1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 #include <linux/ctype.h>
41 #include <linux/init.h>
42 #include <linux/interrupt.h>
43 #include <linux/module.h>
44 #include <linux/moduleparam.h>
45 #include <linux/spinlock.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_tcq.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_transport.h>
50 
51 #include "sym_glue.h"
52 #include "sym_nvram.h"
53 
54 #define NAME53C		"sym53c"
55 #define NAME53C8XX	"sym53c8xx"
56 
57 #define IRQ_FMT "%d"
58 #define IRQ_PRM(x) (x)
59 
60 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
61 unsigned int sym_debug_flags = 0;
62 
63 static char *excl_string;
64 static char *safe_string;
65 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
66 module_param_string(tag_ctrl, sym_driver_setup.tag_ctrl, 100, 0);
67 module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
68 module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
69 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
70 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
71 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
72 module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
73 module_param_named(verb, sym_driver_setup.verbose, byte, 0);
74 module_param_named(debug, sym_debug_flags, uint, 0);
75 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
76 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
77 module_param_named(excl, excl_string, charp, 0);
78 module_param_named(safe, safe_string, charp, 0);
79 
80 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
81 MODULE_PARM_DESC(tag_ctrl, "More detailed control over tags per LUN");
82 MODULE_PARM_DESC(burst, "Maximum burst.  0 to disable, 255 to read from registers");
83 MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
84 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
85 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
86 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
87 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
88 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
89 MODULE_PARM_DESC(debug, "Set bits to enable debugging");
90 MODULE_PARM_DESC(settle, "Settle delay in seconds.  Default 3");
91 MODULE_PARM_DESC(nvram, "Option currently not used");
92 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
93 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");
94 
95 MODULE_LICENSE("GPL");
96 MODULE_VERSION(SYM_VERSION);
97 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
98 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");
99 
100 static void sym2_setup_params(void)
101 {
102 	char *p = excl_string;
103 	int xi = 0;
104 
105 	while (p && (xi < 8)) {
106 		char *next_p;
107 		int val = (int) simple_strtoul(p, &next_p, 0);
108 		sym_driver_setup.excludes[xi++] = val;
109 		p = next_p;
110 	}
111 
112 	if (safe_string) {
113 		if (*safe_string == 'y') {
114 			sym_driver_setup.max_tag = 0;
115 			sym_driver_setup.burst_order = 0;
116 			sym_driver_setup.scsi_led = 0;
117 			sym_driver_setup.scsi_diff = 1;
118 			sym_driver_setup.irq_mode = 0;
119 			sym_driver_setup.scsi_bus_check = 2;
120 			sym_driver_setup.host_id = 7;
121 			sym_driver_setup.verbose = 2;
122 			sym_driver_setup.settle_delay = 10;
123 			sym_driver_setup.use_nvram = 1;
124 		} else if (*safe_string != 'n') {
125 			printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
126 					" passed to safe option", safe_string);
127 		}
128 	}
129 }
130 
131 static struct scsi_transport_template *sym2_transport_template = NULL;
132 
133 /*
134  *  Driver private area in the SCSI command structure.
135  */
136 struct sym_ucmd {		/* Override the SCSI pointer structure */
137 	dma_addr_t	data_mapping;
138 	unsigned char	data_mapped;
139 	unsigned char	to_do;			/* For error handling */
140 	void (*old_done)(struct scsi_cmnd *);	/* For error handling */
141 	struct completion *eh_done;		/* For error handling */
142 };
143 
144 #define SYM_UCMD_PTR(cmd)  ((struct sym_ucmd *)(&(cmd)->SCp))
145 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
146 
147 static void __unmap_scsi_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
148 {
149 	int dma_dir = cmd->sc_data_direction;
150 
151 	switch(SYM_UCMD_PTR(cmd)->data_mapped) {
152 	case 2:
153 		pci_unmap_sg(pdev, cmd->request_buffer, cmd->use_sg, dma_dir);
154 		break;
155 	case 1:
156 		pci_unmap_single(pdev, SYM_UCMD_PTR(cmd)->data_mapping,
157 				 cmd->request_bufflen, dma_dir);
158 		break;
159 	}
160 	SYM_UCMD_PTR(cmd)->data_mapped = 0;
161 }
162 
163 static dma_addr_t __map_scsi_single_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
164 {
165 	dma_addr_t mapping;
166 	int dma_dir = cmd->sc_data_direction;
167 
168 	mapping = pci_map_single(pdev, cmd->request_buffer,
169 				 cmd->request_bufflen, dma_dir);
170 	if (mapping) {
171 		SYM_UCMD_PTR(cmd)->data_mapped  = 1;
172 		SYM_UCMD_PTR(cmd)->data_mapping = mapping;
173 	}
174 
175 	return mapping;
176 }
177 
178 static int __map_scsi_sg_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
179 {
180 	int use_sg;
181 	int dma_dir = cmd->sc_data_direction;
182 
183 	use_sg = pci_map_sg(pdev, cmd->request_buffer, cmd->use_sg, dma_dir);
184 	if (use_sg > 0) {
185 		SYM_UCMD_PTR(cmd)->data_mapped  = 2;
186 		SYM_UCMD_PTR(cmd)->data_mapping = use_sg;
187 	}
188 
189 	return use_sg;
190 }
191 
192 #define unmap_scsi_data(np, cmd)	\
193 		__unmap_scsi_data(np->s.device, cmd)
194 #define map_scsi_single_data(np, cmd)	\
195 		__map_scsi_single_data(np->s.device, cmd)
196 #define map_scsi_sg_data(np, cmd)	\
197 		__map_scsi_sg_data(np->s.device, cmd)
198 /*
199  *  Complete a pending CAM CCB.
200  */
201 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
202 {
203 	unmap_scsi_data(np, cmd);
204 	cmd->scsi_done(cmd);
205 }
206 
207 static void sym_xpt_done2(struct sym_hcb *np, struct scsi_cmnd *cmd, int cam_status)
208 {
209 	sym_set_cam_status(cmd, cam_status);
210 	sym_xpt_done(np, cmd);
211 }
212 
213 
214 /*
215  *  Tell the SCSI layer about a BUS RESET.
216  */
217 void sym_xpt_async_bus_reset(struct sym_hcb *np)
218 {
219 	printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
220 	np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
221 	np->s.settle_time_valid = 1;
222 	if (sym_verbose >= 2)
223 		printf_info("%s: command processing suspended for %d seconds\n",
224 			    sym_name(np), sym_driver_setup.settle_delay);
225 }
226 
227 /*
228  *  Tell the SCSI layer about a BUS DEVICE RESET message sent.
229  */
230 void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target)
231 {
232 	printf_notice("%s: TARGET %d has been reset.\n", sym_name(np), target);
233 }
234 
235 /*
236  *  Choose the more appropriate CAM status if
237  *  the IO encountered an extended error.
238  */
239 static int sym_xerr_cam_status(int cam_status, int x_status)
240 {
241 	if (x_status) {
242 		if	(x_status & XE_PARITY_ERR)
243 			cam_status = DID_PARITY;
244 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
245 			cam_status = DID_ERROR;
246 		else if	(x_status & XE_BAD_PHASE)
247 			cam_status = DID_ERROR;
248 		else
249 			cam_status = DID_ERROR;
250 	}
251 	return cam_status;
252 }
253 
254 /*
255  *  Build CAM result for a failed or auto-sensed IO.
256  */
257 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
258 {
259 	struct scsi_cmnd *cmd = cp->cmd;
260 	u_int cam_status, scsi_status, drv_status;
261 
262 	drv_status  = 0;
263 	cam_status  = DID_OK;
264 	scsi_status = cp->ssss_status;
265 
266 	if (cp->host_flags & HF_SENSE) {
267 		scsi_status = cp->sv_scsi_status;
268 		resid = cp->sv_resid;
269 		if (sym_verbose && cp->sv_xerr_status)
270 			sym_print_xerr(cmd, cp->sv_xerr_status);
271 		if (cp->host_status == HS_COMPLETE &&
272 		    cp->ssss_status == S_GOOD &&
273 		    cp->xerr_status == 0) {
274 			cam_status = sym_xerr_cam_status(DID_OK,
275 							 cp->sv_xerr_status);
276 			drv_status = DRIVER_SENSE;
277 			/*
278 			 *  Bounce back the sense data to user.
279 			 */
280 			memset(&cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
281 			memcpy(cmd->sense_buffer, cp->sns_bbuf,
282 			      min(sizeof(cmd->sense_buffer),
283 				  (size_t)SYM_SNS_BBUF_LEN));
284 #if 0
285 			/*
286 			 *  If the device reports a UNIT ATTENTION condition
287 			 *  due to a RESET condition, we should consider all
288 			 *  disconnect CCBs for this unit as aborted.
