xref: /openbmc/linux/drivers/scsi/sym53c8xx_2/sym_glue.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 #include <linux/ctype.h>
41 #include <linux/init.h>
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/spinlock.h>
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_tcq.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_transport.h>
49 
50 #include "sym_glue.h"
51 #include "sym_nvram.h"
52 
53 #define NAME53C		"sym53c"
54 #define NAME53C8XX	"sym53c8xx"
55 
56 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
57 unsigned int sym_debug_flags = 0;
58 
59 static char *excl_string;
60 static char *safe_string;
61 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
62 module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
63 module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
64 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
65 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
66 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
67 module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
68 module_param_named(verb, sym_driver_setup.verbose, byte, 0);
69 module_param_named(debug, sym_debug_flags, uint, 0);
70 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
71 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
72 module_param_named(excl, excl_string, charp, 0);
73 module_param_named(safe, safe_string, charp, 0);
74 
75 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
76 MODULE_PARM_DESC(burst, "Maximum burst.  0 to disable, 255 to read from registers");
77 MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
78 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
79 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
80 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
81 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
82 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
83 MODULE_PARM_DESC(debug, "Set bits to enable debugging");
84 MODULE_PARM_DESC(settle, "Settle delay in seconds.  Default 3");
85 MODULE_PARM_DESC(nvram, "Option currently not used");
86 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
87 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");
88 
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(SYM_VERSION);
91 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
92 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");
93 
94 static void sym2_setup_params(void)
95 {
96 	char *p = excl_string;
97 	int xi = 0;
98 
99 	while (p && (xi < 8)) {
100 		char *next_p;
101 		int val = (int) simple_strtoul(p, &next_p, 0);
102 		sym_driver_setup.excludes[xi++] = val;
103 		p = next_p;
104 	}
105 
106 	if (safe_string) {
107 		if (*safe_string == 'y') {
108 			sym_driver_setup.max_tag = 0;
109 			sym_driver_setup.burst_order = 0;
110 			sym_driver_setup.scsi_led = 0;
111 			sym_driver_setup.scsi_diff = 1;
112 			sym_driver_setup.irq_mode = 0;
113 			sym_driver_setup.scsi_bus_check = 2;
114 			sym_driver_setup.host_id = 7;
115 			sym_driver_setup.verbose = 2;
116 			sym_driver_setup.settle_delay = 10;
117 			sym_driver_setup.use_nvram = 1;
118 		} else if (*safe_string != 'n') {
119 			printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
120 					" passed to safe option", safe_string);
121 		}
122 	}
123 }
124 
125 static struct scsi_transport_template *sym2_transport_template = NULL;
126 
127 /*
128  *  Driver private area in the SCSI command structure.
129  */
130 struct sym_ucmd {		/* Override the SCSI pointer structure */
131 	struct completion *eh_done;		/* SCSI error handling */
132 };
133 
134 #define SYM_UCMD_PTR(cmd)  ((struct sym_ucmd *)(&(cmd)->SCp))
135 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
136 
137 /*
138  *  Complete a pending CAM CCB.
139  */
140 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
141 {
142 	struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
143 	BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd));
144 
145 	if (ucmd->eh_done)
146 		complete(ucmd->eh_done);
147 
148 	scsi_dma_unmap(cmd);
149 	cmd->scsi_done(cmd);
150 }
151 
152 /*
153  *  Tell the SCSI layer about a BUS RESET.
154  */
155 void sym_xpt_async_bus_reset(struct sym_hcb *np)
156 {
157 	printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
158 	np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
159 	np->s.settle_time_valid = 1;
160 	if (sym_verbose >= 2)
161 		printf_info("%s: command processing suspended for %d seconds\n",
162 			    sym_name(np), sym_driver_setup.settle_delay);
163 }
164 
165 /*
166  *  Choose the more appropriate CAM status if
167  *  the IO encountered an extended error.
168  */
169 static int sym_xerr_cam_status(int cam_status, int x_status)
170 {
171 	if (x_status) {
172 		if	(x_status & XE_PARITY_ERR)
173 			cam_status = DID_PARITY;
174 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
175 			cam_status = DID_ERROR;
176 		else if	(x_status & XE_BAD_PHASE)
177 			cam_status = DID_ERROR;
178 		else
179 			cam_status = DID_ERROR;
180 	}
181 	return cam_status;
182 }
183 
184 /*
185  *  Build CAM result for a failed or auto-sensed IO.
186  */
187 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
188 {
189 	struct scsi_cmnd *cmd = cp->cmd;
190 	u_int cam_status, scsi_status, drv_status;
191 
192 	drv_status  = 0;
193 	cam_status  = DID_OK;
194 	scsi_status = cp->ssss_status;
195 
196 	if (cp->host_flags & HF_SENSE) {
197 		scsi_status = cp->sv_scsi_status;
198 		resid = cp->sv_resid;
199 		if (sym_verbose && cp->sv_xerr_status)
200 			sym_print_xerr(cmd, cp->sv_xerr_status);
201 		if (cp->host_status == HS_COMPLETE &&
202 		    cp->ssss_status == S_GOOD &&
203 		    cp->xerr_status == 0) {
204 			cam_status = sym_xerr_cam_status(DID_OK,
205 							 cp->sv_xerr_status);
206 			drv_status = DRIVER_SENSE;
207 			/*
208 			 *  Bounce back the sense data to user.
209 			 */
210 			memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
211 			memcpy(cmd->sense_buffer, cp->sns_bbuf,
212 			       min(SCSI_SENSE_BUFFERSIZE, SYM_SNS_BBUF_LEN));
213 #if 0
214 			/*
215 			 *  If the device reports a UNIT ATTENTION condition
216 			 *  due to a RESET condition, we should consider all
217 			 *  disconnect CCBs for this unit as aborted.
218 			 */
219 			if (1) {
220 				u_char *p;
221 				p  = (u_char *) cmd->sense_data;
222 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
223 					sym_clear_tasks(np, DID_ABORT,
224 							cp->target,cp->lun, -1);
225 			}
226 #endif
227 		} else {
228 			/*
229 			 * Error return from our internal request sense.  This
230 			 * is bad: we must clear the contingent allegiance
231 			 * condition otherwise the device will always return
232 			 * BUSY.  Use a big stick.
233 			 */
234 			sym_reset_scsi_target(np, cmd->device->id);
235 			cam_status = DID_ERROR;
236 		}
237 	} else if (cp->host_status == HS_COMPLETE) 	/* Bad SCSI status */
238 		cam_status = DID_OK;
239 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
240 		cam_status = DID_NO_CONNECT;
241 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
242 		cam_status = DID_ERROR;
243 	else {						/* Extended error */
244 		if (sym_verbose) {
245 			sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
246 				cp->host_status, cp->ssss_status,
247 				cp->xerr_status);
248 		}
249 		/*
250 		 *  Set the most appropriate value for CAM status.
251 		 */
252 		cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
253 	}
254 	scsi_set_resid(cmd, resid);
255 	cmd->result = (drv_status << 24) + (cam_status << 16) + scsi_status;
256 }
257 
258 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
259 {
260 	int segment;
261 	int use_sg;
262 
263 	cp->data_len = 0;
264 
265 	use_sg = scsi_dma_map(cmd);
266 	if (use_sg > 0) {
267 		struct scatterlist *sg;
268 		struct sym_tcb *tp = &np->target[cp->target];
269 		struct sym_tblmove *data;
270 
271 		if (use_sg > SYM_CONF_MAX_SG) {
272 			scsi_dma_unmap(cmd);
273 			return -1;
274 		}
275 
276 		data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];
277 
278 		scsi_for_each_sg(cmd, sg, use_sg, segment) {
279 			dma_addr_t baddr = sg_dma_address(sg);
280 			unsigned int len = sg_dma_len(sg);
281 
282 			if ((len & 1) && (tp->head.wval & EWS)) {
283 				len++;
284 				cp->odd_byte_adjustment++;
285 			}
286 
287 			sym_build_sge(np, &data[segment], baddr, len);
288 			cp->data_len += len;
289 		}
290 	} else {
291 		segment = -2;
292 	}
293 
294 	return segment;
295 }
296 
297 /*
298  *  Queue a SCSI command.
299  */
300 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
301 {
302 	struct scsi_device *sdev = cmd->device;
303 	struct sym_tcb *tp;
304 	struct sym_lcb *lp;
305 	struct sym_ccb *cp;
306 	int	order;
307 
308 	/*
309 	 *  Retrieve the target descriptor.
310 	 */
311 	tp = &np->target[sdev->id];
312 
313 	/*
314 	 *  Select tagged/untagged.
315 	 */
316 	lp = sym_lp(tp, sdev->lun);
317 	order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;
318 
319 	/*
320 	 *  Queue the SCSI IO.
321 	 */
322 	cp = sym_get_ccb(np, cmd, order);
323 	if (!cp)
324 		return 1;	/* Means resource shortage */
325 	sym_queue_scsiio(np, cmd, cp);
326 	return 0;
327 }
328 
329 /*
330  *  Setup buffers and pointers that address the CDB.
