1 /* 2 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 3 * of PCI-SCSI IO processors. 4 * 5 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 6 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx> 7 * 8 * This driver is derived from the Linux sym53c8xx driver. 9 * Copyright (C) 1998-2000 Gerard Roudier 10 * 11 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 12 * a port of the FreeBSD ncr driver to Linux-1.2.13. 13 * 14 * The original ncr driver has been written for 386bsd and FreeBSD by 15 * Wolfgang Stanglmeier <wolf@cologne.de> 16 * Stefan Esser <se@mi.Uni-Koeln.de> 17 * Copyright (C) 1994 Wolfgang Stanglmeier 18 * 19 * Other major contributions: 20 * 21 * NVRAM detection and reading. 22 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 23 * 24 *----------------------------------------------------------------------------- 25 * 26 * This program is free software; you can redistribute it and/or modify 27 * it under the terms of the GNU General Public License as published by 28 * the Free Software Foundation; either version 2 of the License, or 29 * (at your option) any later version. 30 * 31 * This program is distributed in the hope that it will be useful, 32 * but WITHOUT ANY WARRANTY; without even the implied warranty of 33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 34 * GNU General Public License for more details. 35 * 36 * You should have received a copy of the GNU General Public License 37 * along with this program; if not, write to the Free Software 38 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 39 */ 40 41 #include <linux/slab.h> 42 #include <asm/param.h> /* for timeouts in units of HZ */ 43 44 #include "sym_glue.h" 45 #include "sym_nvram.h" 46 47 #if 0 48 #define SYM_DEBUG_GENERIC_SUPPORT 49 #endif 50 51 /* 52 * Needed function prototypes. 53 */ 54 static void sym_int_ma (struct sym_hcb *np); 55 static void sym_int_sir(struct sym_hcb *); 56 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np); 57 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa); 58 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln); 59 static void sym_complete_error (struct sym_hcb *np, struct sym_ccb *cp); 60 static void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp); 61 static int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp); 62 63 /* 64 * Print a buffer in hexadecimal format with a ".\n" at end. 65 */ 66 static void sym_printl_hex(u_char *p, int n) 67 { 68 while (n-- > 0) 69 printf (" %x", *p++); 70 printf (".\n"); 71 } 72 73 static void sym_print_msg(struct sym_ccb *cp, char *label, u_char *msg) 74 { 75 sym_print_addr(cp->cmd, "%s: ", label); 76 77 spi_print_msg(msg); 78 printf("\n"); 79 } 80 81 static void sym_print_nego_msg(struct sym_hcb *np, int target, char *label, u_char *msg) 82 { 83 struct sym_tcb *tp = &np->target[target]; 84 dev_info(&tp->starget->dev, "%s: ", label); 85 86 spi_print_msg(msg); 87 printf("\n"); 88 } 89 90 /* 91 * Print something that tells about extended errors. 92 */ 93 void sym_print_xerr(struct scsi_cmnd *cmd, int x_status) 94 { 95 if (x_status & XE_PARITY_ERR) { 96 sym_print_addr(cmd, "unrecovered SCSI parity error.\n"); 97 } 98 if (x_status & XE_EXTRA_DATA) { 99 sym_print_addr(cmd, "extraneous data discarded.\n"); 100 } 101 if (x_status & XE_BAD_PHASE) { 102 sym_print_addr(cmd, "illegal scsi phase (4/5).\n"); 103 } 104 if (x_status & XE_SODL_UNRUN) { 105 sym_print_addr(cmd, "ODD transfer in DATA OUT phase.\n"); 106 } 107 if (x_status & XE_SWIDE_OVRUN) { 108 sym_print_addr(cmd, "ODD transfer in DATA IN phase.\n"); 109 } 110 } 111 112 /* 113 * Return a string for SCSI BUS mode. 114 */ 115 static char *sym_scsi_bus_mode(int mode) 116 { 117 switch(mode) { 118 case SMODE_HVD: return "HVD"; 119 case SMODE_SE: return "SE"; 120 case SMODE_LVD: return "LVD"; 121 } 122 return "??"; 123 } 124 125 /* 126 * Soft reset the chip. 127 * 128 * Raising SRST when the chip is running may cause 129 * problems on dual function chips (see below). 130 * On the other hand, LVD devices need some delay 131 * to settle and report actual BUS mode in STEST4. 132 */ 133 static void sym_chip_reset (struct sym_hcb *np) 134 { 135 OUTB(np, nc_istat, SRST); 136 INB(np, nc_mbox1); 137 udelay(10); 138 OUTB(np, nc_istat, 0); 139 INB(np, nc_mbox1); 140 udelay(2000); /* For BUS MODE to settle */ 141 } 142 143 /* 144 * Really soft reset the chip.:) 145 * 146 * Some 896 and 876 chip revisions may hang-up if we set 147 * the SRST (soft reset) bit at the wrong time when SCRIPTS 148 * are running. 149 * So, we need to abort the current operation prior to 150 * soft resetting the chip. 151 */ 152 static void sym_soft_reset (struct sym_hcb *np) 153 { 154 u_char istat = 0; 155 int i; 156 157 if (!(np->features & FE_ISTAT1) || !(INB(np, nc_istat1) & SCRUN)) 158 goto do_chip_reset; 159 160 OUTB(np, nc_istat, CABRT); 161 for (i = 100000 ; i ; --i) { 162 istat = INB(np, nc_istat); 163 if (istat & SIP) { 164 INW(np, nc_sist); 165 } 166 else if (istat & DIP) { 167 if (INB(np, nc_dstat) & ABRT) 168 break; 169 } 170 udelay(5); 171 } 172 OUTB(np, nc_istat, 0); 173 if (!i) 174 printf("%s: unable to abort current chip operation, " 175 "ISTAT=0x%02x.\n", sym_name(np), istat); 176 do_chip_reset: 177 sym_chip_reset(np); 178 } 179 180 /* 181 * Start reset process. 182 * 183 * The interrupt handler will reinitialize the chip. 184 */ 185 static void sym_start_reset(struct sym_hcb *np) 186 { 187 sym_reset_scsi_bus(np, 1); 188 } 189 190 int sym_reset_scsi_bus(struct sym_hcb *np, int enab_int) 191 { 192 u32 term; 193 int retv = 0; 194 195 sym_soft_reset(np); /* Soft reset the chip */ 196 if (enab_int) 197 OUTW(np, nc_sien, RST); 198 /* 199 * Enable Tolerant, reset IRQD if present and 200 * properly set IRQ mode, prior to resetting the bus. 201 */ 202 OUTB(np, nc_stest3, TE); 203 OUTB(np, nc_dcntl, (np->rv_dcntl & IRQM)); 204 OUTB(np, nc_scntl1, CRST); 205 INB(np, nc_mbox1); 206 udelay(200); 207 208 if (!SYM_SETUP_SCSI_BUS_CHECK) 209 goto out; 210 /* 211 * Check for no terminators or SCSI bus shorts to ground. 212 * Read SCSI data bus, data parity bits and control signals. 213 * We are expecting RESET to be TRUE and other signals to be 214 * FALSE. 215 */ 216 term = INB(np, nc_sstat0); 217 term = ((term & 2) << 7) + ((term & 1) << 17); /* rst sdp0 */ 218 term |= ((INB(np, nc_sstat2) & 0x01) << 26) | /* sdp1 */ 219 ((INW(np, nc_sbdl) & 0xff) << 9) | /* d7-0 */ 220 ((INW(np, nc_sbdl) & 0xff00) << 10) | /* d15-8 */ 221 INB(np, nc_sbcl); /* req ack bsy sel atn msg cd io */ 222 223 if (!np->maxwide) 224 term &= 0x3ffff; 225 226 if (term != (2<<7)) { 227 printf("%s: suspicious SCSI data while resetting the BUS.\n", 228 sym_name(np)); 229 printf("%s: %sdp0,d7-0,rst,req,ack,bsy,sel,atn,msg,c/d,i/o = " 230 "0x%lx, expecting 0x%lx\n", 231 sym_name(np), 232 (np->features & FE_WIDE) ? "dp1,d15-8," : "", 233 (u_long)term, (u_long)(2<<7)); 234 if (SYM_SETUP_SCSI_BUS_CHECK == 1) 235 retv = 1; 236 } 237 out: 238 OUTB(np, nc_scntl1, 0); 239 return retv; 240 } 241 242 /* 243 * Select SCSI clock frequency 244 */ 245 static void sym_selectclock(struct sym_hcb *np, u_char scntl3) 246 { 247 /* 248 * If multiplier not present or not selected, leave here. 249 */ 250 if (np->multiplier <= 1) { 251 OUTB(np, nc_scntl3, scntl3); 252 return; 253 } 254 255 if (sym_verbose >= 2) 256 printf ("%s: enabling clock multiplier\n", sym_name(np)); 257 258 OUTB(np, nc_stest1, DBLEN); /* Enable clock multiplier */ 259 /* 260 * Wait for the LCKFRQ bit to be set if supported by the chip. 261 * Otherwise wait 50 micro-seconds (at least). 262 */ 263 if (np->features & FE_LCKFRQ) { 264 int i = 20; 265 while (!(INB(np, nc_stest4) & LCKFRQ) && --i > 0) 266 udelay(20); 267 if (!i) 268 printf("%s: the chip cannot lock the frequency\n", 269 sym_name(np)); 270 } else { 271 INB(np, nc_mbox1); 272 udelay(50+10); 273 } 274 OUTB(np, nc_stest3, HSC); /* Halt the scsi clock */ 275 OUTB(np, nc_scntl3, scntl3); 276 OUTB(np, nc_stest1, (DBLEN|DBLSEL));/* Select clock multiplier */ 277 OUTB(np, nc_stest3, 0x00); /* Restart scsi clock */ 278 } 279 280 281 /* 282 * Determine the chip's clock frequency. 283 * 284 * This is essential for the negotiation of the synchronous 285 * transfer rate. 286 * 287 * Note: we have to return the correct value. 288 * THERE IS NO SAFE DEFAULT VALUE. 289 * 290 * Most NCR/SYMBIOS boards are delivered with a 40 Mhz clock. 291 * 53C860 and 53C875 rev. 1 support fast20 transfers but 292 * do not have a clock doubler and so are provided with a 293 * 80 MHz clock. All other fast20 boards incorporate a doubler 294 * and so should be delivered with a 40 MHz clock. 295 * The recent fast40 chips (895/896/895A/1010) use a 40 Mhz base 296 * clock and provide a clock quadrupler (160 Mhz). 297 */ 298 299 /* 300 * calculate SCSI clock frequency (in KHz) 301 */ 302 static unsigned getfreq (struct sym_hcb *np, int gen) 303 { 304 unsigned int ms = 0; 305 unsigned int f; 306 307 /* 308 * Measure GEN timer delay in order 309 * to calculate SCSI clock frequency 310 * 311 * This code will never execute too 312 * many loop iterations (if DELAY is 313 * reasonably correct). It could get 314 * too low a delay (too high a freq.) 315 * if the CPU is slow executing the 316 * loop for some reason (an NMI, for 317 * example). For this reason we will 318 * if multiple measurements are to be 319 * performed trust the higher delay 320 * (lower frequency returned). 321 */ 322 OUTW(np, nc_sien, 0); /* mask all scsi interrupts */ 323 INW(np, nc_sist); /* clear pending scsi interrupt */ 324 OUTB(np, nc_dien, 0); /* mask all dma interrupts */ 325 INW(np, nc_sist); /* another one, just to be sure :) */ 326 /* 327 * The C1010-33 core does not report GEN in SIST, 328 * if this interrupt is masked in SIEN. 329 * I don't know yet if the C1010-66 behaves the same way. 330 */ 331 if (np->features & FE_C10) { 332 OUTW(np, nc_sien, GEN); 333 OUTB(np, nc_istat1, SIRQD); 334 } 335 OUTB(np, nc_scntl3, 4); /* set pre-scaler to divide by 3 */ 336 OUTB(np, nc_stime1, 0); /* disable general purpose timer */ 337 OUTB(np, nc_stime1, gen); /* set to nominal delay of 1<<gen * 125us */ 338 while (!(INW(np, nc_sist) & GEN) && ms++ < 100000) 339 udelay(1000/4); /* count in 1/4 of ms */ 340 OUTB(np, nc_stime1, 0); /* disable general purpose timer */ 341 /* 342 * Undo C1010-33 specific settings. 343 */ 344 if (np->features & FE_C10) { 345 OUTW(np, nc_sien, 0); 346 OUTB(np, nc_istat1, 0); 347 } 348 /* 349 * set prescaler to divide by whatever 0 means 350 * 0 ought to choose divide by 2, but appears 351 * to set divide by 3.5 mode in my 53c810 ... 352 */ 353 OUTB(np, nc_scntl3, 0); 354 355 /* 356 * adjust for prescaler, and convert into KHz 357 */ 358 f = ms ? ((1 << gen) * (4340*4)) / ms : 0; 359 360 /* 361 * The C1010-33 result is biased by a factor 362 * of 2/3 compared to earlier chips. 363 */ 364 if (np->features & FE_C10) 365 f = (f * 2) / 3; 366 367 if (sym_verbose >= 2) 368 printf ("%s: Delay (GEN=%d): %u msec, %u KHz\n", 369 sym_name(np), gen, ms/4, f); 370 371 return f; 372 } 373 374 static unsigned sym_getfreq (struct sym_hcb *np) 375 { 376 u_int f1, f2; 377 int gen = 8; 378 379 getfreq (np, gen); /* throw away first result */ 380 f1 = getfreq (np, gen); 381 f2 = getfreq (np, gen); 382 if (f1 > f2) f1 = f2; /* trust lower result */ 383 return f1; 384 } 385 386 /* 387 * Get/probe chip SCSI clock frequency 388 */ 389 static void sym_getclock (struct sym_hcb *np, int mult) 390 { 391 unsigned char scntl3 = np->sv_scntl3; 392 unsigned char stest1 = np->sv_stest1; 393 unsigned f1; 394 395 np->multiplier = 1; 396 f1 = 40000; 397 /* 398 * True with 875/895/896/895A with clock multiplier selected 399 */ 400 if (mult > 1 && (stest1 & (DBLEN+DBLSEL)) == DBLEN+DBLSEL) { 401 if (sym_verbose >= 2) 402 printf ("%s: clock multiplier found\n", sym_name(np)); 403 np->multiplier = mult; 404 } 405 406 /* 407 * If multiplier not found or scntl3 not 7,5,3, 408 * reset chip and get frequency from general purpose timer. 409 * Otherwise trust scntl3 BIOS setting. 410 */ 411 if (np->multiplier != mult || (scntl3 & 7) < 3 || !(scntl3 & 1)) { 412 OUTB(np, nc_stest1, 0); /* make sure doubler is OFF */ 413 f1 = sym_getfreq (np); 414 415 if (sym_verbose) 416 printf ("%s: chip clock is %uKHz\n", sym_name(np), f1); 417 418 if (f1 < 45000) f1 = 40000; 419 else if (f1 < 55000) f1 = 50000; 420 else f1 = 80000; 421 422 if (f1 < 80000 && mult > 1) { 423 if (sym_verbose >= 2) 424 printf ("%s: clock multiplier assumed\n", 425 sym_name(np)); 426 np->multiplier = mult; 427 } 428 } else { 429 if ((scntl3 & 7) == 3) f1 = 40000; 430 else if ((scntl3 & 7) == 5) f1 = 80000; 431 else f1 = 160000; 432 433 f1 /= np->multiplier; 434 } 435 436 /* 437 * Compute controller synchronous parameters. 438 */ 439 f1 *= np->multiplier; 440 np->clock_khz = f1; 441 } 442 443 /* 444 * Get/probe PCI clock frequency 445 */ 446 static int sym_getpciclock (struct sym_hcb *np) 447 { 448 int f = 0; 449 450 /* 451 * For now, we only need to know about the actual 452 * PCI BUS clock frequency for C1010-66 chips. 453 */ 454 #if 1 455 if (np->features & FE_66MHZ) { 456 #else 457 if (1) { 458 #endif 459 OUTB(np, nc_stest1, SCLK); /* Use the PCI clock as SCSI clock */ 460 f = sym_getfreq(np); 461 OUTB(np, nc_stest1, 0); 462 } 463 np->pciclk_khz = f; 464 465 return f; 466 } 467 468 /* 469 * SYMBIOS chip clock divisor table. 470 * 471 * Divisors are multiplied by 10,000,000 in order to make 472 * calculations more simple. 473 */ 474 #define _5M 5000000 475 static const u32 div_10M[] = {2*_5M, 3*_5M, 4*_5M, 6*_5M, 8*_5M, 12*_5M, 16*_5M}; 476 477 /* 478 * Get clock factor and sync divisor for a given 479 * synchronous factor period. 480 */ 481 static int 482 sym_getsync(struct sym_hcb *np, u_char dt, u_char sfac, u_char *divp, u_char *fakp) 483 { 484 u32 clk = np->clock_khz; /* SCSI clock frequency in kHz */ 485 int div = np->clock_divn; /* Number of divisors supported */ 486 u32 fak; /* Sync factor in sxfer */ 487 u32 per; /* Period in tenths of ns */ 488 u32 kpc; /* (per * clk) */ 489 int ret; 490 491 /* 492 * Compute the synchronous period in tenths of nano-seconds 493 */ 494 if (dt && sfac <= 9) per = 125; 495 else if (sfac <= 10) per = 250; 496 else if (sfac == 11) per = 303; 497 else if (sfac == 12) per = 500; 498 else per = 40 * sfac; 499 ret = per; 500 501 kpc = per * clk; 502 if (dt) 503 kpc <<= 1; 504 505 /* 506 * For earliest C10 revision 0, we cannot use extra 507 * clocks for the setting of the SCSI clocking. 508 * Note that this limits the lowest sync data transfer 509 * to 5 Mega-transfers per second and may result in 510 * using higher clock divisors. 511 */ 512 #if 1 513 if ((np->features & (FE_C10|FE_U3EN)) == FE_C10) { 514 /* 515 * Look for the lowest clock divisor that allows an 516 * output speed not faster than the period. 517 */ 518 while (div > 0) { 519 --div; 520 if (kpc > (div_10M[div] << 2)) { 521 ++div; 522 break; 523 } 524 } 525 fak = 0; /* No extra clocks */ 526 if (div == np->clock_divn) { /* Are we too fast ? */ 527 ret = -1; 528 } 529 *divp = div; 530 *fakp = fak; 531 return ret; 532 } 533 #endif 534 535 /* 536 * Look for the greatest clock divisor that allows an 537 * input speed faster than the period. 538 */ 539 while (div-- > 0) 540 if (kpc >= (div_10M[div] << 2)) break; 541 542 /* 543 * Calculate the lowest clock factor that allows an output 544 * speed not faster than the period, and the max output speed. 545 * If fak >= 1 we will set both XCLKH_ST and XCLKH_DT. 546 * If fak >= 2 we will also set XCLKS_ST and XCLKS_DT. 547 */ 548 if (dt) { 549 fak = (kpc - 1) / (div_10M[div] << 1) + 1 - 2; 550 /* ret = ((2+fak)*div_10M[div])/np->clock_khz; */ 551 } else { 552 fak = (kpc - 1) / div_10M[div] + 1 - 4; 553 /* ret = ((4+fak)*div_10M[div])/np->clock_khz; */ 554 } 555 556 /* 557 * Check against our hardware limits, or bugs :). 558 */ 559 if (fak > 2) { 560 fak = 2; 561 ret = -1; 562 } 563 564 /* 565 * Compute and return sync parameters. 566 */ 567 *divp = div; 568 *fakp = fak; 569 570 return ret; 571 } 572 573 /* 574 * SYMBIOS chips allow burst lengths of 2, 4, 8, 16, 32, 64, 575 * 128 transfers. All chips support at least 16 transfers 576 * bursts. The 825A, 875 and 895 chips support bursts of up 577 * to 128 transfers and the 895A and 896 support bursts of up 578 * to 64 transfers. All other chips support up to 16 579 * transfers bursts. 580 * 581 * For PCI 32 bit data transfers each transfer is a DWORD. 582 * It is a QUADWORD (8 bytes) for PCI 64 bit data transfers. 583 * 584 * We use log base 2 (burst length) as internal code, with 585 * value 0 meaning "burst disabled". 586 */ 587 588 /* 589 * Burst length from burst code. 590 */ 591 #define burst_length(bc) (!(bc))? 0 : 1 << (bc) 592 593 /* 594 * Burst code from io register bits. 595 */ 596 #define burst_code(dmode, ctest4, ctest5) \ 597 (ctest4) & 0x80? 0 : (((dmode) & 0xc0) >> 6) + ((ctest5) & 0x04) + 1 598 599 /* 600 * Set initial io register bits from burst code. 601 */ 602 static inline void sym_init_burst(struct sym_hcb *np, u_char bc) 603 { 604 np->rv_ctest4 &= ~0x80; 605 np->rv_dmode &= ~(0x3 << 6); 606 np->rv_ctest5 &= ~0x4; 607 608 if (!bc) { 609 np->rv_ctest4 |= 0x80; 610 } 611 else { 612 --bc; 613 np->rv_dmode |= ((bc & 0x3) << 6); 614 np->rv_ctest5 |= (bc & 0x4); 615 } 616 } 617 618 /* 619 * Save initial settings of some IO registers. 620 * Assumed to have been set by BIOS. 621 * We cannot reset the chip prior to reading the 622 * IO registers, since informations will be lost. 623 * Since the SCRIPTS processor may be running, this 624 * is not safe on paper, but it seems to work quite 625 * well. :) 626 */ 627 static void sym_save_initial_setting (struct sym_hcb *np) 628 { 629 np->sv_scntl0 = INB(np, nc_scntl0) & 0x0a; 630 np->sv_scntl3 = INB(np, nc_scntl3) & 0x07; 631 np->sv_dmode = INB(np, nc_dmode) & 0xce; 632 np->sv_dcntl = INB(np, nc_dcntl) & 0xa8; 633 np->sv_ctest3 = INB(np, nc_ctest3) & 0x01; 634 np->sv_ctest4 = INB(np, nc_ctest4) & 0x80; 635 np->sv_gpcntl = INB(np, nc_gpcntl); 636 np->sv_stest1 = INB(np, nc_stest1); 637 np->sv_stest2 = INB(np, nc_stest2) & 0x20; 638 np->sv_stest4 = INB(np, nc_stest4); 639 if (np->features & FE_C10) { /* Always large DMA fifo + ultra3 */ 640 np->sv_scntl4 = INB(np, nc_scntl4); 641 np->sv_ctest5 = INB(np, nc_ctest5) & 0x04; 642 } 643 else 644 np->sv_ctest5 = INB(np, nc_ctest5) & 0x24; 645 } 646 647 /* 648 * Set SCSI BUS mode. 649 * - LVD capable chips (895/895A/896/1010) report the current BUS mode 650 * through the STEST4 IO register. 651 * - For previous generation chips (825/825A/875), the user has to tell us 652 * how to check against HVD, since a 100% safe algorithm is not possible. 653 */ 654 static void sym_set_bus_mode(struct sym_hcb *np, struct sym_nvram *nvram) 655 { 656 if (np->scsi_mode) 657 return; 658 659 np->scsi_mode = SMODE_SE; 660 if (np->features & (FE_ULTRA2|FE_ULTRA3)) 661 np->scsi_mode = (np->sv_stest4 & SMODE); 662 else if (np->features & FE_DIFF) { 663 if (SYM_SETUP_SCSI_DIFF == 1) { 664 if (np->sv_scntl3) { 665 if (np->sv_stest2 & 0x20) 666 np->scsi_mode = SMODE_HVD; 667 } else if (nvram->type == SYM_SYMBIOS_NVRAM) { 668 if (!(INB(np, nc_gpreg) & 0x08)) 669 np->scsi_mode = SMODE_HVD; 670 } 671 } else if (SYM_SETUP_SCSI_DIFF == 2) 672 np->scsi_mode = SMODE_HVD; 673 } 674 if (np->scsi_mode == SMODE_HVD) 675 np->rv_stest2 |= 0x20; 676 } 677 678 /* 679 * Prepare io register values used by sym_start_up() 680 * according to selected and supported features. 681 */ 682 static int sym_prepare_setting(struct Scsi_Host *shost, struct sym_hcb *np, struct sym_nvram *nvram) 683 { 684 struct sym_data *sym_data = shost_priv(shost); 685 struct pci_dev *pdev = sym_data->pdev; 686 u_char burst_max; 687 u32 period; 688 int i; 689 690 np->maxwide = (np->features & FE_WIDE) ? 1 : 0; 691 692 /* 693 * Guess the frequency of the chip's clock. 694 */ 695 if (np->features & (FE_ULTRA3 | FE_ULTRA2)) 696 np->clock_khz = 160000; 697 else if (np->features & FE_ULTRA) 698 np->clock_khz = 80000; 699 else 700 np->clock_khz = 40000; 701 702 /* 703 * Get the clock multiplier factor. 704 */ 705 if (np->features & FE_QUAD) 706 np->multiplier = 4; 707 else if (np->features & FE_DBLR) 708 np->multiplier = 2; 709 else 710 np->multiplier = 1; 711 712 /* 713 * Measure SCSI clock frequency for chips 714 * it may vary from assumed one. 715 */ 716 if (np->features & FE_VARCLK) 717 sym_getclock(np, np->multiplier); 718 719 /* 720 * Divisor to be used for async (timer pre-scaler). 721 */ 722 i = np->clock_divn - 1; 723 while (--i >= 0) { 724 if (10ul * SYM_CONF_MIN_ASYNC * np->clock_khz > div_10M[i]) { 725 ++i; 726 break; 727 } 728 } 729 np->rv_scntl3 = i+1; 730 731 /* 732 * The C1010 uses hardwired divisors for async. 