1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family 4 * of PCI-SCSI IO processors. 5 * 6 * Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr> 7 * Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx> 8 * 9 * This driver is derived from the Linux sym53c8xx driver. 10 * Copyright (C) 1998-2000 Gerard Roudier 11 * 12 * The sym53c8xx driver is derived from the ncr53c8xx driver that had been 13 * a port of the FreeBSD ncr driver to Linux-1.2.13. 14 * 15 * The original ncr driver has been written for 386bsd and FreeBSD by 16 * Wolfgang Stanglmeier <wolf@cologne.de> 17 * Stefan Esser <se@mi.Uni-Koeln.de> 18 * Copyright (C) 1994 Wolfgang Stanglmeier 19 * 20 * Other major contributions: 21 * 22 * NVRAM detection and reading. 23 * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk> 24 * 25 *----------------------------------------------------------------------------- 26 */ 27 #include <linux/ctype.h> 28 #include <linux/init.h> 29 #include <linux/module.h> 30 #include <linux/moduleparam.h> 31 #include <linux/spinlock.h> 32 #include <scsi/scsi.h> 33 #include <scsi/scsi_tcq.h> 34 #include <scsi/scsi_device.h> 35 #include <scsi/scsi_transport.h> 36 37 #include "sym_glue.h" 38 #include "sym_nvram.h" 39 40 #define NAME53C "sym53c" 41 #define NAME53C8XX "sym53c8xx" 42 43 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP; 44 unsigned int sym_debug_flags = 0; 45 46 static char *excl_string; 47 static char *safe_string; 48 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0); 49 module_param_named(burst, sym_driver_setup.burst_order, byte, 0); 50 module_param_named(led, sym_driver_setup.scsi_led, byte, 0); 51 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0); 52 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0); 53 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0); 54 module_param_named(hostid, sym_driver_setup.host_id, byte, 0); 55 module_param_named(verb, sym_driver_setup.verbose, byte, 0); 56 module_param_named(debug, sym_debug_flags, uint, 0); 57 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0); 58 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0); 59 module_param_named(excl, excl_string, charp, 0); 60 module_param_named(safe, safe_string, charp, 0); 61 62 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default"); 63 MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers"); 64 MODULE_PARM_DESC(led, "Set to 1 to enable LED support"); 65 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3"); 66 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole"); 67 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error"); 68 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters"); 69 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive"); 70 MODULE_PARM_DESC(debug, "Set bits to enable debugging"); 71 MODULE_PARM_DESC(settle, "Settle delay in seconds. Default 3"); 72 MODULE_PARM_DESC(nvram, "Option currently not used"); 73 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached"); 74 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\""); 75 76 MODULE_LICENSE("GPL"); 77 MODULE_VERSION(SYM_VERSION); 78 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>"); 79 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters"); 80 81 static void sym2_setup_params(void) 82 { 83 char *p = excl_string; 84 int xi = 0; 85 86 while (p && (xi < 8)) { 87 char *next_p; 88 int val = (int) simple_strtoul(p, &next_p, 