1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 4 * of PCI-SCSI IO processors. 5 * 6 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 7 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx> 8 * 9 * This driver is derived from the Linux sym53c8xx driver. 10 * Copyright (C) 1998-2000 Gerard Roudier 11 * 12 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 13 * a port of the FreeBSD ncr driver to Linux-1.2.13. 14 * 15 * The original ncr driver has been written for 386bsd and FreeBSD by 16 * Wolfgang Stanglmeier <wolf@cologne.de> 17 * Stefan Esser <se@mi.Uni-Koeln.de> 18 * Copyright (C) 1994 Wolfgang Stanglmeier 19 * 20 * Other major contributions: 21 * 22 * NVRAM detection and reading. 23 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 24 * 25 *----------------------------------------------------------------------------- 26 */ 27 #include <linux/ctype.h> 28 #include <linux/init.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/spinlock.h> 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_tcq.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_transport.h> 36 37 #include "sym_glue.h" 38 #include "sym_nvram.h" 39 40 #define NAME53C "sym53c" 41 #define NAME53C8XX "sym53c8xx" 42 43 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP; 44 unsigned int sym_debug_flags = 0; 45 46 static char *excl_string; 47 static char *safe_string; 48 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0); 49 module_param_named(burst, sym_driver_setup.burst_order, byte, 0); 50 module_param_named(led, sym_driver_setup.scsi_led, byte, 0); 51 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0); 52 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0); 53 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0); 54 module_param_named(hostid, sym_driver_setup.host_id, byte, 0); 55 module_param_named(verb, sym_driver_setup.verbose, byte, 0); 56 module_param_named(debug, sym_debug_flags, uint, 0); 57 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0); 58 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0); 59 module_param_named(excl, excl_string, charp, 0); 60 module_param_named(safe, safe_string, charp, 0); 61 62 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default"); 63 MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers"); 64 MODULE_PARM_DESC(led, "Set to 1 to enable LED support"); 65 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3"); 66 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole"); 67 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error"); 68 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters"); 69 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive"); 70 MODULE_PARM_DESC(debug, "Set bits to enable debugging"); 71 MODULE_PARM_DESC(settle, "Settle delay in seconds. Default 3"); 72 MODULE_PARM_DESC(nvram, "Option currently not used"); 73 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached"); 74 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\""); 75 76 MODULE_LICENSE("GPL"); 77 MODULE_VERSION(SYM_VERSION); 78 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>"); 79 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters"); 80 81 static void sym2_setup_params(void) 82 { 83 char *p = excl_string; 84 int xi = 0; 85 86 while (p && (xi < 8)) { 87 char *next_p; 88 int val = (int) simple_strtoul(p, &next_p, 0); 89 sym_driver_setup.excludes[xi++] = val; 90 p = next_p; 91 } 92 93 if (safe_string) { 94 if (*safe_string == 'y') { 95 sym_driver_setup.max_tag = 0; 96 sym_driver_setup.burst_order = 0; 97 sym_driver_setup.scsi_led = 0; 98 sym_driver_setup.scsi_diff = 1; 99 sym_driver_setup.irq_mode = 0; 100 sym_driver_setup.scsi_bus_check = 2; 101 sym_driver_setup.host_id = 7; 102 sym_driver_setup.verbose = 2; 103 sym_driver_setup.settle_delay = 10; 104 sym_driver_setup.use_nvram = 1; 105 } else if (*safe_string != 'n') { 106 printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s" 107 " passed to safe option", safe_string); 108 } 109 } 110 } 111 112 static struct scsi_transport_template *sym2_transport_template = NULL; 113 114 /* 115 * Driver private area in the SCSI command structure. 116 */ 117 struct sym_ucmd { /* Override the SCSI pointer structure */ 118 struct completion *eh_done; /* SCSI error handling */ 119 }; 120 121 #define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp)) 122 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host) 123 124 /* 125 * Complete a pending CAM CCB. 126 */ 127 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd) 128 { 129 struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd); 130 BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd)); 131 132 if (ucmd->eh_done) 133 complete(ucmd->eh_done); 134 135 scsi_dma_unmap(cmd); 136 cmd->scsi_done(cmd); 137 } 138 139 /* 140 * Tell the SCSI layer about a BUS RESET. 141 */ 142 void sym_xpt_async_bus_reset(struct sym_hcb *np) 143 { 144 printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np)); 145 np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ; 146 np->s.settle_time_valid = 1; 147 if (sym_verbose >= 2) 148 printf_info("%s: command processing suspended for %d seconds\n", 149 sym_name(np), sym_driver_setup.settle_delay); 150 } 151 152 /* 153 * Choose the more appropriate CAM status if 154 * the IO encountered an extended error. 155 */ 156 static int sym_xerr_cam_status(int cam_status, int x_status) 157 { 158 if (x_status) { 159 if (x_status & XE_PARITY_ERR) 160 cam_status = DID_PARITY; 161 else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN)) 162 cam_status = DID_ERROR; 163 else if (x_status & XE_BAD_PHASE) 164 cam_status = DID_ERROR; 165 else 166 cam_status = DID_ERROR; 167 } 168 return cam_status; 169 } 170 171 /* 172 * Build CAM result for a failed or auto-sensed IO. 173 */ 174 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid) 175 { 176 struct scsi_cmnd *cmd = cp->cmd; 177 u_int cam_status, scsi_status, drv_status; 178 179 drv_status = 0; 180 cam_status = DID_OK; 181 scsi_status = cp->ssss_status; 182 183 if (cp->host_flags & HF_SENSE) { 184 scsi_status = cp->sv_scsi_status; 185 resid = cp->sv_resid; 186 if (sym_verbose && cp->sv_xerr_status) 187 sym_print_xerr(cmd, cp->sv_xerr_status); 188 if (cp->host_status == HS_COMPLETE && 189 cp->ssss_status == S_GOOD && 190 cp->xerr_status == 0) { 191 cam_status = sym_xerr_cam_status(DID_OK, 192 cp->sv_xerr_status); 193 drv_status = DRIVER_SENSE; 194 /* 195 * Bounce back the sense data to user. 196 */ 197 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 198 memcpy(cmd->sense_buffer, cp->sns_bbuf, 199 min(SCSI_SENSE_BUFFERSIZE, SYM_SNS_BBUF_LEN)); 200 #if 0 201 /* 202 * If the device reports a UNIT ATTENTION condition 203 * due to a RESET condition, we should consider all 204 * disconnect CCBs for this unit as aborted. 205 */ 206 if (1) { 207 u_char *p; 208 p = (u_char *) cmd->sense_data; 209 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 210 sym_clear_tasks(np, DID_ABORT, 211 cp->target,cp->lun, -1); 212 } 213 #endif 214 } else { 215 /* 216 * Error return from our internal request sense. This 217 * is bad: we must clear the contingent allegiance 218 * condition otherwise the device will always return 219 * BUSY. Use a big stick. 