289 			 */
290 			if (1) {
291 				u_char *p;
292 				p  = (u_char *) cmd->sense_data;
293 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
294 					sym_clear_tasks(np, DID_ABORT,
295 							cp->target,cp->lun, -1);
296 			}
297 #endif
298 		} else {
299 			/*
300 			 * Error return from our internal request sense.  This
301 			 * is bad: we must clear the contingent allegiance
302 			 * condition otherwise the device will always return
303 			 * BUSY.  Use a big stick.
304 			 */
305 			sym_reset_scsi_target(np, cmd->device->id);
306 			cam_status = DID_ERROR;
307 		}
308 	} else if (cp->host_status == HS_COMPLETE) 	/* Bad SCSI status */
309 		cam_status = DID_OK;
310 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
311 		cam_status = DID_NO_CONNECT;
312 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
313 		cam_status = DID_ERROR;
314 	else {						/* Extended error */
315 		if (sym_verbose) {
316 			sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
317 				cp->host_status, cp->ssss_status,
318 				cp->xerr_status);
319 		}
320 		/*
321 		 *  Set the most appropriate value for CAM status.
322 		 */
323 		cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
324 	}
325 	cmd->resid = resid;
326 	cmd->result = (drv_status << 24) + (cam_status << 16) + scsi_status;
327 }
328 
329 
330 /*
331  *  Build the scatter/gather array for an I/O.
332  */
333 
334 static int sym_scatter_no_sglist(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
335 {
336 	struct sym_tblmove *data = &cp->phys.data[SYM_CONF_MAX_SG-1];
337 	int segment;
338 	unsigned int len = cmd->request_bufflen;
339 
340 	if (len) {
341 		dma_addr_t baddr = map_scsi_single_data(np, cmd);
342 		if (baddr) {
343 			if (len & 1) {
344 				struct sym_tcb *tp = &np->target[cp->target];
345 				if (tp->head.wval & EWS) {
346 					len++;
347 					cp->odd_byte_adjustment++;
348 				}
349 			}
350 			cp->data_len = len;
351 			sym_build_sge(np, data, baddr, len);
352 			segment = 1;
353 		} else {
354 			segment = -2;
355 		}
356 	} else {
357 		segment = 0;
358 	}
359 
360 	return segment;
361 }
362 
363 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
364 {
365 	int segment;
366 	int use_sg = (int) cmd->use_sg;
367 
368 	cp->data_len = 0;
369 
370 	if (!use_sg)
371 		segment = sym_scatter_no_sglist(np, cp, cmd);
372 	else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
373 		struct scatterlist *scatter = (struct scatterlist *)cmd->request_buffer;
374 		struct sym_tcb *tp = &np->target[cp->target];
375 		struct sym_tblmove *data;
376 
377 		if (use_sg > SYM_CONF_MAX_SG) {
378 			unmap_scsi_data(np, cmd);
379 			return -1;
380 		}
381 
382 		data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];
383 
384 		for (segment = 0; segment < use_sg; segment++) {
385 			dma_addr_t baddr = sg_dma_address(&scatter[segment]);
386 			unsigned int len = sg_dma_len(&scatter[segment]);
387 
388 			if ((len & 1) && (tp->head.wval & EWS)) {
389 				len++;
390 				cp->odd_byte_adjustment++;
391 			}
392 
393 			sym_build_sge(np, &data[segment], baddr, len);
394 			cp->data_len += len;
395 		}
396 	} else {
397 		segment = -2;
398 	}
399 
400 	return segment;
401 }
402 
403 /*
404  *  Queue a SCSI command.
405  */
406 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
407 {
408 	struct scsi_device *sdev = cmd->device;
409 	struct sym_tcb *tp;
410 	struct sym_lcb *lp;
411 	struct sym_ccb *cp;
412 	int	order;
413 
414 	/*
415 	 *  Minimal checkings, so that we will not
416 	 *  go outside our tables.
417 	 */
418 	if (sdev->id == np->myaddr) {
419 		sym_xpt_done2(np, cmd, DID_NO_CONNECT);
420 		return 0;
421 	}
422 
423 	/*
424 	 *  Retrieve the target descriptor.
425 	 */
426 	tp = &np->target[sdev->id];
427 
428 	/*
429 	 *  Select tagged/untagged.
430 	 */
431 	lp = sym_lp(tp, sdev->lun);
432 	order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;
433 
434 	/*
435 	 *  Queue the SCSI IO.
436 	 */
437 	cp = sym_get_ccb(np, cmd, order);
438 	if (!cp)
439 		return 1;	/* Means resource shortage */
440 	sym_queue_scsiio(np, cmd, cp);
441 	return 0;
442 }
443 
444 /*
445  *  Setup buffers and pointers that address the CDB.
446  */
447 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
448 {
449 	memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);
450 
451 	cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]);
452 	cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
453 
454 	return 0;
455 }
456 
457 /*
458  *  Setup pointers that address the data and start the I/O.
459  */
460 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
461 {
462 	u32 lastp, goalp;
463 	int dir;
464 
465 	/*
466 	 *  Build the CDB.
467 	 */
468 	if (sym_setup_cdb(np, cmd, cp))
469 		goto out_abort;
470 
471 	/*
472 	 *  No direction means no data.
473 	 */
474 	dir = cmd->sc_data_direction;
475 	if (dir != DMA_NONE) {
476 		cp->segments = sym_scatter(np, cp, cmd);
477 		if (cp->segments < 0) {
478 			sym_set_cam_status(cmd, DID_ERROR);
479 			goto out_abort;
480 		}
481 
482 		/*
483 		 *  No segments means no data.
484 		 */
485 		if (!cp->segments)
486 			dir = DMA_NONE;
487 	} else {
488 		cp->data_len = 0;
489 		cp->segments = 0;
490 	}
491 
492 	/*
493 	 *  Set the data pointer.
494 	 */
495 	switch (dir) {
496 	case DMA_BIDIRECTIONAL:
497 		printk("%s: got DMA_BIDIRECTIONAL command", sym_name(np));
498 		sym_set_cam_status(cmd, DID_ERROR);
499 		goto out_abort;
500 	case DMA_TO_DEVICE:
501 		goalp = SCRIPTA_BA(np, data_out2) + 8;
502 		lastp = goalp - 8 - (cp->segments * (2*4));
503 		break;
504 	case DMA_FROM_DEVICE:
505 		cp->host_flags |= HF_DATA_IN;
506 		goalp = SCRIPTA_BA(np, data_in2) + 8;
507 		lastp = goalp - 8 - (cp->segments * (2*4));
508 		break;
509 	case DMA_NONE:
510 	default:
511 		lastp = goalp = SCRIPTB_BA(np, no_data);
512 		break;
513 	}
514 
515 	/*
516 	 *  Set all pointers values needed by SCRIPTS.
517 	 */
518 	cp->phys.head.lastp = cpu_to_scr(lastp);
519 	cp->phys.head.savep = cpu_to_scr(lastp);
520 	cp->startp	    = cp->phys.head.savep;
521 	cp->goalp	    = cpu_to_scr(goalp);
522 
523 	/*
524 	 *  When `#ifed 1', the code below makes the driver
525 	 *  panic on the first attempt to write to a SCSI device.
526 	 *  It is the first test we want to do after a driver
527 	 *  change that does not seem obviously safe. :)
528 	 */
529 #if 0
530 	switch (cp->cdb_buf[0]) {
531 	case 0x0A: case 0x2A: case 0xAA:
532 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
533 		break;
534 	default:
535 		break;
536 	}
537 #endif
538 
539 	/*
540 	 *	activate this job.
541 	 */
542 	sym_put_start_queue(np, cp);
543 	return 0;
544 
545 out_abort:
546 	sym_free_ccb(np, cp);
547 	sym_xpt_done(np, cmd);
548 	return 0;
549 }
550 
551 
552 /*
553  *  timer daemon.
554  *
555  *  Misused to keep the driver running when
556  *  interrupts are not configured correctly.
557  */
558 static void sym_timer(struct sym_hcb *np)
559 {
560 	unsigned long thistime = jiffies;
561 
562 	/*
563 	 *  Restart the timer.
564 	 */
565 	np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
566 	add_timer(&np->s.timer);
567 
568 	/*
569 	 *  If we are resetting the ncr, wait for settle_time before
570 	 *  clearing it. Then command processing will be resumed.
571 	 */
572 	if (np->s.settle_time_valid) {
573 		if (time_before_eq(np->s.settle_time, thistime)) {
574 			if (sym_verbose >= 2 )
575 				printk("%s: command processing resumed\n",
576 				       sym_name(np));
577 			np->s.settle_time_valid = 0;
578 		}
579 		return;
580 	}
581 
582 	/*
583 	 *	Nothing to do for now, but that may come.
584 	 */
585 	if (np->s.lasttime + 4*HZ < thistime) {
586 		np->s.lasttime = thistime;
587 	}
588 
589 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
590 	/*
591 	 *  Some way-broken PCI bridges may lead to
592 	 *  completions being lost when the clearing
593 	 *  of the INTFLY flag by the CPU occurs
594 	 *  concurrently with the chip raising this flag.
595 	 *  If this ever happen, lost completions will
596 	 * be reaped here.