0); 89 sym_driver_setup.excludes[xi++] = val; 90 p = next_p; 91 } 92 93 if (safe_string) { 94 if (*safe_string == 'y') { 95 sym_driver_setup.max_tag = 0; 96 sym_driver_setup.burst_order = 0; 97 sym_driver_setup.scsi_led = 0; 98 sym_driver_setup.scsi_diff = 1; 99 sym_driver_setup.irq_mode = 0; 100 sym_driver_setup.scsi_bus_check = 2; 101 sym_driver_setup.host_id = 7; 102 sym_driver_setup.verbose = 2; 103 sym_driver_setup.settle_delay = 10; 104 sym_driver_setup.use_nvram = 1; 105 } else if (*safe_string != 'n') { 106 printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s" 107 " passed to safe option", safe_string); 108 } 109 } 110 } 111 112 static struct scsi_transport_template *sym2_transport_template = NULL; 113 114 /* 115 * Driver private area in the SCSI command structure. 116 */ 117 struct sym_ucmd { /* Override the SCSI pointer structure */ 118 struct completion *eh_done; /* SCSI error handling */ 119 }; 120 121 #define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp)) 122 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host) 123 124 /* 125 * Complete a pending CAM CCB. 126 */ 127 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd) 128 { 129 struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd); 130 BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd)); 131 132 if (ucmd->eh_done) 133 complete(ucmd->eh_done); 134 135 scsi_dma_unmap(cmd); 136 scsi_done(cmd); 137 } 138 139 /* 140 * Tell the SCSI layer about a BUS RESET. 141 */ 142 void sym_xpt_async_bus_reset(struct sym_hcb *np) 143 { 144 printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np)); 145 np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ; 146 np->s.settle_time_valid = 1; 147 if (sym_verbose >= 2) 148 printf_info("%s: command processing suspended for %d seconds\n", 149 sym_name(np), sym_driver_setup.settle_delay); 150 } 151 152 /* 153 * Choose the more appropriate CAM status if 154 * the IO encountered an extended error. 155 */ 156 static int sym_xerr_cam_status(int cam_status, int x_status) 157 { 158 if (x_status) { 159 if (x_status & XE_PARITY_ERR) 160 cam_status = DID_PARITY; 161 else 162 cam_status = DID_ERROR; 163 } 164 return cam_status; 165 } 166 167 /* 168 * Build CAM result for a failed or auto-sensed IO. 169 */ 170 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid) 171 { 172 struct scsi_cmnd *cmd = cp->cmd; 173 u_int cam_status, scsi_status; 174 175 cam_status = DID_OK; 176 scsi_status = cp->ssss_status; 177 178 if (cp->host_flags & HF_SENSE) { 179 scsi_status = cp->sv_scsi_status; 180 resid = cp->sv_resid; 181 if (sym_verbose && cp->sv_xerr_status) 182 sym_print_xerr(cmd, cp->sv_xerr_status); 183 if (cp->host_status == HS_COMPLETE && 184 cp->ssss_status == S_GOOD && 185 cp->xerr_status == 0) { 186 cam_status = sym_xerr_cam_status(DID_OK, 187 cp->sv_xerr_status); 188 /* 189 * Bounce back the sense data to user. 190 */ 191 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 192 memcpy(cmd->sense_buffer, cp->sns_bbuf, 193 min(SCSI_SENSE_BUFFERSIZE, SYM_SNS_BBUF_LEN)); 194 #if 0 195 /* 196 * If the device reports a UNIT ATTENTION condition 197 * due to a RESET condition, we should consider all 198 * disconnect CCBs for this unit as aborted. 