733 * So, we just throw away, the async. divisor.:-) 734 */ 735 if (np->features & FE_C10) 736 np->rv_scntl3 = 0; 737 738 /* 739 * Minimum synchronous period factor supported by the chip. 740 * Btw, 'period' is in tenths of nanoseconds. 741 */ 742 period = (4 * div_10M[0] + np->clock_khz - 1) / np->clock_khz; 743 744 if (period <= 250) np->minsync = 10; 745 else if (period <= 303) np->minsync = 11; 746 else if (period <= 500) np->minsync = 12; 747 else np->minsync = (period + 40 - 1) / 40; 748 749 /* 750 * Check against chip SCSI standard support (SCSI-2,ULTRA,ULTRA2). 751 */ 752 if (np->minsync < 25 && 753 !(np->features & (FE_ULTRA|FE_ULTRA2|FE_ULTRA3))) 754 np->minsync = 25; 755 else if (np->minsync < 12 && 756 !(np->features & (FE_ULTRA2|FE_ULTRA3))) 757 np->minsync = 12; 758 759 /* 760 * Maximum synchronous period factor supported by the chip. 761 */ 762 period = (11 * div_10M[np->clock_divn - 1]) / (4 * np->clock_khz); 763 np->maxsync = period > 2540 ? 254 : period / 10; 764 765 /* 766 * If chip is a C1010, guess the sync limits in DT mode. 767 */ 768 if ((np->features & (FE_C10|FE_ULTRA3)) == (FE_C10|FE_ULTRA3)) { 769 if (np->clock_khz == 160000) { 770 np->minsync_dt = 9; 771 np->maxsync_dt = 50; 772 np->maxoffs_dt = nvram->type ? 62 : 31; 773 } 774 } 775 776 /* 777 * 64 bit addressing (895A/896/1010) ? 778 */ 779 if (np->features & FE_DAC) { 780 if (!use_dac(np)) 781 np->rv_ccntl1 |= (DDAC); 782 else if (SYM_CONF_DMA_ADDRESSING_MODE == 1) 783 np->rv_ccntl1 |= (XTIMOD | EXTIBMV); 784 else if (SYM_CONF_DMA_ADDRESSING_MODE == 2) 785 np->rv_ccntl1 |= (0 | EXTIBMV); 786 } 787 788 /* 789 * Phase mismatch handled by SCRIPTS (895A/896/1010) ? 790 */ 791 if (np->features & FE_NOPM) 792 np->rv_ccntl0 |= (ENPMJ); 793 794 /* 795 * C1010-33 Errata: Part Number:609-039638 (rev. 1) is fixed. 796 * In dual channel mode, contention occurs if internal cycles 797 * are used. Disable internal cycles. 798 */ 799 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 && 800 pdev->revision < 0x1) 801 np->rv_ccntl0 |= DILS; 802 803 /* 804 * Select burst length (dwords) 805 */ 806 burst_max = SYM_SETUP_BURST_ORDER; 807 if (burst_max == 255) 808 burst_max = burst_code(np->sv_dmode, np->sv_ctest4, 809 np->sv_ctest5); 810 if (burst_max > 7) 811 burst_max = 7; 812 if (burst_max > np->maxburst) 813 burst_max = np->maxburst; 814 815 /* 816 * DEL 352 - 53C810 Rev x11 - Part Number 609-0392140 - ITEM 2. 817 * This chip and the 860 Rev 1 may wrongly use PCI cache line 818 * based transactions on LOAD/STORE instructions. So we have 819 * to prevent these chips from using such PCI transactions in 820 * this driver. The generic ncr driver that does not use 821 * LOAD/STORE instructions does not need this work-around. 822 */ 823 if ((pdev->device == PCI_DEVICE_ID_NCR_53C810 && 824 pdev->revision >= 0x10 && pdev->revision <= 0x11) || 825 (pdev->device == PCI_DEVICE_ID_NCR_53C860 && 826 pdev->revision <= 0x1)) 827 np->features &= ~(FE_WRIE|FE_ERL|FE_ERMP); 828 829 /* 830 * Select all supported special features. 831 * If we are using on-board RAM for scripts, prefetch (PFEN) 832 * does not help, but burst op fetch (BOF) does. 833 * Disabling PFEN makes sure BOF will be used. 834 */ 835 if (np->features & FE_ERL) 836 np->rv_dmode |= ERL; /* Enable Read Line */ 837 if (np->features & FE_BOF) 838 np->rv_dmode |= BOF; /* Burst Opcode Fetch */ 839 if (np->features & FE_ERMP) 840 np->rv_dmode |= ERMP; /* Enable Read Multiple */ 841 #if 1 842 if ((np->features & FE_PFEN) && !np->ram_ba) 843 #else 844 if (np->features & FE_PFEN) 845 #endif 846 np->rv_dcntl |= PFEN; /* Prefetch Enable */ 847 if (np->features & FE_CLSE) 848 np->rv_dcntl |= CLSE; /* Cache Line Size Enable */ 849 if (np->features & FE_WRIE) 850 np->rv_ctest3 |= WRIE; /* Write and Invalidate */ 851 if (np->features & FE_DFS) 852 np->rv_ctest5 |= DFS; /* Dma Fifo Size */ 853 854 /* 855 * Select some other 856 */ 857 np->rv_ctest4 |= MPEE; /* Master parity checking */ 858 np->rv_scntl0 |= 0x0a; /* full arb., ena parity, par->ATN */ 859 860 /* 861 * Get parity checking, host ID and verbose mode from NVRAM 862 */ 863 np->myaddr = 255; 864 np->scsi_mode = 0; 865 sym_nvram_setup_host(shost, np, nvram); 866 867 /* 868 * Get SCSI addr of host adapter (set by bios?). 869 */ 870 if (np->myaddr == 255) { 871 np->myaddr = INB(np, nc_scid) & 0x07; 872 if (!np->myaddr) 873 np->myaddr = SYM_SETUP_HOST_ID; 874 } 875 876 /* 877 * Prepare initial io register bits for burst length 878 */ 879 sym_init_burst(np, burst_max); 880 881 sym_set_bus_mode(np, nvram); 882 883 /* 884 * Set LED support from SCRIPTS. 885 * Ignore this feature for boards known to use a 886 * specific GPIO wiring and for the 895A, 896 887 * and 1010 that drive the LED directly. 888 */ 889 if ((SYM_SETUP_SCSI_LED || 890 (nvram->type == SYM_SYMBIOS_NVRAM || 891 (nvram->type == SYM_TEKRAM_NVRAM && 892 pdev->device == PCI_DEVICE_ID_NCR_53C895))) && 893 !(np->features & FE_LEDC) && !(np->sv_gpcntl & 0x01)) 894 np->features |= FE_LED0; 895 896 /* 897 * Set irq mode. 898 */ 899 switch(SYM_SETUP_IRQ_MODE & 3) { 900 case 2: 901 np->rv_dcntl |= IRQM; 902 break; 903 case 1: 904 np->rv_dcntl |= (np->sv_dcntl & IRQM); 905 break; 906 default: 907 break; 908 } 909 910 /* 911 * Configure targets according to driver setup. 912 * If NVRAM present get targets setup from NVRAM. 913 */ 914 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 915 struct sym_tcb *tp = &np->target[i]; 916 917 tp->usrflags |= (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 918 tp->usrtags = SYM_SETUP_MAX_TAG; 919 tp->usr_width = np->maxwide; 920 tp->usr_period = 9; 921 922 sym_nvram_setup_target(tp, i, nvram); 923 924 if (!tp->usrtags) 925 tp->usrflags &= ~SYM_TAGS_ENABLED; 926 } 927 928 /* 929 * Let user know about the settings. 930 */ 931 printf("%s: %s, ID %d, Fast-%d, %s, %s\n", sym_name(np), 932 sym_nvram_type(nvram), np->myaddr, 933 (np->features & FE_ULTRA3) ? 80 : 934 (np->features & FE_ULTRA2) ? 40 : 935 (np->features & FE_ULTRA) ? 20 : 10, 936 sym_scsi_bus_mode(np->scsi_mode), 937 (np->rv_scntl0 & 0xa) ? "parity checking" : "NO parity"); 938 /* 939 * Tell him more on demand. 940 */ 941 if (sym_verbose) { 942 printf("%s: %s IRQ line driver%s\n", 943 sym_name(np), 944 np->rv_dcntl & IRQM ? "totem pole" : "open drain", 945 np->ram_ba ? ", using on-chip SRAM" : ""); 946 printf("%s: using %s firmware.\n", sym_name(np), np->fw_name); 947 if (np->features & FE_NOPM) 948 printf("%s: handling phase mismatch from SCRIPTS.\n", 949 sym_name(np)); 950 } 951 /* 952 * And still more. 953 */ 954 if (sym_verbose >= 2) { 955 printf ("%s: initial SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 956 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 957 sym_name(np), np->sv_scntl3, np->sv_dmode, np->sv_dcntl, 958 np->sv_ctest3, np->sv_ctest4, np->sv_ctest5); 959 960 printf ("%s: final SCNTL3/DMODE/DCNTL/CTEST3/4/5 = " 961 "(hex) %02x/%02x/%02x/%02x/%02x/%02x\n", 962 sym_name(np), np->rv_scntl3, np->rv_dmode, np->rv_dcntl, 963 np->rv_ctest3, np->rv_ctest4, np->rv_ctest5); 964 } 965 966 return 0; 967 } 968 969 /* 970 * Test the pci bus snoop logic :-( 971 * 972 * Has to be called with interrupts disabled. 973 */ 974 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO 975 static int sym_regtest(struct sym_hcb *np) 976 { 977 register volatile u32 data; 978 /* 979 * chip registers may NOT be cached. 980 * write 0xffffffff to a read only register area, 981 * and try to read it back. 982 */ 983 data = 0xffffffff; 984 OUTL(np, nc_dstat, data); 985 data = INL(np, nc_dstat); 986 #if 1 987 if (data == 0xffffffff) { 988 #else 989 if ((data & 0xe2f0fffd) != 0x02000080) { 990 #endif 991 printf ("CACHE TEST FAILED: reg dstat-sstat2 readback %x.\n", 992 (unsigned) data); 993 return 0x10; 994 } 995 return 0; 996 } 997 #else 998 static inline int sym_regtest(struct sym_hcb *np) 999 { 1000 return 0; 1001 } 1002 #endif 1003 1004 static int sym_snooptest(struct sym_hcb *np) 1005 { 1006 u32 sym_rd, sym_wr, sym_bk, host_rd, host_wr, pc, dstat; 1007 int i, err; 1008 1009 err = sym_regtest(np); 1010 if (err) 1011 return err; 1012 restart_test: 1013 /* 1014 * Enable Master Parity Checking as we intend 1015 * to enable it for normal operations. 1016 */ 1017 OUTB(np, nc_ctest4, (np->rv_ctest4 & MPEE)); 1018 /* 1019 * init 1020 */ 1021 pc = SCRIPTZ_BA(np, snooptest); 1022 host_wr = 1; 1023 sym_wr = 2; 1024 /* 1025 * Set memory and register. 1026 */ 1027 np->scratch = cpu_to_scr(host_wr); 1028 OUTL(np, nc_temp, sym_wr); 1029 /* 1030 * Start script (exchange values) 1031 */ 1032 OUTL(np, nc_dsa, np->hcb_ba); 1033 OUTL_DSP(np, pc); 1034 /* 1035 * Wait 'til done (with timeout) 1036 */ 1037 for (i=0; i<SYM_SNOOP_TIMEOUT; i++) 1038 if (INB(np, nc_istat) & (INTF|SIP|DIP)) 1039 break; 1040 if (i>=SYM_SNOOP_TIMEOUT) { 1041 printf ("CACHE TEST FAILED: timeout.\n"); 1042 return (0x20); 1043 } 1044 /* 1045 * Check for fatal DMA errors. 1046 */ 1047 dstat = INB(np, nc_dstat); 1048 #if 1 /* Band aiding for broken hardwares that fail PCI parity */ 1049 if ((dstat & MDPE) && (np->rv_ctest4 & MPEE)) { 1050 printf ("%s: PCI DATA PARITY ERROR DETECTED - " 1051 "DISABLING MASTER DATA PARITY CHECKING.\n", 1052 sym_name(np)); 1053 np->rv_ctest4 &= ~MPEE; 1054 goto restart_test; 1055 } 1056 #endif 1057 if (dstat & (MDPE|BF|IID)) { 1058 printf ("CACHE TEST FAILED: DMA error (dstat=0x%02x).", dstat); 1059 return (0x80); 1060 } 1061 /* 1062 * Save termination position. 1063 */ 1064 pc = INL(np, nc_dsp); 1065 /* 1066 * Read memory and register. 1067 */ 1068 host_rd = scr_to_cpu(np->scratch); 1069 sym_rd = INL(np, nc_scratcha); 1070 sym_bk = INL(np, nc_temp); 1071 /* 1072 * Check termination position. 1073 */ 1074 if (pc != SCRIPTZ_BA(np, snoopend)+8) { 1075 printf ("CACHE TEST FAILED: script execution failed.\n"); 1076 printf ("start=%08lx, pc=%08lx, end=%08lx\n", 1077 (u_long) SCRIPTZ_BA(np, snooptest), (u_long) pc, 1078 (u_long) SCRIPTZ_BA(np, snoopend) +8); 1079 return (0x40); 1080 } 1081 /* 1082 * Show results. 1083 */ 1084 if (host_wr != sym_rd) { 1085 printf ("CACHE TEST FAILED: host wrote %d, chip read %d.\n", 1086 (int) host_wr, (int) sym_rd); 1087 err |= 1; 1088 } 1089 if (host_rd != sym_wr) { 1090 printf ("CACHE TEST FAILED: chip wrote %d, host read %d.\n", 1091 (int) sym_wr, (int) host_rd); 1092 err |= 2; 1093 } 1094 if (sym_bk != sym_wr) { 1095 printf ("CACHE TEST FAILED: chip wrote %d, read back %d.\n", 1096 (int) sym_wr, (int) sym_bk); 1097 err |= 4; 1098 } 1099 1100 return err; 1101 } 1102 1103 /* 1104 * log message for real hard errors 1105 * 1106 * sym0 targ 0?: ERROR (ds:si) (so-si-sd) (sx/s3/s4) @ name (dsp:dbc). 1107 * reg: r0 r1 r2 r3 r4 r5 r6 ..... rf. 1108 * 1109 * exception register: 1110 * ds: dstat 1111 * si: sist 1112 * 1113 * SCSI bus lines: 1114 * so: control lines as driven by chip. 1115 * si: control lines as seen by chip. 1116 * sd: scsi data lines as seen by chip. 1117 * 1118 * wide/fastmode: 1119 * sx: sxfer (see the manual) 1120 * s3: scntl3 (see the manual) 1121 * s4: scntl4 (see the manual) 1122 * 1123 * current script command: 1124 * dsp: script address (relative to start of script). 1125 * dbc: first word of script command. 1126 * 1127 * First 24 register of the chip: 1128 * r0..rf 1129 */ 1130 static void sym_log_hard_error(struct Scsi_Host *shost, u_short sist, u_char dstat) 1131 { 1132 struct sym_hcb *np = sym_get_hcb(shost); 1133 u32 dsp; 1134 int script_ofs; 1135 int script_size; 1136 char *script_name; 1137 u_char *script_base; 1138 int i; 1139 1140 dsp = INL(np, nc_dsp); 1141 1142 if (dsp > np->scripta_ba && 1143 dsp <= np->scripta_ba + np->scripta_sz) { 1144 script_ofs = dsp - np->scripta_ba; 1145 script_size = np->scripta_sz; 1146 script_base = (u_char *) np->scripta0; 1147 script_name = "scripta"; 1148 } 1149 else if (np->scriptb_ba < dsp && 1150 dsp <= np->scriptb_ba + np->scriptb_sz) { 1151 script_ofs = dsp - np->scriptb_ba; 1152 script_size = np->scriptb_sz; 1153 script_base = (u_char *) np->scriptb0; 1154 script_name = "scriptb"; 1155 } else { 1156 script_ofs = dsp; 1157 script_size = 0; 1158 script_base = NULL; 1159 script_name = "mem"; 1160 } 1161 1162 printf ("%s:%d: ERROR (%x:%x) (%x-%x-%x) (%x/%x/%x) @ (%s %x:%08x).\n", 1163 sym_name(np), (unsigned)INB(np, nc_sdid)&0x0f, dstat, sist, 1164 (unsigned)INB(np, nc_socl), (unsigned)INB(np, nc_sbcl), 1165 (unsigned)INB(np, nc_sbdl), (unsigned)INB(np, nc_sxfer), 1166 (unsigned)INB(np, nc_scntl3), 1167 (np->features & FE_C10) ? (unsigned)INB(np, nc_scntl4) : 0, 1168 script_name, script_ofs, (unsigned)INL(np, nc_dbc)); 1169 1170 if (((script_ofs & 3) == 0) && 1171 (unsigned)script_ofs < script_size) { 1172 printf ("%s: script cmd = %08x\n", sym_name(np), 1173 scr_to_cpu((int) *(u32 *)(script_base + script_ofs))); 1174 } 1175 1176 printf("%s: regdump:", sym_name(np)); 1177 for (i = 0; i < 24; i++) 1178 printf(" %02x", (unsigned)INB_OFF(np, i)); 1179 printf(".\n"); 1180 1181 /* 1182 * PCI BUS error. 1183 */ 1184 if (dstat & (MDPE|BF)) 1185 sym_log_bus_error(shost); 1186 } 1187 1188 void sym_dump_registers(struct Scsi_Host *shost) 1189 { 1190 struct sym_hcb *np = sym_get_hcb(shost); 1191 u_short sist; 1192 u_char dstat; 1193 1194 sist = INW(np, nc_sist); 1195 dstat = INB(np, nc_dstat); 1196 sym_log_hard_error(shost, sist, dstat); 1197 } 1198 1199 static struct sym_chip sym_dev_table[] = { 1200 {PCI_DEVICE_ID_NCR_53C810, 0x0f, "810", 4, 8, 4, 64, 1201 FE_ERL} 1202 , 1203 #ifdef SYM_DEBUG_GENERIC_SUPPORT 1204 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, 1205 FE_BOF} 1206 , 1207 #else 1208 {PCI_DEVICE_ID_NCR_53C810, 0xff, "810a", 4, 8, 4, 1, 1209 FE_CACHE_SET|FE_LDSTR|FE_PFEN|FE_BOF} 1210 , 1211 #endif 1212 {PCI_DEVICE_ID_NCR_53C815, 0xff, "815", 4, 8, 4, 64, 1213 FE_BOF|FE_ERL} 1214 , 1215 {PCI_DEVICE_ID_NCR_53C825, 0x0f, "825", 6, 8, 4, 64, 1216 FE_WIDE|FE_BOF|FE_ERL|FE_DIFF} 1217 , 1218 {PCI_DEVICE_ID_NCR_53C825, 0xff, "825a", 6, 8, 4, 2, 1219 FE_WIDE|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN|FE_RAM|FE_DIFF} 1220 , 1221 {PCI_DEVICE_ID_NCR_53C860, 0xff, "860", 4, 8, 5, 1, 1222 FE_ULTRA|FE_CACHE_SET|FE_BOF|FE_LDSTR|FE_PFEN} 1223 , 1224 {PCI_DEVICE_ID_NCR_53C875, 0x01, "875", 6, 16, 5, 2, 1225 FE_WIDE|FE_ULTRA|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1226 FE_RAM|FE_DIFF|FE_VARCLK} 1227 , 1228 {PCI_DEVICE_ID_NCR_53C875, 0xff, "875", 6, 16, 5, 2, 1229 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1230 FE_RAM|FE_DIFF|FE_VARCLK} 1231 , 1232 {PCI_DEVICE_ID_NCR_53C875J, 0xff, "875J", 6, 16, 5, 2, 1233 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1234 FE_RAM|FE_DIFF|FE_VARCLK} 1235 , 1236 {PCI_DEVICE_ID_NCR_53C885, 0xff, "885", 6, 16, 5, 2, 1237 FE_WIDE|FE_ULTRA|FE_DBLR|FE_CACHE0_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1238 FE_RAM|FE_DIFF|FE_VARCLK} 1239 , 1240 #ifdef SYM_DEBUG_GENERIC_SUPPORT 1241 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, 1242 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS| 1243 FE_RAM|FE_LCKFRQ} 1244 , 1245 #else 1246 {PCI_DEVICE_ID_NCR_53C895, 0xff, "895", 6, 31, 7, 2, 1247 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1248 FE_RAM|FE_LCKFRQ} 1249 , 1250 #endif 1251 {PCI_DEVICE_ID_NCR_53C896, 0xff, "896", 6, 31, 7, 4, 1252 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1253 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 1254 , 1255 {PCI_DEVICE_ID_LSI_53C895A, 0xff, "895a", 6, 31, 7, 4, 1256 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1257 FE_RAM|FE_RAM8K|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 1258 , 1259 {PCI_DEVICE_ID_LSI_53C875A, 0xff, "875a", 6, 31, 7, 4, 1260 FE_WIDE|FE_ULTRA|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1261 FE_RAM|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_LCKFRQ} 1262 , 1263 {PCI_DEVICE_ID_LSI_53C1010_33, 0x00, "1010-33", 6, 31, 7, 8, 1264 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 1265 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 1266 FE_C10} 1267 , 1268 {PCI_DEVICE_ID_LSI_53C1010_33, 0xff, "1010-33", 6, 31, 7, 8, 1269 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 1270 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_CRC| 1271 FE_C10|FE_U3EN} 1272 , 1273 {PCI_DEVICE_ID_LSI_53C1010_66, 0xff, "1010-66", 6, 31, 7, 8, 1274 FE_WIDE|FE_ULTRA3|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFBC|FE_LDSTR|FE_PFEN| 1275 FE_RAM|FE_RAM8K|FE_64BIT|FE_DAC|FE_IO256|FE_NOPM|FE_LEDC|FE_66MHZ|FE_CRC| 1276 FE_C10|FE_U3EN} 1277 , 1278 {PCI_DEVICE_ID_LSI_53C1510, 0xff, "1510d", 6, 31, 7, 4, 1279 FE_WIDE|FE_ULTRA2|FE_QUAD|FE_CACHE_SET|FE_BOF|FE_DFS|FE_LDSTR|FE_PFEN| 1280 FE_RAM|FE_IO256|FE_LEDC} 1281 }; 1282 1283 #define sym_num_devs (ARRAY_SIZE(sym_dev_table)) 1284 1285 /* 1286 * Look up the chip table. 1287 * 1288 * Return a pointer to the chip entry if found, 1289 * zero otherwise. 1290 */ 1291 struct sym_chip * 1292 sym_lookup_chip_table (u_short device_id, u_char revision) 1293 { 1294 struct sym_chip *chip; 1295 int i; 1296 1297 for (i = 0; i < sym_num_devs; i++) { 1298 chip = &sym_dev_table[i]; 1299 if (device_id != chip->device_id) 1300 continue; 1301 if (revision > chip->revision_id) 1302 continue; 1303 return chip; 1304 } 1305 1306 return NULL; 1307 } 1308 1309 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 1310 /* 1311 * Lookup the 64 bit DMA segments map. 1312 * This is only used if the direct mapping 1313 * has been unsuccessful. 1314 */ 1315 int sym_lookup_dmap(struct sym_hcb *np, u32 h, int s) 1316 { 1317 int i; 1318 1319 if (!use_dac(np)) 1320 goto weird; 1321 1322 /* Look up existing mappings */ 1323 for (i = SYM_DMAP_SIZE-1; i > 0; i--) { 1324 if (h == np->dmap_bah[i]) 1325 return i; 1326 } 1327 /* If direct mapping is free, get it */ 1328 if (!np->dmap_bah[s]) 1329 goto new; 1330 /* Collision -> lookup free mappings */ 1331 for (s = SYM_DMAP_SIZE-1; s > 0; s--) { 1332 if (!np->dmap_bah[s]) 1333 goto new; 1334 } 1335 weird: 1336 panic("sym: ran out of 64 bit DMA segment registers"); 1337 return -1; 1338 new: 1339 np->dmap_bah[s] = h; 1340 np->dmap_dirty = 1; 1341 return s; 1342 } 1343 1344 /* 1345 * Update IO registers scratch C..R so they will be 1346 * in sync. with queued CCB expectations. 1347 */ 1348 static void sym_update_dmap_regs(struct sym_hcb *np) 1349 { 1350 int o, i; 1351 1352 if (!np->dmap_dirty) 1353 return; 1354 o = offsetof(struct sym_reg, nc_scrx[0]); 1355 for (i = 0; i < SYM_DMAP_SIZE; i++) { 1356 OUTL_OFF(np, o, np->dmap_bah[i]); 1357 o += 4; 1358 } 1359 np->dmap_dirty = 0; 1360 } 1361 #endif 1362 1363 /* Enforce all the fiddly SPI rules and the chip limitations */ 1364 static void sym_check_goals(struct sym_hcb *np, struct scsi_target *starget, 1365 struct sym_trans *goal) 1366 { 1367 if (!spi_support_wide(starget)) 1368 goal->width = 0; 1369 1370 if (!spi_support_sync(starget)) { 1371 goal->iu = 0; 1372 goal->dt = 0; 1373 goal->qas = 0; 1374 goal->offset = 0; 1375 return; 1376 } 1377 1378 if (spi_support_dt(starget)) { 1379 if (spi_support_dt_only(starget)) 1380 goal->dt = 1; 1381 1382 if (goal->offset == 0) 1383 goal->dt = 0; 1384 } else { 1385 goal->dt = 0; 1386 } 1387 1388 /* Some targets fail to properly negotiate DT in SE mode */ 1389 if ((np->scsi_mode != SMODE_LVD) || !(np->features & FE_U3EN)) 1390 goal->dt = 0; 1391 1392 if (goal->dt) { 1393 /* all DT transfers must be wide */ 1394 goal->width = 1; 1395 if (goal->offset > np->maxoffs_dt) 1396 goal->offset = np->maxoffs_dt; 1397 if (goal->period < np->minsync_dt) 1398 goal->period = np->minsync_dt; 1399 if (goal->period > np->maxsync_dt) 1400 goal->period = np->maxsync_dt; 1401 } else { 1402 goal->iu = goal->qas = 0; 1403 if (goal->offset > np->maxoffs) 1404 goal->offset = np->maxoffs; 1405 if (goal->period < np->minsync) 1406 goal->period = np->minsync; 1407 if (goal->period > np->maxsync) 1408 goal->period = np->maxsync; 1409 } 1410 } 1411 1412 /* 1413 * Prepare the next negotiation message if needed. 1414 * 1415 * Fill in the part of message buffer that contains the 1416 * negotiation and the nego_status field of the CCB. 1417 * Returns the size of the message in bytes. 