1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 4 * of PCI-SCSI IO processors. 5 * 6 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 7 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx> 8 * 9 * This driver is derived from the Linux sym53c8xx driver. 10 * Copyright (C) 1998-2000 Gerard Roudier 11 * 12 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 13 * a port of the FreeBSD ncr driver to Linux-1.2.13. 14 * 15 * The original ncr driver has been written for 386bsd and FreeBSD by 16 * Wolfgang Stanglmeier <wolf@cologne.de> 17 * Stefan Esser <se@mi.Uni-Koeln.de> 18 * Copyright (C) 1994 Wolfgang Stanglmeier 19 * 20 * Other major contributions: 21 * 22 * NVRAM detection and reading. 23 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 24 * 25 *----------------------------------------------------------------------------- 26 */ 27 #include <linux/ctype.h> 28 #include <linux/init.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/spinlock.h> 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_tcq.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_transport.h> 36 37 #include "sym_glue.h" 38 #include "sym_nvram.h" 39 40 #define NAME53C "sym53c" 41 #define NAME53C8XX "sym53c8xx" 42 43 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP; 44 unsigned int sym_debug_flags = 0; 45 46 static char *excl_string; 47 static char *safe_string; 48 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0); 49 module_param_named(burst, sym_driver_setup.burst_order, byte, 0); 50 module_param_named(led, sym_driver_setup.scsi_led, byte, 0); 51 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0); 52 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0); 53 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0); 54 module_param_named(hostid, sym_driver_setup.host_id, byte, 0); 55 module_param_named(verb, sym_driver_setup.verbose, byte, 0); 56 module_param_named(debug, sym_debug_flags, uint, 0); 57 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0); 58 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0); 59 module_param_named(excl, excl_string, charp, 0); 60 module_param_named(safe, safe_string, charp, 0); 61 62 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default"); 63 MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers"); 64 MODULE_PARM_DESC(led, "Set to 1 to enable LED support"); 65 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3"); 66 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole"); 67 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error"); 68 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters"); 69 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive"); 70 MODULE_PARM_DESC(debug, "Set bits to enable debugging"); 71 MODULE_PARM_DESC(settle, "Settle delay in seconds. Default 3"); 72 MODULE_PARM_DESC(nvram, "Option currently not used"); 73 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached"); 74 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\""); 75 76 MODULE_LICENSE("GPL"); 77 MODULE_VERSION(SYM_VERSION); 78 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>"); 79 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters"); 80 81 static void sym2_setup_params(void) 82 { 83 char *p = excl_string; 84 int xi = 0; 85 86 while (p && (xi < 8)) { 87 char *next_p; 88 int val = (int) simple_strtoul(p, &next_p, 0); 89 sym_driver_setup.excludes[xi++] = val; 90 p = next_p; 91 } 92 93 if (safe_string) { 94 if (*safe_string == 'y') { 95 sym_driver_setup.max_tag = 0; 96 sym_driver_setup.burst_order = 0; 97 sym_driver_setup.scsi_led = 0; 98 sym_driver_setup.scsi_diff = 1; 99 sym_driver_setup.irq_mode = 0; 100 sym_driver_setup.scsi_bus_check = 2; 101 sym_driver_setup.host_id = 7; 102 sym_driver_setup.verbose = 2; 103 sym_driver_setup.settle_delay = 10; 104 sym_driver_setup.use_nvram = 1; 105 } else if (*safe_string != 'n') { 106 printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s" 107 " passed to safe option", safe_string); 108 } 109 } 110 } 111 112 static struct scsi_transport_template *sym2_transport_template = NULL; 113 114 /* 115 * Driver private area in the SCSI command structure. 116 */ 117 struct sym_ucmd { /* Override the SCSI pointer structure */ 118 struct completion *eh_done; /* SCSI error handling */ 119 }; 120 121 #define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp)) 122 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host) 123 124 /* 125 * Complete a pending CAM CCB. 126 */ 127 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd) 128 { 129 struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd); 130 BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd)); 131 132 if (ucmd->eh_done) 133 complete(ucmd->eh_done); 134 135 scsi_dma_unmap(cmd); 136 cmd->scsi_done(cmd); 137 } 138 139 /* 140 * Tell the SCSI layer about a BUS RESET. 141 */ 142 void sym_xpt_async_bus_reset(struct sym_hcb *np) 143 { 144 printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np)); 145 np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ; 146 np->s.settle_time_valid = 1; 147 if (sym_verbose >= 2) 148 printf_info("%s: command processing suspended for %d seconds\n", 149 sym_name(np), sym_driver_setup.settle_delay); 150 } 151 152 /* 153 * Choose the more appropriate CAM status if 154 * the IO encountered an extended error. 155 */ 156 static int sym_xerr_cam_status(int cam_status, int x_status) 157 { 158 if (x_status) { 159 if (x_status & XE_PARITY_ERR) 160 cam_status = DID_PARITY; 161 else 162 cam_status = DID_ERROR; 163 } 164 return cam_status; 165 } 166 167 /* 168 * Build CAM result for a failed or auto-sensed IO. 169 */ 170 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid) 171 { 172 struct scsi_cmnd *cmd = cp->cmd; 173 u_int cam_status, scsi_status, drv_status; 174 175 drv_status = 0; 176 cam_status = DID_OK; 177 scsi_status = cp->ssss_status; 178 179 if (cp->host_flags & HF_SENSE) { 180 scsi_status = cp->sv_scsi_status; 181 resid = cp->sv_resid; 182 if (sym_verbose && cp->sv_xerr_status) 183 sym_print_xerr(cmd, cp->sv_xerr_status); 184 if (cp->host_status == HS_COMPLETE && 185 cp->ssss_status == S_GOOD && 186 cp->xerr_status == 0) { 187 cam_status = sym_xerr_cam_status(DID_OK, 188 cp->sv_xerr_status); 189 drv_status = DRIVER_SENSE; 190 /* 191 * Bounce back the sense data to user. 192 */ 193 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 194 memcpy(cmd->sense_buffer, cp->sns_bbuf, 195 min(SCSI_SENSE_BUFFERSIZE, SYM_SNS_BBUF_LEN)); 196 #if 0 197 /* 198 * If the device reports a UNIT ATTENTION condition 199 * due to a RESET condition, we should consider all 200 * disconnect CCBs for this unit as aborted. 201 */ 202 if (1) { 203 u_char *p; 204 p = (u_char *) cmd->sense_data; 205 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 206 sym_clear_tasks(np, DID_ABORT, 207 cp->target,cp->lun, -1); 208 } 209 #endif 210 } else { 211 /* 212 * Error return from our internal request sense. This 213 * is bad: we must clear the contingent allegiance 214 * condition otherwise the device will always return 215 * BUSY. Use a big stick. 