199 */ 200 if (1) { 201 u_char *p; 202 p = (u_char *) cmd->sense_data; 203 if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29) 204 sym_clear_tasks(np, DID_ABORT, 205 cp->target,cp->lun, -1); 206 } 207 #endif 208 } else { 209 /* 210 * Error return from our internal request sense. This 211 * is bad: we must clear the contingent allegiance 212 * condition otherwise the device will always return 213 * BUSY. Use a big stick. 214 */ 215 sym_reset_scsi_target(np, cmd->device->id); 216 cam_status = DID_ERROR; 217 } 218 } else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */ 219 cam_status = DID_OK; 220 else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */ 221 cam_status = DID_NO_CONNECT; 222 else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/ 223 cam_status = DID_ERROR; 224 else { /* Extended error */ 225 if (sym_verbose) { 226 sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n", 227 cp->host_status, cp->ssss_status, 228 cp->xerr_status); 229 } 230 /* 231 * Set the most appropriate value for CAM status. 232 */ 233 cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status); 234 } 235 scsi_set_resid(cmd, resid); 236 cmd->result = (cam_status << 16) | scsi_status; 237 } 238 239 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd) 240 { 241 int segment; 242 int use_sg; 243 244 cp->data_len = 0; 245 246 use_sg = scsi_dma_map(cmd); 247 if (use_sg > 0) { 248 struct scatterlist *sg; 249 struct sym_tcb *tp = &np->target[cp->target]; 250 struct sym_tblmove *data; 251 252 if (use_sg > SYM_CONF_MAX_SG) { 253 scsi_dma_unmap(cmd); 254 return -1; 255 } 256 257 data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg]; 258 259 scsi_for_each_sg(cmd, sg, use_sg, segment) { 260 dma_addr_t baddr = sg_dma_address(sg); 261 unsigned int len = sg_dma_len(sg); 262 263 if ((len & 1) && (tp->head.wval & EWS)) { 264 len++; 265 cp->odd_byte_adjustment++; 266 } 267 268 sym_build_sge(np, &data[segment], baddr, len); 269 cp->data_len += len; 270 } 271 } else { 272 segment = -2; 273 } 274 275 return segment; 276 } 277 278 /* 279 * Queue a SCSI command. 280 */ 281 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd) 282 { 283 struct scsi_device *sdev = cmd->device; 284 struct sym_tcb *tp; 285 struct sym_lcb *lp; 286 struct sym_ccb *cp; 287 int order; 288 289 /* 290 * Retrieve the target descriptor. 291 */ 292 tp = &np->target[sdev->id]; 293 294 /* 295 * Select tagged/untagged. 296 */ 297 lp = sym_lp(tp, sdev->lun); 298 order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0; 299 300 /* 301 * Queue the SCSI IO. 302 */ 303 cp = sym_get_ccb(np, cmd, order); 304 if (!cp) 305 return 1; /* Means resource shortage */ 306 sym_queue_scsiio(np, cmd, cp); 307 return 0; 308 } 309 310 /* 311 * Setup buffers and pointers that address the CDB. 312 */ 313 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 314 { 315 memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len); 316 317 cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]); 318 cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len); 319 320 return 0; 321 } 322 323 /* 324 * Setup pointers that address the data and start the I/O. 325 */ 326 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp) 327 { 328 u32 lastp, goalp; 329 int dir; 330 331 /* 332 * Build the CDB. 333 */ 334 if (sym_setup_cdb(np, cmd, cp)) 335 goto out_abort; 336 337 /* 338 * No direction means no data. 339 */ 340 dir = cmd->sc_data_direction; 341 if (dir != DMA_NONE) { 342 cp->segments = sym_scatter(np, cp, cmd); 343 if (cp->segments < 0) { 344 sym_set_cam_status(cmd, DID_ERROR); 345 goto out_abort; 346 } 347 348 /* 349 * No segments means no data. 350 */ 351 if (!cp->segments) 352 dir = DMA_NONE; 353 } else { 354 cp->data_len = 0; 355 cp->segments = 0; 356 } 357 358 /* 359 * Set the data pointer. 