220 */ 221 sym_reset_scsi_target(np, cmd->device->id); 222 cam_status = DID_ERROR; 223 } 224 } else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */ 225 cam_status = DID_OK; 226 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 227 cam_status = DID_NO_CONNECT; 228 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 229 cam_status = DID_ERROR; 230 else { /* Extended error */ 231 if (sym_verbose) { 232 sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n", 233 cp->host_status, cp->ssss_status, 234 cp->xerr_status); 235 } 236 /* 237 * Set the most appropriate value for CAM status. 238 */ 239 cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status); 240 } 241 scsi_set_resid(cmd, resid); 242 cmd->result = (drv_status << 24) | (cam_status << 16) | scsi_status; 243 } 244 245 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd) 246 { 247 int segment; 248 int use_sg; 249 250 cp->data_len = 0; 251 252 use_sg = scsi_dma_map(cmd); 253 if (use_sg > 0) { 254 struct scatterlist *sg; 255 struct sym_tcb *tp = &np->target[cp->target]; 256 struct sym_tblmove *data; 257 258 if (use_sg > SYM_CONF_MAX_SG) { 259 scsi_dma_unmap(cmd); 260 return -1; 261 } 262 263 data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg]; 264 265 scsi_for_each_sg(cmd, sg, use_sg, segment) { 266 dma_addr_t baddr = sg_dma_address(sg); 267 unsigned int len = sg_dma_len(sg); 268 269 if ((len & 1) && (tp->head.wval & EWS)) { 270 len++; 271 cp->odd_byte_adjustment++; 272 } 273 274 sym_build_sge(np, &data[segment], baddr, len); 275 cp->data_len += len; 276 } 277 } else { 278 segment = -2; 279 } 280 281 return segment; 282 } 283 284 /* 285 * Queue a SCSI command. 286 */ 287 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd) 288 { 289 struct scsi_device *sdev = cmd->device; 290 struct sym_tcb *tp; 291 struct sym_lcb *lp; 292 struct sym_ccb *cp; 293 int order; 294 295 /* 296 * Retrieve the target descriptor. 297 */ 298 tp = &np->target[sdev->id]; 299 300 /* 301 * Select tagged/untagged. 302 */ 303 lp = sym_lp(tp, sdev->lun); 304 order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0; 305 306 /* 307 * Queue the SCSI IO. 308 */ 309 cp = sym_get_ccb(np, cmd, order); 310 if (!cp) 311 return 1; /* Means resource shortage */ 312 sym_queue_scsiio(np, cmd, cp); 313 return 0; 314 } 315 316 /* 317 * Setup buffers and pointers that address the CDB. 318 */ 319 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 320 { 321 memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len); 322 323 cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]); 324 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len); 325 326 return 0; 327 } 328 329 /* 330 * Setup pointers that address the data and start the I/O. 331 */ 332 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 333 { 334 u32 lastp, goalp; 335 int dir; 336 337 /* 338 * Build the CDB. 339 */ 340 if (sym_setup_cdb(np, cmd, cp)) 341 goto out_abort; 342 343 /* 344 * No direction means no data. 345 */ 346 dir = cmd->sc_data_direction; 347 if (dir != DMA_NONE) { 348 cp->segments = sym_scatter(np, cp, cmd); 349 if (cp->segments < 0) { 350 sym_set_cam_status(cmd, DID_ERROR); 351 goto out_abort; 352 } 353 354 /* 355 * No segments means no data. 356 */ 357 if (!cp->segments) 358 dir = DMA_NONE; 359 } else { 360 cp->data_len = 0; 361 cp->segments = 0; 362 } 363 364 /* 365 * Set the data pointer. 366 */ 367 switch (dir) { 368 case DMA_BIDIRECTIONAL: 369 scmd_printk(KERN_INFO, cmd, "got DMA_BIDIRECTIONAL command"); 370 sym_set_cam_status(cmd, DID_ERROR); 371 goto out_abort; 372 case DMA_TO_DEVICE: 373 goalp = SCRIPTA_BA(np, data_out2) + 8; 374 lastp = goalp - 8 - (cp->segments * (2*4)); 375 break; 376 case DMA_FROM_DEVICE: 377 cp->host_flags |= HF_DATA_IN; 378 goalp = SCRIPTA_BA(np, data_in2) + 8; 379 lastp = goalp - 8 - (cp->segments * (2*4)); 380 break; 381 case DMA_NONE: 382 default: 383 lastp = goalp = SCRIPTB_BA(np, no_data); 384 break; 385 } 386 387 /* 388 * Set all pointers values needed by SCRIPTS. 389 */ 390 cp->phys.head.lastp = cpu_to_scr(lastp); 391 cp->phys.head.savep = cpu_to_scr(lastp); 392 cp->startp = cp->phys.head.savep; 393 cp->goalp = cpu_to_scr(goalp); 394 395 /* 396 * When `#ifed 1', the code below makes the driver 397 * panic on the first attempt to write to a SCSI device. 398 * It is the first test we want to do after a driver 399 * change that does not seem obviously safe. :) 400 */ 401 #if 0 402 switch (cp->cdb_buf[0]) { 403 case 0x0A: case 0x2A: case 0xAA: 404 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 405 break; 406 default: 407 break; 408 } 409 #endif 410 411 /* 412 * activate this job. 413 */ 414 sym_put_start_queue(np, cp); 415 return 0; 416 417 out_abort: 418 sym_free_ccb(np, cp); 419 sym_xpt_done(np, cmd); 420 return 0; 421 } 422 423 424 /* 425 * timer daemon. 426 * 427 * Misused to keep the driver running when 428 * interrupts are not configured correctly. 429 */ 430 static void sym_timer(struct sym_hcb *np) 431 { 432 unsigned long thistime = jiffies; 433 434 /* 435 * Restart the timer. 436 */ 437 np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL; 438 add_timer(&np->s.timer); 439 440 /* 441 * If we are resetting the ncr, wait for settle_time before 442 * clearing it. Then command processing will be resumed. 443 */ 444 if (np->s.settle_time_valid) { 445 if (time_before_eq(np->s.settle_time, thistime)) { 446 if (sym_verbose >= 2 ) 447 printk("%s: command processing resumed\n", 448 sym_name(np)); 449 np->s.settle_time_valid = 0; 450 } 451 return; 452 } 453 454 /* 455 * Nothing to do for now, but that may come. 456 */ 457 if (np->s.lasttime + 4*HZ < thistime) { 458 np->s.lasttime = thistime; 459 } 460 461 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS 462 /* 463 * Some way-broken PCI bridges may lead to 464 * completions being lost when the clearing 465 * of the INTFLY flag by the CPU occurs 466 * concurrently with the chip raising this flag. 467 * If this ever happen, lost completions will 468 * be reaped here. 469 */ 470 sym_wakeup_done(np); 471 #endif 472 } 473 474 475 /* 476 * PCI BUS error handler. 477 */ 478 void sym_log_bus_error(struct Scsi_Host *shost) 479 { 480 struct sym_data *sym_data = shost_priv(shost); 481 struct pci_dev *pdev = sym_data->pdev; 482 unsigned short pci_sts; 483 pci_read_config_word(pdev, PCI_STATUS, &pci_sts); 484 if (pci_sts & 0xf900) { 485 pci_write_config_word(pdev, PCI_STATUS, pci_sts); 486 shost_printk(KERN_WARNING, shost, 487 "PCI bus error: status = 0x%04x\n", pci_sts & 0xf900); 488 } 489 } 490 491 /* 492 * queuecommand method. Entered with the host adapter lock held and 493 * interrupts disabled. 494 */ 495 static int sym53c8xx_queue_command_lck(struct scsi_cmnd *cmd, 496 void (*done)(struct scsi_cmnd *)) 497 { 498 struct sym_hcb *np = SYM_SOFTC_PTR(cmd); 499 struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd); 500 int sts = 0; 501 502 cmd->scsi_done = done; 503 memset(ucp, 0, sizeof(*ucp)); 504 505 /* 506 * Shorten our settle_time if needed for 507 * this command not to time out. 508 */ 509 if (np->s.settle_time_valid && cmd->request->timeout) { 510 unsigned long tlimit = jiffies + cmd->request->timeout; 511 tlimit -= SYM_CONF_TIMER_INTERVAL*2; 512 if (time_after(np->s.settle_time, tlimit)) { 513 np->s.settle_time = tlimit; 514 } 515 } 516 517 if (np->s.settle_time_valid) 518 return SCSI_MLQUEUE_HOST_BUSY; 519 520 sts = sym_queue_command(np, cmd); 521 if (sts) 522 return SCSI_MLQUEUE_HOST_BUSY; 523 return 0; 524 } 525 526 static DEF_SCSI_QCMD(sym53c8xx_queue_command) 527 528 /* 529 * Linux entry point of the interrupt handler. 