1418 */ 1419 static int sym_prepare_nego(struct sym_hcb *np, struct sym_ccb *cp, u_char *msgptr) 1420 { 1421 struct sym_tcb *tp = &np->target[cp->target]; 1422 struct scsi_target *starget = tp->starget; 1423 struct sym_trans *goal = &tp->tgoal; 1424 int msglen = 0; 1425 int nego; 1426 1427 sym_check_goals(np, starget, goal); 1428 1429 /* 1430 * Many devices implement PPR in a buggy way, so only use it if we 1431 * really want to. 1432 */ 1433 if (goal->renego == NS_PPR || (goal->offset && 1434 (goal->iu || goal->dt || goal->qas || (goal->period < 0xa)))) { 1435 nego = NS_PPR; 1436 } else if (goal->renego == NS_WIDE || goal->width) { 1437 nego = NS_WIDE; 1438 } else if (goal->renego == NS_SYNC || goal->offset) { 1439 nego = NS_SYNC; 1440 } else { 1441 goal->check_nego = 0; 1442 nego = 0; 1443 } 1444 1445 switch (nego) { 1446 case NS_SYNC: 1447 msglen += spi_populate_sync_msg(msgptr + msglen, goal->period, 1448 goal->offset); 1449 break; 1450 case NS_WIDE: 1451 msglen += spi_populate_width_msg(msgptr + msglen, goal->width); 1452 break; 1453 case NS_PPR: 1454 msglen += spi_populate_ppr_msg(msgptr + msglen, goal->period, 1455 goal->offset, goal->width, 1456 (goal->iu ? PPR_OPT_IU : 0) | 1457 (goal->dt ? PPR_OPT_DT : 0) | 1458 (goal->qas ? PPR_OPT_QAS : 0)); 1459 break; 1460 } 1461 1462 cp->nego_status = nego; 1463 1464 if (nego) { 1465 tp->nego_cp = cp; /* Keep track a nego will be performed */ 1466 if (DEBUG_FLAGS & DEBUG_NEGO) { 1467 sym_print_nego_msg(np, cp->target, 1468 nego == NS_SYNC ? "sync msgout" : 1469 nego == NS_WIDE ? "wide msgout" : 1470 "ppr msgout", msgptr); 1471 } 1472 } 1473 1474 return msglen; 1475 } 1476 1477 /* 1478 * Insert a job into the start queue. 1479 */ 1480 void sym_put_start_queue(struct sym_hcb *np, struct sym_ccb *cp) 1481 { 1482 u_short qidx; 1483 1484 #ifdef SYM_CONF_IARB_SUPPORT 1485 /* 1486 * If the previously queued CCB is not yet done, 1487 * set the IARB hint. The SCRIPTS will go with IARB 1488 * for this job when starting the previous one. 1489 * We leave devices a chance to win arbitration by 1490 * not using more than 'iarb_max' consecutive 1491 * immediate arbitrations. 1492 */ 1493 if (np->last_cp && np->iarb_count < np->iarb_max) { 1494 np->last_cp->host_flags |= HF_HINT_IARB; 1495 ++np->iarb_count; 1496 } 1497 else 1498 np->iarb_count = 0; 1499 np->last_cp = cp; 1500 #endif 1501 1502 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 1503 /* 1504 * Make SCRIPTS aware of the 64 bit DMA 1505 * segment registers not being up-to-date. 1506 */ 1507 if (np->dmap_dirty) 1508 cp->host_xflags |= HX_DMAP_DIRTY; 1509 #endif 1510 1511 /* 1512 * Insert first the idle task and then our job. 1513 * The MBs should ensure proper ordering. 1514 */ 1515 qidx = np->squeueput + 2; 1516 if (qidx >= MAX_QUEUE*2) qidx = 0; 1517 1518 np->squeue [qidx] = cpu_to_scr(np->idletask_ba); 1519 MEMORY_WRITE_BARRIER(); 1520 np->squeue [np->squeueput] = cpu_to_scr(cp->ccb_ba); 1521 1522 np->squeueput = qidx; 1523 1524 if (DEBUG_FLAGS & DEBUG_QUEUE) 1525 scmd_printk(KERN_DEBUG, cp->cmd, "queuepos=%d\n", 1526 np->squeueput); 1527 1528 /* 1529 * Script processor may be waiting for reselect. 1530 * Wake it up. 1531 */ 1532 MEMORY_WRITE_BARRIER(); 1533 OUTB(np, nc_istat, SIGP|np->istat_sem); 1534 } 1535 1536 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 1537 /* 1538 * Start next ready-to-start CCBs. 1539 */ 1540 void sym_start_next_ccbs(struct sym_hcb *np, struct sym_lcb *lp, int maxn) 1541 { 1542 SYM_QUEHEAD *qp; 1543 struct sym_ccb *cp; 1544 1545 /* 1546 * Paranoia, as usual. :-) 1547 */ 1548 assert(!lp->started_tags || !lp->started_no_tag); 1549 1550 /* 1551 * Try to start as many commands as asked by caller. 1552 * Prevent from having both tagged and untagged 1553 * commands queued to the device at the same time. 1554 */ 1555 while (maxn--) { 1556 qp = sym_remque_head(&lp->waiting_ccbq); 1557 if (!qp) 1558 break; 1559 cp = sym_que_entry(qp, struct sym_ccb, link2_ccbq); 1560 if (cp->tag != NO_TAG) { 1561 if (lp->started_no_tag || 1562 lp->started_tags >= lp->started_max) { 1563 sym_insque_head(qp, &lp->waiting_ccbq); 1564 break; 1565 } 1566 lp->itlq_tbl[cp->tag] = cpu_to_scr(cp->ccb_ba); 1567 lp->head.resel_sa = 1568 cpu_to_scr(SCRIPTA_BA(np, resel_tag)); 1569 ++lp->started_tags; 1570 } else { 1571 if (lp->started_no_tag || lp->started_tags) { 1572 sym_insque_head(qp, &lp->waiting_ccbq); 1573 break; 1574 } 1575 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 1576 lp->head.resel_sa = 1577 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); 1578 ++lp->started_no_tag; 1579 } 1580 cp->started = 1; 1581 sym_insque_tail(qp, &lp->started_ccbq); 1582 sym_put_start_queue(np, cp); 1583 } 1584 } 1585 #endif /* SYM_OPT_HANDLE_DEVICE_QUEUEING */ 1586 1587 /* 1588 * The chip may have completed jobs. Look at the DONE QUEUE. 1589 * 1590 * On paper, memory read barriers may be needed here to 1591 * prevent out of order LOADs by the CPU from having 1592 * prefetched stale data prior to DMA having occurred. 1593 */ 1594 static int sym_wakeup_done (struct sym_hcb *np) 1595 { 1596 struct sym_ccb *cp; 1597 int i, n; 1598 u32 dsa; 1599 1600 n = 0; 1601 i = np->dqueueget; 1602 1603 /* MEMORY_READ_BARRIER(); */ 1604 while (1) { 1605 dsa = scr_to_cpu(np->dqueue[i]); 1606 if (!dsa) 1607 break; 1608 np->dqueue[i] = 0; 1609 if ((i = i+2) >= MAX_QUEUE*2) 1610 i = 0; 1611 1612 cp = sym_ccb_from_dsa(np, dsa); 1613 if (cp) { 1614 MEMORY_READ_BARRIER(); 1615 sym_complete_ok (np, cp); 1616 ++n; 1617 } 1618 else 1619 printf ("%s: bad DSA (%x) in done queue.\n", 1620 sym_name(np), (u_int) dsa); 1621 } 1622 np->dqueueget = i; 1623 1624 return n; 1625 } 1626 1627 /* 1628 * Complete all CCBs queued to the COMP queue. 1629 * 1630 * These CCBs are assumed: 1631 * - Not to be referenced either by devices or 1632 * SCRIPTS-related queues and datas. 1633 * - To have to be completed with an error condition 1634 * or requeued. 1635 * 1636 * The device queue freeze count is incremented 1637 * for each CCB that does not prevent this. 1638 * This function is called when all CCBs involved 1639 * in error handling/recovery have been reaped. 1640 */ 1641 static void sym_flush_comp_queue(struct sym_hcb *np, int cam_status) 1642 { 1643 SYM_QUEHEAD *qp; 1644 struct sym_ccb *cp; 1645 1646 while ((qp = sym_remque_head(&np->comp_ccbq)) != NULL) { 1647 struct scsi_cmnd *cmd; 1648 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 1649 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 1650 /* Leave quiet CCBs waiting for resources */ 1651 if (cp->host_status == HS_WAIT) 1652 continue; 1653 cmd = cp->cmd; 1654 if (cam_status) 1655 sym_set_cam_status(cmd, cam_status); 1656 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 1657 if (sym_get_cam_status(cmd) == DID_SOFT_ERROR) { 1658 struct sym_tcb *tp = &np->target[cp->target]; 1659 struct sym_lcb *lp = sym_lp(tp, cp->lun); 1660 if (lp) { 1661 sym_remque(&cp->link2_ccbq); 1662 sym_insque_tail(&cp->link2_ccbq, 1663 &lp->waiting_ccbq); 1664 if (cp->started) { 1665 if (cp->tag != NO_TAG) 1666 --lp->started_tags; 1667 else 1668 --lp->started_no_tag; 1669 } 1670 } 1671 cp->started = 0; 1672 continue; 1673 } 1674 #endif 1675 sym_free_ccb(np, cp); 1676 sym_xpt_done(np, cmd); 1677 } 1678 } 1679 1680 /* 1681 * Complete all active CCBs with error. 1682 * Used on CHIP/SCSI RESET. 1683 */ 1684 static void sym_flush_busy_queue (struct sym_hcb *np, int cam_status) 1685 { 1686 /* 1687 * Move all active CCBs to the COMP queue 1688 * and flush this queue. 1689 */ 1690 sym_que_splice(&np->busy_ccbq, &np->comp_ccbq); 1691 sym_que_init(&np->busy_ccbq); 1692 sym_flush_comp_queue(np, cam_status); 1693 } 1694 1695 /* 1696 * Start chip. 1697 * 1698 * 'reason' means: 1699 * 0: initialisation. 1700 * 1: SCSI BUS RESET delivered or received. 1701 * 2: SCSI BUS MODE changed. 1702 */ 1703 void sym_start_up(struct Scsi_Host *shost, int reason) 1704 { 1705 struct sym_data *sym_data = shost_priv(shost); 1706 struct pci_dev *pdev = sym_data->pdev; 1707 struct sym_hcb *np = sym_data->ncb; 1708 int i; 1709 u32 phys; 1710 1711 /* 1712 * Reset chip if asked, otherwise just clear fifos. 1713 */ 1714 if (reason == 1) 1715 sym_soft_reset(np); 1716 else { 1717 OUTB(np, nc_stest3, TE|CSF); 1718 OUTONB(np, nc_ctest3, CLF); 1719 } 1720 1721 /* 1722 * Clear Start Queue 1723 */ 1724 phys = np->squeue_ba; 1725 for (i = 0; i < MAX_QUEUE*2; i += 2) { 1726 np->squeue[i] = cpu_to_scr(np->idletask_ba); 1727 np->squeue[i+1] = cpu_to_scr(phys + (i+2)*4); 1728 } 1729 np->squeue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 1730 1731 /* 1732 * Start at first entry. 1733 */ 1734 np->squeueput = 0; 1735 1736 /* 1737 * Clear Done Queue 1738 */ 1739 phys = np->dqueue_ba; 1740 for (i = 0; i < MAX_QUEUE*2; i += 2) { 1741 np->dqueue[i] = 0; 1742 np->dqueue[i+1] = cpu_to_scr(phys + (i+2)*4); 1743 } 1744 np->dqueue[MAX_QUEUE*2-1] = cpu_to_scr(phys); 1745 1746 /* 1747 * Start at first entry. 1748 */ 1749 np->dqueueget = 0; 1750 1751 /* 1752 * Install patches in scripts. 1753 * This also let point to first position the start 1754 * and done queue pointers used from SCRIPTS. 1755 */ 1756 np->fw_patch(shost); 1757 1758 /* 1759 * Wakeup all pending jobs. 1760 */ 1761 sym_flush_busy_queue(np, DID_RESET); 1762 1763 /* 1764 * Init chip. 1765 */ 1766 OUTB(np, nc_istat, 0x00); /* Remove Reset, abort */ 1767 INB(np, nc_mbox1); 1768 udelay(2000); /* The 895 needs time for the bus mode to settle */ 1769 1770 OUTB(np, nc_scntl0, np->rv_scntl0 | 0xc0); 1771 /* full arb., ena parity, par->ATN */ 1772 OUTB(np, nc_scntl1, 0x00); /* odd parity, and remove CRST!! */ 1773 1774 sym_selectclock(np, np->rv_scntl3); /* Select SCSI clock */ 1775 1776 OUTB(np, nc_scid , RRE|np->myaddr); /* Adapter SCSI address */ 1777 OUTW(np, nc_respid, 1ul<<np->myaddr); /* Id to respond to */ 1778 OUTB(np, nc_istat , SIGP ); /* Signal Process */ 1779 OUTB(np, nc_dmode , np->rv_dmode); /* Burst length, dma mode */ 1780 OUTB(np, nc_ctest5, np->rv_ctest5); /* Large fifo + large burst */ 1781 1782 OUTB(np, nc_dcntl , NOCOM|np->rv_dcntl); /* Protect SFBR */ 1783 OUTB(np, nc_ctest3, np->rv_ctest3); /* Write and invalidate */ 1784 OUTB(np, nc_ctest4, np->rv_ctest4); /* Master parity checking */ 1785 1786 /* Extended Sreq/Sack filtering not supported on the C10 */ 1787 if (np->features & FE_C10) 1788 OUTB(np, nc_stest2, np->rv_stest2); 1789 else 1790 OUTB(np, nc_stest2, EXT|np->rv_stest2); 1791 1792 OUTB(np, nc_stest3, TE); /* TolerANT enable */ 1793 OUTB(np, nc_stime0, 0x0c); /* HTH disabled STO 0.25 sec */ 1794 1795 /* 1796 * For now, disable AIP generation on C1010-66. 1797 */ 1798 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_66) 1799 OUTB(np, nc_aipcntl1, DISAIP); 1800 1801 /* 1802 * C10101 rev. 0 errata. 1803 * Errant SGE's when in narrow. Write bits 4 & 5 of 1804 * STEST1 register to disable SGE. We probably should do 1805 * that from SCRIPTS for each selection/reselection, but 1806 * I just don't want. :) 1807 */ 1808 if (pdev->device == PCI_DEVICE_ID_LSI_53C1010_33 && 1809 pdev->revision < 1) 1810 OUTB(np, nc_stest1, INB(np, nc_stest1) | 0x30); 1811 1812 /* 1813 * DEL 441 - 53C876 Rev 5 - Part Number 609-0392787/2788 - ITEM 2. 1814 * Disable overlapped arbitration for some dual function devices, 1815 * regardless revision id (kind of post-chip-design feature. ;-)) 1816 */ 1817 if (pdev->device == PCI_DEVICE_ID_NCR_53C875) 1818 OUTB(np, nc_ctest0, (1<<5)); 1819 else if (pdev->device == PCI_DEVICE_ID_NCR_53C896) 1820 np->rv_ccntl0 |= DPR; 1821 1822 /* 1823 * Write CCNTL0/CCNTL1 for chips capable of 64 bit addressing 1824 * and/or hardware phase mismatch, since only such chips 1825 * seem to support those IO registers. 1826 */ 1827 if (np->features & (FE_DAC|FE_NOPM)) { 1828 OUTB(np, nc_ccntl0, np->rv_ccntl0); 1829 OUTB(np, nc_ccntl1, np->rv_ccntl1); 1830 } 1831 1832 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 1833 /* 1834 * Set up scratch C and DRS IO registers to map the 32 bit 1835 * DMA address range our data structures are located in. 1836 */ 1837 if (use_dac(np)) { 1838 np->dmap_bah[0] = 0; /* ??? */ 1839 OUTL(np, nc_scrx[0], np->dmap_bah[0]); 1840 OUTL(np, nc_drs, np->dmap_bah[0]); 1841 } 1842 #endif 1843 1844 /* 1845 * If phase mismatch handled by scripts (895A/896/1010), 1846 * set PM jump addresses. 1847 */ 1848 if (np->features & FE_NOPM) { 1849 OUTL(np, nc_pmjad1, SCRIPTB_BA(np, pm_handle)); 1850 OUTL(np, nc_pmjad2, SCRIPTB_BA(np, pm_handle)); 1851 } 1852 1853 /* 1854 * Enable GPIO0 pin for writing if LED support from SCRIPTS. 1855 * Also set GPIO5 and clear GPIO6 if hardware LED control. 1856 */ 1857 if (np->features & FE_LED0) 1858 OUTB(np, nc_gpcntl, INB(np, nc_gpcntl) & ~0x01); 1859 else if (np->features & FE_LEDC) 1860 OUTB(np, nc_gpcntl, (INB(np, nc_gpcntl) & ~0x41) | 0x20); 1861 1862 /* 1863 * enable ints 1864 */ 1865 OUTW(np, nc_sien , STO|HTH|MA|SGE|UDC|RST|PAR); 1866 OUTB(np, nc_dien , MDPE|BF|SSI|SIR|IID); 1867 1868 /* 1869 * For 895/6 enable SBMC interrupt and save current SCSI bus mode. 1870 * Try to eat the spurious SBMC interrupt that may occur when 1871 * we reset the chip but not the SCSI BUS (at initialization). 1872 */ 1873 if (np->features & (FE_ULTRA2|FE_ULTRA3)) { 1874 OUTONW(np, nc_sien, SBMC); 1875 if (reason == 0) { 1876 INB(np, nc_mbox1); 1877 mdelay(100); 1878 INW(np, nc_sist); 1879 } 1880 np->scsi_mode = INB(np, nc_stest4) & SMODE; 1881 } 1882 1883 /* 1884 * Fill in target structure. 1885 * Reinitialize usrsync. 1886 * Reinitialize usrwide. 1887 * Prepare sync negotiation according to actual SCSI bus mode. 1888 */ 1889 for (i=0;i<SYM_CONF_MAX_TARGET;i++) { 1890 struct sym_tcb *tp = &np->target[i]; 1891 1892 tp->to_reset = 0; 1893 tp->head.sval = 0; 1894 tp->head.wval = np->rv_scntl3; 1895 tp->head.uval = 0; 1896 if (tp->lun0p) 1897 tp->lun0p->to_clear = 0; 1898 if (tp->lunmp) { 1899 int ln; 1900 1901 for (ln = 1; ln < SYM_CONF_MAX_LUN; ln++) 1902 if (tp->lunmp[ln]) 1903 tp->lunmp[ln]->to_clear = 0; 1904 } 1905 } 1906 1907 /* 1908 * Download SCSI SCRIPTS to on-chip RAM if present, 1909 * and start script processor. 1910 * We do the download preferently from the CPU. 1911 * For platforms that may not support PCI memory mapping, 1912 * we use simple SCRIPTS that performs MEMORY MOVEs. 1913 */ 1914 phys = SCRIPTA_BA(np, init); 1915 if (np->ram_ba) { 1916 if (sym_verbose >= 2) 1917 printf("%s: Downloading SCSI SCRIPTS.\n", sym_name(np)); 1918 memcpy_toio(np->s.ramaddr, np->scripta0, np->scripta_sz); 1919 if (np->features & FE_RAM8K) { 1920 memcpy_toio(np->s.ramaddr + 4096, np->scriptb0, np->scriptb_sz); 1921 phys = scr_to_cpu(np->scr_ram_seg); 1922 OUTL(np, nc_mmws, phys); 1923 OUTL(np, nc_mmrs, phys); 1924 OUTL(np, nc_sfs, phys); 1925 phys = SCRIPTB_BA(np, start64); 1926 } 1927 } 1928 1929 np->istat_sem = 0; 1930 1931 OUTL(np, nc_dsa, np->hcb_ba); 1932 OUTL_DSP(np, phys); 1933 1934 /* 1935 * Notify the XPT about the RESET condition. 1936 */ 1937 if (reason != 0) 1938 sym_xpt_async_bus_reset(np); 1939 } 1940 1941 /* 1942 * Switch trans mode for current job and its target. 1943 */ 1944 static void sym_settrans(struct sym_hcb *np, int target, u_char opts, u_char ofs, 1945 u_char per, u_char wide, u_char div, u_char fak) 1946 { 1947 SYM_QUEHEAD *qp; 1948 u_char sval, wval, uval; 1949 struct sym_tcb *tp = &np->target[target]; 1950 1951 assert(target == (INB(np, nc_sdid) & 0x0f)); 1952 1953 sval = tp->head.sval; 1954 wval = tp->head.wval; 1955 uval = tp->head.uval; 1956 1957 #if 0 1958 printf("XXXX sval=%x wval=%x uval=%x (%x)\n", 1959 sval, wval, uval, np->rv_scntl3); 1960 #endif 1961 /* 1962 * Set the offset. 1963 */ 1964 if (!(np->features & FE_C10)) 1965 sval = (sval & ~0x1f) | ofs; 1966 else 1967 sval = (sval & ~0x3f) | ofs; 1968 1969 /* 1970 * Set the sync divisor and extra clock factor. 1971 */ 1972 if (ofs != 0) { 1973 wval = (wval & ~0x70) | ((div+1) << 4); 1974 if (!(np->features & FE_C10)) 1975 sval = (sval & ~0xe0) | (fak << 5); 1976 else { 1977 uval = uval & ~(XCLKH_ST|XCLKH_DT|XCLKS_ST|XCLKS_DT); 1978 if (fak >= 1) uval |= (XCLKH_ST|XCLKH_DT); 1979 if (fak >= 2) uval |= (XCLKS_ST|XCLKS_DT); 1980 } 1981 } 1982 1983 /* 1984 * Set the bus width. 1985 */ 1986 wval = wval & ~EWS; 1987 if (wide != 0) 1988 wval |= EWS; 1989 1990 /* 1991 * Set misc. ultra enable bits. 1992 */ 1993 if (np->features & FE_C10) { 1994 uval = uval & ~(U3EN|AIPCKEN); 1995 if (opts) { 1996 assert(np->features & FE_U3EN); 1997 uval |= U3EN; 1998 } 1999 } else { 2000 wval = wval & ~ULTRA; 2001 if (per <= 12) wval |= ULTRA; 2002 } 2003 2004 /* 2005 * Stop there if sync parameters are unchanged. 2006 */ 2007 if (tp->head.sval == sval && 2008 tp->head.wval == wval && 2009 tp->head.uval == uval) 2010 return; 2011 tp->head.sval = sval; 2012 tp->head.wval = wval; 2013 tp->head.uval = uval; 2014 2015 /* 2016 * Disable extended Sreq/Sack filtering if per < 50. 2017 * Not supported on the C1010. 2018 */ 2019 if (per < 50 && !(np->features & FE_C10)) 2020 OUTOFFB(np, nc_stest2, EXT); 2021 2022 /* 2023 * set actual value and sync_status 2024 */ 2025 OUTB(np, nc_sxfer, tp->head.sval); 2026 OUTB(np, nc_scntl3, tp->head.wval); 2027 2028 if (np->features & FE_C10) { 2029 OUTB(np, nc_scntl4, tp->head.uval); 2030 } 2031 2032 /* 2033 * patch ALL busy ccbs of this target. 2034 */ 2035 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 2036 struct sym_ccb *cp; 2037 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 2038 if (cp->target != target) 2039 continue; 2040 cp->phys.select.sel_scntl3 = tp->head.wval; 2041 cp->phys.select.sel_sxfer = tp->head.sval; 2042 if (np->features & FE_C10) { 2043 cp->phys.select.sel_scntl4 = tp->head.uval; 2044 } 2045 } 2046 } 2047 2048 static void sym_announce_transfer_rate(struct sym_tcb *tp) 2049 { 2050 struct scsi_target *starget = tp->starget; 2051 2052 if (tp->tprint.period != spi_period(starget) || 2053 tp->tprint.offset != spi_offset(starget) || 2054 tp->tprint.width != spi_width(starget) || 2055 tp->tprint.iu != spi_iu(starget) || 2056 tp->tprint.dt != spi_dt(starget) || 2057 tp->tprint.qas != spi_qas(starget) || 2058 !tp->tprint.check_nego) { 2059 tp->tprint.period = spi_period(starget); 2060 tp->tprint.offset = spi_offset(starget); 2061 tp->tprint.width = spi_width(starget); 2062 tp->tprint.iu = spi_iu(starget); 2063 tp->tprint.dt = spi_dt(starget); 2064 tp->tprint.qas = spi_qas(starget); 2065 tp->tprint.check_nego = 1; 2066 2067 spi_display_xfer_agreement(starget); 2068 } 2069 } 2070 2071 /* 2072 * We received a WDTR. 2073 * Let everything be aware of the changes. 2074 */ 2075 static void sym_setwide(struct sym_hcb *np, int target, u_char wide) 2076 { 2077 struct sym_tcb *tp = &np->target[target]; 2078 struct scsi_target *starget = tp->starget; 2079 2080 sym_settrans(np, target, 0, 0, 0, wide, 0, 0); 2081 2082 if (wide) 2083 tp->tgoal.renego = NS_WIDE; 2084 else 2085 tp->tgoal.renego = 0; 2086 tp->tgoal.check_nego = 0; 2087 tp->tgoal.width = wide; 2088 spi_offset(starget) = 0; 2089 spi_period(starget) = 0; 2090 spi_width(starget) = wide; 2091 spi_iu(starget) = 0; 2092 spi_dt(starget) = 0; 2093 spi_qas(starget) = 0; 2094 2095 if (sym_verbose >= 3) 2096 sym_announce_transfer_rate(tp); 2097 } 2098 2099 /* 2100 * We received a SDTR. 2101 * Let everything be aware of the changes. 2102 */ 2103 static void 2104 sym_setsync(struct sym_hcb *np, int target, 2105 u_char ofs, u_char per, u_char div, u_char fak) 2106 { 2107 struct sym_tcb *tp = &np->target[target]; 2108 struct scsi_target *starget = tp->starget; 2109 u_char wide = (tp->head.wval & EWS) ? BUS_16_BIT : BUS_8_BIT; 2110 2111 sym_settrans(np, target, 0, ofs, per, wide, div, fak); 2112 2113 if (wide) 2114 tp->tgoal.renego = NS_WIDE; 2115 else if (ofs) 2116 tp->tgoal.renego = NS_SYNC; 2117 else 2118 tp->tgoal.renego = 0; 2119 spi_period(starget) = per; 2120 spi_offset(starget) = ofs; 2121 spi_iu(starget) = spi_dt(starget) = spi_qas(starget) = 0; 2122 2123 if (!tp->tgoal.dt && !tp->tgoal.iu && !tp->tgoal.qas) { 2124 tp->tgoal.period = per; 2125 tp->tgoal.offset = ofs; 2126 tp->tgoal.check_nego = 0; 2127 } 2128 2129 sym_announce_transfer_rate(tp); 2130 } 2131 2132 /* 2133 * We received a PPR. 2134 * Let everything be aware of the changes. 2135 */ 2136 static void 2137 sym_setpprot(struct sym_hcb *np, int target, u_char opts, u_char ofs, 2138 u_char per, u_char wide, u_char div, u_char fak) 2139 { 2140 struct sym_tcb *tp = &np->target[target]; 2141 struct scsi_target *starget = tp->starget; 2142 2143 sym_settrans(np, target, opts, ofs, per, wide, div, fak); 2144 2145 if (wide || ofs) 2146 tp->tgoal.renego = NS_PPR; 2147 else 2148 tp->tgoal.renego = 0; 2149 spi_width(starget) = tp->tgoal.width = wide; 2150 spi_period(starget) = tp->tgoal.period = per; 2151 spi_offset(starget) = tp->tgoal.offset = ofs; 2152 spi_iu(starget) = tp->tgoal.iu = !!(opts & PPR_OPT_IU); 2153 spi_dt(starget) = tp->tgoal.dt = !!(opts & PPR_OPT_DT); 2154 spi_qas(starget) = tp->tgoal.qas = !!(opts & PPR_OPT_QAS); 2155 tp->tgoal.check_nego = 0; 2156 2157 sym_announce_transfer_rate(tp); 2158 } 2159 2160 /* 2161 * generic recovery from scsi interrupt 2162 * 2163 * The doc says that when the chip gets an SCSI interrupt, 2164 * it tries to stop in an orderly fashion, by completing 2165 * an instruction fetch that had started or by flushing 2166 * the DMA fifo for a write to memory that was executing. 