360 */ 361 switch (dir) { 362 case DMA_BIDIRECTIONAL: 363 scmd_printk(KERN_INFO, cmd, "got DMA_BIDIRECTIONAL command"); 364 sym_set_cam_status(cmd, DID_ERROR); 365 goto out_abort; 366 case DMA_TO_DEVICE: 367 goalp = SCRIPTA_BA(np, data_out2) + 8; 368 lastp = goalp - 8 - (cp->segments * (2*4)); 369 break; 370 case DMA_FROM_DEVICE: 371 cp->host_flags |= HF_DATA_IN; 372 goalp = SCRIPTA_BA(np, data_in2) + 8; 373 lastp = goalp - 8 - (cp->segments * (2*4)); 374 break; 375 case DMA_NONE: 376 default: 377 lastp = goalp = SCRIPTB_BA(np, no_data); 378 break; 379 } 380 381 /* 382 * Set all pointers values needed by SCRIPTS. 383 */ 384 cp->phys.head.lastp = cpu_to_scr(lastp); 385 cp->phys.head.savep = cpu_to_scr(lastp); 386 cp->startp = cp->phys.head.savep; 387 cp->goalp = cpu_to_scr(goalp); 388 389 /* 390 * When `#ifed 1', the code below makes the driver 391 * panic on the first attempt to write to a SCSI device. 392 * It is the first test we want to do after a driver 393 * change that does not seem obviously safe. :) 394 */ 395 #if 0 396 switch (cp->cdb_buf[0]) { 397 case 0x0A: case 0x2A: case 0xAA: 398 panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n"); 399 break; 400 default: 401 break; 402 } 403 #endif 404 405 /* 406 * activate this job. 407 */ 408 sym_put_start_queue(np, cp); 409 return 0; 410 411 out_abort: 412 sym_free_ccb(np, cp); 413 sym_xpt_done(np, cmd); 414 return 0; 415 } 416 417 418 /* 419 * timer daemon. 420 * 421 * Misused to keep the driver running when 422 * interrupts are not configured correctly. 423 */ 424 static void sym_timer(struct sym_hcb *np) 425 { 426 unsigned long thistime = jiffies; 427 428 /* 429 * Restart the timer. 430 */ 431 np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL; 432 add_timer(&np->s.timer); 433 434 /* 435 * If we are resetting the ncr, wait for settle_time before 436 * clearing it. Then command processing will be resumed. 437 */ 438 if (np->s.settle_time_valid) { 439 if (time_before_eq(np->s.settle_time, thistime)) { 440 if (sym_verbose >= 2 ) 441 printk("%s: command processing resumed\n", 442 sym_name(np)); 443 np->s.settle_time_valid = 0; 444 } 445 return; 446 } 447 448 /* 449 * Nothing to do for now, but that may come. 450 */ 451 if (np->s.lasttime + 4*HZ < thistime) { 452 np->s.lasttime = thistime; 453 } 454 455 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS 456 /* 457 * Some way-broken PCI bridges may lead to 458 * completions being lost when the clearing 459 * of the INTFLY flag by the CPU occurs 460 * concurrently with the chip raising this flag. 461 * If this ever happen, lost completions will 462 * be reaped here. 463 */ 464 sym_wakeup_done(np); 465 #endif 466 } 467 468 469 /* 470 * PCI BUS error handler. 471 */ 472 void sym_log_bus_error(struct Scsi_Host *shost) 473 { 474 struct sym_data *sym_data = shost_priv(shost); 475 struct pci_dev *pdev = sym_data->pdev; 476 unsigned short pci_sts; 477 pci_read_config_word(pdev, PCI_STATUS, &pci_sts); 478 if (pci_sts & 0xf900) { 479 pci_write_config_word(pdev, PCI_STATUS, pci_sts); 480 shost_printk(KERN_WARNING, shost, 481 "PCI bus error: status = 0x%04x\n", pci_sts & 0xf900); 482 } 483 } 484 485 /* 486 * queuecommand method. Entered with the host adapter lock held and 487 * interrupts disabled. 