1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 4 * of PCI-SCSI IO processors. 5 * 6 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 7 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx> 8 * 9 * This driver is derived from the Linux sym53c8xx driver. 10 * Copyright (C) 1998-2000 Gerard Roudier 11 * 12 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 13 * a port of the FreeBSD ncr driver to Linux-1.2.13. 14 * 15 * The original ncr driver has been written for 386bsd and FreeBSD by 16 * Wolfgang Stanglmeier <wolf@cologne.de> 17 * Stefan Esser <se@mi.Uni-Koeln.de> 18 * Copyright (C) 1994 Wolfgang Stanglmeier 19 * 20 * Other major contributions: 21 * 22 * NVRAM detection and reading. 23 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 24 * 25 *----------------------------------------------------------------------------- 26 */ 27 #include <linux/ctype.h> 28 #include <linux/init.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/spinlock.h> 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_tcq.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_transport.h> 36 37 #include "sym_glue.h" 38 #include "sym_nvram.h" 39 40 #define NAME53C "sym53c" 41 #define NAME53C8XX "sym53c8xx" 42 43 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP; 44 unsigned int sym_debug_flags = 0; 45 46 static char *excl_string; 47 static char *safe_string; 48 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0); 49 module_param_named(burst, sym_driver_setup.burst_order, byte, 0); 50 module_param_named(led, sym_driver_setup.scsi_led, byte, 0); 51 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0); 52 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0); 53 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0); 54 module_param_named(hostid, sym_driver_setup.host_id, byte, 0); 55 module_param_named(verb, sym_driver_setup.verbose, byte, 0); 56 module_param_named(debug, sym_debug_flags, uint, 0); 57 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0); 58 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0); 59 module_param_named(excl, excl_string, charp, 0); 60 module_param_named(safe, safe_string, charp, 0); 61 62 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default"); 63 MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers"); 64 MODULE_PARM_DESC(led, "Set to 1 to enable LED support"); 65 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3"); 66 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole"); 67 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error"); 68 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters"); 69 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive"); 70 MODULE_PARM_DESC(debug, "Set bits to enable debugging"); 71 MODULE_PARM_DESC(settle, "Settle delay in seconds. Default 3"); 72 MODULE_PARM_DESC(nvram, "Option currently not used"); 73 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached"); 74 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\""); 75 76 MODULE_LICENSE("GPL"); 77 MODULE_VERSION(SYM_VERSION); 78 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>"); 79 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters"); 80 81 static void sym2_setup_params(void) 82 { 83 char *p = excl_string; 84 int xi = 0; 85 86 while (p && (xi < 8)) { 87 char *next_p; 88 int val = (int) simple_strtoul(p, &next_p, 0); 89 sym_driver_setup.excludes[xi++] = val; 90 p = next_p; 91 } 92 93 if (safe_string) { 94 if (*safe_string == 'y') { 95 sym_driver_setup.max_tag = 0; 96 sym_driver_setup.burst_order = 0; 97 sym_driver_setup.scsi_led = 0; 98 sym_driver_setup.scsi_diff = 1; 99 sym_driver_setup.irq_mode = 0; 100 sym_driver_setup.scsi_bus_check = 2; 101 sym_driver_setup.host_id = 7; 102 sym_driver_setup.verbose = 2; 103 sym_driver_setup.settle_delay = 10; 104 sym_driver_setup.use_nvram = 1; 105 } else if (*safe_string != 'n') { 106 printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s" 107 " passed to safe option", safe_string); 108 } 109 } 110 } 111 112 static struct scsi_transport_template *sym2_transport_template = NULL; 113 114 /* 115 * Driver private area in the SCSI command structure. 116 */ 117 struct sym_ucmd { /* Override the SCSI pointer structure */ 118 struct completion *eh_done; /* SCSI error handling */ 119 }; 120 121 #define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp)) 122 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host) 123 124 /* 125 * Complete a pending CAM CCB. 126 */ 127 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd) 128 { 129 struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd); 130 BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd)); 131 132 if (ucmd->eh_done) 133 complete(ucmd->eh_done); 134 135 scsi_dma_unmap(cmd); 136 cmd->scsi_done(cmd); 137 } 138 139 /* 140 * Tell the SCSI layer about a BUS RESET. 141 */ 142 void sym_xpt_async_bus_reset(struct sym_hcb *np) 143 { 144 printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np)); 145 np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ; 146 np->s.settle_time_valid = 1; 147 if (sym_verbose >= 2) 148 printf_info("%s: command processing suspended for %d seconds\n", 149 sym_name(np), sym_driver_setup.settle_delay); 150 } 151 152 /* 153 * Choose the more appropriate CAM status if 154 * the IO encountered an extended error. 155 */ 156 static int sym_xerr_cam_status(int cam_status, int x_status) 157 { 158 if (x_status) { 159 if (x_status & XE_PARITY_ERR) 160 cam_status = DID_PARITY; 161 else 162 cam_status = DID_ERROR; 163 } 164 return cam_status; 165 } 166 167 /* 168 * Build CAM result for a failed or auto-sensed IO. 169 */ 170 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid) 171 { 172 struct scsi_cmnd *cmd = cp->cmd; 173 u_int cam_status, scsi_status; 174 175 cam_status = DID_OK; 176 scsi_status = cp->ssss_status; 177 178 if (cp->host_flags & HF_SENSE) { 179 scsi_status = cp->sv_scsi_status; 180 resid = cp->sv_resid; 181 if (sym_verbose && cp->sv_xerr_status) 182 sym_print_xerr(cmd, cp->sv_xerr_status); 183 if (cp->host_status == HS_COMPLETE && 184 cp->ssss_status == S_GOOD && 185 cp->xerr_status == 0) { 186 cam_status = sym_xerr_cam_status(DID_OK, 187 cp->sv_xerr_status); 188 /* 189 * Bounce back the sense data to user. 190 */ 191 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 192 memcpy(cmd->sense_buffer, cp->sns_bbuf, 193 min(SCSI_SENSE_BUFFERSIZE, SYM_SNS_BBUF_LEN)); 194 #if 0 195 /* 196 * If the device reports a UNIT ATTENTION condition 197 * due to a RESET condition, we should consider all 198 * disconnect CCBs for this unit as aborted. 199 */ 200 if (1) { 201 u_char *p; 202 p = (u_char *) cmd->sense_data; 203 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 204 sym_clear_tasks(np, DID_ABORT, 205 cp->target,cp->lun, -1); 206 } 207 #endif 208 } else { 209 /* 210 * Error return from our internal request sense. This 211 * is bad: we must clear the contingent allegiance 212 * condition otherwise the device will always return 213 * BUSY. Use a big stick. 214 */ 215 sym_reset_scsi_target(np, cmd->device->id); 216 cam_status = DID_ERROR; 217 } 218 } else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */ 219 cam_status = DID_OK; 220 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 221 cam_status = DID_NO_CONNECT; 222 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 223 cam_status = DID_ERROR; 224 else { /* Extended error */ 225 if (sym_verbose) { 226 sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n", 227 cp->host_status, cp->ssss_status, 228 cp->xerr_status); 229 } 230 /* 231 * Set the most appropriate value for CAM status. 