216 */ 217 sym_reset_scsi_target(np, cmd->device->id); 218 cam_status = DID_ERROR; 219 } 220 } else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */ 221 cam_status = DID_OK; 222 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 223 cam_status = DID_NO_CONNECT; 224 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 225 cam_status = DID_ERROR; 226 else { /* Extended error */ 227 if (sym_verbose) { 228 sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n", 229 cp->host_status, cp->ssss_status, 230 cp->xerr_status); 231 } 232 /* 233 * Set the most appropriate value for CAM status. 234 */ 235 cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status); 236 } 237 scsi_set_resid(cmd, resid); 238 cmd->result = (drv_status << 24) | (cam_status << 16) | scsi_status; 239 } 240 241 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd) 242 { 243 int segment; 244 int use_sg; 245 246 cp->data_len = 0; 247 248 use_sg = scsi_dma_map(cmd); 249 if (use_sg > 0) { 250 struct scatterlist *sg; 251 struct sym_tcb *tp = &np->target[cp->target]; 252 struct sym_tblmove *data; 253 254 if (use_sg > SYM_CONF_MAX_SG) { 255 scsi_dma_unmap(cmd); 256 return -1; 257 } 258 259 data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg]; 260 261 scsi_for_each_sg(cmd, sg, use_sg, segment) { 262 dma_addr_t baddr = sg_dma_address(sg); 263 unsigned int len = sg_dma_len(sg); 264 265 if ((len & 1) && (tp->head.wval & EWS)) { 266 len++; 267 cp->odd_byte_adjustment++; 268 } 269 270 sym_build_sge(np, &data[segment], baddr, len); 271 cp->data_len += len; 272 } 273 } else { 274 segment = -2; 275 } 276 277 return segment; 278 } 279 280 /* 281 * Queue a SCSI command. 282 */ 283 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd) 284 { 285 struct scsi_device *sdev = cmd->device; 286 struct sym_tcb *tp; 287 struct sym_lcb *lp; 288 struct sym_ccb *cp; 289 int order; 290 291 /* 292 * Retrieve the target descriptor. 293 */ 294 tp = &np->target[sdev->id]; 295 296 /* 297 * Select tagged/untagged. 298 */ 299 lp = sym_lp(tp, sdev->lun); 300 order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0; 301 302 /* 303 * Queue the SCSI IO. 304 */ 305 cp = sym_get_ccb(np, cmd, order); 306 if (!cp) 307 return 1; /* Means resource shortage */ 308 sym_queue_scsiio(np, cmd, cp); 309 return 0; 310 } 311 312 /* 313 * Setup buffers and pointers that address the CDB. 314 */ 315 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 316 { 317 memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len); 318 319 cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]); 320 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len); 321 322 return 0; 323 } 324 325 /* 326 * Setup pointers that address the data and start the I/O. 327 */ 328 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 329 { 330 u32 lastp, goalp; 331 int dir; 332 333 /* 334 * Build the CDB. 335 */ 336 if (sym_setup_cdb(np, cmd, cp)) 337 goto out_abort; 338 339 /* 340 * No direction means no data. 341 */ 342 dir = cmd->sc_data_direction; 343 if (dir != DMA_NONE) { 344 cp->segments = sym_scatter(np, cp, cmd); 345 if (cp->segments < 0) { 346 sym_set_cam_status(cmd, DID_ERROR); 347 goto out_abort; 348 } 349 350 /* 351 * No segments means no data. 352 */ 353 if (!cp->segments) 354 dir = DMA_NONE; 355 } else { 356 cp->data_len = 0; 357 cp->segments = 0; 358 } 359 360 /* 361 * Set the data pointer. 362 */ 363 switch (dir) { 364 case DMA_BIDIRECTIONAL: 365 scmd_printk(KERN_INFO, cmd, "got DMA_BIDIRECTIONAL command"); 366 sym_set_cam_status(cmd, DID_ERROR); 367 goto out_abort; 368 case DMA_TO_DEVICE: 369 goalp = SCRIPTA_BA(np, data_out2) + 8; 370 lastp = goalp - 8 - (cp->segments * (2*4)); 371 break; 372 case DMA_FROM_DEVICE: 373 cp->host_flags |= HF_DATA_IN; 374 goalp = SCRIPTA_BA(np, data_in2) + 8; 375 lastp = goalp - 8 - (cp->segments * (2*4)); 376 break; 377 case DMA_NONE: 378 default: 379 lastp = goalp = SCRIPTB_BA(np, no_data); 380 break; 381 } 382 383 /* 384 * Set all pointers values needed by SCRIPTS. 385 */ 386 cp->phys.head.lastp = cpu_to_scr(lastp); 387 cp->phys.head.savep = cpu_to_scr(lastp); 388 cp->startp = cp->phys.head.savep; 389 cp->goalp = cpu_to_scr(goalp); 390 391 /* 392 * When `#ifed 1', the code below makes the driver 393 * panic on the first attempt to write to a SCSI device. 394 * It is the first test we want to do after a driver 395 * change that does not seem obviously safe. :) 396 */ 397 #if 0 398 switch (cp->cdb_buf[0]) { 399 case 0x0A: case 0x2A: case 0xAA: 400 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 401 break; 402 default: 403 break; 404 } 405 #endif 406 407 /* 408 * activate this job. 409 */ 410 sym_put_start_queue(np, cp); 411 return 0; 412 413 out_abort: 414 sym_free_ccb(np, cp); 415 sym_xpt_done(np, cmd); 416 return 0; 417 } 418 419 420 /* 421 * timer daemon. 422 * 423 * Misused to keep the driver running when 424 * interrupts are not configured correctly. 425 */ 426 static void sym_timer(struct sym_hcb *np) 427 { 428 unsigned long thistime = jiffies; 429 430 /* 431 * Restart the timer. 432 */ 433 np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL; 434 add_timer(&np->s.timer); 435 436 /* 437 * If we are resetting the ncr, wait for settle_time before 438 * clearing it. Then command processing will be resumed. 439 */ 440 if (np->s.settle_time_valid) { 441 if (time_before_eq(np->s.settle_time, thistime)) { 442 if (sym_verbose >= 2 ) 443 printk("%s: command processing resumed\n", 444 sym_name(np)); 445 np->s.settle_time_valid = 0; 446 } 447 return; 448 } 449 450 /* 451 * Nothing to do for now, but that may come. 452 */ 453 if (np->s.lasttime + 4*HZ < thistime) { 454 np->s.lasttime = thistime; 455 } 456 457 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS 458 /* 459 * Some way-broken PCI bridges may lead to 460 * completions being lost when the clearing 461 * of the INTFLY flag by the CPU occurs 462 * concurrently with the chip raising this flag. 463 * If this ever happen, lost completions will 464 * be reaped here. 465 */ 466 sym_wakeup_done(np); 467 #endif 468 } 469 470 471 /* 472 * PCI BUS error handler. 473 */ 474 void sym_log_bus_error(struct Scsi_Host *shost) 475 { 476 struct sym_data *sym_data = shost_priv(shost); 477 struct pci_dev *pdev = sym_data->pdev; 478 unsigned short pci_sts; 479 pci_read_config_word(pdev, PCI_STATUS, &pci_sts); 480 if (pci_sts & 0xf900) { 481 pci_write_config_word(pdev, PCI_STATUS, pci_sts); 482 shost_printk(KERN_WARNING, shost, 483 "PCI bus error: status = 0x%04x\n", pci_sts & 0xf900); 484 } 485 } 486 487 /* 488 * queuecommand method. Entered with the host adapter lock held and 489 * interrupts disabled. 490 */ 491 static int sym53c8xx_queue_command_lck(struct scsi_cmnd *cmd, 492 void (*done)(struct scsi_cmnd *)) 493 { 494 struct sym_hcb *np = SYM_SOFTC_PTR(cmd); 495 struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd); 496 int sts = 0; 497 498 cmd->scsi_done = done; 499 memset(ucp, 0, sizeof(*ucp)); 500 501 /* 502 * Shorten our settle_time if needed for 503 * this command not to time out. 504 */ 505 if (np->s.settle_time_valid && cmd->request->timeout) { 506 unsigned long tlimit = jiffies + cmd->request->timeout; 507 tlimit -= SYM_CONF_TIMER_INTERVAL*2; 508 if (time_after(np->s.settle_time, tlimit)) { 509 np->s.settle_time = tlimit; 510 } 511 } 512 513 if (np->s.settle_time_valid) 514 return SCSI_MLQUEUE_HOST_BUSY; 515 516 sts = sym_queue_command(np, cmd); 517 if (sts) 518 return SCSI_MLQUEUE_HOST_BUSY; 519 return 0; 520 } 521 522 static DEF_SCSI_QCMD(sym53c8xx_queue_command) 523 524 /* 525 * Linux entry point of the interrupt handler. 