331  */
332 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
333 {
334 	memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);
335 
336 	cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]);
337 	cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
338 
339 	return 0;
340 }
341 
342 /*
343  *  Setup pointers that address the data and start the I/O.
344  */
345 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
346 {
347 	u32 lastp, goalp;
348 	int dir;
349 
350 	/*
351 	 *  Build the CDB.
352 	 */
353 	if (sym_setup_cdb(np, cmd, cp))
354 		goto out_abort;
355 
356 	/*
357 	 *  No direction means no data.
358 	 */
359 	dir = cmd->sc_data_direction;
360 	if (dir != DMA_NONE) {
361 		cp->segments = sym_scatter(np, cp, cmd);
362 		if (cp->segments < 0) {
363 			sym_set_cam_status(cmd, DID_ERROR);
364 			goto out_abort;
365 		}
366 
367 		/*
368 		 *  No segments means no data.
369 		 */
370 		if (!cp->segments)
371 			dir = DMA_NONE;
372 	} else {
373 		cp->data_len = 0;
374 		cp->segments = 0;
375 	}
376 
377 	/*
378 	 *  Set the data pointer.
379 	 */
380 	switch (dir) {
381 	case DMA_BIDIRECTIONAL:
382 		scmd_printk(KERN_INFO, cmd, "got DMA_BIDIRECTIONAL command");
383 		sym_set_cam_status(cmd, DID_ERROR);
384 		goto out_abort;
385 	case DMA_TO_DEVICE:
386 		goalp = SCRIPTA_BA(np, data_out2) + 8;
387 		lastp = goalp - 8 - (cp->segments * (2*4));
388 		break;
389 	case DMA_FROM_DEVICE:
390 		cp->host_flags |= HF_DATA_IN;
391 		goalp = SCRIPTA_BA(np, data_in2) + 8;
392 		lastp = goalp - 8 - (cp->segments * (2*4));
393 		break;
394 	case DMA_NONE:
395 	default:
396 		lastp = goalp = SCRIPTB_BA(np, no_data);
397 		break;
398 	}
399 
400 	/*
401 	 *  Set all pointers values needed by SCRIPTS.
402 	 */
403 	cp->phys.head.lastp = cpu_to_scr(lastp);
404 	cp->phys.head.savep = cpu_to_scr(lastp);
405 	cp->startp	    = cp->phys.head.savep;
406 	cp->goalp	    = cpu_to_scr(goalp);
407 
408 	/*
409 	 *  When `#ifed 1', the code below makes the driver
410 	 *  panic on the first attempt to write to a SCSI device.
411 	 *  It is the first test we want to do after a driver
412 	 *  change that does not seem obviously safe. :)
413 	 */
414 #if 0
415 	switch (cp->cdb_buf[0]) {
416 	case 0x0A: case 0x2A: case 0xAA:
417 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
418 		break;
419 	default:
420 		break;
421 	}
422 #endif
423 
424 	/*
425 	 *	activate this job.
426 	 */
427 	sym_put_start_queue(np, cp);
428 	return 0;
429 
430 out_abort:
431 	sym_free_ccb(np, cp);
432 	sym_xpt_done(np, cmd);
433 	return 0;
434 }
435 
436 
437 /*
438  *  timer daemon.
439  *
440  *  Misused to keep the driver running when
441  *  interrupts are not configured correctly.
442  */
443 static void sym_timer(struct sym_hcb *np)
444 {
445 	unsigned long thistime = jiffies;
446 
447 	/*
448 	 *  Restart the timer.
449 	 */
450 	np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
451 	add_timer(&np->s.timer);
452 
453 	/*
454 	 *  If we are resetting the ncr, wait for settle_time before
455 	 *  clearing it. Then command processing will be resumed.
456 	 */
457 	if (np->s.settle_time_valid) {
458 		if (time_before_eq(np->s.settle_time, thistime)) {
459 			if (sym_verbose >= 2 )
460 				printk("%s: command processing resumed\n",
461 				       sym_name(np));
462 			np->s.settle_time_valid = 0;
463 		}
464 		return;
465 	}
466 
467 	/*
468 	 *	Nothing to do for now, but that may come.
469 	 */
470 	if (np->s.lasttime + 4*HZ < thistime) {
471 		np->s.lasttime = thistime;
472 	}
473 
474 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
475 	/*
476 	 *  Some way-broken PCI bridges may lead to
477 	 *  completions being lost when the clearing
478 	 *  of the INTFLY flag by the CPU occurs
479 	 *  concurrently with the chip raising this flag.
480 	 *  If this ever happen, lost completions will
481 	 * be reaped here.
482 	 */
483 	sym_wakeup_done(np);
484 #endif
485 }
486 
487 
488 /*
489  *  PCI BUS error handler.
490  */
491 void sym_log_bus_error(struct Scsi_Host *shost)
492 {
493 	struct sym_data *sym_data = shost_priv(shost);
494 	struct pci_dev *pdev = sym_data->pdev;
495 	unsigned short pci_sts;
496 	pci_read_config_word(pdev, PCI_STATUS, &pci_sts);
497 	if (pci_sts & 0xf900) {
498 		pci_write_config_word(pdev, PCI_STATUS, pci_sts);
499 		shost_printk(KERN_WARNING, shost,
500 			"PCI bus error: status = 0x%04x\n", pci_sts & 0xf900);
501 	}
502 }
503 
504 /*
505  * queuecommand method.  Entered with the host adapter lock held and
506  * interrupts disabled.
507  */
508 static int sym53c8xx_queue_command_lck(struct scsi_cmnd *cmd,
509 					void (*done)(struct scsi_cmnd *))
510 {
511 	struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
512 	struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
513 	int sts = 0;
514 
515 	cmd->scsi_done = done;
516 	memset(ucp, 0, sizeof(*ucp));
517 
518 	/*
519 	 *  Shorten our settle_time if needed for
520 	 *  this command not to time out.
521 	 */
522 	if (np->s.settle_time_valid && cmd->request->timeout) {
523 		unsigned long tlimit = jiffies + cmd->request->timeout;
524 		tlimit -= SYM_CONF_TIMER_INTERVAL*2;
525 		if (time_after(np->s.settle_time, tlimit)) {
526 			np->s.settle_time = tlimit;
527 		}
528 	}
529 
530 	if (np->s.settle_time_valid)
531 		return SCSI_MLQUEUE_HOST_BUSY;
532 
533 	sts = sym_queue_command(np, cmd);
534 	if (sts)
535 		return SCSI_MLQUEUE_HOST_BUSY;
536 	return 0;
537 }
538 
539 static DEF_SCSI_QCMD(sym53c8xx_queue_command)
540 
541 /*
542  *  Linux entry point of the interrupt handler.
543  */
544 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id)
545 {
546 	struct Scsi_Host *shost = dev_id;
547 	struct sym_data *sym_data = shost_priv(shost);
548 	irqreturn_t result;
549 
550 	/* Avoid spinloop trying to handle interrupts on frozen device */
551 	if (pci_channel_offline(sym_data->pdev))
552 		return IRQ_NONE;
553 
554 	if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
555 
556 	spin_lock(shost->host_lock);
557 	result = sym_interrupt(shost);
558 	spin_unlock(shost->host_lock);
559 
560 	if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
561 
562 	return result;
563 }
564 
565 /*
566  *  Linux entry point of the timer handler
567  */
568 static void sym53c8xx_timer(unsigned long npref)
569 {
570 	struct sym_hcb *np = (struct sym_hcb *)npref;
571 	unsigned long flags;
572 
573 	spin_lock_irqsave(np->s.host->host_lock, flags);
574 	sym_timer(np);
575 	spin_unlock_irqrestore(np->s.host->host_lock, flags);
576 }
577 
578 
579 /*
580  *  What the eh thread wants us to perform.
581  */
582 #define SYM_EH_ABORT		0
583 #define SYM_EH_DEVICE_RESET	1
584 #define SYM_EH_BUS_RESET	2
585 #define SYM_EH_HOST_RESET	3
586 
587 /*
588  *  Generic method for our eh processing.
589  *  The 'op' argument tells what we have to do.
590  */
591 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
592 {
593 	struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
594 	struct Scsi_Host *shost = cmd->device->host;
595 	struct sym_data *sym_data = shost_priv(shost);
596 	struct pci_dev *pdev = sym_data->pdev;
597 	struct sym_hcb *np = sym_data->ncb;
598 	SYM_QUEHEAD *qp;
599 	int cmd_queued = 0;
600 	int sts = -1;
601 	struct completion eh_done;
602 
603 	scmd_printk(KERN_WARNING, cmd, "%s operation started\n", opname);
604 
605 	/* We may be in an error condition because the PCI bus
606 	 * went down. In this case, we need to wait until the
607 	 * PCI bus is reset, the card is reset, and only then
608 	 * proceed with the scsi error recovery.  There's no
609 	 * point in hurrying; take a leisurely wait.