232 */ 233 cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status); 234 } 235 scsi_set_resid(cmd, resid); 236 cmd->result = (cam_status << 16) | scsi_status; 237 } 238 239 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd) 240 { 241 int segment; 242 int use_sg; 243 244 cp->data_len = 0; 245 246 use_sg = scsi_dma_map(cmd); 247 if (use_sg > 0) { 248 struct scatterlist *sg; 249 struct sym_tcb *tp = &np->target[cp->target]; 250 struct sym_tblmove *data; 251 252 if (use_sg > SYM_CONF_MAX_SG) { 253 scsi_dma_unmap(cmd); 254 return -1; 255 } 256 257 data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg]; 258 259 scsi_for_each_sg(cmd, sg, use_sg, segment) { 260 dma_addr_t baddr = sg_dma_address(sg); 261 unsigned int len = sg_dma_len(sg); 262 263 if ((len & 1) && (tp->head.wval & EWS)) { 264 len++; 265 cp->odd_byte_adjustment++; 266 } 267 268 sym_build_sge(np, &data[segment], baddr, len); 269 cp->data_len += len; 270 } 271 } else { 272 segment = -2; 273 } 274 275 return segment; 276 } 277 278 /* 279 * Queue a SCSI command. 280 */ 281 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd) 282 { 283 struct scsi_device *sdev = cmd->device; 284 struct sym_tcb *tp; 285 struct sym_lcb *lp; 286 struct sym_ccb *cp; 287 int order; 288 289 /* 290 * Retrieve the target descriptor. 291 */ 292 tp = &np->target[sdev->id]; 293 294 /* 295 * Select tagged/untagged. 296 */ 297 lp = sym_lp(tp, sdev->lun); 298 order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0; 299 300 /* 301 * Queue the SCSI IO. 302 */ 303 cp = sym_get_ccb(np, cmd, order); 304 if (!cp) 305 return 1; /* Means resource shortage */ 306 sym_queue_scsiio(np, cmd, cp); 307 return 0; 308 } 309 310 /* 311 * Setup buffers and pointers that address the CDB. 312 */ 313 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 314 { 315 memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len); 316 317 cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]); 318 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len); 319 320 return 0; 321 } 322 323 /* 324 * Setup pointers that address the data and start the I/O. 325 */ 326 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 327 { 328 u32 lastp, goalp; 329 int dir; 330 331 /* 332 * Build the CDB. 333 */ 334 if (sym_setup_cdb(np, cmd, cp)) 335 goto out_abort; 336 337 /* 338 * No direction means no data. 339 */ 340 dir = cmd->sc_data_direction; 341 if (dir != DMA_NONE) { 342 cp->segments = sym_scatter(np, cp, cmd); 343 if (cp->segments < 0) { 344 sym_set_cam_status(cmd, DID_ERROR); 345 goto out_abort; 346 } 347 348 /* 349 * No segments means no data. 350 */ 351 if (!cp->segments) 352 dir = DMA_NONE; 353 } else { 354 cp->data_len = 0; 355 cp->segments = 0; 356 } 357 358 /* 359 * Set the data pointer. 360 */ 361 switch (dir) { 362 case DMA_BIDIRECTIONAL: 363 scmd_printk(KERN_INFO, cmd, "got DMA_BIDIRECTIONAL command"); 364 sym_set_cam_status(cmd, DID_ERROR); 365 goto out_abort; 366 case DMA_TO_DEVICE: 367 goalp = SCRIPTA_BA(np, data_out2) + 8; 368 lastp = goalp - 8 - (cp->segments * (2*4)); 369 break; 370 case DMA_FROM_DEVICE: 371 cp->host_flags |= HF_DATA_IN; 372 goalp = SCRIPTA_BA(np, data_in2) + 8; 373 lastp = goalp - 8 - (cp->segments * (2*4)); 374 break; 375 case DMA_NONE: 376 default: 377 lastp = goalp = SCRIPTB_BA(np, no_data); 378 break; 379 } 380 381 /* 382 * Set all pointers values needed by SCRIPTS. 383 */ 384 cp->phys.head.lastp = cpu_to_scr(lastp); 385 cp->phys.head.savep = cpu_to_scr(lastp); 386 cp->startp = cp->phys.head.savep; 387 cp->goalp = cpu_to_scr(goalp); 388 389 /* 390 * When `#ifed 1', the code below makes the driver 391 * panic on the first attempt to write to a SCSI device. 392 * It is the first test we want to do after a driver 393 * change that does not seem obviously safe. :) 394 */ 395 #if 0 396 switch (cp->cdb_buf[0]) { 397 case 0x0A: case 0x2A: case 0xAA: 398 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 399 break; 400 default: 401 break; 402 } 403 #endif 404 405 /* 406 * activate this job. 407 */ 408 sym_put_start_queue(np, cp); 409 return 0; 410 411 out_abort: 412 sym_free_ccb(np, cp); 413 sym_xpt_done(np, cmd); 414 return 0; 415 } 416 417 418 /* 419 * timer daemon. 420 * 421 * Misused to keep the driver running when 422 * interrupts are not configured correctly. 423 */ 424 static void sym_timer(struct sym_hcb *np) 425 { 426 unsigned long thistime = jiffies; 427 428 /* 429 * Restart the timer. 430 */ 431 np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL; 432 add_timer(&np->s.timer); 433 434 /* 435 * If we are resetting the ncr, wait for settle_time before 436 * clearing it. Then command processing will be resumed. 437 */ 438 if (np->s.settle_time_valid) { 439 if (time_before_eq(np->s.settle_time, thistime)) { 440 if (sym_verbose >= 2 ) 441 printk("%s: command processing resumed\n", 442 sym_name(np)); 443 np->s.settle_time_valid = 0; 444 } 445 return; 446 } 447 448 /* 449 * Nothing to do for now, but that may come. 450 */ 451 if (np->s.lasttime + 4*HZ < thistime) { 452 np->s.lasttime = thistime; 453 } 454 455 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS 456 /* 457 * Some way-broken PCI bridges may lead to 458 * completions being lost when the clearing 459 * of the INTFLY flag by the CPU occurs 460 * concurrently with the chip raising this flag. 461 * If this ever happen, lost completions will 462 * be reaped here. 463 */ 464 sym_wakeup_done(np); 465 #endif 466 } 467 468 469 /* 470 * PCI BUS error handler. 471 */ 472 void sym_log_bus_error(struct Scsi_Host *shost) 473 { 474 struct sym_data *sym_data = shost_priv(shost); 475 struct pci_dev *pdev = sym_data->pdev; 476 unsigned short pci_sts; 477 pci_read_config_word(pdev, PCI_STATUS, &pci_sts); 478 if (pci_sts & 0xf900) { 479 pci_write_config_word(pdev, PCI_STATUS, pci_sts); 480 shost_printk(KERN_WARNING, shost, 481 "PCI bus error: status = 0x%04x\n", pci_sts & 0xf900); 482 } 483 } 484 485 /* 486 * queuecommand method. Entered with the host adapter lock held and 487 * interrupts disabled. 488 */ 489 static int sym53c8xx_queue_command_lck(struct scsi_cmnd *cmd, 490 void (*done)(struct scsi_cmnd *)) 491 { 492 struct sym_hcb *np = SYM_SOFTC_PTR(cmd); 493 struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd); 494 int sts = 0; 495 496 cmd->scsi_done = done; 497 memset(ucp, 0, sizeof(*ucp)); 498 499 /* 500 * Shorten our settle_time if needed for 501 * this command not to time out. 502 */ 503 if (np->s.settle_time_valid && scsi_cmd_to_rq(cmd)->timeout) { 504 unsigned long tlimit = jiffies + scsi_cmd_to_rq(cmd)->timeout; 505 tlimit -= SYM_CONF_TIMER_INTERVAL*2; 506 if (time_after(np->s.settle_time, tlimit)) { 507 np->s.settle_time = tlimit; 508 } 509 } 510 511 if (np->s.settle_time_valid) 512 return SCSI_MLQUEUE_HOST_BUSY; 513 514 sts = sym_queue_command(np, cmd); 515 if (sts) 516 return SCSI_MLQUEUE_HOST_BUSY; 517 return 0; 518 } 519 520 static DEF_SCSI_QCMD(sym53c8xx_queue_command) 521 522 /* 523 * Linux entry point of the interrupt handler. 