530 */ 531 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id) 532 { 533 struct Scsi_Host *shost = dev_id; 534 struct sym_data *sym_data = shost_priv(shost); 535 irqreturn_t result; 536 537 /* Avoid spinloop trying to handle interrupts on frozen device */ 538 if (pci_channel_offline(sym_data->pdev)) 539 return IRQ_NONE; 540 541 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("["); 542 543 spin_lock(shost->host_lock); 544 result = sym_interrupt(shost); 545 spin_unlock(shost->host_lock); 546 547 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n"); 548 549 return result; 550 } 551 552 /* 553 * Linux entry point of the timer handler 554 */ 555 static void sym53c8xx_timer(struct timer_list *t) 556 { 557 struct sym_hcb *np = from_timer(np, t, s.timer); 558 unsigned long flags; 559 560 spin_lock_irqsave(np->s.host->host_lock, flags); 561 sym_timer(np); 562 spin_unlock_irqrestore(np->s.host->host_lock, flags); 563 } 564 565 566 /* 567 * What the eh thread wants us to perform. 568 */ 569 #define SYM_EH_ABORT 0 570 #define SYM_EH_DEVICE_RESET 1 571 #define SYM_EH_BUS_RESET 2 572 #define SYM_EH_HOST_RESET 3 573 574 /* 575 * Generic method for our eh processing. 576 * The 'op' argument tells what we have to do. 577 */ 578 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd) 579 { 580 struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd); 581 struct Scsi_Host *shost = cmd->device->host; 582 struct sym_data *sym_data = shost_priv(shost); 583 struct pci_dev *pdev = sym_data->pdev; 584 struct sym_hcb *np = sym_data->ncb; 585 SYM_QUEHEAD *qp; 586 int cmd_queued = 0; 587 int sts = -1; 588 struct completion eh_done; 589 590 scmd_printk(KERN_WARNING, cmd, "%s operation started\n", opname); 591 592 /* We may be in an error condition because the PCI bus 593 * went down. In this case, we need to wait until the 594 * PCI bus is reset, the card is reset, and only then 595 * proceed with the scsi error recovery. There's no 596 * point in hurrying; take a leisurely wait. 597 */ 598 #define WAIT_FOR_PCI_RECOVERY 35 599 if (pci_channel_offline(pdev)) { 600 int finished_reset = 0; 601 init_completion(&eh_done); 602 spin_lock_irq(shost->host_lock); 603 /* Make sure we didn't race */ 604 if (pci_channel_offline(pdev)) { 605 BUG_ON(sym_data->io_reset); 606 sym_data->io_reset = &eh_done; 607 } else { 608 finished_reset = 1; 609 } 610 spin_unlock_irq(shost->host_lock); 611 if (!finished_reset) 612 finished_reset = wait_for_completion_timeout 613 (sym_data->io_reset, 614 WAIT_FOR_PCI_RECOVERY*HZ); 615 spin_lock_irq(shost->host_lock); 616 sym_data->io_reset = NULL; 617 spin_unlock_irq(shost->host_lock); 618 if (!finished_reset) 619 return SCSI_FAILED; 620 } 621 622 spin_lock_irq(shost->host_lock); 623 /* This one is queued in some place -> to wait for completion */ 624 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 625 struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 626 if (cp->cmd == cmd) { 627 cmd_queued = 1; 628 break; 629 } 630 } 631 632 /* Try to proceed the operation we have been asked for */ 633 sts = -1; 634 switch(op) { 635 case SYM_EH_ABORT: 636 sts = sym_abort_scsiio(np, cmd, 1); 637 break; 638 case SYM_EH_DEVICE_RESET: 639 sts = sym_reset_scsi_target(np, cmd->device->id); 640 break; 641 case SYM_EH_BUS_RESET: 642 sym_reset_scsi_bus(np, 1); 643 sts = 0; 644 break; 645 case SYM_EH_HOST_RESET: 646 sym_reset_scsi_bus(np, 0); 647 sym_start_up(shost, 1); 648 sts = 0; 649 break; 650 default: 651 break; 652 } 653 654 /* On error, restore everything and cross fingers :) */ 655 if (sts) 656 cmd_queued = 0; 657 658 if (cmd_queued) { 659 init_completion(&eh_done); 660 ucmd->eh_done = &eh_done; 661 spin_unlock_irq(shost->host_lock); 662 if (!wait_for_completion_timeout(&eh_done, 5*HZ)) { 663 ucmd->eh_done = NULL; 664 sts = -2; 665 } 666 } else { 667 spin_unlock_irq(shost->host_lock); 668 } 669 670 dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname, 671 sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed"); 672 return sts ? SCSI_FAILED : SCSI_SUCCESS; 673 } 674 675 676 /* 677 * Error handlers called from the eh thread (one thread per HBA). 678 */ 679 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd) 680 { 681 return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd); 682 } 683 684 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd) 685 { 686 return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd); 687 } 688 689 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd) 690 { 691 return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd); 692 } 693 694 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd) 695 { 696 return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd); 697 } 698 699 /* 700 * Tune device queuing depth, according to various limits. 701 */ 702 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags) 703 { 704 struct sym_lcb *lp = sym_lp(tp, lun); 705 u_short oldtags; 706 707 if (!lp) 708 return; 709 710 oldtags = lp->s.reqtags; 711 712 if (reqtags > lp->s.scdev_depth) 713 reqtags = lp->s.scdev_depth; 714 715 lp->s.reqtags = reqtags; 716 717 if (reqtags != oldtags) { 718 dev_info(&tp->starget->dev, 719 "tagged command queuing %s, command queue depth %d.\n", 720 lp->s.reqtags ? "enabled" : "disabled", reqtags); 721 } 722 } 723 724 static int sym53c8xx_slave_alloc(struct scsi_device *sdev) 725 { 726 struct sym_hcb *np = sym_get_hcb(sdev->host); 727 struct sym_tcb *tp = &np->target[sdev->id]; 728 struct sym_lcb *lp; 729 unsigned long flags; 730 int error; 731 732 if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN) 733 return -ENXIO; 734 735 spin_lock_irqsave(np->s.host->host_lock, flags); 736 737 /* 738 * Fail the device init if the device is flagged NOSCAN at BOOT in 739 * the NVRAM. This may speed up boot and maintain coherency with 740 * BIOS device numbering. Clearing the flag allows the user to 741 * rescan skipped devices later. We also return an error for 742 * devices not flagged for SCAN LUNS in the NVRAM since some single 743 * lun devices behave badly when asked for a non zero LUN. 744 */ 745 746 if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) { 747 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 748 starget_printk(KERN_INFO, sdev->sdev_target, 749 "Scan at boot disabled in NVRAM\n"); 750 error = -ENXIO; 751 goto out; 752 } 753 754 if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) { 755 if (sdev->lun != 0) { 756 error = -ENXIO; 757 goto out; 758 } 759 starget_printk(KERN_INFO, sdev->sdev_target, 760 "Multiple LUNs disabled in NVRAM\n"); 761 } 762 763 lp = sym_alloc_lcb(np, sdev->id, sdev->lun); 764 if (!lp) { 765 error = -ENOMEM; 766 goto out; 767 } 768 if (tp->nlcb == 1) 769 tp->starget = sdev->sdev_target; 770 771 spi_min_period(tp->starget) = tp->usr_period; 772 spi_max_width(tp->starget) = tp->usr_width; 773 774 error = 0; 775 out: 776 spin_unlock_irqrestore(np->s.host->host_lock, flags); 777 778 return error; 779 } 780 781 /* 782 * Linux entry point for device queue sizing. 783 */ 784 static int sym53c8xx_slave_configure(struct scsi_device *sdev) 785 { 786 struct sym_hcb *np = sym_get_hcb(sdev->host); 787 struct sym_tcb *tp = &np->target[sdev->id]; 788 struct sym_lcb *lp = sym_lp(tp, sdev->lun); 789 int reqtags, depth_to_use; 790 791 /* 792 * Get user flags. 