597 	 */
598 	sym_wakeup_done(np);
599 #endif
600 }
601 
602 
603 /*
604  *  PCI BUS error handler.
605  */
606 void sym_log_bus_error(struct sym_hcb *np)
607 {
608 	u_short pci_sts;
609 	pci_read_config_word(np->s.device, PCI_STATUS, &pci_sts);
610 	if (pci_sts & 0xf900) {
611 		pci_write_config_word(np->s.device, PCI_STATUS, pci_sts);
612 		printf("%s: PCI STATUS = 0x%04x\n",
613 			sym_name(np), pci_sts & 0xf900);
614 	}
615 }
616 
617 /*
618  * queuecommand method.  Entered with the host adapter lock held and
619  * interrupts disabled.
620  */
621 static int sym53c8xx_queue_command(struct scsi_cmnd *cmd,
622 					void (*done)(struct scsi_cmnd *))
623 {
624 	struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
625 	struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
626 	int sts = 0;
627 
628 	cmd->scsi_done     = done;
629 	memset(ucp, 0, sizeof(*ucp));
630 
631 	/*
632 	 *  Shorten our settle_time if needed for
633 	 *  this command not to time out.
634 	 */
635 	if (np->s.settle_time_valid && cmd->timeout_per_command) {
636 		unsigned long tlimit = jiffies + cmd->timeout_per_command;
637 		tlimit -= SYM_CONF_TIMER_INTERVAL*2;
638 		if (time_after(np->s.settle_time, tlimit)) {
639 			np->s.settle_time = tlimit;
640 		}
641 	}
642 
643 	if (np->s.settle_time_valid)
644 		return SCSI_MLQUEUE_HOST_BUSY;
645 
646 	sts = sym_queue_command(np, cmd);
647 	if (sts)
648 		return SCSI_MLQUEUE_HOST_BUSY;
649 	return 0;
650 }
651 
652 /*
653  *  Linux entry point of the interrupt handler.
654  */
655 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id)
656 {
657 	unsigned long flags;
658 	struct sym_hcb *np = (struct sym_hcb *)dev_id;
659 
660 	if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
661 
662 	spin_lock_irqsave(np->s.host->host_lock, flags);
663 	sym_interrupt(np);
664 	spin_unlock_irqrestore(np->s.host->host_lock, flags);
665 
666 	if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
667 
668 	return IRQ_HANDLED;
669 }
670 
671 /*
672  *  Linux entry point of the timer handler
673  */
674 static void sym53c8xx_timer(unsigned long npref)
675 {
676 	struct sym_hcb *np = (struct sym_hcb *)npref;
677 	unsigned long flags;
678 
679 	spin_lock_irqsave(np->s.host->host_lock, flags);
680 	sym_timer(np);
681 	spin_unlock_irqrestore(np->s.host->host_lock, flags);
682 }
683 
684 
685 /*
686  *  What the eh thread wants us to perform.
687  */
688 #define SYM_EH_ABORT		0
689 #define SYM_EH_DEVICE_RESET	1
690 #define SYM_EH_BUS_RESET	2
691 #define SYM_EH_HOST_RESET	3
692 
693 /*
694  *  What we will do regarding the involved SCSI command.
695  */
696 #define SYM_EH_DO_IGNORE	0
697 #define SYM_EH_DO_WAIT		2
698 
699 /*
700  *  scsi_done() alias when error recovery is in progress.
701  */
702 static void sym_eh_done(struct scsi_cmnd *cmd)
703 {
704 	struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
705 	BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd));
706 
707 	cmd->scsi_done = ucmd->old_done;
708 
709 	if (ucmd->to_do == SYM_EH_DO_WAIT)
710 		complete(ucmd->eh_done);
711 }
712 
713 /*
714  *  Generic method for our eh processing.
715  *  The 'op' argument tells what we have to do.
716  */
717 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
718 {
719 	struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
720 	struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
721 	struct Scsi_Host *host = cmd->device->host;
722 	SYM_QUEHEAD *qp;
723 	int to_do = SYM_EH_DO_IGNORE;
724 	int sts = -1;
725 	struct completion eh_done;
726 
727 	dev_warn(&cmd->device->sdev_gendev, "%s operation started.\n", opname);
728 
729 	spin_lock_irq(host->host_lock);
730 	/* This one is queued in some place -> to wait for completion */
731 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
732 		struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
733 		if (cp->cmd == cmd) {
734 			to_do = SYM_EH_DO_WAIT;
735 			break;
736 		}
737 	}
738 
739 	if (to_do == SYM_EH_DO_WAIT) {
740 		init_completion(&eh_done);
741 		ucmd->old_done = cmd->scsi_done;
742 		ucmd->eh_done = &eh_done;
743 		wmb();
744 		cmd->scsi_done = sym_eh_done;
745 	}
746 
747 	/* Try to proceed the operation we have been asked for */
748 	sts = -1;
749 	switch(op) {
750 	case SYM_EH_ABORT:
751 		sts = sym_abort_scsiio(np, cmd, 1);
752 		break;
753 	case SYM_EH_DEVICE_RESET:
754 		sts = sym_reset_scsi_target(np, cmd->device->id);
755 		break;
756 	case SYM_EH_BUS_RESET:
757 		sym_reset_scsi_bus(np, 1);
758 		sts = 0;
759 		break;
760 	case SYM_EH_HOST_RESET:
761 		sym_reset_scsi_bus(np, 0);
762 		sym_start_up (np, 1);
763 		sts = 0;
764 		break;
765 	default:
766 		break;
767 	}
768 
769 	/* On error, restore everything and cross fingers :) */
770 	if (sts) {
771 		cmd->scsi_done = ucmd->old_done;
772 		to_do = SYM_EH_DO_IGNORE;
773 	}
774 
775 	ucmd->to_do = to_do;
776 	spin_unlock_irq(host->host_lock);
777 
778 	if (to_do == SYM_EH_DO_WAIT) {
779 		if (!wait_for_completion_timeout(&eh_done, 5*HZ)) {
780 			ucmd->to_do = SYM_EH_DO_IGNORE;
781 			wmb();
782 			sts = -2;
783 		}
784 	}
785 	dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
786 			sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
787 	return sts ? SCSI_FAILED : SCSI_SUCCESS;
788 }
789 
790 
791 /*
792  * Error handlers called from the eh thread (one thread per HBA).
793  */
794 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
795 {
796 	return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd);
797 }
798 
799 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd)
800 {
801 	return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd);
802 }
803 
804 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
805 {
806 	return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd);
807 }
808 
809 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
810 {
811 	return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd);
812 }
813 
814 /*
815  *  Tune device queuing depth, according to various limits.
816  */
817 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
818 {
819 	struct sym_lcb *lp = sym_lp(tp, lun);
820 	u_short	oldtags;
821 
822 	if (!lp)
823 		return;
824 
825 	oldtags = lp->s.reqtags;
826 
827 	if (reqtags > lp->s.scdev_depth)
828 		reqtags = lp->s.scdev_depth;
829 
830 	lp->s.reqtags     = reqtags;
831 
832 	if (reqtags != oldtags) {
833 		dev_info(&tp->starget->dev,
834 		         "tagged command queuing %s, command queue depth %d.\n",
835 		          lp->s.reqtags ? "enabled" : "disabled", reqtags);
836 	}
837 }
838 
839 /*
840  *  Linux select queue depths function
841  */
842 #define DEF_DEPTH	(sym_driver_setup.max_tag)
843 #define ALL_TARGETS	-2
844 #define NO_TARGET	-1
845 #define ALL_LUNS	-2
846 #define NO_LUN		-1
847 
848 static int device_queue_depth(struct sym_hcb *np, int target, int lun)
849 {
850 	int c, h, t, u, v;
851 	char *p = sym_driver_setup.tag_ctrl;
852 	char *ep;
853 
854 	h = -1;
855 	t = NO_TARGET;
856 	u = NO_LUN;
857 	while ((c = *p++) != 0) {
858 		v = simple_strtoul(p, &ep, 0);
859 		switch(c) {
860 		case '/':
861 			++h;
862 			t = ALL_TARGETS;
863 			u = ALL_LUNS;
864 			break;
865 		case 't':
866 			if (t != target)
867 				t = (target == v) ? v : NO_TARGET;
868 			u = ALL_LUNS;
869 			break;
870 		case 'u':
871 			if (u != lun)
872 				u = (lun == v) ? v : NO_LUN;
873 			break;
874 		case 'q':
875 			if (h == np->s.unit &&
876 				(t == ALL_TARGETS || t == target) &&
877 				(u == ALL_LUNS    || u == lun))
878 				return v;
879 			break;
880 		case '-':
881 			t = ALL_TARGETS;
882 			u = ALL_LUNS;
883 			break;
884 		default:
885 			break;
886 		}
887 		p = ep;
888 	}
889 	return DEF_DEPTH;
890 }
891 
892 static int sym53c8xx_slave_alloc(struct scsi_device *sdev)
893 {
894 	struct sym_hcb *np = sym_get_hcb(sdev->host);
895 	struct sym_tcb *tp = &np->target[sdev->id];
896 	struct sym_lcb *lp;
897 
898 	if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN)
899 		return -ENXIO;
900 
901 	tp->starget = sdev->sdev_target;
902 	/*
903 	 * Fail the device init if the device is flagged NOSCAN at BOOT in
904 	 * the NVRAM.  This may speed up boot and maintain coherency with
905 	 * BIOS device numbering.  Clearing the flag allows the user to
906 	 * rescan skipped devices later.  We also return an error for
907 	 * devices not flagged for SCAN LUNS in the NVRAM since some single
908 	 * lun devices behave badly when asked for a non zero LUN.