524 */ 525 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id) 526 { 527 struct Scsi_Host *shost = dev_id; 528 struct sym_data *sym_data = shost_priv(shost); 529 irqreturn_t result; 530 531 /* Avoid spinloop trying to handle interrupts on frozen device */ 532 if (pci_channel_offline(sym_data->pdev)) 533 return IRQ_NONE; 534 535 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("["); 536 537 spin_lock(shost->host_lock); 538 result = sym_interrupt(shost); 539 spin_unlock(shost->host_lock); 540 541 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n"); 542 543 return result; 544 } 545 546 /* 547 * Linux entry point of the timer handler 548 */ 549 static void sym53c8xx_timer(struct timer_list *t) 550 { 551 struct sym_hcb *np = from_timer(np, t, s.timer); 552 unsigned long flags; 553 554 spin_lock_irqsave(np->s.host->host_lock, flags); 555 sym_timer(np); 556 spin_unlock_irqrestore(np->s.host->host_lock, flags); 557 } 558 559 560 /* 561 * What the eh thread wants us to perform. 562 */ 563 #define SYM_EH_ABORT 0 564 #define SYM_EH_DEVICE_RESET 1 565 #define SYM_EH_BUS_RESET 2 566 #define SYM_EH_HOST_RESET 3 567 568 /* 569 * Generic method for our eh processing. 570 * The 'op' argument tells what we have to do. 571 */ 572 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd) 573 { 574 struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd); 575 struct Scsi_Host *shost = cmd->device->host; 576 struct sym_data *sym_data = shost_priv(shost); 577 struct pci_dev *pdev = sym_data->pdev; 578 struct sym_hcb *np = sym_data->ncb; 579 SYM_QUEHEAD *qp; 580 int cmd_queued = 0; 581 int sts = -1; 582 struct completion eh_done; 583 584 scmd_printk(KERN_WARNING, cmd, "%s operation started\n", opname); 585 586 /* We may be in an error condition because the PCI bus 587 * went down. In this case, we need to wait until the 588 * PCI bus is reset, the card is reset, and only then 589 * proceed with the scsi error recovery. There's no 590 * point in hurrying; take a leisurely wait. 591 */ 592 #define WAIT_FOR_PCI_RECOVERY 35 593 if (pci_channel_offline(pdev)) { 594 int finished_reset = 0; 595 init_completion(&eh_done); 596 spin_lock_irq(shost->host_lock); 597 /* Make sure we didn't race */ 598 if (pci_channel_offline(pdev)) { 599 BUG_ON(sym_data->io_reset); 600 sym_data->io_reset = &eh_done; 601 } else { 602 finished_reset = 1; 603 } 604 spin_unlock_irq(shost->host_lock); 605 if (!finished_reset) 606 finished_reset = wait_for_completion_timeout 607 (sym_data->io_reset, 608 WAIT_FOR_PCI_RECOVERY*HZ); 609 spin_lock_irq(shost->host_lock); 610 sym_data->io_reset = NULL; 611 spin_unlock_irq(shost->host_lock); 612 if (!finished_reset) 613 return SCSI_FAILED; 614 } 615 616 spin_lock_irq(shost->host_lock); 617 /* This one is queued in some place -> to wait for completion */ 618 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 619 struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 620 if (cp->cmd == cmd) { 621 cmd_queued = 1; 622 break; 623 } 624 } 625 626 /* Try to proceed the operation we have been asked for */ 627 sts = -1; 628 switch(op) { 629 case SYM_EH_ABORT: 630 sts = sym_abort_scsiio(np, cmd, 1); 631 break; 632 case SYM_EH_DEVICE_RESET: 633 sts = sym_reset_scsi_target(np, cmd->device->id); 634 break; 635 case SYM_EH_BUS_RESET: 636 sym_reset_scsi_bus(np, 1); 637 sts = 0; 638 break; 639 case SYM_EH_HOST_RESET: 640 sym_reset_scsi_bus(np, 0); 641 sym_start_up(shost, 1); 642 sts = 0; 643 break; 644 default: 645 break; 646 } 647 648 /* On error, restore everything and cross fingers :) */ 649 if (sts) 650 cmd_queued = 0; 651 652 if (cmd_queued) { 653 init_completion(&eh_done); 654 ucmd->eh_done = &eh_done; 655 spin_unlock_irq(shost->host_lock); 656 if (!wait_for_completion_timeout(&eh_done, 5*HZ)) { 657 ucmd->eh_done = NULL; 658 sts = -2; 659 } 660 } else { 661 spin_unlock_irq(shost->host_lock); 662 } 663 664 dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname, 665 sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed"); 666 return sts ? SCSI_FAILED : SCSI_SUCCESS; 667 } 668 669 670 /* 671 * Error handlers called from the eh thread (one thread per HBA). 672 */ 673 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd) 674 { 675 return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd); 676 } 677 678 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd) 679 { 680 return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd); 681 } 682 683 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd) 684 { 685 return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd); 686 } 687 688 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd) 689 { 690 return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd); 691 } 692 693 /* 694 * Tune device queuing depth, according to various limits. 695 */ 696 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags) 697 { 698 struct sym_lcb *lp = sym_lp(tp, lun); 699 u_short oldtags; 700 701 if (!lp) 702 return; 703 704 oldtags = lp->s.reqtags; 705 706 if (reqtags > lp->s.scdev_depth) 707 reqtags = lp->s.scdev_depth; 708 709 lp->s.reqtags = reqtags; 710 711 if (reqtags != oldtags) { 712 dev_info(&tp->starget->dev, 713 "tagged command queuing %s, command queue depth %d.\n", 714 lp->s.reqtags ? "enabled" : "disabled", reqtags); 715 } 716 } 717 718 static int sym53c8xx_slave_alloc(struct scsi_device *sdev) 719 { 720 struct sym_hcb *np = sym_get_hcb(sdev->host); 721 struct sym_tcb *tp = &np->target[sdev->id]; 722 struct sym_lcb *lp; 723 unsigned long flags; 724 int error; 725 726 if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN) 727 return -ENXIO; 728 729 spin_lock_irqsave(np->s.host->host_lock, flags); 730 731 /* 732 * Fail the device init if the device is flagged NOSCAN at BOOT in 733 * the NVRAM. This may speed up boot and maintain coherency with 734 * BIOS device numbering. Clearing the flag allows the user to 735 * rescan skipped devices later. We also return an error for 736 * devices not flagged for SCAN LUNS in the NVRAM since some single 737 * lun devices behave badly when asked for a non zero LUN. 738 */ 739 740 if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) { 741 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 742 starget_printk(KERN_INFO, sdev->sdev_target, 743 "Scan at boot disabled in NVRAM\n"); 744 error = -ENXIO; 745 goto out; 746 } 747 748 if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) { 749 if (sdev->lun != 0) { 750 error = -ENXIO; 751 goto out; 752 } 753 starget_printk(KERN_INFO, sdev->sdev_target, 754 "Multiple LUNs disabled in NVRAM\n"); 755 } 756 757 lp = sym_alloc_lcb(np, sdev->id, sdev->lun); 758 if (!lp) { 759 error = -ENOMEM; 760 goto out; 761 } 762 if (tp->nlcb == 1) 763 tp->starget = sdev->sdev_target; 764 765 spi_min_period(tp->starget) = tp->usr_period; 766 spi_max_width(tp->starget) = tp->usr_width; 767 768 error = 0; 769 out: 770 spin_unlock_irqrestore(np->s.host->host_lock, flags); 771 772 return error; 773 } 774 775 /* 776 * Linux entry point for device queue sizing. 777 */ 778 static int sym53c8xx_slave_configure(struct scsi_device *sdev) 779 { 780 struct sym_hcb *np = sym_get_hcb(sdev->host); 781 struct sym_tcb *tp = &np->target[sdev->id]; 782 struct sym_lcb *lp = sym_lp(tp, sdev->lun); 783 int reqtags, depth_to_use; 784 785 /* 786 * Get user flags. 787 */ 788 lp->curr_flags = lp->user_flags; 789 790 /* 791 * Select queue depth from driver setup. 792 * Do not use more than configured by user. 793 * Use at least 1. 