 3014 */ 3015 if (h_flags & HF_SENSE) { 3016 sym_complete_error (np, cp); 3017 break; 3018 } 3019 3020 /* 3021 * Dequeue all queued CCBs for that device not yet started, 3022 * and restart the SCRIPTS processor immediately. 3023 */ 3024 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 3025 OUTL_DSP(np, SCRIPTA_BA(np, start)); 3026 3027 /* 3028 * Save some info of the actual IO. 3029 * Compute the data residual. 3030 */ 3031 cp->sv_scsi_status = cp->ssss_status; 3032 cp->sv_xerr_status = cp->xerr_status; 3033 cp->sv_resid = sym_compute_residual(np, cp); 3034 3035 /* 3036 * Prepare all needed data structures for 3037 * requesting sense data. 3038 */ 3039 3040 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun); 3041 msglen = 1; 3042 3043 /* 3044 * If we are currently using anything different from 3045 * async. 8 bit data transfers with that target, 3046 * start a negotiation, since the device may want 3047 * to report us a UNIT ATTENTION condition due to 3048 * a cause we currently ignore, and we donnot want 3049 * to be stuck with WIDE and/or SYNC data transfer. 3050 * 3051 * cp->nego_status is filled by sym_prepare_nego(). 3052 */ 3053 cp->nego_status = 0; 3054 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]); 3055 /* 3056 * Message table indirect structure. 3057 */ 3058 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2); 3059 cp->phys.smsg.size = cpu_to_scr(msglen); 3060 3061 /* 3062 * sense command 3063 */ 3064 cp->phys.cmd.addr = CCB_BA(cp, sensecmd); 3065 cp->phys.cmd.size = cpu_to_scr(6); 3066 3067 /* 3068 * patch requested size into sense command 3069 */ 3070 cp->sensecmd[0] = REQUEST_SENSE; 3071 cp->sensecmd[1] = 0; 3072 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7) 3073 cp->sensecmd[1] = cp->lun << 5; 3074 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 3075 cp->data_len = SYM_SNS_BBUF_LEN; 3076 3077 /* 3078 * sense data 3079 */ 3080 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN); 3081 cp->phys.sense.addr = CCB_BA(cp, sns_bbuf); 3082 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 3083 3084 /* 3085 * requeue the command. 3086 */ 3087 startp = SCRIPTB_BA(np, sdata_in); 3088 3089 cp->phys.head.savep = cpu_to_scr(startp); 3090 cp->phys.head.lastp = cpu_to_scr(startp); 3091 cp->startp = cpu_to_scr(startp); 3092 cp->goalp = cpu_to_scr(startp + 16); 3093 3094 cp->host_xflags = 0; 3095 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 3096 cp->ssss_status = S_ILLEGAL; 3097 cp->host_flags = (HF_SENSE|HF_DATA_IN); 3098 cp->xerr_status = 0; 3099 cp->extra_bytes = 0; 3100 3101 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); 3102 3103 /* 3104 * Requeue the command. 3105 */ 3106 sym_put_start_queue(np, cp); 3107 3108 /* 3109 * Give back to upper layer everything we have dequeued. 3110 */ 3111 sym_flush_comp_queue(np, 0); 3112 break; 3113 } 3114 } 3115 3116 /* 3117 * After a device has accepted some management message 3118 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 3119 * a device signals a UNIT ATTENTION condition, some 3120 * tasks are thrown away by the device. We are required 3121 * to reflect that on our tasks list since the device 3122 * will never complete these tasks. 3123 * 3124 * This function move from the BUSY queue to the COMP 3125 * queue all disconnected CCBs for a given target that 3126 * match the following criteria: 3127 * - lun=-1 means any logical UNIT otherwise a given one. 3128 * - task=-1 means any task, otherwise a given one. 3129 */ 3130 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task) 3131 { 3132 SYM_QUEHEAD qtmp, *qp; 3133 int i = 0; 3134 struct sym_ccb *cp; 3135 3136 /* 3137 * Move the entire BUSY queue to our temporary queue. 3138 */ 3139 sym_que_init(&qtmp); 3140 sym_que_splice(&np->busy_ccbq, &qtmp); 3141 sym_que_init(&np->busy_ccbq); 3142 3143 /* 3144 * Put all CCBs that matches our criteria into 3145 * the COMP queue and put back other ones into 3146 * the BUSY queue. 3147 */ 3148 while ((qp = sym_remque_head(&qtmp)) != 0) { 3149 struct scsi_cmnd *cmd; 3150 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3151 cmd = cp->cmd; 3152 if (cp->host_status != HS_DISCONNECT || 3153 cp->target != target || 3154 (lun != -1 && cp->lun != lun) || 3155 (task != -1 && 3156 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 3157 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 3158 continue; 3159 } 3160 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 3161 3162 /* Preserve the software timeout condition */ 3163 if (sym_get_cam_status(cmd) != DID_TIME_OUT) 3164 sym_set_cam_status(cmd, cam_status); 3165 ++i; 3166 #if 0 3167 printf("XXXX TASK @%p CLEARED\n", cp); 3168 #endif 3169 } 3170 return i; 3171 } 3172 3173 /* 3174 * chip handler for TASKS recovery 3175 * 3176 * We cannot safely abort a command, while the SCRIPTS 3177 * processor is running, since we just would be in race 3178 * with it. 3179 * 3180 * As long as we have tasks to abort, we keep the SEM 3181 * bit set in the ISTAT. When this bit is set, the 3182 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 3183 * each time it enters the scheduler. 3184 * 3185 * If we have to reset a target, clear tasks of a unit, 3186 * or to perform the abort of a disconnected job, we 3187 * restart the SCRIPTS for selecting the target. Once 3188 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 3189 * If it loses arbitration, the SCRIPTS will interrupt again 3190 * the next time it will enter its scheduler, and so on ... 3191 * 3192 * On SIR_TARGET_SELECTED, we scan for the more 3193 * appropriate thing to do: 3194 * 3195 * - If nothing, we just sent a M_ABORT message to the 3196 * target to get rid of the useless SCSI bus ownership. 3197 * According to the specs, no tasks shall be affected. 3198 * - If the target is to be reset, we send it a M_RESET 3199 * message. 3200 * - If a logical UNIT is to be cleared , we send the 3201 * IDENTIFY(lun) + M_ABORT. 3202 * - If an untagged task is to be aborted, we send the 3203 * IDENTIFY(lun) + M_ABORT. 3204 * - If a tagged task is to be aborted, we send the 3205 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 3206 * 3207 * Once our 'kiss of death' :) message has been accepted 3208 * by the target, the SCRIPTS interrupts again 3209 * (SIR_ABORT_SENT). On this interrupt, we complete 3210 * all the CCBs that should have been aborted by the 3211 * target according to our message. 3212 */ 3213 static void sym_sir_task_recovery(struct sym_hcb *np, int num) 3214 { 3215 SYM_QUEHEAD *qp; 3216 struct sym_ccb *cp; 3217 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */ 3218 struct scsi_target *starget; 3219 int target=-1, lun=-1, task; 3220 int i, k; 3221 3222 switch(num) { 3223 /* 3224 * The SCRIPTS processor stopped before starting 3225 * the next command in order to allow us to perform 3226 * some task recovery. 3227 */ 3228 case SIR_SCRIPT_STOPPED: 3229 /* 3230 * Do we have any target to reset or unit to clear ? 3231 */ 3232 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 3233 tp = &np->target[i]; 3234 if (tp->to_reset || 3235 (tp->lun0p && tp->lun0p->to_clear)) { 3236 target = i; 3237 break; 3238 } 3239 if (!tp->lunmp) 3240 continue; 3241 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 3242 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 3243 target = i; 3244 break; 3245 } 3246 } 3247 if (target != -1) 3248 break; 3249 } 3250 3251 /* 3252 * If not, walk the busy queue for any 3253 * disconnected CCB to be aborted. 3254 */ 3255 if (target == -1) { 3256 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3257 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 3258 if (cp->host_status != HS_DISCONNECT) 3259 continue; 3260 if (cp->to_abort) { 3261 target = cp->target; 3262 break; 3263 } 3264 } 3265 } 3266 3267 /* 3268 * If some target is to be selected, 3269 * prepare and start the selection. 3270 */ 3271 if (target != -1) { 3272 tp = &np->target[target]; 3273 np->abrt_sel.sel_id = target; 3274 np->abrt_sel.sel_scntl3 = tp->head.wval; 3275 np->abrt_sel.sel_sxfer = tp->head.sval; 3276 OUTL(np, nc_dsa, np->hcb_ba); 3277 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort)); 3278 return; 3279 } 3280 3281 /* 3282 * Now look for a CCB to abort that haven't started yet. 3283 * Btw, the SCRIPTS processor is still stopped, so 3284 * we are not in race. 3285 */ 3286 i = 0; 3287 cp = NULL; 3288 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3289 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3290 if (cp->host_status != HS_BUSY && 3291 cp->host_status != HS_NEGOTIATE) 3292 continue; 3293 if (!cp->to_abort) 3294 continue; 3295 #ifdef SYM_CONF_IARB_SUPPORT 3296 /* 3297 * If we are using IMMEDIATE ARBITRATION, we donnot 3298 * want to cancel the last queued CCB, since the 3299 * SCRIPTS may have anticipated the selection. 3300 */ 3301 if (cp == np->last_cp) { 3302 cp->to_abort = 0; 3303 continue; 3304 } 3305 #endif 3306 i = 1; /* Means we have found some */ 3307 break; 3308 } 3309 if (!i) { 3310 /* 3311 * We are done, so we donnot need 3312 * to synchronize with the SCRIPTS anylonger. 3313 * Remove the SEM flag from the ISTAT. 