2167 * Such a fashion is not enough to know if the instruction 2168 * that was just before the current DSP value has been 2169 * executed or not. 2170 * 2171 * There are some small SCRIPTS sections that deal with 2172 * the start queue and the done queue that may break any 2173 * assomption from the C code if we are interrupted 2174 * inside, so we reset if this happens. Btw, since these 2175 * SCRIPTS sections are executed while the SCRIPTS hasn't 2176 * started SCSI operations, it is very unlikely to happen. 2177 * 2178 * All the driver data structures are supposed to be 2179 * allocated from the same 4 GB memory window, so there 2180 * is a 1 to 1 relationship between DSA and driver data 2181 * structures. Since we are careful :) to invalidate the 2182 * DSA when we complete a command or when the SCRIPTS 2183 * pushes a DSA into a queue, we can trust it when it 2184 * points to a CCB. 2185 */ 2186 static void sym_recover_scsi_int (struct sym_hcb *np, u_char hsts) 2187 { 2188 u32 dsp = INL(np, nc_dsp); 2189 u32 dsa = INL(np, nc_dsa); 2190 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); 2191 2192 /* 2193 * If we haven't been interrupted inside the SCRIPTS 2194 * critical pathes, we can safely restart the SCRIPTS 2195 * and trust the DSA value if it matches a CCB. 2196 */ 2197 if ((!(dsp > SCRIPTA_BA(np, getjob_begin) && 2198 dsp < SCRIPTA_BA(np, getjob_end) + 1)) && 2199 (!(dsp > SCRIPTA_BA(np, ungetjob) && 2200 dsp < SCRIPTA_BA(np, reselect) + 1)) && 2201 (!(dsp > SCRIPTB_BA(np, sel_for_abort) && 2202 dsp < SCRIPTB_BA(np, sel_for_abort_1) + 1)) && 2203 (!(dsp > SCRIPTA_BA(np, done) && 2204 dsp < SCRIPTA_BA(np, done_end) + 1))) { 2205 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 2206 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ 2207 /* 2208 * If we have a CCB, let the SCRIPTS call us back for 2209 * the handling of the error with SCRATCHA filled with 2210 * STARTPOS. This way, we will be able to freeze the 2211 * device queue and requeue awaiting IOs. 2212 */ 2213 if (cp) { 2214 cp->host_status = hsts; 2215 OUTL_DSP(np, SCRIPTA_BA(np, complete_error)); 2216 } 2217 /* 2218 * Otherwise just restart the SCRIPTS. 2219 */ 2220 else { 2221 OUTL(np, nc_dsa, 0xffffff); 2222 OUTL_DSP(np, SCRIPTA_BA(np, start)); 2223 } 2224 } 2225 else 2226 goto reset_all; 2227 2228 return; 2229 2230 reset_all: 2231 sym_start_reset(np); 2232 } 2233 2234 /* 2235 * chip exception handler for selection timeout 2236 */ 2237 static void sym_int_sto (struct sym_hcb *np) 2238 { 2239 u32 dsp = INL(np, nc_dsp); 2240 2241 if (DEBUG_FLAGS & DEBUG_TINY) printf ("T"); 2242 2243 if (dsp == SCRIPTA_BA(np, wf_sel_done) + 8) 2244 sym_recover_scsi_int(np, HS_SEL_TIMEOUT); 2245 else 2246 sym_start_reset(np); 2247 } 2248 2249 /* 2250 * chip exception handler for unexpected disconnect 2251 */ 2252 static void sym_int_udc (struct sym_hcb *np) 2253 { 2254 printf ("%s: unexpected disconnect\n", sym_name(np)); 2255 sym_recover_scsi_int(np, HS_UNEXPECTED); 2256 } 2257 2258 /* 2259 * chip exception handler for SCSI bus mode change 2260 * 2261 * spi2-r12 11.2.3 says a transceiver mode change must 2262 * generate a reset event and a device that detects a reset 2263 * event shall initiate a hard reset. It says also that a 2264 * device that detects a mode change shall set data transfer 2265 * mode to eight bit asynchronous, etc... 2266 * So, just reinitializing all except chip should be enough. 2267 */ 2268 static void sym_int_sbmc(struct Scsi_Host *shost) 2269 { 2270 struct sym_hcb *np = sym_get_hcb(shost); 2271 u_char scsi_mode = INB(np, nc_stest4) & SMODE; 2272 2273 /* 2274 * Notify user. 2275 */ 2276 printf("%s: SCSI BUS mode change from %s to %s.\n", sym_name(np), 2277 sym_scsi_bus_mode(np->scsi_mode), sym_scsi_bus_mode(scsi_mode)); 2278 2279 /* 2280 * Should suspend command processing for a few seconds and 2281 * reinitialize all except the chip. 2282 */ 2283 sym_start_up(shost, 2); 2284 } 2285 2286 /* 2287 * chip exception handler for SCSI parity error. 2288 * 2289 * When the chip detects a SCSI parity error and is 2290 * currently executing a (CH)MOV instruction, it does 2291 * not interrupt immediately, but tries to finish the 2292 * transfer of the current scatter entry before 2293 * interrupting. The following situations may occur: 2294 * 2295 * - The complete scatter entry has been transferred 2296 * without the device having changed phase. 2297 * The chip will then interrupt with the DSP pointing 2298 * to the instruction that follows the MOV. 2299 * 2300 * - A phase mismatch occurs before the MOV finished 2301 * and phase errors are to be handled by the C code. 2302 * The chip will then interrupt with both PAR and MA 2303 * conditions set. 2304 * 2305 * - A phase mismatch occurs before the MOV finished and 2306 * phase errors are to be handled by SCRIPTS. 2307 * The chip will load the DSP with the phase mismatch 2308 * JUMP address and interrupt the host processor. 2309 */ 2310 static void sym_int_par (struct sym_hcb *np, u_short sist) 2311 { 2312 u_char hsts = INB(np, HS_PRT); 2313 u32 dsp = INL(np, nc_dsp); 2314 u32 dbc = INL(np, nc_dbc); 2315 u32 dsa = INL(np, nc_dsa); 2316 u_char sbcl = INB(np, nc_sbcl); 2317 u_char cmd = dbc >> 24; 2318 int phase = cmd & 7; 2319 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); 2320 2321 if (printk_ratelimit()) 2322 printf("%s: SCSI parity error detected: SCR1=%d DBC=%x SBCL=%x\n", 2323 sym_name(np), hsts, dbc, sbcl); 2324 2325 /* 2326 * Check that the chip is connected to the SCSI BUS. 2327 */ 2328 if (!(INB(np, nc_scntl1) & ISCON)) { 2329 sym_recover_scsi_int(np, HS_UNEXPECTED); 2330 return; 2331 } 2332 2333 /* 2334 * If the nexus is not clearly identified, reset the bus. 2335 * We will try to do better later. 2336 */ 2337 if (!cp) 2338 goto reset_all; 2339 2340 /* 2341 * Check instruction was a MOV, direction was INPUT and 2342 * ATN is asserted. 2343 */ 2344 if ((cmd & 0xc0) || !(phase & 1) || !(sbcl & 0x8)) 2345 goto reset_all; 2346 2347 /* 2348 * Keep track of the parity error. 2349 */ 2350 OUTONB(np, HF_PRT, HF_EXT_ERR); 2351 cp->xerr_status |= XE_PARITY_ERR; 2352 2353 /* 2354 * Prepare the message to send to the device. 2355 */ 2356 np->msgout[0] = (phase == 7) ? M_PARITY : M_ID_ERROR; 2357 2358 /* 2359 * If the old phase was DATA IN phase, we have to deal with 2360 * the 3 situations described above. 2361 * For other input phases (MSG IN and STATUS), the device 2362 * must resend the whole thing that failed parity checking 2363 * or signal error. So, jumping to dispatcher should be OK. 2364 */ 2365 if (phase == 1 || phase == 5) { 2366 /* Phase mismatch handled by SCRIPTS */ 2367 if (dsp == SCRIPTB_BA(np, pm_handle)) 2368 OUTL_DSP(np, dsp); 2369 /* Phase mismatch handled by the C code */ 2370 else if (sist & MA) 2371 sym_int_ma (np); 2372 /* No phase mismatch occurred */ 2373 else { 2374 sym_set_script_dp (np, cp, dsp); 2375 OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); 2376 } 2377 } 2378 else if (phase == 7) /* We definitely cannot handle parity errors */ 2379 #if 1 /* in message-in phase due to the relection */ 2380 goto reset_all; /* path and various message anticipations. */ 2381 #else 2382 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 2383 #endif 2384 else 2385 OUTL_DSP(np, SCRIPTA_BA(np, dispatch)); 2386 return; 2387 2388 reset_all: 2389 sym_start_reset(np); 2390 return; 2391 } 2392 2393 /* 2394 * chip exception handler for phase errors. 2395 * 2396 * We have to construct a new transfer descriptor, 2397 * to transfer the rest of the current block. 2398 */ 2399 static void sym_int_ma (struct sym_hcb *np) 2400 { 2401 u32 dbc; 2402 u32 rest; 2403 u32 dsp; 2404 u32 dsa; 2405 u32 nxtdsp; 2406 u32 *vdsp; 2407 u32 oadr, olen; 2408 u32 *tblp; 2409 u32 newcmd; 2410 u_int delta; 2411 u_char cmd; 2412 u_char hflags, hflags0; 2413 struct sym_pmc *pm; 2414 struct sym_ccb *cp; 2415 2416 dsp = INL(np, nc_dsp); 2417 dbc = INL(np, nc_dbc); 2418 dsa = INL(np, nc_dsa); 2419 2420 cmd = dbc >> 24; 2421 rest = dbc & 0xffffff; 2422 delta = 0; 2423 2424 /* 2425 * locate matching cp if any. 2426 */ 2427 cp = sym_ccb_from_dsa(np, dsa); 2428 2429 /* 2430 * Donnot take into account dma fifo and various buffers in 2431 * INPUT phase since the chip flushes everything before 2432 * raising the MA interrupt for interrupted INPUT phases. 2433 * For DATA IN phase, we will check for the SWIDE later. 2434 */ 2435 if ((cmd & 7) != 1 && (cmd & 7) != 5) { 2436 u_char ss0, ss2; 2437 2438 if (np->features & FE_DFBC) 2439 delta = INW(np, nc_dfbc); 2440 else { 2441 u32 dfifo; 2442 2443 /* 2444 * Read DFIFO, CTEST[4-6] using 1 PCI bus ownership. 2445 */ 2446 dfifo = INL(np, nc_dfifo); 2447 2448 /* 2449 * Calculate remaining bytes in DMA fifo. 2450 * (CTEST5 = dfifo >> 16) 2451 */ 2452 if (dfifo & (DFS << 16)) 2453 delta = ((((dfifo >> 8) & 0x300) | 2454 (dfifo & 0xff)) - rest) & 0x3ff; 2455 else 2456 delta = ((dfifo & 0xff) - rest) & 0x7f; 2457 } 2458 2459 /* 2460 * The data in the dma fifo has not been transferred to 2461 * the target -> add the amount to the rest 2462 * and clear the data. 2463 * Check the sstat2 register in case of wide transfer. 2464 */ 2465 rest += delta; 2466 ss0 = INB(np, nc_sstat0); 2467 if (ss0 & OLF) rest++; 2468 if (!(np->features & FE_C10)) 2469 if (ss0 & ORF) rest++; 2470 if (cp && (cp->phys.select.sel_scntl3 & EWS)) { 2471 ss2 = INB(np, nc_sstat2); 2472 if (ss2 & OLF1) rest++; 2473 if (!(np->features & FE_C10)) 2474 if (ss2 & ORF1) rest++; 2475 } 2476 2477 /* 2478 * Clear fifos. 2479 */ 2480 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* dma fifo */ 2481 OUTB(np, nc_stest3, TE|CSF); /* scsi fifo */ 2482 } 2483 2484 /* 2485 * log the information 2486 */ 2487 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_PHASE)) 2488 printf ("P%x%x RL=%d D=%d ", cmd&7, INB(np, nc_sbcl)&7, 2489 (unsigned) rest, (unsigned) delta); 2490 2491 /* 2492 * try to find the interrupted script command, 2493 * and the address at which to continue. 2494 */ 2495 vdsp = NULL; 2496 nxtdsp = 0; 2497 if (dsp > np->scripta_ba && 2498 dsp <= np->scripta_ba + np->scripta_sz) { 2499 vdsp = (u32 *)((char*)np->scripta0 + (dsp-np->scripta_ba-8)); 2500 nxtdsp = dsp; 2501 } 2502 else if (dsp > np->scriptb_ba && 2503 dsp <= np->scriptb_ba + np->scriptb_sz) { 2504 vdsp = (u32 *)((char*)np->scriptb0 + (dsp-np->scriptb_ba-8)); 2505 nxtdsp = dsp; 2506 } 2507 2508 /* 2509 * log the information 2510 */ 2511 if (DEBUG_FLAGS & DEBUG_PHASE) { 2512 printf ("\nCP=%p DSP=%x NXT=%x VDSP=%p CMD=%x ", 2513 cp, (unsigned)dsp, (unsigned)nxtdsp, vdsp, cmd); 2514 } 2515 2516 if (!vdsp) { 2517 printf ("%s: interrupted SCRIPT address not found.\n", 2518 sym_name (np)); 2519 goto reset_all; 2520 } 2521 2522 if (!cp) { 2523 printf ("%s: SCSI phase error fixup: CCB already dequeued.\n", 2524 sym_name (np)); 2525 goto reset_all; 2526 } 2527 2528 /* 2529 * get old startaddress and old length. 2530 */ 2531 oadr = scr_to_cpu(vdsp[1]); 2532 2533 if (cmd & 0x10) { /* Table indirect */ 2534 tblp = (u32 *) ((char*) &cp->phys + oadr); 2535 olen = scr_to_cpu(tblp[0]); 2536 oadr = scr_to_cpu(tblp[1]); 2537 } else { 2538 tblp = (u32 *) 0; 2539 olen = scr_to_cpu(vdsp[0]) & 0xffffff; 2540 } 2541 2542 if (DEBUG_FLAGS & DEBUG_PHASE) { 2543 printf ("OCMD=%x\nTBLP=%p OLEN=%x OADR=%x\n", 2544 (unsigned) (scr_to_cpu(vdsp[0]) >> 24), 2545 tblp, 2546 (unsigned) olen, 2547 (unsigned) oadr); 2548 } 2549 2550 /* 2551 * check cmd against assumed interrupted script command. 2552 * If dt data phase, the MOVE instruction hasn't bit 4 of 2553 * the phase. 2554 */ 2555 if (((cmd & 2) ? cmd : (cmd & ~4)) != (scr_to_cpu(vdsp[0]) >> 24)) { 2556 sym_print_addr(cp->cmd, 2557 "internal error: cmd=%02x != %02x=(vdsp[0] >> 24)\n", 2558 cmd, scr_to_cpu(vdsp[0]) >> 24); 2559 2560 goto reset_all; 2561 } 2562 2563 /* 2564 * if old phase not dataphase, leave here. 2565 */ 2566 if (cmd & 2) { 2567 sym_print_addr(cp->cmd, 2568 "phase change %x-%x %d@%08x resid=%d.\n", 2569 cmd&7, INB(np, nc_sbcl)&7, (unsigned)olen, 2570 (unsigned)oadr, (unsigned)rest); 2571 goto unexpected_phase; 2572 } 2573 2574 /* 2575 * Choose the correct PM save area. 2576 * 2577 * Look at the PM_SAVE SCRIPT if you want to understand 2578 * this stuff. The equivalent code is implemented in 2579 * SCRIPTS for the 895A, 896 and 1010 that are able to 2580 * handle PM from the SCRIPTS processor. 2581 */ 2582 hflags0 = INB(np, HF_PRT); 2583 hflags = hflags0; 2584 2585 if (hflags & (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED)) { 2586 if (hflags & HF_IN_PM0) 2587 nxtdsp = scr_to_cpu(cp->phys.pm0.ret); 2588 else if (hflags & HF_IN_PM1) 2589 nxtdsp = scr_to_cpu(cp->phys.pm1.ret); 2590 2591 if (hflags & HF_DP_SAVED) 2592 hflags ^= HF_ACT_PM; 2593 } 2594 2595 if (!(hflags & HF_ACT_PM)) { 2596 pm = &cp->phys.pm0; 2597 newcmd = SCRIPTA_BA(np, pm0_data); 2598 } 2599 else { 2600 pm = &cp->phys.pm1; 2601 newcmd = SCRIPTA_BA(np, pm1_data); 2602 } 2603 2604 hflags &= ~(HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED); 2605 if (hflags != hflags0) 2606 OUTB(np, HF_PRT, hflags); 2607 2608 /* 2609 * fillin the phase mismatch context 2610 */ 2611 pm->sg.addr = cpu_to_scr(oadr + olen - rest); 2612 pm->sg.size = cpu_to_scr(rest); 2613 pm->ret = cpu_to_scr(nxtdsp); 2614 2615 /* 2616 * If we have a SWIDE, 2617 * - prepare the address to write the SWIDE from SCRIPTS, 2618 * - compute the SCRIPTS address to restart from, 2619 * - move current data pointer context by one byte. 2620 */ 2621 nxtdsp = SCRIPTA_BA(np, dispatch); 2622 if ((cmd & 7) == 1 && cp && (cp->phys.select.sel_scntl3 & EWS) && 2623 (INB(np, nc_scntl2) & WSR)) { 2624 u32 tmp; 2625 2626 /* 2627 * Set up the table indirect for the MOVE 2628 * of the residual byte and adjust the data 2629 * pointer context. 2630 */ 2631 tmp = scr_to_cpu(pm->sg.addr); 2632 cp->phys.wresid.addr = cpu_to_scr(tmp); 2633 pm->sg.addr = cpu_to_scr(tmp + 1); 2634 tmp = scr_to_cpu(pm->sg.size); 2635 cp->phys.wresid.size = cpu_to_scr((tmp&0xff000000) | 1); 2636 pm->sg.size = cpu_to_scr(tmp - 1); 2637 2638 /* 2639 * If only the residual byte is to be moved, 2640 * no PM context is needed. 2641 */ 2642 if ((tmp&0xffffff) == 1) 2643 newcmd = pm->ret; 2644 2645 /* 2646 * Prepare the address of SCRIPTS that will 2647 * move the residual byte to memory. 2648 */ 2649 nxtdsp = SCRIPTB_BA(np, wsr_ma_helper); 2650 } 2651 2652 if (DEBUG_FLAGS & DEBUG_PHASE) { 2653 sym_print_addr(cp->cmd, "PM %x %x %x / %x %x %x.\n", 2654 hflags0, hflags, newcmd, 2655 (unsigned)scr_to_cpu(pm->sg.addr), 2656 (unsigned)scr_to_cpu(pm->sg.size), 2657 (unsigned)scr_to_cpu(pm->ret)); 2658 } 2659 2660 /* 2661 * Restart the SCRIPTS processor. 2662 */ 2663 sym_set_script_dp (np, cp, newcmd); 2664 OUTL_DSP(np, nxtdsp); 2665 return; 2666 2667 /* 2668 * Unexpected phase changes that occurs when the current phase 2669 * is not a DATA IN or DATA OUT phase are due to error conditions. 2670 * Such event may only happen when the SCRIPTS is using a 2671 * multibyte SCSI MOVE. 2672 * 2673 * Phase change Some possible cause 2674 * 2675 * COMMAND --> MSG IN SCSI parity error detected by target. 2676 * COMMAND --> STATUS Bad command or refused by target. 2677 * MSG OUT --> MSG IN Message rejected by target. 2678 * MSG OUT --> COMMAND Bogus target that discards extended 2679 * negotiation messages. 2680 * 2681 * The code below does not care of the new phase and so 2682 * trusts the target. Why to annoy it ? 2683 * If the interrupted phase is COMMAND phase, we restart at 2684 * dispatcher. 2685 * If a target does not get all the messages after selection, 2686 * the code assumes blindly that the target discards extended 2687 * messages and clears the negotiation status. 2688 * If the target does not want all our response to negotiation, 2689 * we force a SIR_NEGO_PROTO interrupt (it is a hack that avoids 2690 * bloat for such a should_not_happen situation). 2691 * In all other situation, we reset the BUS. 2692 * Are these assumptions reasonable ? (Wait and see ...) 2693 */ 2694 unexpected_phase: 2695 dsp -= 8; 2696 nxtdsp = 0; 2697 2698 switch (cmd & 7) { 2699 case 2: /* COMMAND phase */ 2700 nxtdsp = SCRIPTA_BA(np, dispatch); 2701 break; 2702 #if 0 2703 case 3: /* STATUS phase */ 2704 nxtdsp = SCRIPTA_BA(np, dispatch); 2705 break; 2706 #endif 2707 case 6: /* MSG OUT phase */ 2708 /* 2709 * If the device may want to use untagged when we want 2710 * tagged, we prepare an IDENTIFY without disc. granted, 2711 * since we will not be able to handle reselect. 2712 * Otherwise, we just don't care. 2713 */ 2714 if (dsp == SCRIPTA_BA(np, send_ident)) { 2715 if (cp->tag != NO_TAG && olen - rest <= 3) { 2716 cp->host_status = HS_BUSY; 2717 np->msgout[0] = IDENTIFY(0, cp->lun); 2718 nxtdsp = SCRIPTB_BA(np, ident_break_atn); 2719 } 2720 else 2721 nxtdsp = SCRIPTB_BA(np, ident_break); 2722 } 2723 else if (dsp == SCRIPTB_BA(np, send_wdtr) || 2724 dsp == SCRIPTB_BA(np, send_sdtr) || 2725 dsp == SCRIPTB_BA(np, send_ppr)) { 2726 nxtdsp = SCRIPTB_BA(np, nego_bad_phase); 2727 if (dsp == SCRIPTB_BA(np, send_ppr)) { 2728 struct scsi_device *dev = cp->cmd->device; 2729 dev->ppr = 0; 2730 } 2731 } 2732 break; 2733 #if 0 2734 case 7: /* MSG IN phase */ 2735 nxtdsp = SCRIPTA_BA(np, clrack); 2736 break; 2737 #endif 2738 } 2739 2740 if (nxtdsp) { 2741 OUTL_DSP(np, nxtdsp); 2742 return; 2743 } 2744 2745 reset_all: 2746 sym_start_reset(np); 2747 } 2748 2749 /* 2750 * chip interrupt handler 2751 * 2752 * In normal situations, interrupt conditions occur one at 2753 * a time. But when something bad happens on the SCSI BUS, 2754 * the chip may raise several interrupt flags before 2755 * stopping and interrupting the CPU. The additionnal 2756 * interrupt flags are stacked in some extra registers 2757 * after the SIP and/or DIP flag has been raised in the 2758 * ISTAT. After the CPU has read the interrupt condition 2759 * flag from SIST or DSTAT, the chip unstacks the other 2760 * interrupt flags and sets the corresponding bits in 2761 * SIST or DSTAT. Since the chip starts stacking once the 2762 * SIP or DIP flag is set, there is a small window of time 2763 * where the stacking does not occur. 2764 * 2765 * Typically, multiple interrupt conditions may happen in 2766 * the following situations: 2767 * 2768 * - SCSI parity error + Phase mismatch (PAR|MA) 2769 * When an parity error is detected in input phase 2770 * and the device switches to msg-in phase inside a 2771 * block MOV. 2772 * - SCSI parity error + Unexpected disconnect (PAR|UDC) 2773 * When a stupid device does not want to handle the 2774 * recovery of an SCSI parity error. 2775 * - Some combinations of STO, PAR, UDC, ... 2776 * When using non compliant SCSI stuff, when user is 2777 * doing non compliant hot tampering on the BUS, when 2778 * something really bad happens to a device, etc ... 2779 * 2780 * The heuristic suggested by SYMBIOS to handle 2781 * multiple interrupts is to try unstacking all 2782 * interrupts conditions and to handle them on some 2783 * priority based on error severity. 2784 * This will work when the unstacking has been 2785 * successful, but we cannot be 100 % sure of that, 2786 * since the CPU may have been faster to unstack than 2787 * the chip is able to stack. Hmmm ... But it seems that 2788 * such a situation is very unlikely to happen. 2789 * 2790 * If this happen, for example STO caught by the CPU 2791 * then UDC happenning before the CPU have restarted 2792 * the SCRIPTS, the driver may wrongly complete the 2793 * same command on UDC, since the SCRIPTS didn't restart 2794 * and the DSA still points to the same command. 2795 * We avoid this situation by setting the DSA to an 2796 * invalid value when the CCB is completed and before 2797 * restarting the SCRIPTS. 2798 * 2799 * Another issue is that we need some section of our 2800 * recovery procedures to be somehow uninterruptible but 2801 * the SCRIPTS processor does not provides such a 2802 * feature. For this reason, we handle recovery preferently 2803 * from the C code and check against some SCRIPTS critical 2804 * sections from the C code. 2805 * 2806 * Hopefully, the interrupt handling of the driver is now 2807 * able to resist to weird BUS error conditions, but donnot 2808 * ask me for any guarantee that it will never fail. :-) 2809 * Use at your own decision and risk. 2810 */ 2811 2812 irqreturn_t sym_interrupt(struct Scsi_Host *shost) 2813 { 2814 struct sym_data *sym_data = shost_priv(shost); 2815 struct sym_hcb *np = sym_data->ncb; 2816 struct pci_dev *pdev = sym_data->pdev; 2817 u_char istat, istatc; 2818 u_char dstat; 2819 u_short sist; 2820 2821 /* 2822 * interrupt on the fly ? 