794 * Do not use more than our maximum. 795 */ 796 reqtags = sym_driver_setup.max_tag; 797 if (reqtags > tp->usrtags) 798 reqtags = tp->usrtags; 799 if (!sdev->tagged_supported) 800 reqtags = 0; 801 if (reqtags > SYM_CONF_MAX_TAG) 802 reqtags = SYM_CONF_MAX_TAG; 803 depth_to_use = reqtags ? reqtags : 1; 804 scsi_change_queue_depth(sdev, depth_to_use); 805 lp->s.scdev_depth = depth_to_use; 806 sym_tune_dev_queuing(tp, sdev->lun, reqtags); 807 808 if (!spi_initial_dv(sdev->sdev_target)) 809 spi_dv_device(sdev); 810 811 return 0; 812 } 813 814 static void sym53c8xx_slave_destroy(struct scsi_device *sdev) 815 { 816 struct sym_hcb *np = sym_get_hcb(sdev->host); 817 struct sym_tcb *tp = &np->target[sdev->id]; 818 struct sym_lcb *lp = sym_lp(tp, sdev->lun); 819 unsigned long flags; 820 821 /* if slave_alloc returned before allocating a sym_lcb, return */ 822 if (!lp) 823 return; 824 825 spin_lock_irqsave(np->s.host->host_lock, flags); 826 827 if (lp->busy_itlq || lp->busy_itl) { 828 /* 829 * This really shouldn't happen, but we can't return an error 830 * so let's try to stop all on-going I/O. 831 */ 832 starget_printk(KERN_WARNING, tp->starget, 833 "Removing busy LCB (%d)\n", (u8)sdev->lun); 834 sym_reset_scsi_bus(np, 1); 835 } 836 837 if (sym_free_lcb(np, sdev->id, sdev->lun) == 0) { 838 /* 839 * It was the last unit for this target. 840 */ 841 tp->head.sval = 0; 842 tp->head.wval = np->rv_scntl3; 843 tp->head.uval = 0; 844 tp->tgoal.check_nego = 1; 845 tp->starget = NULL; 846 } 847 848 spin_unlock_irqrestore(np->s.host->host_lock, flags); 849 } 850 851 /* 852 * Linux entry point for info() function 853 */ 854 static const char *sym53c8xx_info (struct Scsi_Host *host) 855 { 856 return SYM_DRIVER_NAME; 857 } 858 859 860 #ifdef SYM_LINUX_PROC_INFO_SUPPORT 861 /* 862 * Proc file system stuff 863 * 864 * A read operation returns adapter information. 865 * A write operation is a control command. 866 * The string is parsed in the driver code and the command is passed 867 * to the sym_usercmd() function. 868 */ 869 870 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT 871 872 struct sym_usrcmd { 873 u_long target; 874 u_long lun; 875 u_long data; 876 u_long cmd; 877 }; 878 879 #define UC_SETSYNC 10 880 #define UC_SETTAGS 11 881 #define UC_SETDEBUG 12 882 #define UC_SETWIDE 14 883 #define UC_SETFLAG 15 884 #define UC_SETVERBOSE 17 885 #define UC_RESETDEV 18 886 #define UC_CLEARDEV 19 887 888 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc) 889 { 890 struct sym_tcb *tp; 891 int t, l; 892 893 switch (uc->cmd) { 894 case 0: return; 895 896 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 897 case UC_SETDEBUG: 898 sym_debug_flags = uc->data; 899 break; 900 #endif 901 case UC_SETVERBOSE: 902 np->verbose = uc->data; 903 break; 904 default: 905 /* 906 * We assume that other commands apply to targets. 907 * This should always be the case and avoid the below 908 * 4 lines to be repeated 6 times. 909 */ 910 for (t = 0; t < SYM_CONF_MAX_TARGET; t++) { 911 if (!((uc->target >> t) & 1)) 912 continue; 913 tp = &np->target[t]; 914 if (!tp->nlcb) 915 continue; 916 917 switch (uc->cmd) { 918 919 case UC_SETSYNC: 920 if (!uc->data || uc->data >= 255) { 921 tp->tgoal.iu = tp->tgoal.dt = 922 tp->tgoal.qas = 0; 923 tp->tgoal.offset = 0; 924 } else if (uc->data <= 9 && np->minsync_dt) { 925 if (uc->data < np->minsync_dt) 926 uc->data = np->minsync_dt; 927 tp->tgoal.iu = tp->tgoal.dt = 928 tp->tgoal.qas = 1; 929 tp->tgoal.width = 1; 930 tp->tgoal.period = uc->data; 931 tp->tgoal.offset = np->maxoffs_dt; 932 } else { 933 if (uc->data < np->minsync) 934 uc->data = np->minsync; 935 tp->tgoal.iu = tp->tgoal.dt = 936 tp->tgoal.qas = 0; 937 tp->tgoal.period = uc->data; 938 tp->tgoal.offset = np->maxoffs; 939 } 940 tp->tgoal.check_nego = 1; 941 break; 942 case UC_SETWIDE: 943 tp->tgoal.width = uc->data ? 1 : 0; 944 tp->tgoal.check_nego = 1; 945 break; 946 case UC_SETTAGS: 947 for (l = 0; l < SYM_CONF_MAX_LUN; l++) 948 sym_tune_dev_queuing(tp, l, uc->data); 949 break; 950 case UC_RESETDEV: 951 tp->to_reset = 1; 952 np->istat_sem = SEM; 953 OUTB(np, nc_istat, SIGP|SEM); 954 break; 955 case UC_CLEARDEV: 956 for (l = 0; l < SYM_CONF_MAX_LUN; l++) { 957 struct sym_lcb *lp = sym_lp(tp, l); 958 if (lp) lp->to_clear = 1; 959 } 960 np->istat_sem = SEM; 961 OUTB(np, nc_istat, SIGP|SEM); 962 break; 963 case UC_SETFLAG: 964 tp->usrflags = uc->data; 965 break; 966 } 967 } 968 break; 969 } 970 } 971 972 static int sym_skip_spaces(char *ptr, int len) 973 { 974 int cnt, c; 975 976 for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--); 977 978 return (len - cnt); 979 } 980 981 static int get_int_arg(char *ptr, int len, u_long *pv) 982 { 983 char *end; 984 985 *pv = simple_strtoul(ptr, &end, 10); 986 return (end - ptr); 987 } 988 989 static int is_keyword(char *ptr, int len, char *verb) 990 { 991 int verb_len = strlen(verb); 992 993 if (len >= verb_len && !memcmp(verb, ptr, verb_len)) 994 return verb_len; 995 else 996 return 0; 997 } 998 999 #define SKIP_SPACES(ptr, len) \ 1000 if ((arg_len = sym_skip_spaces(ptr, len)) < 1) \ 1001 return -EINVAL; \ 1002 ptr += arg_len; len -= arg_len; 1003 1004 #define GET_INT_ARG(ptr, len, v) \ 1005 if (!(arg_len = get_int_arg(ptr, len, &(v)))) \ 1006 return -EINVAL; \ 1007 ptr += arg_len; len -= arg_len; 1008 1009 1010 /* 1011 * Parse a control command 1012 */ 1013 1014 static int sym_user_command(struct Scsi_Host *shost, char *buffer, int length) 1015 { 1016 struct sym_hcb *np = sym_get_hcb(shost); 1017 char *ptr = buffer; 1018 int len = length; 1019 struct sym_usrcmd cmd, *uc = &cmd; 1020 int arg_len; 1021 u_long target; 1022 1023 memset(uc, 0, sizeof(*uc)); 1024 1025 if (len > 0 && ptr[len-1] == '\n') 1026 --len; 1027 1028 if ((arg_len = is_keyword(ptr, len, "setsync")) != 0) 1029 uc->cmd = UC_SETSYNC; 1030 else if ((arg_len = is_keyword(ptr, len, "settags")) != 0) 1031 uc->cmd = UC_SETTAGS; 1032 else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0) 1033 uc->cmd = UC_SETVERBOSE; 1034 else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0) 1035 uc->cmd = UC_SETWIDE; 1036 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 1037 else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0) 1038 uc->cmd = UC_SETDEBUG; 1039 #endif 1040 else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0) 1041 uc->cmd = UC_SETFLAG; 1042 else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0) 1043 uc->cmd = UC_RESETDEV; 1044 else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0) 1045 uc->cmd = UC_CLEARDEV; 1046 else 1047 arg_len = 0; 1048 1049 #ifdef DEBUG_PROC_INFO 1050 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd); 1051 #endif 1052 1053 if (!arg_len) 1054 return -EINVAL; 1055 ptr += arg_len; len -= arg_len; 1056 1057 switch(uc->cmd) { 1058 case UC_SETSYNC: 1059 case UC_SETTAGS: 1060 case UC_SETWIDE: 1061 case UC_SETFLAG: 1062 case UC_RESETDEV: 1063 case UC_CLEARDEV: 1064 SKIP_SPACES(ptr, len); 1065 if ((arg_len = is_keyword(ptr, len, "all")) != 0) { 1066 ptr += arg_len; len -= arg_len; 1067 uc->target = ~0; 1068 } else { 1069 GET_INT_ARG(ptr, len, target); 1070 uc->target = (1<<target); 1071 #ifdef DEBUG_PROC_INFO 1072 printk("sym_user_command: target=%ld\n", target); 1073 #endif 1074 } 1075 break; 1076 } 1077 1078 switch(uc->cmd) { 1079 case UC_SETVERBOSE: 1080 case UC_SETSYNC: 1081 