1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 #include <linux/ctype.h>
41 #include <linux/init.h>
42 #include <linux/interrupt.h>
43 #include <linux/module.h>
44 #include <linux/moduleparam.h>
45 #include <linux/spinlock.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_tcq.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_transport.h>
50 
51 #include "sym_glue.h"
52 #include "sym_nvram.h"
53 
54 #define NAME53C		"sym53c"
55 #define NAME53C8XX	"sym53c8xx"
56 
57 /* SPARC just has to be different ... */
58 #ifdef __sparc__
59 #define IRQ_FMT "%s"
60 #define IRQ_PRM(x) __irq_itoa(x)
61 #else
62 #define IRQ_FMT "%d"
63 #define IRQ_PRM(x) (x)
64 #endif
65 
66 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
67 unsigned int sym_debug_flags = 0;
68 
69 static char *excl_string;
70 static char *safe_string;
71 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
72 module_param_string(tag_ctrl, sym_driver_setup.tag_ctrl, 100, 0);
73 module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
74 module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
75 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
76 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
77 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
78 module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
79 module_param_named(verb, sym_driver_setup.verbose, byte, 0);
80 module_param_named(debug, sym_debug_flags, uint, 0);
81 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
82 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
83 module_param_named(excl, excl_string, charp, 0);
84 module_param_named(safe, safe_string, charp, 0);
85 
86 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
87 MODULE_PARM_DESC(tag_ctrl, "More detailed control over tags per LUN");
88 MODULE_PARM_DESC(burst, "Maximum burst.  0 to disable, 255 to read from registers");
89 MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
90 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
91 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
92 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
93 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
94 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
95 MODULE_PARM_DESC(debug, "Set bits to enable debugging");
96 MODULE_PARM_DESC(settle, "Settle delay in seconds.  Default 3");
97 MODULE_PARM_DESC(nvram, "Option currently not used");
98 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
99 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");
100 
101 MODULE_LICENSE("GPL");
102 MODULE_VERSION(SYM_VERSION);
103 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
104 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");
105 
106 static void sym2_setup_params(void)
107 {
108 	char *p = excl_string;
109 	int xi = 0;
110 
111 	while (p && (xi < 8)) {
112 		char *next_p;
113 		int val = (int) simple_strtoul(p, &next_p, 0);
114 		sym_driver_setup.excludes[xi++] = val;
115 		p = next_p;
116 	}
117 
118 	if (safe_string) {
119 		if (*safe_string == 'y') {
120 			sym_driver_setup.max_tag = 0;
121 			sym_driver_setup.burst_order = 0;
122 			sym_driver_setup.scsi_led = 0;
123 			sym_driver_setup.scsi_diff = 1;
124 			sym_driver_setup.irq_mode = 0;
125 			sym_driver_setup.scsi_bus_check = 2;
126 			sym_driver_setup.host_id = 7;
127 			sym_driver_setup.verbose = 2;
128 			sym_driver_setup.settle_delay = 10;
129 			sym_driver_setup.use_nvram = 1;
130 		} else if (*safe_string != 'n') {
131 			printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
132 					" passed to safe option", safe_string);
133 		}
134 	}
135 }
136 
137 /*
138  * We used to try to deal with 64-bit BARs here, but don't any more.
139  * There are many parts of this driver which would need to be modified
140  * to handle a 64-bit base address, including scripts.  I'm uncomfortable
141  * with making those changes when I have no way of testing it, so I'm
142  * just going to disable it.
143  *
144  * Note that some machines (eg HP rx8620 and Superdome) have bus addresses
145  * below 4GB and physical addresses above 4GB.  These will continue to work.
146  */
147 static int __devinit
148 pci_get_base_address(struct pci_dev *pdev, int index, unsigned long *basep)
149 {
150 	u32 tmp;
151 	unsigned long base;
152 #define PCI_BAR_OFFSET(index) (PCI_BASE_ADDRESS_0 + (index<<2))
153 
154 	pci_read_config_dword(pdev, PCI_BAR_OFFSET(index++), &tmp);
155 	base = tmp;
156 	if ((tmp & 0x7) == PCI_BASE_ADDRESS_MEM_TYPE_64) {
157 		pci_read_config_dword(pdev, PCI_BAR_OFFSET(index++), &tmp);
158 		if (tmp > 0) {
159 			dev_err(&pdev->dev,
160 				"BAR %d is 64-bit, disabling\n", index - 1);
161 			base = 0;
162 		}
163 	}
164 
165 	if ((base & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
166 		base &= PCI_BASE_ADDRESS_IO_MASK;
167 	} else {
168 		base &= PCI_BASE_ADDRESS_MEM_MASK;
169 	}
170 
171 	*basep = base;
172 	return index;
173 #undef PCI_BAR_OFFSET
174 }
175 
176 static struct scsi_transport_template *sym2_transport_template = NULL;
177 
178 /*
179  *  Used by the eh thread to wait for command completion.
180  *  It is allocated on the eh thread stack.
181  */
182 struct sym_eh_wait {
183 	struct completion done;
184 	struct timer_list timer;
185 	void (*old_done)(struct scsi_cmnd *);
186 	int to_do;
187 	int timed_out;
188 };
189 
190 /*
191  *  Driver private area in the SCSI command structure.
192  */
193 struct sym_ucmd {		/* Override the SCSI pointer structure */
194 	dma_addr_t data_mapping;
195 	u_char	data_mapped;
196 	struct sym_eh_wait *eh_wait;
197 };
198 
199 #define SYM_UCMD_PTR(cmd)  ((struct sym_ucmd *)(&(cmd)->SCp))
200 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
201 
202 static void __unmap_scsi_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
203 {
204 	int dma_dir = cmd->sc_data_direction;
205 
206 	switch(SYM_UCMD_PTR(cmd)->data_mapped) {
207 	case 2:
208 		pci_unmap_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
209 		break;
210 	case 1:
211 		pci_unmap_single(pdev, SYM_UCMD_PTR(cmd)->data_mapping,
212 				 cmd->request_bufflen, dma_dir);
213 		break;
214 	}
215 	SYM_UCMD_PTR(cmd)->data_mapped = 0;
216 }
217 
218 static dma_addr_t __map_scsi_single_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
219 {
220 	dma_addr_t mapping;
221 	int dma_dir = cmd->sc_data_direction;
222 
223 	mapping = pci_map_single(pdev, cmd->request_buffer,
224 				 cmd->request_bufflen, dma_dir);
225 	if (mapping) {
226 		SYM_UCMD_PTR(cmd)->data_mapped  = 1;
227 		SYM_UCMD_PTR(cmd)->data_mapping = mapping;
228 	}
229 
230 	return mapping;
231 }
232 
233 static int __map_scsi_sg_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
234 {
235 	int use_sg;
236 	int dma_dir = cmd->sc_data_direction;
237 
238 	use_sg = pci_map_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
239 	if (use_sg > 0) {
240 		SYM_UCMD_PTR(cmd)->data_mapped  = 2;
241 		SYM_UCMD_PTR(cmd)->data_mapping = use_sg;
242 	}
243 
244 	return use_sg;
245 }
246 
247 #define unmap_scsi_data(np, cmd)	\
248 		__unmap_scsi_data(np->s.device, cmd)
249 #define map_scsi_single_data(np, cmd)	\
250 		__map_scsi_single_data(np->s.device, cmd)
251 #define map_scsi_sg_data(np, cmd)	\
252 		__map_scsi_sg_data(np->s.device, cmd)
253 /*
254  *  Complete a pending CAM CCB.
255  */
256 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
257 {
258 	unmap_scsi_data(np, cmd);
259 	cmd->scsi_done(cmd);
260 }
261 
262 static void sym_xpt_done2(struct sym_hcb *np, struct scsi_cmnd *cmd, int cam_status)
263 {
264 	sym_set_cam_status(cmd, cam_status);
265 	sym_xpt_done(np, cmd);
266 }
267 
268 
269 /*
270  *  Tell the SCSI layer about a BUS RESET.
271  */
272 void sym_xpt_async_bus_reset(struct sym_hcb *np)
273 {
274 	printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
275 	np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
276 	np->s.settle_time_valid = 1;
277 	if (sym_verbose >= 2)
278 		printf_info("%s: command processing suspended for %d seconds\n",
279 			    sym_name(np), sym_driver_setup.settle_delay);
280 }
281 
282 /*
283  *  Tell the SCSI layer about a BUS DEVICE RESET message sent.
284  */
285 void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target)
286 {
287 	printf_notice("%s: TARGET %d has been reset.\n", sym_name(np), target);
288 }
289 
290 /*
291  *  Choose the more appropriate CAM status if
292  *  the IO encountered an extended error.
293  */
294 static int sym_xerr_cam_status(int cam_status, int x_status)
295 {
296 	if (x_status) {
297 		if	(x_status & XE_PARITY_ERR)
298 			cam_status = DID_PARITY;
299 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
300 			cam_status = DID_ERROR;
301 		else if	(x_status & XE_BAD_PHASE)
302 			cam_status = DID_ERROR;
303 		else
304 			cam_status = DID_ERROR;
305 	}
306 	return cam_status;
307 }
308 
309 /*
310  *  Build CAM result for a failed or auto-sensed IO.