2823 * (SCRIPTS may still be running) 2824 * 2825 * A `dummy read' is needed to ensure that the 2826 * clear of the INTF flag reaches the device 2827 * and that posted writes are flushed to memory 2828 * before the scanning of the DONE queue. 2829 * Note that SCRIPTS also (dummy) read to memory 2830 * prior to deliver the INTF interrupt condition. 2831 */ 2832 istat = INB(np, nc_istat); 2833 if (istat & INTF) { 2834 OUTB(np, nc_istat, (istat & SIGP) | INTF | np->istat_sem); 2835 istat |= INB(np, nc_istat); /* DUMMY READ */ 2836 if (DEBUG_FLAGS & DEBUG_TINY) printf ("F "); 2837 sym_wakeup_done(np); 2838 } 2839 2840 if (!(istat & (SIP|DIP))) 2841 return (istat & INTF) ? IRQ_HANDLED : IRQ_NONE; 2842 2843 #if 0 /* We should never get this one */ 2844 if (istat & CABRT) 2845 OUTB(np, nc_istat, CABRT); 2846 #endif 2847 2848 /* 2849 * PAR and MA interrupts may occur at the same time, 2850 * and we need to know of both in order to handle 2851 * this situation properly. We try to unstack SCSI 2852 * interrupts for that reason. BTW, I dislike a LOT 2853 * such a loop inside the interrupt routine. 2854 * Even if DMA interrupt stacking is very unlikely to 2855 * happen, we also try unstacking these ones, since 2856 * this has no performance impact. 2857 */ 2858 sist = 0; 2859 dstat = 0; 2860 istatc = istat; 2861 do { 2862 if (istatc & SIP) 2863 sist |= INW(np, nc_sist); 2864 if (istatc & DIP) 2865 dstat |= INB(np, nc_dstat); 2866 istatc = INB(np, nc_istat); 2867 istat |= istatc; 2868 2869 /* Prevent deadlock waiting on a condition that may 2870 * never clear. */ 2871 if (unlikely(sist == 0xffff && dstat == 0xff)) { 2872 if (pci_channel_offline(pdev)) 2873 return IRQ_NONE; 2874 } 2875 } while (istatc & (SIP|DIP)); 2876 2877 if (DEBUG_FLAGS & DEBUG_TINY) 2878 printf ("<%d|%x:%x|%x:%x>", 2879 (int)INB(np, nc_scr0), 2880 dstat,sist, 2881 (unsigned)INL(np, nc_dsp), 2882 (unsigned)INL(np, nc_dbc)); 2883 /* 2884 * On paper, a memory read barrier may be needed here to 2885 * prevent out of order LOADs by the CPU from having 2886 * prefetched stale data prior to DMA having occurred. 2887 * And since we are paranoid ... :) 2888 */ 2889 MEMORY_READ_BARRIER(); 2890 2891 /* 2892 * First, interrupts we want to service cleanly. 2893 * 2894 * Phase mismatch (MA) is the most frequent interrupt 2895 * for chip earlier than the 896 and so we have to service 2896 * it as quickly as possible. 2897 * A SCSI parity error (PAR) may be combined with a phase 2898 * mismatch condition (MA). 2899 * Programmed interrupts (SIR) are used to call the C code 2900 * from SCRIPTS. 2901 * The single step interrupt (SSI) is not used in this 2902 * driver. 2903 */ 2904 if (!(sist & (STO|GEN|HTH|SGE|UDC|SBMC|RST)) && 2905 !(dstat & (MDPE|BF|ABRT|IID))) { 2906 if (sist & PAR) sym_int_par (np, sist); 2907 else if (sist & MA) sym_int_ma (np); 2908 else if (dstat & SIR) sym_int_sir(np); 2909 else if (dstat & SSI) OUTONB_STD(); 2910 else goto unknown_int; 2911 return IRQ_HANDLED; 2912 } 2913 2914 /* 2915 * Now, interrupts that donnot happen in normal 2916 * situations and that we may need to recover from. 2917 * 2918 * On SCSI RESET (RST), we reset everything. 2919 * On SCSI BUS MODE CHANGE (SBMC), we complete all 2920 * active CCBs with RESET status, prepare all devices 2921 * for negotiating again and restart the SCRIPTS. 2922 * On STO and UDC, we complete the CCB with the corres- 2923 * ponding status and restart the SCRIPTS. 2924 */ 2925 if (sist & RST) { 2926 printf("%s: SCSI BUS reset detected.\n", sym_name(np)); 2927 sym_start_up(shost, 1); 2928 return IRQ_HANDLED; 2929 } 2930 2931 OUTB(np, nc_ctest3, np->rv_ctest3 | CLF); /* clear dma fifo */ 2932 OUTB(np, nc_stest3, TE|CSF); /* clear scsi fifo */ 2933 2934 if (!(sist & (GEN|HTH|SGE)) && 2935 !(dstat & (MDPE|BF|ABRT|IID))) { 2936 if (sist & SBMC) sym_int_sbmc(shost); 2937 else if (sist & STO) sym_int_sto (np); 2938 else if (sist & UDC) sym_int_udc (np); 2939 else goto unknown_int; 2940 return IRQ_HANDLED; 2941 } 2942 2943 /* 2944 * Now, interrupts we are not able to recover cleanly. 2945 * 2946 * Log message for hard errors. 2947 * Reset everything. 2948 */ 2949 2950 sym_log_hard_error(shost, sist, dstat); 2951 2952 if ((sist & (GEN|HTH|SGE)) || 2953 (dstat & (MDPE|BF|ABRT|IID))) { 2954 sym_start_reset(np); 2955 return IRQ_HANDLED; 2956 } 2957 2958 unknown_int: 2959 /* 2960 * We just miss the cause of the interrupt. :( 2961 * Print a message. The timeout will do the real work. 2962 */ 2963 printf( "%s: unknown interrupt(s) ignored, " 2964 "ISTAT=0x%x DSTAT=0x%x SIST=0x%x\n", 2965 sym_name(np), istat, dstat, sist); 2966 return IRQ_NONE; 2967 } 2968 2969 /* 2970 * Dequeue from the START queue all CCBs that match 2971 * a given target/lun/task condition (-1 means all), 2972 * and move them from the BUSY queue to the COMP queue 2973 * with DID_SOFT_ERROR status condition. 2974 * This function is used during error handling/recovery. 2975 * It is called with SCRIPTS not running. 2976 */ 2977 static int 2978 sym_dequeue_from_squeue(struct sym_hcb *np, int i, int target, int lun, int task) 2979 { 2980 int j; 2981 struct sym_ccb *cp; 2982 2983 /* 2984 * Make sure the starting index is within range. 2985 */ 2986 assert((i >= 0) && (i < 2*MAX_QUEUE)); 2987 2988 /* 2989 * Walk until end of START queue and dequeue every job 2990 * that matches the target/lun/task condition. 2991 */ 2992 j = i; 2993 while (i != np->squeueput) { 2994 cp = sym_ccb_from_dsa(np, scr_to_cpu(np->squeue[i])); 2995 assert(cp); 2996 #ifdef SYM_CONF_IARB_SUPPORT 2997 /* Forget hints for IARB, they may be no longer relevant */ 2998 cp->host_flags &= ~HF_HINT_IARB; 2999 #endif 3000 if ((target == -1 || cp->target == target) && 3001 (lun == -1 || cp->lun == lun) && 3002 (task == -1 || cp->tag == task)) { 3003 sym_set_cam_status(cp->cmd, DID_SOFT_ERROR); 3004 sym_remque(&cp->link_ccbq); 3005 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 3006 } 3007 else { 3008 if (i != j) 3009 np->squeue[j] = np->squeue[i]; 3010 if ((j += 2) >= MAX_QUEUE*2) j = 0; 3011 } 3012 if ((i += 2) >= MAX_QUEUE*2) i = 0; 3013 } 3014 if (i != j) /* Copy back the idle task if needed */ 3015 np->squeue[j] = np->squeue[i]; 3016 np->squeueput = j; /* Update our current start queue pointer */ 3017 3018 return (i - j) / 2; 3019 } 3020 3021 /* 3022 * chip handler for bad SCSI status condition 3023 * 3024 * In case of bad SCSI status, we unqueue all the tasks 3025 * currently queued to the controller but not yet started 3026 * and then restart the SCRIPTS processor immediately. 3027 * 3028 * QUEUE FULL and BUSY conditions are handled the same way. 3029 * Basically all the not yet started tasks are requeued in 3030 * device queue and the queue is frozen until a completion. 3031 * 3032 * For CHECK CONDITION and COMMAND TERMINATED status, we use 3033 * the CCB of the failed command to prepare a REQUEST SENSE 3034 * SCSI command and queue it to the controller queue. 3035 * 3036 * SCRATCHA is assumed to have been loaded with STARTPOS 3037 * before the SCRIPTS called the C code. 3038 */ 3039 static void sym_sir_bad_scsi_status(struct sym_hcb *np, int num, struct sym_ccb *cp) 3040 { 3041 u32 startp; 3042 u_char s_status = cp->ssss_status; 3043 u_char h_flags = cp->host_flags; 3044 int msglen; 3045 int i; 3046 3047 /* 3048 * Compute the index of the next job to start from SCRIPTS. 3049 */ 3050 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; 3051 3052 /* 3053 * The last CCB queued used for IARB hint may be 3054 * no longer relevant. Forget it. 3055 */ 3056 #ifdef SYM_CONF_IARB_SUPPORT 3057 if (np->last_cp) 3058 np->last_cp = 0; 3059 #endif 3060 3061 /* 3062 * Now deal with the SCSI status. 3063 */ 3064 switch(s_status) { 3065 case S_BUSY: 3066 case S_QUEUE_FULL: 3067 if (sym_verbose >= 2) { 3068 sym_print_addr(cp->cmd, "%s\n", 3069 s_status == S_BUSY ? "BUSY" : "QUEUE FULL\n"); 3070 } 3071 default: /* S_INT, S_INT_COND_MET, S_CONFLICT */ 3072 sym_complete_error (np, cp); 3073 break; 3074 case S_TERMINATED: 3075 case S_CHECK_COND: 3076 /* 3077 * If we get an SCSI error when requesting sense, give up. 3078 */ 3079 if (h_flags & HF_SENSE) { 3080 sym_complete_error (np, cp); 3081 break; 3082 } 3083 3084 /* 3085 * Dequeue all queued CCBs for that device not yet started, 3086 * and restart the SCRIPTS processor immediately. 3087 */ 3088 sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 3089 OUTL_DSP(np, SCRIPTA_BA(np, start)); 3090 3091 /* 3092 * Save some info of the actual IO. 3093 * Compute the data residual. 3094 */ 3095 cp->sv_scsi_status = cp->ssss_status; 3096 cp->sv_xerr_status = cp->xerr_status; 3097 cp->sv_resid = sym_compute_residual(np, cp); 3098 3099 /* 3100 * Prepare all needed data structures for 3101 * requesting sense data. 3102 */ 3103 3104 cp->scsi_smsg2[0] = IDENTIFY(0, cp->lun); 3105 msglen = 1; 3106 3107 /* 3108 * If we are currently using anything different from 3109 * async. 8 bit data transfers with that target, 3110 * start a negotiation, since the device may want 3111 * to report us a UNIT ATTENTION condition due to 3112 * a cause we currently ignore, and we donnot want 3113 * to be stuck with WIDE and/or SYNC data transfer. 3114 * 3115 * cp->nego_status is filled by sym_prepare_nego(). 3116 */ 3117 cp->nego_status = 0; 3118 msglen += sym_prepare_nego(np, cp, &cp->scsi_smsg2[msglen]); 3119 /* 3120 * Message table indirect structure. 3121 */ 3122 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg2); 3123 cp->phys.smsg.size = cpu_to_scr(msglen); 3124 3125 /* 3126 * sense command 3127 */ 3128 cp->phys.cmd.addr = CCB_BA(cp, sensecmd); 3129 cp->phys.cmd.size = cpu_to_scr(6); 3130 3131 /* 3132 * patch requested size into sense command 3133 */ 3134 cp->sensecmd[0] = REQUEST_SENSE; 3135 cp->sensecmd[1] = 0; 3136 if (cp->cmd->device->scsi_level <= SCSI_2 && cp->lun <= 7) 3137 cp->sensecmd[1] = cp->lun << 5; 3138 cp->sensecmd[4] = SYM_SNS_BBUF_LEN; 3139 cp->data_len = SYM_SNS_BBUF_LEN; 3140 3141 /* 3142 * sense data 3143 */ 3144 memset(cp->sns_bbuf, 0, SYM_SNS_BBUF_LEN); 3145 cp->phys.sense.addr = CCB_BA(cp, sns_bbuf); 3146 cp->phys.sense.size = cpu_to_scr(SYM_SNS_BBUF_LEN); 3147 3148 /* 3149 * requeue the command. 3150 */ 3151 startp = SCRIPTB_BA(np, sdata_in); 3152 3153 cp->phys.head.savep = cpu_to_scr(startp); 3154 cp->phys.head.lastp = cpu_to_scr(startp); 3155 cp->startp = cpu_to_scr(startp); 3156 cp->goalp = cpu_to_scr(startp + 16); 3157 3158 cp->host_xflags = 0; 3159 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 3160 cp->ssss_status = S_ILLEGAL; 3161 cp->host_flags = (HF_SENSE|HF_DATA_IN); 3162 cp->xerr_status = 0; 3163 cp->extra_bytes = 0; 3164 3165 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); 3166 3167 /* 3168 * Requeue the command. 3169 */ 3170 sym_put_start_queue(np, cp); 3171 3172 /* 3173 * Give back to upper layer everything we have dequeued. 3174 */ 3175 sym_flush_comp_queue(np, 0); 3176 break; 3177 } 3178 } 3179 3180 /* 3181 * After a device has accepted some management message 3182 * as BUS DEVICE RESET, ABORT TASK, etc ..., or when 3183 * a device signals a UNIT ATTENTION condition, some 3184 * tasks are thrown away by the device. We are required 3185 * to reflect that on our tasks list since the device 3186 * will never complete these tasks. 3187 * 3188 * This function move from the BUSY queue to the COMP 3189 * queue all disconnected CCBs for a given target that 3190 * match the following criteria: 3191 * - lun=-1 means any logical UNIT otherwise a given one. 3192 * - task=-1 means any task, otherwise a given one. 3193 */ 3194 int sym_clear_tasks(struct sym_hcb *np, int cam_status, int target, int lun, int task) 3195 { 3196 SYM_QUEHEAD qtmp, *qp; 3197 int i = 0; 3198 struct sym_ccb *cp; 3199 3200 /* 3201 * Move the entire BUSY queue to our temporary queue. 3202 */ 3203 sym_que_init(&qtmp); 3204 sym_que_splice(&np->busy_ccbq, &qtmp); 3205 sym_que_init(&np->busy_ccbq); 3206 3207 /* 3208 * Put all CCBs that matches our criteria into 3209 * the COMP queue and put back other ones into 3210 * the BUSY queue. 3211 */ 3212 while ((qp = sym_remque_head(&qtmp)) != NULL) { 3213 struct scsi_cmnd *cmd; 3214 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3215 cmd = cp->cmd; 3216 if (cp->host_status != HS_DISCONNECT || 3217 cp->target != target || 3218 (lun != -1 && cp->lun != lun) || 3219 (task != -1 && 3220 (cp->tag != NO_TAG && cp->scsi_smsg[2] != task))) { 3221 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 3222 continue; 3223 } 3224 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 3225 3226 /* Preserve the software timeout condition */ 3227 if (sym_get_cam_status(cmd) != DID_TIME_OUT) 3228 sym_set_cam_status(cmd, cam_status); 3229 ++i; 3230 #if 0 3231 printf("XXXX TASK @%p CLEARED\n", cp); 3232 #endif 3233 } 3234 return i; 3235 } 3236 3237 /* 3238 * chip handler for TASKS recovery 3239 * 3240 * We cannot safely abort a command, while the SCRIPTS 3241 * processor is running, since we just would be in race 3242 * with it. 3243 * 3244 * As long as we have tasks to abort, we keep the SEM 3245 * bit set in the ISTAT. When this bit is set, the 3246 * SCRIPTS processor interrupts (SIR_SCRIPT_STOPPED) 3247 * each time it enters the scheduler. 3248 * 3249 * If we have to reset a target, clear tasks of a unit, 3250 * or to perform the abort of a disconnected job, we 3251 * restart the SCRIPTS for selecting the target. Once 3252 * selected, the SCRIPTS interrupts (SIR_TARGET_SELECTED). 3253 * If it loses arbitration, the SCRIPTS will interrupt again 3254 * the next time it will enter its scheduler, and so on ... 3255 * 3256 * On SIR_TARGET_SELECTED, we scan for the more 3257 * appropriate thing to do: 3258 * 3259 * - If nothing, we just sent a M_ABORT message to the 3260 * target to get rid of the useless SCSI bus ownership. 3261 * According to the specs, no tasks shall be affected. 3262 * - If the target is to be reset, we send it a M_RESET 3263 * message. 3264 * - If a logical UNIT is to be cleared , we send the 3265 * IDENTIFY(lun) + M_ABORT. 3266 * - If an untagged task is to be aborted, we send the 3267 * IDENTIFY(lun) + M_ABORT. 3268 * - If a tagged task is to be aborted, we send the 3269 * IDENTIFY(lun) + task attributes + M_ABORT_TAG. 3270 * 3271 * Once our 'kiss of death' :) message has been accepted 3272 * by the target, the SCRIPTS interrupts again 3273 * (SIR_ABORT_SENT). On this interrupt, we complete 3274 * all the CCBs that should have been aborted by the 3275 * target according to our message. 3276 */ 3277 static void sym_sir_task_recovery(struct sym_hcb *np, int num) 3278 { 3279 SYM_QUEHEAD *qp; 3280 struct sym_ccb *cp; 3281 struct sym_tcb *tp = NULL; /* gcc isn't quite smart enough yet */ 3282 struct scsi_target *starget; 3283 int target=-1, lun=-1, task; 3284 int i, k; 3285 3286 switch(num) { 3287 /* 3288 * The SCRIPTS processor stopped before starting 3289 * the next command in order to allow us to perform 3290 * some task recovery. 3291 */ 3292 case SIR_SCRIPT_STOPPED: 3293 /* 3294 * Do we have any target to reset or unit to clear ? 3295 */ 3296 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 3297 tp = &np->target[i]; 3298 if (tp->to_reset || 3299 (tp->lun0p && tp->lun0p->to_clear)) { 3300 target = i; 3301 break; 3302 } 3303 if (!tp->lunmp) 3304 continue; 3305 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 3306 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 3307 target = i; 3308 break; 3309 } 3310 } 3311 if (target != -1) 3312 break; 3313 } 3314 3315 /* 3316 * If not, walk the busy queue for any 3317 * disconnected CCB to be aborted. 3318 */ 3319 if (target == -1) { 3320 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3321 cp = sym_que_entry(qp,struct sym_ccb,link_ccbq); 3322 if (cp->host_status != HS_DISCONNECT) 3323 continue; 3324 if (cp->to_abort) { 3325 target = cp->target; 3326 break; 3327 } 3328 } 3329 } 3330 3331 /* 3332 * If some target is to be selected, 3333 * prepare and start the selection. 3334 */ 3335 if (target != -1) { 3336 tp = &np->target[target]; 3337 np->abrt_sel.sel_id = target; 3338 np->abrt_sel.sel_scntl3 = tp->head.wval; 3339 np->abrt_sel.sel_sxfer = tp->head.sval; 3340 OUTL(np, nc_dsa, np->hcb_ba); 3341 OUTL_DSP(np, SCRIPTB_BA(np, sel_for_abort)); 3342 return; 3343 } 3344 3345 /* 3346 * Now look for a CCB to abort that haven't started yet. 3347 * Btw, the SCRIPTS processor is still stopped, so 3348 * we are not in race. 3349 */ 3350 i = 0; 3351 cp = NULL; 3352 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3353 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3354 if (cp->host_status != HS_BUSY && 3355 cp->host_status != HS_NEGOTIATE) 3356 continue; 3357 if (!cp->to_abort) 3358 continue; 3359 #ifdef SYM_CONF_IARB_SUPPORT 3360 /* 3361 * If we are using IMMEDIATE ARBITRATION, we donnot 3362 * want to cancel the last queued CCB, since the 3363 * SCRIPTS may have anticipated the selection. 3364 */ 3365 if (cp == np->last_cp) { 3366 cp->to_abort = 0; 3367 continue; 3368 } 3369 #endif 3370 i = 1; /* Means we have found some */ 3371 break; 3372 } 3373 if (!i) { 3374 /* 3375 * We are done, so we donnot need 3376 * to synchronize with the SCRIPTS anylonger. 3377 * Remove the SEM flag from the ISTAT. 3378 */ 3379 np->istat_sem = 0; 3380 OUTB(np, nc_istat, SIGP); 3381 break; 3382 } 3383 /* 3384 * Compute index of next position in the start 3385 * queue the SCRIPTS intends to start and dequeue 3386 * all CCBs for that device that haven't been started. 3387 */ 3388 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; 3389 i = sym_dequeue_from_squeue(np, i, cp->target, cp->lun, -1); 3390 3391 /* 3392 * Make sure at least our IO to abort has been dequeued. 3393 */ 3394 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 3395 assert(i && sym_get_cam_status(cp->cmd) == DID_SOFT_ERROR); 3396 #else 3397 sym_remque(&cp->link_ccbq); 3398 sym_insque_tail(&cp->link_ccbq, &np->comp_ccbq); 3399 #endif 3400 /* 3401 * Keep track in cam status of the reason of the abort. 3402 */ 3403 if (cp->to_abort == 2) 3404 sym_set_cam_status(cp->cmd, DID_TIME_OUT); 3405 else 3406 sym_set_cam_status(cp->cmd, DID_ABORT); 3407 3408 /* 3409 * Complete with error everything that we have dequeued. 3410 */ 3411 sym_flush_comp_queue(np, 0); 3412 break; 3413 /* 3414 * The SCRIPTS processor has selected a target 3415 * we may have some manual recovery to perform for. 3416 */ 3417 case SIR_TARGET_SELECTED: 3418 target = INB(np, nc_sdid) & 0xf; 3419 tp = &np->target[target]; 3420 3421 np->abrt_tbl.addr = cpu_to_scr(vtobus(np->abrt_msg)); 3422 3423 /* 3424 * If the target is to be reset, prepare a 3425 * M_RESET message and clear the to_reset flag 3426 * since we donnot expect this operation to fail. 3427 */ 3428 if (tp->to_reset) { 3429 np->abrt_msg[0] = M_RESET; 3430 np->abrt_tbl.size = 1; 3431 tp->to_reset = 0; 3432 break; 3433 } 3434 3435 /* 3436 * Otherwise, look for some logical unit to be cleared. 3437 */ 3438 if (tp->lun0p && tp->lun0p->to_clear) 3439 lun = 0; 3440 else if (tp->lunmp) { 3441 for (k = 1 ; k < SYM_CONF_MAX_LUN ; k++) { 3442 if (tp->lunmp[k] && tp->lunmp[k]->to_clear) { 3443 lun = k; 3444 break; 3445 } 3446 } 3447 } 3448 3449 /* 3450 * If a logical unit is to be cleared, prepare 3451 * an IDENTIFY(lun) + ABORT MESSAGE. 3452 */ 3453 if (lun != -1) { 3454 struct sym_lcb *lp = sym_lp(tp, lun); 3455 lp->to_clear = 0; /* We don't expect to fail here */ 3456 np->abrt_msg[0] = IDENTIFY(0, lun); 3457 np->abrt_msg[1] = M_ABORT; 3458 np->abrt_tbl.size = 2; 3459 break; 3460 } 3461 3462 /* 3463 * Otherwise, look for some disconnected job to 3464 * abort for this target. 3465 */ 3466 i = 0; 3467 cp = NULL; 3468 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 3469 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 3470 if (cp->host_status != HS_DISCONNECT) 3471 continue; 3472 if (cp->target != target) 3473 continue; 3474 if (!cp->to_abort) 3475 continue; 3476 i = 1; /* Means we have some */ 3477 break; 3478 } 3479 3480 /* 3481 * If we have none, probably since the device has 3482 * completed the command before we won abitration, 3483 * send a M_ABORT message without IDENTIFY. 3484 * According to the specs, the device must just 3485 * disconnect the BUS and not abort any task. 3486 */ 3487 if (!i) { 3488 np->abrt_msg[0] = M_ABORT; 3489 np->abrt_tbl.size = 1; 3490 break; 3491 } 3492 3493 /* 3494 * We have some task to abort. 3495 * Set the IDENTIFY(lun) 3496 */ 3497 np->abrt_msg[0] = IDENTIFY(0, cp->lun); 3498 3499 /* 3500 * If we want to abort an untagged command, we 3501 * will send a IDENTIFY + M_ABORT. 