526 */ 527 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id) 528 { 529 struct Scsi_Host *shost = dev_id; 530 struct sym_data *sym_data = shost_priv(shost); 531 irqreturn_t result; 532 533 /* Avoid spinloop trying to handle interrupts on frozen device */ 534 if (pci_channel_offline(sym_data->pdev)) 535 return IRQ_NONE; 536 537 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("["); 538 539 spin_lock(shost->host_lock); 540 result = sym_interrupt(shost); 541 spin_unlock(shost->host_lock); 542 543 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n"); 544 545 return result; 546 } 547 548 /* 549 * Linux entry point of the timer handler 550 */ 551 static void sym53c8xx_timer(struct timer_list *t) 552 { 553 struct sym_hcb *np = from_timer(np, t, s.timer); 554 unsigned long flags; 555 556 spin_lock_irqsave(np->s.host->host_lock, flags); 557 sym_timer(np); 558 spin_unlock_irqrestore(np->s.host->host_lock, flags); 559 } 560 561 562 /* 563 * What the eh thread wants us to perform. 564 */ 565 #define SYM_EH_ABORT 0 566 #define SYM_EH_DEVICE_RESET 1 567 #define SYM_EH_BUS_RESET 2 568 #define SYM_EH_HOST_RESET 3 569 570 /* 571 * Generic method for our eh processing. 572 * The 'op' argument tells what we have to do. 573 */ 574 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd) 575 { 576 struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd); 577 struct Scsi_Host *shost = cmd->device->host; 578 struct sym_data *sym_data = shost_priv(shost); 579 struct pci_dev *pdev = sym_data->pdev; 580 struct sym_hcb *np = sym_data->ncb; 581 SYM_QUEHEAD *qp; 582 int cmd_queued = 0; 583 int sts = -1; 584 struct completion eh_done; 585 586 scmd_printk(KERN_WARNING, cmd, "%s operation started\n", opname); 587 588 /* We may be in an error condition because the PCI bus 589 * went down. In this case, we need to wait until the 590 * PCI bus is reset, the card is reset, and only then 591 * proceed with the scsi error recovery. There's no 592 * point in hurrying; take a leisurely wait. 593 */ 594 #define WAIT_FOR_PCI_RECOVERY 35 595 if (pci_channel_offline(pdev)) { 596 int finished_reset = 0; 597 init_completion(&eh_done); 598 spin_lock_irq(shost->host_lock); 599 /* Make sure we didn't race */ 600 if (pci_channel_offline(pdev)) { 601 BUG_ON(sym_data->io_reset); 602 sym_data->io_reset = &eh_done; 603 } else { 604 finished_reset = 1; 605 } 606 spin_unlock_irq(shost->host_lock); 607 if (!finished_reset) 608 finished_reset = wait_for_completion_timeout 609 (sym_data->io_reset, 610 WAIT_FOR_PCI_RECOVERY*HZ); 611 spin_lock_irq(shost->host_lock); 612 sym_data->io_reset = NULL; 613 spin_unlock_irq(shost->host_lock); 614 if (!finished_reset) 615 return SCSI_FAILED; 616 } 617 618 spin_lock_irq(shost->host_lock); 619 /* This one is queued in some place -> to wait for completion */ 620 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 621 struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 622 if (cp->cmd == cmd) { 623 cmd_queued = 1; 624 break; 625 } 626 } 627 628 /* Try to proceed the operation we have been asked for */ 629 sts = -1; 630 switch(op) { 631 case SYM_EH_ABORT: 632 sts = sym_abort_scsiio(np, cmd, 1); 633 break; 634 case SYM_EH_DEVICE_RESET: 635 sts = sym_reset_scsi_target(np, cmd->device->id); 636 break; 637 case SYM_EH_BUS_RESET: 638 sym_reset_scsi_bus(np, 1); 639 sts = 0; 640 break; 641 case SYM_EH_HOST_RESET: 642 sym_reset_scsi_bus(np, 0); 643 sym_start_up(shost, 1); 644 sts = 0; 645 break; 646 default: 647 break; 648 } 649 650 /* On error, restore everything and cross fingers :) */ 651 if (sts) 652 cmd_queued = 0; 653 654 if (cmd_queued) { 655 init_completion(&eh_done); 656 ucmd->eh_done = &eh_done; 657 spin_unlock_irq(shost->host_lock); 658 if (!wait_for_completion_timeout(&eh_done, 5*HZ)) { 659 ucmd->eh_done = NULL; 660 sts = -2; 661 } 662 } else { 663 spin_unlock_irq(shost->host_lock); 664 } 665 666 dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname, 667 sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed"); 668 return sts ? SCSI_FAILED : SCSI_SUCCESS; 669 } 670 671 672 /* 673 * Error handlers called from the eh thread (one thread per HBA). 674 */ 675 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd) 676 { 677 return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd); 678 } 679 680 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd) 681 { 682 return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd); 683 } 684 685 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd) 686 { 687 return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd); 688 } 689 690 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd) 691 { 692 return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd); 693 } 694 695 /* 696 * Tune device queuing depth, according to various limits. 697 */ 698 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags) 699 { 700 struct sym_lcb *lp = sym_lp(tp, lun); 701 u_short oldtags; 702 703 if (!lp) 704 return; 705 706 oldtags = lp->s.reqtags; 707 708 if (reqtags > lp->s.scdev_depth) 709 reqtags = lp->s.scdev_depth; 710 711 lp->s.reqtags = reqtags; 712 713 if (reqtags != oldtags) { 714 dev_info(&tp->starget->dev, 715 "tagged command queuing %s, command queue depth %d.\n", 716 lp->s.reqtags ? "enabled" : "disabled", reqtags); 717 } 718 } 719 720 static int sym53c8xx_slave_alloc(struct scsi_device *sdev) 721 { 722 struct sym_hcb *np = sym_get_hcb(sdev->host); 723 struct sym_tcb *tp = &np->target[sdev->id]; 724 struct sym_lcb *lp; 725 unsigned long flags; 726 int error; 727 728 if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN) 729 return -ENXIO; 730 731 spin_lock_irqsave(np->s.host->host_lock, flags); 732 733 /* 734 * Fail the device init if the device is flagged NOSCAN at BOOT in 735 * the NVRAM. This may speed up boot and maintain coherency with 736 * BIOS device numbering. Clearing the flag allows the user to 737 * rescan skipped devices later. We also return an error for 738 * devices not flagged for SCAN LUNS in the NVRAM since some single 739 * lun devices behave badly when asked for a non zero LUN. 740 */ 741 742 if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) { 743 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 744 starget_printk(KERN_INFO, sdev->sdev_target, 745 "Scan at boot disabled in NVRAM\n"); 746 error = -ENXIO; 747 goto out; 748 } 749 750 if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) { 751 if (sdev->lun != 0) { 752 error = -ENXIO; 753 goto out; 754 } 755 starget_printk(KERN_INFO, sdev->sdev_target, 756 "Multiple LUNs disabled in NVRAM\n"); 757 } 758 759 lp = sym_alloc_lcb(np, sdev->id, sdev->lun); 760 if (!lp) { 761 error = -ENOMEM; 762 goto out; 763 } 764 if (tp->nlcb == 1) 765 tp->starget = sdev->sdev_target; 766 767 spi_min_period(tp->starget) = tp->usr_period; 768 spi_max_width(tp->starget) = tp->usr_width; 769 770 error = 0; 771 out: 772 spin_unlock_irqrestore(np->s.host->host_lock, flags); 773 774 return error; 775 } 776 777 /* 778 * Linux entry point for device queue sizing. 779 */ 780 static int sym53c8xx_slave_configure(struct scsi_device *sdev) 781 { 782 struct sym_hcb *np = sym_get_hcb(sdev->host); 783 struct sym_tcb *tp = &np->target[sdev->id]; 784 struct sym_lcb *lp = sym_lp(tp, sdev->lun); 785 int reqtags, depth_to_use; 786 787 /* 788 * Get user flags. 789 */ 790 lp->curr_flags = lp->user_flags; 791 792 /* 793 * Select queue depth from driver setup. 