909 	 */
910 
911 	if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) {
912 		tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
913 		starget_printk(KERN_INFO, tp->starget,
914 				"Scan at boot disabled in NVRAM\n");
915 		return -ENXIO;
916 	}
917 
918 	if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) {
919 		if (sdev->lun != 0)
920 			return -ENXIO;
921 		starget_printk(KERN_INFO, tp->starget,
922 				"Multiple LUNs disabled in NVRAM\n");
923 	}
924 
925 	lp = sym_alloc_lcb(np, sdev->id, sdev->lun);
926 	if (!lp)
927 		return -ENOMEM;
928 
929 	spi_min_period(tp->starget) = tp->usr_period;
930 	spi_max_width(tp->starget) = tp->usr_width;
931 
932 	return 0;
933 }
934 
935 /*
936  * Linux entry point for device queue sizing.
937  */
938 static int sym53c8xx_slave_configure(struct scsi_device *sdev)
939 {
940 	struct sym_hcb *np = sym_get_hcb(sdev->host);
941 	struct sym_tcb *tp = &np->target[sdev->id];
942 	struct sym_lcb *lp = sym_lp(tp, sdev->lun);
943 	int reqtags, depth_to_use;
944 
945 	/*
946 	 *  Get user flags.
947 	 */
948 	lp->curr_flags = lp->user_flags;
949 
950 	/*
951 	 *  Select queue depth from driver setup.
952 	 *  Donnot use more than configured by user.
953 	 *  Use at least 2.
954 	 *  Donnot use more than our maximum.
955 	 */
956 	reqtags = device_queue_depth(np, sdev->id, sdev->lun);
957 	if (reqtags > tp->usrtags)
958 		reqtags = tp->usrtags;
959 	if (!sdev->tagged_supported)
960 		reqtags = 0;
961 #if 1 /* Avoid to locally queue commands for no good reasons */
962 	if (reqtags > SYM_CONF_MAX_TAG)
963 		reqtags = SYM_CONF_MAX_TAG;
964 	depth_to_use = (reqtags ? reqtags : 2);
965 #else
966 	depth_to_use = (reqtags ? SYM_CONF_MAX_TAG : 2);
967 #endif
968 	scsi_adjust_queue_depth(sdev,
969 				(sdev->tagged_supported ?
970 				 MSG_SIMPLE_TAG : 0),
971 				depth_to_use);
972 	lp->s.scdev_depth = depth_to_use;
973 	sym_tune_dev_queuing(tp, sdev->lun, reqtags);
974 
975 	if (!spi_initial_dv(sdev->sdev_target))
976 		spi_dv_device(sdev);
977 
978 	return 0;
979 }
980 
981 static void sym53c8xx_slave_destroy(struct scsi_device *sdev)
982 {
983 	struct sym_hcb *np = sym_get_hcb(sdev->host);
984 	struct sym_lcb *lp = sym_lp(&np->target[sdev->id], sdev->lun);
985 
986 	if (lp->itlq_tbl)
987 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK * 4, "ITLQ_TBL");
988 	kfree(lp->cb_tags);
989 	sym_mfree_dma(lp, sizeof(*lp), "LCB");
990 }
991 
992 /*
993  *  Linux entry point for info() function
994  */
995 static const char *sym53c8xx_info (struct Scsi_Host *host)
996 {
997 	return SYM_DRIVER_NAME;
998 }
999 
1000 
1001 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1002 /*
1003  *  Proc file system stuff
1004  *
1005  *  A read operation returns adapter information.
1006  *  A write operation is a control command.
1007  *  The string is parsed in the driver code and the command is passed
1008  *  to the sym_usercmd() function.
1009  */
1010 
1011 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT
1012 
1013 struct	sym_usrcmd {
1014 	u_long	target;
1015 	u_long	lun;
1016 	u_long	data;
1017 	u_long	cmd;
1018 };
1019 
1020 #define UC_SETSYNC      10
1021 #define UC_SETTAGS	11
1022 #define UC_SETDEBUG	12
1023 #define UC_SETWIDE	14
1024 #define UC_SETFLAG	15
1025 #define UC_SETVERBOSE	17
1026 #define UC_RESETDEV	18
1027 #define UC_CLEARDEV	19
1028 
1029 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
1030 {
1031 	struct sym_tcb *tp;
1032 	int t, l;
1033 
1034 	switch (uc->cmd) {
1035 	case 0: return;
1036 
1037 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1038 	case UC_SETDEBUG:
1039 		sym_debug_flags = uc->data;
1040 		break;
1041 #endif
1042 	case UC_SETVERBOSE:
1043 		np->verbose = uc->data;
1044 		break;
1045 	default:
1046 		/*
1047 		 * We assume that other commands apply to targets.
1048 		 * This should always be the case and avoid the below
1049 		 * 4 lines to be repeated 6 times.
1050 		 */
1051 		for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
1052 			if (!((uc->target >> t) & 1))
1053 				continue;
1054 			tp = &np->target[t];
1055 
1056 			switch (uc->cmd) {
1057 
1058 			case UC_SETSYNC:
1059 				if (!uc->data || uc->data >= 255) {
1060 					tp->tgoal.iu = tp->tgoal.dt =
1061 						tp->tgoal.qas = 0;
1062 					tp->tgoal.offset = 0;
1063 				} else if (uc->data <= 9 && np->minsync_dt) {
1064 					if (uc->data < np->minsync_dt)
1065 						uc->data = np->minsync_dt;
1066 					tp->tgoal.iu = tp->tgoal.dt =
1067 						tp->tgoal.qas = 1;
1068 					tp->tgoal.width = 1;
1069 					tp->tgoal.period = uc->data;
1070 					tp->tgoal.offset = np->maxoffs_dt;
1071 				} else {
1072 					if (uc->data < np->minsync)
1073 						uc->data = np->minsync;
1074 					tp->tgoal.iu = tp->tgoal.dt =
1075 						tp->tgoal.qas = 0;
1076 					tp->tgoal.period = uc->data;
1077 					tp->tgoal.offset = np->maxoffs;
1078 				}
1079 				tp->tgoal.check_nego = 1;
1080 				break;
1081 			case UC_SETWIDE:
1082 				tp->tgoal.width = uc->data ? 1 : 0;
1083 				tp->tgoal.check_nego = 1;
1084 				break;
1085 			case UC_SETTAGS:
1086 				for (l = 0; l < SYM_CONF_MAX_LUN; l++)
1087 					sym_tune_dev_queuing(tp, l, uc->data);
1088 				break;
1089 			case UC_RESETDEV:
1090 				tp->to_reset = 1;
1091 				np->istat_sem = SEM;
1092 				OUTB(np, nc_istat, SIGP|SEM);
1093 				break;
1094 			case UC_CLEARDEV:
1095 				for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
1096 					struct sym_lcb *lp = sym_lp(tp, l);
1097 					if (lp) lp->to_clear = 1;
1098 				}
1099 				np->istat_sem = SEM;
1100 				OUTB(np, nc_istat, SIGP|SEM);
1101 				break;
1102 			case UC_SETFLAG:
1103 				tp->usrflags = uc->data;
1104 				break;
1105 			}
1106 		}
1107 		break;
1108 	}
1109 }
1110 
1111 static int skip_spaces(char *ptr, int len)
1112 {
1113 	int cnt, c;
1114 
1115 	for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);
1116 
1117 	return (len - cnt);
1118 }
1119 
1120 static int get_int_arg(char *ptr, int len, u_long *pv)
1121 {
1122 	char *end;
1123 
1124 	*pv = simple_strtoul(ptr, &end, 10);
1125 	return (end - ptr);
1126 }
1127 
1128 static int is_keyword(char *ptr, int len, char *verb)
1129 {
1130 	int verb_len = strlen(verb);
1131 
1132 	if (len >= verb_len && !memcmp(verb, ptr, verb_len))
1133 		return verb_len;
1134 	else
1135 		return 0;
1136 }
1137 
1138 #define SKIP_SPACES(ptr, len)						\
1139 	if ((arg_len = skip_spaces(ptr, len)) < 1)			\
1140 		return -EINVAL;						\
1141 	ptr += arg_len; len -= arg_len;
1142 
1143 #define GET_INT_ARG(ptr, len, v)					\
1144 	if (!(arg_len = get_int_arg(ptr, len, &(v))))			\
1145 		return -EINVAL;						\
1146 	ptr += arg_len; len -= arg_len;
1147 
1148 
1149 /*
1150  * Parse a control command
1151  */
1152 
1153 static int sym_user_command(struct sym_hcb *np, char *buffer, int length)
1154 {
1155 	char *ptr	= buffer;
1156 	int len		= length;
1157 	struct sym_usrcmd cmd, *uc = &cmd;
1158 	int		arg_len;
1159 	u_long 		target;
1160 
1161 	memset(uc, 0, sizeof(*uc));
1162 
1163 	if (len > 0 && ptr[len-1] == '\n')
1164 		--len;
1165 