3502 * Otherwise (tagged command), we will send 3503 * a IDENTITFY + task attributes + ABORT TAG. 3504 */ 3505 if (cp->tag == NO_TAG) { 3506 np->abrt_msg[1] = M_ABORT; 3507 np->abrt_tbl.size = 2; 3508 } else { 3509 np->abrt_msg[1] = cp->scsi_smsg[1]; 3510 np->abrt_msg[2] = cp->scsi_smsg[2]; 3511 np->abrt_msg[3] = M_ABORT_TAG; 3512 np->abrt_tbl.size = 4; 3513 } 3514 /* 3515 * Keep track of software timeout condition, since the 3516 * peripheral driver may not count retries on abort 3517 * conditions not due to timeout. 3518 */ 3519 if (cp->to_abort == 2) 3520 sym_set_cam_status(cp->cmd, DID_TIME_OUT); 3521 cp->to_abort = 0; /* We donnot expect to fail here */ 3522 break; 3523 3524 /* 3525 * The target has accepted our message and switched 3526 * to BUS FREE phase as we expected. 3527 */ 3528 case SIR_ABORT_SENT: 3529 target = INB(np, nc_sdid) & 0xf; 3530 tp = &np->target[target]; 3531 starget = tp->starget; 3532 3533 /* 3534 ** If we didn't abort anything, leave here. 3535 */ 3536 if (np->abrt_msg[0] == M_ABORT) 3537 break; 3538 3539 /* 3540 * If we sent a M_RESET, then a hardware reset has 3541 * been performed by the target. 3542 * - Reset everything to async 8 bit 3543 * - Tell ourself to negotiate next time :-) 3544 * - Prepare to clear all disconnected CCBs for 3545 * this target from our task list (lun=task=-1) 3546 */ 3547 lun = -1; 3548 task = -1; 3549 if (np->abrt_msg[0] == M_RESET) { 3550 tp->head.sval = 0; 3551 tp->head.wval = np->rv_scntl3; 3552 tp->head.uval = 0; 3553 spi_period(starget) = 0; 3554 spi_offset(starget) = 0; 3555 spi_width(starget) = 0; 3556 spi_iu(starget) = 0; 3557 spi_dt(starget) = 0; 3558 spi_qas(starget) = 0; 3559 tp->tgoal.check_nego = 1; 3560 tp->tgoal.renego = 0; 3561 } 3562 3563 /* 3564 * Otherwise, check for the LUN and TASK(s) 3565 * concerned by the cancelation. 3566 * If it is not ABORT_TAG then it is CLEAR_QUEUE 3567 * or an ABORT message :-) 3568 */ 3569 else { 3570 lun = np->abrt_msg[0] & 0x3f; 3571 if (np->abrt_msg[1] == M_ABORT_TAG) 3572 task = np->abrt_msg[2]; 3573 } 3574 3575 /* 3576 * Complete all the CCBs the device should have 3577 * aborted due to our 'kiss of death' message. 3578 */ 3579 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; 3580 sym_dequeue_from_squeue(np, i, target, lun, -1); 3581 sym_clear_tasks(np, DID_ABORT, target, lun, task); 3582 sym_flush_comp_queue(np, 0); 3583 3584 /* 3585 * If we sent a BDR, make upper layer aware of that. 3586 */ 3587 if (np->abrt_msg[0] == M_RESET) 3588 starget_printk(KERN_NOTICE, starget, 3589 "has been reset\n"); 3590 break; 3591 } 3592 3593 /* 3594 * Print to the log the message we intend to send. 3595 */ 3596 if (num == SIR_TARGET_SELECTED) { 3597 dev_info(&tp->starget->dev, "control msgout:"); 3598 sym_printl_hex(np->abrt_msg, np->abrt_tbl.size); 3599 np->abrt_tbl.size = cpu_to_scr(np->abrt_tbl.size); 3600 } 3601 3602 /* 3603 * Let the SCRIPTS processor continue. 3604 */ 3605 OUTONB_STD(); 3606 } 3607 3608 /* 3609 * Gerard's alchemy:) that deals with with the data 3610 * pointer for both MDP and the residual calculation. 3611 * 3612 * I didn't want to bloat the code by more than 200 3613 * lines for the handling of both MDP and the residual. 3614 * This has been achieved by using a data pointer 3615 * representation consisting in an index in the data 3616 * array (dp_sg) and a negative offset (dp_ofs) that 3617 * have the following meaning: 3618 * 3619 * - dp_sg = SYM_CONF_MAX_SG 3620 * we are at the end of the data script. 3621 * - dp_sg < SYM_CONF_MAX_SG 3622 * dp_sg points to the next entry of the scatter array 3623 * we want to transfer. 3624 * - dp_ofs < 0 3625 * dp_ofs represents the residual of bytes of the 3626 * previous entry scatter entry we will send first. 3627 * - dp_ofs = 0 3628 * no residual to send first. 3629 * 3630 * The function sym_evaluate_dp() accepts an arbitray 3631 * offset (basically from the MDP message) and returns 3632 * the corresponding values of dp_sg and dp_ofs. 3633 */ 3634 3635 static int sym_evaluate_dp(struct sym_hcb *np, struct sym_ccb *cp, u32 scr, int *ofs) 3636 { 3637 u32 dp_scr; 3638 int dp_ofs, dp_sg, dp_sgmin; 3639 int tmp; 3640 struct sym_pmc *pm; 3641 3642 /* 3643 * Compute the resulted data pointer in term of a script 3644 * address within some DATA script and a signed byte offset. 3645 */ 3646 dp_scr = scr; 3647 dp_ofs = *ofs; 3648 if (dp_scr == SCRIPTA_BA(np, pm0_data)) 3649 pm = &cp->phys.pm0; 3650 else if (dp_scr == SCRIPTA_BA(np, pm1_data)) 3651 pm = &cp->phys.pm1; 3652 else 3653 pm = NULL; 3654 3655 if (pm) { 3656 dp_scr = scr_to_cpu(pm->ret); 3657 dp_ofs -= scr_to_cpu(pm->sg.size) & 0x00ffffff; 3658 } 3659 3660 /* 3661 * If we are auto-sensing, then we are done. 3662 */ 3663 if (cp->host_flags & HF_SENSE) { 3664 *ofs = dp_ofs; 3665 return 0; 3666 } 3667 3668 /* 3669 * Deduce the index of the sg entry. 3670 * Keep track of the index of the first valid entry. 3671 * If result is dp_sg = SYM_CONF_MAX_SG, then we are at the 3672 * end of the data. 3673 */ 3674 tmp = scr_to_cpu(cp->goalp); 3675 dp_sg = SYM_CONF_MAX_SG; 3676 if (dp_scr != tmp) 3677 dp_sg -= (tmp - 8 - (int)dp_scr) / (2*4); 3678 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 3679 3680 /* 3681 * Move to the sg entry the data pointer belongs to. 3682 * 3683 * If we are inside the data area, we expect result to be: 3684 * 3685 * Either, 3686 * dp_ofs = 0 and dp_sg is the index of the sg entry 3687 * the data pointer belongs to (or the end of the data) 3688 * Or, 3689 * dp_ofs < 0 and dp_sg is the index of the sg entry 3690 * the data pointer belongs to + 1. 3691 */ 3692 if (dp_ofs < 0) { 3693 int n; 3694 while (dp_sg > dp_sgmin) { 3695 --dp_sg; 3696 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 3697 n = dp_ofs + (tmp & 0xffffff); 3698 if (n > 0) { 3699 ++dp_sg; 3700 break; 3701 } 3702 dp_ofs = n; 3703 } 3704 } 3705 else if (dp_ofs > 0) { 3706 while (dp_sg < SYM_CONF_MAX_SG) { 3707 tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 3708 dp_ofs -= (tmp & 0xffffff); 3709 ++dp_sg; 3710 if (dp_ofs <= 0) 3711 break; 3712 } 3713 } 3714 3715 /* 3716 * Make sure the data pointer is inside the data area. 3717 * If not, return some error. 3718 */ 3719 if (dp_sg < dp_sgmin || (dp_sg == dp_sgmin && dp_ofs < 0)) 3720 goto out_err; 3721 else if (dp_sg > SYM_CONF_MAX_SG || 3722 (dp_sg == SYM_CONF_MAX_SG && dp_ofs > 0)) 3723 goto out_err; 3724 3725 /* 3726 * Save the extreme pointer if needed. 3727 */ 3728 if (dp_sg > cp->ext_sg || 3729 (dp_sg == cp->ext_sg && dp_ofs > cp->ext_ofs)) { 3730 cp->ext_sg = dp_sg; 3731 cp->ext_ofs = dp_ofs; 3732 } 3733 3734 /* 3735 * Return data. 3736 */ 3737 *ofs = dp_ofs; 3738 return dp_sg; 3739 3740 out_err: 3741 return -1; 3742 } 3743 3744 /* 3745 * chip handler for MODIFY DATA POINTER MESSAGE 3746 * 3747 * We also call this function on IGNORE WIDE RESIDUE 3748 * messages that do not match a SWIDE full condition. 3749 * Btw, we assume in that situation that such a message 3750 * is equivalent to a MODIFY DATA POINTER (offset=-1). 3751 */ 3752 3753 static void sym_modify_dp(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp, int ofs) 3754 { 3755 int dp_ofs = ofs; 3756 u32 dp_scr = sym_get_script_dp (np, cp); 3757 u32 dp_ret; 3758 u32 tmp; 3759 u_char hflags; 3760 int dp_sg; 3761 struct sym_pmc *pm; 3762 3763 /* 3764 * Not supported for auto-sense. 3765 */ 3766 if (cp->host_flags & HF_SENSE) 3767 goto out_reject; 3768 3769 /* 3770 * Apply our alchemy:) (see comments in sym_evaluate_dp()), 3771 * to the resulted data pointer. 3772 */ 3773 dp_sg = sym_evaluate_dp(np, cp, dp_scr, &dp_ofs); 3774 if (dp_sg < 0) 3775 goto out_reject; 3776 3777 /* 3778 * And our alchemy:) allows to easily calculate the data 3779 * script address we want to return for the next data phase. 3780 */ 3781 dp_ret = cpu_to_scr(cp->goalp); 3782 dp_ret = dp_ret - 8 - (SYM_CONF_MAX_SG - dp_sg) * (2*4); 3783 3784 /* 3785 * If offset / scatter entry is zero we donnot need 3786 * a context for the new current data pointer. 3787 */ 3788 if (dp_ofs == 0) { 3789 dp_scr = dp_ret; 3790 goto out_ok; 3791 } 3792 3793 /* 3794 * Get a context for the new current data pointer. 3795 */ 3796 hflags = INB(np, HF_PRT); 3797 3798 if (hflags & HF_DP_SAVED) 3799 hflags ^= HF_ACT_PM; 3800 3801 if (!(hflags & HF_ACT_PM)) { 3802 pm = &cp->phys.pm0; 3803 dp_scr = SCRIPTA_BA(np, pm0_data); 3804 } 3805 else { 3806 pm = &cp->phys.pm1; 3807 dp_scr = SCRIPTA_BA(np, pm1_data); 3808 } 3809 3810 hflags &= ~(HF_DP_SAVED); 3811 3812 OUTB(np, HF_PRT, hflags); 3813 3814 /* 3815 * Set up the new current data pointer. 3816 * ofs < 0 there, and for the next data phase, we 3817 * want to transfer part of the data of the sg entry 3818 * corresponding to index dp_sg-1 prior to returning 3819 * to the main data script. 3820 */ 3821 pm->ret = cpu_to_scr(dp_ret); 3822 tmp = scr_to_cpu(cp->phys.data[dp_sg-1].addr); 3823 tmp += scr_to_cpu(cp->phys.data[dp_sg-1].size) + dp_ofs; 3824 pm->sg.addr = cpu_to_scr(tmp); 3825 pm->sg.size = cpu_to_scr(-dp_ofs); 3826 3827 out_ok: 3828 sym_set_script_dp (np, cp, dp_scr); 3829 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 3830 return; 3831 3832 out_reject: 3833 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 3834 } 3835 3836 3837 /* 3838 * chip calculation of the data residual. 3839 * 3840 * As I used to say, the requirement of data residual 3841 * in SCSI is broken, useless and cannot be achieved 3842 * without huge complexity. 3843 * But most OSes and even the official CAM require it. 3844 * When stupidity happens to be so widely spread inside 3845 * a community, it gets hard to convince. 3846 * 3847 * Anyway, I don't care, since I am not going to use 3848 * any software that considers this data residual as 3849 * a relevant information. :) 3850 */ 3851 3852 int sym_compute_residual(struct sym_hcb *np, struct sym_ccb *cp) 3853 { 3854 int dp_sg, dp_sgmin, resid = 0; 3855 int dp_ofs = 0; 3856 3857 /* 3858 * Check for some data lost or just thrown away. 3859 * We are not required to be quite accurate in this 3860 * situation. Btw, if we are odd for output and the 3861 * device claims some more data, it may well happen 3862 * than our residual be zero. :-) 3863 */ 3864 if (cp->xerr_status & (XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) { 3865 if (cp->xerr_status & XE_EXTRA_DATA) 3866 resid -= cp->extra_bytes; 3867 if (cp->xerr_status & XE_SODL_UNRUN) 3868 ++resid; 3869 if (cp->xerr_status & XE_SWIDE_OVRUN) 3870 --resid; 3871 } 3872 3873 /* 3874 * If all data has been transferred, 3875 * there is no residual. 3876 */ 3877 if (cp->phys.head.lastp == cp->goalp) 3878 return resid; 3879 3880 /* 3881 * If no data transfer occurs, or if the data 3882 * pointer is weird, return full residual. 3883 */ 3884 if (cp->startp == cp->phys.head.lastp || 3885 sym_evaluate_dp(np, cp, scr_to_cpu(cp->phys.head.lastp), 3886 &dp_ofs) < 0) { 3887 return cp->data_len - cp->odd_byte_adjustment; 3888 } 3889 3890 /* 3891 * If we were auto-sensing, then we are done. 3892 */ 3893 if (cp->host_flags & HF_SENSE) { 3894 return -dp_ofs; 3895 } 3896 3897 /* 3898 * We are now full comfortable in the computation 3899 * of the data residual (2's complement). 3900 */ 3901 dp_sgmin = SYM_CONF_MAX_SG - cp->segments; 3902 resid = -cp->ext_ofs; 3903 for (dp_sg = cp->ext_sg; dp_sg < SYM_CONF_MAX_SG; ++dp_sg) { 3904 u_int tmp = scr_to_cpu(cp->phys.data[dp_sg].size); 3905 resid += (tmp & 0xffffff); 3906 } 3907 3908 resid -= cp->odd_byte_adjustment; 3909 3910 /* 3911 * Hopefully, the result is not too wrong. 3912 */ 3913 return resid; 3914 } 3915 3916 /* 3917 * Negotiation for WIDE and SYNCHRONOUS DATA TRANSFER. 3918 * 3919 * When we try to negotiate, we append the negotiation message 3920 * to the identify and (maybe) simple tag message. 3921 * The host status field is set to HS_NEGOTIATE to mark this 3922 * situation. 3923 * 3924 * If the target doesn't answer this message immediately 3925 * (as required by the standard), the SIR_NEGO_FAILED interrupt 3926 * will be raised eventually. 3927 * The handler removes the HS_NEGOTIATE status, and sets the 3928 * negotiated value to the default (async / nowide). 3929 * 3930 * If we receive a matching answer immediately, we check it 3931 * for validity, and set the values. 3932 * 3933 * If we receive a Reject message immediately, we assume the 3934 * negotiation has failed, and fall back to standard values. 3935 * 3936 * If we receive a negotiation message while not in HS_NEGOTIATE 3937 * state, it's a target initiated negotiation. We prepare a 3938 * (hopefully) valid answer, set our parameters, and send back 3939 * this answer to the target. 3940 * 3941 * If the target doesn't fetch the answer (no message out phase), 3942 * we assume the negotiation has failed, and fall back to default 3943 * settings (SIR_NEGO_PROTO interrupt). 3944 * 3945 * When we set the values, we adjust them in all ccbs belonging 3946 * to this target, in the controller's register, and in the "phys" 3947 * field of the controller's struct sym_hcb. 3948 */ 3949 3950 /* 3951 * chip handler for SYNCHRONOUS DATA TRANSFER REQUEST (SDTR) message. 3952 */ 3953 static int 3954 sym_sync_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) 3955 { 3956 int target = cp->target; 3957 u_char chg, ofs, per, fak, div; 3958 3959 if (DEBUG_FLAGS & DEBUG_NEGO) { 3960 sym_print_nego_msg(np, target, "sync msgin", np->msgin); 3961 } 3962 3963 /* 3964 * Get requested values. 3965 */ 3966 chg = 0; 3967 per = np->msgin[3]; 3968 ofs = np->msgin[4]; 3969 3970 /* 3971 * Check values against our limits. 3972 */ 3973 if (ofs) { 3974 if (ofs > np->maxoffs) 3975 {chg = 1; ofs = np->maxoffs;} 3976 } 3977 3978 if (ofs) { 3979 if (per < np->minsync) 3980 {chg = 1; per = np->minsync;} 3981 } 3982 3983 /* 3984 * Get new chip synchronous parameters value. 3985 */ 3986 div = fak = 0; 3987 if (ofs && sym_getsync(np, 0, per, &div, &fak) < 0) 3988 goto reject_it; 3989 3990 if (DEBUG_FLAGS & DEBUG_NEGO) { 3991 sym_print_addr(cp->cmd, 3992 "sdtr: ofs=%d per=%d div=%d fak=%d chg=%d.\n", 3993 ofs, per, div, fak, chg); 3994 } 3995 3996 /* 3997 * If it was an answer we want to change, 3998 * then it isn't acceptable. Reject it. 3999 */ 4000 if (!req && chg) 4001 goto reject_it; 4002 4003 /* 4004 * Apply new values. 4005 */ 4006 sym_setsync (np, target, ofs, per, div, fak); 4007 4008 /* 4009 * It was an answer. We are done. 4010 */ 4011 if (!req) 4012 return 0; 4013 4014 /* 4015 * It was a request. Prepare an answer message. 4016 */ 4017 spi_populate_sync_msg(np->msgout, per, ofs); 4018 4019 if (DEBUG_FLAGS & DEBUG_NEGO) { 4020 sym_print_nego_msg(np, target, "sync msgout", np->msgout); 4021 } 4022 4023 np->msgin [0] = M_NOOP; 4024 4025 return 0; 4026 4027 reject_it: 4028 sym_setsync (np, target, 0, 0, 0, 0); 4029 return -1; 4030 } 4031 4032 static void sym_sync_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4033 { 4034 int req = 1; 4035 int result; 4036 4037 /* 4038 * Request or answer ? 4039 */ 4040 if (INB(np, HS_PRT) == HS_NEGOTIATE) { 4041 OUTB(np, HS_PRT, HS_BUSY); 4042 if (cp->nego_status && cp->nego_status != NS_SYNC) 4043 goto reject_it; 4044 req = 0; 4045 } 4046 4047 /* 4048 * Check and apply new values. 4049 */ 4050 result = sym_sync_nego_check(np, req, cp); 4051 if (result) /* Not acceptable, reject it */ 4052 goto reject_it; 4053 if (req) { /* Was a request, send response. */ 4054 cp->nego_status = NS_SYNC; 4055 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); 4056 } 4057 else /* Was a response, we are done. */ 4058 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4059 return; 4060 4061 reject_it: 4062 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 4063 } 4064 4065 /* 4066 * chip handler for PARALLEL PROTOCOL REQUEST (PPR) message. 4067 */ 4068 static int 4069 sym_ppr_nego_check(struct sym_hcb *np, int req, int target) 4070 { 4071 struct sym_tcb *tp = &np->target[target]; 4072 unsigned char fak, div; 4073 int dt, chg = 0; 4074 4075 unsigned char per = np->msgin[3]; 4076 unsigned char ofs = np->msgin[5]; 4077 unsigned char wide = np->msgin[6]; 4078 unsigned char opts = np->msgin[7] & PPR_OPT_MASK; 4079 4080 if (DEBUG_FLAGS & DEBUG_NEGO) { 4081 sym_print_nego_msg(np, target, "ppr msgin", np->msgin); 4082 } 4083 4084 /* 4085 * Check values against our limits. 4086 */ 4087 if (wide > np->maxwide) { 4088 chg = 1; 4089 wide = np->maxwide; 4090 } 4091 if (!wide || !(np->features & FE_U3EN)) 4092 opts = 0; 4093 4094 if (opts != (np->msgin[7] & PPR_OPT_MASK)) 4095 chg = 1; 4096 4097 dt = opts & PPR_OPT_DT; 4098 4099 if (ofs) { 4100 unsigned char maxoffs = dt ? np->maxoffs_dt : np->maxoffs; 4101 if (ofs > maxoffs) { 4102 chg = 1; 4103 ofs = maxoffs; 4104 } 4105 } 4106 4107 if (ofs) { 4108 unsigned char minsync = dt ? np->minsync_dt : np->minsync; 4109 if (per < minsync) { 4110 chg = 1; 4111 per = minsync; 4112 } 4113 } 4114 4115 /* 4116 * Get new chip synchronous parameters value. 4117 */ 4118 div = fak = 0; 4119 if (ofs && sym_getsync(np, dt, per, &div, &fak) < 0) 4120 goto reject_it; 4121 4122 /* 4123 * If it was an answer we want to change, 4124 * then it isn't acceptable. Reject it. 4125 */ 4126 if (!req && chg) 4127 goto reject_it; 4128 4129 /* 4130 * Apply new values. 4131 */ 4132 sym_setpprot(np, target, opts, ofs, per, wide, div, fak); 4133 4134 /* 4135 * It was an answer. We are done. 4136 */ 4137 if (!req) 4138 return 0; 4139 4140 /* 4141 * It was a request. Prepare an answer message. 4142 */ 4143 spi_populate_ppr_msg(np->msgout, per, ofs, wide, opts); 4144 4145 if (DEBUG_FLAGS & DEBUG_NEGO) { 4146 sym_print_nego_msg(np, target, "ppr msgout", np->msgout); 4147 } 4148 4149 np->msgin [0] = M_NOOP; 4150 4151 return 0; 4152 4153 reject_it: 4154 sym_setpprot (np, target, 0, 0, 0, 0, 0, 0); 4155 /* 4156 * If it is a device response that should result in 4157 * ST, we may want to try a legacy negotiation later. 4158 */ 4159 if (!req && !opts) { 4160 tp->tgoal.period = per; 4161 tp->tgoal.offset = ofs; 4162 tp->tgoal.width = wide; 4163 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 4164 tp->tgoal.check_nego = 1; 4165 } 4166 return -1; 4167 } 4168 4169 static void sym_ppr_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4170 { 4171 int req = 1; 4172 int result; 4173 4174 /* 4175 * Request or answer ? 4176 */ 4177 if (INB(np, HS_PRT) == HS_NEGOTIATE) { 4178 OUTB(np, HS_PRT, HS_BUSY); 4179 if (cp->nego_status && cp->nego_status != NS_PPR) 4180 goto reject_it; 4181 req = 0; 4182 } 4183 4184 /* 4185 * Check and apply new values. 4186 */ 4187 result = sym_ppr_nego_check(np, req, cp->target); 4188 if (result) /* Not acceptable, reject it */ 4189 goto reject_it; 4190 if (req) { /* Was a request, send response. */ 4191 cp->nego_status = NS_PPR; 4192 OUTL_DSP(np, SCRIPTB_BA(np, ppr_resp)); 4193 } 4194 else /* Was a response, we are done. */ 4195 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4196 return; 4197 4198 reject_it: 4199 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 4200 } 4201 4202 /* 4203 * chip handler for WIDE DATA TRANSFER REQUEST (WDTR) message. 4204 */ 4205 static int 4206 sym_wide_nego_check(struct sym_hcb *np, int req, struct sym_ccb *cp) 4207 { 4208 int target = cp->target; 4209 u_char chg, wide; 4210 4211 if (DEBUG_FLAGS & DEBUG_NEGO) { 4212 sym_print_nego_msg(np, target, "wide msgin", np->msgin); 4213 } 4214 4215 /* 4216 * Get requested values. 4217 */ 4218 chg = 0; 4219 wide = np->msgin[3]; 4220 4221 /* 4222 * Check values against our limits. 4223 */ 4224 if (wide > np->maxwide) { 4225 chg = 1; 4226 wide = np->maxwide; 4227 } 4228 4229 if (DEBUG_FLAGS & DEBUG_NEGO) { 4230 sym_print_addr(cp->cmd, "wdtr: wide=%d chg=%d.\n", 4231 wide, chg); 4232 } 4233 4234 /* 4235 * If it was an answer we want to change, 4236 * then it isn't acceptable. Reject it. 4237 */ 4238 if (!req && chg) 4239 goto reject_it; 4240 4241 /* 4242 * Apply new values. 4243 */ 4244 sym_setwide (np, target, wide); 4245 4246 /* 4247 * It was an answer. We are done. 4248 */ 4249 if (!req) 4250 return 0; 4251 4252 /* 4253 * It was a request. Prepare an answer message. 4254 */ 4255 spi_populate_width_msg(np->msgout, wide); 4256 4257 np->msgin [0] = M_NOOP; 4258 4259 if (DEBUG_FLAGS & DEBUG_NEGO) { 4260 sym_print_nego_msg(np, target, "wide msgout", np->msgout); 4261 } 4262 4263 return 0; 4264 4265 reject_it: 4266 return -1; 4267 } 4268 4269 static void sym_wide_nego(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4270 { 4271 int req = 1; 4272 int result; 4273 4274 /* 4275 * Request or answer ? 4276 */ 4277 if (INB(np, HS_PRT) == HS_NEGOTIATE) { 4278 OUTB(np, HS_PRT, HS_BUSY); 4279 if (cp->nego_status && cp->nego_status != NS_WIDE) 4280 goto reject_it; 4281 req = 0; 4282 } 4283 4284 /* 4285 * Check and apply new values. 