case UC_SETTAGS: 1082 case UC_SETWIDE: 1083 SKIP_SPACES(ptr, len); 1084 GET_INT_ARG(ptr, len, uc->data); 1085 #ifdef DEBUG_PROC_INFO 1086 printk("sym_user_command: data=%ld\n", uc->data); 1087 #endif 1088 break; 1089 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 1090 case UC_SETDEBUG: 1091 while (len > 0) { 1092 SKIP_SPACES(ptr, len); 1093 if ((arg_len = is_keyword(ptr, len, "alloc"))) 1094 uc->data |= DEBUG_ALLOC; 1095 else if ((arg_len = is_keyword(ptr, len, "phase"))) 1096 uc->data |= DEBUG_PHASE; 1097 else if ((arg_len = is_keyword(ptr, len, "queue"))) 1098 uc->data |= DEBUG_QUEUE; 1099 else if ((arg_len = is_keyword(ptr, len, "result"))) 1100 uc->data |= DEBUG_RESULT; 1101 else if ((arg_len = is_keyword(ptr, len, "scatter"))) 1102 uc->data |= DEBUG_SCATTER; 1103 else if ((arg_len = is_keyword(ptr, len, "script"))) 1104 uc->data |= DEBUG_SCRIPT; 1105 else if ((arg_len = is_keyword(ptr, len, "tiny"))) 1106 uc->data |= DEBUG_TINY; 1107 else if ((arg_len = is_keyword(ptr, len, "timing"))) 1108 uc->data |= DEBUG_TIMING; 1109 else if ((arg_len = is_keyword(ptr, len, "nego"))) 1110 uc->data |= DEBUG_NEGO; 1111 else if ((arg_len = is_keyword(ptr, len, "tags"))) 1112 uc->data |= DEBUG_TAGS; 1113 else if ((arg_len = is_keyword(ptr, len, "pointer"))) 1114 uc->data |= DEBUG_POINTER; 1115 else 1116 return -EINVAL; 1117 ptr += arg_len; len -= arg_len; 1118 } 1119 #ifdef DEBUG_PROC_INFO 1120 printk("sym_user_command: data=%ld\n", uc->data); 1121 #endif 1122 break; 1123 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */ 1124 case UC_SETFLAG: 1125 while (len > 0) { 1126 SKIP_SPACES(ptr, len); 1127 if ((arg_len = is_keyword(ptr, len, "no_disc"))) 1128 uc->data &= ~SYM_DISC_ENABLED; 1129 else 1130 return -EINVAL; 1131 ptr += arg_len; len -= arg_len; 1132 } 1133 break; 1134 default: 1135 break; 1136 } 1137 1138 if (len) 1139 return -EINVAL; 1140 else { 1141 unsigned long flags; 1142 1143 spin_lock_irqsave(shost->host_lock, flags); 1144 sym_exec_user_command(np, uc); 1145 spin_unlock_irqrestore(shost->host_lock, flags); 1146 } 1147 return length; 1148 } 1149 1150 #endif /* SYM_LINUX_USER_COMMAND_SUPPORT */ 1151 1152 1153 /* 1154 * Copy formatted information into the input buffer. 1155 */ 1156 static int sym_show_info(struct seq_file *m, struct Scsi_Host *shost) 1157 { 1158 #ifdef SYM_LINUX_USER_INFO_SUPPORT 1159 struct sym_data *sym_data = shost_priv(shost); 1160 struct pci_dev *pdev = sym_data->pdev; 1161 struct sym_hcb *np = sym_data->ncb; 1162 1163 seq_printf(m, "Chip " NAME53C "%s, device id 0x%x, " 1164 "revision id 0x%x\n", np->s.chip_name, 1165 pdev->device, pdev->revision); 1166 seq_printf(m, "At PCI address %s, IRQ %u\n", 1167 pci_name(pdev), pdev->irq); 1168 seq_printf(m, "Min. period factor %d, %s SCSI BUS%s\n", 1169 (int) (np->minsync_dt ? np->minsync_dt : np->minsync), 1170 np->maxwide ? "Wide" : "Narrow", 1171 np->minsync_dt ? ", DT capable" : ""); 1172 1173 seq_printf(m, "Max. started commands %d, " 1174 "max. commands per LUN %d\n", 1175 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG); 1176 1177 return 0; 1178 #else 1179 return -EINVAL; 1180 #endif /* SYM_LINUX_USER_INFO_SUPPORT */ 1181 } 1182 1183 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */ 1184 1185 /* 1186 * Free resources claimed by sym_iomap_device(). Note that 1187 * sym_free_resources() should be used instead of this function after calling 1188 * sym_attach(). 1189 */ 1190 static void sym_iounmap_device(struct sym_device *device) 1191 { 1192 if (device->s.ioaddr) 1193 pci_iounmap(device->pdev, device->s.ioaddr); 1194 if (device->s.ramaddr) 1195 pci_iounmap(device->pdev, device->s.ramaddr); 1196 } 1197 1198 /* 1199 * Free controller resources. 1200 */ 1201 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev, 1202 int do_free_irq) 1203 { 1204 /* 1205 * Free O/S specific resources. 1206 */ 1207 if (do_free_irq) 1208 free_irq(pdev->irq, np->s.host); 1209 if (np->s.ioaddr) 1210 pci_iounmap(pdev, np->s.ioaddr); 1211 if (np->s.ramaddr) 1212 pci_iounmap(pdev, np->s.ramaddr); 1213 /* 1214 * Free O/S independent resources. 1215 */ 1216 sym_hcb_free(np); 1217 1218 sym_mfree_dma(np, sizeof(*np), "HCB"); 1219 } 1220 1221 /* 1222 * Host attach and initialisations. 1223 * 1224 * Allocate host data and ncb structure. 1225 * Remap MMIO region. 1226 * Do chip initialization. 1227 * If all is OK, install interrupt handling and 1228 * start the timer daemon. 1229 */ 1230 static struct Scsi_Host *sym_attach(struct scsi_host_template *tpnt, int unit, 1231 struct sym_device *dev) 1232 { 1233 struct sym_data *sym_data; 1234 struct sym_hcb *np = NULL; 1235 struct Scsi_Host *shost = NULL; 1236 struct pci_dev *pdev = dev->pdev; 1237 unsigned long flags; 1238 struct sym_fw *fw; 1239 int do_free_irq = 0; 1240 1241 printk(KERN_INFO "sym%d: <%s> rev 0x%x at pci %s irq %u\n", 1242 unit, dev->chip.name, pdev->revision, pci_name(pdev), 1243 pdev->irq); 1244 1245 /* 1246 * Get the firmware for this chip. 1247 */ 1248 fw = sym_find_firmware(&dev->chip); 1249 if (!fw) 1250 goto attach_failed; 1251 1252 shost = scsi_host_alloc(tpnt, sizeof(*sym_data)); 1253 if (!shost) 1254 goto attach_failed; 1255 sym_data = shost_priv(shost); 1256 1257 /* 1258 * Allocate immediately the host control block, 1259 * since we are only expecting to succeed. :) 1260 * We keep track in the HCB of all the resources that 1261 * are to be released on error. 1262 */ 1263 np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB"); 1264 if (!np) 1265 goto attach_failed; 1266 np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */ 1267 sym_data->ncb = np; 1268 sym_data->pdev = pdev; 1269 np->s.host = shost; 1270 1271 pci_set_drvdata(pdev, shost); 1272 1273 /* 1274 * Copy some useful infos to the HCB. 1275 */ 1276 np->hcb_ba = vtobus(np); 1277 np->verbose = sym_driver_setup.verbose; 1278 np->s.unit = unit; 1279 np->features = dev->chip.features; 1280 np->clock_divn = dev->chip.nr_divisor; 1281 np->maxoffs = dev->chip.offset_max; 1282 np->maxburst = dev->chip.burst_max; 1283 np->myaddr = dev->host_id; 1284 np->mmio_ba = (u32)dev->mmio_base; 1285 np->ram_ba = (u32)dev->ram_base; 1286 np->s.ioaddr = dev->s.ioaddr; 1287 np->s.ramaddr = dev->s.ramaddr; 1288 1289 /* 1290 * Edit its name. 1291 */ 1292 strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name)); 1293 sprintf(np->s.inst_name, "sym%d", np->s.unit); 1294 1295 if ((SYM_CONF_DMA_ADDRESSING_MODE > 0) && (np->features & FE_DAC) && 1296 !dma_set_mask(&pdev->dev, DMA_DAC_MASK)) { 1297 set_dac(np); 1298 } else if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { 1299 printf_warning("%s: No suitable DMA available\n", sym_name(np)); 1300 goto attach_failed; 1301 } 1302 1303 if (sym_hcb_attach(shost, fw, dev->nvram)) 1304 goto attach_failed; 1305 1306 /* 1307 * Install the interrupt handler. 1308 * If we synchonize the C code with SCRIPTS on interrupt, 1309 * we do not want to share the INTR line at all. 1310 */ 1311 if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX, 1312 shost)) { 1313 printf_err("%s: request irq %u failure\n", 1314 sym_name(np), pdev->irq); 1315 goto attach_failed; 1316 } 1317 do_free_irq = 1; 1318 1319 /* 1320 * After SCSI devices have been opened, we cannot 1321 * reset the bus safely, so we do it here. 1322 */ 1323 spin_lock_irqsave(shost->host_lock, flags); 1324 if (sym_reset_scsi_bus(np, 0)) 1325 goto reset_failed; 1326 1327 /* 1328 * Start the SCRIPTS. 