610 	 */
611 #define WAIT_FOR_PCI_RECOVERY	35
612 	if (pci_channel_offline(pdev)) {
613 		int finished_reset = 0;
614 		init_completion(&eh_done);
615 		spin_lock_irq(shost->host_lock);
616 		/* Make sure we didn't race */
617 		if (pci_channel_offline(pdev)) {
618 			BUG_ON(sym_data->io_reset);
619 			sym_data->io_reset = &eh_done;
620 		} else {
621 			finished_reset = 1;
622 		}
623 		spin_unlock_irq(shost->host_lock);
624 		if (!finished_reset)
625 			finished_reset = wait_for_completion_timeout
626 						(sym_data->io_reset,
627 						WAIT_FOR_PCI_RECOVERY*HZ);
628 		spin_lock_irq(shost->host_lock);
629 		sym_data->io_reset = NULL;
630 		spin_unlock_irq(shost->host_lock);
631 		if (!finished_reset)
632 			return SCSI_FAILED;
633 	}
634 
635 	spin_lock_irq(shost->host_lock);
636 	/* This one is queued in some place -> to wait for completion */
637 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
638 		struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
639 		if (cp->cmd == cmd) {
640 			cmd_queued = 1;
641 			break;
642 		}
643 	}
644 
645 	/* Try to proceed the operation we have been asked for */
646 	sts = -1;
647 	switch(op) {
648 	case SYM_EH_ABORT:
649 		sts = sym_abort_scsiio(np, cmd, 1);
650 		break;
651 	case SYM_EH_DEVICE_RESET:
652 		sts = sym_reset_scsi_target(np, cmd->device->id);
653 		break;
654 	case SYM_EH_BUS_RESET:
655 		sym_reset_scsi_bus(np, 1);
656 		sts = 0;
657 		break;
658 	case SYM_EH_HOST_RESET:
659 		sym_reset_scsi_bus(np, 0);
660 		sym_start_up(shost, 1);
661 		sts = 0;
662 		break;
663 	default:
664 		break;
665 	}
666 
667 	/* On error, restore everything and cross fingers :) */
668 	if (sts)
669 		cmd_queued = 0;
670 
671 	if (cmd_queued) {
672 		init_completion(&eh_done);
673 		ucmd->eh_done = &eh_done;
674 		spin_unlock_irq(shost->host_lock);
675 		if (!wait_for_completion_timeout(&eh_done, 5*HZ)) {
676 			ucmd->eh_done = NULL;
677 			sts = -2;
678 		}
679 	} else {
680 		spin_unlock_irq(shost->host_lock);
681 	}
682 
683 	dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
684 			sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
685 	return sts ? SCSI_FAILED : SCSI_SUCCESS;
686 }
687 
688 
689 /*
690  * Error handlers called from the eh thread (one thread per HBA).
691  */
692 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
693 {
694 	return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd);
695 }
696 
697 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd)
698 {
699 	return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd);
700 }
701 
702 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
703 {
704 	return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd);
705 }
706 
707 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
708 {
709 	return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd);
710 }
711 
712 /*
713  *  Tune device queuing depth, according to various limits.
714  */
715 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
716 {
717 	struct sym_lcb *lp = sym_lp(tp, lun);
718 	u_short	oldtags;
719 
720 	if (!lp)
721 		return;
722 
723 	oldtags = lp->s.reqtags;
724 
725 	if (reqtags > lp->s.scdev_depth)
726 		reqtags = lp->s.scdev_depth;
727 
728 	lp->s.reqtags     = reqtags;
729 
730 	if (reqtags != oldtags) {
731 		dev_info(&tp->starget->dev,
732 		         "tagged command queuing %s, command queue depth %d.\n",
733 		          lp->s.reqtags ? "enabled" : "disabled", reqtags);
734 	}
735 }
736 
737 static int sym53c8xx_slave_alloc(struct scsi_device *sdev)
738 {
739 	struct sym_hcb *np = sym_get_hcb(sdev->host);
740 	struct sym_tcb *tp = &np->target[sdev->id];
741 	struct sym_lcb *lp;
742 	unsigned long flags;
743 	int error;
744 
745 	if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN)
746 		return -ENXIO;
747 
748 	spin_lock_irqsave(np->s.host->host_lock, flags);
749 
750 	/*
751 	 * Fail the device init if the device is flagged NOSCAN at BOOT in
752 	 * the NVRAM.  This may speed up boot and maintain coherency with
753 	 * BIOS device numbering.  Clearing the flag allows the user to
754 	 * rescan skipped devices later.  We also return an error for
755 	 * devices not flagged for SCAN LUNS in the NVRAM since some single
756 	 * lun devices behave badly when asked for a non zero LUN.
757 	 */
758 
759 	if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) {
760 		tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
761 		starget_printk(KERN_INFO, sdev->sdev_target,
762 				"Scan at boot disabled in NVRAM\n");
763 		error = -ENXIO;
764 		goto out;
765 	}
766 
767 	if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) {
768 		if (sdev->lun != 0) {
769 			error = -ENXIO;
770 			goto out;
771 		}
772 		starget_printk(KERN_INFO, sdev->sdev_target,
773 				"Multiple LUNs disabled in NVRAM\n");
774 	}
775 
776 	lp = sym_alloc_lcb(np, sdev->id, sdev->lun);
777 	if (!lp) {
778 		error = -ENOMEM;
779 		goto out;
780 	}
781 	if (tp->nlcb == 1)
782 		tp->starget = sdev->sdev_target;
783 
784 	spi_min_period(tp->starget) = tp->usr_period;
785 	spi_max_width(tp->starget) = tp->usr_width;
786 
787 	error = 0;
788 out:
789 	spin_unlock_irqrestore(np->s.host->host_lock, flags);
790 
791 	return error;
792 }
793 
794 /*
795  * Linux entry point for device queue sizing.
796  */
797 static int sym53c8xx_slave_configure(struct scsi_device *sdev)
798 {
799 	struct sym_hcb *np = sym_get_hcb(sdev->host);
800 	struct sym_tcb *tp = &np->target[sdev->id];
801 	struct sym_lcb *lp = sym_lp(tp, sdev->lun);
802 	int reqtags, depth_to_use;
803 
804 	/*
805 	 *  Get user flags.
806 	 */
807 	lp->curr_flags = lp->user_flags;
808 
809 	/*
810 	 *  Select queue depth from driver setup.
811 	 *  Do not use more than configured by user.
812 	 *  Use at least 1.
813 	 *  Do not use more than our maximum.
814 	 */
815 	reqtags = sym_driver_setup.max_tag;
816 	if (reqtags > tp->usrtags)
817 		reqtags = tp->usrtags;
818 	if (!sdev->tagged_supported)
819 		reqtags = 0;
820 	if (reqtags > SYM_CONF_MAX_TAG)
821 		reqtags = SYM_CONF_MAX_TAG;
822 	depth_to_use = reqtags ? reqtags : 1;
823 	scsi_adjust_queue_depth(sdev,
824 				sdev->tagged_supported ? MSG_SIMPLE_TAG : 0,
825 				depth_to_use);
826 	lp->s.scdev_depth = depth_to_use;
827 	sym_tune_dev_queuing(tp, sdev->lun, reqtags);
828 
829 	if (!spi_initial_dv(sdev->sdev_target))
830 		spi_dv_device(sdev);
831 
832 	return 0;
833 }
834 
835 static void sym53c8xx_slave_destroy(struct scsi_device *sdev)
836 {
837 	struct sym_hcb *np = sym_get_hcb(sdev->host);
838 	struct sym_tcb *tp = &np->target[sdev->id];
839 	struct sym_lcb *lp = sym_lp(tp, sdev->lun);
840 	unsigned long flags;
841 
842 	spin_lock_irqsave(np->s.host->host_lock, flags);
843 
844 	if (lp->busy_itlq || lp->busy_itl) {
845 		/*
846 		 * This really shouldn't happen, but we can't return an error
847 		 * so let's try to stop all on-going I/O.
848 		 */
849 		starget_printk(KERN_WARNING, tp->starget,
850 			       "Removing busy LCB (%d)\n", sdev->lun);
851 		sym_reset_scsi_bus(np, 1);
852 	}
853 
854 	if (sym_free_lcb(np, sdev->id, sdev->lun) == 0) {
855 		/*
856 		 * It was the last unit for this target.
857 		 */
858 		tp->head.sval        = 0;
859 		tp->head.wval        = np->rv_scntl3;
860 		tp->head.uval        = 0;
861 		tp->tgoal.check_nego = 1;
862 		tp->starget	     = NULL;
863 	}
864 
865 	spin_unlock_irqrestore(np->s.host->host_lock, flags);
866 }
867 
868 /*
869  *  Linux entry point for info() function
870  */
871 static const char *sym53c8xx_info (struct Scsi_Host *host)
872 {
873 	return SYM_DRIVER_NAME;
874 }
875 
876 
877 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
878 /*
879  *  Proc file system stuff
880  *
881  *  A read operation returns adapter information.
882  *  A write operation is a control command.
883  *  The string is parsed in the driver code and the command is passed
884  *  to the sym_usercmd() function.