794 * Do not use more than configured by user. 795 * Use at least 1. 796 * Do not use more than our maximum. 797 */ 798 reqtags = sym_driver_setup.max_tag; 799 if (reqtags > tp->usrtags) 800 reqtags = tp->usrtags; 801 if (!sdev->tagged_supported) 802 reqtags = 0; 803 if (reqtags > SYM_CONF_MAX_TAG) 804 reqtags = SYM_CONF_MAX_TAG; 805 depth_to_use = reqtags ? reqtags : 1; 806 scsi_change_queue_depth(sdev, depth_to_use); 807 lp->s.scdev_depth = depth_to_use; 808 sym_tune_dev_queuing(tp, sdev->lun, reqtags); 809 810 if (!spi_initial_dv(sdev->sdev_target)) 811 spi_dv_device(sdev); 812 813 return 0; 814 } 815 816 static void sym53c8xx_slave_destroy(struct scsi_device *sdev) 817 { 818 struct sym_hcb *np = sym_get_hcb(sdev->host); 819 struct sym_tcb *tp = &np->target[sdev->id]; 820 struct sym_lcb *lp = sym_lp(tp, sdev->lun); 821 unsigned long flags; 822 823 /* if slave_alloc returned before allocating a sym_lcb, return */ 824 if (!lp) 825 return; 826 827 spin_lock_irqsave(np->s.host->host_lock, flags); 828 829 if (lp->busy_itlq || lp->busy_itl) { 830 /* 831 * This really shouldn't happen, but we can't return an error 832 * so let's try to stop all on-going I/O. 833 */ 834 starget_printk(KERN_WARNING, tp->starget, 835 "Removing busy LCB (%d)\n", (u8)sdev->lun); 836 sym_reset_scsi_bus(np, 1); 837 } 838 839 if (sym_free_lcb(np, sdev->id, sdev->lun) == 0) { 840 /* 841 * It was the last unit for this target. 842 */ 843 tp->head.sval = 0; 844 tp->head.wval = np->rv_scntl3; 845 tp->head.uval = 0; 846 tp->tgoal.check_nego = 1; 847 tp->starget = NULL; 848 } 849 850 spin_unlock_irqrestore(np->s.host->host_lock, flags); 851 } 852 853 /* 854 * Linux entry point for info() function 855 */ 856 static const char *sym53c8xx_info (struct Scsi_Host *host) 857 { 858 return SYM_DRIVER_NAME; 859 } 860 861 862 #ifdef SYM_LINUX_PROC_INFO_SUPPORT 863 /* 864 * Proc file system stuff 865 * 866 * A read operation returns adapter information. 867 * A write operation is a control command. 868 * The string is parsed in the driver code and the command is passed 869 * to the sym_usercmd() function. 870 */ 871 872 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT 873 874 struct sym_usrcmd { 875 u_long target; 876 u_long lun; 877 u_long data; 878 u_long cmd; 879 }; 880 881 #define UC_SETSYNC 10 882 #define UC_SETTAGS 11 883 #define UC_SETDEBUG 12 884 #define UC_SETWIDE 14 885 #define UC_SETFLAG 15 886 #define UC_SETVERBOSE 17 887 #define UC_RESETDEV 18 888 #define UC_CLEARDEV 19 889 890 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc) 891 { 892 struct sym_tcb *tp; 893 int t, l; 894 895 switch (uc->cmd) { 896 case 0: return; 897 898 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 899 case UC_SETDEBUG: 900 sym_debug_flags = uc->data; 901 break; 902 #endif 903 case UC_SETVERBOSE: 904 np->verbose = uc->data; 905 break; 906 default: 907 /* 908 * We assume that other commands apply to targets. 909 * This should always be the case and avoid the below 910 * 4 lines to be repeated 6 times. 911 */ 912 for (t = 0; t < SYM_CONF_MAX_TARGET; t++) { 913 if (!((uc->target >> t) & 1)) 914 continue; 915 tp = &np->target[t]; 916 if (!tp->nlcb) 917 continue; 918 919 switch (uc->cmd) { 920 921 case UC_SETSYNC: 922 if (!uc->data || uc->data >= 255) { 923 tp->tgoal.iu = tp->tgoal.dt = 924 tp->tgoal.qas = 0; 925 tp->tgoal.offset = 0; 926 } else if (uc->data <= 9 && np->minsync_dt) { 927 if (uc->data < np->minsync_dt) 928 uc->data = np->minsync_dt; 929 tp->tgoal.iu = tp->tgoal.dt = 930 tp->tgoal.qas = 1; 931 tp->tgoal.width = 1; 932 tp->tgoal.period = uc->data; 933 tp->tgoal.offset = np->maxoffs_dt; 934 } else { 935 if (uc->data < np->minsync) 936 uc->data = np->minsync; 937 tp->tgoal.iu = tp->tgoal.dt = 938 tp->tgoal.qas = 0; 939 tp->tgoal.period = uc->data; 940 tp->tgoal.offset = np->maxoffs; 941 } 942 tp->tgoal.check_nego = 1; 943 break; 944 case UC_SETWIDE: 945 tp->tgoal.width = uc->data ? 1 : 0; 946 tp->tgoal.check_nego = 1; 947 break; 948 case UC_SETTAGS: 949 for (l = 0; l < SYM_CONF_MAX_LUN; l++) 950 sym_tune_dev_queuing(tp, l, uc->data); 951 break; 952 case UC_RESETDEV: 953 tp->to_reset = 1; 954 np->istat_sem = SEM; 955 OUTB(np, nc_istat, SIGP|SEM); 956 break; 957 case UC_CLEARDEV: 958 for (l = 0; l < SYM_CONF_MAX_LUN; l++) { 959 struct sym_lcb *lp = sym_lp(tp, l); 960 if (lp) lp->to_clear = 1; 961 } 962 np->istat_sem = SEM; 963 OUTB(np, nc_istat, SIGP|SEM); 964 break; 965 case UC_SETFLAG: 966 tp->usrflags = uc->data; 967 break; 968 } 969 } 970 break; 971 } 972 } 973 974 static int sym_skip_spaces(char *ptr, int len) 975 { 976 int cnt, c; 977 978 for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--); 979 980 return (len - cnt); 981 } 982 983 static int get_int_arg(char *ptr, int len, u_long *pv) 984 { 985 char *end; 986 987 *pv = simple_strtoul(ptr, &end, 10); 988 return (end - ptr); 989 } 990 991 static int is_keyword(char *ptr, int len, char *verb) 992 { 993 int verb_len = strlen(verb); 994 995 if (len >= verb_len && !memcmp(verb, ptr, verb_len)) 996 return verb_len; 997 else 998 return 0; 999 } 1000 1001 #define SKIP_SPACES(ptr, len) \ 1002 if ((arg_len = sym_skip_spaces(ptr, len)) < 1) \ 1003 return -EINVAL; \ 1004 ptr += arg_len; len -= arg_len; 1005 1006 #define GET_INT_ARG(ptr, len, v) \ 1007 if (!(arg_len = get_int_arg(ptr, len, &(v)))) \ 1008 return -EINVAL; \ 1009 ptr += arg_len; len -= arg_len; 1010 1011 1012 /* 1013 * Parse a control command 1014 */ 1015 1016 static int sym_user_command(struct Scsi_Host *shost, char *buffer, int length) 1017 { 1018 struct sym_hcb *np = sym_get_hcb(shost); 1019 char *ptr = buffer; 1020 int len = length; 1021 struct sym_usrcmd cmd, *uc = &cmd; 1022 int arg_len; 1023 u_long target; 1024 1025 memset(uc, 0, sizeof(*uc)); 1026 1027 if (len > 0 && ptr[len-1] == '\n') 1028 --len; 1029 1030 if ((arg_len = is_keyword(ptr, len, "setsync")) != 0) 1031 uc->cmd = UC_SETSYNC; 1032 else if ((arg_len = is_keyword(ptr, len, "settags")) != 0) 1033 uc->cmd = UC_SETTAGS; 1034 else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0) 1035 uc->cmd = UC_SETVERBOSE; 1036 else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0) 1037 uc->cmd = UC_SETWIDE; 1038 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 1039 else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0) 1040 uc->cmd = UC_SETDEBUG; 1041 #endif 1042 else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0) 1043 uc->cmd = UC_SETFLAG; 1044 else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0) 1045 uc->cmd = UC_RESETDEV; 1046 else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0) 1047 uc->cmd = UC_CLEARDEV; 1048 else 1049 arg_len = 0; 1050 1051 #ifdef DEBUG_PROC_INFO 1052 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd); 1053 #endif 1054 1055 if (!arg_len) 1056 return -EINVAL; 1057 ptr += arg_len; len -= arg_len; 1058 1059 switch(uc->cmd) { 1060 case UC_SETSYNC: 1061 case UC_SETTAGS: 1062 case UC_SETWIDE: 1063 case UC_SETFLAG: 1064 case UC_RESETDEV: 1065 case UC_CLEARDEV: 1066 SKIP_SPACES(ptr, len); 1067 if ((arg_len = is_keyword(ptr, len, "all")) != 0) { 1068 ptr += arg_len; len -= arg_len; 1069 uc->target = ~0; 1070 } else { 1071 GET_INT_ARG(ptr, len, target); 1072 uc->target = (1<<target); 1073 #ifdef DEBUG_PROC_INFO 1074 printk("sym_user_command: target=%ld\n", target); 1075 #endif 1076 } 1077 break; 1078 } 1079 1080 switch(uc->cmd) { 1081 case