1329 */ 1330 sym_start_up(shost, 1); 1331 1332 /* 1333 * Start the timer daemon 1334 */ 1335 timer_setup(&np->s.timer, sym53c8xx_timer, 0); 1336 np->s.lasttime=0; 1337 sym_timer (np); 1338 1339 /* 1340 * Fill Linux host instance structure 1341 * and return success. 1342 */ 1343 shost->max_channel = 0; 1344 shost->this_id = np->myaddr; 1345 shost->max_id = np->maxwide ? 16 : 8; 1346 shost->max_lun = SYM_CONF_MAX_LUN; 1347 shost->unique_id = pci_resource_start(pdev, 0); 1348 shost->cmd_per_lun = SYM_CONF_MAX_TAG; 1349 shost->can_queue = (SYM_CONF_MAX_START-2); 1350 shost->sg_tablesize = SYM_CONF_MAX_SG; 1351 shost->max_cmd_len = 16; 1352 BUG_ON(sym2_transport_template == NULL); 1353 shost->transportt = sym2_transport_template; 1354 1355 /* 53c896 rev 1 errata: DMA may not cross 16MB boundary */ 1356 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 2) 1357 shost->dma_boundary = 0xFFFFFF; 1358 1359 spin_unlock_irqrestore(shost->host_lock, flags); 1360 1361 return shost; 1362 1363 reset_failed: 1364 printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, " 1365 "TERMINATION, DEVICE POWER etc.!\n", sym_name(np)); 1366 spin_unlock_irqrestore(shost->host_lock, flags); 1367 attach_failed: 1368 printf_info("sym%d: giving up ...\n", unit); 1369 if (np) 1370 sym_free_resources(np, pdev, do_free_irq); 1371 else 1372 sym_iounmap_device(dev); 1373 if (shost) 1374 scsi_host_put(shost); 1375 1376 return NULL; 1377 } 1378 1379 1380 /* 1381 * Detect and try to read SYMBIOS and TEKRAM NVRAM. 1382 */ 1383 #if SYM_CONF_NVRAM_SUPPORT 1384 static void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) 1385 { 1386 devp->nvram = nvp; 1387 nvp->type = 0; 1388 1389 sym_read_nvram(devp, nvp); 1390 } 1391 #else 1392 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) 1393 { 1394 } 1395 #endif /* SYM_CONF_NVRAM_SUPPORT */ 1396 1397 static int sym_check_supported(struct sym_device *device) 1398 { 1399 struct sym_chip *chip; 1400 struct pci_dev *pdev = device->pdev; 1401 unsigned long io_port = pci_resource_start(pdev, 0); 1402 int i; 1403 1404 /* 1405 * If user excluded this chip, do not initialize it. 1406 * I hate this code so much. Must kill it. 1407 */ 1408 if (io_port) { 1409 for (i = 0 ; i < 8 ; i++) { 1410 if (sym_driver_setup.excludes[i] == io_port) 1411 return -ENODEV; 1412 } 1413 } 1414 1415 /* 1416 * Check if the chip is supported. Then copy the chip description 1417 * to our device structure so we can make it match the actual device 1418 * and options. 1419 */ 1420 chip = sym_lookup_chip_table(pdev->device, pdev->revision); 1421 if (!chip) { 1422 dev_info(&pdev->dev, "device not supported\n"); 1423 return -ENODEV; 1424 } 1425 memcpy(&device->chip, chip, sizeof(device->chip)); 1426 1427 return 0; 1428 } 1429 1430 /* 1431 * Ignore Symbios chips controlled by various RAID controllers. 1432 * These controllers set value 0x52414944 at RAM end - 16. 1433 */ 1434 static int sym_check_raid(struct sym_device *device) 1435 { 1436 unsigned int ram_size, ram_val; 1437 1438 if (!device->s.ramaddr) 1439 return 0; 1440 1441 if (device->chip.features & FE_RAM8K) 1442 ram_size = 8192; 1443 else 1444 ram_size = 4096; 1445 1446 ram_val = readl(device->s.ramaddr + ram_size - 16); 1447 if (ram_val != 0x52414944) 1448 return 0; 1449 1450 dev_info(&device->pdev->dev, 1451 "not initializing, driven by RAID controller.\n"); 1452 return -ENODEV; 1453 } 1454 1455 static int sym_set_workarounds(struct sym_device *device) 1456 { 1457 struct sym_chip *chip = &device->chip; 1458 struct pci_dev *pdev = device->pdev; 1459 u_short status_reg; 1460 1461 /* 1462 * (ITEM 12 of a DEL about the 896 I haven't yet). 1463 * We must ensure the chip will use WRITE AND INVALIDATE. 1464 * The revision number limit is for now arbitrary. 1465 */ 1466 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 0x4) { 1467 chip->features |= (FE_WRIE | FE_CLSE); 1468 } 1469 1470 /* If the chip can do Memory Write Invalidate, enable it */ 1471 if (chip->features & FE_WRIE) { 1472 if (pci_set_mwi(pdev)) 1473 return -ENODEV; 1474 } 1475 1476 /* 1477 * Work around for errant bit in 895A. The 66Mhz 1478 * capable bit is set erroneously. Clear this bit. 1479 * (Item 1 DEL 533) 1480 * 1481 * Make sure Config space and Features agree. 1482 * 1483 * Recall: writes are not normal to status register - 1484 * write a 1 to clear and a 0 to leave unchanged. 1485 * Can only reset bits. 1486 */ 1487 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1488 if (chip->features & FE_66MHZ) { 1489 if (!(status_reg & PCI_STATUS_66MHZ)) 1490 chip->features &= ~FE_66MHZ; 1491 } else { 1492 if (status_reg & PCI_STATUS_66MHZ) { 1493 status_reg = PCI_STATUS_66MHZ; 1494 pci_write_config_word(pdev, PCI_STATUS, status_reg); 1495 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1496 } 1497 } 1498 1499 return 0; 1500 } 1501 1502 /* 1503 * Map HBA registers and on-chip SRAM (if present). 1504 */ 1505 static int sym_iomap_device(struct sym_device *device) 1506 { 1507 struct pci_dev *pdev = device->pdev; 1508 struct pci_bus_region bus_addr; 1509 int i = 2; 1510 1511 pcibios_resource_to_bus(pdev->bus, &bus_addr, &pdev->resource[1]); 1512 device->mmio_base = bus_addr.start; 1513 1514 if (device->chip.features & FE_RAM) { 1515 /* 1516 * If the BAR is 64-bit, resource 2 will be occupied by the 1517 * upper 32 bits 1518 */ 1519 if (!pdev->resource[i].flags) 1520 i++; 1521 pcibios_resource_to_bus(pdev->bus, &bus_addr, 1522 &pdev->resource[i]); 1523 device->ram_base = bus_addr.start; 1524 } 1525 1526 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO 1527 if (device->mmio_base) 1528 device->s.ioaddr = pci_iomap(pdev, 1, 1529 pci_resource_len(pdev, 1)); 1530 #endif 1531 if (!device->s.ioaddr) 1532 device->s.ioaddr = pci_iomap(pdev, 0, 1533 pci_resource_len(pdev, 0)); 1534 if (!device->s.ioaddr) { 1535 dev_err(&pdev->dev, "could not map registers; giving up.\n"); 1536 return -EIO; 1537 } 1538 if (device->ram_base) { 1539 device->s.ramaddr = pci_iomap(pdev, i, 1540 pci_resource_len(pdev, i)); 1541 if (!device->s.ramaddr) { 1542 dev_warn(&pdev->dev, 1543 "could not map SRAM; continuing anyway.\n"); 1544 device->ram_base = 0; 1545 } 1546 } 1547 1548 return 0; 1549 } 1550 1551 /* 1552 * The NCR PQS and PDS cards are constructed as a DEC bridge 1553 * behind which sits a proprietary NCR memory controller and 1554 * either four or two 53c875s as separate devices. We can tell 1555 * if an 875 is part of a PQS/PDS or not since if it is, it will 1556 * be on the same bus as the memory controller. In its usual 1557 * mode of operation, the 875s are slaved to the memory 1558 * controller for all transfers. To operate with the Linux 1559 * driver, the memory controller is disabled and the 875s 1560 * freed to function independently. The only wrinkle is that 1561 * the preset SCSI ID (which may be zero) must be read in from 1562 * a special configuration space register of the 875. 