1166 	if	((arg_len = is_keyword(ptr, len, "setsync")) != 0)
1167 		uc->cmd = UC_SETSYNC;
1168 	else if	((arg_len = is_keyword(ptr, len, "settags")) != 0)
1169 		uc->cmd = UC_SETTAGS;
1170 	else if	((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
1171 		uc->cmd = UC_SETVERBOSE;
1172 	else if	((arg_len = is_keyword(ptr, len, "setwide")) != 0)
1173 		uc->cmd = UC_SETWIDE;
1174 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1175 	else if	((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
1176 		uc->cmd = UC_SETDEBUG;
1177 #endif
1178 	else if	((arg_len = is_keyword(ptr, len, "setflag")) != 0)
1179 		uc->cmd = UC_SETFLAG;
1180 	else if	((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
1181 		uc->cmd = UC_RESETDEV;
1182 	else if	((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
1183 		uc->cmd = UC_CLEARDEV;
1184 	else
1185 		arg_len = 0;
1186 
1187 #ifdef DEBUG_PROC_INFO
1188 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
1189 #endif
1190 
1191 	if (!arg_len)
1192 		return -EINVAL;
1193 	ptr += arg_len; len -= arg_len;
1194 
1195 	switch(uc->cmd) {
1196 	case UC_SETSYNC:
1197 	case UC_SETTAGS:
1198 	case UC_SETWIDE:
1199 	case UC_SETFLAG:
1200 	case UC_RESETDEV:
1201 	case UC_CLEARDEV:
1202 		SKIP_SPACES(ptr, len);
1203 		if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
1204 			ptr += arg_len; len -= arg_len;
1205 			uc->target = ~0;
1206 		} else {
1207 			GET_INT_ARG(ptr, len, target);
1208 			uc->target = (1<<target);
1209 #ifdef DEBUG_PROC_INFO
1210 printk("sym_user_command: target=%ld\n", target);
1211 #endif
1212 		}
1213 		break;
1214 	}
1215 
1216 	switch(uc->cmd) {
1217 	case UC_SETVERBOSE:
1218 	case UC_SETSYNC:
1219 	case UC_SETTAGS:
1220 	case UC_SETWIDE:
1221 		SKIP_SPACES(ptr, len);
1222 		GET_INT_ARG(ptr, len, uc->data);
1223 #ifdef DEBUG_PROC_INFO
1224 printk("sym_user_command: data=%ld\n", uc->data);
1225 #endif
1226 		break;
1227 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1228 	case UC_SETDEBUG:
1229 		while (len > 0) {
1230 			SKIP_SPACES(ptr, len);
1231 			if	((arg_len = is_keyword(ptr, len, "alloc")))
1232 				uc->data |= DEBUG_ALLOC;
1233 			else if	((arg_len = is_keyword(ptr, len, "phase")))
1234 				uc->data |= DEBUG_PHASE;
1235 			else if	((arg_len = is_keyword(ptr, len, "queue")))
1236 				uc->data |= DEBUG_QUEUE;
1237 			else if	((arg_len = is_keyword(ptr, len, "result")))
1238 				uc->data |= DEBUG_RESULT;
1239 			else if	((arg_len = is_keyword(ptr, len, "scatter")))
1240 				uc->data |= DEBUG_SCATTER;
1241 			else if	((arg_len = is_keyword(ptr, len, "script")))
1242 				uc->data |= DEBUG_SCRIPT;
1243 			else if	((arg_len = is_keyword(ptr, len, "tiny")))
1244 				uc->data |= DEBUG_TINY;
1245 			else if	((arg_len = is_keyword(ptr, len, "timing")))
1246 				uc->data |= DEBUG_TIMING;
1247 			else if	((arg_len = is_keyword(ptr, len, "nego")))
1248 				uc->data |= DEBUG_NEGO;
1249 			else if	((arg_len = is_keyword(ptr, len, "tags")))
1250 				uc->data |= DEBUG_TAGS;
1251 			else if	((arg_len = is_keyword(ptr, len, "pointer")))
1252 				uc->data |= DEBUG_POINTER;
1253 			else
1254 				return -EINVAL;
1255 			ptr += arg_len; len -= arg_len;
1256 		}
1257 #ifdef DEBUG_PROC_INFO
1258 printk("sym_user_command: data=%ld\n", uc->data);
1259 #endif
1260 		break;
1261 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
1262 	case UC_SETFLAG:
1263 		while (len > 0) {
1264 			SKIP_SPACES(ptr, len);
1265 			if	((arg_len = is_keyword(ptr, len, "no_disc")))
1266 				uc->data &= ~SYM_DISC_ENABLED;
1267 			else
1268 				return -EINVAL;
1269 			ptr += arg_len; len -= arg_len;
1270 		}
1271 		break;
1272 	default:
1273 		break;
1274 	}
1275 
1276 	if (len)
1277 		return -EINVAL;
1278 	else {
1279 		unsigned long flags;
1280 
1281 		spin_lock_irqsave(np->s.host->host_lock, flags);
1282 		sym_exec_user_command (np, uc);
1283 		spin_unlock_irqrestore(np->s.host->host_lock, flags);
1284 	}
1285 	return length;
1286 }
1287 
1288 #endif	/* SYM_LINUX_USER_COMMAND_SUPPORT */
1289 
1290 
1291 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1292 /*
1293  *  Informations through the proc file system.
1294  */
1295 struct info_str {
1296 	char *buffer;
1297 	int length;
1298 	int offset;
1299 	int pos;
1300 };
1301 
1302 static void copy_mem_info(struct info_str *info, char *data, int len)
1303 {
1304 	if (info->pos + len > info->length)
1305 		len = info->length - info->pos;
1306 
1307 	if (info->pos + len < info->offset) {
1308 		info->pos += len;
1309 		return;
1310 	}
1311 	if (info->pos < info->offset) {
1312 		data += (info->offset - info->pos);
1313 		len  -= (info->offset - info->pos);
1314 	}
1315 
1316 	if (len > 0) {
1317 		memcpy(info->buffer + info->pos, data, len);
1318 		info->pos += len;
1319 	}
1320 }
1321 
1322 static int copy_info(struct info_str *info, char *fmt, ...)
1323 {
1324 	va_list args;
1325 	char buf[81];
1326 	int len;
1327 
1328 	va_start(args, fmt);
1329 	len = vsprintf(buf, fmt, args);
1330 	va_end(args);
1331 
1332 	copy_mem_info(info, buf, len);
1333 	return len;
1334 }
1335 
1336 /*
1337  *  Copy formatted information into the input buffer.
1338  */
1339 static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len)
1340 {
1341 	struct info_str info;
1342 
1343 	info.buffer	= ptr;
1344 	info.length	= len;
1345 	info.offset	= offset;
1346 	info.pos	= 0;
1347 
1348 	copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, "
1349 			 "revision id 0x%x\n",
1350 			 np->s.chip_name, np->device_id, np->revision_id);
1351 	copy_info(&info, "At PCI address %s, IRQ " IRQ_FMT "\n",
1352 		pci_name(np->s.device), IRQ_PRM(np->s.irq));
1353 	copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n",
1354 			 (int) (np->minsync_dt ? np->minsync_dt : np->minsync),
1355 			 np->maxwide ? "Wide" : "Narrow",
1356 			 np->minsync_dt ? ", DT capable" : "");
1357 
1358 	copy_info(&info, "Max. started commands %d, "
1359 			 "max. commands per LUN %d\n",
1360 			 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);
1361 
1362 	return info.pos > info.offset? info.pos - info.offset : 0;
1363 }
1364 #endif /* SYM_LINUX_USER_INFO_SUPPORT */
1365 
1366 /*
1367  *  Entry point of the scsi proc fs of the driver.
1368  *  - func = 0 means read  (returns adapter infos)
1369  *  - func = 1 means write (not yet merget from sym53c8xx)
1370  */
1371 static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer,
1372 			char **start, off_t offset, int length, int func)
1373 {
1374 	struct sym_hcb *np = sym_get_hcb(host);
1375 	int retv;
1376 
1377 	if (func) {
1378 #ifdef	SYM_LINUX_USER_COMMAND_SUPPORT
1379 		retv = sym_user_command(np, buffer, length);
1380 #else
1381 		retv = -EINVAL;
1382 #endif
1383 	} else {
1384 		if (start)
1385 			*start = buffer;
1386 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1387 		retv = sym_host_info(np, buffer, offset, length);
1388 #else
1389 		retv = -EINVAL;
1390 #endif
1391 	}
1392 
1393 	return retv;
1394 }
1395 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */
1396 
1397 /*
1398  *	Free controller resources.