3314 */ 3315 np->istat_sem = 0; 3316 OUTB(np, nc_istat, SIGP); 3317 break; 3318 } 3319 /* 3320 * Compute index of next position in the start 3321 * queue the SCRIPTS intends to start and dequeue 3322 * all CCBs for that device that haven't been started. 3323 */ 3324 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; 3325 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 3326 3327 /* 3328 * Make sure at least our IO to abort has been dequeued. 3329 */ 3330 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 3331 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR); 3332 #else 3333 sym_remque(&cp->link_ccbq); 3334 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 3335 #endif 3336 /* 3337 * Keep track in cam status of the reason of the abort. 3338 */ 3339 if (cp->to_abort == 2) 3340 sym_set_cam_status(cp->cmd, DID_TIME_OUT); 3341 else 3342 sym_set_cam_status(cp->cmd, DID_ABORT); 3343 3344 /* 3345 * Complete with error everything that we have dequeued. 3346 */ 3347 sym_flush_comp_queue(np, 0); 3348 break; 3349 /* 3350 * The SCRIPTS processor has selected a target 3351 * we may have some manual recovery to perform for. 3352 */ 3353 case SIR_TARGET_SELECTED: 3354 target = INB(np, nc_sdid) & 0xf; 3355 tp = &np->target[target]; 3356 3357 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 3358 3359 /* 3360 * If the target is to be reset, prepare a 3361 * M_RESET message and clear the to_reset flag 3362 * since we donnot expect this operation to fail. 3363 */ 3364 if (tp->to_reset) { 3365 np->abrt_msg[0] = M_RESET; 3366 np->abrt_tbl.size = 1; 3367 tp->to_reset = 0; 3368 break; 3369 } 3370 3371 /* 3372 * Otherwise, look for some logical unit to be cleared. 3373 */ 3374 if (tp->lun0p && tp->lun0p->to_clear) 3375 lun = 0; 3376 else if (tp->lunmp) { 3377 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 3378 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 3379 lun = k; 3380 break; 3381 } 3382 } 3383 } 3384 3385 /* 3386 * If a logical unit is to be cleared, prepare 3387 * an IDENTIFY(lun) + ABORT MESSAGE. 3388 */ 3389 if (lun != -1) { 3390 struct sym_lcb *lp = sym_lp(tp, lun); 3391 lp->to_clear = 0; /* We don't expect to fail here */ 3392 np->abrt_msg[0] = IDENTIFY(0, lun); 3393 np->abrt_msg[1] = M_ABORT; 3394 np->abrt_tbl.size = 2; 3395 break; 3396 } 3397 3398 /* 3399 * Otherwise, look for some disconnected job to 3400 * abort for this target. 3401 */ 3402 i = 0; 3403 cp = NULL; 3404 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3405 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3406 if (cp->host_status != HS_DISCONNECT) 3407 continue; 3408 if (cp->target != target) 3409 continue; 3410 if (!cp->to_abort) 3411 continue; 3412 i = 1; /* Means we have some */ 3413 break; 3414 } 3415 3416 /* 3417 * If we have none, probably since the device has 3418 * completed the command before we won abitration, 3419 * send a M_ABORT message without IDENTIFY. 3420 * According to the specs, the device must just 3421 * disconnect the BUS and not abort any task. 3422 */ 3423 if (!i) { 3424 np->abrt_msg[0] = M_ABORT; 3425 np->abrt_tbl.size = 1; 3426 break; 3427 } 3428 3429 /* 3430 * We have some task to abort. 3431 * Set the IDENTIFY(lun) 3432 */ 3433 np->abrt_msg[0] = IDENTIFY(0, cp->lun); 3434 3435 /* 3436 * If we want to abort an untagged command, we 3437 * will send a IDENTIFY + M_ABORT. 3438 * Otherwise (tagged command), we will send 3439 * a IDENTITFY + task attributes + ABORT TAG. 3440 */ 3441 if (cp->tag == NO_TAG) { 3442 np->abrt_msg[1] = M_ABORT; 3443 np->abrt_tbl.size = 2; 3444 } else { 3445 np->abrt_msg[1] = cp->scsi_smsg[1]; 3446 np->abrt_msg[2] = cp->scsi_smsg[2]; 3447 np->abrt_msg[3] = M_ABORT_TAG; 3448 np->abrt_tbl.size = 4; 3449 } 3450 /* 3451 * Keep track of software timeout condition, since the 3452 * peripheral driver may not count retries on abort 3453 * conditions not due to timeout. 3454 */ 3455 if (cp->to_abort == 2) 3456 sym_set_cam_status(cp->cmd, DID_TIME_OUT); 3457 cp->to_abort = 0; /* We donnot expect to fail here */ 3458 break; 3459 3460 /* 3461 * The target has accepted our message and switched 3462 * to BUS FREE phase as we expected. 3463 */ 3464 case SIR_ABORT_SENT: 3465 target = INB(np, nc_sdid) & 0xf; 3466 tp = &np->target[target]; 3467 starget = tp->starget; 3468 3469 /* 3470 ** If we didn't abort anything, leave here. 3471 */ 3472 if (np->abrt_msg[0] == M_ABORT) 3473 break; 3474 3475 /* 3476 * If we sent a M_RESET, then a hardware reset has 3477 * been performed by the target. 3478 * - Reset everything to async 8 bit 3479 * - Tell ourself to negotiate next time :-) 3480 * - Prepare to clear all disconnected CCBs for 3481 * this target from our task list (lun=task=-1) 3482 */ 3483 lun = -1; 3484 task = -1; 3485 if (np->abrt_msg[0] == M_RESET) { 3486 tp->head.sval = 0; 3487 tp->head.wval = np->rv_scntl3; 3488 tp->head.uval = 0; 3489 spi_period(starget) = 0; 3490 spi_offset(starget) = 0; 3491 spi_width(starget) = 0; 3492 spi_iu(starget) = 0; 3493 spi_dt(starget) = 0; 3494 spi_qas(starget) = 0; 3495 tp->tgoal.check_nego = 1; 3496 } 3497 3498 /* 3499 * Otherwise, check for the LUN and TASK(s) 3500 * concerned by the cancelation. 3501 * If it is not ABORT_TAG then it is CLEAR_QUEUE 3502 * or an ABORT message :-) 3503 */ 3504 else { 3505 lun = np->abrt_msg[0] & 0x3f; 3506 if (np->abrt_msg[1] == M_ABORT_TAG) 3507 task = np->abrt_msg[2]; 3508 } 3509 3510 /* 3511 * Complete all the CCBs the device should have 3512 * aborted due to our 'kiss of death' message. 3513 */ 3514 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; 3515 sym_dequeue_from_squeue(np, i, target, lun, -1); 3516 sym_clear_tasks(np, DID_ABORT, target, lun, task); 3517 sym_flush_comp_queue(np, 0); 3518 3519 /* 3520 * If we sent a BDR, make upper layer aware of that. 3521 */ 3522 if (np->abrt_msg[0] == M_RESET) 3523 sym_xpt_async_sent_bdr(np, target); 3524 break; 3525 } 3526 3527 /* 3528 * Print to the log the message we intend to send. 3529 */ 3530 if (num == SIR_TARGET_SELECTED) { 3531 dev_info(&tp->starget->dev, "control msgout:"); 3532 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size); 3533 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 3534 } 3535 3536 /* 3537 * Let the SCRIPTS processor continue. 3538 */ 3539 OUTONB_STD(); 3540 } 3541 3542 /* 3543 * Gerard's alchemy:) that deals with with the data 3544 * pointer for both MDP and the residual calculation. 3545 * 3546 * I didn't want to bloat the code by more than 200 3547 * lines for the handling of both MDP and the residual. 3548 * This has been achieved by using a data pointer 3549 * representation consisting in an index in the data 3550 * array (dp_sg) and a negative offset (dp_ofs) that 3551 * have the following meaning: 3552 * 3553 * - dp_sg = SYM_CONF_MAX_SG 3554 * we are at the end of the data script. 3555 * - dp_sg < SYM_CONF_MAX_SG 3556 * dp_sg points to the next entry of the scatter array 3557 * we want to transfer. 3558 * - dp_ofs < 0 3559 * dp_ofs represents the residual of bytes of the 3560 * previous entry scatter entry we will send first. 3561 * - dp_ofs = 0 3562 * no residual to send first. 3563 * 3564 * The function sym_evaluate_dp() accepts an arbitray 3565 * offset (basically from the MDP message) and returns 3566 * the corresponding values of dp_sg and dp_ofs. 3567 */ 3568 3569 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs) 3570 { 3571 u32 dp_scr; 3572 int dp_ofs, dp_sg, dp_sgmin; 3573 int tmp; 3574 struct sym_pmc *pm; 3575 3576 /* 3577 * Compute the resulted data pointer in term of a script 3578 * address within some DATA script and a signed byte offset. 3579 */ 3580 dp_scr = scr; 3581 dp_ofs = *ofs; 3582 if (dp_scr == SCRIPTA_BA(np, pm0_data)) 3583 pm = &cp->phys.pm0; 3584 else if (dp_scr == SCRIPTA_BA(np, pm1_data)) 3585 pm = &cp->phys.pm1; 3586 else 3587 pm = NULL; 3588 3589 if (pm) { 3590 dp_scr = scr_to_cpu(pm->ret); 3591 dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff; 3592 } 3593 3594 /* 3595 * If we are auto-sensing, then we are done. 3596 */ 3597 if (cp->host_flags & HF_SENSE) { 3598 *ofs = dp_ofs; 3599 return 0; 3600 } 3601 3602 /* 3603 * Deduce the index of the sg entry. 3604 * Keep track of the index of the first valid entry. 3605 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 3606 * end of the data. 3607 */ 3608 tmp = scr_to_cpu(cp->goalp); 3609 dp_sg = SYM_CONF_MAX_SG; 3610 if (dp_scr != tmp) 3611 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 3612 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 3613 3614 /* 3615 * Move to the sg entry the data pointer belongs to. 3616 * 3617 * If we are inside the data area, we expect result to be: 3618 * 3619 * Either, 3620 * dp_ofs = 0 and dp_sg is the index of the sg entry 3621 * the data pointer belongs to (or the end of the data) 3622 * Or, 3623 * dp_ofs < 0 and dp_sg is the index of the sg entry 3624 * the data pointer belongs to + 1. 