UC_SETVERBOSE: 1082 case UC_SETSYNC: 1083 case UC_SETTAGS: 1084 case UC_SETWIDE: 1085 SKIP_SPACES(ptr, len); 1086 GET_INT_ARG(ptr, len, uc->data); 1087 #ifdef DEBUG_PROC_INFO 1088 printk("sym_user_command: data=%ld\n", uc->data); 1089 #endif 1090 break; 1091 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 1092 case UC_SETDEBUG: 1093 while (len > 0) { 1094 SKIP_SPACES(ptr, len); 1095 if ((arg_len = is_keyword(ptr, len, "alloc"))) 1096 uc->data |= DEBUG_ALLOC; 1097 else if ((arg_len = is_keyword(ptr, len, "phase"))) 1098 uc->data |= DEBUG_PHASE; 1099 else if ((arg_len = is_keyword(ptr, len, "queue"))) 1100 uc->data |= DEBUG_QUEUE; 1101 else if ((arg_len = is_keyword(ptr, len, "result"))) 1102 uc->data |= DEBUG_RESULT; 1103 else if ((arg_len = is_keyword(ptr, len, "scatter"))) 1104 uc->data |= DEBUG_SCATTER; 1105 else if ((arg_len = is_keyword(ptr, len, "script"))) 1106 uc->data |= DEBUG_SCRIPT; 1107 else if ((arg_len = is_keyword(ptr, len, "tiny"))) 1108 uc->data |= DEBUG_TINY; 1109 else if ((arg_len = is_keyword(ptr, len, "timing"))) 1110 uc->data |= DEBUG_TIMING; 1111 else if ((arg_len = is_keyword(ptr, len, "nego"))) 1112 uc->data |= DEBUG_NEGO; 1113 else if ((arg_len = is_keyword(ptr, len, "tags"))) 1114 uc->data |= DEBUG_TAGS; 1115 else if ((arg_len = is_keyword(ptr, len, "pointer"))) 1116 uc->data |= DEBUG_POINTER; 1117 else 1118 return -EINVAL; 1119 ptr += arg_len; len -= arg_len; 1120 } 1121 #ifdef DEBUG_PROC_INFO 1122 printk("sym_user_command: data=%ld\n", uc->data); 1123 #endif 1124 break; 1125 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */ 1126 case UC_SETFLAG: 1127 while (len > 0) { 1128 SKIP_SPACES(ptr, len); 1129 if ((arg_len = is_keyword(ptr, len, "no_disc"))) 1130 uc->data &= ~SYM_DISC_ENABLED; 1131 else 1132 return -EINVAL; 1133 ptr += arg_len; len -= arg_len; 1134 } 1135 break; 1136 default: 1137 break; 1138 } 1139 1140 if (len) 1141 return -EINVAL; 1142 else { 1143 unsigned long flags; 1144 1145 spin_lock_irqsave(shost->host_lock, flags); 1146 sym_exec_user_command(np, uc); 1147 spin_unlock_irqrestore(shost->host_lock, flags); 1148 } 1149 return length; 1150 } 1151 1152 #endif /* SYM_LINUX_USER_COMMAND_SUPPORT */ 1153 1154 1155 /* 1156 * Copy formatted information into the input buffer. 1157 */ 1158 static int sym_show_info(struct seq_file *m, struct Scsi_Host *shost) 1159 { 1160 #ifdef SYM_LINUX_USER_INFO_SUPPORT 1161 struct sym_data *sym_data = shost_priv(shost); 1162 struct pci_dev *pdev = sym_data->pdev; 1163 struct sym_hcb *np = sym_data->ncb; 1164 1165 seq_printf(m, "Chip " NAME53C "%s, device id 0x%x, " 1166 "revision id 0x%x\n", np->s.chip_name, 1167 pdev->device, pdev->revision); 1168 seq_printf(m, "At PCI address %s, IRQ %u\n", 1169 pci_name(pdev), pdev->irq); 1170 seq_printf(m, "Min. period factor %d, %s SCSI BUS%s\n", 1171 (int) (np->minsync_dt ? np->minsync_dt : np->minsync), 1172 np->maxwide ? "Wide" : "Narrow", 1173 np->minsync_dt ? ", DT capable" : ""); 1174 1175 seq_printf(m, "Max. started commands %d, " 1176 "max. commands per LUN %d\n", 1177 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG); 1178 1179 return 0; 1180 #else 1181 return -EINVAL; 1182 #endif /* SYM_LINUX_USER_INFO_SUPPORT */ 1183 } 1184 1185 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */ 1186 1187 /* 1188 * Free resources claimed by sym_iomap_device(). Note that 1189 * sym_free_resources() should be used instead of this function after calling 1190 * sym_attach(). 1191 */ 1192 static void sym_iounmap_device(struct sym_device *device) 1193 { 1194 if (device->s.ioaddr) 1195 pci_iounmap(device->pdev, device->s.ioaddr); 1196 if (device->s.ramaddr) 1197 pci_iounmap(device->pdev, device->s.ramaddr); 1198 } 1199 1200 /* 1201 * Free controller resources. 1202 */ 1203 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev, 1204 int do_free_irq) 1205 { 1206 /* 1207 * Free O/S specific resources. 1208 */ 1209 if (do_free_irq) 1210 free_irq(pdev->irq, np->s.host); 1211 if (np->s.ioaddr) 1212 pci_iounmap(pdev, np->s.ioaddr); 1213 if (np->s.ramaddr) 1214 pci_iounmap(pdev, np->s.ramaddr); 1215 /* 1216 * Free O/S independent resources. 1217 */ 1218 sym_hcb_free(np); 1219 1220 sym_mfree_dma(np, sizeof(*np), "HCB"); 1221 } 1222 1223 /* 1224 * Host attach and initialisations. 1225 * 1226 * Allocate host data and ncb structure. 1227 * Remap MMIO region. 1228 * Do chip initialization. 1229 * If all is OK, install interrupt handling and 1230 * start the timer daemon. 1231 */ 1232 static struct Scsi_Host *sym_attach(struct scsi_host_template *tpnt, int unit, 1233 struct sym_device *dev) 1234 { 1235 struct sym_data *sym_data; 1236 struct sym_hcb *np = NULL; 1237 struct Scsi_Host *shost = NULL; 1238 struct pci_dev *pdev = dev->pdev; 1239 unsigned long flags; 1240 struct sym_fw *fw; 1241 int do_free_irq = 0; 1242 1243 printk(KERN_INFO "sym%d: <%s> rev 0x%x at pci %s irq %u\n", 1244 unit, dev->chip.name, pdev->revision, pci_name(pdev), 1245 pdev->irq); 1246 1247 /* 1248 * Get the firmware for this chip. 1249 */ 1250 fw = sym_find_firmware(&dev->chip); 1251 if (!fw) 1252 goto attach_failed; 1253 1254 shost = scsi_host_alloc(tpnt, sizeof(*sym_data)); 1255 if (!shost) 1256 goto attach_failed; 1257 sym_data = shost_priv(shost); 1258 1259 /* 1260 * Allocate immediately the host control block, 1261 * since we are only expecting to succeed. :) 1262 * We keep track in the HCB of all the resources that 1263 * are to be released on error. 1264 */ 1265 np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB"); 1266 if (!np) 1267 goto attach_failed; 1268 np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */ 1269 sym_data->ncb = np; 1270 sym_data->pdev = pdev; 1271 np->s.host = shost; 1272 1273 pci_set_drvdata(pdev, shost); 1274 1275 /* 1276 * Copy some useful infos to the HCB. 1277 */ 1278 np->hcb_ba = vtobus(np); 1279 np->verbose = sym_driver_setup.verbose; 1280 np->s.unit = unit; 1281 np->features = dev->chip.features; 1282 np->clock_divn = dev->chip.nr_divisor; 1283 np->maxoffs = dev->chip.offset_max; 1284 np->maxburst = dev->chip.burst_max; 1285 np->myaddr = dev->host_id; 1286 np->mmio_ba = (u32)dev->mmio_base; 1287 np->ram_ba = (u32)dev->ram_base; 1288 np->s.ioaddr = dev->s.ioaddr; 1289 np->s.ramaddr = dev->s.ramaddr; 1290 1291 /* 1292 * Edit its name. 1293 */ 1294 strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name)); 1295 sprintf(np->s.inst_name, "sym%d", np->s.unit); 1296 1297 if ((SYM_CONF_DMA_ADDRESSING_MODE > 0) && (np->features & FE_DAC) && 1298 !dma_set_mask(&pdev->dev, DMA_DAC_MASK)) { 1299 set_dac(np); 1300 } else if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { 1301 printf_warning("%s: No suitable DMA available\n", sym_name(np)); 1302 goto attach_failed; 1303 } 1304 1305 if (sym_hcb_attach(shost, fw, dev->nvram)) 1306 goto attach_failed; 1307 1308 /* 1309 * Install the interrupt handler. 1310 * If we synchonize the C code with SCRIPTS on interrupt, 1311 * we do not want to share the INTR line at all. 1312 */ 1313 if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX, 1314 shost)) { 1315 printf_err("%s: request irq %u failure\n", 1316 sym_name(np), pdev->irq); 1317 goto attach_failed; 1318 } 1319 do_free_irq = 1; 1320 1321 /* 1322 * After SCSI devices have been opened, we cannot 1323 * reset the bus safely, so we do it here. 1324 */ 1325 spin_lock_irqsave(shost->host_lock, flags); 1326 if (sym_reset_scsi_bus(np, 0)) 1327 goto reset_failed; 1328 1329 /* 1330 * Start the SCRIPTS. 