1399  */
1400 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev)
1401 {
1402 	/*
1403 	 *  Free O/S specific resources.
1404 	 */
1405 	if (np->s.irq)
1406 		free_irq(np->s.irq, np);
1407 	if (np->s.ioaddr)
1408 		pci_iounmap(pdev, np->s.ioaddr);
1409 	if (np->s.ramaddr)
1410 		pci_iounmap(pdev, np->s.ramaddr);
1411 	/*
1412 	 *  Free O/S independent resources.
1413 	 */
1414 	sym_hcb_free(np);
1415 
1416 	sym_mfree_dma(np, sizeof(*np), "HCB");
1417 }
1418 
1419 /*
1420  *  Ask/tell the system about DMA addressing.
1421  */
1422 static int sym_setup_bus_dma_mask(struct sym_hcb *np)
1423 {
1424 #if SYM_CONF_DMA_ADDRESSING_MODE > 0
1425 #if   SYM_CONF_DMA_ADDRESSING_MODE == 1
1426 #define	DMA_DAC_MASK	DMA_40BIT_MASK
1427 #elif SYM_CONF_DMA_ADDRESSING_MODE == 2
1428 #define	DMA_DAC_MASK	DMA_64BIT_MASK
1429 #endif
1430 	if ((np->features & FE_DAC) &&
1431 			!pci_set_dma_mask(np->s.device, DMA_DAC_MASK)) {
1432 		np->use_dac = 1;
1433 		return 0;
1434 	}
1435 #endif
1436 
1437 	if (!pci_set_dma_mask(np->s.device, DMA_32BIT_MASK))
1438 		return 0;
1439 
1440 	printf_warning("%s: No suitable DMA available\n", sym_name(np));
1441 	return -1;
1442 }
1443 
1444 /*
1445  *  Host attach and initialisations.
1446  *
1447  *  Allocate host data and ncb structure.
1448  *  Remap MMIO region.
1449  *  Do chip initialization.
1450  *  If all is OK, install interrupt handling and
1451  *  start the timer daemon.
1452  */
1453 static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
1454 		int unit, struct sym_device *dev)
1455 {
1456 	struct host_data *host_data;
1457 	struct sym_hcb *np = NULL;
1458 	struct Scsi_Host *instance = NULL;
1459 	struct pci_dev *pdev = dev->pdev;
1460 	unsigned long flags;
1461 	struct sym_fw *fw;
1462 
1463 	printk(KERN_INFO
1464 		"sym%d: <%s> rev 0x%x at pci %s irq " IRQ_FMT "\n",
1465 		unit, dev->chip.name, dev->chip.revision_id,
1466 		pci_name(pdev), IRQ_PRM(pdev->irq));
1467 
1468 	/*
1469 	 *  Get the firmware for this chip.
1470 	 */
1471 	fw = sym_find_firmware(&dev->chip);
1472 	if (!fw)
1473 		goto attach_failed;
1474 
1475 	/*
1476 	 *	Allocate host_data structure
1477 	 */
1478 	instance = scsi_host_alloc(tpnt, sizeof(*host_data));
1479 	if (!instance)
1480 		goto attach_failed;
1481 	host_data = (struct host_data *) instance->hostdata;
1482 
1483 	/*
1484 	 *  Allocate immediately the host control block,
1485 	 *  since we are only expecting to succeed. :)
1486 	 *  We keep track in the HCB of all the resources that
1487 	 *  are to be released on error.
1488 	 */
1489 	np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
1490 	if (!np)
1491 		goto attach_failed;
1492 	np->s.device = pdev;
1493 	np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
1494 	host_data->ncb = np;
1495 	np->s.host = instance;
1496 
1497 	pci_set_drvdata(pdev, np);
1498 
1499 	/*
1500 	 *  Copy some useful infos to the HCB.
1501 	 */
1502 	np->hcb_ba	= vtobus(np);
1503 	np->verbose	= sym_driver_setup.verbose;
1504 	np->s.device	= pdev;
1505 	np->s.unit	= unit;
1506 	np->device_id	= dev->chip.device_id;
1507 	np->revision_id	= dev->chip.revision_id;
1508 	np->features	= dev->chip.features;
1509 	np->clock_divn	= dev->chip.nr_divisor;
1510 	np->maxoffs	= dev->chip.offset_max;
1511 	np->maxburst	= dev->chip.burst_max;
1512 	np->myaddr	= dev->host_id;
1513 
1514 	/*
1515 	 *  Edit its name.
1516 	 */
1517 	strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
1518 	sprintf(np->s.inst_name, "sym%d", np->s.unit);
1519 
1520 	if (sym_setup_bus_dma_mask(np))
1521 		goto attach_failed;
1522 
1523 	/*
1524 	 *  Try to map the controller chip to
1525 	 *  virtual and physical memory.
1526 	 */
1527 	np->mmio_ba = (u32)dev->mmio_base;
1528 	np->s.ioaddr	= dev->s.ioaddr;
1529 	np->s.ramaddr	= dev->s.ramaddr;
1530 	np->s.io_ws = (np->features & FE_IO256) ? 256 : 128;
1531 
1532 	/*
1533 	 *  Map on-chip RAM if present and supported.
1534 	 */
1535 	if (!(np->features & FE_RAM))
1536 		dev->ram_base = 0;
1537 	if (dev->ram_base) {
1538 		np->ram_ba = (u32)dev->ram_base;
1539 		np->ram_ws = (np->features & FE_RAM8K) ? 8192 : 4096;
1540 	}
1541 
1542 	if (sym_hcb_attach(instance, fw, dev->nvram))
1543 		goto attach_failed;
1544 
1545 	/*
1546 	 *  Install the interrupt handler.
1547 	 *  If we synchonize the C code with SCRIPTS on interrupt,
1548 	 *  we do not want to share the INTR line at all.
1549 	 */
1550 	if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX, np)) {
1551 		printf_err("%s: request irq %d failure\n",
1552 			sym_name(np), pdev->irq);
1553 		goto attach_failed;
1554 	}
1555 	np->s.irq = pdev->irq;
1556 
1557 	/*
1558 	 *  After SCSI devices have been opened, we cannot
1559 	 *  reset the bus safely, so we do it here.
1560 	 */
1561 	spin_lock_irqsave(instance->host_lock, flags);
1562 	if (sym_reset_scsi_bus(np, 0))
1563 		goto reset_failed;
1564 
1565 	/*
1566 	 *  Start the SCRIPTS.
1567 	 */
1568 	sym_start_up (np, 1);
1569 
1570 	/*
1571 	 *  Start the timer daemon
1572 	 */
1573 	init_timer(&np->s.timer);
1574 	np->s.timer.data     = (unsigned long) np;
1575 	np->s.timer.function = sym53c8xx_timer;
1576 	np->s.lasttime=0;
1577 	sym_timer (np);
1578 
1579 	/*
1580 	 *  Fill Linux host instance structure
1581 	 *  and return success.
1582 	 */
1583 	instance->max_channel	= 0;
1584 	instance->this_id	= np->myaddr;
1585 	instance->max_id	= np->maxwide ? 16 : 8;
1586 	instance->max_lun	= SYM_CONF_MAX_LUN;
1587 	instance->unique_id	= pci_resource_start(pdev, 0);
1588 	instance->cmd_per_lun	= SYM_CONF_MAX_TAG;
1589 	instance->can_queue	= (SYM_CONF_MAX_START-2);
1590 	instance->sg_tablesize	= SYM_CONF_MAX_SG;
1591 	instance->max_cmd_len	= 16;
1592 	BUG_ON(sym2_transport_template == NULL);
1593 	instance->transportt	= sym2_transport_template;
1594 
1595 	spin_unlock_irqrestore(instance->host_lock, flags);
1596 
1597 	return instance;
1598 
1599  reset_failed:
1600 	printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
1601 		   "TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
1602 	spin_unlock_irqrestore(instance->host_lock, flags);
1603  attach_failed:
1604 	if (!instance)
1605 		return NULL;
1606 	printf_info("%s: giving up ...\n", sym_name(np));
1607 	if (np)
1608 		sym_free_resources(np, pdev);
1609 	scsi_host_put(instance);
1610 
1611 	return NULL;
1612  }
1613 
1614 
1615 /*
1616  *    Detect and try to read SYMBIOS and TEKRAM NVRAM.