311  */
312 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
313 {
314 	struct scsi_cmnd *cmd = cp->cmd;
315 	u_int cam_status, scsi_status, drv_status;
316 
317 	drv_status  = 0;
318 	cam_status  = DID_OK;
319 	scsi_status = cp->ssss_status;
320 
321 	if (cp->host_flags & HF_SENSE) {
322 		scsi_status = cp->sv_scsi_status;
323 		resid = cp->sv_resid;
324 		if (sym_verbose && cp->sv_xerr_status)
325 			sym_print_xerr(cmd, cp->sv_xerr_status);
326 		if (cp->host_status == HS_COMPLETE &&
327 		    cp->ssss_status == S_GOOD &&
328 		    cp->xerr_status == 0) {
329 			cam_status = sym_xerr_cam_status(DID_OK,
330 							 cp->sv_xerr_status);
331 			drv_status = DRIVER_SENSE;
332 			/*
333 			 *  Bounce back the sense data to user.
334 			 */
335 			memset(&cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
336 			memcpy(cmd->sense_buffer, cp->sns_bbuf,
337 			      min(sizeof(cmd->sense_buffer),
338 				  (size_t)SYM_SNS_BBUF_LEN));
339 #if 0
340 			/*
341 			 *  If the device reports a UNIT ATTENTION condition
342 			 *  due to a RESET condition, we should consider all
343 			 *  disconnect CCBs for this unit as aborted.
344 			 */
345 			if (1) {
346 				u_char *p;
347 				p  = (u_char *) cmd->sense_data;
348 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
349 					sym_clear_tasks(np, DID_ABORT,
350 							cp->target,cp->lun, -1);
351 			}
352 #endif
353 		} else {
354 			/*
355 			 * Error return from our internal request sense.  This
356 			 * is bad: we must clear the contingent allegiance
357 			 * condition otherwise the device will always return
358 			 * BUSY.  Use a big stick.
359 			 */
360 			sym_reset_scsi_target(np, cmd->device->id);
361 			cam_status = DID_ERROR;
362 		}
363 	} else if (cp->host_status == HS_COMPLETE) 	/* Bad SCSI status */
364 		cam_status = DID_OK;
365 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
366 		cam_status = DID_NO_CONNECT;
367 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
368 		cam_status = DID_ERROR;
369 	else {						/* Extended error */
370 		if (sym_verbose) {
371 			sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
372 				cp->host_status, cp->ssss_status,
373 				cp->xerr_status);
374 		}
375 		/*
376 		 *  Set the most appropriate value for CAM status.
377 		 */
378 		cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
379 	}
380 	cmd->resid = resid;
381 	cmd->result = (drv_status << 24) + (cam_status << 16) + scsi_status;
382 }
383 
384 
385 /*
386  *  Build the scatter/gather array for an I/O.
387  */
388 
389 static int sym_scatter_no_sglist(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
390 {
391 	struct sym_tblmove *data = &cp->phys.data[SYM_CONF_MAX_SG-1];
392 	int segment;
393 	unsigned int len = cmd->request_bufflen;
394 
395 	if (len) {
396 		dma_addr_t baddr = map_scsi_single_data(np, cmd);
397 		if (baddr) {
398 			if (len & 1) {
399 				struct sym_tcb *tp = &np->target[cp->target];
400 				if (tp->head.wval & EWS) {
401 					len++;
402 					cp->odd_byte_adjustment++;
403 				}
404 			}
405 			cp->data_len = len;
406 			sym_build_sge(np, data, baddr, len);
407 			segment = 1;
408 		} else {
409 			segment = -2;
410 		}
411 	} else {
412 		segment = 0;
413 	}
414 
415 	return segment;
416 }
417 
418 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
419 {
420 	int segment;
421 	int use_sg = (int) cmd->use_sg;
422 
423 	cp->data_len = 0;
424 
425 	if (!use_sg)
426 		segment = sym_scatter_no_sglist(np, cp, cmd);
427 	else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
428 		struct scatterlist *scatter = (struct scatterlist *)cmd->buffer;
429 		struct sym_tcb *tp = &np->target[cp->target];
430 		struct sym_tblmove *data;
431 
432 		if (use_sg > SYM_CONF_MAX_SG) {
433 			unmap_scsi_data(np, cmd);
434 			return -1;
435 		}
436 
437 		data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];
438 
439 		for (segment = 0; segment < use_sg; segment++) {
440 			dma_addr_t baddr = sg_dma_address(&scatter[segment]);
441 			unsigned int len = sg_dma_len(&scatter[segment]);
442 
443 			if ((len & 1) && (tp->head.wval & EWS)) {
444 				len++;
445 				cp->odd_byte_adjustment++;
446 			}
447 
448 			sym_build_sge(np, &data[segment], baddr, len);
449 			cp->data_len += len;
450 		}
451 	} else {
452 		segment = -2;
453 	}
454 
455 	return segment;
456 }
457 
458 /*
459  *  Queue a SCSI command.
460  */
461 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
462 {
463 	struct scsi_device *sdev = cmd->device;
464 	struct sym_tcb *tp;
465 	struct sym_lcb *lp;
466 	struct sym_ccb *cp;
467 	int	order;
468 
469 	/*
470 	 *  Minimal checkings, so that we will not
471 	 *  go outside our tables.
472 	 */
473 	if (sdev->id == np->myaddr) {
474 		sym_xpt_done2(np, cmd, DID_NO_CONNECT);
475 		return 0;
476 	}
477 
478 	/*
479 	 *  Retrieve the target descriptor.
480 	 */
481 	tp = &np->target[sdev->id];
482 
483 	/*
484 	 *  Select tagged/untagged.
485 	 */
486 	lp = sym_lp(tp, sdev->lun);
487 	order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;
488 
489 	/*
490 	 *  Queue the SCSI IO.
491 	 */
492 	cp = sym_get_ccb(np, cmd, order);
493 	if (!cp)
494 		return 1;	/* Means resource shortage */
495 	sym_queue_scsiio(np, cmd, cp);
496 	return 0;
497 }
498 
499 /*
500  *  Setup buffers and pointers that address the CDB.
501  */
502 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
503 {
504 	memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);
505 
506 	cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]);
507 	cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
508 
509 	return 0;
510 }
511 
512 /*
513  *  Setup pointers that address the data and start the I/O.
514  */
515 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
516 {
517 	struct sym_tcb *tp = &np->target[cp->target];
518 	struct sym_lcb *lp = sym_lp(tp, cp->lun);
519 	u32 lastp, goalp;
520 	int dir;
521 
522 	/*
523 	 *  Build the CDB.
524 	 */
525 	if (sym_setup_cdb(np, cmd, cp))
526 		goto out_abort;
527 
528 	/*
529 	 *  No direction means no data.
530 	 */
531 	dir = cmd->sc_data_direction;
532 	if (dir != DMA_NONE) {
533 		cp->segments = sym_scatter(np, cp, cmd);
534 		if (cp->segments < 0) {
535 			sym_set_cam_status(cmd, DID_ERROR);
536 			goto out_abort;
537 		}
538 
539 		/*
540 		 *  No segments means no data.
541 		 */
542 		if (!cp->segments)
543 			dir = DMA_NONE;
544 	} else {
545 		cp->data_len = 0;
546 		cp->segments = 0;
547 	}
548 
549 	/*
550 	 *  Set the data pointer.
551 	 */
552 	switch (dir) {
553 	case DMA_BIDIRECTIONAL:
554 		printk("%s: got DMA_BIDIRECTIONAL command", sym_name(np));
555 		sym_set_cam_status(cmd, DID_ERROR);
556 		goto out_abort;
557 	case DMA_TO_DEVICE:
558 		goalp = SCRIPTA_BA(np, data_out2) + 8;
559 		lastp = goalp - 8 - (cp->segments * (2*4));
560 		break;
561 	case DMA_FROM_DEVICE:
562 		cp->host_flags |= HF_DATA_IN;
563 		goalp = SCRIPTA_BA(np, data_in2) + 8;
564 		lastp = goalp - 8 - (cp->segments * (2*4));
565 		break;
566 	case DMA_NONE:
567 	default:
568 		lastp = goalp = SCRIPTB_BA(np, no_data);
569 		break;
570 	}
571 
572 	/*
573 	 *  Set all pointers values needed by SCRIPTS.
574 	 */
575 	cp->phys.head.lastp = cpu_to_scr(lastp);
576 	cp->phys.head.savep = cpu_to_scr(lastp);
577 	cp->startp	    = cp->phys.head.savep;
578 	cp->goalp	    = cpu_to_scr(goalp);
579 
580 	/*
581 	 *  When `#ifed 1', the code below makes the driver
582 	 *  panic on the first attempt to write to a SCSI device.
583 	 *  It is the first test we want to do after a driver
584 	 *  change that does not seem obviously safe. :)
585 	 */
586 #if 0
587 	switch (cp->cdb_buf[0]) {
588 	case 0x0A: case 0x2A: case 0xAA:
589 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
590 		break;
591 	default:
592 		break;
593 	}
594 #endif
595 
596 	/*
597 	 *	activate this job.
598 	 */
599 	sym_start_next_ccbs(np, lp, 2);
600 	return 0;
601 
602 out_abort:
603 	sym_free_ccb(np, cp);
604 	sym_xpt_done(np, cmd);
605 	return 0;
606 }
607 
608 
609 /*
610  *  timer daemon.
611  *
612  *  Misused to keep the driver running when
613  *  interrupts are not configured correctly.
614  */
615 static void sym_timer(struct sym_hcb *np)
616 {
617 	unsigned long thistime = jiffies;
618 
619 	/*
620 	 *  Restart the timer.
621 	 */
622 	np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
623 	add_timer(&np->s.timer);
624 
625 	/*
626 	 *  If we are resetting the ncr, wait for settle_time before
627 	 *  clearing it. Then command processing will be resumed.