3625 */ 3626 if (dp_ofs < 0) { 3627 int n; 3628 while (dp_sg > dp_sgmin) { 3629 --dp_sg; 3630 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 3631 n = dp_ofs + (tmp & 0xffffff); 3632 if (n > 0) { 3633 ++dp_sg; 3634 break; 3635 } 3636 dp_ofs = n; 3637 } 3638 } 3639 else if (dp_ofs > 0) { 3640 while (dp_sg < SYM_CONF_MAX_SG) { 3641 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 3642 dp_ofs -= (tmp & 0xffffff); 3643 ++dp_sg; 3644 if (dp_ofs <= 0) 3645 break; 3646 } 3647 } 3648 3649 /* 3650 * Make sure the data pointer is inside the data area. 3651 * If not, return some error. 3652 */ 3653 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 3654 goto out_err; 3655 else if (dp_sg > SYM_CONF_MAX_SG || 3656 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 3657 goto out_err; 3658 3659 /* 3660 * Save the extreme pointer if needed. 3661 */ 3662 if (dp_sg > cp->ext_sg || 3663 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 3664 cp->ext_sg = dp_sg; 3665 cp->ext_ofs = dp_ofs; 3666 } 3667 3668 /* 3669 * Return data. 3670 */ 3671 *ofs = dp_ofs; 3672 return dp_sg; 3673 3674 out_err: 3675 return -1; 3676 } 3677 3678 /* 3679 * chip handler for MODIFY DATA POINTER MESSAGE 3680 * 3681 * We also call this function on IGNORE WIDE RESIDUE 3682 * messages that do not match a SWIDE full condition. 3683 * Btw, we assume in that situation that such a message 3684 * is equivalent to a MODIFY DATA POINTER (offset=-1). 3685 */ 3686 3687 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs) 3688 { 3689 int dp_ofs = ofs; 3690 u32 dp_scr = sym_get_script_dp (np, cp); 3691 u32 dp_ret; 3692 u32 tmp; 3693 u_char hflags; 3694 int dp_sg; 3695 struct sym_pmc *pm; 3696 3697 /* 3698 * Not supported for auto-sense. 3699 */ 3700 if (cp->host_flags & HF_SENSE) 3701 goto out_reject; 3702 3703 /* 3704 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 3705 * to the resulted data pointer. 3706 */ 3707 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 3708 if (dp_sg < 0) 3709 goto out_reject; 3710 3711 /* 3712 * And our alchemy:) allows to easily calculate the data 3713 * script address we want to return for the next data phase. 3714 */ 3715 dp_ret = cpu_to_scr(cp->goalp); 3716 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 3717 3718 /* 3719 * If offset / scatter entry is zero we donnot need 3720 * a context for the new current data pointer. 3721 */ 3722 if (dp_ofs == 0) { 3723 dp_scr = dp_ret; 3724 goto out_ok; 3725 } 3726 3727 /* 3728 * Get a context for the new current data pointer. 3729 */ 3730 hflags = INB(np, HF_PRT); 3731 3732 if (hflags & HF_DP_SAVED) 3733 hflags ^= HF_ACT_PM; 3734 3735 if (!(hflags & HF_ACT_PM)) { 3736 pm = &cp->phys.pm0; 3737 dp_scr = SCRIPTA_BA(np, pm0_data); 3738 } 3739 else { 3740 pm = &cp->phys.pm1; 3741 dp_scr = SCRIPTA_BA(np, pm1_data); 3742 } 3743 3744 hflags &= ~(HF_DP_SAVED); 3745 3746 OUTB(np, HF_PRT, hflags); 3747 3748 /* 3749 * Set up the new current data pointer. 3750 * ofs < 0 there, and for the next data phase, we 3751 * want to transfer part of the data of the sg entry 3752 * corresponding to index dp_sg-1 prior to returning 3753 * to the main data script. 3754 */ 3755 pm->ret = cpu_to_scr(dp_ret); 3756 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 3757 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 3758 pm->sg.addr = cpu_to_scr(tmp); 3759 pm->sg.size = cpu_to_scr(-dp_ofs); 3760 3761 out_ok: 3762 sym_set_script_dp (np, cp, dp_scr); 3763 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 3764 return; 3765 3766 out_reject: 3767 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 3768 } 3769 3770 3771 /* 3772 * chip calculation of the data residual. 3773 * 3774 * As I used to say, the requirement of data residual 3775 * in SCSI is broken, useless and cannot be achieved 3776 * without huge complexity. 3777 * But most OSes and even the official CAM require it. 3778 * When stupidity happens to be so widely spread inside 3779 * a community, it gets hard to convince. 3780 * 3781 * Anyway, I don't care, since I am not going to use 3782 * any software that considers this data residual as 3783 * a relevant information. :) 3784 */ 3785 3786 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp) 3787 { 3788 int dp_sg, dp_sgmin, resid = 0; 3789 int dp_ofs = 0; 3790 3791 /* 3792 * Check for some data lost or just thrown away. 3793 * We are not required to be quite accurate in this 3794 * situation. Btw, if we are odd for output and the 3795 * device claims some more data, it may well happen 3796 * than our residual be zero. :-) 3797 */ 3798 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 3799 if (cp->xerr_status & XE_EXTRA_DATA) 3800 resid -= cp->extra_bytes; 3801 if (cp->xerr_status & XE_SODL_UNRUN) 3802 ++resid; 3803 if (cp->xerr_status & XE_SWIDE_OVRUN) 3804 --resid; 3805 } 3806 3807 /* 3808 * If all data has been transferred, 3809 * there is no residual. 3810 */ 3811 if (cp->phys.head.lastp == cp->goalp) 3812 return resid; 3813 3814 /* 3815 * If no data transfer occurs, or if the data 3816 * pointer is weird, return full residual. 3817 */ 3818 if (cp->startp == cp->phys.head.lastp || 3819 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 3820 &dp_ofs) < 0) { 3821 return cp->data_len; 3822 } 3823 3824 /* 3825 * If we were auto-sensing, then we are done. 3826 */ 3827 if (cp->host_flags & HF_SENSE) { 3828 return -dp_ofs; 3829 } 3830 3831 /* 3832 * We are now full comfortable in the computation 3833 * of the data residual (2's complement). 3834 */ 3835 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 3836 resid = -cp->ext_ofs; 3837 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 3838 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 3839 resid += (tmp & 0xffffff); 3840 } 3841 3842 resid -= cp->odd_byte_adjustment; 3843 3844 /* 3845 * Hopefully, the result is not too wrong. 3846 */ 3847 return resid; 3848 } 3849 3850 /* 3851 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 3852 * 3853 * When we try to negotiate, we append the negotiation message 3854 * to the identify and (maybe) simple tag message. 3855 * The host status field is set to HS_NEGOTIATE to mark this 3856 * situation. 3857 * 3858 * If the target doesn't answer this message immediately 3859 * (as required by the standard), the SIR_NEGO_FAILED interrupt 3860 * will be raised eventually. 3861 * The handler removes the HS_NEGOTIATE status, and sets the 3862 * negotiated value to the default (async / nowide). 3863 * 3864 * If we receive a matching answer immediately, we check it 3865 * for validity, and set the values. 3866 * 3867 * If we receive a Reject message immediately, we assume the 3868 * negotiation has failed, and fall back to standard values. 3869 * 3870 * If we receive a negotiation message while not in HS_NEGOTIATE 3871 * state, it's a target initiated negotiation. We prepare a 3872 * (hopefully) valid answer, set our parameters, and send back 3873 * this answer to the target. 3874 * 3875 * If the target doesn't fetch the answer (no message out phase), 3876 * we assume the negotiation has failed, and fall back to default 3877 * settings (SIR_NEGO_PROTO interrupt). 3878 * 3879 * When we set the values, we adjust them in all ccbs belonging 3880 * to this target, in the controller's register, and in the "phys" 3881 * field of the controller's struct sym_hcb. 3882 */ 3883 3884 /* 3885 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 3886 */ 3887 static int 3888 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) 3889 { 3890 int target = cp->target; 3891 u_char chg, ofs, per, fak, div; 3892 3893 if (DEBUG_FLAGS & DEBUG_NEGO) { 3894 sym_print_nego_msg(np, target, "sync msgin", np->msgin); 3895 } 3896 3897 /* 3898 * Get requested values. 3899 */ 3900 chg = 0; 3901 per = np->msgin[3]; 3902 ofs = np->msgin[4]; 3903 3904 /* 3905 * Check values against our limits. 3906 */ 3907 if (ofs) { 3908 if (ofs > np->maxoffs) 3909 {chg = 1; ofs = np->maxoffs;} 3910 } 3911 3912 if (ofs) { 3913 if (per < np->minsync) 3914 {chg = 1; per = np->minsync;} 3915 } 3916 3917 /* 3918 * Get new chip synchronous parameters value. 3919 */ 3920 div = fak = 0; 3921 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 3922 goto reject_it; 3923 3924 if (DEBUG_FLAGS & DEBUG_NEGO) { 3925 sym_print_addr(cp->cmd, 3926 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 3927 ofs, per, div, fak, chg); 3928 } 3929 3930 /* 3931 * If it was an answer we want to change, 3932 * then it isn't acceptable. Reject it. 3933 */ 3934 if (!req && chg) 3935 goto reject_it; 3936 3937 /* 3938 * Apply new values. 3939 */ 3940 sym_setsync (np, target, ofs, per, div, fak); 3941 3942 /* 3943 * It was an answer. We are done. 3944 */ 3945 if (!req) 3946 return 0; 3947 3948 /* 3949 * It was a request. Prepare an answer message. 3950 */ 3951 spi_populate_sync_msg(np->msgout, per, ofs); 3952 3953 if (DEBUG_FLAGS & DEBUG_NEGO) { 3954 sym_print_nego_msg(np, target, "sync msgout", np->msgout); 3955 } 3956 3957 np->msgin [0] = M_NOOP; 3958 3959 return 0; 3960 3961 reject_it: 3962 sym_setsync (np, target, 0, 0, 0, 0); 3963 return -1; 3964 } 3965 3966 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 3967 { 3968 int req = 1; 3969 int result; 3970 3971 /* 3972 * Request or answer ? 