1563 */ 1564 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev) 1565 { 1566 int slot; 1567 u8 tmp; 1568 1569 for (slot = 0; slot < 256; slot++) { 1570 struct pci_dev *memc = pci_get_slot(pdev->bus, slot); 1571 1572 if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) { 1573 pci_dev_put(memc); 1574 continue; 1575 } 1576 1577 /* bit 1: allow individual 875 configuration */ 1578 pci_read_config_byte(memc, 0x44, &tmp); 1579 if ((tmp & 0x2) == 0) { 1580 tmp |= 0x2; 1581 pci_write_config_byte(memc, 0x44, tmp); 1582 } 1583 1584 /* bit 2: drive individual 875 interrupts to the bus */ 1585 pci_read_config_byte(memc, 0x45, &tmp); 1586 if ((tmp & 0x4) == 0) { 1587 tmp |= 0x4; 1588 pci_write_config_byte(memc, 0x45, tmp); 1589 } 1590 1591 pci_dev_put(memc); 1592 break; 1593 } 1594 1595 pci_read_config_byte(pdev, 0x84, &tmp); 1596 sym_dev->host_id = tmp; 1597 } 1598 1599 /* 1600 * Called before unloading the module. 1601 * Detach the host. 1602 * We have to free resources and halt the NCR chip. 1603 */ 1604 static int sym_detach(struct Scsi_Host *shost, struct pci_dev *pdev) 1605 { 1606 struct sym_hcb *np = sym_get_hcb(shost); 1607 printk("%s: detaching ...\n", sym_name(np)); 1608 1609 del_timer_sync(&np->s.timer); 1610 1611 /* 1612 * Reset NCR chip. 1613 * We should use sym_soft_reset(), but we don't want to do 1614 * so, since we may not be safe if interrupts occur. 1615 */ 1616 printk("%s: resetting chip\n", sym_name(np)); 1617 OUTB(np, nc_istat, SRST); 1618 INB(np, nc_mbox1); 1619 udelay(10); 1620 OUTB(np, nc_istat, 0); 1621 1622 sym_free_resources(np, pdev, 1); 1623 scsi_host_put(shost); 1624 1625 return 1; 1626 } 1627 1628 /* 1629 * Driver host template. 1630 */ 1631 static struct scsi_host_template sym2_template = { 1632 .module = THIS_MODULE, 1633 .name = "sym53c8xx", 1634 .info = sym53c8xx_info, 1635 .queuecommand = sym53c8xx_queue_command, 1636 .slave_alloc = sym53c8xx_slave_alloc, 1637 .slave_configure = sym53c8xx_slave_configure, 1638 .slave_destroy = sym53c8xx_slave_destroy, 1639 .eh_abort_handler = sym53c8xx_eh_abort_handler, 1640 .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler, 1641 .eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler, 1642 .eh_host_reset_handler = sym53c8xx_eh_host_reset_handler, 1643 .this_id = 7, 1644 .max_sectors = 0xFFFF, 1645 #ifdef SYM_LINUX_PROC_INFO_SUPPORT 1646 .show_info = sym_show_info, 1647 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT 1648 .write_info = sym_user_command, 1649 #endif 1650 .proc_name = NAME53C8XX, 1651 #endif 1652 }; 1653 1654 static int attach_count; 1655 1656 static int sym2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1657 { 1658 struct sym_device sym_dev; 1659 struct sym_nvram nvram; 1660 struct Scsi_Host *shost; 1661 int do_iounmap = 0; 1662 int do_disable_device = 1; 1663 1664 memset(&sym_dev, 0, sizeof(sym_dev)); 1665 memset(&nvram, 0, sizeof(nvram)); 1666 sym_dev.pdev = pdev; 1667 sym_dev.host_id = SYM_SETUP_HOST_ID; 1668 1669 if (pci_enable_device(pdev)) 1670 goto leave; 1671 1672 pci_set_master(pdev); 1673 1674 if (pci_request_regions(pdev, NAME53C8XX)) 1675 goto disable; 1676 1677 if (sym_check_supported(&sym_dev)) 1678 goto free; 1679 1680 if (sym_iomap_device(&sym_dev)) 1681 goto free; 1682 do_iounmap = 1; 1683 1684 if (sym_check_raid(&sym_dev)) { 1685 do_disable_device = 0; /* Don't disable the device */ 1686 goto free; 1687 } 1688 1689 if (sym_set_workarounds(&sym_dev)) 1690 goto free; 1691 1692 sym_config_pqs(pdev, &sym_dev); 1693 1694 sym_get_nvram(&sym_dev, &nvram); 1695 1696 do_iounmap = 0; /* Don't sym_iounmap_device() after sym_attach(). */ 1697 shost = sym_attach(&sym2_template, attach_count, &sym_dev); 1698 if (!shost) 1699 goto free; 1700 1701 if (scsi_add_host(shost, &pdev->dev)) 1702 goto detach; 1703 scsi_scan_host(shost); 1704 1705 attach_count++; 1706 1707 return 0; 1708 1709 detach: 1710 sym_detach(pci_get_drvdata(pdev), pdev); 1711 free: 1712 if (do_iounmap) 1713 sym_iounmap_device(&sym_dev); 1714 pci_release_regions(pdev); 1715 disable: 1716 if (do_disable_device) 1717 pci_disable_device(pdev); 1718 leave: 1719 return -ENODEV; 1720 } 1721 1722 static void sym2_remove(struct pci_dev *pdev) 1723 { 1724 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1725 1726 scsi_remove_host(shost); 1727 sym_detach(shost, pdev); 1728 pci_release_regions(pdev); 1729 pci_disable_device(pdev); 1730 1731 attach_count--; 1732 } 1733 1734 /** 1735 * sym2_io_error_detected() - called when PCI error is detected 1736 * @pdev: pointer to PCI device 1737 * @state: current state of the PCI slot 1738 */ 1739 static pci_ers_result_t sym2_io_error_detected(struct pci_dev *pdev, 1740 pci_channel_state_t state) 1741 { 1742 /* If slot is permanently frozen, turn everything off */ 1743 if (state == pci_channel_io_perm_failure) { 1744 sym2_remove(pdev); 1745 return PCI_ERS_RESULT_DISCONNECT; 1746 } 1747 1748 disable_irq(pdev->irq); 1749 pci_disable_device(pdev); 1750 1751 /* Request that MMIO be enabled, so register dump can be taken. */ 1752 return PCI_ERS_RESULT_CAN_RECOVER; 1753 } 1754 1755 /** 1756 * sym2_io_slot_dump - Enable MMIO and dump debug registers 1757 * @pdev: pointer to PCI device 1758 */ 1759 static pci_ers_result_t sym2_io_slot_dump(struct pci_dev *pdev) 1760 { 1761 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1762 1763 sym_dump_registers(shost); 1764 1765 /* Request a slot reset. */ 1766 return PCI_ERS_RESULT_NEED_RESET; 1767 } 1768 1769 /** 1770 * sym2_reset_workarounds - hardware-specific work-arounds 1771 * @pdev: pointer to PCI device 1772 * 1773 * This routine is similar to sym_set_workarounds(), except 1774 * that, at this point, we already know that the device was 1775 * successfully initialized at least once before, and so most 1776 * of the steps taken there are un-needed here. 1777 */ 1778 static void sym2_reset_workarounds(struct pci_dev *pdev) 1779 { 1780 u_short status_reg; 1781 struct sym_chip *chip; 1782 1783 chip = sym_lookup_chip_table(pdev->device, pdev->revision); 1784 1785 /* Work around for errant bit in 895A, in a fashion 1786 * similar to what is done in sym_set_workarounds(). 1787 */ 1788 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1789 if (!(chip->features & FE_66MHZ) && (status_reg & PCI_STATUS_66MHZ)) { 1790 status_reg = PCI_STATUS_66MHZ; 1791 pci_write_config_word(pdev, PCI_STATUS, status_reg); 1792 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1793 } 1794 } 1795 1796 /** 1797 * sym2_io_slot_reset() - called when the pci bus has been reset. 1798 * @pdev: pointer to PCI device 1799 * 1800 * Restart the card from scratch. 1801 */ 1802 static pci_ers_result_t sym2_io_slot_reset(struct pci_dev *pdev) 1803 { 1804 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1805 struct sym_hcb *np = sym_get_hcb(shost); 1806 1807 printk(KERN_INFO "%s: recovering from a PCI slot reset\n", 1808 sym_name(np)); 1809 1810 if (pci_enable_device(pdev)) { 1811 printk(KERN_ERR "%s: Unable to enable after PCI reset\n", 1812 sym_name(np)); 1813 return PCI_ERS_RESULT_DISCONNECT; 1814 } 1815 1816 pci_set_master(pdev); 1817 enable_irq(pdev->irq); 1818 1819 /* If the chip can do Memory Write Invalidate, enable it */ 1820 if (np->features & FE_WRIE) { 1821 if (pci_set_mwi(pdev)) 1822 return PCI_ERS_RESULT_DISCONNECT; 1823 } 1824 1825 /* Perform work-arounds, analogous to sym_set_workarounds() */ 1826 sym2_reset_workarounds(pdev); 1827 1828 /* Perform host reset only on one instance of the card */ 1829 if (PCI_FUNC(pdev->devfn) == 0) { 1830 if (sym_reset_scsi_bus(np, 0)) { 1831 printk(KERN_ERR "%s: Unable to reset scsi host\n", 1832 sym_name(np)); 1833 return PCI_ERS_RESULT_DISCONNECT; 1834 } 1835 sym_start_up(shost, 1); 1836 } 1837 1838 return PCI_ERS_RESULT_RECOVERED; 1839 } 1840 1841 /** 1842 * sym2_io_resume() - resume normal ops after PCI reset 1843 * @pdev: pointer to PCI device 1844 * 1845 * Called when the error recovery driver tells us that its 1846 * OK to resume normal operation. Use completion to allow 1847 * halted scsi ops to resume. 