628 	 */
629 	if (np->s.settle_time_valid) {
630 		if (time_before_eq(np->s.settle_time, thistime)) {
631 			if (sym_verbose >= 2 )
632 				printk("%s: command processing resumed\n",
633 				       sym_name(np));
634 			np->s.settle_time_valid = 0;
635 		}
636 		return;
637 	}
638 
639 	/*
640 	 *	Nothing to do for now, but that may come.
641 	 */
642 	if (np->s.lasttime + 4*HZ < thistime) {
643 		np->s.lasttime = thistime;
644 	}
645 
646 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
647 	/*
648 	 *  Some way-broken PCI bridges may lead to
649 	 *  completions being lost when the clearing
650 	 *  of the INTFLY flag by the CPU occurs
651 	 *  concurrently with the chip raising this flag.
652 	 *  If this ever happen, lost completions will
653 	 * be reaped here.
654 	 */
655 	sym_wakeup_done(np);
656 #endif
657 }
658 
659 
660 /*
661  *  PCI BUS error handler.
662  */
663 void sym_log_bus_error(struct sym_hcb *np)
664 {
665 	u_short pci_sts;
666 	pci_read_config_word(np->s.device, PCI_STATUS, &pci_sts);
667 	if (pci_sts & 0xf900) {
668 		pci_write_config_word(np->s.device, PCI_STATUS, pci_sts);
669 		printf("%s: PCI STATUS = 0x%04x\n",
670 			sym_name(np), pci_sts & 0xf900);
671 	}
672 }
673 
674 /*
675  * queuecommand method.  Entered with the host adapter lock held and
676  * interrupts disabled.
677  */
678 static int sym53c8xx_queue_command(struct scsi_cmnd *cmd,
679 					void (*done)(struct scsi_cmnd *))
680 {
681 	struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
682 	struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
683 	int sts = 0;
684 
685 	cmd->scsi_done     = done;
686 	memset(ucp, 0, sizeof(*ucp));
687 
688 	/*
689 	 *  Shorten our settle_time if needed for
690 	 *  this command not to time out.
691 	 */
692 	if (np->s.settle_time_valid && cmd->timeout_per_command) {
693 		unsigned long tlimit = jiffies + cmd->timeout_per_command;
694 		tlimit -= SYM_CONF_TIMER_INTERVAL*2;
695 		if (time_after(np->s.settle_time, tlimit)) {
696 			np->s.settle_time = tlimit;
697 		}
698 	}
699 
700 	if (np->s.settle_time_valid)
701 		return SCSI_MLQUEUE_HOST_BUSY;
702 
703 	sts = sym_queue_command(np, cmd);
704 	if (sts)
705 		return SCSI_MLQUEUE_HOST_BUSY;
706 	return 0;
707 }
708 
709 /*
710  *  Linux entry point of the interrupt handler.
711  */
712 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs)
713 {
714 	unsigned long flags;
715 	struct sym_hcb *np = (struct sym_hcb *)dev_id;
716 
717 	if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
718 
719 	spin_lock_irqsave(np->s.host->host_lock, flags);
720 	sym_interrupt(np);
721 	spin_unlock_irqrestore(np->s.host->host_lock, flags);
722 
723 	if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
724 
725 	return IRQ_HANDLED;
726 }
727 
728 /*
729  *  Linux entry point of the timer handler
730  */
731 static void sym53c8xx_timer(unsigned long npref)
732 {
733 	struct sym_hcb *np = (struct sym_hcb *)npref;
734 	unsigned long flags;
735 
736 	spin_lock_irqsave(np->s.host->host_lock, flags);
737 	sym_timer(np);
738 	spin_unlock_irqrestore(np->s.host->host_lock, flags);
739 }
740 
741 
742 /*
743  *  What the eh thread wants us to perform.
744  */
745 #define SYM_EH_ABORT		0
746 #define SYM_EH_DEVICE_RESET	1
747 #define SYM_EH_BUS_RESET	2
748 #define SYM_EH_HOST_RESET	3
749 
750 /*
751  *  What we will do regarding the involved SCSI command.
752  */
753 #define SYM_EH_DO_IGNORE	0
754 #define SYM_EH_DO_COMPLETE	1
755 #define SYM_EH_DO_WAIT		2
756 
757 /*
758  *  Our general completion handler.
759  */
760 static void __sym_eh_done(struct scsi_cmnd *cmd, int timed_out)
761 {
762 	struct sym_eh_wait *ep = SYM_UCMD_PTR(cmd)->eh_wait;
763 	if (!ep)
764 		return;
765 
766 	/* Try to avoid a race here (not 100% safe) */
767 	if (!timed_out) {
768 		ep->timed_out = 0;
769 		if (ep->to_do == SYM_EH_DO_WAIT && !del_timer(&ep->timer))
770 			return;
771 	}
772 
773 	/* Revert everything */
774 	SYM_UCMD_PTR(cmd)->eh_wait = NULL;
775 	cmd->scsi_done = ep->old_done;
776 
777 	/* Wake up the eh thread if it wants to sleep */
778 	if (ep->to_do == SYM_EH_DO_WAIT)
779 		complete(&ep->done);
780 }
781 
782 /*
783  *  scsi_done() alias when error recovery is in progress.
784  */
785 static void sym_eh_done(struct scsi_cmnd *cmd) { __sym_eh_done(cmd, 0); }
786 
787 /*
788  *  Some timeout handler to avoid waiting too long.
789  */
790 static void sym_eh_timeout(u_long p) { __sym_eh_done((struct scsi_cmnd *)p, 1); }
791 
792 /*
793  *  Generic method for our eh processing.
794  *  The 'op' argument tells what we have to do.
795  */
796 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
797 {
798 	struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
799 	SYM_QUEHEAD *qp;
800 	int to_do = SYM_EH_DO_IGNORE;
801 	int sts = -1;
802 	struct sym_eh_wait eh, *ep = &eh;
803 
804 	dev_warn(&cmd->device->sdev_gendev, "%s operation started.\n", opname);
805 
806 	/* This one is queued in some place -> to wait for completion */
807 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
808 		struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
809 		if (cp->cmd == cmd) {
810 			to_do = SYM_EH_DO_WAIT;
811 			goto prepare;
812 		}
813 	}
814 
815 prepare:
816 	/* Prepare stuff to either ignore, complete or wait for completion */
817 	switch(to_do) {
818 	default:
819 	case SYM_EH_DO_IGNORE:
820 		break;
821 	case SYM_EH_DO_WAIT:
822 		init_completion(&ep->done);
823 		/* fall through */
824 	case SYM_EH_DO_COMPLETE:
825 		ep->old_done = cmd->scsi_done;
826 		cmd->scsi_done = sym_eh_done;
827 		SYM_UCMD_PTR(cmd)->eh_wait = ep;
828 	}
829 
830 	/* Try to proceed the operation we have been asked for */
831 	sts = -1;
832 	switch(op) {
833 	case SYM_EH_ABORT:
834 		sts = sym_abort_scsiio(np, cmd, 1);
835 		break;
836 	case SYM_EH_DEVICE_RESET:
837 		sts = sym_reset_scsi_target(np, cmd->device->id);
838 		break;
839 	case SYM_EH_BUS_RESET:
840 		sym_reset_scsi_bus(np, 1);
841 		sts = 0;
842 		break;
843 	case SYM_EH_HOST_RESET:
844 		sym_reset_scsi_bus(np, 0);
845 		sym_start_up (np, 1);
846 		sts = 0;
847 		break;
848 	default:
849 		break;
850 	}
851 
852 	/* On error, restore everything and cross fingers :) */
853 	if (sts) {
854 		SYM_UCMD_PTR(cmd)->eh_wait = NULL;
855 		cmd->scsi_done = ep->old_done;
856 		to_do = SYM_EH_DO_IGNORE;
857 	}
858 
859 	ep->to_do = to_do;
860 	/* Complete the command with locks held as required by the driver */
861 	if (to_do == SYM_EH_DO_COMPLETE)
862 		sym_xpt_done2(np, cmd, DID_ABORT);
863 
864 	/* Wait for completion with locks released, as required by kernel */
865 	if (to_do == SYM_EH_DO_WAIT) {
866 		init_timer(&ep->timer);
867 		ep->timer.expires = jiffies + (5*HZ);
868 		ep->timer.function = sym_eh_timeout;
869 		ep->timer.data = (u_long)cmd;
870 		ep->timed_out = 1;	/* Be pessimistic for once :) */
871 		add_timer(&ep->timer);
872 		spin_unlock_irq(np->s.host->host_lock);
873 		wait_for_completion(&ep->done);
874 		spin_lock_irq(np->s.host->host_lock);
875 		if (ep->timed_out)
876 			sts = -2;
877 	}
878 	dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
879 			sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
880 	return sts ? SCSI_FAILED : SCSI_SUCCESS;
881 }
882 
883 
884 /*
885  * Error handlers called from the eh thread (one thread per HBA).