3973 */ 3974 if (INB(np, HS_PRT) == HS_NEGOTIATE) { 3975 OUTB(np, HS_PRT, HS_BUSY); 3976 if (cp->nego_status && cp->nego_status != NS_SYNC) 3977 goto reject_it; 3978 req = 0; 3979 } 3980 3981 /* 3982 * Check and apply new values. 3983 */ 3984 result = sym_sync_nego_check(np, req, cp); 3985 if (result) /* Not acceptable, reject it */ 3986 goto reject_it; 3987 if (req) { /* Was a request, send response. */ 3988 cp->nego_status = NS_SYNC; 3989 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); 3990 } 3991 else /* Was a response, we are done. */ 3992 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 3993 return; 3994 3995 reject_it: 3996 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 3997 } 3998 3999 /* 4000 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 4001 */ 4002 static int 4003 sym_ppr_nego_check(struct sym_hcb *np, int req, int target) 4004 { 4005 struct sym_tcb *tp = &np->target[target]; 4006 unsigned char fak, div; 4007 int dt, chg = 0; 4008 4009 unsigned char per = np->msgin[3]; 4010 unsigned char ofs = np->msgin[5]; 4011 unsigned char wide = np->msgin[6]; 4012 unsigned char opts = np->msgin[7] & PPR_OPT_MASK; 4013 4014 if (DEBUG_FLAGS & DEBUG_NEGO) { 4015 sym_print_nego_msg(np, target, "ppr msgin", np->msgin); 4016 } 4017 4018 /* 4019 * Check values against our limits. 4020 */ 4021 if (wide > np->maxwide) { 4022 chg = 1; 4023 wide = np->maxwide; 4024 } 4025 if (!wide || !(np->features & FE_U3EN)) 4026 opts = 0; 4027 4028 if (opts != (np->msgin[7] & PPR_OPT_MASK)) 4029 chg = 1; 4030 4031 dt = opts & PPR_OPT_DT; 4032 4033 if (ofs) { 4034 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs; 4035 if (ofs > maxoffs) { 4036 chg = 1; 4037 ofs = maxoffs; 4038 } 4039 } 4040 4041 if (ofs) { 4042 unsigned char minsync = dt ? np->minsync_dt : np->minsync; 4043 if (per < minsync) { 4044 chg = 1; 4045 per = minsync; 4046 } 4047 } 4048 4049 /* 4050 * Get new chip synchronous parameters value. 4051 */ 4052 div = fak = 0; 4053 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 4054 goto reject_it; 4055 4056 /* 4057 * If it was an answer we want to change, 4058 * then it isn't acceptable. Reject it. 4059 */ 4060 if (!req && chg) 4061 goto reject_it; 4062 4063 /* 4064 * Apply new values. 4065 */ 4066 sym_setpprot(np, target, opts, ofs, per, wide, div, fak); 4067 4068 /* 4069 * It was an answer. We are done. 4070 */ 4071 if (!req) 4072 return 0; 4073 4074 /* 4075 * It was a request. Prepare an answer message. 4076 */ 4077 spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts); 4078 4079 if (DEBUG_FLAGS & DEBUG_NEGO) { 4080 sym_print_nego_msg(np, target, "ppr msgout", np->msgout); 4081 } 4082 4083 np->msgin [0] = M_NOOP; 4084 4085 return 0; 4086 4087 reject_it: 4088 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0); 4089 /* 4090 * If it is a device response that should result in 4091 * ST, we may want to try a legacy negotiation later. 4092 */ 4093 if (!req && !opts) { 4094 tp->tgoal.period = per; 4095 tp->tgoal.offset = ofs; 4096 tp->tgoal.width = wide; 4097 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 4098 tp->tgoal.check_nego = 1; 4099 } 4100 return -1; 4101 } 4102 4103 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4104 { 4105 int req = 1; 4106 int result; 4107 4108 /* 4109 * Request or answer ? 4110 */ 4111 if (INB(np, HS_PRT) == HS_NEGOTIATE) { 4112 OUTB(np, HS_PRT, HS_BUSY); 4113 if (cp->nego_status && cp->nego_status != NS_PPR) 4114 goto reject_it; 4115 req = 0; 4116 } 4117 4118 /* 4119 * Check and apply new values. 4120 */ 4121 result = sym_ppr_nego_check(np, req, cp->target); 4122 if (result) /* Not acceptable, reject it */ 4123 goto reject_it; 4124 if (req) { /* Was a request, send response. */ 4125 cp->nego_status = NS_PPR; 4126 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp)); 4127 } 4128 else /* Was a response, we are done. */ 4129 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4130 return; 4131 4132 reject_it: 4133 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 4134 } 4135 4136 /* 4137 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 4138 */ 4139 static int 4140 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) 4141 { 4142 int target = cp->target; 4143 u_char chg, wide; 4144 4145 if (DEBUG_FLAGS & DEBUG_NEGO) { 4146 sym_print_nego_msg(np, target, "wide msgin", np->msgin); 4147 } 4148 4149 /* 4150 * Get requested values. 4151 */ 4152 chg = 0; 4153 wide = np->msgin[3]; 4154 4155 /* 4156 * Check values against our limits. 4157 */ 4158 if (wide > np->maxwide) { 4159 chg = 1; 4160 wide = np->maxwide; 4161 } 4162 4163 if (DEBUG_FLAGS & DEBUG_NEGO) { 4164 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n", 4165 wide, chg); 4166 } 4167 4168 /* 4169 * If it was an answer we want to change, 4170 * then it isn't acceptable. Reject it. 4171 */ 4172 if (!req && chg) 4173 goto reject_it; 4174 4175 /* 4176 * Apply new values. 4177 */ 4178 sym_setwide (np, target, wide); 4179 4180 /* 4181 * It was an answer. We are done. 4182 */ 4183 if (!req) 4184 return 0; 4185 4186 /* 4187 * It was a request. Prepare an answer message. 4188 */ 4189 spi_populate_width_msg(np->msgout, wide); 4190 4191 np->msgin [0] = M_NOOP; 4192 4193 if (DEBUG_FLAGS & DEBUG_NEGO) { 4194 sym_print_nego_msg(np, target, "wide msgout", np->msgout); 4195 } 4196 4197 return 0; 4198 4199 reject_it: 4200 return -1; 4201 } 4202 4203 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4204 { 4205 int req = 1; 4206 int result; 4207 4208 /* 4209 * Request or answer ? 4210 */ 4211 if (INB(np, HS_PRT) == HS_NEGOTIATE) { 4212 OUTB(np, HS_PRT, HS_BUSY); 4213 if (cp->nego_status && cp->nego_status != NS_WIDE) 4214 goto reject_it; 4215 req = 0; 4216 } 4217 4218 /* 4219 * Check and apply new values. 4220 */ 4221 result = sym_wide_nego_check(np, req, cp); 4222 if (result) /* Not acceptable, reject it */ 4223 goto reject_it; 4224 if (req) { /* Was a request, send response. */ 4225 cp->nego_status = NS_WIDE; 4226 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp)); 4227 } else { /* Was a response. */ 4228 /* 4229 * Negotiate for SYNC immediately after WIDE response. 4230 * This allows to negotiate for both WIDE and SYNC on 4231 * a single SCSI command (Suggested by Justin Gibbs). 4232 */ 4233 if (tp->tgoal.offset) { 4234 spi_populate_sync_msg(np->msgout, tp->tgoal.period, 4235 tp->tgoal.offset); 4236 4237 if (DEBUG_FLAGS & DEBUG_NEGO) { 4238 sym_print_nego_msg(np, cp->target, 4239 "sync msgout", np->msgout); 4240 } 4241 4242 cp->nego_status = NS_SYNC; 4243 OUTB(np, HS_PRT, HS_NEGOTIATE); 4244 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); 4245 return; 4246 } else 4247 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4248 } 4249 4250 return; 4251 4252 reject_it: 4253 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 4254 } 4255 4256 /* 4257 * Reset DT, SYNC or WIDE to default settings. 4258 * 4259 * Called when a negotiation does not succeed either 4260 * on rejection or on protocol error. 4261 * 4262 * A target that understands a PPR message should never 4263 * reject it, and messing with it is very unlikely. 4264 * So, if a PPR makes problems, we may just want to 4265 * try a legacy negotiation later. 4266 */ 4267 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4268 { 4269 switch (cp->nego_status) { 4270 case NS_PPR: 4271 #if 0 4272 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0); 4273 #else 4274 if (tp->tgoal.period < np->minsync) 4275 tp->tgoal.period = np->minsync; 4276 if (tp->tgoal.offset > np->maxoffs) 4277 tp->tgoal.offset = np->maxoffs; 4278 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 4279 tp->tgoal.check_nego = 1; 4280 #endif 4281 break; 4282 case NS_SYNC: 4283 sym_setsync (np, cp->target, 0, 0, 0, 0); 4284 break; 4285 case NS_WIDE: 4286 sym_setwide (np, cp->target, 0); 4287 break; 4288 } 4289 np->msgin [0] = M_NOOP; 4290 np->msgout[0] = M_NOOP; 4291 cp->nego_status = 0; 4292 } 4293 4294 /* 4295 * chip handler for MESSAGE REJECT received in response to 4296 * PPR, WIDE or SYNCHRONOUS negotiation. 4297 */ 4298 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4299 { 4300 sym_nego_default(np, tp, cp); 4301 OUTB(np, HS_PRT, HS_BUSY); 4302 } 4303 4304 /* 4305 * chip exception handler for programmed interrupts. 4306 */ 4307 static void sym_int_sir (struct sym_hcb *np) 4308 { 4309 u_char num = INB(np, nc_dsps); 4310 u32 dsa = INL(np, nc_dsa); 4311 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); 4312 u_char target = INB(np, nc_sdid) & 0x0f; 4313 struct sym_tcb *tp = &np->target[target]; 4314 int tmp; 4315 4316 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 4317 4318 switch (num) { 4319 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 4320 /* 4321 * SCRIPTS tell us that we may have to update 4322 * 64 bit DMA segment registers. 4323 */ 4324 case SIR_DMAP_DIRTY: 4325 sym_update_dmap_regs(np); 4326 goto out; 4327 #endif 4328 /* 4329 * Command has been completed with error condition 4330 * or has been auto-sensed. 4331 */ 4332 case SIR_COMPLETE_ERROR: 4333 sym_complete_error(np, cp); 4334 return; 4335 /* 4336 * The C code is currently trying to recover from something. 4337 * Typically, user want to abort some command. 