885  */
886 
887 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT
888 
889 struct	sym_usrcmd {
890 	u_long	target;
891 	u_long	lun;
892 	u_long	data;
893 	u_long	cmd;
894 };
895 
896 #define UC_SETSYNC      10
897 #define UC_SETTAGS	11
898 #define UC_SETDEBUG	12
899 #define UC_SETWIDE	14
900 #define UC_SETFLAG	15
901 #define UC_SETVERBOSE	17
902 #define UC_RESETDEV	18
903 #define UC_CLEARDEV	19
904 
905 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
906 {
907 	struct sym_tcb *tp;
908 	int t, l;
909 
910 	switch (uc->cmd) {
911 	case 0: return;
912 
913 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
914 	case UC_SETDEBUG:
915 		sym_debug_flags = uc->data;
916 		break;
917 #endif
918 	case UC_SETVERBOSE:
919 		np->verbose = uc->data;
920 		break;
921 	default:
922 		/*
923 		 * We assume that other commands apply to targets.
924 		 * This should always be the case and avoid the below
925 		 * 4 lines to be repeated 6 times.
926 		 */
927 		for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
928 			if (!((uc->target >> t) & 1))
929 				continue;
930 			tp = &np->target[t];
931 			if (!tp->nlcb)
932 				continue;
933 
934 			switch (uc->cmd) {
935 
936 			case UC_SETSYNC:
937 				if (!uc->data || uc->data >= 255) {
938 					tp->tgoal.iu = tp->tgoal.dt =
939 						tp->tgoal.qas = 0;
940 					tp->tgoal.offset = 0;
941 				} else if (uc->data <= 9 && np->minsync_dt) {
942 					if (uc->data < np->minsync_dt)
943 						uc->data = np->minsync_dt;
944 					tp->tgoal.iu = tp->tgoal.dt =
945 						tp->tgoal.qas = 1;
946 					tp->tgoal.width = 1;
947 					tp->tgoal.period = uc->data;
948 					tp->tgoal.offset = np->maxoffs_dt;
949 				} else {
950 					if (uc->data < np->minsync)
951 						uc->data = np->minsync;
952 					tp->tgoal.iu = tp->tgoal.dt =
953 						tp->tgoal.qas = 0;
954 					tp->tgoal.period = uc->data;
955 					tp->tgoal.offset = np->maxoffs;
956 				}
957 				tp->tgoal.check_nego = 1;
958 				break;
959 			case UC_SETWIDE:
960 				tp->tgoal.width = uc->data ? 1 : 0;
961 				tp->tgoal.check_nego = 1;
962 				break;
963 			case UC_SETTAGS:
964 				for (l = 0; l < SYM_CONF_MAX_LUN; l++)
965 					sym_tune_dev_queuing(tp, l, uc->data);
966 				break;
967 			case UC_RESETDEV:
968 				tp->to_reset = 1;
969 				np->istat_sem = SEM;
970 				OUTB(np, nc_istat, SIGP|SEM);
971 				break;
972 			case UC_CLEARDEV:
973 				for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
974 					struct sym_lcb *lp = sym_lp(tp, l);
975 					if (lp) lp->to_clear = 1;
976 				}
977 				np->istat_sem = SEM;
978 				OUTB(np, nc_istat, SIGP|SEM);
979 				break;
980 			case UC_SETFLAG:
981 				tp->usrflags = uc->data;
982 				break;
983 			}
984 		}
985 		break;
986 	}
987 }
988 
989 static int sym_skip_spaces(char *ptr, int len)
990 {
991 	int cnt, c;
992 
993 	for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);
994 
995 	return (len - cnt);
996 }
997 
998 static int get_int_arg(char *ptr, int len, u_long *pv)
999 {
1000 	char *end;
1001 
1002 	*pv = simple_strtoul(ptr, &end, 10);
1003 	return (end - ptr);
1004 }
1005 
1006 static int is_keyword(char *ptr, int len, char *verb)
1007 {
1008 	int verb_len = strlen(verb);
1009 
1010 	if (len >= verb_len && !memcmp(verb, ptr, verb_len))
1011 		return verb_len;
1012 	else
1013 		return 0;
1014 }
1015 
1016 #define SKIP_SPACES(ptr, len)						\
1017 	if ((arg_len = sym_skip_spaces(ptr, len)) < 1)			\
1018 		return -EINVAL;						\
1019 	ptr += arg_len; len -= arg_len;
1020 
1021 #define GET_INT_ARG(ptr, len, v)					\
1022 	if (!(arg_len = get_int_arg(ptr, len, &(v))))			\
1023 		return -EINVAL;						\
1024 	ptr += arg_len; len -= arg_len;
1025 
1026 
1027 /*
1028  * Parse a control command
1029  */
1030 
1031 static int sym_user_command(struct Scsi_Host *shost, char *buffer, int length)
1032 {
1033 	struct sym_hcb *np = sym_get_hcb(shost);
1034 	char *ptr	= buffer;
1035 	int len		= length;
1036 	struct sym_usrcmd cmd, *uc = &cmd;
1037 	int		arg_len;
1038 	u_long 		target;
1039 
1040 	memset(uc, 0, sizeof(*uc));
1041 
1042 	if (len > 0 && ptr[len-1] == '\n')
1043 		--len;
1044 
1045 	if	((arg_len = is_keyword(ptr, len, "setsync")) != 0)
1046 		uc->cmd = UC_SETSYNC;
1047 	else if	((arg_len = is_keyword(ptr, len, "settags")) != 0)
1048 		uc->cmd = UC_SETTAGS;
1049 	else if	((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
1050 		uc->cmd = UC_SETVERBOSE;
1051 	else if	((arg_len = is_keyword(ptr, len, "setwide")) != 0)
1052 		uc->cmd = UC_SETWIDE;
1053 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1054 	else if	((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
1055 		uc->cmd = UC_SETDEBUG;
1056 #endif
1057 	else if	((arg_len = is_keyword(ptr, len, "setflag")) != 0)
1058 		uc->cmd = UC_SETFLAG;
1059 	else if	((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
1060 		uc->cmd = UC_RESETDEV;
1061 	else if	((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
1062 		uc->cmd = UC_CLEARDEV;
1063 	else
1064 		arg_len = 0;
1065 
1066 #ifdef DEBUG_PROC_INFO
1067 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
1068 #endif
1069 
1070 	if (!arg_len)
1071 		return -EINVAL;
1072 	ptr += arg_len; len -= arg_len;
1073 
1074 	switch(uc->cmd) {
1075 	case UC_SETSYNC:
1076 	case UC_SETTAGS:
1077 	case UC_SETWIDE:
1078 	case UC_SETFLAG:
1079 	case UC_RESETDEV:
1080 	case UC_CLEARDEV:
1081 		SKIP_SPACES(ptr, len);
1082 		if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
1083 			ptr += arg_len; len -= arg_len;
1084 			uc->target = ~0;
1085 		} else {
1086 			GET_INT_ARG(ptr, len, target);
1087 			uc->target = (1<<target);
1088 #ifdef DEBUG_PROC_INFO
1089 printk("sym_user_command: target=%ld\n", target);
1090 #endif
1091 		}
1092 		break;
1093 	}
1094 
1095 	switch(uc->cmd) {
1096 	case UC_SETVERBOSE:
1097 	case UC_SETSYNC:
1098 	case UC_SETTAGS:
1099 	case UC_SETWIDE:
1100 		SKIP_SPACES(ptr, len);
1101 		GET_INT_ARG(ptr, len, uc->data);
1102 #ifdef DEBUG_PROC_INFO
1103 printk("sym_user_command: data=%ld\n", uc->data);
1104 #endif
1105 		break;
1106 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1107 	case UC_SETDEBUG:
1108 		while (len > 0) {
1109 			SKIP_SPACES(ptr, len);
1110 			if	((arg_len = is_keyword(ptr, len, "alloc")))
1111 				uc->data |= DEBUG_ALLOC;
1112 			else if	((arg_len = is_keyword(ptr, len, "phase")))
1113 				uc->data |= DEBUG_PHASE;
1114 			else if	((arg_len = is_keyword(ptr, len, "queue")))
1115 				uc->data |= DEBUG_QUEUE;
1116 			else if	((arg_len = is_keyword(ptr, len, "result")))
1117 				uc->data |= DEBUG_RESULT;
1118 			else if	((arg_len = is_keyword(ptr, len, "scatter")))
1119 				uc->data |= DEBUG_SCATTER;
1120 			else if	((arg_len = is_keyword(ptr, len, "script")))
1121 				uc->data |= DEBUG_SCRIPT;
1122 			else if	((arg_len = is_keyword(ptr, len, "tiny")))
1123 				uc->data |= DEBUG_TINY;
1124 			else if	((arg_len = is_keyword(ptr, len, "timing")))
1125 				uc->data |= DEBUG_TIMING;
1126 			else if	((arg_len = is_keyword(ptr, len, "nego")))
1127 				uc->data |= DEBUG_NEGO;
1128 			else if	((arg_len = is_keyword(ptr, len, "tags")))
1129 				uc->data |= DEBUG_TAGS;
1130 			else if	((arg_len = is_keyword(ptr, len, "pointer")))
1131 				uc->data |= DEBUG_POINTER;
1132 			else
1133 				return -EINVAL;
1134 			ptr += arg_len; len -= arg_len;
1135 		}
1136 #ifdef DEBUG_PROC_INFO
1137 printk("sym_user_command: data=%ld\n", uc->data);
1138 #endif
1139 		break;
1140 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
1141 	case UC_SETFLAG:
1142 		while (len > 0) {
1143 			SKIP_SPACES(ptr, len);
1144 			if	((arg_len = is_keyword(ptr, len, "no_disc")))
1145 				uc->data &= ~SYM_DISC_ENABLED;
1146 			else
1147 				return -EINVAL;
1148 			ptr += arg_len; len -= arg_len;
1149 		}
1150 		break;
1151 	default:
1152 		break;
1153 	}
1154 
1155 	if (len)
1156 		return -EINVAL;
1157 	else {
1158 		unsigned long flags;
1159 
1160 		spin_lock_irqsave(shost->host_lock, flags);
1161 		sym_exec_user_command(np, uc);
1162 		spin_unlock_irqrestore(shost->host_lock, flags);
1163 	}
1164 	return length;
1165 }
1166 
1167 #endif	/* SYM_LINUX_USER_COMMAND_SUPPORT */
1168 
1169 
1170 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1171 /*
1172  *  Informations through the proc file system.