793 */ 794 lp->curr_flags = lp->user_flags; 795 796 /* 797 * Select queue depth from driver setup. 798 * Do not use more than configured by user. 799 * Use at least 1. 800 * Do not use more than our maximum. 801 */ 802 reqtags = sym_driver_setup.max_tag; 803 if (reqtags > tp->usrtags) 804 reqtags = tp->usrtags; 805 if (!sdev->tagged_supported) 806 reqtags = 0; 807 if (reqtags > SYM_CONF_MAX_TAG) 808 reqtags = SYM_CONF_MAX_TAG; 809 depth_to_use = reqtags ? reqtags : 1; 810 scsi_change_queue_depth(sdev, depth_to_use); 811 lp->s.scdev_depth = depth_to_use; 812 sym_tune_dev_queuing(tp, sdev->lun, reqtags); 813 814 if (!spi_initial_dv(sdev->sdev_target)) 815 spi_dv_device(sdev); 816 817 return 0; 818 } 819 820 static void sym53c8xx_slave_destroy(struct scsi_device *sdev) 821 { 822 struct sym_hcb *np = sym_get_hcb(sdev->host); 823 struct sym_tcb *tp = &np->target[sdev->id]; 824 struct sym_lcb *lp = sym_lp(tp, sdev->lun); 825 unsigned long flags; 826 827 /* if slave_alloc returned before allocating a sym_lcb, return */ 828 if (!lp) 829 return; 830 831 spin_lock_irqsave(np->s.host->host_lock, flags); 832 833 if (lp->busy_itlq || lp->busy_itl) { 834 /* 835 * This really shouldn't happen, but we can't return an error 836 * so let's try to stop all on-going I/O. 837 */ 838 starget_printk(KERN_WARNING, tp->starget, 839 "Removing busy LCB (%d)\n", (u8)sdev->lun); 840 sym_reset_scsi_bus(np, 1); 841 } 842 843 if (sym_free_lcb(np, sdev->id, sdev->lun) == 0) { 844 /* 845 * It was the last unit for this target. 846 */ 847 tp->head.sval = 0; 848 tp->head.wval = np->rv_scntl3; 849 tp->head.uval = 0; 850 tp->tgoal.check_nego = 1; 851 tp->starget = NULL; 852 } 853 854 spin_unlock_irqrestore(np->s.host->host_lock, flags); 855 } 856 857 /* 858 * Linux entry point for info() function 859 */ 860 static const char *sym53c8xx_info (struct Scsi_Host *host) 861 { 862 return SYM_DRIVER_NAME; 863 } 864 865 866 #ifdef SYM_LINUX_PROC_INFO_SUPPORT 867 /* 868 * Proc file system stuff 869 * 870 * A read operation returns adapter information. 871 * A write operation is a control command. 872 * The string is parsed in the driver code and the command is passed 873 * to the sym_usercmd() function. 874 */ 875 876 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT 877 878 struct sym_usrcmd { 879 u_long target; 880 u_long lun; 881 u_long data; 882 u_long cmd; 883 }; 884 885 #define UC_SETSYNC 10 886 #define UC_SETTAGS 11 887 #define UC_SETDEBUG 12 888 #define UC_SETWIDE 14 889 #define UC_SETFLAG 15 890 #define UC_SETVERBOSE 17 891 #define UC_RESETDEV 18 892 #define UC_CLEARDEV 19 893 894 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc) 895 { 896 struct sym_tcb *tp; 897 int t, l; 898 899 switch (uc->cmd) { 900 case 0: return; 901 902 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 903 case UC_SETDEBUG: 904 sym_debug_flags = uc->data; 905 break; 906 #endif 907 case UC_SETVERBOSE: 908 np->verbose = uc->data; 909 break; 910 default: 911 /* 912 * We assume that other commands apply to targets. 913 * This should always be the case and avoid the below 914 * 4 lines to be repeated 6 times. 915 */ 916 for (t = 0; t < SYM_CONF_MAX_TARGET; t++) { 917 if (!((uc->target >> t) & 1)) 918 continue; 919 tp = &np->target[t]; 920 if (!tp->nlcb) 921 continue; 922 923 switch (uc->cmd) { 924 925 case UC_SETSYNC: 926 if (!uc->data || uc->data >= 255) { 927 tp->tgoal.iu = tp->tgoal.dt = 928 tp->tgoal.qas = 0; 929 tp->tgoal.offset = 0; 930 } else if (uc->data <= 9 && np->minsync_dt) { 931 if (uc->data < np->minsync_dt) 932 uc->data = np->minsync_dt; 933 tp->tgoal.iu = tp->tgoal.dt = 934 tp->tgoal.qas = 1; 935 tp->tgoal.width = 1; 936 tp->tgoal.period = uc->data; 937 tp->tgoal.offset = np->maxoffs_dt; 938 } else { 939 if (uc->data < np->minsync) 940 uc->data = np->minsync; 941 tp->tgoal.iu = tp->tgoal.dt = 942 tp->tgoal.qas = 0; 943 tp->tgoal.period = uc->data; 944 tp->tgoal.offset = np->maxoffs; 945 } 946 tp->tgoal.check_nego = 1; 947 break; 948 case UC_SETWIDE: 949 tp->tgoal.width = uc->data ? 1 : 0; 950 tp->tgoal.check_nego = 1; 951 break; 952 case UC_SETTAGS: 953 for (l = 0; l < SYM_CONF_MAX_LUN; l++) 954 sym_tune_dev_queuing(tp, l, uc->data); 955 break; 956 case UC_RESETDEV: 957 tp->to_reset = 1; 958 np->istat_sem = SEM; 959 OUTB(np, nc_istat, SIGP|SEM); 960 break; 961 case UC_CLEARDEV: 962 for (l = 0; l < SYM_CONF_MAX_LUN; l++) { 963 struct sym_lcb *lp = sym_lp(tp, l); 964 if (lp) lp->to_clear = 1; 965 } 966 np->istat_sem = SEM; 967 OUTB(np, nc_istat, SIGP|SEM); 968 break; 969 case UC_SETFLAG: 970 tp->usrflags = uc->data; 971 break; 972 } 973 } 974 break; 975 } 976 } 977 978 static int sym_skip_spaces(char *ptr, int len) 979 { 980 int cnt, c; 981 982 for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--); 983 984 return (len - cnt); 985 } 986 987 static int get_int_arg(char *ptr, int len, u_long *pv) 988 { 989 char *end; 990 991 *pv = simple_strtoul(ptr, &end, 10); 992 return (end - ptr); 993 } 994 995 static int is_keyword(char *ptr, int len, char *verb) 996 { 997 int verb_len = strlen(verb); 998 999 if (len >= verb_len && !memcmp(verb, ptr, verb_len)) 1000 return verb_len; 1001 else 1002 return 0; 1003 } 1004 1005 #define SKIP_SPACES(ptr, len) \ 1006 if ((arg_len = sym_skip_spaces(ptr, len)) < 1) \ 1007 return -EINVAL; \ 1008 ptr += arg_len; len -= arg_len; 1009 1010 #define GET_INT_ARG(ptr, len, v) \ 1011 if (!(arg_len = get_int_arg(ptr, len, &(v)))) \ 1012 return -EINVAL; \ 1013 ptr += arg_len; len -= arg_len; 1014 1015 1016 /* 1017 * Parse a control command 1018 */ 1019 1020 static int sym_user_command(struct Scsi_Host *shost, char *buffer, int length) 1021 { 1022 struct sym_hcb *np = sym_get_hcb(shost); 1023 char *ptr = buffer; 1024 int len = length; 1025 struct sym_usrcmd cmd, *uc = &cmd; 1026 int arg_len; 1027 u_long target; 1028 1029 memset(uc, 0, sizeof(*uc)); 1030 1031 if (len > 0 && ptr[len-1] == '\n') 1032 --len; 1033 1034 if ((arg_len = is_keyword(ptr, len, "setsync")) != 0) 1035 uc->cmd = UC_SETSYNC; 1036 else if ((arg_len = is_keyword(ptr, len, "settags")) != 0) 1037 uc->cmd = UC_SETTAGS; 1038 else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0) 1039 uc->cmd = UC_SETVERBOSE; 1040 else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0) 1041 uc->cmd = UC_SETWIDE; 1042 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 1043 else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0) 1044 uc->cmd = UC_SETDEBUG; 1045 #endif 1046 else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0) 1047 uc->cmd = UC_SETFLAG; 1048 else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0) 1049 uc->cmd = UC_RESETDEV; 1050 else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0) 1051 uc->cmd = UC_CLEARDEV; 1052 else 1053 arg_len = 0; 1054 1055 #ifdef DEBUG_PROC_INFO 1056 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd); 1057 #endif 1058 1059 if (!arg_len) 1060 return -EINVAL; 1061 ptr += arg_len; len -= arg_len; 1062 1063 switch(uc->cmd) { 1064 case UC_SETSYNC: 1065 case UC_SETTAGS: 1066 case UC_SETWIDE: 1067 case UC_SETFLAG: 1068 case UC_RESETDEV: 1069 case UC_CLEARDEV: 1070 SKIP_SPACES(ptr, len); 1071 if ((arg_len = is_keyword(ptr, len, "all")) != 0) { 1072 ptr += arg_len; len -= arg_len; 1073 uc->target = ~0; 1074 } else { 1075 GET_INT_ARG(ptr, len, target); 1076 uc->target = (1<<target); 1077 #ifdef DEBUG_PROC_INFO 1078 printk("sym_user_command: target=%ld\n", target); 1079 #endif 1080 } 1081 break; 1082 } 1083 1084 switch(uc->cmd) { 1085 case UC_SETVERBOSE: 1086 case UC_SETSYNC: 1087 case UC_SETTAGS: 1088 case UC_SETWIDE: 1089 SKIP_SPACES(ptr, len); 1090 GET_INT_ARG(ptr, len, uc->data); 1091 #ifdef DEBUG_PROC_INFO 1092 printk("sym_user_command: data=%ld\n", uc->data); 1093 #endif 1094 break; 1095 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 1096 case UC_SETDEBUG: 1097 while (len > 0) { 1098 SKIP_SPACES(ptr, len); 1099 if ((arg_len = is_keyword(ptr, len, "alloc"))) 1100 uc->data |= DEBUG_ALLOC; 1101 else if ((arg_len = is_keyword(ptr, len, "phase"))) 1102 uc->data |= DEBUG_PHASE; 1103 else if ((arg_len = is_keyword(ptr, len, "queue"))) 1104 uc->data |= DEBUG_QUEUE; 1105 else if ((arg_len = is_keyword(ptr, len, "result"))) 1106 uc->data |= DEBUG_RESULT; 1107 else if ((arg_len = is_keyword(ptr, len, "scatter"))) 1108 uc->data |= DEBUG_SCATTER; 1109 else if ((arg_len = is_keyword(ptr, len, "script"))) 1110 uc->data |= DEBUG_SCRIPT; 1111 else if ((arg_len = is_keyword(ptr, len, "tiny"))) 1112 uc->data |= DEBUG_TINY; 1113 else if ((arg_len = is_keyword(ptr, len, "timing"))) 1114 uc->data |= DEBUG_TIMING; 1115 else if ((arg_len = is_keyword(ptr, len, "nego"))) 1116 uc->data |= DEBUG_NEGO; 1117 else if ((arg_len = is_keyword(ptr, len, "tags"))) 1118 uc->data |= DEBUG_TAGS; 1119 else if ((arg_len = is_keyword(ptr, len, "pointer"))) 1120 uc->data |= DEBUG_POINTER; 1121 else 1122 return -EINVAL; 1123 ptr += arg_len; len -= arg_len; 1124 } 1125 #ifdef DEBUG_PROC_INFO 1126 printk("sym_user_command: data=%ld\n", uc->data); 1127 #endif 1128 break; 1129 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */ 1130 case UC_SETFLAG: 1131 while (len > 0) { 1132 SKIP_SPACES(ptr, len); 1133 if ((arg_len = is_keyword(ptr, len, "no_disc"))) 1134 uc->data &= ~SYM_DISC_ENABLED; 1135 else 1136 return -EINVAL; 1137 ptr += arg_len; len -= arg_len; 1138 } 1139 break; 1140 default: 1141 break; 1142 } 1143 1144 if (len) 1145 return -EINVAL; 1146 else { 1147 unsigned long flags; 1148 1149 spin_lock_irqsave(shost->host_lock, flags); 1150 sym_exec_user_command(np, uc); 1151 spin_unlock_irqrestore(shost->host_lock, flags); 1152 } 1153 return length; 1154 } 1155 1156 #endif /* SYM_LINUX_USER_COMMAND_SUPPORT */ 1157 1158 1159 /* 1160 * Copy formatted information into the input buffer. 1161 */ 1162 static int sym_show_info(struct seq_file *m, struct Scsi_Host *shost) 1163 { 1164 #ifdef SYM_LINUX_USER_INFO_SUPPORT 1165 struct sym_data *sym_data = shost_priv(shost); 1166 struct pci_dev *pdev = sym_data->pdev; 1167 struct sym_hcb *np = sym_data->ncb; 1168 1169 seq_printf(m, "Chip " NAME53C "%s, device id 0x%x, " 1170 "revision id 0x%x\n", np->s.chip_name, 1171 pdev->device, pdev->revision); 1172 seq_printf(m, "At PCI address %s, IRQ %u\n", 1173 pci_name(pdev), pdev->irq); 1174 seq_printf(m, "Min. period factor %d, %s SCSI BUS%s\n", 1175 (int) (np->minsync_dt ? np->minsync_dt : np->minsync), 1176 np->maxwide ? "Wide" : "Narrow", 1177 np->minsync_dt ? ", DT capable" : ""); 1178 1179 seq_printf(m, "Max. started commands %d, " 1180 "max. commands per LUN %d\n", 1181 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG); 1182 1183 return 0; 1184 #else 1185 return -EINVAL; 1186 #endif /* SYM_LINUX_USER_INFO_SUPPORT */ 1187 } 1188 1189 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */ 1190 1191 /* 1192 * Free resources claimed by sym_iomap_device(). Note that 1193 * sym_free_resources() should be used instead of this function after calling 1194 * sym_attach(). 1195 */ 1196 static void sym_iounmap_device(struct sym_device *device) 1197 { 1198 if (device->s.ioaddr) 1199 pci_iounmap(device->pdev, device->s.ioaddr); 1200 if (device->s.ramaddr) 1201 pci_iounmap(device->pdev, device->s.ramaddr); 1202 } 1203 1204 /* 1205 * Free controller resources. 1206 */ 1207 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev, 1208 int do_free_irq) 1209 { 1210 /* 1211 * Free O/S specific resources. 1212 */ 1213 if (do_free_irq) 1214 free_irq(pdev->irq, np->s.host); 1215 if (np->s.ioaddr) 1216 pci_iounmap(pdev, np->s.ioaddr); 1217 if (np->s.ramaddr) 1218 pci_iounmap(pdev, np->s.ramaddr); 1219 /* 1220 * Free O/S independent resources. 1221 */ 1222 sym_hcb_free(np); 1223 1224 sym_mfree_dma(np, sizeof(*np), "HCB"); 1225 } 1226 1227 /* 1228 * Host attach and initialisations. 1229 * 1230 * Allocate host data and ncb structure. 1231 * Remap MMIO region. 1232 * Do chip initialization. 1233 * If all is OK, install interrupt handling and 1234 * start the timer daemon. 1235 */ 1236 static struct Scsi_Host *sym_attach(struct scsi_host_template *tpnt, int unit, 1237 struct sym_device *dev) 1238 { 1239 struct sym_data *sym_data; 1240 struct sym_hcb *np = NULL; 1241 struct Scsi_Host *shost = NULL; 1242 struct pci_dev *pdev = dev->pdev; 1243 unsigned long flags; 1244 struct sym_fw *fw; 1245 int do_free_irq = 0; 1246 1247 printk(KERN_INFO "sym%d: <%s> rev 0x%x at pci %s irq %u\n", 1248 unit, dev->chip.name, pdev->revision, pci_name(pdev), 1249 pdev->irq); 1250 1251 /* 1252 * Get the firmware for this chip. 1253 */ 1254 fw = sym_find_firmware(&dev->chip); 1255 if (!fw) 1256 goto attach_failed; 1257 1258 shost = scsi_host_alloc(tpnt, sizeof(*sym_data)); 1259 if (!shost) 1260 goto attach_failed; 1261 sym_data = shost_priv(shost); 1262 1263 /* 1264 * Allocate immediately the host control block, 1265 * since we are only expecting to succeed. :) 1266 * We keep track in the HCB of all the resources that 1267 * are to be released on error. 1268 */ 1269 np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB"); 1270 if (!np) 1271 goto attach_failed; 1272 np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */ 1273 sym_data->ncb = np; 1274 sym_data->pdev = pdev; 1275 np->s.host = shost; 1276 1277 pci_set_drvdata(pdev, shost); 1278 1279 /* 1280 * Copy some useful infos to the HCB. 1281 */ 1282 np->hcb_ba = vtobus(np); 1283 np->verbose = sym_driver_setup.verbose; 1284 np->s.unit = unit; 1285 np->features = dev->chip.features; 1286 np->clock_divn = dev->chip.nr_divisor; 1287 np->maxoffs = dev->chip.offset_max; 1288 np->maxburst = dev->chip.burst_max; 1289 np->myaddr = dev->host_id; 1290 np->mmio_ba = (u32)dev->mmio_base; 1291 np->ram_ba = (u32)dev->ram_base; 1292 np->s.ioaddr = dev->s.ioaddr; 1293 np->s.ramaddr = dev->s.ramaddr; 1294 1295 /* 1296 * Edit its name. 1297 */ 1298 strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name)); 1299 sprintf(np->s.inst_name, "sym%d", np->s.unit); 1300 1301 if ((SYM_CONF_DMA_ADDRESSING_MODE > 0) && (np->features & FE_DAC) && 1302 !dma_set_mask(&pdev->dev, DMA_DAC_MASK)) { 1303 set_dac(np); 1304 } else if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { 1305 printf_warning("%s: No suitable DMA available\n", sym_name(np)); 1306 goto attach_failed; 1307 } 1308 1309 if (sym_hcb_attach(shost, fw, dev->nvram)) 1310 goto attach_failed; 1311 1312 /* 1313 * Install the interrupt handler. 1314 * If we synchonize the C code with SCRIPTS on interrupt, 1315 * we do not want to share the INTR line at all. 1316 */ 1317 if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX, 1318 shost)) { 1319 printf_err("%s: request irq %u failure\n", 1320 sym_name(np), pdev->irq); 1321 goto attach_failed; 1322 } 1323 do_free_irq = 1; 1324 1325 /* 1326 * After SCSI devices have been opened, we cannot 1327 * reset the bus safely, so we do it here. 1328 */ 1329 spin_lock_irqsave(shost->host_lock, flags); 1330 if (sym_reset_scsi_bus(np, 0)) 1331 goto reset_failed; 1332 1333 /* 1334 * Start the SCRIPTS. 