886  */
887 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
888 {
889 	int rc;
890 
891 	spin_lock_irq(cmd->device->host->host_lock);
892 	rc = sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd);
893 	spin_unlock_irq(cmd->device->host->host_lock);
894 
895 	return rc;
896 }
897 
898 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd)
899 {
900 	int rc;
901 
902 	spin_lock_irq(cmd->device->host->host_lock);
903 	rc = sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd);
904 	spin_unlock_irq(cmd->device->host->host_lock);
905 
906 	return rc;
907 }
908 
909 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
910 {
911 	int rc;
912 
913 	spin_lock_irq(cmd->device->host->host_lock);
914 	rc = sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd);
915 	spin_unlock_irq(cmd->device->host->host_lock);
916 
917 	return rc;
918 }
919 
920 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
921 {
922 	int rc;
923 
924 	spin_lock_irq(cmd->device->host->host_lock);
925 	rc = sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd);
926 	spin_unlock_irq(cmd->device->host->host_lock);
927 
928 	return rc;
929 }
930 
931 /*
932  *  Tune device queuing depth, according to various limits.
933  */
934 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
935 {
936 	struct sym_lcb *lp = sym_lp(tp, lun);
937 	u_short	oldtags;
938 
939 	if (!lp)
940 		return;
941 
942 	oldtags = lp->s.reqtags;
943 
944 	if (reqtags > lp->s.scdev_depth)
945 		reqtags = lp->s.scdev_depth;
946 
947 	lp->started_limit = reqtags ? reqtags : 2;
948 	lp->started_max   = 1;
949 	lp->s.reqtags     = reqtags;
950 
951 	if (reqtags != oldtags) {
952 		dev_info(&tp->starget->dev,
953 		         "tagged command queuing %s, command queue depth %d.\n",
954 		          lp->s.reqtags ? "enabled" : "disabled",
955  		          lp->started_limit);
956 	}
957 }
958 
959 /*
960  *  Linux select queue depths function
961  */
962 #define DEF_DEPTH	(sym_driver_setup.max_tag)
963 #define ALL_TARGETS	-2
964 #define NO_TARGET	-1
965 #define ALL_LUNS	-2
966 #define NO_LUN		-1
967 
968 static int device_queue_depth(struct sym_hcb *np, int target, int lun)
969 {
970 	int c, h, t, u, v;
971 	char *p = sym_driver_setup.tag_ctrl;
972 	char *ep;
973 
974 	h = -1;
975 	t = NO_TARGET;
976 	u = NO_LUN;
977 	while ((c = *p++) != 0) {
978 		v = simple_strtoul(p, &ep, 0);
979 		switch(c) {
980 		case '/':
981 			++h;
982 			t = ALL_TARGETS;
983 			u = ALL_LUNS;
984 			break;
985 		case 't':
986 			if (t != target)
987 				t = (target == v) ? v : NO_TARGET;
988 			u = ALL_LUNS;
989 			break;
990 		case 'u':
991 			if (u != lun)
992 				u = (lun == v) ? v : NO_LUN;
993 			break;
994 		case 'q':
995 			if (h == np->s.unit &&
996 				(t == ALL_TARGETS || t == target) &&
997 				(u == ALL_LUNS    || u == lun))
998 				return v;
999 			break;
1000 		case '-':
1001 			t = ALL_TARGETS;
1002 			u = ALL_LUNS;
1003 			break;
1004 		default:
1005 			break;
1006 		}
1007 		p = ep;
1008 	}
1009 	return DEF_DEPTH;
1010 }
1011 
1012 static int sym53c8xx_slave_alloc(struct scsi_device *sdev)
1013 {
1014 	struct sym_hcb *np = sym_get_hcb(sdev->host);
1015 	struct sym_tcb *tp = &np->target[sdev->id];
1016 	struct sym_lcb *lp;
1017 
1018 	if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN)
1019 		return -ENXIO;
1020 
1021 	tp->starget = sdev->sdev_target;
1022 	/*
1023 	 * Fail the device init if the device is flagged NOSCAN at BOOT in
1024 	 * the NVRAM.  This may speed up boot and maintain coherency with
1025 	 * BIOS device numbering.  Clearing the flag allows the user to
1026 	 * rescan skipped devices later.  We also return an error for
1027 	 * devices not flagged for SCAN LUNS in the NVRAM since some single
1028 	 * lun devices behave badly when asked for a non zero LUN.
1029 	 */
1030 
1031 	if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) {
1032 		tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
1033 		starget_printk(KERN_INFO, tp->starget,
1034 				"Scan at boot disabled in NVRAM\n");
1035 		return -ENXIO;
1036 	}
1037 
1038 	if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) {
1039 		if (sdev->lun != 0)
1040 			return -ENXIO;
1041 		starget_printk(KERN_INFO, tp->starget,
1042 				"Multiple LUNs disabled in NVRAM\n");
1043 	}
1044 
1045 	lp = sym_alloc_lcb(np, sdev->id, sdev->lun);
1046 	if (!lp)
1047 		return -ENOMEM;
1048 
1049 	spi_min_period(tp->starget) = tp->usr_period;
1050 	spi_max_width(tp->starget) = tp->usr_width;
1051 
1052 	return 0;
1053 }
1054 
1055 /*
1056  * Linux entry point for device queue sizing.
1057  */
1058 static int sym53c8xx_slave_configure(struct scsi_device *sdev)
1059 {
1060 	struct sym_hcb *np = sym_get_hcb(sdev->host);
1061 	struct sym_tcb *tp = &np->target[sdev->id];
1062 	struct sym_lcb *lp = sym_lp(tp, sdev->lun);
1063 	int reqtags, depth_to_use;
1064 
1065 	/*
1066 	 *  Get user flags.
1067 	 */
1068 	lp->curr_flags = lp->user_flags;
1069 
1070 	/*
1071 	 *  Select queue depth from driver setup.
1072 	 *  Donnot use more than configured by user.
1073 	 *  Use at least 2.
1074 	 *  Donnot use more than our maximum.
1075 	 */
1076 	reqtags = device_queue_depth(np, sdev->id, sdev->lun);
1077 	if (reqtags > tp->usrtags)
1078 		reqtags = tp->usrtags;
1079 	if (!sdev->tagged_supported)
1080 		reqtags = 0;
1081 #if 1 /* Avoid to locally queue commands for no good reasons */
1082 	if (reqtags > SYM_CONF_MAX_TAG)
1083 		reqtags = SYM_CONF_MAX_TAG;
1084 	depth_to_use = (reqtags ? reqtags : 2);
1085 #else
1086 	depth_to_use = (reqtags ? SYM_CONF_MAX_TAG : 2);
1087 #endif
1088 	scsi_adjust_queue_depth(sdev,
1089 				(sdev->tagged_supported ?
1090 				 MSG_SIMPLE_TAG : 0),
1091 				depth_to_use);
1092 	lp->s.scdev_depth = depth_to_use;
1093 	sym_tune_dev_queuing(tp, sdev->lun, reqtags);
1094 
1095 	if (!spi_initial_dv(sdev->sdev_target))
1096 		spi_dv_device(sdev);
1097 
1098 	return 0;
1099 }
1100 
1101 static void sym53c8xx_slave_destroy(struct scsi_device *sdev)
1102 {
1103 	struct sym_hcb *np = sym_get_hcb(sdev->host);
1104 	struct sym_lcb *lp = sym_lp(&np->target[sdev->id], sdev->lun);
1105 
1106 	if (lp->itlq_tbl)
1107 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK * 4, "ITLQ_TBL");
1108 	kfree(lp->cb_tags);
1109 	sym_mfree_dma(lp, sizeof(*lp), "LCB");
1110 }
1111 
1112 /*
1113  *  Linux entry point for info() function
1114  */
1115 static const char *sym53c8xx_info (struct Scsi_Host *host)
1116 {
1117 	return SYM_DRIVER_NAME;
1118 }
1119 
1120 
1121 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1122 /*
1123  *  Proc file system stuff
1124  *
1125  *  A read operation returns adapter information.
1126  *  A write operation is a control command.
1127  *  The string is parsed in the driver code and the command is passed
1128  *  to the sym_usercmd() function.
1129  */
1130 
1131 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT
1132 
1133 struct	sym_usrcmd {
1134 	u_long	target;
1135 	u_long	lun;
1136 	u_long	data;
1137 	u_long	cmd;
1138 };
1139 
1140 #define UC_SETSYNC      10
1141 #define UC_SETTAGS	11
1142 #define UC_SETDEBUG	12
1143 #define UC_SETWIDE	14
1144 #define UC_SETFLAG	15
1145 #define UC_SETVERBOSE	17
1146 #define UC_RESETDEV	18
1147 #define UC_CLEARDEV	19
1148 
1149 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
1150 {
1151 	struct sym_tcb *tp;
1152 	int t, l;
1153 
1154 	switch (uc->cmd) {
1155 	case 0: return;
1156 
1157 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1158 	case UC_SETDEBUG:
1159 		sym_debug_flags = uc->data;
1160 		break;
1161 #endif
1162 	case UC_SETVERBOSE:
1163 		np->verbose = uc->data;
1164 		break;
1165 	default:
1166 		/*
1167 		 * We assume that other commands apply to targets.
1168 		 * This should always be the case and avoid the below
1169 		 * 4 lines to be repeated 6 times.