1173  */
1174 struct info_str {
1175 	char *buffer;
1176 	int length;
1177 	int offset;
1178 	int pos;
1179 };
1180 
1181 static void copy_mem_info(struct info_str *info, char *data, int len)
1182 {
1183 	if (info->pos + len > info->length)
1184 		len = info->length - info->pos;
1185 
1186 	if (info->pos + len < info->offset) {
1187 		info->pos += len;
1188 		return;
1189 	}
1190 	if (info->pos < info->offset) {
1191 		data += (info->offset - info->pos);
1192 		len  -= (info->offset - info->pos);
1193 	}
1194 
1195 	if (len > 0) {
1196 		memcpy(info->buffer + info->pos, data, len);
1197 		info->pos += len;
1198 	}
1199 }
1200 
1201 static int copy_info(struct info_str *info, char *fmt, ...)
1202 {
1203 	va_list args;
1204 	char buf[81];
1205 	int len;
1206 
1207 	va_start(args, fmt);
1208 	len = vsprintf(buf, fmt, args);
1209 	va_end(args);
1210 
1211 	copy_mem_info(info, buf, len);
1212 	return len;
1213 }
1214 
1215 /*
1216  *  Copy formatted information into the input buffer.
1217  */
1218 static int sym_host_info(struct Scsi_Host *shost, char *ptr, off_t offset, int len)
1219 {
1220 	struct sym_data *sym_data = shost_priv(shost);
1221 	struct pci_dev *pdev = sym_data->pdev;
1222 	struct sym_hcb *np = sym_data->ncb;
1223 	struct info_str info;
1224 
1225 	info.buffer	= ptr;
1226 	info.length	= len;
1227 	info.offset	= offset;
1228 	info.pos	= 0;
1229 
1230 	copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, "
1231 			 "revision id 0x%x\n", np->s.chip_name,
1232 			 pdev->device, pdev->revision);
1233 	copy_info(&info, "At PCI address %s, IRQ %u\n",
1234 			 pci_name(pdev), pdev->irq);
1235 	copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n",
1236 			 (int) (np->minsync_dt ? np->minsync_dt : np->minsync),
1237 			 np->maxwide ? "Wide" : "Narrow",
1238 			 np->minsync_dt ? ", DT capable" : "");
1239 
1240 	copy_info(&info, "Max. started commands %d, "
1241 			 "max. commands per LUN %d\n",
1242 			 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);
1243 
1244 	return info.pos > info.offset? info.pos - info.offset : 0;
1245 }
1246 #endif /* SYM_LINUX_USER_INFO_SUPPORT */
1247 
1248 /*
1249  *  Entry point of the scsi proc fs of the driver.
1250  *  - func = 0 means read  (returns adapter infos)
1251  *  - func = 1 means write (not yet merget from sym53c8xx)
1252  */
1253 static int sym53c8xx_proc_info(struct Scsi_Host *shost, char *buffer,
1254 			char **start, off_t offset, int length, int func)
1255 {
1256 	int retv;
1257 
1258 	if (func) {
1259 #ifdef	SYM_LINUX_USER_COMMAND_SUPPORT
1260 		retv = sym_user_command(shost, buffer, length);
1261 #else
1262 		retv = -EINVAL;
1263 #endif
1264 	} else {
1265 		if (start)
1266 			*start = buffer;
1267 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1268 		retv = sym_host_info(shost, buffer, offset, length);
1269 #else
1270 		retv = -EINVAL;
1271 #endif
1272 	}
1273 
1274 	return retv;
1275 }
1276 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */
1277 
1278 /*
1279  * Free resources claimed by sym_iomap_device().  Note that
1280  * sym_free_resources() should be used instead of this function after calling
1281  * sym_attach().
1282  */
1283 static void __devinit
1284 sym_iounmap_device(struct sym_device *device)
1285 {
1286 	if (device->s.ioaddr)
1287 		pci_iounmap(device->pdev, device->s.ioaddr);
1288 	if (device->s.ramaddr)
1289 		pci_iounmap(device->pdev, device->s.ramaddr);
1290 }
1291 
1292 /*
1293  *	Free controller resources.
1294  */
1295 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev,
1296 		int do_free_irq)
1297 {
1298 	/*
1299 	 *  Free O/S specific resources.
1300 	 */
1301 	if (do_free_irq)
1302 		free_irq(pdev->irq, np->s.host);
1303 	if (np->s.ioaddr)
1304 		pci_iounmap(pdev, np->s.ioaddr);
1305 	if (np->s.ramaddr)
1306 		pci_iounmap(pdev, np->s.ramaddr);
1307 	/*
1308 	 *  Free O/S independent resources.
1309 	 */
1310 	sym_hcb_free(np);
1311 
1312 	sym_mfree_dma(np, sizeof(*np), "HCB");
1313 }
1314 
1315 /*
1316  *  Host attach and initialisations.
1317  *
1318  *  Allocate host data and ncb structure.
1319  *  Remap MMIO region.
1320  *  Do chip initialization.
1321  *  If all is OK, install interrupt handling and
1322  *  start the timer daemon.
1323  */
1324 static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
1325 		int unit, struct sym_device *dev)
1326 {
1327 	struct sym_data *sym_data;
1328 	struct sym_hcb *np = NULL;
1329 	struct Scsi_Host *shost = NULL;
1330 	struct pci_dev *pdev = dev->pdev;
1331 	unsigned long flags;
1332 	struct sym_fw *fw;
1333 	int do_free_irq = 0;
1334 
1335 	printk(KERN_INFO "sym%d: <%s> rev 0x%x at pci %s irq %u\n",
1336 		unit, dev->chip.name, pdev->revision, pci_name(pdev),
1337 		pdev->irq);
1338 
1339 	/*
1340 	 *  Get the firmware for this chip.
1341 	 */
1342 	fw = sym_find_firmware(&dev->chip);
1343 	if (!fw)
1344 		goto attach_failed;
1345 
1346 	shost = scsi_host_alloc(tpnt, sizeof(*sym_data));
1347 	if (!shost)
1348 		goto attach_failed;
1349 	sym_data = shost_priv(shost);
1350 
1351 	/*
1352 	 *  Allocate immediately the host control block,
1353 	 *  since we are only expecting to succeed. :)
1354 	 *  We keep track in the HCB of all the resources that
1355 	 *  are to be released on error.
1356 	 */
1357 	np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
1358 	if (!np)
1359 		goto attach_failed;
1360 	np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
1361 	sym_data->ncb = np;
1362 	sym_data->pdev = pdev;
1363 	np->s.host = shost;
1364 
1365 	pci_set_drvdata(pdev, shost);
1366 
1367 	/*
1368 	 *  Copy some useful infos to the HCB.
1369 	 */
1370 	np->hcb_ba	= vtobus(np);
1371 	np->verbose	= sym_driver_setup.verbose;
1372 	np->s.unit	= unit;
1373 	np->features	= dev->chip.features;
1374 	np->clock_divn	= dev->chip.nr_divisor;
1375 	np->maxoffs	= dev->chip.offset_max;
1376 	np->maxburst	= dev->chip.burst_max;
1377 	np->myaddr	= dev->host_id;
1378 	np->mmio_ba	= (u32)dev->mmio_base;
1379 	np->ram_ba	= (u32)dev->ram_base;
1380 	np->s.ioaddr	= dev->s.ioaddr;
1381 	np->s.ramaddr	= dev->s.ramaddr;
1382 
1383 	/*
1384 	 *  Edit its name.
1385 	 */
1386 	strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
1387 	sprintf(np->s.inst_name, "sym%d", np->s.unit);
1388 
1389 	if ((SYM_CONF_DMA_ADDRESSING_MODE > 0) && (np->features & FE_DAC) &&
1390 			!pci_set_dma_mask(pdev, DMA_DAC_MASK)) {
1391 		set_dac(np);
1392 	} else if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1393 		printf_warning("%s: No suitable DMA available\n", sym_name(np));
1394 		goto attach_failed;
1395 	}
1396 
1397 	if (sym_hcb_attach(shost, fw, dev->nvram))
1398 		goto attach_failed;
1399 
1400 	/*
1401 	 *  Install the interrupt handler.