488 */ 489 static int sym53c8xx_queue_command_lck(struct scsi_cmnd *cmd) 490 { 491 struct sym_hcb *np = SYM_SOFTC_PTR(cmd); 492 struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd); 493 int sts = 0; 494 495 memset(ucp, 0, sizeof(*ucp)); 496 497 /* 498 * Shorten our settle_time if needed for 499 * this command not to time out. 500 */ 501 if (np->s.settle_time_valid && scsi_cmd_to_rq(cmd)->timeout) { 502 unsigned long tlimit = jiffies + scsi_cmd_to_rq(cmd)->timeout; 503 tlimit -= SYM_CONF_TIMER_INTERVAL*2; 504 if (time_after(np->s.settle_time, tlimit)) { 505 np->s.settle_time = tlimit; 506 } 507 } 508 509 if (np->s.settle_time_valid) 510 return SCSI_MLQUEUE_HOST_BUSY; 511 512 sts = sym_queue_command(np, cmd); 513 if (sts) 514 return SCSI_MLQUEUE_HOST_BUSY; 515 return 0; 516 } 517 518 static DEF_SCSI_QCMD(sym53c8xx_queue_command) 519 520 /* 521 * Linux entry point of the interrupt handler. 522 */ 523 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id) 524 { 525 struct Scsi_Host *shost = dev_id; 526 struct sym_data *sym_data = shost_priv(shost); 527 irqreturn_t result; 528 529 /* Avoid spinloop trying to handle interrupts on frozen device */ 530 if (pci_channel_offline(sym_data->pdev)) 531 return IRQ_NONE; 532 533 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("["); 534 535 spin_lock(shost->host_lock); 536 result = sym_interrupt(shost); 537 spin_unlock(shost->host_lock); 538 539 if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n"); 540 541 return result; 542 } 543 544 /* 545 * Linux entry point of the timer handler 546 */ 547 static void sym53c8xx_timer(struct timer_list *t) 548 { 549 struct sym_hcb *np = from_timer(np, t, s.timer); 550 unsigned long flags; 551 552 spin_lock_irqsave(np->s.host->host_lock, flags); 553 sym_timer(np); 554 spin_unlock_irqrestore(np->s.host->host_lock, flags); 555 } 556 557 558 /* 559 * What the eh thread wants us to perform. 560 */ 561 #define SYM_EH_ABORT 0 562 #define SYM_EH_DEVICE_RESET 1 563 #define SYM_EH_BUS_RESET 2 564 #define SYM_EH_HOST_RESET 3 565 566 /* 567 * Generic method for our eh processing. 568 * The 'op' argument tells what we have to do. 569 */ 570 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd) 571 { 572 struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd); 573 struct Scsi_Host *shost = cmd->device->host; 574 struct sym_data *sym_data = shost_priv(shost); 575 struct pci_dev *pdev = sym_data->pdev; 576 struct sym_hcb *np = sym_data->ncb; 577 SYM_QUEHEAD *qp; 578 int cmd_queued = 0; 579 int sts = -1; 580 struct completion eh_done; 581 582 scmd_printk(KERN_WARNING, cmd, "%s operation started\n", opname); 583 584 /* We may be in an error condition because the PCI bus 585 * went down. In this case, we need to wait until the 586 * PCI bus is reset, the card is reset, and only then 587 * proceed with the scsi error recovery. There's no 588 * point in hurrying; take a leisurely wait. 589 */ 590 #define WAIT_FOR_PCI_RECOVERY 35 591 if (pci_channel_offline(pdev)) { 592 int finished_reset = 0; 593 init_completion(&eh_done); 594 spin_lock_irq(shost->host_lock); 595 /* Make sure we didn't race */ 596 if (pci_channel_offline(pdev)) { 597 BUG_ON(sym_data->io_reset); 598 sym_data->io_reset = &eh_done; 599 } else { 600 finished_reset = 1; 601 } 602 spin_unlock_irq(shost->host_lock); 603 if (!finished_reset) 604 finished_reset = wait_for_completion_timeout 605 (sym_data->io_reset, 606 WAIT_FOR_PCI_RECOVERY*HZ); 607 spin_lock_irq(shost->host_lock); 608 sym_data->io_reset = NULL; 609 spin_unlock_irq(shost->host_lock); 610 if (!finished_reset) 611 return SCSI_FAILED; 612 } 613 614 spin_lock_irq(shost->host_lock); 615 /* This one is queued in some place -> to wait for completion */ 616 FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) { 617 struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq); 618 if (cp->cmd == cmd) { 619 cmd_queued = 1; 620 break; 621 } 622 } 623 624 /* Try to proceed the operation we have been asked for */ 625 sts = -1; 626 switch(op) { 627 case SYM_EH_ABORT: 628 sts = sym_abort_scsiio(np, cmd, 1); 629 break; 630 case SYM_EH_DEVICE_RESET: 631 sts = sym_reset_scsi_target(np, cmd->device->id); 632 break; 633 case SYM_EH_BUS_RESET: 634 sym_reset_scsi_bus(np, 1); 635 sts = 0; 636 break; 637 case SYM_EH_HOST_RESET: 638 sym_reset_scsi_bus(np, 0); 639 sym_start_up(shost, 1); 640 sts = 0; 641 break; 642 default: 643 break; 644 } 645 646 /* On error, restore everything and cross fingers :) */ 647 if (sts) 648 cmd_queued = 0; 649 650 if (cmd_queued) { 651 init_completion(&eh_done); 652 ucmd->eh_done = &eh_done; 653 spin_unlock_irq(shost->host_lock); 654 if (!wait_for_completion_timeout(&eh_done, 5*HZ)) { 655 ucmd->eh_done = NULL; 656 sts = -2; 657 } 658 } else { 659 spin_unlock_irq(shost->host_lock); 660 } 661 662 dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname, 663 sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed"); 664 return sts ? SCSI_FAILED : SCSI_SUCCESS; 665 } 666 667 668 /* 669 * Error handlers called from the eh thread (one thread per HBA). 670 */ 671 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd) 672 { 673 return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd); 674 } 675 676 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd) 677 { 678 return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd); 679 } 680 681 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd) 682 { 683 return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd); 684 } 685 686 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd) 687 { 688 return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd); 689 } 690 691 /* 692 * Tune device queuing depth, according to various limits. 693 */ 694 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags) 695 { 696 struct sym_lcb *lp = sym_lp(tp, lun); 697 u_short oldtags; 698 699 if (!lp) 700 return; 701 702 oldtags = lp->s.reqtags; 703 704 if (reqtags > lp->s.scdev_depth) 705 reqtags = lp->s.scdev_depth; 706 707 lp->s.reqtags = reqtags; 708 709 if (reqtags != oldtags) { 710 dev_info(&tp->starget->dev, 711 "tagged command queuing %s, command queue depth %d.\n", 712 lp->s.reqtags ? "enabled" : "disabled", reqtags); 713 } 714 } 715 716 static int sym53c8xx_slave_alloc(struct scsi_device *sdev) 717 { 718 struct sym_hcb *np = sym_get_hcb(sdev->host); 719 struct sym_tcb *tp = &np->target[sdev->id]; 720 struct sym_lcb *lp; 721 unsigned long flags; 722 int error; 723 724 if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN) 725 return -ENXIO; 726 727 spin_lock_irqsave(np->s.host->host_lock, flags); 728 729 /* 730 * Fail the device init if the device is flagged NOSCAN at BOOT in 731 * the NVRAM. This may speed up boot and maintain coherency with 732 * BIOS device numbering. Clearing the flag allows the user to 733 * rescan skipped