1170 		 */
1171 		for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
1172 			if (!((uc->target >> t) & 1))
1173 				continue;
1174 			tp = &np->target[t];
1175 
1176 			switch (uc->cmd) {
1177 
1178 			case UC_SETSYNC:
1179 				if (!uc->data || uc->data >= 255) {
1180 					tp->tgoal.iu = tp->tgoal.dt =
1181 						tp->tgoal.qas = 0;
1182 					tp->tgoal.offset = 0;
1183 				} else if (uc->data <= 9 && np->minsync_dt) {
1184 					if (uc->data < np->minsync_dt)
1185 						uc->data = np->minsync_dt;
1186 					tp->tgoal.iu = tp->tgoal.dt =
1187 						tp->tgoal.qas = 1;
1188 					tp->tgoal.width = 1;
1189 					tp->tgoal.period = uc->data;
1190 					tp->tgoal.offset = np->maxoffs_dt;
1191 				} else {
1192 					if (uc->data < np->minsync)
1193 						uc->data = np->minsync;
1194 					tp->tgoal.iu = tp->tgoal.dt =
1195 						tp->tgoal.qas = 0;
1196 					tp->tgoal.period = uc->data;
1197 					tp->tgoal.offset = np->maxoffs;
1198 				}
1199 				tp->tgoal.check_nego = 1;
1200 				break;
1201 			case UC_SETWIDE:
1202 				tp->tgoal.width = uc->data ? 1 : 0;
1203 				tp->tgoal.check_nego = 1;
1204 				break;
1205 			case UC_SETTAGS:
1206 				for (l = 0; l < SYM_CONF_MAX_LUN; l++)
1207 					sym_tune_dev_queuing(tp, l, uc->data);
1208 				break;
1209 			case UC_RESETDEV:
1210 				tp->to_reset = 1;
1211 				np->istat_sem = SEM;
1212 				OUTB(np, nc_istat, SIGP|SEM);
1213 				break;
1214 			case UC_CLEARDEV:
1215 				for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
1216 					struct sym_lcb *lp = sym_lp(tp, l);
1217 					if (lp) lp->to_clear = 1;
1218 				}
1219 				np->istat_sem = SEM;
1220 				OUTB(np, nc_istat, SIGP|SEM);
1221 				break;
1222 			case UC_SETFLAG:
1223 				tp->usrflags = uc->data;
1224 				break;
1225 			}
1226 		}
1227 		break;
1228 	}
1229 }
1230 
1231 static int skip_spaces(char *ptr, int len)
1232 {
1233 	int cnt, c;
1234 
1235 	for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);
1236 
1237 	return (len - cnt);
1238 }
1239 
1240 static int get_int_arg(char *ptr, int len, u_long *pv)
1241 {
1242 	char *end;
1243 
1244 	*pv = simple_strtoul(ptr, &end, 10);
1245 	return (end - ptr);
1246 }
1247 
1248 static int is_keyword(char *ptr, int len, char *verb)
1249 {
1250 	int verb_len = strlen(verb);
1251 
1252 	if (len >= verb_len && !memcmp(verb, ptr, verb_len))
1253 		return verb_len;
1254 	else
1255 		return 0;
1256 }
1257 
1258 #define SKIP_SPACES(ptr, len)						\
1259 	if ((arg_len = skip_spaces(ptr, len)) < 1)			\
1260 		return -EINVAL;						\
1261 	ptr += arg_len; len -= arg_len;
1262 
1263 #define GET_INT_ARG(ptr, len, v)					\
1264 	if (!(arg_len = get_int_arg(ptr, len, &(v))))			\
1265 		return -EINVAL;						\
1266 	ptr += arg_len; len -= arg_len;
1267 
1268 
1269 /*
1270  * Parse a control command
1271  */
1272 
1273 static int sym_user_command(struct sym_hcb *np, char *buffer, int length)
1274 {
1275 	char *ptr	= buffer;
1276 	int len		= length;
1277 	struct sym_usrcmd cmd, *uc = &cmd;
1278 	int		arg_len;
1279 	u_long 		target;
1280 
1281 	memset(uc, 0, sizeof(*uc));
1282 
1283 	if (len > 0 && ptr[len-1] == '\n')
1284 		--len;
1285 
1286 	if	((arg_len = is_keyword(ptr, len, "setsync")) != 0)
1287 		uc->cmd = UC_SETSYNC;
1288 	else if	((arg_len = is_keyword(ptr, len, "settags")) != 0)
1289 		uc->cmd = UC_SETTAGS;
1290 	else if	((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
1291 		uc->cmd = UC_SETVERBOSE;
1292 	else if	((arg_len = is_keyword(ptr, len, "setwide")) != 0)
1293 		uc->cmd = UC_SETWIDE;
1294 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1295 	else if	((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
1296 		uc->cmd = UC_SETDEBUG;
1297 #endif
1298 	else if	((arg_len = is_keyword(ptr, len, "setflag")) != 0)
1299 		uc->cmd = UC_SETFLAG;
1300 	else if	((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
1301 		uc->cmd = UC_RESETDEV;
1302 	else if	((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
1303 		uc->cmd = UC_CLEARDEV;
1304 	else
1305 		arg_len = 0;
1306 
1307 #ifdef DEBUG_PROC_INFO
1308 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
1309 #endif
1310 
1311 	if (!arg_len)
1312 		return -EINVAL;
1313 	ptr += arg_len; len -= arg_len;
1314 
1315 	switch(uc->cmd) {
1316 	case UC_SETSYNC:
1317 	case UC_SETTAGS:
1318 	case UC_SETWIDE:
1319 	case UC_SETFLAG:
1320 	case UC_RESETDEV:
1321 	case UC_CLEARDEV:
1322 		SKIP_SPACES(ptr, len);
1323 		if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
1324 			ptr += arg_len; len -= arg_len;
1325 			uc->target = ~0;
1326 		} else {
1327 			GET_INT_ARG(ptr, len, target);
1328 			uc->target = (1<<target);
1329 #ifdef DEBUG_PROC_INFO
1330 printk("sym_user_command: target=%ld\n", target);
1331 #endif
1332 		}
1333 		break;
1334 	}
1335 
1336 	switch(uc->cmd) {
1337 	case UC_SETVERBOSE:
1338 	case UC_SETSYNC:
1339 	case UC_SETTAGS:
1340 	case UC_SETWIDE:
1341 		SKIP_SPACES(ptr, len);
1342 		GET_INT_ARG(ptr, len, uc->data);
1343 #ifdef DEBUG_PROC_INFO
1344 printk("sym_user_command: data=%ld\n", uc->data);
1345 #endif
1346 		break;
1347 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1348 	case UC_SETDEBUG:
1349 		while (len > 0) {
1350 			SKIP_SPACES(ptr, len);
1351 			if	((arg_len = is_keyword(ptr, len, "alloc")))
1352 				uc->data |= DEBUG_ALLOC;
1353 			else if	((arg_len = is_keyword(ptr, len, "phase")))
1354 				uc->data |= DEBUG_PHASE;
1355 			else if	((arg_len = is_keyword(ptr, len, "queue")))
1356 				uc->data |= DEBUG_QUEUE;
1357 			else if	((arg_len = is_keyword(ptr, len, "result")))
1358 				uc->data |= DEBUG_RESULT;
1359 			else if	((arg_len = is_keyword(ptr, len, "scatter")))
1360 				uc->data |= DEBUG_SCATTER;
1361 			else if	((arg_len = is_keyword(ptr, len, "script")))
1362 				uc->data |= DEBUG_SCRIPT;
1363 			else if	((arg_len = is_keyword(ptr, len, "tiny")))
1364 				uc->data |= DEBUG_TINY;
1365 			else if	((arg_len = is_keyword(ptr, len, "timing")))
1366 				uc->data |= DEBUG_TIMING;
1367 			else if	((arg_len = is_keyword(ptr, len, "nego")))
1368 				uc->data |= DEBUG_NEGO;
1369 			else if	((arg_len = is_keyword(ptr, len, "tags")))
1370 				uc->data |= DEBUG_TAGS;
1371 			else if	((arg_len = is_keyword(ptr, len, "pointer")))
1372 				uc->data |= DEBUG_POINTER;
1373 			else
1374 				return -EINVAL;
1375 			ptr += arg_len; len -= arg_len;
1376 		}
1377 #ifdef DEBUG_PROC_INFO
1378 printk("sym_user_command: data=%ld\n", uc->data);
1379 #endif
1380 		break;
1381 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
1382 	case UC_SETFLAG:
1383 		while (len > 0) {
1384 			SKIP_SPACES(ptr, len);
1385 			if	((arg_len = is_keyword(ptr, len, "no_disc")))
1386 				uc->data &= ~SYM_DISC_ENABLED;
1387 			else
1388 				return -EINVAL;
1389 			ptr += arg_len; len -= arg_len;
1390 		}
1391 		break;
1392 	default:
1393 		break;
1394 	}
1395 
1396 	if (len)
1397 		return -EINVAL;
1398 	else {
1399 		unsigned long flags;
1400 
1401 		spin_lock_irqsave(np->s.host->host_lock, flags);
1402 		sym_exec_user_command (np, uc);
1403 		spin_unlock_irqrestore(np->s.host->host_lock, flags);
1404 	}
1405 	return length;
1406 }
1407 
1408 #endif	/* SYM_LINUX_USER_COMMAND_SUPPORT */
1409 
1410 
1411 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1412 /*
1413  *  Informations through the proc file system.
1414  */
1415 struct info_str {
1416 	char *buffer;
1417 	int length;
1418 	int offset;
1419 	int pos;
1420 };
1421 
1422 static void copy_mem_info(struct info_str *info, char *data, int len)
1423 {
1424 	if (info->pos + len > info->length)
1425 		len = info->length - info->pos;
1426 
1427 	if (info->pos + len < info->offset) {
1428 		info->pos += len;
1429 		return;
1430 	}
1431 	if (info->pos < info->offset) {
1432 		data += (info->offset - info->pos);
1433 		len  -= (info->offset - info->pos);
1434 	}
1435 
1436 	if (len > 0) {
1437 		memcpy(info->buffer + info->pos, data, len);
1438 		info->pos += len;
1439 	}
1440 }
1441 
1442 static int copy_info(struct info_str *info, char *fmt, ...)