1402 	 *  If we synchonize the C code with SCRIPTS on interrupt,
1403 	 *  we do not want to share the INTR line at all.
1404 	 */
1405 	if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX,
1406 			shost)) {
1407 		printf_err("%s: request irq %u failure\n",
1408 			sym_name(np), pdev->irq);
1409 		goto attach_failed;
1410 	}
1411 	do_free_irq = 1;
1412 
1413 	/*
1414 	 *  After SCSI devices have been opened, we cannot
1415 	 *  reset the bus safely, so we do it here.
1416 	 */
1417 	spin_lock_irqsave(shost->host_lock, flags);
1418 	if (sym_reset_scsi_bus(np, 0))
1419 		goto reset_failed;
1420 
1421 	/*
1422 	 *  Start the SCRIPTS.
1423 	 */
1424 	sym_start_up(shost, 1);
1425 
1426 	/*
1427 	 *  Start the timer daemon
1428 	 */
1429 	init_timer(&np->s.timer);
1430 	np->s.timer.data     = (unsigned long) np;
1431 	np->s.timer.function = sym53c8xx_timer;
1432 	np->s.lasttime=0;
1433 	sym_timer (np);
1434 
1435 	/*
1436 	 *  Fill Linux host instance structure
1437 	 *  and return success.
1438 	 */
1439 	shost->max_channel	= 0;
1440 	shost->this_id		= np->myaddr;
1441 	shost->max_id		= np->maxwide ? 16 : 8;
1442 	shost->max_lun		= SYM_CONF_MAX_LUN;
1443 	shost->unique_id	= pci_resource_start(pdev, 0);
1444 	shost->cmd_per_lun	= SYM_CONF_MAX_TAG;
1445 	shost->can_queue	= (SYM_CONF_MAX_START-2);
1446 	shost->sg_tablesize	= SYM_CONF_MAX_SG;
1447 	shost->max_cmd_len	= 16;
1448 	BUG_ON(sym2_transport_template == NULL);
1449 	shost->transportt	= sym2_transport_template;
1450 
1451 	/* 53c896 rev 1 errata: DMA may not cross 16MB boundary */
1452 	if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 2)
1453 		shost->dma_boundary = 0xFFFFFF;
1454 
1455 	spin_unlock_irqrestore(shost->host_lock, flags);
1456 
1457 	return shost;
1458 
1459  reset_failed:
1460 	printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
1461 		   "TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
1462 	spin_unlock_irqrestore(shost->host_lock, flags);
1463  attach_failed:
1464 	printf_info("sym%d: giving up ...\n", unit);
1465 	if (np)
1466 		sym_free_resources(np, pdev, do_free_irq);
1467 	else
1468 		sym_iounmap_device(dev);
1469 	if (shost)
1470 		scsi_host_put(shost);
1471 
1472 	return NULL;
1473  }
1474 
1475 
1476 /*
1477  *    Detect and try to read SYMBIOS and TEKRAM NVRAM.
1478  */
1479 #if SYM_CONF_NVRAM_SUPPORT
1480 static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1481 {
1482 	devp->nvram = nvp;
1483 	nvp->type = 0;
1484 
1485 	sym_read_nvram(devp, nvp);
1486 }
1487 #else
1488 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1489 {
1490 }
1491 #endif	/* SYM_CONF_NVRAM_SUPPORT */
1492 
1493 static int __devinit sym_check_supported(struct sym_device *device)
1494 {
1495 	struct sym_chip *chip;
1496 	struct pci_dev *pdev = device->pdev;
1497 	unsigned long io_port = pci_resource_start(pdev, 0);
1498 	int i;
1499 
1500 	/*
1501 	 *  If user excluded this chip, do not initialize it.
1502 	 *  I hate this code so much.  Must kill it.
1503 	 */
1504 	if (io_port) {
1505 		for (i = 0 ; i < 8 ; i++) {
1506 			if (sym_driver_setup.excludes[i] == io_port)
1507 				return -ENODEV;
1508 		}
1509 	}
1510 
1511 	/*
1512 	 * Check if the chip is supported.  Then copy the chip description
1513 	 * to our device structure so we can make it match the actual device
1514 	 * and options.
1515 	 */
1516 	chip = sym_lookup_chip_table(pdev->device, pdev->revision);
1517 	if (!chip) {
1518 		dev_info(&pdev->dev, "device not supported\n");
1519 		return -ENODEV;
1520 	}
1521 	memcpy(&device->chip, chip, sizeof(device->chip));
1522 
1523 	return 0;
1524 }
1525 
1526 /*
1527  * Ignore Symbios chips controlled by various RAID controllers.
1528  * These controllers set value 0x52414944 at RAM end - 16.
1529  */
1530 static int __devinit sym_check_raid(struct sym_device *device)
1531 {
1532 	unsigned int ram_size, ram_val;
1533 
1534 	if (!device->s.ramaddr)
1535 		return 0;
1536 
1537 	if (device->chip.features & FE_RAM8K)
1538 		ram_size = 8192;
1539 	else
1540 		ram_size = 4096;
1541 
1542 	ram_val = readl(device->s.ramaddr + ram_size - 16);
1543 	if (ram_val != 0x52414944)
1544 		return 0;
1545 
1546 	dev_info(&device->pdev->dev,
1547 			"not initializing, driven by RAID controller.\n");
1548 	return -ENODEV;
1549 }
1550 
1551 static int __devinit sym_set_workarounds(struct sym_device *device)
1552 {
1553 	struct sym_chip *chip = &device->chip;
1554 	struct pci_dev *pdev = device->pdev;
1555 	u_short status_reg;
1556 
1557 	/*
1558 	 *  (ITEM 12 of a DEL about the 896 I haven't yet).
1559 	 *  We must ensure the chip will use WRITE AND INVALIDATE.
1560 	 *  The revision number limit is for now arbitrary.
1561 	 */
1562 	if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 0x4) {
1563 		chip->features	|= (FE_WRIE | FE_CLSE);
1564 	}
1565 
1566 	/* If the chip can do Memory Write Invalidate, enable it */
1567 	if (chip->features & FE_WRIE) {
1568 		if (pci_set_mwi(pdev))
1569 			return -ENODEV;
1570 	}
1571 
1572 	/*
1573 	 *  Work around for errant bit in 895A. The 66Mhz
1574 	 *  capable bit is set erroneously. Clear this bit.
1575 	 *  (Item 1 DEL 533)
1576 	 *
1577 	 *  Make sure Config space and Features agree.
1578 	 *
1579 	 *  Recall: writes are not normal to status register -
1580 	 *  write a 1 to clear and a 0 to leave unchanged.
1581 	 *  Can only reset bits.
1582 	 */
1583 	pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1584 	if (chip->features & FE_66MHZ) {
1585 		if (!(status_reg & PCI_STATUS_66MHZ))
1586 			chip->features &= ~FE_66MHZ;
1587 	} else {
1588 		if (status_reg & PCI_STATUS_66MHZ) {
1589 			status_reg = PCI_STATUS_66MHZ;
1590 			pci_write_config_word(pdev, PCI_STATUS, status_reg);
1591 			pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1592 		}
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 /*
1599  * Map HBA registers and on-chip SRAM (if present).
1600  */
1601 static int __devinit
1602 sym_iomap_device(struct sym_device *device)
1603 {
1604 	struct pci_dev *pdev = device->pdev;
1605 	struct pci_bus_region bus_addr;
1606 	int i = 2;
1607 
1608 	pcibios_resource_to_bus(pdev, &bus_addr, &pdev->resource[1]);
1609 	device->mmio_base = bus_addr.start;
1610 
1611 	if (device->chip.features & FE_RAM) {
1612 		/*
1613 		 * If the BAR is 64-bit, resource 2 will be occupied by the
1614 		 * upper 32 bits
1615 		 */
1616 		if (!pdev->resource[i].flags)
1617 			i++;
1618 		pcibios_resource_to_bus(pdev, &bus_addr, &pdev->resource[i]);
1619 		device->ram_base = bus_addr.start;
1620 	}
1621 
1622 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
1623 	if (device->mmio_base)
1624 		device->s.ioaddr = pci_iomap(pdev, 1,
1625 						pci_resource_len(pdev, 1));
1626 #endif
1627 	if (!device->s.ioaddr)
1628 		device->s.ioaddr = pci_iomap(pdev, 0,
1629 						pci_resource_len(pdev, 0));
1630 	if (!device->s.ioaddr) {
1631 		dev_err(&pdev->dev, "could not map registers; giving up.\n");
1632 		return -EIO;
1633 	}
1634 	if (device->ram_base) {
1635 		device->s.ramaddr = pci_iomap(pdev, i,
1636 						pci_resource_len(pdev, i));
1637 		if (!device->s.ramaddr) {
1638 			dev_warn(&pdev->dev,
1639 				"could not map SRAM; continuing anyway.\n");
1640 			device->ram_base = 0;
1641 		}
1642 	}
1643 
1644 	return 0;
1645 }
1646 
1647 /*
1648  * The NCR PQS and PDS cards are constructed as a DEC bridge
1649  * behind which sits a proprietary NCR memory controller and
1650  * either four or two 53c875s as separate devices.  We can tell
1651  * if an 875 is part of a PQS/PDS or not since if it is, it will
1652  * be on the same bus as the memory controller.  In its usual
1653  * mode of operation, the 875s are slaved to the memory
1654  * controller for all transfers.  To operate with the Linux
1655  * driver, the memory controller is disabled and the 875s
1656  * freed to function independently.  The only wrinkle is that
1657  * the preset SCSI ID (which may be zero) must be read in from
1658  * a special configuration space register of the 875.