1331 */ 1332 sym_start_up(shost, 1); 1333 1334 /* 1335 * Start the timer daemon 1336 */ 1337 timer_setup(&np->s.timer, sym53c8xx_timer, 0); 1338 np->s.lasttime=0; 1339 sym_timer (np); 1340 1341 /* 1342 * Fill Linux host instance structure 1343 * and return success. 1344 */ 1345 shost->max_channel = 0; 1346 shost->this_id = np->myaddr; 1347 shost->max_id = np->maxwide ? 16 : 8; 1348 shost->max_lun = SYM_CONF_MAX_LUN; 1349 shost->unique_id = pci_resource_start(pdev, 0); 1350 shost->cmd_per_lun = SYM_CONF_MAX_TAG; 1351 shost->can_queue = (SYM_CONF_MAX_START-2); 1352 shost->sg_tablesize = SYM_CONF_MAX_SG; 1353 shost->max_cmd_len = 16; 1354 BUG_ON(sym2_transport_template == NULL); 1355 shost->transportt = sym2_transport_template; 1356 1357 /* 53c896 rev 1 errata: DMA may not cross 16MB boundary */ 1358 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 2) 1359 shost->dma_boundary = 0xFFFFFF; 1360 1361 spin_unlock_irqrestore(shost->host_lock, flags); 1362 1363 return shost; 1364 1365 reset_failed: 1366 printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, " 1367 "TERMINATION, DEVICE POWER etc.!\n", sym_name(np)); 1368 spin_unlock_irqrestore(shost->host_lock, flags); 1369 attach_failed: 1370 printf_info("sym%d: giving up ...\n", unit); 1371 if (np) 1372 sym_free_resources(np, pdev, do_free_irq); 1373 else 1374 sym_iounmap_device(dev); 1375 if (shost) 1376 scsi_host_put(shost); 1377 1378 return NULL; 1379 } 1380 1381 1382 /* 1383 * Detect and try to read SYMBIOS and TEKRAM NVRAM. 1384 */ 1385 #if SYM_CONF_NVRAM_SUPPORT 1386 static void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) 1387 { 1388 devp->nvram = nvp; 1389 nvp->type = 0; 1390 1391 sym_read_nvram(devp, nvp); 1392 } 1393 #else 1394 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) 1395 { 1396 } 1397 #endif /* SYM_CONF_NVRAM_SUPPORT */ 1398 1399 static int sym_check_supported(struct sym_device *device) 1400 { 1401 struct sym_chip *chip; 1402 struct pci_dev *pdev = device->pdev; 1403 unsigned long io_port = pci_resource_start(pdev, 0); 1404 int i; 1405 1406 /* 1407 * If user excluded this chip, do not initialize it. 1408 * I hate this code so much. Must kill it. 1409 */ 1410 if (io_port) { 1411 for (i = 0 ; i < 8 ; i++) { 1412 if (sym_driver_setup.excludes[i] == io_port) 1413 return -ENODEV; 1414 } 1415 } 1416 1417 /* 1418 * Check if the chip is supported. Then copy the chip description 1419 * to our device structure so we can make it match the actual device 1420 * and options. 1421 */ 1422 chip = sym_lookup_chip_table(pdev->device, pdev->revision); 1423 if (!chip) { 1424 dev_info(&pdev->dev, "device not supported\n"); 1425 return -ENODEV; 1426 } 1427 memcpy(&device->chip, chip, sizeof(device->chip)); 1428 1429 return 0; 1430 } 1431 1432 /* 1433 * Ignore Symbios chips controlled by various RAID controllers. 1434 * These controllers set value 0x52414944 at RAM end - 16. 1435 */ 1436 static int sym_check_raid(struct sym_device *device) 1437 { 1438 unsigned int ram_size, ram_val; 1439 1440 if (!device->s.ramaddr) 1441 return 0; 1442 1443 if (device->chip.features & FE_RAM8K) 1444 ram_size = 8192; 1445 else 1446 ram_size = 4096; 1447 1448 ram_val = readl(device->s.ramaddr + ram_size - 16); 1449 if (ram_val != 0x52414944) 1450 return 0; 1451 1452 dev_info(&device->pdev->dev, 1453 "not initializing, driven by RAID controller.\n"); 1454 return -ENODEV; 1455 } 1456 1457 static int sym_set_workarounds(struct sym_device *device) 1458 { 1459 struct sym_chip *chip = &device->chip; 1460 struct pci_dev *pdev = device->pdev; 1461 u_short status_reg; 1462 1463 /* 1464 * (ITEM 12 of a DEL about the 896 I haven't yet). 1465 * We must ensure the chip will use WRITE AND INVALIDATE. 1466 * The revision number limit is for now arbitrary. 1467 */ 1468 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 0x4) { 1469 chip->features |= (FE_WRIE | FE_CLSE); 1470 } 1471 1472 /* If the chip can do Memory Write Invalidate, enable it */ 1473 if (chip->features & FE_WRIE) { 1474 if (pci_set_mwi(pdev)) 1475 return -ENODEV; 1476 } 1477 1478 /* 1479 * Work around for errant bit in 895A. The 66Mhz 1480 * capable bit is set erroneously. Clear this bit. 1481 * (Item 1 DEL 533) 1482 * 1483 * Make sure Config space and Features agree. 1484 * 1485 * Recall: writes are not normal to status register - 1486 * write a 1 to clear and a 0 to leave unchanged. 1487 * Can only reset bits. 1488 */ 1489 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1490 if (chip->features & FE_66MHZ) { 1491 if (!(status_reg & PCI_STATUS_66MHZ)) 1492 chip->features &= ~FE_66MHZ; 1493 } else { 1494 if (status_reg & PCI_STATUS_66MHZ) { 1495 status_reg = PCI_STATUS_66MHZ; 1496 pci_write_config_word(pdev, PCI_STATUS, status_reg); 1497 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1498 } 1499 } 1500 1501 return 0; 1502 } 1503 1504 /* 1505 * Map HBA registers and on-chip SRAM (if present). 1506 */ 1507 static int sym_iomap_device(struct sym_device *device) 1508 { 1509 struct pci_dev *pdev = device->pdev; 1510 struct pci_bus_region bus_addr; 1511 int i = 2; 1512 1513 pcibios_resource_to_bus(pdev->bus, &bus_addr, &pdev->resource[1]); 1514 device->mmio_base = bus_addr.start; 1515 1516 if (device->chip.features & FE_RAM) { 1517 /* 1518 * If the BAR is 64-bit, resource 2 will be occupied by the 1519 * upper 32 bits 1520 */ 1521 if (!pdev->resource[i].flags) 1522 i++; 1523 pcibios_resource_to_bus(pdev->bus, &bus_addr, 1524 &pdev->resource[i]); 1525 device->ram_base = bus_addr.start; 1526 } 1527 1528 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO 1529 if (device->mmio_base) 1530 device->s.ioaddr = pci_iomap(pdev, 1, 1531 pci_resource_len(pdev, 1)); 1532 #endif 1533 if (!device->s.ioaddr) 1534 device->s.ioaddr = pci_iomap(pdev, 0, 1535 pci_resource_len(pdev, 0)); 1536 if (!device->s.ioaddr) { 1537 dev_err(&pdev->dev, "could not map registers; giving up.\n"); 1538 return -EIO; 1539 } 1540 if (device->ram_base) { 1541 device->s.ramaddr = pci_iomap(pdev, i, 1542 pci_resource_len(pdev, i)); 1543 if (!device->s.ramaddr) { 1544 dev_warn(&pdev->dev, 1545 "could not map SRAM; continuing anyway.\n"); 1546 device->ram_base = 0; 1547 } 1548 } 1549 1550 return 0; 1551 } 1552 1553 /* 1554 * The NCR PQS and PDS cards are constructed as a DEC bridge 1555 * behind which sits a proprietary NCR memory controller and 1556 * either four or two 53c875s as separate devices. We can tell 1557 * if an 875 is part of a PQS/PDS or not since if it is, it will 1558 * be on the same bus as the memory controller. In its usual 1559 * mode of operation, the 875s are slaved to the memory 1560 * controller for all transfers. To operate with the Linux 1561 * driver, the memory controller is disabled and the 875s 1562 * freed to function independently. The only wrinkle is that 1563 * the preset SCSI ID (which may be zero) must be read in from 1564 * a special configuration space register of the 875. 