devices later. We also return an error for 734 * devices not flagged for SCAN LUNS in the NVRAM since some single 735 * lun devices behave badly when asked for a non zero LUN. 736 */ 737 738 if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) { 739 tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED; 740 starget_printk(KERN_INFO, sdev->sdev_target, 741 "Scan at boot disabled in NVRAM\n"); 742 error = -ENXIO; 743 goto out; 744 } 745 746 if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) { 747 if (sdev->lun != 0) { 748 error = -ENXIO; 749 goto out; 750 } 751 starget_printk(KERN_INFO, sdev->sdev_target, 752 "Multiple LUNs disabled in NVRAM\n"); 753 } 754 755 lp = sym_alloc_lcb(np, sdev->id, sdev->lun); 756 if (!lp) { 757 error = -ENOMEM; 758 goto out; 759 } 760 if (tp->nlcb == 1) 761 tp->starget = sdev->sdev_target; 762 763 spi_min_period(tp->starget) = tp->usr_period; 764 spi_max_width(tp->starget) = tp->usr_width; 765 766 error = 0; 767 out: 768 spin_unlock_irqrestore(np->s.host->host_lock, flags); 769 770 return error; 771 } 772 773 /* 774 * Linux entry point for device queue sizing. 775 */ 776 static int sym53c8xx_slave_configure(struct scsi_device *sdev) 777 { 778 struct sym_hcb *np = sym_get_hcb(sdev->host); 779 struct sym_tcb *tp = &np->target[sdev->id]; 780 struct sym_lcb *lp = sym_lp(tp, sdev->lun); 781 int reqtags, depth_to_use; 782 783 /* 784 * Get user flags. 785 */ 786 lp->curr_flags = lp->user_flags; 787 788 /* 789 * Select queue depth from driver setup. 790 * Do not use more than configured by user. 791 * Use at least 1. 792 * Do not use more than our maximum. 793 */ 794 reqtags = sym_driver_setup.max_tag; 795 if (reqtags > tp->usrtags) 796 reqtags = tp->usrtags; 797 if (!sdev->tagged_supported) 798 reqtags = 0; 799 if (reqtags > SYM_CONF_MAX_TAG) 800 reqtags = SYM_CONF_MAX_TAG; 801 depth_to_use = reqtags ? reqtags : 1; 802 scsi_change_queue_depth(sdev, depth_to_use); 803 lp->s.scdev_depth = depth_to_use; 804 sym_tune_dev_queuing(tp, sdev->lun, reqtags); 805 806 if (!spi_initial_dv(sdev->sdev_target)) 807 spi_dv_device(sdev); 808 809 return 0; 810 } 811 812 static void sym53c8xx_slave_destroy(struct scsi_device *sdev) 813 { 814 struct sym_hcb *np = sym_get_hcb(sdev->host); 815 struct sym_tcb *tp = &np->target[sdev->id]; 816 struct sym_lcb *lp = sym_lp(tp, sdev->lun); 817 unsigned long flags; 818 819 /* if slave_alloc returned before allocating a sym_lcb, return */ 820 if (!lp) 821 return; 822 823 spin_lock_irqsave(np->s.host->host_lock, flags); 824 825 if (lp->busy_itlq || lp->busy_itl) { 826 /* 827 * This really shouldn't happen, but we can't return an error 828 * so let's try to stop all on-going I/O. 829 */ 830 starget_printk(KERN_WARNING, tp->starget, 831 "Removing busy LCB (%d)\n", (u8)sdev->lun); 832 sym_reset_scsi_bus(np, 1); 833 } 834 835 if (sym_free_lcb(np, sdev->id, sdev->lun) == 0) { 836 /* 837 * It was the last unit for this target. 838 */ 839 tp->head.sval = 0; 840 tp->head.wval = np->rv_scntl3; 841 tp->head.uval = 0; 842 tp->tgoal.check_nego = 1; 843 tp->starget = NULL; 844 } 845 846 spin_unlock_irqrestore(np->s.host->host_lock, flags); 847 } 848 849 /* 850 * Linux entry point for info() function 851 */ 852 static const char *sym53c8xx_info (struct Scsi_Host *host) 853 { 854 return SYM_DRIVER_NAME; 855 } 856 857 858 #ifdef SYM_LINUX_PROC_INFO_SUPPORT 859 /* 860 * Proc file system stuff 861 * 862 * A read operation returns adapter information. 