4286 */ 4287 result = sym_wide_nego_check(np, req, cp); 4288 if (result) /* Not acceptable, reject it */ 4289 goto reject_it; 4290 if (req) { /* Was a request, send response. */ 4291 cp->nego_status = NS_WIDE; 4292 OUTL_DSP(np, SCRIPTB_BA(np, wdtr_resp)); 4293 } else { /* Was a response. */ 4294 /* 4295 * Negotiate for SYNC immediately after WIDE response. 4296 * This allows to negotiate for both WIDE and SYNC on 4297 * a single SCSI command (Suggested by Justin Gibbs). 4298 */ 4299 if (tp->tgoal.offset) { 4300 spi_populate_sync_msg(np->msgout, tp->tgoal.period, 4301 tp->tgoal.offset); 4302 4303 if (DEBUG_FLAGS & DEBUG_NEGO) { 4304 sym_print_nego_msg(np, cp->target, 4305 "sync msgout", np->msgout); 4306 } 4307 4308 cp->nego_status = NS_SYNC; 4309 OUTB(np, HS_PRT, HS_NEGOTIATE); 4310 OUTL_DSP(np, SCRIPTB_BA(np, sdtr_resp)); 4311 return; 4312 } else 4313 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4314 } 4315 4316 return; 4317 4318 reject_it: 4319 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 4320 } 4321 4322 /* 4323 * Reset DT, SYNC or WIDE to default settings. 4324 * 4325 * Called when a negotiation does not succeed either 4326 * on rejection or on protocol error. 4327 * 4328 * A target that understands a PPR message should never 4329 * reject it, and messing with it is very unlikely. 4330 * So, if a PPR makes problems, we may just want to 4331 * try a legacy negotiation later. 4332 */ 4333 static void sym_nego_default(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4334 { 4335 switch (cp->nego_status) { 4336 case NS_PPR: 4337 #if 0 4338 sym_setpprot (np, cp->target, 0, 0, 0, 0, 0, 0); 4339 #else 4340 if (tp->tgoal.period < np->minsync) 4341 tp->tgoal.period = np->minsync; 4342 if (tp->tgoal.offset > np->maxoffs) 4343 tp->tgoal.offset = np->maxoffs; 4344 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 4345 tp->tgoal.check_nego = 1; 4346 #endif 4347 break; 4348 case NS_SYNC: 4349 sym_setsync (np, cp->target, 0, 0, 0, 0); 4350 break; 4351 case NS_WIDE: 4352 sym_setwide (np, cp->target, 0); 4353 break; 4354 } 4355 np->msgin [0] = M_NOOP; 4356 np->msgout[0] = M_NOOP; 4357 cp->nego_status = 0; 4358 } 4359 4360 /* 4361 * chip handler for MESSAGE REJECT received in response to 4362 * PPR, WIDE or SYNCHRONOUS negotiation. 4363 */ 4364 static void sym_nego_rejected(struct sym_hcb *np, struct sym_tcb *tp, struct sym_ccb *cp) 4365 { 4366 sym_nego_default(np, tp, cp); 4367 OUTB(np, HS_PRT, HS_BUSY); 4368 } 4369 4370 /* 4371 * chip exception handler for programmed interrupts. 4372 */ 4373 static void sym_int_sir(struct sym_hcb *np) 4374 { 4375 u_char num = INB(np, nc_dsps); 4376 u32 dsa = INL(np, nc_dsa); 4377 struct sym_ccb *cp = sym_ccb_from_dsa(np, dsa); 4378 u_char target = INB(np, nc_sdid) & 0x0f; 4379 struct sym_tcb *tp = &np->target[target]; 4380 int tmp; 4381 4382 if (DEBUG_FLAGS & DEBUG_TINY) printf ("I#%d", num); 4383 4384 switch (num) { 4385 #if SYM_CONF_DMA_ADDRESSING_MODE == 2 4386 /* 4387 * SCRIPTS tell us that we may have to update 4388 * 64 bit DMA segment registers. 4389 */ 4390 case SIR_DMAP_DIRTY: 4391 sym_update_dmap_regs(np); 4392 goto out; 4393 #endif 4394 /* 4395 * Command has been completed with error condition 4396 * or has been auto-sensed. 4397 */ 4398 case SIR_COMPLETE_ERROR: 4399 sym_complete_error(np, cp); 4400 return; 4401 /* 4402 * The C code is currently trying to recover from something. 4403 * Typically, user want to abort some command. 4404 */ 4405 case SIR_SCRIPT_STOPPED: 4406 case SIR_TARGET_SELECTED: 4407 case SIR_ABORT_SENT: 4408 sym_sir_task_recovery(np, num); 4409 return; 4410 /* 4411 * The device didn't go to MSG OUT phase after having 4412 * been selected with ATN. We do not want to handle that. 4413 */ 4414 case SIR_SEL_ATN_NO_MSG_OUT: 4415 scmd_printk(KERN_WARNING, cp->cmd, 4416 "No MSG OUT phase after selection with ATN\n"); 4417 goto out_stuck; 4418 /* 4419 * The device didn't switch to MSG IN phase after 4420 * having reselected the initiator. 4421 */ 4422 case SIR_RESEL_NO_MSG_IN: 4423 scmd_printk(KERN_WARNING, cp->cmd, 4424 "No MSG IN phase after reselection\n"); 4425 goto out_stuck; 4426 /* 4427 * After reselection, the device sent a message that wasn't 4428 * an IDENTIFY. 4429 */ 4430 case SIR_RESEL_NO_IDENTIFY: 4431 scmd_printk(KERN_WARNING, cp->cmd, 4432 "No IDENTIFY after reselection\n"); 4433 goto out_stuck; 4434 /* 4435 * The device reselected a LUN we do not know about. 4436 */ 4437 case SIR_RESEL_BAD_LUN: 4438 np->msgout[0] = M_RESET; 4439 goto out; 4440 /* 4441 * The device reselected for an untagged nexus and we 4442 * haven't any. 4443 */ 4444 case SIR_RESEL_BAD_I_T_L: 4445 np->msgout[0] = M_ABORT; 4446 goto out; 4447 /* 4448 * The device reselected for a tagged nexus that we do not have. 4449 */ 4450 case SIR_RESEL_BAD_I_T_L_Q: 4451 np->msgout[0] = M_ABORT_TAG; 4452 goto out; 4453 /* 4454 * The SCRIPTS let us know that the device has grabbed 4455 * our message and will abort the job. 4456 */ 4457 case SIR_RESEL_ABORTED: 4458 np->lastmsg = np->msgout[0]; 4459 np->msgout[0] = M_NOOP; 4460 scmd_printk(KERN_WARNING, cp->cmd, 4461 "message %x sent on bad reselection\n", np->lastmsg); 4462 goto out; 4463 /* 4464 * The SCRIPTS let us know that a message has been 4465 * successfully sent to the device. 4466 */ 4467 case SIR_MSG_OUT_DONE: 4468 np->lastmsg = np->msgout[0]; 4469 np->msgout[0] = M_NOOP; 4470 /* Should we really care of that */ 4471 if (np->lastmsg == M_PARITY || np->lastmsg == M_ID_ERROR) { 4472 if (cp) { 4473 cp->xerr_status &= ~XE_PARITY_ERR; 4474 if (!cp->xerr_status) 4475 OUTOFFB(np, HF_PRT, HF_EXT_ERR); 4476 } 4477 } 4478 goto out; 4479 /* 4480 * The device didn't send a GOOD SCSI status. 4481 * We may have some work to do prior to allow 4482 * the SCRIPTS processor to continue. 4483 */ 4484 case SIR_BAD_SCSI_STATUS: 4485 if (!cp) 4486 goto out; 4487 sym_sir_bad_scsi_status(np, num, cp); 4488 return; 4489 /* 4490 * We are asked by the SCRIPTS to prepare a 4491 * REJECT message. 4492 */ 4493 case SIR_REJECT_TO_SEND: 4494 sym_print_msg(cp, "M_REJECT to send for ", np->msgin); 4495 np->msgout[0] = M_REJECT; 4496 goto out; 4497 /* 4498 * We have been ODD at the end of a DATA IN 4499 * transfer and the device didn't send a 4500 * IGNORE WIDE RESIDUE message. 4501 * It is a data overrun condition. 4502 */ 4503 case SIR_SWIDE_OVERRUN: 4504 if (cp) { 4505 OUTONB(np, HF_PRT, HF_EXT_ERR); 4506 cp->xerr_status |= XE_SWIDE_OVRUN; 4507 } 4508 goto out; 4509 /* 4510 * We have been ODD at the end of a DATA OUT 4511 * transfer. 4512 * It is a data underrun condition. 4513 */ 4514 case SIR_SODL_UNDERRUN: 4515 if (cp) { 4516 OUTONB(np, HF_PRT, HF_EXT_ERR); 4517 cp->xerr_status |= XE_SODL_UNRUN; 4518 } 4519 goto out; 4520 /* 4521 * The device wants us to tranfer more data than 4522 * expected or in the wrong direction. 4523 * The number of extra bytes is in scratcha. 4524 * It is a data overrun condition. 4525 */ 4526 case SIR_DATA_OVERRUN: 4527 if (cp) { 4528 OUTONB(np, HF_PRT, HF_EXT_ERR); 4529 cp->xerr_status |= XE_EXTRA_DATA; 4530 cp->extra_bytes += INL(np, nc_scratcha); 4531 } 4532 goto out; 4533 /* 4534 * The device switched to an illegal phase (4/5). 4535 */ 4536 case SIR_BAD_PHASE: 4537 if (cp) { 4538 OUTONB(np, HF_PRT, HF_EXT_ERR); 4539 cp->xerr_status |= XE_BAD_PHASE; 4540 } 4541 goto out; 4542 /* 4543 * We received a message. 4544 */ 4545 case SIR_MSG_RECEIVED: 4546 if (!cp) 4547 goto out_stuck; 4548 switch (np->msgin [0]) { 4549 /* 4550 * We received an extended message. 4551 * We handle MODIFY DATA POINTER, SDTR, WDTR 4552 * and reject all other extended messages. 4553 */ 4554 case M_EXTENDED: 4555 switch (np->msgin [2]) { 4556 case M_X_MODIFY_DP: 4557 if (DEBUG_FLAGS & DEBUG_POINTER) 4558 sym_print_msg(cp, "extended msg ", 4559 np->msgin); 4560 tmp = (np->msgin[3]<<24) + (np->msgin[4]<<16) + 4561 (np->msgin[5]<<8) + (np->msgin[6]); 4562 sym_modify_dp(np, tp, cp, tmp); 4563 return; 4564 case M_X_SYNC_REQ: 4565 sym_sync_nego(np, tp, cp); 4566 return; 4567 case M_X_PPR_REQ: 4568 sym_ppr_nego(np, tp, cp); 4569 return; 4570 case M_X_WIDE_REQ: 4571 sym_wide_nego(np, tp, cp); 4572 return; 4573 default: 4574 goto out_reject; 4575 } 4576 break; 4577 /* 4578 * We received a 1/2 byte message not handled from SCRIPTS. 4579 * We are only expecting MESSAGE REJECT and IGNORE WIDE 4580 * RESIDUE messages that haven't been anticipated by 4581 * SCRIPTS on SWIDE full condition. Unanticipated IGNORE 4582 * WIDE RESIDUE messages are aliased as MODIFY DP (-1). 4583 */ 4584 case M_IGN_RESIDUE: 4585 if (DEBUG_FLAGS & DEBUG_POINTER) 4586 sym_print_msg(cp, "1 or 2 byte ", np->msgin); 4587 if (cp->host_flags & HF_SENSE) 4588 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4589 else 4590 sym_modify_dp(np, tp, cp, -1); 4591 return; 4592 case M_REJECT: 4593 if (INB(np, HS_PRT) == HS_NEGOTIATE) 4594 sym_nego_rejected(np, tp, cp); 4595 else { 4596 sym_print_addr(cp->cmd, 4597 "M_REJECT received (%x:%x).\n", 4598 scr_to_cpu(np->lastmsg), np->msgout[0]); 4599 } 4600 goto out_clrack; 4601 break; 4602 default: 4603 goto out_reject; 4604 } 4605 break; 4606 /* 4607 * We received an unknown message. 4608 * Ignore all MSG IN phases and reject it. 4609 */ 4610 case SIR_MSG_WEIRD: 4611 sym_print_msg(cp, "WEIRD message received", np->msgin); 4612 OUTL_DSP(np, SCRIPTB_BA(np, msg_weird)); 4613 return; 4614 /* 4615 * Negotiation failed. 4616 * Target does not send us the reply. 4617 * Remove the HS_NEGOTIATE status. 4618 */ 4619 case SIR_NEGO_FAILED: 4620 OUTB(np, HS_PRT, HS_BUSY); 4621 /* 4622 * Negotiation failed. 4623 * Target does not want answer message. 4624 */ 4625 case SIR_NEGO_PROTO: 4626 sym_nego_default(np, tp, cp); 4627 goto out; 4628 } 4629 4630 out: 4631 OUTONB_STD(); 4632 return; 4633 out_reject: 4634 OUTL_DSP(np, SCRIPTB_BA(np, msg_bad)); 4635 return; 4636 out_clrack: 4637 OUTL_DSP(np, SCRIPTA_BA(np, clrack)); 4638 return; 4639 out_stuck: 4640 return; 4641 } 4642 4643 /* 4644 * Acquire a control block 4645 */ 4646 struct sym_ccb *sym_get_ccb (struct sym_hcb *np, struct scsi_cmnd *cmd, u_char tag_order) 4647 { 4648 u_char tn = cmd->device->id; 4649 u_char ln = cmd->device->lun; 4650 struct sym_tcb *tp = &np->target[tn]; 4651 struct sym_lcb *lp = sym_lp(tp, ln); 4652 u_short tag = NO_TAG; 4653 SYM_QUEHEAD *qp; 4654 struct sym_ccb *cp = NULL; 4655 4656 /* 4657 * Look for a free CCB 4658 */ 4659 if (sym_que_empty(&np->free_ccbq)) 4660 sym_alloc_ccb(np); 4661 qp = sym_remque_head(&np->free_ccbq); 4662 if (!qp) 4663 goto out; 4664 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 4665 4666 { 4667 /* 4668 * If we have been asked for a tagged command. 4669 */ 4670 if (tag_order) { 4671 /* 4672 * Debugging purpose. 4673 */ 4674 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 4675 if (lp->busy_itl != 0) 4676 goto out_free; 4677 #endif 4678 /* 4679 * Allocate resources for tags if not yet. 4680 */ 4681 if (!lp->cb_tags) { 4682 sym_alloc_lcb_tags(np, tn, ln); 4683 if (!lp->cb_tags) 4684 goto out_free; 4685 } 4686 /* 4687 * Get a tag for this SCSI IO and set up 4688 * the CCB bus address for reselection, 4689 * and count it for this LUN. 4690 * Toggle reselect path to tagged. 4691 */ 4692 if (lp->busy_itlq < SYM_CONF_MAX_TASK) { 4693 tag = lp->cb_tags[lp->ia_tag]; 4694 if (++lp->ia_tag == SYM_CONF_MAX_TASK) 4695 lp->ia_tag = 0; 4696 ++lp->busy_itlq; 4697 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 4698 lp->itlq_tbl[tag] = cpu_to_scr(cp->ccb_ba); 4699 lp->head.resel_sa = 4700 cpu_to_scr(SCRIPTA_BA(np, resel_tag)); 4701 #endif 4702 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING 4703 cp->tags_si = lp->tags_si; 4704 ++lp->tags_sum[cp->tags_si]; 4705 ++lp->tags_since; 4706 #endif 4707 } 4708 else 4709 goto out_free; 4710 } 4711 /* 4712 * This command will not be tagged. 4713 * If we already have either a tagged or untagged 4714 * one, refuse to overlap this untagged one. 4715 */ 4716 else { 4717 /* 4718 * Debugging purpose. 4719 */ 4720 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 4721 if (lp->busy_itl != 0 || lp->busy_itlq != 0) 4722 goto out_free; 4723 #endif 4724 /* 4725 * Count this nexus for this LUN. 4726 * Set up the CCB bus address for reselection. 4727 * Toggle reselect path to untagged. 4728 */ 4729 ++lp->busy_itl; 4730 #ifndef SYM_OPT_HANDLE_DEVICE_QUEUEING 4731 if (lp->busy_itl == 1) { 4732 lp->head.itl_task_sa = cpu_to_scr(cp->ccb_ba); 4733 lp->head.resel_sa = 4734 cpu_to_scr(SCRIPTA_BA(np, resel_no_tag)); 4735 } 4736 else 4737 goto out_free; 4738 #endif 4739 } 4740 } 4741 /* 4742 * Put the CCB into the busy queue. 4743 */ 4744 sym_insque_tail(&cp->link_ccbq, &np->busy_ccbq); 4745 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 4746 if (lp) { 4747 sym_remque(&cp->link2_ccbq); 4748 sym_insque_tail(&cp->link2_ccbq, &lp->waiting_ccbq); 4749 } 4750 4751 #endif 4752 cp->to_abort = 0; 4753 cp->odd_byte_adjustment = 0; 4754 cp->tag = tag; 4755 cp->order = tag_order; 4756 cp->target = tn; 4757 cp->lun = ln; 4758 4759 if (DEBUG_FLAGS & DEBUG_TAGS) { 4760 sym_print_addr(cmd, "ccb @%p using tag %d.\n", cp, tag); 4761 } 4762 4763 out: 4764 return cp; 4765 out_free: 4766 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 4767 return NULL; 4768 } 4769 4770 /* 4771 * Release one control block 4772 */ 4773 void sym_free_ccb (struct sym_hcb *np, struct sym_ccb *cp) 4774 { 4775 struct sym_tcb *tp = &np->target[cp->target]; 4776 struct sym_lcb *lp = sym_lp(tp, cp->lun); 4777 4778 if (DEBUG_FLAGS & DEBUG_TAGS) { 4779 sym_print_addr(cp->cmd, "ccb @%p freeing tag %d.\n", 4780 cp, cp->tag); 4781 } 4782 4783 /* 4784 * If LCB available, 4785 */ 4786 if (lp) { 4787 /* 4788 * If tagged, release the tag, set the relect path 4789 */ 4790 if (cp->tag != NO_TAG) { 4791 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING 4792 --lp->tags_sum[cp->tags_si]; 4793 #endif 4794 /* 4795 * Free the tag value. 4796 */ 4797 lp->cb_tags[lp->if_tag] = cp->tag; 4798 if (++lp->if_tag == SYM_CONF_MAX_TASK) 4799 lp->if_tag = 0; 4800 /* 4801 * Make the reselect path invalid, 4802 * and uncount this CCB. 4803 */ 4804 lp->itlq_tbl[cp->tag] = cpu_to_scr(np->bad_itlq_ba); 4805 --lp->busy_itlq; 4806 } else { /* Untagged */ 4807 /* 4808 * Make the reselect path invalid, 4809 * and uncount this CCB. 4810 */ 4811 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 4812 --lp->busy_itl; 4813 } 4814 /* 4815 * If no JOB active, make the LUN reselect path invalid. 4816 */ 4817 if (lp->busy_itlq == 0 && lp->busy_itl == 0) 4818 lp->head.resel_sa = 4819 cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); 4820 } 4821 4822 /* 4823 * We donnot queue more than 1 ccb per target 4824 * with negotiation at any time. If this ccb was 4825 * used for negotiation, clear this info in the tcb. 4826 */ 4827 if (cp == tp->nego_cp) 4828 tp->nego_cp = NULL; 4829 4830 #ifdef SYM_CONF_IARB_SUPPORT 4831 /* 4832 * If we just complete the last queued CCB, 4833 * clear this info that is no longer relevant. 4834 */ 4835 if (cp == np->last_cp) 4836 np->last_cp = 0; 4837 #endif 4838 4839 /* 4840 * Make this CCB available. 4841 */ 4842 cp->cmd = NULL; 4843 cp->host_status = HS_IDLE; 4844 sym_remque(&cp->link_ccbq); 4845 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 4846 4847 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 4848 if (lp) { 4849 sym_remque(&cp->link2_ccbq); 4850 sym_insque_tail(&cp->link2_ccbq, &np->dummy_ccbq); 4851 if (cp->started) { 4852 if (cp->tag != NO_TAG) 4853 --lp->started_tags; 4854 else 4855 --lp->started_no_tag; 4856 } 4857 } 4858 cp->started = 0; 4859 #endif 4860 } 4861 4862 /* 4863 * Allocate a CCB from memory and initialize its fixed part. 4864 */ 4865 static struct sym_ccb *sym_alloc_ccb(struct sym_hcb *np) 4866 { 4867 struct sym_ccb *cp = NULL; 4868 int hcode; 4869 4870 /* 4871 * Prevent from allocating more CCBs than we can 4872 * queue to the controller. 4873 */ 4874 if (np->actccbs >= SYM_CONF_MAX_START) 4875 return NULL; 4876 4877 /* 4878 * Allocate memory for this CCB. 4879 */ 4880 cp = sym_calloc_dma(sizeof(struct sym_ccb), "CCB"); 4881 if (!cp) 4882 goto out_free; 4883 4884 /* 4885 * Count it. 4886 */ 4887 np->actccbs++; 4888 4889 /* 4890 * Compute the bus address of this ccb. 4891 */ 4892 cp->ccb_ba = vtobus(cp); 4893 4894 /* 4895 * Insert this ccb into the hashed list. 4896 */ 4897 hcode = CCB_HASH_CODE(cp->ccb_ba); 4898 cp->link_ccbh = np->ccbh[hcode]; 4899 np->ccbh[hcode] = cp; 4900 4901 /* 4902 * Initialyze the start and restart actions. 4903 */ 4904 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 4905 cp->phys.head.go.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); 4906 4907 /* 4908 * Initilialyze some other fields. 4909 */ 4910 cp->phys.smsg_ext.addr = cpu_to_scr(HCB_BA(np, msgin[2])); 4911 4912 /* 4913 * Chain into free ccb queue. 4914 */ 4915 sym_insque_head(&cp->link_ccbq, &np->free_ccbq); 4916 4917 /* 4918 * Chain into optionnal lists. 4919 */ 4920 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 4921 sym_insque_head(&cp->link2_ccbq, &np->dummy_ccbq); 4922 #endif 4923 return cp; 4924 out_free: 4925 if (cp) 4926 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 4927 return NULL; 4928 } 4929 4930 /* 4931 * Look up a CCB from a DSA value. 4932 */ 4933 static struct sym_ccb *sym_ccb_from_dsa(struct sym_hcb *np, u32 dsa) 4934 { 4935 int hcode; 4936 struct sym_ccb *cp; 4937 4938 hcode = CCB_HASH_CODE(dsa); 4939 cp = np->ccbh[hcode]; 4940 while (cp) { 4941 if (cp->ccb_ba == dsa) 4942 break; 4943 cp = cp->link_ccbh; 4944 } 4945 4946 return cp; 4947 } 4948 4949 /* 4950 * Target control block initialisation. 4951 * Nothing important to do at the moment. 4952 */ 4953 static void sym_init_tcb (struct sym_hcb *np, u_char tn) 4954 { 4955 #if 0 /* Hmmm... this checking looks paranoid. */ 4956 /* 4957 * Check some alignments required by the chip. 4958 */ 4959 assert (((offsetof(struct sym_reg, nc_sxfer) ^ 4960 offsetof(struct sym_tcb, head.sval)) &3) == 0); 4961 assert (((offsetof(struct sym_reg, nc_scntl3) ^ 4962 offsetof(struct sym_tcb, head.wval)) &3) == 0); 4963 #endif 4964 } 4965 4966 /* 4967 * Lun control block allocation and initialization. 4968 */ 4969 struct sym_lcb *sym_alloc_lcb (struct sym_hcb *np, u_char tn, u_char ln) 4970 { 4971 struct sym_tcb *tp = &np->target[tn]; 4972 struct sym_lcb *lp = NULL; 4973 4974 /* 4975 * Initialize the target control block if not yet. 4976 */ 4977 sym_init_tcb (np, tn); 4978 4979 /* 4980 * Allocate the LCB bus address array. 4981 * Compute the bus address of this table. 4982 */ 4983 if (ln && !tp->luntbl) { 4984 int i; 4985 4986 tp->luntbl = sym_calloc_dma(256, "LUNTBL"); 4987 if (!tp->luntbl) 4988 goto fail; 4989 for (i = 0 ; i < 64 ; i++) 4990 tp->luntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 4991 tp->head.luntbl_sa = cpu_to_scr(vtobus(tp->luntbl)); 4992 } 4993 4994 /* 4995 * Allocate the table of pointers for LUN(s) > 0, if needed. 4996 */ 4997 if (ln && !tp->lunmp) { 4998 tp->lunmp = kcalloc(SYM_CONF_MAX_LUN, sizeof(struct sym_lcb *), 4999 GFP_ATOMIC); 5000 if (!tp->lunmp) 5001 goto fail; 5002 } 5003 5004 /* 5005 * Allocate the lcb. 5006 * Make it available to the chip. 5007 */ 5008 lp = sym_calloc_dma(sizeof(struct sym_lcb), "LCB"); 5009 if (!lp) 5010 goto fail; 5011 if (ln) { 5012 tp->lunmp[ln] = lp; 5013 tp->luntbl[ln] = cpu_to_scr(vtobus(lp)); 5014 } 5015 else { 5016 tp->lun0p = lp; 5017 tp->head.lun0_sa = cpu_to_scr(vtobus(lp)); 5018 } 5019 tp->nlcb++; 5020 5021 /* 5022 * Let the itl task point to error handling. 5023 */ 5024 lp->head.itl_task_sa = cpu_to_scr(np->bad_itl_ba); 5025 5026 /* 5027 * Set the reselect pattern to our default. :) 5028 */ 5029 lp->head.resel_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); 5030 5031 /* 5032 * Set user capabilities. 5033 */ 5034 lp->user_flags = tp->usrflags & (SYM_DISC_ENABLED | SYM_TAGS_ENABLED); 5035 5036 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5037 /* 5038 * Initialize device queueing. 5039 */ 5040 sym_que_init(&lp->waiting_ccbq); 5041 sym_que_init(&lp->started_ccbq); 5042 lp->started_max = SYM_CONF_MAX_TASK; 5043 lp->started_limit = SYM_CONF_MAX_TASK; 5044 #endif 5045 5046 fail: 5047 return lp; 5048 } 5049 5050 /* 5051 * Allocate LCB resources for tagged command queuing. 5052 */ 5053 static void sym_alloc_lcb_tags (struct sym_hcb *np, u_char tn, u_char ln) 5054 { 5055 struct sym_tcb *tp = &np->target[tn]; 5056 struct sym_lcb *lp = sym_lp(tp, ln); 5057 int i; 5058 5059 /* 5060 * Allocate the task table and and the tag allocation 5061 * circular buffer. We want both or none. 5062 */ 5063 lp->itlq_tbl = sym_calloc_dma(SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 5064 if (!lp->itlq_tbl) 5065 goto fail; 5066 lp->cb_tags = kcalloc(SYM_CONF_MAX_TASK, 1, GFP_ATOMIC); 5067 if (!lp->cb_tags) { 5068 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 5069 lp->itlq_tbl = NULL; 5070 goto fail; 5071 } 5072 5073 /* 5074 * Initialize the task table with invalid entries. 