4338 */ 4339 case SIR_SCRIPT_STOPPED: 4340 case SIR_TARGET_SELECTED: 4341 case SIR_ABORT_SENT: 4342 sym_sir_task_recovery(np, num); 4343 return; 4344 /* 4345 * The device didn't go to MSG OUT phase after having 4346 * been selected with ATN. We donnot want to handle 4347 * that. 4348 */ 4349 case SIR_SEL_ATN_NO_MSG_OUT: 4350 printf ("%s:%d: No MSG OUT phase after selection with ATN.\n", 4351 sym_name (np), target); 4352 goto out_stuck; 4353 /* 4354 * The device didn't switch to MSG IN phase after 4355 * having reseleted the initiator. 4356 */ 4357 case SIR_RESEL_NO_MSG_IN: 4358 printf ("%s:%d: No MSG IN phase after reselection.\n", 4359 sym_name (np), target); 4360 goto out_stuck; 4361 /* 4362 * After reselection, the device sent a message that wasn't 4363 * an IDENTIFY. 4364 */ 4365 case SIR_RESEL_NO_IDENTIFY: 4366 printf ("%s:%d: No IDENTIFY after reselection.\n", 4367 sym_name (np), target); 4368 goto out_stuck; 4369 /* 4370 * The device reselected a LUN we donnot know about. 4371 */ 4372 case SIR_RESEL_BAD_LUN: 4373 np->msgout[0] = M_RESET; 4374 goto out; 4375 /* 4376 * The device reselected for an untagged nexus and we 4377 * haven't any. 4378 */ 4379 case SIR_RESEL_BAD_I_T_L: 4380 np->msgout[0] = M_ABORT; 4381 goto out; 4382 /* 4383 * The device reselected for a tagged nexus that we donnot 4384 * have. 4385 */ 4386 case SIR_RESEL_BAD_I_T_L_Q: 4387 np->msgout[0] = M_ABORT_TAG; 4388 goto out; 4389 /* 4390 * The SCRIPTS let us know that the device has grabbed 4391 * our message and will abort the job. 4392 */ 4393 case SIR_RESEL_ABORTED: 4394 np->lastmsg = np->msgout[0]; 4395 np->msgout[0] = M_NOOP; 4396 printf ("%s:%d: message %x sent on bad reselection.\n", 4397 sym_name (np), target, np->lastmsg); 4398 goto out; 4399 /* 4400 * The SCRIPTS let us know that a message has been 4401 * successfully sent to the device. 4402 */ 4403 case SIR_MSG_OUT_DONE: 4404 np->lastmsg = np->msgout[0]; 4405 np->msgout[0] = M_NOOP; 4406 /* Should we really care of that */ 4407 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 4408 if (cp) { 4409 cp->xerr_status &= ~XE_PARITY_ERR; 4410 if (!cp->xerr_status) 4411 OUTOFFB(np, HF_PRT, HF_EXT_ERR); 4412 } 4413 } 4414 goto out; 4415 /* 4416 * The device didn't send a GOOD SCSI status. 4417 * We may have some work to do prior to allow 4418 * the SCRIPTS processor to continue. 4419 */ 4420 case SIR_BAD_SCSI_STATUS: 4421 if (!cp) 4422 goto out; 4423 sym_sir_bad_scsi_status(np, num, cp); 4424 return; 4425 /* 4426 * We are asked by the SCRIPTS to prepare a 4427 * REJECT message. 4428 */ 4429 case SIR_REJECT_TO_SEND: 4430 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 4431 np->msgout[0] = M_REJECT; 4432 goto out; 4433 /* 4434 * We have been ODD at the end of a DATA IN 4435 * transfer and the device didn't send a 4436 * IGNORE WIDE RESIDUE message. 4437 * It is a data overrun condition. 4438 */ 4439 case SIR_SWIDE_OVERRUN: 4440 if (cp) { 4441 OUTONB(np, HF_PRT, HF_EXT_ERR); 4442 cp->xerr_status |= XE_SWIDE_OVRUN; 4443 } 4444 goto out; 4445 /* 4446 * We have been ODD at the end of a DATA OUT 4447 * transfer. 4448 * It is a data underrun condition. 4449 */ 4450 case SIR_SODL_UNDERRUN: 4451 if (cp) { 4452 OUTONB(np, HF_PRT, HF_EXT_ERR); 4453 cp->xerr_status |= XE_SODL_UNRUN; 4454 } 4455 goto out; 4456 /* 4457 * The device wants us to tranfer more data than 4458 * expected or in the wrong direction. 4459 * The number of extra bytes is in scratcha. 4460 * It is a data overrun condition. 4461 */ 4462 case SIR_DATA_OVERRUN: 4463 if (cp) { 4464 OUTONB(np, HF_PRT, HF_EXT_ERR); 4465 cp->xerr_status |= XE_EXTRA_DATA; 4466 cp->extra_bytes += INL(np, nc_scratcha); 4467 } 4468 goto out; 4469 /* 4470 * The device switched to an illegal phase (4/5). 4471 */ 4472 case SIR_BAD_PHASE: 4473 if (cp) { 4474 OUTONB(np, HF_PRT, HF_EXT_ERR); 4475 cp->xerr_status |= XE_BAD_PHASE; 4476 } 4477 goto out; 4478 /* 4479 * We received a message. 4480 */ 4481 case SIR_MSG_RECEIVED: 4482 if (!cp) 4483 goto out_stuck; 4484 switch (np->msgin [0]) { 4485 /* 4486 * We received an extended message. 4487 * We handle MODIFY DATA POINTER, SDTR, WDTR 4488 * and reject all other extended messages. 4489 */ 4490 case M_EXTENDED: 4491 switch (np->msgin [2]) { 4492 case M_X_MODIFY_DP: 4493 if (DEBUG_FLAGS & DEBUG_POINTER) 4494 sym_print_msg(cp, NULL, np->msgin); 4495 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 4496 (np->msgin[5]<<8) + (np->msgin[6]); 4497 sym_modify_dp(np, tp, cp, tmp); 4498 return; 4499 case M_X_SYNC_REQ: 4500 sym_sync_nego(np, tp, cp); 4501 return; 4502 case M_X_PPR_REQ: 4503 sym_ppr_nego(np, tp, cp); 4504 return; 4505 case M_X_WIDE_REQ: 4506 sym_wide_nego(np, tp, cp); 4507 return; 4508 default: 4509 goto out_reject; 4510 } 4511 break; 4512 /* 4513 * We received a 1/2 byte message not handled from SCRIPTS. 4514 * We are only expecting MESSAGE REJECT and IGNORE WIDE 4515 * RESIDUE messages that haven't been anticipated by 4516 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 4517 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 4518 */ 4519 case M_IGN_RESIDUE: 4520 if (DEBUG_FLAGS & DEBUG_POINTER) 4521 sym_print_msg(cp, NULL, np->msgin); 4522 if (cp->host_flags & HF_SENSE) 4523 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4524 else 4525 sym_modify_dp(np, tp, cp, -1); 4526 return; 4527 case M_REJECT: 4528 if (INB(np, HS_PRT) == HS_NEGOTIATE) 4529 sym_nego_rejected(np, tp, cp); 4530 else { 4531 sym_print_addr(cp->cmd, 4532 "M_REJECT received (%x:%x).\n", 4533 scr_to_cpu(np->lastmsg), np->msgout[0]); 4534 } 4535 goto out_clrack; 4536 break; 4537 default: 4538 goto out_reject; 4539 } 4540 break; 4541 /* 4542 * We received an unknown message. 4543 * Ignore all MSG IN phases and reject it. 4544 */ 4545 case SIR_MSG_WEIRD: 4546 sym_print_msg(cp, "WEIRD message received", np->msgin); 4547 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird)); 4548 return; 4549 /* 4550 * Negotiation failed. 4551 * Target does not send us the reply. 4552 * Remove the HS_NEGOTIATE status. 4553 */ 4554 case SIR_NEGO_FAILED: 4555 OUTB(np, HS_PRT, HS_BUSY); 4556 /* 4557 * Negotiation failed. 4558 * Target does not want answer message. 4559 */ 4560 case SIR_NEGO_PROTO: 4561 sym_nego_default(np, tp, cp); 4562 goto out; 4563 } 4564 4565 out: 4566 OUTONB_STD(); 4567 return; 4568 out_reject: 4569 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 4570 return; 4571 out_clrack: 4572 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4573 return; 4574 out_stuck: 4575 return; 4576 } 4577 4578 /* 4579 * Acquire a control block 4580 */ 4581 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order) 4582 { 4583 u_char tn = cmd->device->id; 4584 u_char ln = cmd->device->lun; 4585 struct sym_tcb *tp = &np->target[tn]; 4586 struct sym_lcb *lp = sym_lp(tp, ln); 4587 u_short tag = NO_TAG; 4588 SYM_QUEHEAD *qp; 4589 struct sym_ccb *cp = NULL; 4590 4591 /* 4592 * Look for a free CCB 4593 */ 4594 if (sym_que_empty(&np->free_ccbq)) 4595 sym_alloc_ccb(np); 4596 qp = sym_remque_head(&np->free_ccbq); 4597 if (!qp) 4598 goto out; 4599 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4600 4601 { 4602 /* 4603 * If we have been asked for a tagged command. 4604 */ 4605 if (tag_order) { 4606 /* 4607 * Debugging purpose. 4608 */ 4609 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 4610 if (lp->busy_itl != 0) 4611 goto out_free; 4612 #endif 4613 /* 4614 * Allocate resources for tags if not yet. 4615 */ 4616 if (!lp->cb_tags) { 4617 sym_alloc_lcb_tags(np, tn, ln); 4618 if (!lp->cb_tags) 4619 goto out_free; 4620 } 4621 /* 4622 * Get a tag for this SCSI IO and set up 4623 * the CCB bus address for reselection, 4624 * and count it for this LUN. 4625 * Toggle reselect path to tagged. 4626 */ 4627 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 4628 tag = lp->cb_tags[lp->ia_tag]; 4629 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 4630 lp->ia_tag = 0; 4631 ++lp->busy_itlq; 4632 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 4633 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 4634 lp->head.resel_sa = 4635 cpu_to_scr(SCRIPTA_BA(np, resel_tag)); 4636 #endif 4637 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING 4638 cp->tags_si = lp->tags_si; 4639 ++lp->tags_sum[cp->tags_si]; 4640 ++lp->tags_since; 4641 #endif 4642 } 4643 else 4644 goto out_free; 4645 } 4646 /* 4647 * This command will not be tagged. 4648 * If we already have either a tagged or untagged 4649 * one, refuse to overlap this untagged one. 4650 */ 4651 else { 4652 /* 4653 * Debugging purpose. 4654 */ 4655 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 4656 if (lp->busy_itl != 0 || lp->busy_itlq != 0) 4657 goto out_free; 4658 #endif 4659 /* 4660 * Count this nexus for this LUN. 4661 * Set up the CCB bus address for reselection. 4662 * Toggle reselect path to untagged. 4663 */ 4664 ++lp->busy_itl; 4665 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 4666 if (lp->busy_itl == 1) { 4667 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 4668 lp->head.resel_sa = 4669 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); 4670 } 4671 else 4672 goto out_free; 4673 #endif 4674 } 4675 } 4676 /* 4677 * Put the CCB into the busy queue. 