1565 */ 1566 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev) 1567 { 1568 int slot; 1569 u8 tmp; 1570 1571 for (slot = 0; slot < 256; slot++) { 1572 struct pci_dev *memc = pci_get_slot(pdev->bus, slot); 1573 1574 if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) { 1575 pci_dev_put(memc); 1576 continue; 1577 } 1578 1579 /* bit 1: allow individual 875 configuration */ 1580 pci_read_config_byte(memc, 0x44, &tmp); 1581 if ((tmp & 0x2) == 0) { 1582 tmp |= 0x2; 1583 pci_write_config_byte(memc, 0x44, tmp); 1584 } 1585 1586 /* bit 2: drive individual 875 interrupts to the bus */ 1587 pci_read_config_byte(memc, 0x45, &tmp); 1588 if ((tmp & 0x4) == 0) { 1589 tmp |= 0x4; 1590 pci_write_config_byte(memc, 0x45, tmp); 1591 } 1592 1593 pci_dev_put(memc); 1594 break; 1595 } 1596 1597 pci_read_config_byte(pdev, 0x84, &tmp); 1598 sym_dev->host_id = tmp; 1599 } 1600 1601 /* 1602 * Called before unloading the module. 1603 * Detach the host. 1604 * We have to free resources and halt the NCR chip. 1605 */ 1606 static int sym_detach(struct Scsi_Host *shost, struct pci_dev *pdev) 1607 { 1608 struct sym_hcb *np = sym_get_hcb(shost); 1609 printk("%s: detaching ...\n", sym_name(np)); 1610 1611 del_timer_sync(&np->s.timer); 1612 1613 /* 1614 * Reset NCR chip. 1615 * We should use sym_soft_reset(), but we don't want to do 1616 * so, since we may not be safe if interrupts occur. 1617 */ 1618 printk("%s: resetting chip\n", sym_name(np)); 1619 OUTB(np, nc_istat, SRST); 1620 INB(np, nc_mbox1); 1621 udelay(10); 1622 OUTB(np, nc_istat, 0); 1623 1624 sym_free_resources(np, pdev, 1); 1625 scsi_host_put(shost); 1626 1627 return 1; 1628 } 1629 1630 /* 1631 * Driver host template. 1632 */ 1633 static struct scsi_host_template sym2_template = { 1634 .module = THIS_MODULE, 1635 .name = "sym53c8xx", 1636 .info = sym53c8xx_info, 1637 .queuecommand = sym53c8xx_queue_command, 1638 .slave_alloc = sym53c8xx_slave_alloc, 1639 .slave_configure = sym53c8xx_slave_configure, 1640 .slave_destroy = sym53c8xx_slave_destroy, 1641 .eh_abort_handler = sym53c8xx_eh_abort_handler, 1642 .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler, 1643 .eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler, 1644 .eh_host_reset_handler = sym53c8xx_eh_host_reset_handler, 1645 .this_id = 7, 1646 .max_sectors = 0xFFFF, 1647 #ifdef SYM_LINUX_PROC_INFO_SUPPORT 1648 .show_info = sym_show_info, 1649 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT 1650 .write_info = sym_user_command, 1651 #endif 1652 .proc_name = NAME53C8XX, 1653 #endif 1654 }; 1655 1656 static int attach_count; 1657 1658 static int sym2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1659 { 1660 struct sym_device sym_dev; 1661 struct sym_nvram nvram; 1662 struct Scsi_Host *shost; 1663 int do_iounmap = 0; 1664 int do_disable_device = 1; 1665 1666 memset(&sym_dev, 0, sizeof(sym_dev)); 1667 memset(&nvram, 0, sizeof(nvram)); 1668 sym_dev.pdev = pdev; 1669 sym_dev.host_id = SYM_SETUP_HOST_ID; 1670 1671 if (pci_enable_device(pdev)) 1672 goto leave; 1673 1674 pci_set_master(pdev); 1675 1676 if (pci_request_regions(pdev, NAME53C8XX)) 1677 goto disable; 1678 1679 if (sym_check_supported(&sym_dev)) 1680 goto free; 1681 1682 if (sym_iomap_device(&sym_dev)) 1683 goto free; 1684 do_iounmap = 1; 1685 1686 if (sym_check_raid(&sym_dev)) { 1687 do_disable_device = 0; /* Don't disable the device */ 1688 goto free; 1689 } 1690 1691 if (sym_set_workarounds(&sym_dev)) 1692 goto free; 1693 1694 sym_config_pqs(pdev, &sym_dev); 1695 1696 sym_get_nvram(&sym_dev, &nvram); 1697 1698 do_iounmap = 0; /* Don't sym_iounmap_device() after sym_attach(). */ 1699 shost = sym_attach(&sym2_template, attach_count, &sym_dev); 1700 if (!shost) 1701 goto free; 1702 1703 if (scsi_add_host(shost, &pdev->dev)) 1704 goto detach; 1705 scsi_scan_host(shost); 1706 1707 attach_count++; 1708 1709 return 0; 1710 1711 detach: 1712 sym_detach(pci_get_drvdata(pdev), pdev); 1713 free: 1714 if (do_iounmap) 1715 sym_iounmap_device(&sym_dev); 1716 pci_release_regions(pdev); 1717 disable: 1718 if (do_disable_device) 1719 pci_disable_device(pdev); 1720 leave: 1721 return -ENODEV; 1722 } 1723 1724 static void sym2_remove(struct pci_dev *pdev) 1725 { 1726 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1727 1728 scsi_remove_host(shost); 1729 sym_detach(shost, pdev); 1730 pci_release_regions(pdev); 1731 pci_disable_device(pdev); 1732 1733 attach_count--; 1734 } 1735 1736 /** 1737 * sym2_io_error_detected() - called when PCI error is detected 1738 * @pdev: pointer to PCI device 1739 * @state: current state of the PCI slot 1740 */ 1741 static pci_ers_result_t sym2_io_error_detected(struct pci_dev *pdev, 1742 pci_channel_state_t state) 1743 { 1744 /* If slot is permanently frozen, turn everything off */ 1745 if (state == pci_channel_io_perm_failure) { 1746 sym2_remove(pdev); 1747 return PCI_ERS_RESULT_DISCONNECT; 1748 } 1749 1750 disable_irq(pdev->irq); 1751 pci_disable_device(pdev); 1752 1753 /* Request that MMIO be enabled, so register dump can be taken. */ 1754 return PCI_ERS_RESULT_CAN_RECOVER; 1755 } 1756 1757 /** 1758 * sym2_io_slot_dump - Enable MMIO and dump debug registers 1759 * @pdev: pointer to PCI device 1760 */ 1761 static pci_ers_result_t sym2_io_slot_dump(struct pci_dev *pdev) 1762 { 1763 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1764 1765 sym_dump_registers(shost); 1766 1767 /* Request a slot reset. */ 1768 return PCI_ERS_RESULT_NEED_RESET; 1769 } 1770 1771 /** 1772 * sym2_reset_workarounds - hardware-specific work-arounds 1773 * @pdev: pointer to PCI device 1774 * 1775 * This routine is similar to sym_set_workarounds(), except 1776 * that, at this point, we already know that the device was 1777 * successfully initialized at least once before, and so most 1778 * of the steps taken there are un-needed here. 1779 */ 1780 static void sym2_reset_workarounds(struct pci_dev *pdev) 1781 { 1782 u_short status_reg; 1783 struct sym_chip *chip; 1784 1785 chip = sym_lookup_chip_table(pdev->device, pdev->revision); 1786 1787 /* Work around for errant bit in 895A, in a fashion 1788 * similar to what is done in sym_set_workarounds(). 1789 */ 1790 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1791 if (!(chip->features & FE_66MHZ) && (status_reg & PCI_STATUS_66MHZ)) { 1792 status_reg = PCI_STATUS_66MHZ; 1793 pci_write_config_word(pdev, PCI_STATUS, status_reg); 1794 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1795 } 1796 } 1797 1798 /** 1799 * sym2_io_slot_reset() - called when the pci bus has been reset. 1800 * @pdev: pointer to PCI device 1801 * 1802 * Restart the card from scratch. 1803 */ 1804 static pci_ers_result_t sym2_io_slot_reset(struct pci_dev *pdev) 1805 { 1806 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1807 struct sym_hcb *np = sym_get_hcb(shost); 1808 1809 printk(KERN_INFO "%s: recovering from a PCI slot reset\n", 1810 sym_name(np)); 1811 1812 if (pci_enable_device(pdev)) { 1813 printk(KERN_ERR "%s: Unable to enable after PCI reset\n", 1814 sym_name(np)); 1815 return PCI_ERS_RESULT_DISCONNECT; 1816 } 1817 1818 pci_set_master(pdev); 1819 enable_irq(pdev->irq); 1820 1821 /* If the chip can do Memory Write Invalidate, enable it */ 1822 if (np->features & FE_WRIE) { 1823 if (pci_set_mwi(pdev)) 1824 return PCI_ERS_RESULT_DISCONNECT; 1825 } 1826 1827 /* Perform work-arounds, analogous to sym_set_workarounds() */ 1828 sym2_reset_workarounds(pdev); 1829 1830 /* Perform host reset only on one instance of the card */ 1831 if (PCI_FUNC(pdev->devfn) == 0) { 1832 if (sym_reset_scsi_bus(np, 0)) { 1833 printk(KERN_ERR "%s: Unable to reset scsi host\n", 1834 sym_name(np)); 1835 return PCI_ERS_RESULT_DISCONNECT; 1836 } 1837 sym_start_up(shost, 1); 1838 } 1839 1840 return PCI_ERS_RESULT_RECOVERED; 1841 } 1842 1843 /** 1844 * sym2_io_resume() - resume normal ops after PCI reset 1845 * @pdev: pointer to PCI device 1846 * 1847 * Called when the error recovery driver tells us that its 1848 * OK to resume normal operation. Use completion to allow 1849 * halted scsi ops to resume. 