1335 */ 1336 sym_start_up(shost, 1); 1337 1338 /* 1339 * Start the timer daemon 1340 */ 1341 timer_setup(&np->s.timer, sym53c8xx_timer, 0); 1342 np->s.lasttime=0; 1343 sym_timer (np); 1344 1345 /* 1346 * Fill Linux host instance structure 1347 * and return success. 1348 */ 1349 shost->max_channel = 0; 1350 shost->this_id = np->myaddr; 1351 shost->max_id = np->maxwide ? 16 : 8; 1352 shost->max_lun = SYM_CONF_MAX_LUN; 1353 shost->unique_id = pci_resource_start(pdev, 0); 1354 shost->cmd_per_lun = SYM_CONF_MAX_TAG; 1355 shost->can_queue = (SYM_CONF_MAX_START-2); 1356 shost->sg_tablesize = SYM_CONF_MAX_SG; 1357 shost->max_cmd_len = 16; 1358 BUG_ON(sym2_transport_template == NULL); 1359 shost->transportt = sym2_transport_template; 1360 1361 /* 53c896 rev 1 errata: DMA may not cross 16MB boundary */ 1362 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 2) 1363 shost->dma_boundary = 0xFFFFFF; 1364 1365 spin_unlock_irqrestore(shost->host_lock, flags); 1366 1367 return shost; 1368 1369 reset_failed: 1370 printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, " 1371 "TERMINATION, DEVICE POWER etc.!\n", sym_name(np)); 1372 spin_unlock_irqrestore(shost->host_lock, flags); 1373 attach_failed: 1374 printf_info("sym%d: giving up ...\n", unit); 1375 if (np) 1376 sym_free_resources(np, pdev, do_free_irq); 1377 else 1378 sym_iounmap_device(dev); 1379 if (shost) 1380 scsi_host_put(shost); 1381 1382 return NULL; 1383 } 1384 1385 1386 /* 1387 * Detect and try to read SYMBIOS and TEKRAM NVRAM. 1388 */ 1389 #if SYM_CONF_NVRAM_SUPPORT 1390 static void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) 1391 { 1392 devp->nvram = nvp; 1393 nvp->type = 0; 1394 1395 sym_read_nvram(devp, nvp); 1396 } 1397 #else 1398 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) 1399 { 1400 } 1401 #endif /* SYM_CONF_NVRAM_SUPPORT */ 1402 1403 static int sym_check_supported(struct sym_device *device) 1404 { 1405 struct sym_chip *chip; 1406 struct pci_dev *pdev = device->pdev; 1407 unsigned long io_port = pci_resource_start(pdev, 0); 1408 int i; 1409 1410 /* 1411 * If user excluded this chip, do not initialize it. 1412 * I hate this code so much. Must kill it. 1413 */ 1414 if (io_port) { 1415 for (i = 0 ; i < 8 ; i++) { 1416 if (sym_driver_setup.excludes[i] == io_port) 1417 return -ENODEV; 1418 } 1419 } 1420 1421 /* 1422 * Check if the chip is supported. Then copy the chip description 1423 * to our device structure so we can make it match the actual device 1424 * and options. 1425 */ 1426 chip = sym_lookup_chip_table(pdev->device, pdev->revision); 1427 if (!chip) { 1428 dev_info(&pdev->dev, "device not supported\n"); 1429 return -ENODEV; 1430 } 1431 memcpy(&device->chip, chip, sizeof(device->chip)); 1432 1433 return 0; 1434 } 1435 1436 /* 1437 * Ignore Symbios chips controlled by various RAID controllers. 1438 * These controllers set value 0x52414944 at RAM end - 16. 1439 */ 1440 static int sym_check_raid(struct sym_device *device) 1441 { 1442 unsigned int ram_size, ram_val; 1443 1444 if (!device->s.ramaddr) 1445 return 0; 1446 1447 if (device->chip.features & FE_RAM8K) 1448 ram_size = 8192; 1449 else 1450 ram_size = 4096; 1451 1452 ram_val = readl(device->s.ramaddr + ram_size - 16); 1453 if (ram_val != 0x52414944) 1454 return 0; 1455 1456 dev_info(&device->pdev->dev, 1457 "not initializing, driven by RAID controller.\n"); 1458 return -ENODEV; 1459 } 1460 1461 static int sym_set_workarounds(struct sym_device *device) 1462 { 1463 struct sym_chip *chip = &device->chip; 1464 struct pci_dev *pdev = device->pdev; 1465 u_short status_reg; 1466 1467 /* 1468 * (ITEM 12 of a DEL about the 896 I haven't yet). 1469 * We must ensure the chip will use WRITE AND INVALIDATE. 1470 * The revision number limit is for now arbitrary. 1471 */ 1472 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 0x4) { 1473 chip->features |= (FE_WRIE | FE_CLSE); 1474 } 1475 1476 /* If the chip can do Memory Write Invalidate, enable it */ 1477 if (chip->features & FE_WRIE) { 1478 if (pci_set_mwi(pdev)) 1479 return -ENODEV; 1480 } 1481 1482 /* 1483 * Work around for errant bit in 895A. The 66Mhz 1484 * capable bit is set erroneously. Clear this bit. 1485 * (Item 1 DEL 533) 1486 * 1487 * Make sure Config space and Features agree. 1488 * 1489 * Recall: writes are not normal to status register - 1490 * write a 1 to clear and a 0 to leave unchanged. 1491 * Can only reset bits. 1492 */ 1493 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1494 if (chip->features & FE_66MHZ) { 1495 if (!(status_reg & PCI_STATUS_66MHZ)) 1496 chip->features &= ~FE_66MHZ; 1497 } else { 1498 if (status_reg & PCI_STATUS_66MHZ) { 1499 status_reg = PCI_STATUS_66MHZ; 1500 pci_write_config_word(pdev, PCI_STATUS, status_reg); 1501 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1502 } 1503 } 1504 1505 return 0; 1506 } 1507 1508 /* 1509 * Map HBA registers and on-chip SRAM (if present). 1510 */ 1511 static int sym_iomap_device(struct sym_device *device) 1512 { 1513 struct pci_dev *pdev = device->pdev; 1514 struct pci_bus_region bus_addr; 1515 int i = 2; 1516 1517 pcibios_resource_to_bus(pdev->bus, &bus_addr, &pdev->resource[1]); 1518 device->mmio_base = bus_addr.start; 1519 1520 if (device->chip.features & FE_RAM) { 1521 /* 1522 * If the BAR is 64-bit, resource 2 will be occupied by the 1523 * upper 32 bits 1524 */ 1525 if (!pdev->resource[i].flags) 1526 i++; 1527 pcibios_resource_to_bus(pdev->bus, &bus_addr, 1528 &pdev->resource[i]); 1529 device->ram_base = bus_addr.start; 1530 } 1531 1532 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO 1533 if (device->mmio_base) 1534 device->s.ioaddr = pci_iomap(pdev, 1, 1535 pci_resource_len(pdev, 1)); 1536 #endif 1537 if (!device->s.ioaddr) 1538 device->s.ioaddr = pci_iomap(pdev, 0, 1539 pci_resource_len(pdev, 0)); 1540 if (!device->s.ioaddr) { 1541 dev_err(&pdev->dev, "could not map registers; giving up.\n"); 1542 return -EIO; 1543 } 1544 if (device->ram_base) { 1545 device->s.ramaddr = pci_iomap(pdev, i, 1546 pci_resource_len(pdev, i)); 1547 if (!device->s.ramaddr) { 1548 dev_warn(&pdev->dev, 1549 "could not map SRAM; continuing anyway.\n"); 1550 device->ram_base = 0; 1551 } 1552 } 1553 1554 return 0; 1555 } 1556 1557 /* 1558 * The NCR PQS and PDS cards are constructed as a DEC bridge 1559 * behind which sits a proprietary NCR memory controller and 1560 * either four or two 53c875s as separate devices. We can tell 1561 * if an 875 is part of a PQS/PDS or not since if it is, it will 1562 * be on the same bus as the memory controller. In its usual 1563 * mode of operation, the 875s are slaved to the memory 1564 * controller for all transfers. To operate with the Linux 1565 * driver, the memory controller is disabled and the 875s 1566 * freed to function independently. The only wrinkle is that 1567 * the preset SCSI ID (which may be zero) must be read in from 1568 * a special configuration space register of the 875. 