1443 {
1444 	va_list args;
1445 	char buf[81];
1446 	int len;
1447 
1448 	va_start(args, fmt);
1449 	len = vsprintf(buf, fmt, args);
1450 	va_end(args);
1451 
1452 	copy_mem_info(info, buf, len);
1453 	return len;
1454 }
1455 
1456 /*
1457  *  Copy formatted information into the input buffer.
1458  */
1459 static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len)
1460 {
1461 	struct info_str info;
1462 
1463 	info.buffer	= ptr;
1464 	info.length	= len;
1465 	info.offset	= offset;
1466 	info.pos	= 0;
1467 
1468 	copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, "
1469 			 "revision id 0x%x\n",
1470 			 np->s.chip_name, np->device_id, np->revision_id);
1471 	copy_info(&info, "At PCI address %s, IRQ " IRQ_FMT "\n",
1472 		pci_name(np->s.device), IRQ_PRM(np->s.irq));
1473 	copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n",
1474 			 (int) (np->minsync_dt ? np->minsync_dt : np->minsync),
1475 			 np->maxwide ? "Wide" : "Narrow",
1476 			 np->minsync_dt ? ", DT capable" : "");
1477 
1478 	copy_info(&info, "Max. started commands %d, "
1479 			 "max. commands per LUN %d\n",
1480 			 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);
1481 
1482 	return info.pos > info.offset? info.pos - info.offset : 0;
1483 }
1484 #endif /* SYM_LINUX_USER_INFO_SUPPORT */
1485 
1486 /*
1487  *  Entry point of the scsi proc fs of the driver.
1488  *  - func = 0 means read  (returns adapter infos)
1489  *  - func = 1 means write (not yet merget from sym53c8xx)
1490  */
1491 static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer,
1492 			char **start, off_t offset, int length, int func)
1493 {
1494 	struct sym_hcb *np = sym_get_hcb(host);
1495 	int retv;
1496 
1497 	if (func) {
1498 #ifdef	SYM_LINUX_USER_COMMAND_SUPPORT
1499 		retv = sym_user_command(np, buffer, length);
1500 #else
1501 		retv = -EINVAL;
1502 #endif
1503 	} else {
1504 		if (start)
1505 			*start = buffer;
1506 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1507 		retv = sym_host_info(np, buffer, offset, length);
1508 #else
1509 		retv = -EINVAL;
1510 #endif
1511 	}
1512 
1513 	return retv;
1514 }
1515 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */
1516 
1517 /*
1518  *	Free controller resources.
1519  */
1520 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev)
1521 {
1522 	/*
1523 	 *  Free O/S specific resources.
1524 	 */
1525 	if (np->s.irq)
1526 		free_irq(np->s.irq, np);
1527 	if (np->s.ioaddr)
1528 		pci_iounmap(pdev, np->s.ioaddr);
1529 	if (np->s.ramaddr)
1530 		pci_iounmap(pdev, np->s.ramaddr);
1531 	/*
1532 	 *  Free O/S independent resources.
1533 	 */
1534 	sym_hcb_free(np);
1535 
1536 	sym_mfree_dma(np, sizeof(*np), "HCB");
1537 }
1538 
1539 /*
1540  *  Ask/tell the system about DMA addressing.
1541  */
1542 static int sym_setup_bus_dma_mask(struct sym_hcb *np)
1543 {
1544 #if SYM_CONF_DMA_ADDRESSING_MODE > 0
1545 #if   SYM_CONF_DMA_ADDRESSING_MODE == 1
1546 #define	DMA_DAC_MASK	DMA_40BIT_MASK
1547 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1548 #define	DMA_DAC_MASK	DMA_64BIT_MASK
1549 #endif
1550 	if ((np->features & FE_DAC) &&
1551 			!pci_set_dma_mask(np->s.device, DMA_DAC_MASK)) {
1552 		np->use_dac = 1;
1553 		return 0;
1554 	}
1555 #endif
1556 
1557 	if (!pci_set_dma_mask(np->s.device, DMA_32BIT_MASK))
1558 		return 0;
1559 
1560 	printf_warning("%s: No suitable DMA available\n", sym_name(np));
1561 	return -1;
1562 }
1563 
1564 /*
1565  *  Host attach and initialisations.
1566  *
1567  *  Allocate host data and ncb structure.
1568  *  Remap MMIO region.
1569  *  Do chip initialization.
1570  *  If all is OK, install interrupt handling and
1571  *  start the timer daemon.
1572  */
1573 static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
1574 		int unit, struct sym_device *dev)
1575 {
1576 	struct host_data *host_data;
1577 	struct sym_hcb *np = NULL;
1578 	struct Scsi_Host *instance = NULL;
1579 	struct pci_dev *pdev = dev->pdev;
1580 	unsigned long flags;
1581 	struct sym_fw *fw;
1582 
1583 	printk(KERN_INFO
1584 		"sym%d: <%s> rev 0x%x at pci %s irq " IRQ_FMT "\n",
1585 		unit, dev->chip.name, dev->chip.revision_id,
1586 		pci_name(pdev), IRQ_PRM(pdev->irq));
1587 
1588 	/*
1589 	 *  Get the firmware for this chip.
1590 	 */
1591 	fw = sym_find_firmware(&dev->chip);
1592 	if (!fw)
1593 		goto attach_failed;
1594 
1595 	/*
1596 	 *	Allocate host_data structure
1597 	 */
1598 	instance = scsi_host_alloc(tpnt, sizeof(*host_data));
1599 	if (!instance)
1600 		goto attach_failed;
1601 	host_data = (struct host_data *) instance->hostdata;
1602 
1603 	/*
1604 	 *  Allocate immediately the host control block,
1605 	 *  since we are only expecting to succeed. :)
1606 	 *  We keep track in the HCB of all the resources that
1607 	 *  are to be released on error.
1608 	 */
1609 	np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
1610 	if (!np)
1611 		goto attach_failed;
1612 	np->s.device = pdev;
1613 	np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
1614 	host_data->ncb = np;
1615 	np->s.host = instance;
1616 
1617 	pci_set_drvdata(pdev, np);
1618 
1619 	/*
1620 	 *  Copy some useful infos to the HCB.
1621 	 */
1622 	np->hcb_ba	= vtobus(np);
1623 	np->verbose	= sym_driver_setup.verbose;
1624 	np->s.device	= pdev;
1625 	np->s.unit	= unit;
1626 	np->device_id	= dev->chip.device_id;
1627 	np->revision_id	= dev->chip.revision_id;
1628 	np->features	= dev->chip.features;
1629 	np->clock_divn	= dev->chip.nr_divisor;
1630 	np->maxoffs	= dev->chip.offset_max;
1631 	np->maxburst	= dev->chip.burst_max;
1632 	np->myaddr	= dev->host_id;
1633 
1634 	/*
1635 	 *  Edit its name.
1636 	 */
1637 	strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
1638 	sprintf(np->s.inst_name, "sym%d", np->s.unit);
1639 
1640 	if (sym_setup_bus_dma_mask(np))
1641 		goto attach_failed;
1642 
1643 	/*
1644 	 *  Try to map the controller chip to
1645 	 *  virtual and physical memory.
1646 	 */
1647 	np->mmio_ba = (u32)dev->mmio_base;
1648 	np->s.ioaddr	= dev->s.ioaddr;
1649 	np->s.ramaddr	= dev->s.ramaddr;
1650 	np->s.io_ws = (np->features & FE_IO256) ? 256 : 128;
1651 
1652 	/*
1653 	 *  Map on-chip RAM if present and supported.
1654 	 */
1655 	if (!(np->features & FE_RAM))
1656 		dev->ram_base = 0;
1657 	if (dev->ram_base) {
1658 		np->ram_ba = (u32)dev->ram_base;
1659 		np->ram_ws = (np->features & FE_RAM8K) ? 8192 : 4096;
1660 	}
1661 
1662 	if (sym_hcb_attach(instance, fw, dev->nvram))
1663 		goto attach_failed;
1664 
1665 	/*
1666 	 *  Install the interrupt handler.
1667 	 *  If we synchonize the C code with SCRIPTS on interrupt,
1668 	 *  we do not want to share the INTR line at all.
1669 	 */
1670 	if (request_irq(pdev->irq, sym53c8xx_intr, SA_SHIRQ, NAME53C8XX, np)) {
1671 		printf_err("%s: request irq %d failure\n",
1672 			sym_name(np), pdev->irq);
1673 		goto attach_failed;
1674 	}
1675 	np->s.irq = pdev->irq;
1676 
1677 	/*
1678 	 *  After SCSI devices have been opened, we cannot
1679 	 *  reset the bus safely, so we do it here.
1680 	 */
1681 	spin_lock_irqsave(instance->host_lock, flags);
1682 	if (sym_reset_scsi_bus(np, 0))
1683 		goto reset_failed;
1684 
1685 	/*
1686 	 *  Start the SCRIPTS.
1687 	 */
1688 	sym_start_up (np, 1);
1689 
1690 	/*
1691 	 *  Start the timer daemon
1692 	 */
1693 	init_timer(&np->s.timer);
1694 	np->s.timer.data     = (unsigned long) np;
1695 	np->s.timer.function = sym53c8xx_timer;
1696 	np->s.lasttime=0;
1697 	sym_timer (np);
1698 
1699 	/*
1700 	 *  Fill Linux host instance structure
1701 	 *  and return success.