1848 */ 1849 static void sym2_io_resume(struct pci_dev *pdev) 1850 { 1851 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1852 struct sym_data *sym_data = shost_priv(shost); 1853 1854 spin_lock_irq(shost->host_lock); 1855 if (sym_data->io_reset) 1856 complete(sym_data->io_reset); 1857 spin_unlock_irq(shost->host_lock); 1858 } 1859 1860 static void sym2_get_signalling(struct Scsi_Host *shost) 1861 { 1862 struct sym_hcb *np = sym_get_hcb(shost); 1863 enum spi_signal_type type; 1864 1865 switch (np->scsi_mode) { 1866 case SMODE_SE: 1867 type = SPI_SIGNAL_SE; 1868 break; 1869 case SMODE_LVD: 1870 type = SPI_SIGNAL_LVD; 1871 break; 1872 case SMODE_HVD: 1873 type = SPI_SIGNAL_HVD; 1874 break; 1875 default: 1876 type = SPI_SIGNAL_UNKNOWN; 1877 break; 1878 } 1879 spi_signalling(shost) = type; 1880 } 1881 1882 static void sym2_set_offset(struct scsi_target *starget, int offset) 1883 { 1884 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1885 struct sym_hcb *np = sym_get_hcb(shost); 1886 struct sym_tcb *tp = &np->target[starget->id]; 1887 1888 tp->tgoal.offset = offset; 1889 tp->tgoal.check_nego = 1; 1890 } 1891 1892 static void sym2_set_period(struct scsi_target *starget, int period) 1893 { 1894 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1895 struct sym_hcb *np = sym_get_hcb(shost); 1896 struct sym_tcb *tp = &np->target[starget->id]; 1897 1898 /* have to have DT for these transfers, but DT will also 1899 * set width, so check that this is allowed */ 1900 if (period <= np->minsync && spi_width(starget)) 1901 tp->tgoal.dt = 1; 1902 1903 tp->tgoal.period = period; 1904 tp->tgoal.check_nego = 1; 1905 } 1906 1907 static void sym2_set_width(struct scsi_target *starget, int width) 1908 { 1909 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1910 struct sym_hcb *np = sym_get_hcb(shost); 1911 struct sym_tcb *tp = &np->target[starget->id]; 1912 1913 /* It is illegal to have DT set on narrow transfers. If DT is 1914 * clear, we must also clear IU and QAS. */ 1915 if (width == 0) 1916 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 1917 1918 tp->tgoal.width = width; 1919 tp->tgoal.check_nego = 1; 1920 } 1921 1922 static void sym2_set_dt(struct scsi_target *starget, int dt) 1923 { 1924 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1925 struct sym_hcb *np = sym_get_hcb(shost); 1926 struct sym_tcb *tp = &np->target[starget->id]; 1927 1928 /* We must clear QAS and IU if DT is clear */ 1929 if (dt) 1930 tp->tgoal.dt = 1; 1931 else 1932 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 1933 tp->tgoal.check_nego = 1; 1934 } 1935 1936 #if 0 1937 static void sym2_set_iu(struct scsi_target *starget, int iu) 1938 { 1939 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1940 struct sym_hcb *np = sym_get_hcb(shost); 1941 struct sym_tcb *tp = &np->target[starget->id]; 1942 1943 if (iu) 1944 tp->tgoal.iu = tp->tgoal.dt = 1; 1945 else 1946 tp->tgoal.iu = 0; 1947 tp->tgoal.check_nego = 1; 1948 } 1949 1950 static void sym2_set_qas(struct scsi_target *starget, int qas) 1951 { 1952 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1953 struct sym_hcb *np = sym_get_hcb(shost); 1954 struct sym_tcb *tp = &np->target[starget->id]; 1955 1956 if (qas) 1957 tp->tgoal.dt = tp->tgoal.qas = 1; 1958 else 1959 tp->tgoal.qas = 0; 1960 tp->tgoal.check_nego = 1; 1961 } 1962 #endif 1963 1964 static struct spi_function_template sym2_transport_functions = { 1965 .set_offset = sym2_set_offset, 1966 .show_offset = 1, 1967 .set_period = sym2_set_period, 1968 .show_period = 1, 1969 .set_width = sym2_set_width, 1970 .show_width = 1, 1971 .set_dt = sym2_set_dt, 1972 .show_dt = 1, 1973 #if 0 1974 .set_iu = sym2_set_iu, 1975 .show_iu = 1, 1976 .set_qas = sym2_set_qas, 1977 .show_qas = 1, 1978 #endif 1979 .get_signalling = sym2_get_signalling, 1980 }; 1981 1982 static struct pci_device_id sym2_id_table[] = { 1983 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810, 1984 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1985 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820, 1986 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ 1987 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825, 1988 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1989 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815, 1990 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1991 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP, 1992 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ 1993 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860, 1994 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1995 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510, 1996 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL }, 1997 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896, 1998 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1999 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895, 2000 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2001 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885, 2002 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2003 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875, 2004 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2005 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510, 2006 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL }, /* new */ 2007 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A, 2008 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2009 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A, 2010 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2011 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33, 2012 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2013 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66, 2014 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2015 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J, 2016 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2017 { 0, } 2018 }; 2019 2020 MODULE_DEVICE_TABLE(pci, sym2_id_table); 2021 2022 static const struct pci_error_handlers sym2_err_handler = { 2023 .error_detected = sym2_io_error_detected, 2024 .mmio_enabled = sym2_io_slot_dump, 2025 .slot_reset = sym2_io_slot_reset, 2026 .resume = sym2_io_resume, 2027 }; 2028 2029 static struct pci_driver sym2_driver = { 2030 .name = NAME53C8XX, 2031 .id_table = sym2_id_table, 2032 .probe = sym2_probe, 2033 .remove = sym2_remove, 2034 .err_handler = &sym2_err_handler, 2035 }; 2036 2037 static int __init sym2_init(void) 2038 { 2039 int error; 2040 2041 sym2_setup_params(); 2042 sym2_transport_template = spi_attach_transport(&sym2_transport_functions); 2043 if (!sym2_transport_template) 2044 return -ENODEV; 2045 2046 error = pci_register_driver(&sym2_driver); 2047 if (error) 2048 spi_release_transport(sym2_transport_template); 2049 return error; 2050 } 2051 2052 static void __exit sym2_exit(void) 2053 { 2054 pci_unregister_driver(&sym2_driver); 2055 spi_release_transport(sym2_transport_template); 2056 } 2057 2058 module_init(sym2_init); 2059 module_exit(sym2_exit); 2060