1659  */
1660 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
1661 {
1662 	int slot;
1663 	u8 tmp;
1664 
1665 	for (slot = 0; slot < 256; slot++) {
1666 		struct pci_dev *memc = pci_get_slot(pdev->bus, slot);
1667 
1668 		if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
1669 			pci_dev_put(memc);
1670 			continue;
1671 		}
1672 
1673 		/* bit 1: allow individual 875 configuration */
1674 		pci_read_config_byte(memc, 0x44, &tmp);
1675 		if ((tmp & 0x2) == 0) {
1676 			tmp |= 0x2;
1677 			pci_write_config_byte(memc, 0x44, tmp);
1678 		}
1679 
1680 		/* bit 2: drive individual 875 interrupts to the bus */
1681 		pci_read_config_byte(memc, 0x45, &tmp);
1682 		if ((tmp & 0x4) == 0) {
1683 			tmp |= 0x4;
1684 			pci_write_config_byte(memc, 0x45, tmp);
1685 		}
1686 
1687 		pci_dev_put(memc);
1688 		break;
1689 	}
1690 
1691 	pci_read_config_byte(pdev, 0x84, &tmp);
1692 	sym_dev->host_id = tmp;
1693 }
1694 
1695 /*
1696  *  Called before unloading the module.
1697  *  Detach the host.
1698  *  We have to free resources and halt the NCR chip.
1699  */
1700 static int sym_detach(struct Scsi_Host *shost, struct pci_dev *pdev)
1701 {
1702 	struct sym_hcb *np = sym_get_hcb(shost);
1703 	printk("%s: detaching ...\n", sym_name(np));
1704 
1705 	del_timer_sync(&np->s.timer);
1706 
1707 	/*
1708 	 * Reset NCR chip.
1709 	 * We should use sym_soft_reset(), but we don't want to do
1710 	 * so, since we may not be safe if interrupts occur.
1711 	 */
1712 	printk("%s: resetting chip\n", sym_name(np));
1713 	OUTB(np, nc_istat, SRST);
1714 	INB(np, nc_mbox1);
1715 	udelay(10);
1716 	OUTB(np, nc_istat, 0);
1717 
1718 	sym_free_resources(np, pdev, 1);
1719 	scsi_host_put(shost);
1720 
1721 	return 1;
1722 }
1723 
1724 /*
1725  * Driver host template.
1726  */
1727 static struct scsi_host_template sym2_template = {
1728 	.module			= THIS_MODULE,
1729 	.name			= "sym53c8xx",
1730 	.info			= sym53c8xx_info,
1731 	.queuecommand		= sym53c8xx_queue_command,
1732 	.slave_alloc		= sym53c8xx_slave_alloc,
1733 	.slave_configure	= sym53c8xx_slave_configure,
1734 	.slave_destroy		= sym53c8xx_slave_destroy,
1735 	.eh_abort_handler	= sym53c8xx_eh_abort_handler,
1736 	.eh_device_reset_handler = sym53c8xx_eh_device_reset_handler,
1737 	.eh_bus_reset_handler	= sym53c8xx_eh_bus_reset_handler,
1738 	.eh_host_reset_handler	= sym53c8xx_eh_host_reset_handler,
1739 	.this_id		= 7,
1740 	.use_clustering		= ENABLE_CLUSTERING,
1741 	.max_sectors		= 0xFFFF,
1742 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1743 	.proc_info		= sym53c8xx_proc_info,
1744 	.proc_name		= NAME53C8XX,
1745 #endif
1746 };
1747 
1748 static int attach_count;
1749 
1750 static int __devinit sym2_probe(struct pci_dev *pdev,
1751 				const struct pci_device_id *ent)
1752 {
1753 	struct sym_device sym_dev;
1754 	struct sym_nvram nvram;
1755 	struct Scsi_Host *shost;
1756 	int do_iounmap = 0;
1757 	int do_disable_device = 1;
1758 
1759 	memset(&sym_dev, 0, sizeof(sym_dev));
1760 	memset(&nvram, 0, sizeof(nvram));
1761 	sym_dev.pdev = pdev;
1762 	sym_dev.host_id = SYM_SETUP_HOST_ID;
1763 
1764 	if (pci_enable_device(pdev))
1765 		goto leave;
1766 
1767 	pci_set_master(pdev);
1768 
1769 	if (pci_request_regions(pdev, NAME53C8XX))
1770 		goto disable;
1771 
1772 	if (sym_check_supported(&sym_dev))
1773 		goto free;
1774 
1775 	if (sym_iomap_device(&sym_dev))
1776 		goto free;
1777 	do_iounmap = 1;
1778 
1779 	if (sym_check_raid(&sym_dev)) {
1780 		do_disable_device = 0;	/* Don't disable the device */
1781 		goto free;
1782 	}
1783 
1784 	if (sym_set_workarounds(&sym_dev))
1785 		goto free;
1786 
1787 	sym_config_pqs(pdev, &sym_dev);
1788 
1789 	sym_get_nvram(&sym_dev, &nvram);
1790 
1791 	do_iounmap = 0; /* Don't sym_iounmap_device() after sym_attach(). */
1792 	shost = sym_attach(&sym2_template, attach_count, &sym_dev);
1793 	if (!shost)
1794 		goto free;
1795 
1796 	if (scsi_add_host(shost, &pdev->dev))
1797 		goto detach;
1798 	scsi_scan_host(shost);
1799 
1800 	attach_count++;
1801 
1802 	return 0;
1803 
1804  detach:
1805 	sym_detach(pci_get_drvdata(pdev), pdev);
1806  free:
1807 	if (do_iounmap)
1808 		sym_iounmap_device(&sym_dev);
1809 	pci_release_regions(pdev);
1810  disable:
1811 	if (do_disable_device)
1812 		pci_disable_device(pdev);
1813  leave:
1814 	return -ENODEV;
1815 }
1816 
1817 static void sym2_remove(struct pci_dev *pdev)
1818 {
1819 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1820 
1821 	scsi_remove_host(shost);
1822 	sym_detach(shost, pdev);
1823 	pci_release_regions(pdev);
1824 	pci_disable_device(pdev);
1825 
1826 	attach_count--;
1827 }
1828 
1829 /**
1830  * sym2_io_error_detected() - called when PCI error is detected
1831  * @pdev: pointer to PCI device
1832  * @state: current state of the PCI slot
1833  */
1834 static pci_ers_result_t sym2_io_error_detected(struct pci_dev *pdev,
1835                                          enum pci_channel_state state)
1836 {
1837 	/* If slot is permanently frozen, turn everything off */
1838 	if (state == pci_channel_io_perm_failure) {
1839 		sym2_remove(pdev);
1840 		return PCI_ERS_RESULT_DISCONNECT;
1841 	}
1842 
1843 	disable_irq(pdev->irq);
1844 	pci_disable_device(pdev);
1845 
1846 	/* Request that MMIO be enabled, so register dump can be taken. */
1847 	return PCI_ERS_RESULT_CAN_RECOVER;
1848 }
1849 
1850 /**
1851  * sym2_io_slot_dump - Enable MMIO and dump debug registers
1852  * @pdev: pointer to PCI device
1853  */
1854 static pci_ers_result_t sym2_io_slot_dump(struct pci_dev *pdev)
1855 {
1856 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1857 
1858 	sym_dump_registers(shost);
1859 
1860 	/* Request a slot reset. */
1861 	return PCI_ERS_RESULT_NEED_RESET;
1862 }
1863 
1864 /**
1865  * sym2_reset_workarounds - hardware-specific work-arounds
1866  *
1867  * This routine is similar to sym_set_workarounds(), except
1868  * that, at this point, we already know that the device was
1869  * successfully initialized at least once before, and so most
1870  * of the steps taken there are un-needed here.
1871  */
1872 static void sym2_reset_workarounds(struct pci_dev *pdev)
1873 {
1874 	u_short status_reg;
1875 	struct sym_chip *chip;
1876 
1877 	chip = sym_lookup_chip_table(pdev->device, pdev->revision);
1878 
1879 	/* Work around for errant bit in 895A, in a fashion
1880 	 * similar to what is done in sym_set_workarounds().