1569 */ 1570 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev) 1571 { 1572 int slot; 1573 u8 tmp; 1574 1575 for (slot = 0; slot < 256; slot++) { 1576 struct pci_dev *memc = pci_get_slot(pdev->bus, slot); 1577 1578 if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) { 1579 pci_dev_put(memc); 1580 continue; 1581 } 1582 1583 /* bit 1: allow individual 875 configuration */ 1584 pci_read_config_byte(memc, 0x44, &tmp); 1585 if ((tmp & 0x2) == 0) { 1586 tmp |= 0x2; 1587 pci_write_config_byte(memc, 0x44, tmp); 1588 } 1589 1590 /* bit 2: drive individual 875 interrupts to the bus */ 1591 pci_read_config_byte(memc, 0x45, &tmp); 1592 if ((tmp & 0x4) == 0) { 1593 tmp |= 0x4; 1594 pci_write_config_byte(memc, 0x45, tmp); 1595 } 1596 1597 pci_dev_put(memc); 1598 break; 1599 } 1600 1601 pci_read_config_byte(pdev, 0x84, &tmp); 1602 sym_dev->host_id = tmp; 1603 } 1604 1605 /* 1606 * Called before unloading the module. 1607 * Detach the host. 1608 * We have to free resources and halt the NCR chip. 1609 */ 1610 static int sym_detach(struct Scsi_Host *shost, struct pci_dev *pdev) 1611 { 1612 struct sym_hcb *np = sym_get_hcb(shost); 1613 printk("%s: detaching ...\n", sym_name(np)); 1614 1615 del_timer_sync(&np->s.timer); 1616 1617 /* 1618 * Reset NCR chip. 1619 * We should use sym_soft_reset(), but we don't want to do 1620 * so, since we may not be safe if interrupts occur. 1621 */ 1622 printk("%s: resetting chip\n", sym_name(np)); 1623 OUTB(np, nc_istat, SRST); 1624 INB(np, nc_mbox1); 1625 udelay(10); 1626 OUTB(np, nc_istat, 0); 1627 1628 sym_free_resources(np, pdev, 1); 1629 scsi_host_put(shost); 1630 1631 return 1; 1632 } 1633 1634 /* 1635 * Driver host template. 1636 */ 1637 static struct scsi_host_template sym2_template = { 1638 .module = THIS_MODULE, 1639 .name = "sym53c8xx", 1640 .info = sym53c8xx_info, 1641 .queuecommand = sym53c8xx_queue_command, 1642 .slave_alloc = sym53c8xx_slave_alloc, 1643 .slave_configure = sym53c8xx_slave_configure, 1644 .slave_destroy = sym53c8xx_slave_destroy, 1645 .eh_abort_handler = sym53c8xx_eh_abort_handler, 1646 .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler, 1647 .eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler, 1648 .eh_host_reset_handler = sym53c8xx_eh_host_reset_handler, 1649 .this_id = 7, 1650 .max_sectors = 0xFFFF, 1651 #ifdef SYM_LINUX_PROC_INFO_SUPPORT 1652 .show_info = sym_show_info, 1653 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT 1654 .write_info = sym_user_command, 1655 #endif 1656 .proc_name = NAME53C8XX, 1657 #endif 1658 }; 1659 1660 static int attach_count; 1661 1662 static int sym2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1663 { 1664 struct sym_device sym_dev; 1665 struct sym_nvram nvram; 1666 struct Scsi_Host *shost; 1667 int do_iounmap = 0; 1668 int do_disable_device = 1; 1669 1670 memset(&sym_dev, 0, sizeof(sym_dev)); 1671 memset(&nvram, 0, sizeof(nvram)); 1672 sym_dev.pdev = pdev; 1673 sym_dev.host_id = SYM_SETUP_HOST_ID; 1674 1675 if (pci_enable_device(pdev)) 1676 goto leave; 1677 1678 pci_set_master(pdev); 1679 1680 if (pci_request_regions(pdev, NAME53C8XX)) 1681 goto disable; 1682 1683 if (sym_check_supported(&sym_dev)) 1684 goto free; 1685 1686 if (sym_iomap_device(&sym_dev)) 1687 goto free; 1688 do_iounmap = 1; 1689 1690 if (sym_check_raid(&sym_dev)) { 1691 do_disable_device = 0; /* Don't disable the device */ 1692 goto free; 1693 } 1694 1695 if (sym_set_workarounds(&sym_dev)) 1696 goto free; 1697 1698 sym_config_pqs(pdev, &sym_dev); 1699 1700 sym_get_nvram(&sym_dev, &nvram); 1701 1702 do_iounmap = 0; /* Don't sym_iounmap_device() after sym_attach(). */ 1703 shost = sym_attach(&sym2_template, attach_count, &sym_dev); 1704 if (!shost) 1705 goto free; 1706 1707 if (scsi_add_host(shost, &pdev->dev)) 1708 goto detach; 1709 scsi_scan_host(shost); 1710 1711 attach_count++; 1712 1713 return 0; 1714 1715 detach: 1716 sym_detach(pci_get_drvdata(pdev), pdev); 1717 free: 1718 if (do_iounmap) 1719 sym_iounmap_device(&sym_dev); 1720 pci_release_regions(pdev); 1721 disable: 1722 if (do_disable_device) 1723 pci_disable_device(pdev); 1724 leave: 1725 return -ENODEV; 1726 } 1727 1728 static void sym2_remove(struct pci_dev *pdev) 1729 { 1730 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1731 1732 scsi_remove_host(shost); 1733 sym_detach(shost, pdev); 1734 pci_release_regions(pdev); 1735 pci_disable_device(pdev); 1736 1737 attach_count--; 1738 } 1739 1740 /** 1741 * sym2_io_error_detected() - called when PCI error is detected 1742 * @pdev: pointer to PCI device 1743 * @state: current state of the PCI slot 1744 */ 1745 static pci_ers_result_t sym2_io_error_detected(struct pci_dev *pdev, 1746 enum pci_channel_state state) 1747 { 1748 /* If slot is permanently frozen, turn everything off */ 1749 if (state == pci_channel_io_perm_failure) { 1750 sym2_remove(pdev); 1751 return PCI_ERS_RESULT_DISCONNECT; 1752 } 1753 1754 disable_irq(pdev->irq); 1755 pci_disable_device(pdev); 1756 1757 /* Request that MMIO be enabled, so register dump can be taken. */ 1758 return PCI_ERS_RESULT_CAN_RECOVER; 1759 } 1760 1761 /** 1762 * sym2_io_slot_dump - Enable MMIO and dump debug registers 1763 * @pdev: pointer to PCI device 1764 */ 1765 static pci_ers_result_t sym2_io_slot_dump(struct pci_dev *pdev) 1766 { 1767 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1768 1769 sym_dump_registers(shost); 1770 1771 /* Request a slot reset. */ 1772 return PCI_ERS_RESULT_NEED_RESET; 1773 } 1774 1775 /** 1776 * sym2_reset_workarounds - hardware-specific work-arounds 1777 * 1778 * This routine is similar to sym_set_workarounds(), except 1779 * that, at this point, we already know that the device was 1780 * successfully initialized at least once before, and so most 1781 * of the steps taken there are un-needed here. 1782 */ 1783 static void sym2_reset_workarounds(struct pci_dev *pdev) 1784 { 1785 u_short status_reg; 1786 struct sym_chip *chip; 1787 1788 chip = sym_lookup_chip_table(pdev->device, pdev->revision); 1789 1790 /* Work around for errant bit in 895A, in a fashion 1791 * similar to what is done in sym_set_workarounds(). 1792 */ 1793 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1794 if (!(chip->features & FE_66MHZ) && (status_reg & PCI_STATUS_66MHZ)) { 1795 status_reg = PCI_STATUS_66MHZ; 1796 pci_write_config_word(pdev, PCI_STATUS, status_reg); 1797 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1798 } 1799 } 1800 1801 /** 1802 * sym2_io_slot_reset() - called when the pci bus has been reset. 1803 * @pdev: pointer to PCI device 1804 * 1805 * Restart the card from scratch. 1806 */ 1807 static pci_ers_result_t sym2_io_slot_reset(struct pci_dev *pdev) 1808 { 1809 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1810 struct sym_hcb *np = sym_get_hcb(shost); 1811 1812 printk(KERN_INFO "%s: recovering from a PCI slot reset\n", 1813 sym_name(np)); 1814 1815 if (pci_enable_device(pdev)) { 1816 printk(KERN_ERR "%s: Unable to enable after PCI reset\n", 1817 sym_name(np)); 1818 return PCI_ERS_RESULT_DISCONNECT; 1819 } 1820 1821 pci_set_master(pdev); 1822 enable_irq(pdev->irq); 1823 1824 /* If the chip can do Memory Write Invalidate, enable it */ 1825 if (np->features & FE_WRIE) { 1826 if (pci_set_mwi(pdev)) 1827 return PCI_ERS_RESULT_DISCONNECT; 1828 } 1829 1830 /* Perform work-arounds, analogous to sym_set_workarounds() */ 1831 sym2_reset_workarounds(pdev); 1832 1833 /* Perform host reset only on one instance of the card */ 1834 if (PCI_FUNC(pdev->devfn) == 0) { 1835 if (sym_reset_scsi_bus(np, 0)) { 1836 printk(KERN_ERR "%s: Unable to reset scsi host\n", 1837 sym_name(np)); 1838 return PCI_ERS_RESULT_DISCONNECT; 1839 } 1840 sym_start_up(shost, 1); 1841 } 1842 1843 return PCI_ERS_RESULT_RECOVERED; 1844 } 1845 1846 /** 1847 * sym2_io_resume() - resume normal ops after PCI reset 1848 * @pdev: pointer to PCI device 1849 * 1850 * Called when the error recovery driver tells us that its 1851 * OK to resume normal operation. Use completion to allow 1852 * halted scsi ops to resume. 