1702 	 */
1703 	instance->max_channel	= 0;
1704 	instance->this_id	= np->myaddr;
1705 	instance->max_id	= np->maxwide ? 16 : 8;
1706 	instance->max_lun	= SYM_CONF_MAX_LUN;
1707 	instance->unique_id	= pci_resource_start(pdev, 0);
1708 	instance->cmd_per_lun	= SYM_CONF_MAX_TAG;
1709 	instance->can_queue	= (SYM_CONF_MAX_START-2);
1710 	instance->sg_tablesize	= SYM_CONF_MAX_SG;
1711 	instance->max_cmd_len	= 16;
1712 	BUG_ON(sym2_transport_template == NULL);
1713 	instance->transportt	= sym2_transport_template;
1714 
1715 	spin_unlock_irqrestore(instance->host_lock, flags);
1716 
1717 	return instance;
1718 
1719  reset_failed:
1720 	printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
1721 		   "TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
1722 	spin_unlock_irqrestore(instance->host_lock, flags);
1723  attach_failed:
1724 	if (!instance)
1725 		return NULL;
1726 	printf_info("%s: giving up ...\n", sym_name(np));
1727 	if (np)
1728 		sym_free_resources(np, pdev);
1729 	scsi_host_put(instance);
1730 
1731 	return NULL;
1732  }
1733 
1734 
1735 /*
1736  *    Detect and try to read SYMBIOS and TEKRAM NVRAM.
1737  */
1738 #if SYM_CONF_NVRAM_SUPPORT
1739 static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1740 {
1741 	devp->nvram = nvp;
1742 	devp->device_id = devp->chip.device_id;
1743 	nvp->type = 0;
1744 
1745 	sym_read_nvram(devp, nvp);
1746 }
1747 #else
1748 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1749 {
1750 }
1751 #endif	/* SYM_CONF_NVRAM_SUPPORT */
1752 
1753 static int __devinit sym_check_supported(struct sym_device *device)
1754 {
1755 	struct sym_chip *chip;
1756 	struct pci_dev *pdev = device->pdev;
1757 	u_char revision;
1758 	unsigned long io_port = pci_resource_start(pdev, 0);
1759 	int i;
1760 
1761 	/*
1762 	 *  If user excluded this chip, do not initialize it.
1763 	 *  I hate this code so much.  Must kill it.
1764 	 */
1765 	if (io_port) {
1766 		for (i = 0 ; i < 8 ; i++) {
1767 			if (sym_driver_setup.excludes[i] == io_port)
1768 				return -ENODEV;
1769 		}
1770 	}
1771 
1772 	/*
1773 	 * Check if the chip is supported.  Then copy the chip description
1774 	 * to our device structure so we can make it match the actual device
1775 	 * and options.
1776 	 */
1777 	pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
1778 	chip = sym_lookup_chip_table(pdev->device, revision);
1779 	if (!chip) {
1780 		dev_info(&pdev->dev, "device not supported\n");
1781 		return -ENODEV;
1782 	}
1783 	memcpy(&device->chip, chip, sizeof(device->chip));
1784 	device->chip.revision_id = revision;
1785 
1786 	return 0;
1787 }
1788 
1789 /*
1790  * Ignore Symbios chips controlled by various RAID controllers.
1791  * These controllers set value 0x52414944 at RAM end - 16.
1792  */
1793 static int __devinit sym_check_raid(struct sym_device *device)
1794 {
1795 	unsigned int ram_size, ram_val;
1796 
1797 	if (!device->s.ramaddr)
1798 		return 0;
1799 
1800 	if (device->chip.features & FE_RAM8K)
1801 		ram_size = 8192;
1802 	else
1803 		ram_size = 4096;
1804 
1805 	ram_val = readl(device->s.ramaddr + ram_size - 16);
1806 	if (ram_val != 0x52414944)
1807 		return 0;
1808 
1809 	dev_info(&device->pdev->dev,
1810 			"not initializing, driven by RAID controller.\n");
1811 	return -ENODEV;
1812 }
1813 
1814 static int __devinit sym_set_workarounds(struct sym_device *device)
1815 {
1816 	struct sym_chip *chip = &device->chip;
1817 	struct pci_dev *pdev = device->pdev;
1818 	u_short status_reg;
1819 
1820 	/*
1821 	 *  (ITEM 12 of a DEL about the 896 I haven't yet).
1822 	 *  We must ensure the chip will use WRITE AND INVALIDATE.
1823 	 *  The revision number limit is for now arbitrary.
1824 	 */
1825 	if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && chip->revision_id < 0x4) {
1826 		chip->features	|= (FE_WRIE | FE_CLSE);
1827 	}
1828 
1829 	/* If the chip can do Memory Write Invalidate, enable it */
1830 	if (chip->features & FE_WRIE) {
1831 		if (pci_set_mwi(pdev))
1832 			return -ENODEV;
1833 	}
1834 
1835 	/*
1836 	 *  Work around for errant bit in 895A. The 66Mhz
1837 	 *  capable bit is set erroneously. Clear this bit.
1838 	 *  (Item 1 DEL 533)
1839 	 *
1840 	 *  Make sure Config space and Features agree.
1841 	 *
1842 	 *  Recall: writes are not normal to status register -
1843 	 *  write a 1 to clear and a 0 to leave unchanged.
1844 	 *  Can only reset bits.
1845 	 */
1846 	pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1847 	if (chip->features & FE_66MHZ) {
1848 		if (!(status_reg & PCI_STATUS_66MHZ))
1849 			chip->features &= ~FE_66MHZ;
1850 	} else {
1851 		if (status_reg & PCI_STATUS_66MHZ) {
1852 			status_reg = PCI_STATUS_66MHZ;
1853 			pci_write_config_word(pdev, PCI_STATUS, status_reg);
1854 			pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1855 		}
1856 	}
1857 
1858 	return 0;
1859 }
1860 
1861 /*
1862  *  Read and check the PCI configuration for any detected NCR
1863  *  boards and save data for attaching after all boards have
1864  *  been detected.
1865  */
1866 static void __devinit
1867 sym_init_device(struct pci_dev *pdev, struct sym_device *device)
1868 {
1869 	int i;
1870 
1871 	device->host_id = SYM_SETUP_HOST_ID;
1872 	device->pdev = pdev;
1873 
1874 	i = pci_get_base_address(pdev, 1, &device->mmio_base);
1875 	pci_get_base_address(pdev, i, &device->ram_base);
1876 
1877 #ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
1878 	if (device->mmio_base)
1879 		device->s.ioaddr = pci_iomap(pdev, 1,
1880 						pci_resource_len(pdev, 1));
1881 #endif
1882 	if (!device->s.ioaddr)
1883 		device->s.ioaddr = pci_iomap(pdev, 0,
1884 						pci_resource_len(pdev, 0));
1885 	if (device->ram_base)
1886 		device->s.ramaddr = pci_iomap(pdev, i,
1887 						pci_resource_len(pdev, i));
1888 }
1889 
1890 /*
1891  * The NCR PQS and PDS cards are constructed as a DEC bridge
1892  * behind which sits a proprietary NCR memory controller and
1893  * either four or two 53c875s as separate devices.  We can tell
1894  * if an 875 is part of a PQS/PDS or not since if it is, it will
1895  * be on the same bus as the memory controller.  In its usual
1896  * mode of operation, the 875s are slaved to the memory
1897  * controller for all transfers.  To operate with the Linux
1898  * driver, the memory controller is disabled and the 875s
1899  * freed to function independently.  The only wrinkle is that
1900  * the preset SCSI ID (which may be zero) must be read in from
1901  * a special configuration space register of the 875.
1902  */
1903 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
1904 {
1905 	int slot;
1906 	u8 tmp;
1907 
1908 	for (slot = 0; slot < 256; slot++) {
1909 		struct pci_dev *memc = pci_get_slot(pdev->bus, slot);
1910 
1911 		if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
1912 			pci_dev_put(memc);
1913 			continue;
1914 		}
1915 
1916 		/* bit 1: allow individual 875 configuration */
1917 		pci_read_config_byte(memc, 0x44, &tmp);
1918 		if ((tmp & 0x2) == 0) {
1919 			tmp |= 0x2;
1920 			pci_write_config_byte(memc, 0x44, tmp);
1921 		}
1922 
1923 		/* bit 2: drive individual 875 interrupts to the bus */
1924 		pci_read_config_byte(memc, 0x45, &tmp);
1925 		if ((tmp & 0x4) == 0) {
1926 			tmp |= 0x4;
1927 			pci_write_config_byte(memc, 0x45, tmp);
1928 		}
1929 
1930 		pci_dev_put(memc);
1931 		break;
1932 	}
1933 
1934 	pci_read_config_byte(pdev, 0x84, &tmp);
1935 	sym_dev->host_id = tmp;
1936 }
1937 
1938 /*
1939  *  Called before unloading the module.
1940  *  Detach the host.
1941  *  We have to free resources and halt the NCR chip.
1942  */
1943 static int sym_detach(struct sym_hcb *np, struct pci_dev *pdev)
1944 {
1945 	printk("%s: detaching ...\n", sym_name(np));
1946 
1947 	del_timer_sync(&np->s.timer);
1948 
1949 	/*
1950 	 * Reset NCR chip.
1951 	 * We should use sym_soft_reset(), but we don't want to do
1952 	 * so, since we may not be safe if interrupts occur.
1953 	 */
1954 	printk("%s: resetting chip\n", sym_name(np));
1955 	OUTB(np, nc_istat, SRST);
1956 	INB(np, nc_mbox1);
1957 	udelay(10);
1958 	OUTB(np, nc_istat, 0);
1959 
1960 	sym_free_resources(np, pdev);
1961 
1962 	return 1;
1963 }
1964 
1965 /*
1966  * Driver host template.