1617  */
1618 #if SYM_CONF_NVRAM_SUPPORT
1619 static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1620 {
1621 	devp->nvram = nvp;
1622 	devp->device_id = devp->chip.device_id;
1623 	nvp->type = 0;
1624 
1625 	sym_read_nvram(devp, nvp);
1626 }
1627 #else
1628 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1629 {
1630 }
1631 #endif	/* SYM_CONF_NVRAM_SUPPORT */
1632 
1633 static int __devinit sym_check_supported(struct sym_device *device)
1634 {
1635 	struct sym_chip *chip;
1636 	struct pci_dev *pdev = device->pdev;
1637 	u_char revision;
1638 	unsigned long io_port = pci_resource_start(pdev, 0);
1639 	int i;
1640 
1641 	/*
1642 	 *  If user excluded this chip, do not initialize it.
1643 	 *  I hate this code so much.  Must kill it.
1644 	 */
1645 	if (io_port) {
1646 		for (i = 0 ; i < 8 ; i++) {
1647 			if (sym_driver_setup.excludes[i] == io_port)
1648 				return -ENODEV;
1649 		}
1650 	}
1651 
1652 	/*
1653 	 * Check if the chip is supported.  Then copy the chip description
1654 	 * to our device structure so we can make it match the actual device
1655 	 * and options.
1656 	 */
1657 	pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
1658 	chip = sym_lookup_chip_table(pdev->device, revision);
1659 	if (!chip) {
1660 		dev_info(&pdev->dev, "device not supported\n");
1661 		return -ENODEV;
1662 	}
1663 	memcpy(&device->chip, chip, sizeof(device->chip));
1664 	device->chip.revision_id = revision;
1665 
1666 	return 0;
1667 }
1668 
1669 /*
1670  * Ignore Symbios chips controlled by various RAID controllers.
1671  * These controllers set value 0x52414944 at RAM end - 16.
1672  */
1673 static int __devinit sym_check_raid(struct sym_device *device)
1674 {
1675 	unsigned int ram_size, ram_val;
1676 
1677 	if (!device->s.ramaddr)
1678 		return 0;
1679 
1680 	if (device->chip.features & FE_RAM8K)
1681 		ram_size = 8192;
1682 	else
1683 		ram_size = 4096;
1684 
1685 	ram_val = readl(device->s.ramaddr + ram_size - 16);
1686 	if (ram_val != 0x52414944)
1687 		return 0;
1688 
1689 	dev_info(&device->pdev->dev,
1690 			"not initializing, driven by RAID controller.\n");
1691 	return -ENODEV;
1692 }
1693 
1694 static int __devinit sym_set_workarounds(struct sym_device *device)
1695 {
1696 	struct sym_chip *chip = &device->chip;
1697 	struct pci_dev *pdev = device->pdev;
1698 	u_short status_reg;
1699 
1700 	/*
1701 	 *  (ITEM 12 of a DEL about the 896 I haven't yet).
1702 	 *  We must ensure the chip will use WRITE AND INVALIDATE.
1703 	 *  The revision number limit is for now arbitrary.
1704 	 */
1705 	if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && chip->revision_id < 0x4) {
1706 		chip->features	|= (FE_WRIE | FE_CLSE);
1707 	}
1708 
1709 	/* If the chip can do Memory Write Invalidate, enable it */
1710 	if (chip->features & FE_WRIE) {
1711 		if (pci_set_mwi(pdev))
1712 			return -ENODEV;
1713 	}
1714 
1715 	/*
1716 	 *  Work around for errant bit in 895A. The 66Mhz
1717 	 *  capable bit is set erroneously. Clear this bit.
1718 	 *  (Item 1 DEL 533)
1719 	 *
1720 	 *  Make sure Config space and Features agree.
1721 	 *
1722 	 *  Recall: writes are not normal to status register -
1723 	 *  write a 1 to clear and a 0 to leave unchanged.
1724 	 *  Can only reset bits.
1725 	 */
1726 	pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1727 	if (chip->features & FE_66MHZ) {
1728 		if (!(status_reg & PCI_STATUS_66MHZ))
1729 			chip->features &= ~FE_66MHZ;
1730 	} else {
1731 		if (status_reg & PCI_STATUS_66MHZ) {
1732 			status_reg = PCI_STATUS_66MHZ;
1733 			pci_write_config_word(pdev, PCI_STATUS, status_reg);
1734 			pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1735 		}
1736 	}
1737 
1738 	return 0;
1739 }
1740 
1741 /*
1742  *  Read and check the PCI configuration for any detected NCR
1743  *  boards and save data for attaching after all boards have
1744  *  been detected.
1745  */
1746 static void __devinit
1747 sym_init_device(struct pci_dev *pdev, struct sym_device *device)
1748 {
1749 	int i = 2;
1750 	struct pci_bus_region bus_addr;
1751 
1752 	device->host_id = SYM_SETUP_HOST_ID;
1753 	device->pdev = pdev;
1754 
1755 	pcibios_resource_to_bus(pdev, &bus_addr, &pdev->resource[1]);
1756 	device->mmio_base = bus_addr.start;
1757 
1758 	/*
1759 	 * If the BAR is 64-bit, resource 2 will be occupied by the
1760 	 * upper 32 bits
1761 	 */
1762 	if (!pdev->resource[i].flags)
1763 		i++;
1764 	pcibios_resource_to_bus(pdev, &bus_addr, &pdev->resource[i]);
1765 	device->ram_base = bus_addr.start;
1766 
1767 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
1768 	if (device->mmio_base)
1769 		device->s.ioaddr = pci_iomap(pdev, 1,
1770 						pci_resource_len(pdev, 1));
1771 #endif
1772 	if (!device->s.ioaddr)
1773 		device->s.ioaddr = pci_iomap(pdev, 0,
1774 						pci_resource_len(pdev, 0));
1775 	if (device->ram_base)
1776 		device->s.ramaddr = pci_iomap(pdev, i,
1777 						pci_resource_len(pdev, i));
1778 }
1779 
1780 /*
1781  * The NCR PQS and PDS cards are constructed as a DEC bridge
1782  * behind which sits a proprietary NCR memory controller and
1783  * either four or two 53c875s as separate devices.  We can tell
1784  * if an 875 is part of a PQS/PDS or not since if it is, it will
1785  * be on the same bus as the memory controller.  In its usual
1786  * mode of operation, the 875s are slaved to the memory
1787  * controller for all transfers.  To operate with the Linux
1788  * driver, the memory controller is disabled and the 875s
1789  * freed to function independently.  The only wrinkle is that
1790  * the preset SCSI ID (which may be zero) must be read in from
1791  * a special configuration space register of the 875.
1792  */
1793 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
1794 {
1795 	int slot;
1796 	u8 tmp;
1797 
1798 	for (slot = 0; slot < 256; slot++) {
1799 		struct pci_dev *memc = pci_get_slot(pdev->bus, slot);
1800 
1801 		if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
1802 			pci_dev_put(memc);
1803 			continue;
1804 		}
1805 
1806 		/* bit 1: allow individual 875 configuration */
1807 		pci_read_config_byte(memc, 0x44, &tmp);
1808 		if ((tmp & 0x2) == 0) {
1809 			tmp |= 0x2;
1810 			pci_write_config_byte(memc, 0x44, tmp);
1811 		}
1812 
1813 		/* bit 2: drive individual 875 interrupts to the bus */
1814 		pci_read_config_byte(memc, 0x45, &tmp);
1815 		if ((tmp & 0x4) == 0) {
1816 			tmp |= 0x4;
1817 			pci_write_config_byte(memc, 0x45, tmp);
1818 		}
1819 
1820 		pci_dev_put(memc);
1821 		break;
1822 	}
1823 
1824 	pci_read_config_byte(pdev, 0x84, &tmp);
1825 	sym_dev->host_id = tmp;
1826 }
1827 
1828 /*
1829  *  Called before unloading the module.
1830  *  Detach the host.
1831  *  We have to free resources and halt the NCR chip.
1832  */
1833 static int sym_detach(struct sym_hcb *np, struct pci_dev *pdev)
1834 {
1835 	printk("%s: detaching ...\n", sym_name(np));
1836 
1837 	del_timer_sync(&np->s.timer);
1838 
1839 	/*
1840 	 * Reset NCR chip.
1841 	 * We should use sym_soft_reset(), but we don't want to do
1842 	 * so, since we may not be safe if interrupts occur.
1843 	 */
1844 	printk("%s: resetting chip\n", sym_name(np));
1845 	OUTB(np, nc_istat, SRST);
1846 	INB(np, nc_mbox1);
1847 	udelay(10);
1848 	OUTB(np, nc_istat, 0);
1849 
1850 	sym_free_resources(np, pdev);
1851 
1852 	return 1;
1853 }
1854 
1855 /*
1856  * Driver host template.