1853 */ 1854 static void sym2_io_resume(struct pci_dev *pdev) 1855 { 1856 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1857 struct sym_data *sym_data = shost_priv(shost); 1858 1859 spin_lock_irq(shost->host_lock); 1860 if (sym_data->io_reset) 1861 complete(sym_data->io_reset); 1862 spin_unlock_irq(shost->host_lock); 1863 } 1864 1865 static void sym2_get_signalling(struct Scsi_Host *shost) 1866 { 1867 struct sym_hcb *np = sym_get_hcb(shost); 1868 enum spi_signal_type type; 1869 1870 switch (np->scsi_mode) { 1871 case SMODE_SE: 1872 type = SPI_SIGNAL_SE; 1873 break; 1874 case SMODE_LVD: 1875 type = SPI_SIGNAL_LVD; 1876 break; 1877 case SMODE_HVD: 1878 type = SPI_SIGNAL_HVD; 1879 break; 1880 default: 1881 type = SPI_SIGNAL_UNKNOWN; 1882 break; 1883 } 1884 spi_signalling(shost) = type; 1885 } 1886 1887 static void sym2_set_offset(struct scsi_target *starget, int offset) 1888 { 1889 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1890 struct sym_hcb *np = sym_get_hcb(shost); 1891 struct sym_tcb *tp = &np->target[starget->id]; 1892 1893 tp->tgoal.offset = offset; 1894 tp->tgoal.check_nego = 1; 1895 } 1896 1897 static void sym2_set_period(struct scsi_target *starget, int period) 1898 { 1899 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1900 struct sym_hcb *np = sym_get_hcb(shost); 1901 struct sym_tcb *tp = &np->target[starget->id]; 1902 1903 /* have to have DT for these transfers, but DT will also 1904 * set width, so check that this is allowed */ 1905 if (period <= np->minsync && spi_width(starget)) 1906 tp->tgoal.dt = 1; 1907 1908 tp->tgoal.period = period; 1909 tp->tgoal.check_nego = 1; 1910 } 1911 1912 static void sym2_set_width(struct scsi_target *starget, int width) 1913 { 1914 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1915 struct sym_hcb *np = sym_get_hcb(shost); 1916 struct sym_tcb *tp = &np->target[starget->id]; 1917 1918 /* It is illegal to have DT set on narrow transfers. If DT is 1919 * clear, we must also clear IU and QAS. */ 1920 if (width == 0) 1921 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 1922 1923 tp->tgoal.width = width; 1924 tp->tgoal.check_nego = 1; 1925 } 1926 1927 static void sym2_set_dt(struct scsi_target *starget, int dt) 1928 { 1929 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1930 struct sym_hcb *np = sym_get_hcb(shost); 1931 struct sym_tcb *tp = &np->target[starget->id]; 1932 1933 /* We must clear QAS and IU if DT is clear */ 1934 if (dt) 1935 tp->tgoal.dt = 1; 1936 else 1937 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 1938 tp->tgoal.check_nego = 1; 1939 } 1940 1941 #if 0 1942 static void sym2_set_iu(struct scsi_target *starget, int iu) 1943 { 1944 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1945 struct sym_hcb *np = sym_get_hcb(shost); 1946 struct sym_tcb *tp = &np->target[starget->id]; 1947 1948 if (iu) 1949 tp->tgoal.iu = tp->tgoal.dt = 1; 1950 else 1951 tp->tgoal.iu = 0; 1952 tp->tgoal.check_nego = 1; 1953 } 1954 1955 static void sym2_set_qas(struct scsi_target *starget, int qas) 1956 { 1957 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1958 struct sym_hcb *np = sym_get_hcb(shost); 1959 struct sym_tcb *tp = &np->target[starget->id]; 1960 1961 if (qas) 1962 tp->tgoal.dt = tp->tgoal.qas = 1; 1963 else 1964 tp->tgoal.qas = 0; 1965 tp->tgoal.check_nego = 1; 1966 } 1967 #endif 1968 1969 static struct spi_function_template sym2_transport_functions = { 1970 .set_offset = sym2_set_offset, 1971 .show_offset = 1, 1972 .set_period = sym2_set_period, 1973 .show_period = 1, 1974 .set_width = sym2_set_width, 1975 .show_width = 1, 1976 .set_dt = sym2_set_dt, 1977 .show_dt = 1, 1978 #if 0 1979 .set_iu = sym2_set_iu, 1980 .show_iu = 1, 1981 .set_qas = sym2_set_qas, 1982 .show_qas = 1, 1983 #endif 1984 .get_signalling = sym2_get_signalling, 1985 }; 1986 1987 static struct pci_device_id sym2_id_table[] = { 1988 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810, 1989 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1990 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820, 1991 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ 1992 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825, 1993 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1994 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815, 1995 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1996 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP, 1997 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ 1998 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860, 1999 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2000 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510, 2001 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL }, 2002 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896, 2003 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2004 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895, 2005 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2006 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885, 2007 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2008 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875, 2009 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2010 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510, 2011 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL }, /* new */ 2012 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A, 2013 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2014 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A, 2015 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2016 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33, 2017 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2018 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66, 2019 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2020 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J, 2021 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2022 { 0, } 2023 }; 2024 2025 MODULE_DEVICE_TABLE(pci, sym2_id_table); 2026 2027 static const struct pci_error_handlers sym2_err_handler = { 2028 .error_detected = sym2_io_error_detected, 2029 .mmio_enabled = sym2_io_slot_dump, 2030 .slot_reset = sym2_io_slot_reset, 2031 .resume = sym2_io_resume, 2032 }; 2033 2034 static struct pci_driver sym2_driver = { 2035 .name = NAME53C8XX, 2036 .id_table = sym2_id_table, 2037 .probe = sym2_probe, 2038 .remove = sym2_remove, 2039 .err_handler = &sym2_err_handler, 2040 }; 2041 2042 static int __init sym2_init(void) 2043 { 2044 int error; 2045 2046 sym2_setup_params(); 2047 sym2_transport_template = spi_attach_transport(&sym2_transport_functions); 2048 if (!sym2_transport_template) 2049 return -ENODEV; 2050 2051 error = pci_register_driver(&sym2_driver); 2052 if (error) 2053 spi_release_transport(sym2_transport_template); 2054 return error; 2055 } 2056 2057 static void __exit sym2_exit(void) 2058 { 2059 pci_unregister_driver(&sym2_driver); 2060 spi_release_transport(sym2_transport_template); 2061 } 2062 2063 module_init(sym2_init); 2064 module_exit(sym2_exit); 2065