1967  */
1968 static struct scsi_host_template sym2_template = {
1969 	.module			= THIS_MODULE,
1970 	.name			= "sym53c8xx",
1971 	.info			= sym53c8xx_info,
1972 	.queuecommand		= sym53c8xx_queue_command,
1973 	.slave_alloc		= sym53c8xx_slave_alloc,
1974 	.slave_configure	= sym53c8xx_slave_configure,
1975 	.slave_destroy		= sym53c8xx_slave_destroy,
1976 	.eh_abort_handler	= sym53c8xx_eh_abort_handler,
1977 	.eh_device_reset_handler = sym53c8xx_eh_device_reset_handler,
1978 	.eh_bus_reset_handler	= sym53c8xx_eh_bus_reset_handler,
1979 	.eh_host_reset_handler	= sym53c8xx_eh_host_reset_handler,
1980 	.this_id		= 7,
1981 	.use_clustering		= DISABLE_CLUSTERING,
1982 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1983 	.proc_info		= sym53c8xx_proc_info,
1984 	.proc_name		= NAME53C8XX,
1985 #endif
1986 };
1987 
1988 static int attach_count;
1989 
1990 static int __devinit sym2_probe(struct pci_dev *pdev,
1991 				const struct pci_device_id *ent)
1992 {
1993 	struct sym_device sym_dev;
1994 	struct sym_nvram nvram;
1995 	struct Scsi_Host *instance;
1996 
1997 	memset(&sym_dev, 0, sizeof(sym_dev));
1998 	memset(&nvram, 0, sizeof(nvram));
1999 
2000 	if (pci_enable_device(pdev))
2001 		goto leave;
2002 
2003 	pci_set_master(pdev);
2004 
2005 	if (pci_request_regions(pdev, NAME53C8XX))
2006 		goto disable;
2007 
2008 	sym_init_device(pdev, &sym_dev);
2009 	if (sym_check_supported(&sym_dev))
2010 		goto free;
2011 
2012 	if (sym_check_raid(&sym_dev))
2013 		goto leave;	/* Don't disable the device */
2014 
2015 	if (sym_set_workarounds(&sym_dev))
2016 		goto free;
2017 
2018 	sym_config_pqs(pdev, &sym_dev);
2019 
2020 	sym_get_nvram(&sym_dev, &nvram);
2021 
2022 	instance = sym_attach(&sym2_template, attach_count, &sym_dev);
2023 	if (!instance)
2024 		goto free;
2025 
2026 	if (scsi_add_host(instance, &pdev->dev))
2027 		goto detach;
2028 	scsi_scan_host(instance);
2029 
2030 	attach_count++;
2031 
2032 	return 0;
2033 
2034  detach:
2035 	sym_detach(pci_get_drvdata(pdev), pdev);
2036  free:
2037 	pci_release_regions(pdev);
2038  disable:
2039 	pci_disable_device(pdev);
2040  leave:
2041 	return -ENODEV;
2042 }
2043 
2044 static void __devexit sym2_remove(struct pci_dev *pdev)
2045 {
2046 	struct sym_hcb *np = pci_get_drvdata(pdev);
2047 	struct Scsi_Host *host = np->s.host;
2048 
2049 	scsi_remove_host(host);
2050 	scsi_host_put(host);
2051 
2052 	sym_detach(np, pdev);
2053 
2054 	pci_release_regions(pdev);
2055 	pci_disable_device(pdev);
2056 
2057 	attach_count--;
2058 }
2059 
2060 static void sym2_get_signalling(struct Scsi_Host *shost)
2061 {
2062 	struct sym_hcb *np = sym_get_hcb(shost);
2063 	enum spi_signal_type type;
2064 
2065 	switch (np->scsi_mode) {
2066 	case SMODE_SE:
2067 		type = SPI_SIGNAL_SE;
2068 		break;
2069 	case SMODE_LVD:
2070 		type = SPI_SIGNAL_LVD;
2071 		break;
2072 	case SMODE_HVD:
2073 		type = SPI_SIGNAL_HVD;
2074 		break;
2075 	default:
2076 		type = SPI_SIGNAL_UNKNOWN;
2077 		break;
2078 	}
2079 	spi_signalling(shost) = type;
2080 }
2081 
2082 static void sym2_set_offset(struct scsi_target *starget, int offset)
2083 {
2084 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2085 	struct sym_hcb *np = sym_get_hcb(shost);
2086 	struct sym_tcb *tp = &np->target[starget->id];
2087 
2088 	tp->tgoal.offset = offset;
2089 	tp->tgoal.check_nego = 1;
2090 }
2091 
2092 static void sym2_set_period(struct scsi_target *starget, int period)
2093 {
2094 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2095 	struct sym_hcb *np = sym_get_hcb(shost);
2096 	struct sym_tcb *tp = &np->target[starget->id];
2097 
2098 	/* have to have DT for these transfers, but DT will also
2099 	 * set width, so check that this is allowed */
2100 	if (period <= np->minsync && spi_width(starget))
2101 		tp->tgoal.dt = 1;
2102 
2103 	tp->tgoal.period = period;
2104 	tp->tgoal.check_nego = 1;
2105 }
2106 
2107 static void sym2_set_width(struct scsi_target *starget, int width)
2108 {
2109 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2110 	struct sym_hcb *np = sym_get_hcb(shost);
2111 	struct sym_tcb *tp = &np->target[starget->id];
2112 
2113 	/* It is illegal to have DT set on narrow transfers.  If DT is
2114 	 * clear, we must also clear IU and QAS.  */
2115 	if (width == 0)
2116 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
2117 
2118 	tp->tgoal.width = width;
2119 	tp->tgoal.check_nego = 1;
2120 }
2121 
2122 static void sym2_set_dt(struct scsi_target *starget, int dt)
2123 {
2124 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2125 	struct sym_hcb *np = sym_get_hcb(shost);
2126 	struct sym_tcb *tp = &np->target[starget->id];
2127 
2128 	/* We must clear QAS and IU if DT is clear */
2129 	if (dt)
2130 		tp->tgoal.dt = 1;
2131 	else
2132 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
2133 	tp->tgoal.check_nego = 1;
2134 }
2135 
2136 #if 0
2137 static void sym2_set_iu(struct scsi_target *starget, int iu)
2138 {
2139 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2140 	struct sym_hcb *np = sym_get_hcb(shost);
2141 	struct sym_tcb *tp = &np->target[starget->id];
2142 
2143 	if (iu)
2144 		tp->tgoal.iu = tp->tgoal.dt = 1;
2145 	else
2146 		tp->tgoal.iu = 0;
2147 	tp->tgoal.check_nego = 1;
2148 }
2149 
2150 static void sym2_set_qas(struct scsi_target *starget, int qas)
2151 {
2152 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2153 	struct sym_hcb *np = sym_get_hcb(shost);
2154 	struct sym_tcb *tp = &np->target[starget->id];
2155 
2156 	if (qas)
2157 		tp->tgoal.dt = tp->tgoal.qas = 1;
2158 	else
2159 		tp->tgoal.qas = 0;
2160 	tp->tgoal.check_nego = 1;
2161 }
2162 #endif
2163 
2164 static struct spi_function_template sym2_transport_functions = {
2165 	.set_offset	= sym2_set_offset,
2166 	.show_offset	= 1,
2167 	.set_period	= sym2_set_period,
2168 	.show_period	= 1,
2169 	.set_width	= sym2_set_width,
2170 	.show_width	= 1,
2171 	.set_dt		= sym2_set_dt,
2172 	.show_dt	= 1,
2173 #if 0
2174 	.set_iu		= sym2_set_iu,
2175 	.show_iu	= 1,
2176 	.set_qas	= sym2_set_qas,
2177 	.show_qas	= 1,
2178 #endif
2179 	.get_signalling	= sym2_get_signalling,
2180 };
2181 
2182 static struct pci_device_id sym2_id_table[] __devinitdata = {
2183 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
2184 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2185 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
2186 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2187 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
2188 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2189 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
2190 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2191 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
2192 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2193 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
2194 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2195 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
2196 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2197 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
2198 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2199 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
2200 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2201 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
2202 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2203 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
2204 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2205 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
2206 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2207 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
2208 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2209 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
2210 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2211 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
2212 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2213 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
2214 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2215 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
2216 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2217 	{ 0, }
2218 };
2219 
2220 MODULE_DEVICE_TABLE(pci, sym2_id_table);
2221 
2222 static struct pci_driver sym2_driver = {
2223 	.name		= NAME53C8XX,
2224 	.id_table	= sym2_id_table,
2225 	.probe		= sym2_probe,
2226 	.remove		= __devexit_p(sym2_remove),
2227 };
2228 
2229 static int __init sym2_init(void)
2230 {
2231 	int error;
2232 
2233 	sym2_setup_params();
2234 	sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
2235 	if (!sym2_transport_template)
2236 		return -ENODEV;
2237 
2238 	error = pci_register_driver(&sym2_driver);
2239 	if (error)
2240 		spi_release_transport(sym2_transport_template);
2241 	return error;
2242 }
2243 
2244 static void __exit sym2_exit(void)
2245 {
2246 	pci_unregister_driver(&sym2_driver);
2247 	spi_release_transport(sym2_transport_template);
2248 }
2249 
2250 module_init(sym2_init);
2251 module_exit(sym2_exit);
2252