1850 */ 1851 static void sym2_io_resume(struct pci_dev *pdev) 1852 { 1853 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1854 struct sym_data *sym_data = shost_priv(shost); 1855 1856 spin_lock_irq(shost->host_lock); 1857 if (sym_data->io_reset) 1858 complete(sym_data->io_reset); 1859 spin_unlock_irq(shost->host_lock); 1860 } 1861 1862 static void sym2_get_signalling(struct Scsi_Host *shost) 1863 { 1864 struct sym_hcb *np = sym_get_hcb(shost); 1865 enum spi_signal_type type; 1866 1867 switch (np->scsi_mode) { 1868 case SMODE_SE: 1869 type = SPI_SIGNAL_SE; 1870 break; 1871 case SMODE_LVD: 1872 type = SPI_SIGNAL_LVD; 1873 break; 1874 case SMODE_HVD: 1875 type = SPI_SIGNAL_HVD; 1876 break; 1877 default: 1878 type = SPI_SIGNAL_UNKNOWN; 1879 break; 1880 } 1881 spi_signalling(shost) = type; 1882 } 1883 1884 static void sym2_set_offset(struct scsi_target *starget, int offset) 1885 { 1886 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1887 struct sym_hcb *np = sym_get_hcb(shost); 1888 struct sym_tcb *tp = &np->target[starget->id]; 1889 1890 tp->tgoal.offset = offset; 1891 tp->tgoal.check_nego = 1; 1892 } 1893 1894 static void sym2_set_period(struct scsi_target *starget, int period) 1895 { 1896 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1897 struct sym_hcb *np = sym_get_hcb(shost); 1898 struct sym_tcb *tp = &np->target[starget->id]; 1899 1900 /* have to have DT for these transfers, but DT will also 1901 * set width, so check that this is allowed */ 1902 if (period <= np->minsync && spi_width(starget)) 1903 tp->tgoal.dt = 1; 1904 1905 tp->tgoal.period = period; 1906 tp->tgoal.check_nego = 1; 1907 } 1908 1909 static void sym2_set_width(struct scsi_target *starget, int width) 1910 { 1911 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1912 struct sym_hcb *np = sym_get_hcb(shost); 1913 struct sym_tcb *tp = &np->target[starget->id]; 1914 1915 /* It is illegal to have DT set on narrow transfers. If DT is 1916 * clear, we must also clear IU and QAS. */ 1917 if (width == 0) 1918 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 1919 1920 tp->tgoal.width = width; 1921 tp->tgoal.check_nego = 1; 1922 } 1923 1924 static void sym2_set_dt(struct scsi_target *starget, int dt) 1925 { 1926 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1927 struct sym_hcb *np = sym_get_hcb(shost); 1928 struct sym_tcb *tp = &np->target[starget->id]; 1929 1930 /* We must clear QAS and IU if DT is clear */ 1931 if (dt) 1932 tp->tgoal.dt = 1; 1933 else 1934 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 1935 tp->tgoal.check_nego = 1; 1936 } 1937 1938 #if 0 1939 static void sym2_set_iu(struct scsi_target *starget, int iu) 1940 { 1941 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1942 struct sym_hcb *np = sym_get_hcb(shost); 1943 struct sym_tcb *tp = &np->target[starget->id]; 1944 1945 if (iu) 1946 tp->tgoal.iu = tp->tgoal.dt = 1; 1947 else 1948 tp->tgoal.iu = 0; 1949 tp->tgoal.check_nego = 1; 1950 } 1951 1952 static void sym2_set_qas(struct scsi_target *starget, int qas) 1953 { 1954 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1955 struct sym_hcb *np = sym_get_hcb(shost); 1956 struct sym_tcb *tp = &np->target[starget->id]; 1957 1958 if (qas) 1959 tp->tgoal.dt = tp->tgoal.qas = 1; 1960 else 1961 tp->tgoal.qas = 0; 1962 tp->tgoal.check_nego = 1; 1963 } 1964 #endif 1965 1966 static struct spi_function_template sym2_transport_functions = { 1967 .set_offset = sym2_set_offset, 1968 .show_offset = 1, 1969 .set_period = sym2_set_period, 1970 .show_period = 1, 1971 .set_width = sym2_set_width, 1972 .show_width = 1, 1973 .set_dt = sym2_set_dt, 1974 .show_dt = 1, 1975 #if 0 1976 .set_iu = sym2_set_iu, 1977 .show_iu = 1, 1978 .set_qas = sym2_set_qas, 1979 .show_qas = 1, 1980 #endif 1981 .get_signalling = sym2_get_signalling, 1982 }; 1983 1984 static struct pci_device_id sym2_id_table[] = { 1985 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810, 1986 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1987 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820, 1988 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ 1989 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825, 1990 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1991 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815, 1992 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1993 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP, 1994 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ 1995 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860, 1996 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1997 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510, 1998 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL }, 1999 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896, 2000 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2001 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895, 2002 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2003 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885, 2004 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2005 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875, 2006 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2007 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510, 2008 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL }, /* new */ 2009 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A, 2010 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2011 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A, 2012 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2013 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33, 2014 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2015 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66, 2016 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2017 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J, 2018 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2019 { 0, } 2020 }; 2021 2022 MODULE_DEVICE_TABLE(pci, sym2_id_table); 2023 2024 static const struct pci_error_handlers sym2_err_handler = { 2025 .error_detected = sym2_io_error_detected, 2026 .mmio_enabled = sym2_io_slot_dump, 2027 .slot_reset = sym2_io_slot_reset, 2028 .resume = sym2_io_resume, 2029 }; 2030 2031 static struct pci_driver sym2_driver = { 2032 .name = NAME53C8XX, 2033 .id_table = sym2_id_table, 2034 .probe = sym2_probe, 2035 .remove = sym2_remove, 2036 .err_handler = &sym2_err_handler, 2037 }; 2038 2039 static int __init sym2_init(void) 2040 { 2041 int error; 2042 2043 sym2_setup_params(); 2044 sym2_transport_template = spi_attach_transport(&sym2_transport_functions); 2045 if (!sym2_transport_template) 2046 return -ENODEV; 2047 2048 error = pci_register_driver(&sym2_driver); 2049 if (error) 2050 spi_release_transport(sym2_transport_template); 2051 return error; 2052 } 2053 2054 static void __exit sym2_exit(void) 2055 { 2056 pci_unregister_driver(&sym2_driver); 2057 spi_release_transport(sym2_transport_template); 2058 } 2059 2060 module_init(sym2_init); 2061 module_exit(sym2_exit); 2062