1881 	 */
1882 	pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1883 	if (!(chip->features & FE_66MHZ) && (status_reg & PCI_STATUS_66MHZ)) {
1884 		status_reg = PCI_STATUS_66MHZ;
1885 		pci_write_config_word(pdev, PCI_STATUS, status_reg);
1886 		pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1887 	}
1888 }
1889 
1890 /**
1891  * sym2_io_slot_reset() - called when the pci bus has been reset.
1892  * @pdev: pointer to PCI device
1893  *
1894  * Restart the card from scratch.
1895  */
1896 static pci_ers_result_t sym2_io_slot_reset(struct pci_dev *pdev)
1897 {
1898 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1899 	struct sym_hcb *np = sym_get_hcb(shost);
1900 
1901 	printk(KERN_INFO "%s: recovering from a PCI slot reset\n",
1902 	          sym_name(np));
1903 
1904 	if (pci_enable_device(pdev)) {
1905 		printk(KERN_ERR "%s: Unable to enable after PCI reset\n",
1906 		        sym_name(np));
1907 		return PCI_ERS_RESULT_DISCONNECT;
1908 	}
1909 
1910 	pci_set_master(pdev);
1911 	enable_irq(pdev->irq);
1912 
1913 	/* If the chip can do Memory Write Invalidate, enable it */
1914 	if (np->features & FE_WRIE) {
1915 		if (pci_set_mwi(pdev))
1916 			return PCI_ERS_RESULT_DISCONNECT;
1917 	}
1918 
1919 	/* Perform work-arounds, analogous to sym_set_workarounds() */
1920 	sym2_reset_workarounds(pdev);
1921 
1922 	/* Perform host reset only on one instance of the card */
1923 	if (PCI_FUNC(pdev->devfn) == 0) {
1924 		if (sym_reset_scsi_bus(np, 0)) {
1925 			printk(KERN_ERR "%s: Unable to reset scsi host\n",
1926 			        sym_name(np));
1927 			return PCI_ERS_RESULT_DISCONNECT;
1928 		}
1929 		sym_start_up(shost, 1);
1930 	}
1931 
1932 	return PCI_ERS_RESULT_RECOVERED;
1933 }
1934 
1935 /**
1936  * sym2_io_resume() - resume normal ops after PCI reset
1937  * @pdev: pointer to PCI device
1938  *
1939  * Called when the error recovery driver tells us that its
1940  * OK to resume normal operation. Use completion to allow
1941  * halted scsi ops to resume.
1942  */
1943 static void sym2_io_resume(struct pci_dev *pdev)
1944 {
1945 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1946 	struct sym_data *sym_data = shost_priv(shost);
1947 
1948 	spin_lock_irq(shost->host_lock);
1949 	if (sym_data->io_reset)
1950 		complete_all(sym_data->io_reset);
1951 	spin_unlock_irq(shost->host_lock);
1952 }
1953 
1954 static void sym2_get_signalling(struct Scsi_Host *shost)
1955 {
1956 	struct sym_hcb *np = sym_get_hcb(shost);
1957 	enum spi_signal_type type;
1958 
1959 	switch (np->scsi_mode) {
1960 	case SMODE_SE:
1961 		type = SPI_SIGNAL_SE;
1962 		break;
1963 	case SMODE_LVD:
1964 		type = SPI_SIGNAL_LVD;
1965 		break;
1966 	case SMODE_HVD:
1967 		type = SPI_SIGNAL_HVD;
1968 		break;
1969 	default:
1970 		type = SPI_SIGNAL_UNKNOWN;
1971 		break;
1972 	}
1973 	spi_signalling(shost) = type;
1974 }
1975 
1976 static void sym2_set_offset(struct scsi_target *starget, int offset)
1977 {
1978 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1979 	struct sym_hcb *np = sym_get_hcb(shost);
1980 	struct sym_tcb *tp = &np->target[starget->id];
1981 
1982 	tp->tgoal.offset = offset;
1983 	tp->tgoal.check_nego = 1;
1984 }
1985 
1986 static void sym2_set_period(struct scsi_target *starget, int period)
1987 {
1988 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1989 	struct sym_hcb *np = sym_get_hcb(shost);
1990 	struct sym_tcb *tp = &np->target[starget->id];
1991 
1992 	/* have to have DT for these transfers, but DT will also
1993 	 * set width, so check that this is allowed */
1994 	if (period <= np->minsync && spi_width(starget))
1995 		tp->tgoal.dt = 1;
1996 
1997 	tp->tgoal.period = period;
1998 	tp->tgoal.check_nego = 1;
1999 }
2000 
2001 static void sym2_set_width(struct scsi_target *starget, int width)
2002 {
2003 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2004 	struct sym_hcb *np = sym_get_hcb(shost);
2005 	struct sym_tcb *tp = &np->target[starget->id];
2006 
2007 	/* It is illegal to have DT set on narrow transfers.  If DT is
2008 	 * clear, we must also clear IU and QAS.  */
2009 	if (width == 0)
2010 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
2011 
2012 	tp->tgoal.width = width;
2013 	tp->tgoal.check_nego = 1;
2014 }
2015 
2016 static void sym2_set_dt(struct scsi_target *starget, int dt)
2017 {
2018 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2019 	struct sym_hcb *np = sym_get_hcb(shost);
2020 	struct sym_tcb *tp = &np->target[starget->id];
2021 
2022 	/* We must clear QAS and IU if DT is clear */
2023 	if (dt)
2024 		tp->tgoal.dt = 1;
2025 	else
2026 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
2027 	tp->tgoal.check_nego = 1;
2028 }
2029 
2030 #if 0
2031 static void sym2_set_iu(struct scsi_target *starget, int iu)
2032 {
2033 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2034 	struct sym_hcb *np = sym_get_hcb(shost);
2035 	struct sym_tcb *tp = &np->target[starget->id];
2036 
2037 	if (iu)
2038 		tp->tgoal.iu = tp->tgoal.dt = 1;
2039 	else
2040 		tp->tgoal.iu = 0;
2041 	tp->tgoal.check_nego = 1;
2042 }
2043 
2044 static void sym2_set_qas(struct scsi_target *starget, int qas)
2045 {
2046 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2047 	struct sym_hcb *np = sym_get_hcb(shost);
2048 	struct sym_tcb *tp = &np->target[starget->id];
2049 
2050 	if (qas)
2051 		tp->tgoal.dt = tp->tgoal.qas = 1;
2052 	else
2053 		tp->tgoal.qas = 0;
2054 	tp->tgoal.check_nego = 1;
2055 }
2056 #endif
2057 
2058 static struct spi_function_template sym2_transport_functions = {
2059 	.set_offset	= sym2_set_offset,
2060 	.show_offset	= 1,
2061 	.set_period	= sym2_set_period,
2062 	.show_period	= 1,
2063 	.set_width	= sym2_set_width,
2064 	.show_width	= 1,
2065 	.set_dt		= sym2_set_dt,
2066 	.show_dt	= 1,
2067 #if 0
2068 	.set_iu		= sym2_set_iu,
2069 	.show_iu	= 1,
2070 	.set_qas	= sym2_set_qas,
2071 	.show_qas	= 1,
2072 #endif
2073 	.get_signalling	= sym2_get_signalling,
2074 };
2075 
2076 static struct pci_device_id sym2_id_table[] __devinitdata = {
2077 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
2078 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2079 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
2080 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2081 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
2082 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2083 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
2084 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2085 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
2086 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2087 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
2088 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2089 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
2090 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8,  0xffff00, 0UL },
2091 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
2092 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2093 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
2094 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2095 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
2096 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2097 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
2098 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2099 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
2100 	  PCI_ANY_ID, PCI_ANY_ID,  PCI_CLASS_STORAGE_SCSI<<8,  0xffff00, 0UL }, /* new */
2101 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
2102 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2103 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
2104 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2105 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
2106 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2107 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
2108 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2109 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
2110 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2111 	{ 0, }
2112 };
2113 
2114 MODULE_DEVICE_TABLE(pci, sym2_id_table);
2115 
2116 static struct pci_error_handlers sym2_err_handler = {
2117 	.error_detected	= sym2_io_error_detected,
2118 	.mmio_enabled	= sym2_io_slot_dump,
2119 	.slot_reset	= sym2_io_slot_reset,
2120 	.resume		= sym2_io_resume,
2121 };
2122 
2123 static struct pci_driver sym2_driver = {
2124 	.name		= NAME53C8XX,
2125 	.id_table	= sym2_id_table,
2126 	.probe		= sym2_probe,
2127 	.remove		= sym2_remove,
2128 	.err_handler 	= &sym2_err_handler,
2129 };
2130 
2131 static int __init sym2_init(void)
2132 {
2133 	int error;
2134 
2135 	sym2_setup_params();
2136 	sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
2137 	if (!sym2_transport_template)
2138 		return -ENODEV;
2139 
2140 	error = pci_register_driver(&sym2_driver);
2141 	if (error)
2142 		spi_release_transport(sym2_transport_template);
2143 	return error;
2144 }
2145 
2146 static void __exit sym2_exit(void)
2147 {
2148 	pci_unregister_driver(&sym2_driver);
2149 	spi_release_transport(sym2_transport_template);
2150 }
2151 
2152 module_init(sym2_init);
2153 module_exit(sym2_exit);
2154