4678 */ 4679 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4680 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 4681 if (lp) { 4682 sym_remque(&cp->link2_ccbq); 4683 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq); 4684 } 4685 4686 #endif 4687 cp->to_abort = 0; 4688 cp->odd_byte_adjustment = 0; 4689 cp->tag = tag; 4690 cp->order = tag_order; 4691 cp->target = tn; 4692 cp->lun = ln; 4693 4694 if (DEBUG_FLAGS & DEBUG_TAGS) { 4695 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag); 4696 } 4697 4698 out: 4699 return cp; 4700 out_free: 4701 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 4702 return NULL; 4703 } 4704 4705 /* 4706 * Release one control block 4707 */ 4708 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp) 4709 { 4710 struct sym_tcb *tp = &np->target[cp->target]; 4711 struct sym_lcb *lp = sym_lp(tp, cp->lun); 4712 4713 if (DEBUG_FLAGS & DEBUG_TAGS) { 4714 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n", 4715 cp, cp->tag); 4716 } 4717 4718 /* 4719 * If LCB available, 4720 */ 4721 if (lp) { 4722 /* 4723 * If tagged, release the tag, set the relect path 4724 */ 4725 if (cp->tag != NO_TAG) { 4726 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING 4727 --lp->tags_sum[cp->tags_si]; 4728 #endif 4729 /* 4730 * Free the tag value. 4731 */ 4732 lp->cb_tags[lp->if_tag] = cp->tag; 4733 if (++lp->if_tag == SYM_CONF_MAX_TASK) 4734 lp->if_tag = 0; 4735 /* 4736 * Make the reselect path invalid, 4737 * and uncount this CCB. 4738 */ 4739 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 4740 --lp->busy_itlq; 4741 } else { /* Untagged */ 4742 /* 4743 * Make the reselect path invalid, 4744 * and uncount this CCB. 4745 */ 4746 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 4747 --lp->busy_itl; 4748 } 4749 /* 4750 * If no JOB active, make the LUN reselect path invalid. 4751 */ 4752 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 4753 lp->head.resel_sa = 4754 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); 4755 } 4756 4757 /* 4758 * We donnot queue more than 1 ccb per target 4759 * with negotiation at any time. If this ccb was 4760 * used for negotiation, clear this info in the tcb. 4761 */ 4762 if (cp == tp->nego_cp) 4763 tp->nego_cp = NULL; 4764 4765 #ifdef SYM_CONF_IARB_SUPPORT 4766 /* 4767 * If we just complete the last queued CCB, 4768 * clear this info that is no longer relevant. 4769 */ 4770 if (cp == np->last_cp) 4771 np->last_cp = 0; 4772 #endif 4773 4774 /* 4775 * Make this CCB available. 4776 */ 4777 cp->cmd = NULL; 4778 cp->host_status = HS_IDLE; 4779 sym_remque(&cp->link_ccbq); 4780 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 4781 4782 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 4783 if (lp) { 4784 sym_remque(&cp->link2_ccbq); 4785 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq); 4786 if (cp->started) { 4787 if (cp->tag != NO_TAG) 4788 --lp->started_tags; 4789 else 4790 --lp->started_no_tag; 4791 } 4792 } 4793 cp->started = 0; 4794 #endif 4795 } 4796 4797 /* 4798 * Allocate a CCB from memory and initialize its fixed part. 4799 */ 4800 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np) 4801 { 4802 struct sym_ccb *cp = NULL; 4803 int hcode; 4804 4805 /* 4806 * Prevent from allocating more CCBs than we can 4807 * queue to the controller. 4808 */ 4809 if (np->actccbs >= SYM_CONF_MAX_START) 4810 return NULL; 4811 4812 /* 4813 * Allocate memory for this CCB. 4814 */ 4815 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 4816 if (!cp) 4817 goto out_free; 4818 4819 /* 4820 * Count it. 4821 */ 4822 np->actccbs++; 4823 4824 /* 4825 * Compute the bus address of this ccb. 4826 */ 4827 cp->ccb_ba = vtobus(cp); 4828 4829 /* 4830 * Insert this ccb into the hashed list. 4831 */ 4832 hcode = CCB_HASH_CODE(cp->ccb_ba); 4833 cp->link_ccbh = np->ccbh[hcode]; 4834 np->ccbh[hcode] = cp; 4835 4836 /* 4837 * Initialyze the start and restart actions. 4838 */ 4839 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 4840 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); 4841 4842 /* 4843 * Initilialyze some other fields. 4844 */ 4845 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 4846 4847 /* 4848 * Chain into free ccb queue. 4849 */ 4850 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 4851 4852 /* 4853 * Chain into optionnal lists. 4854 */ 4855 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 4856 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq); 4857 #endif 4858 return cp; 4859 out_free: 4860 if (cp) 4861 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 4862 return NULL; 4863 } 4864 4865 /* 4866 * Look up a CCB from a DSA value. 4867 */ 4868 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa) 4869 { 4870 int hcode; 4871 struct sym_ccb *cp; 4872 4873 hcode = CCB_HASH_CODE(dsa); 4874 cp = np->ccbh[hcode]; 4875 while (cp) { 4876 if (cp->ccb_ba == dsa) 4877 break; 4878 cp = cp->link_ccbh; 4879 } 4880 4881 return cp; 4882 } 4883 4884 /* 4885 * Target control block initialisation. 4886 * Nothing important to do at the moment. 4887 */ 4888 static void sym_init_tcb (struct sym_hcb *np, u_char tn) 4889 { 4890 #if 0 /* Hmmm... this checking looks paranoid. */ 4891 /* 4892 * Check some alignments required by the chip. 4893 */ 4894 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 4895 offsetof(struct sym_tcb, head.sval)) &3) == 0); 4896 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 4897 offsetof(struct sym_tcb, head.wval)) &3) == 0); 4898 #endif 4899 } 4900 4901 /* 4902 * Lun control block allocation and initialization. 4903 */ 4904 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln) 4905 { 4906 struct sym_tcb *tp = &np->target[tn]; 4907 struct sym_lcb *lp = NULL; 4908 4909 /* 4910 * Initialize the target control block if not yet. 4911 */ 4912 sym_init_tcb (np, tn); 4913 4914 /* 4915 * Allocate the LCB bus address array. 4916 * Compute the bus address of this table. 4917 */ 4918 if (ln && !tp->luntbl) { 4919 int i; 4920 4921 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 4922 if (!tp->luntbl) 4923 goto fail; 4924 for (i = 0 ; i < 64 ; i++) 4925 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 4926 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 4927 } 4928 4929 /* 4930 * Allocate the table of pointers for LUN(s) > 0, if needed. 4931 */ 4932 if (ln && !tp->lunmp) { 4933 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *), 4934 GFP_KERNEL); 4935 if (!tp->lunmp) 4936 goto fail; 4937 } 4938 4939 /* 4940 * Allocate the lcb. 4941 * Make it available to the chip. 4942 */ 4943 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 4944 if (!lp) 4945 goto fail; 4946 if (ln) { 4947 tp->lunmp[ln] = lp; 4948 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 4949 } 4950 else { 4951 tp->lun0p = lp; 4952 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 4953 } 4954 4955 /* 4956 * Let the itl task point to error handling. 4957 */ 4958 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 4959 4960 /* 4961 * Set the reselect pattern to our default. :) 4962 */ 4963 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); 4964 4965 /* 4966 * Set user capabilities. 4967 */ 4968 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 4969 4970 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 4971 /* 4972 * Initialize device queueing. 4973 */ 4974 sym_que_init(&lp->waiting_ccbq); 4975 sym_que_init(&lp->started_ccbq); 4976 lp->started_max = SYM_CONF_MAX_TASK; 4977 lp->started_limit = SYM_CONF_MAX_TASK; 4978 #endif 4979 4980 fail: 4981 return lp; 4982 } 4983 4984 /* 4985 * Allocate LCB resources for tagged command queuing. 4986 */ 4987 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln) 4988 { 4989 struct sym_tcb *tp = &np->target[tn]; 4990 struct sym_lcb *lp = sym_lp(tp, ln); 4991 int i; 4992 4993 /* 4994 * Allocate the task table and and the tag allocation 4995 * circular buffer. We want both or none. 4996 */ 4997 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 4998 if (!lp->itlq_tbl) 4999 goto fail; 5000 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC); 5001 if (!lp->cb_tags) { 5002 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 5003 lp->itlq_tbl = NULL; 5004 goto fail; 5005 } 5006 5007 /* 5008 * Initialize the task table with invalid entries. 5009 */ 5010 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 5011 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 5012 5013 /* 5014 * Fill up the tag buffer with tag numbers. 5015 */ 5016 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 5017 lp->cb_tags[i] = i; 5018 5019 /* 5020 * Make the task table available to SCRIPTS, 5021 * And accept tagged commands now. 5022 */ 5023 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 5024 5025 return; 5026 fail: 5027 return; 5028 } 5029 5030 /* 5031 * Queue a SCSI IO to the controller. 5032 */ 5033 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 5034 { 5035 struct scsi_device *sdev = cmd->device; 5036 struct sym_tcb *tp; 5037 struct sym_lcb *lp; 5038 u_char *msgptr; 5039 u_int msglen; 5040 int can_disconnect; 5041 5042 /* 5043 * Keep track of the IO in our CCB. 5044 */ 5045 cp->cmd = cmd; 5046 5047 /* 5048 * Retrieve the target descriptor. 