1857  */
1858 static struct scsi_host_template sym2_template = {
1859 	.module			= THIS_MODULE,
1860 	.name			= "sym53c8xx",
1861 	.info			= sym53c8xx_info,
1862 	.queuecommand		= sym53c8xx_queue_command,
1863 	.slave_alloc		= sym53c8xx_slave_alloc,
1864 	.slave_configure	= sym53c8xx_slave_configure,
1865 	.slave_destroy		= sym53c8xx_slave_destroy,
1866 	.eh_abort_handler	= sym53c8xx_eh_abort_handler,
1867 	.eh_device_reset_handler = sym53c8xx_eh_device_reset_handler,
1868 	.eh_bus_reset_handler	= sym53c8xx_eh_bus_reset_handler,
1869 	.eh_host_reset_handler	= sym53c8xx_eh_host_reset_handler,
1870 	.this_id		= 7,
1871 	.use_clustering		= ENABLE_CLUSTERING,
1872 	.max_sectors		= 0xFFFF,
1873 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1874 	.proc_info		= sym53c8xx_proc_info,
1875 	.proc_name		= NAME53C8XX,
1876 #endif
1877 };
1878 
1879 static int attach_count;
1880 
1881 static int __devinit sym2_probe(struct pci_dev *pdev,
1882 				const struct pci_device_id *ent)
1883 {
1884 	struct sym_device sym_dev;
1885 	struct sym_nvram nvram;
1886 	struct Scsi_Host *instance;
1887 
1888 	memset(&sym_dev, 0, sizeof(sym_dev));
1889 	memset(&nvram, 0, sizeof(nvram));
1890 
1891 	if (pci_enable_device(pdev))
1892 		goto leave;
1893 
1894 	pci_set_master(pdev);
1895 
1896 	if (pci_request_regions(pdev, NAME53C8XX))
1897 		goto disable;
1898 
1899 	sym_init_device(pdev, &sym_dev);
1900 	if (sym_check_supported(&sym_dev))
1901 		goto free;
1902 
1903 	if (sym_check_raid(&sym_dev))
1904 		goto leave;	/* Don't disable the device */
1905 
1906 	if (sym_set_workarounds(&sym_dev))
1907 		goto free;
1908 
1909 	sym_config_pqs(pdev, &sym_dev);
1910 
1911 	sym_get_nvram(&sym_dev, &nvram);
1912 
1913 	instance = sym_attach(&sym2_template, attach_count, &sym_dev);
1914 	if (!instance)
1915 		goto free;
1916 
1917 	if (scsi_add_host(instance, &pdev->dev))
1918 		goto detach;
1919 	scsi_scan_host(instance);
1920 
1921 	attach_count++;
1922 
1923 	return 0;
1924 
1925  detach:
1926 	sym_detach(pci_get_drvdata(pdev), pdev);
1927  free:
1928 	pci_release_regions(pdev);
1929  disable:
1930 	pci_disable_device(pdev);
1931  leave:
1932 	return -ENODEV;
1933 }
1934 
1935 static void __devexit sym2_remove(struct pci_dev *pdev)
1936 {
1937 	struct sym_hcb *np = pci_get_drvdata(pdev);
1938 	struct Scsi_Host *host = np->s.host;
1939 
1940 	scsi_remove_host(host);
1941 	scsi_host_put(host);
1942 
1943 	sym_detach(np, pdev);
1944 
1945 	pci_release_regions(pdev);
1946 	pci_disable_device(pdev);
1947 
1948 	attach_count--;
1949 }
1950 
1951 static void sym2_get_signalling(struct Scsi_Host *shost)
1952 {
1953 	struct sym_hcb *np = sym_get_hcb(shost);
1954 	enum spi_signal_type type;
1955 
1956 	switch (np->scsi_mode) {
1957 	case SMODE_SE:
1958 		type = SPI_SIGNAL_SE;
1959 		break;
1960 	case SMODE_LVD:
1961 		type = SPI_SIGNAL_LVD;
1962 		break;
1963 	case SMODE_HVD:
1964 		type = SPI_SIGNAL_HVD;
1965 		break;
1966 	default:
1967 		type = SPI_SIGNAL_UNKNOWN;
1968 		break;
1969 	}
1970 	spi_signalling(shost) = type;
1971 }
1972 
1973 static void sym2_set_offset(struct scsi_target *starget, int offset)
1974 {
1975 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1976 	struct sym_hcb *np = sym_get_hcb(shost);
1977 	struct sym_tcb *tp = &np->target[starget->id];
1978 
1979 	tp->tgoal.offset = offset;
1980 	tp->tgoal.check_nego = 1;
1981 }
1982 
1983 static void sym2_set_period(struct scsi_target *starget, int period)
1984 {
1985 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1986 	struct sym_hcb *np = sym_get_hcb(shost);
1987 	struct sym_tcb *tp = &np->target[starget->id];
1988 
1989 	/* have to have DT for these transfers, but DT will also
1990 	 * set width, so check that this is allowed */
1991 	if (period <= np->minsync && spi_width(starget))
1992 		tp->tgoal.dt = 1;
1993 
1994 	tp->tgoal.period = period;
1995 	tp->tgoal.check_nego = 1;
1996 }
1997 
1998 static void sym2_set_width(struct scsi_target *starget, int width)
1999 {
2000 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2001 	struct sym_hcb *np = sym_get_hcb(shost);
2002 	struct sym_tcb *tp = &np->target[starget->id];
2003 
2004 	/* It is illegal to have DT set on narrow transfers.  If DT is
2005 	 * clear, we must also clear IU and QAS.  */
2006 	if (width == 0)
2007 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
2008 
2009 	tp->tgoal.width = width;
2010 	tp->tgoal.check_nego = 1;
2011 }
2012 
2013 static void sym2_set_dt(struct scsi_target *starget, int dt)
2014 {
2015 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2016 	struct sym_hcb *np = sym_get_hcb(shost);
2017 	struct sym_tcb *tp = &np->target[starget->id];
2018 
2019 	/* We must clear QAS and IU if DT is clear */
2020 	if (dt)
2021 		tp->tgoal.dt = 1;
2022 	else
2023 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
2024 	tp->tgoal.check_nego = 1;
2025 }
2026 
2027 #if 0
2028 static void sym2_set_iu(struct scsi_target *starget, int iu)
2029 {
2030 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2031 	struct sym_hcb *np = sym_get_hcb(shost);
2032 	struct sym_tcb *tp = &np->target[starget->id];
2033 
2034 	if (iu)
2035 		tp->tgoal.iu = tp->tgoal.dt = 1;
2036 	else
2037 		tp->tgoal.iu = 0;
2038 	tp->tgoal.check_nego = 1;
2039 }
2040 
2041 static void sym2_set_qas(struct scsi_target *starget, int qas)
2042 {
2043 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2044 	struct sym_hcb *np = sym_get_hcb(shost);
2045 	struct sym_tcb *tp = &np->target[starget->id];
2046 
2047 	if (qas)
2048 		tp->tgoal.dt = tp->tgoal.qas = 1;
2049 	else
2050 		tp->tgoal.qas = 0;
2051 	tp->tgoal.check_nego = 1;
2052 }
2053 #endif
2054 
2055 static struct spi_function_template sym2_transport_functions = {
2056 	.set_offset	= sym2_set_offset,
2057 	.show_offset	= 1,
2058 	.set_period	= sym2_set_period,
2059 	.show_period	= 1,
2060 	.set_width	= sym2_set_width,
2061 	.show_width	= 1,
2062 	.set_dt		= sym2_set_dt,
2063 	.show_dt	= 1,
2064 #if 0
2065 	.set_iu		= sym2_set_iu,
2066 	.show_iu	= 1,
2067 	.set_qas	= sym2_set_qas,
2068 	.show_qas	= 1,
2069 #endif
2070 	.get_signalling	= sym2_get_signalling,
2071 };
2072 
2073 static struct pci_device_id sym2_id_table[] __devinitdata = {
2074 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
2075 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2076 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
2077 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2078 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
2079 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2080 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
2081 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2082 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
2083 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2084 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
2085 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2086 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
2087 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8,  0xffff00, 0UL },
2088 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
2089 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2090 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
2091 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2092 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
2093 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2094 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
2095 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2096 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
2097 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2098 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
2099 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2100 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
2101 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2102 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
2103 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2104 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
2105 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2106 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
2107 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2108 	{ 0, }
2109 };
2110 
2111 MODULE_DEVICE_TABLE(pci, sym2_id_table);
2112 
2113 static struct pci_driver sym2_driver = {
2114 	.name		= NAME53C8XX,
2115 	.id_table	= sym2_id_table,
2116 	.probe		= sym2_probe,
2117 	.remove		= __devexit_p(sym2_remove),
2118 };
2119 
2120 static int __init sym2_init(void)
2121 {
2122 	int error;
2123 
2124 	sym2_setup_params();
2125 	sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
2126 	if (!sym2_transport_template)
2127 		return -ENODEV;
2128 
2129 	error = pci_register_driver(&sym2_driver);
2130 	if (error)
2131 		spi_release_transport(sym2_transport_template);
2132 	return error;
2133 }
2134 
2135 static void __exit sym2_exit(void)
2136 {
2137 	pci_unregister_driver(&sym2_driver);
2138 	spi_release_transport(sym2_transport_template);
2139 }
2140 
2141 module_init(sym2_init);
2142 module_exit(sym2_exit);
2143