5075 */ 5076 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 5077 lp->itlq_tbl[i] = cpu_to_scr(np->notask_ba); 5078 5079 /* 5080 * Fill up the tag buffer with tag numbers. 5081 */ 5082 for (i = 0 ; i < SYM_CONF_MAX_TASK ; i++) 5083 lp->cb_tags[i] = i; 5084 5085 /* 5086 * Make the task table available to SCRIPTS, 5087 * And accept tagged commands now. 5088 */ 5089 lp->head.itlq_tbl_sa = cpu_to_scr(vtobus(lp->itlq_tbl)); 5090 5091 return; 5092 fail: 5093 return; 5094 } 5095 5096 /* 5097 * Lun control block deallocation. Returns the number of valid remaining LCBs 5098 * for the target. 5099 */ 5100 int sym_free_lcb(struct sym_hcb *np, u_char tn, u_char ln) 5101 { 5102 struct sym_tcb *tp = &np->target[tn]; 5103 struct sym_lcb *lp = sym_lp(tp, ln); 5104 5105 tp->nlcb--; 5106 5107 if (ln) { 5108 if (!tp->nlcb) { 5109 kfree(tp->lunmp); 5110 sym_mfree_dma(tp->luntbl, 256, "LUNTBL"); 5111 tp->lunmp = NULL; 5112 tp->luntbl = NULL; 5113 tp->head.luntbl_sa = cpu_to_scr(vtobus(np->badluntbl)); 5114 } else { 5115 tp->luntbl[ln] = cpu_to_scr(vtobus(&np->badlun_sa)); 5116 tp->lunmp[ln] = NULL; 5117 } 5118 } else { 5119 tp->lun0p = NULL; 5120 tp->head.lun0_sa = cpu_to_scr(vtobus(&np->badlun_sa)); 5121 } 5122 5123 if (lp->itlq_tbl) { 5124 sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK*4, "ITLQ_TBL"); 5125 kfree(lp->cb_tags); 5126 } 5127 5128 sym_mfree_dma(lp, sizeof(*lp), "LCB"); 5129 5130 return tp->nlcb; 5131 } 5132 5133 /* 5134 * Queue a SCSI IO to the controller. 5135 */ 5136 int sym_queue_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 5137 { 5138 struct scsi_device *sdev = cmd->device; 5139 struct sym_tcb *tp; 5140 struct sym_lcb *lp; 5141 u_char *msgptr; 5142 u_int msglen; 5143 int can_disconnect; 5144 5145 /* 5146 * Keep track of the IO in our CCB. 5147 */ 5148 cp->cmd = cmd; 5149 5150 /* 5151 * Retrieve the target descriptor. 5152 */ 5153 tp = &np->target[cp->target]; 5154 5155 /* 5156 * Retrieve the lun descriptor. 5157 */ 5158 lp = sym_lp(tp, sdev->lun); 5159 5160 can_disconnect = (cp->tag != NO_TAG) || 5161 (lp && (lp->curr_flags & SYM_DISC_ENABLED)); 5162 5163 msgptr = cp->scsi_smsg; 5164 msglen = 0; 5165 msgptr[msglen++] = IDENTIFY(can_disconnect, sdev->lun); 5166 5167 /* 5168 * Build the tag message if present. 5169 */ 5170 if (cp->tag != NO_TAG) { 5171 u_char order = cp->order; 5172 5173 switch(order) { 5174 case M_ORDERED_TAG: 5175 break; 5176 case M_HEAD_TAG: 5177 break; 5178 default: 5179 order = M_SIMPLE_TAG; 5180 } 5181 #ifdef SYM_OPT_LIMIT_COMMAND_REORDERING 5182 /* 5183 * Avoid too much reordering of SCSI commands. 5184 * The algorithm tries to prevent completion of any 5185 * tagged command from being delayed against more 5186 * than 3 times the max number of queued commands. 5187 */ 5188 if (lp && lp->tags_since > 3*SYM_CONF_MAX_TAG) { 5189 lp->tags_si = !(lp->tags_si); 5190 if (lp->tags_sum[lp->tags_si]) { 5191 order = M_ORDERED_TAG; 5192 if ((DEBUG_FLAGS & DEBUG_TAGS)||sym_verbose>1) { 5193 sym_print_addr(cmd, 5194 "ordered tag forced.\n"); 5195 } 5196 } 5197 lp->tags_since = 0; 5198 } 5199 #endif 5200 msgptr[msglen++] = order; 5201 5202 /* 5203 * For less than 128 tags, actual tags are numbered 5204 * 1,3,5,..2*MAXTAGS+1,since we may have to deal 5205 * with devices that have problems with #TAG 0 or too 5206 * great #TAG numbers. For more tags (up to 256), 5207 * we use directly our tag number. 5208 */ 5209 #if SYM_CONF_MAX_TASK > (512/4) 5210 msgptr[msglen++] = cp->tag; 5211 #else 5212 msgptr[msglen++] = (cp->tag << 1) + 1; 5213 #endif 5214 } 5215 5216 /* 5217 * Build a negotiation message if needed. 5218 * (nego_status is filled by sym_prepare_nego()) 5219 * 5220 * Always negotiate on INQUIRY and REQUEST SENSE. 5221 * 5222 */ 5223 cp->nego_status = 0; 5224 if ((tp->tgoal.check_nego || 5225 cmd->cmnd[0] == INQUIRY || cmd->cmnd[0] == REQUEST_SENSE) && 5226 !tp->nego_cp && lp) { 5227 msglen += sym_prepare_nego(np, cp, msgptr + msglen); 5228 } 5229 5230 /* 5231 * Startqueue 5232 */ 5233 cp->phys.head.go.start = cpu_to_scr(SCRIPTA_BA(np, select)); 5234 cp->phys.head.go.restart = cpu_to_scr(SCRIPTA_BA(np, resel_dsa)); 5235 5236 /* 5237 * select 5238 */ 5239 cp->phys.select.sel_id = cp->target; 5240 cp->phys.select.sel_scntl3 = tp->head.wval; 5241 cp->phys.select.sel_sxfer = tp->head.sval; 5242 cp->phys.select.sel_scntl4 = tp->head.uval; 5243 5244 /* 5245 * message 5246 */ 5247 cp->phys.smsg.addr = CCB_BA(cp, scsi_smsg); 5248 cp->phys.smsg.size = cpu_to_scr(msglen); 5249 5250 /* 5251 * status 5252 */ 5253 cp->host_xflags = 0; 5254 cp->host_status = cp->nego_status ? HS_NEGOTIATE : HS_BUSY; 5255 cp->ssss_status = S_ILLEGAL; 5256 cp->xerr_status = 0; 5257 cp->host_flags = 0; 5258 cp->extra_bytes = 0; 5259 5260 /* 5261 * extreme data pointer. 5262 * shall be positive, so -1 is lower than lowest.:) 5263 */ 5264 cp->ext_sg = -1; 5265 cp->ext_ofs = 0; 5266 5267 /* 5268 * Build the CDB and DATA descriptor block 5269 * and start the IO. 5270 */ 5271 return sym_setup_data_and_start(np, cmd, cp); 5272 } 5273 5274 /* 5275 * Reset a SCSI target (all LUNs of this target). 5276 */ 5277 int sym_reset_scsi_target(struct sym_hcb *np, int target) 5278 { 5279 struct sym_tcb *tp; 5280 5281 if (target == np->myaddr || (u_int)target >= SYM_CONF_MAX_TARGET) 5282 return -1; 5283 5284 tp = &np->target[target]; 5285 tp->to_reset = 1; 5286 5287 np->istat_sem = SEM; 5288 OUTB(np, nc_istat, SIGP|SEM); 5289 5290 return 0; 5291 } 5292 5293 /* 5294 * Abort a SCSI IO. 5295 */ 5296 static int sym_abort_ccb(struct sym_hcb *np, struct sym_ccb *cp, int timed_out) 5297 { 5298 /* 5299 * Check that the IO is active. 5300 */ 5301 if (!cp || !cp->host_status || cp->host_status == HS_WAIT) 5302 return -1; 5303 5304 /* 5305 * If a previous abort didn't succeed in time, 5306 * perform a BUS reset. 5307 */ 5308 if (cp->to_abort) { 5309 sym_reset_scsi_bus(np, 1); 5310 return 0; 5311 } 5312 5313 /* 5314 * Mark the CCB for abort and allow time for. 5315 */ 5316 cp->to_abort = timed_out ? 2 : 1; 5317 5318 /* 5319 * Tell the SCRIPTS processor to stop and synchronize with us. 5320 */ 5321 np->istat_sem = SEM; 5322 OUTB(np, nc_istat, SIGP|SEM); 5323 return 0; 5324 } 5325 5326 int sym_abort_scsiio(struct sym_hcb *np, struct scsi_cmnd *cmd, int timed_out) 5327 { 5328 struct sym_ccb *cp; 5329 SYM_QUEHEAD *qp; 5330 5331 /* 5332 * Look up our CCB control block. 5333 */ 5334 cp = NULL; 5335 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 5336 struct sym_ccb *cp2 = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5337 if (cp2->cmd == cmd) { 5338 cp = cp2; 5339 break; 5340 } 5341 } 5342 5343 return sym_abort_ccb(np, cp, timed_out); 5344 } 5345 5346 /* 5347 * Complete execution of a SCSI command with extended 5348 * error, SCSI status error, or having been auto-sensed. 5349 * 5350 * The SCRIPTS processor is not running there, so we 5351 * can safely access IO registers and remove JOBs from 5352 * the START queue. 5353 * SCRATCHA is assumed to have been loaded with STARTPOS 5354 * before the SCRIPTS called the C code. 5355 */ 5356 void sym_complete_error(struct sym_hcb *np, struct sym_ccb *cp) 5357 { 5358 struct scsi_device *sdev; 5359 struct scsi_cmnd *cmd; 5360 struct sym_tcb *tp; 5361 struct sym_lcb *lp; 5362 int resid; 5363 int i; 5364 5365 /* 5366 * Paranoid check. :) 5367 */ 5368 if (!cp || !cp->cmd) 5369 return; 5370 5371 cmd = cp->cmd; 5372 sdev = cmd->device; 5373 if (DEBUG_FLAGS & (DEBUG_TINY|DEBUG_RESULT)) { 5374 dev_info(&sdev->sdev_gendev, "CCB=%p STAT=%x/%x/%x\n", cp, 5375 cp->host_status, cp->ssss_status, cp->host_flags); 5376 } 5377 5378 /* 5379 * Get target and lun pointers. 5380 */ 5381 tp = &np->target[cp->target]; 5382 lp = sym_lp(tp, sdev->lun); 5383 5384 /* 5385 * Check for extended errors. 5386 */ 5387 if (cp->xerr_status) { 5388 if (sym_verbose) 5389 sym_print_xerr(cmd, cp->xerr_status); 5390 if (cp->host_status == HS_COMPLETE) 5391 cp->host_status = HS_COMP_ERR; 5392 } 5393 5394 /* 5395 * Calculate the residual. 5396 */ 5397 resid = sym_compute_residual(np, cp); 5398 5399 if (!SYM_SETUP_RESIDUAL_SUPPORT) {/* If user does not want residuals */ 5400 resid = 0; /* throw them away. :) */ 5401 cp->sv_resid = 0; 5402 } 5403 #ifdef DEBUG_2_0_X 5404 if (resid) 5405 printf("XXXX RESID= %d - 0x%x\n", resid, resid); 5406 #endif 5407 5408 /* 5409 * Dequeue all queued CCBs for that device 5410 * not yet started by SCRIPTS. 5411 */ 5412 i = (INL(np, nc_scratcha) - np->squeue_ba) / 4; 5413 i = sym_dequeue_from_squeue(np, i, cp->target, sdev->lun, -1); 5414 5415 /* 5416 * Restart the SCRIPTS processor. 5417 */ 5418 OUTL_DSP(np, SCRIPTA_BA(np, start)); 5419 5420 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5421 if (cp->host_status == HS_COMPLETE && 5422 cp->ssss_status == S_QUEUE_FULL) { 5423 if (!lp || lp->started_tags - i < 2) 5424 goto weirdness; 5425 /* 5426 * Decrease queue depth as needed. 5427 */ 5428 lp->started_max = lp->started_tags - i - 1; 5429 lp->num_sgood = 0; 5430 5431 if (sym_verbose >= 2) { 5432 sym_print_addr(cmd, " queue depth is now %d\n", 5433 lp->started_max); 5434 } 5435 5436 /* 5437 * Repair the CCB. 5438 */ 5439 cp->host_status = HS_BUSY; 5440 cp->ssss_status = S_ILLEGAL; 5441 5442 /* 5443 * Let's requeue it to device. 5444 */ 5445 sym_set_cam_status(cmd, DID_SOFT_ERROR); 5446 goto finish; 5447 } 5448 weirdness: 5449 #endif 5450 /* 5451 * Build result in CAM ccb. 5452 */ 5453 sym_set_cam_result_error(np, cp, resid); 5454 5455 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5456 finish: 5457 #endif 5458 /* 5459 * Add this one to the COMP queue. 5460 */ 5461 sym_remque(&cp->link_ccbq); 5462 sym_insque_head(&cp->link_ccbq, &np->comp_ccbq); 5463 5464 /* 5465 * Complete all those commands with either error 5466 * or requeue condition. 5467 */ 5468 sym_flush_comp_queue(np, 0); 5469 5470 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5471 /* 5472 * Donnot start more than 1 command after an error. 5473 */ 5474 sym_start_next_ccbs(np, lp, 1); 5475 #endif 5476 } 5477 5478 /* 5479 * Complete execution of a successful SCSI command. 5480 * 5481 * Only successful commands go to the DONE queue, 5482 * since we need to have the SCRIPTS processor 5483 * stopped on any error condition. 5484 * The SCRIPTS processor is running while we are 5485 * completing successful commands. 5486 */ 5487 void sym_complete_ok (struct sym_hcb *np, struct sym_ccb *cp) 5488 { 5489 struct sym_tcb *tp; 5490 struct sym_lcb *lp; 5491 struct scsi_cmnd *cmd; 5492 int resid; 5493 5494 /* 5495 * Paranoid check. :) 5496 */ 5497 if (!cp || !cp->cmd) 5498 return; 5499 assert (cp->host_status == HS_COMPLETE); 5500 5501 /* 5502 * Get user command. 5503 */ 5504 cmd = cp->cmd; 5505 5506 /* 5507 * Get target and lun pointers. 5508 */ 5509 tp = &np->target[cp->target]; 5510 lp = sym_lp(tp, cp->lun); 5511 5512 /* 5513 * If all data have been transferred, given than no 5514 * extended error did occur, there is no residual. 5515 */ 5516 resid = 0; 5517 if (cp->phys.head.lastp != cp->goalp) 5518 resid = sym_compute_residual(np, cp); 5519 5520 /* 5521 * Wrong transfer residuals may be worse than just always 5522 * returning zero. User can disable this feature in 5523 * sym53c8xx.h. Residual support is enabled by default. 5524 */ 5525 if (!SYM_SETUP_RESIDUAL_SUPPORT) 5526 resid = 0; 5527 #ifdef DEBUG_2_0_X 5528 if (resid) 5529 printf("XXXX RESID= %d - 0x%x\n", resid, resid); 5530 #endif 5531 5532 /* 5533 * Build result in CAM ccb. 5534 */ 5535 sym_set_cam_result_ok(cp, cmd, resid); 5536 5537 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5538 /* 5539 * If max number of started ccbs had been reduced, 5540 * increase it if 200 good status received. 5541 */ 5542 if (lp && lp->started_max < lp->started_limit) { 5543 ++lp->num_sgood; 5544 if (lp->num_sgood >= 200) { 5545 lp->num_sgood = 0; 5546 ++lp->started_max; 5547 if (sym_verbose >= 2) { 5548 sym_print_addr(cmd, " queue depth is now %d\n", 5549 lp->started_max); 5550 } 5551 } 5552 } 5553 #endif 5554 5555 /* 5556 * Free our CCB. 5557 */ 5558 sym_free_ccb (np, cp); 5559 5560 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5561 /* 5562 * Requeue a couple of awaiting scsi commands. 5563 */ 5564 if (!sym_que_empty(&lp->waiting_ccbq)) 5565 sym_start_next_ccbs(np, lp, 2); 5566 #endif 5567 /* 5568 * Complete the command. 5569 */ 5570 sym_xpt_done(np, cmd); 5571 } 5572 5573 /* 5574 * Soft-attach the controller. 5575 */ 5576 int sym_hcb_attach(struct Scsi_Host *shost, struct sym_fw *fw, struct sym_nvram *nvram) 5577 { 5578 struct sym_hcb *np = sym_get_hcb(shost); 5579 int i; 5580 5581 /* 5582 * Get some info about the firmware. 5583 */ 5584 np->scripta_sz = fw->a_size; 5585 np->scriptb_sz = fw->b_size; 5586 np->scriptz_sz = fw->z_size; 5587 np->fw_setup = fw->setup; 5588 np->fw_patch = fw->patch; 5589 np->fw_name = fw->name; 5590 5591 /* 5592 * Save setting of some IO registers, so we will 5593 * be able to probe specific implementations. 5594 */ 5595 sym_save_initial_setting (np); 5596 5597 /* 5598 * Reset the chip now, since it has been reported 5599 * that SCSI clock calibration may not work properly 5600 * if the chip is currently active. 5601 */ 5602 sym_chip_reset(np); 5603 5604 /* 5605 * Prepare controller and devices settings, according 5606 * to chip features, user set-up and driver set-up. 5607 */ 5608 sym_prepare_setting(shost, np, nvram); 5609 5610 /* 5611 * Check the PCI clock frequency. 5612 * Must be performed after prepare_setting since it destroys 5613 * STEST1 that is used to probe for the clock doubler. 5614 */ 5615 i = sym_getpciclock(np); 5616 if (i > 37000 && !(np->features & FE_66MHZ)) 5617 printf("%s: PCI BUS clock seems too high: %u KHz.\n", 5618 sym_name(np), i); 5619 5620 /* 5621 * Allocate the start queue. 5622 */ 5623 np->squeue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"SQUEUE"); 5624 if (!np->squeue) 5625 goto attach_failed; 5626 np->squeue_ba = vtobus(np->squeue); 5627 5628 /* 5629 * Allocate the done queue. 5630 */ 5631 np->dqueue = sym_calloc_dma(sizeof(u32)*(MAX_QUEUE*2),"DQUEUE"); 5632 if (!np->dqueue) 5633 goto attach_failed; 5634 np->dqueue_ba = vtobus(np->dqueue); 5635 5636 /* 5637 * Allocate the target bus address array. 5638 */ 5639 np->targtbl = sym_calloc_dma(256, "TARGTBL"); 5640 if (!np->targtbl) 5641 goto attach_failed; 5642 np->targtbl_ba = vtobus(np->targtbl); 5643 5644 /* 5645 * Allocate SCRIPTS areas. 5646 */ 5647 np->scripta0 = sym_calloc_dma(np->scripta_sz, "SCRIPTA0"); 5648 np->scriptb0 = sym_calloc_dma(np->scriptb_sz, "SCRIPTB0"); 5649 np->scriptz0 = sym_calloc_dma(np->scriptz_sz, "SCRIPTZ0"); 5650 if (!np->scripta0 || !np->scriptb0 || !np->scriptz0) 5651 goto attach_failed; 5652 5653 /* 5654 * Allocate the array of lists of CCBs hashed by DSA. 5655 */ 5656 np->ccbh = kcalloc(CCB_HASH_SIZE, sizeof(struct sym_ccb **), GFP_KERNEL); 5657 if (!np->ccbh) 5658 goto attach_failed; 5659 5660 /* 5661 * Initialyze the CCB free and busy queues. 5662 */ 5663 sym_que_init(&np->free_ccbq); 5664 sym_que_init(&np->busy_ccbq); 5665 sym_que_init(&np->comp_ccbq); 5666 5667 /* 5668 * Initialization for optional handling 5669 * of device queueing. 5670 */ 5671 #ifdef SYM_OPT_HANDLE_DEVICE_QUEUEING 5672 sym_que_init(&np->dummy_ccbq); 5673 #endif 5674 /* 5675 * Allocate some CCB. We need at least ONE. 5676 */ 5677 if (!sym_alloc_ccb(np)) 5678 goto attach_failed; 5679 5680 /* 5681 * Calculate BUS addresses where we are going 5682 * to load the SCRIPTS. 5683 */ 5684 np->scripta_ba = vtobus(np->scripta0); 5685 np->scriptb_ba = vtobus(np->scriptb0); 5686 np->scriptz_ba = vtobus(np->scriptz0); 5687 5688 if (np->ram_ba) { 5689 np->scripta_ba = np->ram_ba; 5690 if (np->features & FE_RAM8K) { 5691 np->scriptb_ba = np->scripta_ba + 4096; 5692 #if 0 /* May get useful for 64 BIT PCI addressing */ 5693 np->scr_ram_seg = cpu_to_scr(np->scripta_ba >> 32); 5694 #endif 5695 } 5696 } 5697 5698 /* 5699 * Copy scripts to controller instance. 5700 */ 5701 memcpy(np->scripta0, fw->a_base, np->scripta_sz); 5702 memcpy(np->scriptb0, fw->b_base, np->scriptb_sz); 5703 memcpy(np->scriptz0, fw->z_base, np->scriptz_sz); 5704 5705 /* 5706 * Setup variable parts in scripts and compute 5707 * scripts bus addresses used from the C code. 5708 */ 5709 np->fw_setup(np, fw); 5710 5711 /* 5712 * Bind SCRIPTS with physical addresses usable by the 5713 * SCRIPTS processor (as seen from the BUS = BUS addresses). 5714 */ 5715 sym_fw_bind_script(np, (u32 *) np->scripta0, np->scripta_sz); 5716 sym_fw_bind_script(np, (u32 *) np->scriptb0, np->scriptb_sz); 5717 sym_fw_bind_script(np, (u32 *) np->scriptz0, np->scriptz_sz); 5718 5719 #ifdef SYM_CONF_IARB_SUPPORT 5720 /* 5721 * If user wants IARB to be set when we win arbitration 5722 * and have other jobs, compute the max number of consecutive 5723 * settings of IARB hints before we leave devices a chance to 5724 * arbitrate for reselection. 5725 */ 5726 #ifdef SYM_SETUP_IARB_MAX 5727 np->iarb_max = SYM_SETUP_IARB_MAX; 5728 #else 5729 np->iarb_max = 4; 5730 #endif 5731 #endif 5732 5733 /* 5734 * Prepare the idle and invalid task actions. 5735 */ 5736 np->idletask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 5737 np->idletask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); 5738 np->idletask_ba = vtobus(&np->idletask); 5739 5740 np->notask.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 5741 np->notask.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); 5742 np->notask_ba = vtobus(&np->notask); 5743 5744 np->bad_itl.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 5745 np->bad_itl.restart = cpu_to_scr(SCRIPTB_BA(np, bad_i_t_l)); 5746 np->bad_itl_ba = vtobus(&np->bad_itl); 5747 5748 np->bad_itlq.start = cpu_to_scr(SCRIPTA_BA(np, idle)); 5749 np->bad_itlq.restart = cpu_to_scr(SCRIPTB_BA(np,bad_i_t_l_q)); 5750 np->bad_itlq_ba = vtobus(&np->bad_itlq); 5751 5752 /* 5753 * Allocate and prepare the lun JUMP table that is used 5754 * for a target prior the probing of devices (bad lun table). 5755 * A private table will be allocated for the target on the 5756 * first INQUIRY response received. 5757 */ 5758 np->badluntbl = sym_calloc_dma(256, "BADLUNTBL"); 5759 if (!np->badluntbl) 5760 goto attach_failed; 5761 5762 np->badlun_sa = cpu_to_scr(SCRIPTB_BA(np, resel_bad_lun)); 5763 for (i = 0 ; i < 64 ; i++) /* 64 luns/target, no less */ 5764 np->badluntbl[i] = cpu_to_scr(vtobus(&np->badlun_sa)); 5765 5766 /* 5767 * Prepare the bus address array that contains the bus 5768 * address of each target control block. 5769 * For now, assume all logical units are wrong. :) 5770 */ 5771 for (i = 0 ; i < SYM_CONF_MAX_TARGET ; i++) { 5772 np->targtbl[i] = cpu_to_scr(vtobus(&np->target[i])); 5773 np->target[i].head.luntbl_sa = 5774 cpu_to_scr(vtobus(np->badluntbl)); 5775 np->target[i].head.lun0_sa = 5776 cpu_to_scr(vtobus(&np->badlun_sa)); 5777 } 5778 5779 /* 5780 * Now check the cache handling of the pci chipset. 5781 */ 5782 if (sym_snooptest (np)) { 5783 printf("%s: CACHE INCORRECTLY CONFIGURED.\n", sym_name(np)); 5784 goto attach_failed; 5785 } 5786 5787 /* 5788 * Sigh! we are done. 5789 */ 5790 return 0; 5791 5792 attach_failed: 5793 return -ENXIO; 5794 } 5795 5796 /* 5797 * Free everything that has been allocated for this device. 5798 */ 5799 void sym_hcb_free(struct sym_hcb *np) 5800 { 5801 SYM_QUEHEAD *qp; 5802 struct sym_ccb *cp; 5803 struct sym_tcb *tp; 5804 int target; 5805 5806 if (np->scriptz0) 5807 sym_mfree_dma(np->scriptz0, np->scriptz_sz, "SCRIPTZ0"); 5808 if (np->scriptb0) 5809 sym_mfree_dma(np->scriptb0, np->scriptb_sz, "SCRIPTB0"); 5810 if (np->scripta0) 5811 sym_mfree_dma(np->scripta0, np->scripta_sz, "SCRIPTA0"); 5812 if (np->squeue) 5813 sym_mfree_dma(np->squeue, sizeof(u32)*(MAX_QUEUE*2), "SQUEUE"); 5814 if (np->dqueue) 5815 sym_mfree_dma(np->dqueue, sizeof(u32)*(MAX_QUEUE*2), "DQUEUE"); 5816 5817 if (np->actccbs) { 5818 while ((qp = sym_remque_head(&np->free_ccbq)) != NULL) { 5819 cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 5820 sym_mfree_dma(cp, sizeof(*cp), "CCB"); 5821 } 5822 } 5823 kfree(np->ccbh); 5824 5825 if (np->badluntbl) 5826 sym_mfree_dma(np->badluntbl, 256,"BADLUNTBL"); 5827 5828 for (target = 0; target < SYM_CONF_MAX_TARGET ; target++) { 5829 tp = &np->target[target]; 5830 if (tp->luntbl) 5831 sym_mfree_dma(tp->luntbl, 256, "LUNTBL"); 5832 #if SYM_CONF_MAX_LUN > 1 5833 kfree(tp->lunmp); 5834 #endif 5835 } 5836 if (np->targtbl) 5837 sym_mfree_dma(np->targtbl, 256, "TARGTBL"); 5838 } 5839