5049 */ 5050 tp = &np->target[cp->target]; 5051 5052 /* 5053 * Retrieve the lun descriptor. 5054 */ 5055 lp = sym_lp(tp, sdev->lun); 5056 5057 can_disconnect = (cp->tag != NO_TAG) || 5058 (lp && (lp->curr_flags & SYM_DISC_ENABLED)); 5059 5060 msgptr = cp->scsi_smsg; 5061 msglen = 0; 5062 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun); 5063 5064 /* 5065 * Build the tag message if present. 5066 */ 5067 if (cp->tag != NO_TAG) { 5068 u_char order = cp->order; 5069 5070 switch(order) { 5071 case M_ORDERED_TAG: 5072 break; 5073 case M_HEAD_TAG: 5074 break; 5075 default: 5076 order = M_SIMPLE_TAG; 5077 } 5078 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING 5079 /* 5080 * Avoid too much reordering of SCSI commands. 5081 * The algorithm tries to prevent completion of any 5082 * tagged command from being delayed against more 5083 * than 3 times the max number of queued commands. 5084 */ 5085 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) { 5086 lp->tags_si = !(lp->tags_si); 5087 if (lp->tags_sum[lp->tags_si]) { 5088 order = M_ORDERED_TAG; 5089 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) { 5090 sym_print_addr(cmd, 5091 "ordered tag forced.\n"); 5092 } 5093 } 5094 lp->tags_since = 0; 5095 } 5096 #endif 5097 msgptr[msglen++] = order; 5098 5099 /* 5100 * For less than 128 tags, actual tags are numbered 5101 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 5102 * with devices that have problems with #TAG 0 or too 5103 * great #TAG numbers. For more tags (up to 256), 5104 * we use directly our tag number. 5105 */ 5106 #if SYM_CONF_MAX_TASK > (512/4) 5107 msgptr[msglen++] = cp->tag; 5108 #else 5109 msgptr[msglen++] = (cp->tag << 1) + 1; 5110 #endif 5111 } 5112 5113 /* 5114 * Build a negotiation message if needed. 5115 * (nego_status is filled by sym_prepare_nego()) 5116 */ 5117 cp->nego_status = 0; 5118 if (tp->tgoal.check_nego && !tp->nego_cp && lp) { 5119 msglen += sym_prepare_nego(np, cp, msgptr + msglen); 5120 } 5121 5122 /* 5123 * Startqueue 5124 */ 5125 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); 5126 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa)); 5127 5128 /* 5129 * select 5130 */ 5131 cp->phys.select.sel_id = cp->target; 5132 cp->phys.select.sel_scntl3 = tp->head.wval; 5133 cp->phys.select.sel_sxfer = tp->head.sval; 5134 cp->phys.select.sel_scntl4 = tp->head.uval; 5135 5136 /* 5137 * message 5138 */ 5139 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg); 5140 cp->phys.smsg.size = cpu_to_scr(msglen); 5141 5142 /* 5143 * status 5144 */ 5145 cp->host_xflags = 0; 5146 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 5147 cp->ssss_status = S_ILLEGAL; 5148 cp->xerr_status = 0; 5149 cp->host_flags = 0; 5150 cp->extra_bytes = 0; 5151 5152 /* 5153 * extreme data pointer. 5154 * shall be positive, so -1 is lower than lowest.:) 5155 */ 5156 cp->ext_sg = -1; 5157 cp->ext_ofs = 0; 5158 5159 /* 5160 * Build the CDB and DATA descriptor block 5161 * and start the IO. 5162 */ 5163 return sym_setup_data_and_start(np, cmd, cp); 5164 } 5165 5166 /* 5167 * Reset a SCSI target (all LUNs of this target). 5168 */ 5169 int sym_reset_scsi_target(struct sym_hcb *np, int target) 5170 { 5171 struct sym_tcb *tp; 5172 5173 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET) 5174 return -1; 5175 5176 tp = &np->target[target]; 5177 tp->to_reset = 1; 5178 5179 np->istat_sem = SEM; 5180 OUTB(np, nc_istat, SIGP|SEM); 5181 5182 return 0; 5183 } 5184 5185 /* 5186 * Abort a SCSI IO. 5187 */ 5188 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out) 5189 { 5190 /* 5191 * Check that the IO is active. 5192 */ 5193 if (!cp || !cp->host_status || cp->host_status == HS_WAIT) 5194 return -1; 5195 5196 /* 5197 * If a previous abort didn't succeed in time, 5198 * perform a BUS reset. 5199 */ 5200 if (cp->to_abort) { 5201 sym_reset_scsi_bus(np, 1); 5202 return 0; 5203 } 5204 5205 /* 5206 * Mark the CCB for abort and allow time for. 5207 */ 5208 cp->to_abort = timed_out ? 2 : 1; 5209 5210 /* 5211 * Tell the SCRIPTS processor to stop and synchronize with us. 5212 */ 5213 np->istat_sem = SEM; 5214 OUTB(np, nc_istat, SIGP|SEM); 5215 return 0; 5216 } 5217 5218 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out) 5219 { 5220 struct sym_ccb *cp; 5221 SYM_QUEHEAD *qp; 5222 5223 /* 5224 * Look up our CCB control block. 5225 */ 5226 cp = NULL; 5227 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5228 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5229 if (cp2->cmd == cmd) { 5230 cp = cp2; 5231 break; 5232 } 5233 } 5234 5235 return sym_abort_ccb(np, cp, timed_out); 5236 } 5237 5238 /* 5239 * Complete execution of a SCSI command with extended 5240 * error, SCSI status error, or having been auto-sensed. 5241 * 5242 * The SCRIPTS processor is not running there, so we 5243 * can safely access IO registers and remove JOBs from 5244 * the START queue. 5245 * SCRATCHA is assumed to have been loaded with STARTPOS 5246 * before the SCRIPTS called the C code. 5247 */ 5248 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp) 5249 { 5250 struct scsi_device *sdev; 5251 struct scsi_cmnd *cmd; 5252 struct sym_tcb *tp; 5253 struct sym_lcb *lp; 5254 int resid; 5255 int i; 5256 5257 /* 5258 * Paranoid check. :) 5259 */ 5260 if (!cp || !cp->cmd) 5261 return; 5262 5263 cmd = cp->cmd; 5264 sdev = cmd->device; 5265 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 5266 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp, 5267 cp->host_status, cp->ssss_status, cp->host_flags); 5268 } 5269 5270 /* 5271 * Get target and lun pointers. 5272 */ 5273 tp = &np->target[cp->target]; 5274 lp = sym_lp(tp, sdev->lun); 5275 5276 /* 5277 * Check for extended errors. 5278 */ 5279 if (cp->xerr_status) { 5280 if (sym_verbose) 5281 sym_print_xerr(cmd, cp->xerr_status); 5282 if (cp->host_status == HS_COMPLETE) 5283 cp->host_status = HS_COMP_ERR; 5284 } 5285 5286 /* 5287 * Calculate the residual. 5288 */ 5289 resid = sym_compute_residual(np, cp); 5290 5291 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 5292 resid = 0; /* throw them away. :) */ 5293 cp->sv_resid = 0; 5294 } 5295 #ifdef DEBUG_2_0_X 5296 if (resid) 5297 printf("XXXX RESID= %d - 0x%x\n", resid, resid); 5298 #endif 5299 5300 /* 5301 * Dequeue all queued CCBs for that device 5302 * not yet started by SCRIPTS. 5303 */ 5304 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; 5305 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1); 5306 5307 /* 5308 * Restart the SCRIPTS processor. 5309 */ 5310 OUTL_DSP(np, SCRIPTA_BA(np, start)); 5311 5312 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5313 if (cp->host_status == HS_COMPLETE && 5314 cp->ssss_status == S_QUEUE_FULL) { 5315 if (!lp || lp->started_tags - i < 2) 5316 goto weirdness; 5317 /* 5318 * Decrease queue depth as needed. 5319 */ 5320 lp->started_max = lp->started_tags - i - 1; 5321 lp->num_sgood = 0; 5322 5323 if (sym_verbose >= 2) { 5324 sym_print_addr(cmd, " queue depth is now %d\n", 5325 lp->started_max); 5326 } 5327 5328 /* 5329 * Repair the CCB. 5330 */ 5331 cp->host_status = HS_BUSY; 5332 cp->ssss_status = S_ILLEGAL; 5333 5334 /* 5335 * Let's requeue it to device. 5336 */ 5337 sym_set_cam_status(cmd, DID_SOFT_ERROR); 5338 goto finish; 5339 } 5340 weirdness: 5341 #endif 5342 /* 5343 * Build result in CAM ccb. 5344 */ 5345 sym_set_cam_result_error(np, cp, resid); 5346 5347 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5348 finish: 5349 #endif 5350 /* 5351 * Add this one to the COMP queue. 5352 */ 5353 sym_remque(&cp->link_ccbq); 5354 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 5355 5356 /* 5357 * Complete all those commands with either error 5358 * or requeue condition. 5359 */ 5360 sym_flush_comp_queue(np, 0); 5361 5362 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5363 /* 5364 * Donnot start more than 1 command after an error. 5365 */ 5366 sym_start_next_ccbs(np, lp, 1); 5367 #endif 5368 } 5369 5370 /* 5371 * Complete execution of a successful SCSI command. 5372 * 5373 * Only successful commands go to the DONE queue, 5374 * since we need to have the SCRIPTS processor 5375 * stopped on any error condition. 5376 * The SCRIPTS processor is running while we are 5377 * completing successful commands. 5378 */ 5379 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp) 5380 { 5381 struct sym_tcb *tp; 5382 struct sym_lcb *lp; 5383 struct scsi_cmnd *cmd; 5384 int resid; 5385 5386 /* 5387 * Paranoid check. :) 5388 */ 5389 if (!cp || !cp->cmd) 5390 return; 5391 assert (cp->host_status == HS_COMPLETE); 5392 5393 /* 5394 * Get user command. 5395 */ 5396 cmd = cp->cmd; 5397 5398 /* 5399 * Get target and lun pointers. 5400 */ 5401 tp = &np->target[cp->target]; 5402 lp = sym_lp(tp, cp->lun); 5403 5404 /* 5405 * If all data have been transferred, given than no 5406 * extended error did occur, there is no residual. 5407 */ 5408 resid = 0; 5409 if (cp->phys.head.lastp != cp->goalp) 5410 resid = sym_compute_residual(np, cp); 5411 5412 /* 5413 * Wrong transfer residuals may be worse than just always 5414 * returning zero. User can disable this feature in 5415 * sym53c8xx.h. Residual support is enabled by default. 5416 */ 5417 if (!SYM_SETUP_RESIDUAL_SUPPORT) 5418 resid = 0; 5419 #ifdef DEBUG_2_0_X 5420 if (resid) 5421 printf("XXXX RESID= %d - 0x%x\n", resid, resid); 5422 #endif 5423 5424 /* 5425 * Build result in CAM ccb. 5426 */ 5427 sym_set_cam_result_ok(cp, cmd, resid); 5428 5429 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5430 /* 5431 * If max number of started ccbs had been reduced, 5432 * increase it if 200 good status received. 5433 */ 5434 if (lp && lp->started_max < lp->started_limit) { 5435 ++lp->num_sgood; 5436 if (lp->num_sgood >= 200) { 5437 lp->num_sgood = 0; 5438 ++lp->started_max; 5439 if (sym_verbose >= 2) { 5440 sym_print_addr(cmd, " queue depth is now %d\n", 5441 lp->started_max); 5442 } 5443 } 5444 } 5445 #endif 5446 5447 /* 5448 * Free our CCB. 5449 */ 5450 sym_free_ccb (np, cp); 5451 5452 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5453 /* 5454 * Requeue a couple of awaiting scsi commands. 5455 */ 5456 if (!sym_que_empty(&lp->waiting_ccbq)) 5457 sym_start_next_ccbs(np, lp, 2); 5458 #endif 5459 /* 5460 * Complete the command. 5461 */ 5462 sym_xpt_done(np, cmd); 5463 } 5464 5465 /* 5466 * Soft-attach the controller. 5467 */ 5468 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram) 5469 { 5470 struct sym_hcb *np = sym_get_hcb(shost); 5471 int i; 5472 5473 /* 5474 * Get some info about the firmware. 5475 */ 5476 np->scripta_sz = fw->a_size; 5477 np->scriptb_sz = fw->b_size; 5478 np->scriptz_sz = fw->z_size; 5479 np->fw_setup = fw->setup; 5480 np->fw_patch = fw->patch; 5481 np->fw_name = fw->name; 5482 5483 /* 5484 * Save setting of some IO registers, so we will 5485 * be able to probe specific implementations. 5486 */ 5487 sym_save_initial_setting (np); 5488 5489 /* 5490 * Reset the chip now, since it has been reported 5491 * that SCSI clock calibration may not work properly 5492 * if the chip is currently active. 5493 */ 5494 sym_chip_reset(np); 5495 5496 /* 5497 * Prepare controller and devices settings, according 5498 * to chip features, user set-up and driver set-up. 5499 */ 5500 sym_prepare_setting(shost, np, nvram); 5501 5502 /* 5503 * Check the PCI clock frequency. 5504 * Must be performed after prepare_setting since it destroys 5505 * STEST1 that is used to probe for the clock doubler. 5506 */ 5507 i = sym_getpciclock(np); 5508 if (i > 37000 && !(np->features & FE_66MHZ)) 5509 printf("%s: PCI BUS clock seems too high: %u KHz.\n", 5510 sym_name(np), i); 5511 5512 /* 5513 * Allocate the start queue. 5514 */ 5515 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 5516 if (!np->squeue) 5517 goto attach_failed; 5518 np->squeue_ba = vtobus(np->squeue); 5519 5520 /* 5521 * Allocate the done queue. 5522 */ 5523 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 5524 if (!np->dqueue) 5525 goto attach_failed; 5526 np->dqueue_ba = vtobus(np->dqueue); 5527 5528 /* 5529 * Allocate the target bus address array. 5530 */ 5531 np->targtbl = sym_calloc_dma(256, "TARGTBL"); 5532 if (!np->targtbl) 5533 goto attach_failed; 5534 np->targtbl_ba = vtobus(np->targtbl); 5535 5536 /* 5537 * Allocate SCRIPTS areas. 5538 */ 5539 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 5540 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 5541 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0"); 5542 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0) 5543 goto attach_failed; 5544 5545 /* 5546 * Allocate the array of lists of CCBs hashed by DSA. 5547 */ 5548 np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL); 5549 if (!np->ccbh) 5550 goto attach_failed; 5551 5552 /* 5553 * Initialyze the CCB free and busy queues. 5554 */ 5555 sym_que_init(&np->free_ccbq); 5556 sym_que_init(&np->busy_ccbq); 5557 sym_que_init(&np->comp_ccbq); 5558 5559 /* 5560 * Initialization for optional handling 5561 * of device queueing. 5562 */ 5563 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5564 sym_que_init(&np->dummy_ccbq); 5565 #endif 5566 /* 5567 * Allocate some CCB. We need at least ONE. 5568 */ 5569 if (!sym_alloc_ccb(np)) 5570 goto attach_failed; 5571 5572 /* 5573 * Calculate BUS addresses where we are going 5574 * to load the SCRIPTS. 5575 */ 5576 np->scripta_ba = vtobus(np->scripta0); 5577 np->scriptb_ba = vtobus(np->scriptb0); 5578 np->scriptz_ba = vtobus(np->scriptz0); 5579 5580 if (np->ram_ba) { 5581 np->scripta_ba = np->ram_ba; 5582 if (np->features & FE_RAM8K) { 5583 np->ram_ws = 8192; 5584 np->scriptb_ba = np->scripta_ba + 4096; 5585 #if 0 /* May get useful for 64 BIT PCI addressing */ 5586 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 5587 #endif 5588 } 5589 else 5590 np->ram_ws = 4096; 5591 } 5592 5593 /* 5594 * Copy scripts to controller instance. 5595 */ 5596 memcpy(np->scripta0, fw->a_base, np->scripta_sz); 5597 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz); 5598 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz); 5599 5600 /* 5601 * Setup variable parts in scripts and compute 5602 * scripts bus addresses used from the C code. 5603 */ 5604 np->fw_setup(np, fw); 5605 5606 /* 5607 * Bind SCRIPTS with physical addresses usable by the 5608 * SCRIPTS processor (as seen from the BUS = BUS addresses). 5609 */ 5610 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 5611 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 5612 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz); 5613 5614 #ifdef SYM_CONF_IARB_SUPPORT 5615 /* 5616 * If user wants IARB to be set when we win arbitration 5617 * and have other jobs, compute the max number of consecutive 5618 * settings of IARB hints before we leave devices a chance to 5619 * arbitrate for reselection. 5620 */ 5621 #ifdef SYM_SETUP_IARB_MAX 5622 np->iarb_max = SYM_SETUP_IARB_MAX; 5623 #else 5624 np->iarb_max = 4; 5625 #endif 5626 #endif 5627 5628 /* 5629 * Prepare the idle and invalid task actions. 5630 */ 5631 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 5632 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); 5633 np->idletask_ba = vtobus(&np->idletask); 5634 5635 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 5636 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); 5637 np->notask_ba = vtobus(&np->notask); 5638 5639 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 5640 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); 5641 np->bad_itl_ba = vtobus(&np->bad_itl); 5642 5643 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 5644 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q)); 5645 np->bad_itlq_ba = vtobus(&np->bad_itlq); 5646 5647 /* 5648 * Allocate and prepare the lun JUMP table that is used 5649 * for a target prior the probing of devices (bad lun table). 5650 * A private table will be allocated for the target on the 5651 * first INQUIRY response received. 5652 */ 5653 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 5654 if (!np->badluntbl) 5655 goto attach_failed; 5656 5657 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); 5658 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 5659 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 5660 5661 /* 5662 * Prepare the bus address array that contains the bus 5663 * address of each target control block. 5664 * For now, assume all logical units are wrong. :) 5665 */ 5666 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 5667 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 5668 np->target[i].head.luntbl_sa = 5669 cpu_to_scr(vtobus(np->badluntbl)); 5670 np->target[i].head.lun0_sa = 5671 cpu_to_scr(vtobus(&np->badlun_sa)); 5672 } 5673 5674 /* 5675 * Now check the cache handling of the pci chipset. 5676 */ 5677 if (sym_snooptest (np)) { 5678 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); 5679 goto attach_failed; 5680 } 5681 5682 /* 5683 * Sigh! we are done. 5684 */ 5685 return 0; 5686 5687 attach_failed: 5688 return -ENXIO; 5689 } 5690 5691 /* 5692 * Free everything that has been allocated for this device. 5693 */ 5694 void sym_hcb_free(struct sym_hcb *np) 5695 { 5696 SYM_QUEHEAD *qp; 5697 struct sym_ccb *cp; 5698 struct sym_tcb *tp; 5699 int target; 5700 5701 if (np->scriptz0) 5702 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0"); 5703 if (np->scriptb0) 5704 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 5705 if (np->scripta0) 5706 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 5707 if (np->squeue) 5708 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 5709 if (np->dqueue) 5710 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 5711 5712 if (np->actccbs) { 5713 while ((qp = sym_remque_head(&np->free_ccbq)) != 0) { 5714 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5715 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 5716 } 5717 } 5718 kfree(np->ccbh); 5719 5720 if (np->badluntbl) 5721 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 5722 5723 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 5724 tp = &np->target[target]; 5725 #if SYM_CONF_MAX_LUN > 1 5726 kfree(tp->lunmp); 5727 #endif 5728 } 5729 if (np->targtbl) 5730 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 5731 } 5732