863 * A write operation is a control command. 864 * The string is parsed in the driver code and the command is passed 865 * to the sym_usercmd() function. 866 */ 867 868 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT 869 870 struct sym_usrcmd { 871 u_long target; 872 u_long lun; 873 u_long data; 874 u_long cmd; 875 }; 876 877 #define UC_SETSYNC 10 878 #define UC_SETTAGS 11 879 #define UC_SETDEBUG 12 880 #define UC_SETWIDE 14 881 #define UC_SETFLAG 15 882 #define UC_SETVERBOSE 17 883 #define UC_RESETDEV 18 884 #define UC_CLEARDEV 19 885 886 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc) 887 { 888 struct sym_tcb *tp; 889 int t, l; 890 891 switch (uc->cmd) { 892 case 0: return; 893 894 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 895 case UC_SETDEBUG: 896 sym_debug_flags = uc->data; 897 break; 898 #endif 899 case UC_SETVERBOSE: 900 np->verbose = uc->data; 901 break; 902 default: 903 /* 904 * We assume that other commands apply to targets. 905 * This should always be the case and avoid the below 906 * 4 lines to be repeated 6 times. 907 */ 908 for (t = 0; t < SYM_CONF_MAX_TARGET; t++) { 909 if (!((uc->target >> t) & 1)) 910 continue; 911 tp = &np->target[t]; 912 if (!tp->nlcb) 913 continue; 914 915 switch (uc->cmd) { 916 917 case UC_SETSYNC: 918 if (!uc->data || uc->data >= 255) { 919 tp->tgoal.iu = tp->tgoal.dt = 920 tp->tgoal.qas = 0; 921 tp->tgoal.offset = 0; 922 } else if (uc->data <= 9 && np->minsync_dt) { 923 if (uc->data < np->minsync_dt) 924 uc->data = np->minsync_dt; 925 tp->tgoal.iu = tp->tgoal.dt = 926 tp->tgoal.qas = 1; 927 tp->tgoal.width = 1; 928 tp->tgoal.period = uc->data; 929 tp->tgoal.offset = np->maxoffs_dt; 930 } else { 931 if (uc->data < np->minsync) 932 uc->data = np->minsync; 933 tp->tgoal.iu = tp->tgoal.dt = 934 tp->tgoal.qas = 0; 935 tp->tgoal.period = uc->data; 936 tp->tgoal.offset = np->maxoffs; 937 } 938 tp->tgoal.check_nego = 1; 939 break; 940 case UC_SETWIDE: 941 tp->tgoal.width = uc->data ? 1 : 0; 942 tp->tgoal.check_nego = 1; 943 break; 944 case UC_SETTAGS: 945 for (l = 0; l < SYM_CONF_MAX_LUN; l++) 946 sym_tune_dev_queuing(tp, l, uc->data); 947 break; 948 case UC_RESETDEV: 949 tp->to_reset = 1; 950 np->istat_sem = SEM; 951 OUTB(np, nc_istat, SIGP|SEM); 952 break; 953 case UC_CLEARDEV: 954 for (l = 0; l < SYM_CONF_MAX_LUN; l++) { 955 struct sym_lcb *lp = sym_lp(tp, l); 956 if (lp) lp->to_clear = 1; 957 } 958 np->istat_sem = SEM; 959 OUTB(np, nc_istat, SIGP|SEM); 960 break; 961 case UC_SETFLAG: 962 tp->usrflags = uc->data; 963 break; 964 } 965 } 966 break; 967 } 968 } 969 970 static int sym_skip_spaces(char *ptr, int len) 971 { 972 int cnt, c; 973 974 for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--); 975 976 return (len - cnt); 977 } 978 979 static int get_int_arg(char *ptr, int len, u_long *pv) 980 { 981 char *end; 982 983 *pv = simple_strtoul(ptr, &end, 10); 984 return (end - ptr); 985 } 986 987 static int is_keyword(char *ptr, int len, char *verb) 988 { 989 int verb_len = strlen(verb); 990 991 if (len >= verb_len && !memcmp(verb, ptr, verb_len)) 992 return verb_len; 993 else 994 return 0; 995 } 996 997 #define SKIP_SPACES(ptr, len) \ 998 if ((arg_len = sym_skip_spaces(ptr, len)) < 1) \ 999 return -EINVAL; \ 1000 ptr += arg_len; len -= arg_len; 1001 1002 #define GET_INT_ARG(ptr, len, v) \ 1003 if (!(arg_len = get_int_arg(ptr, len, &(v)))) \ 1004 return -EINVAL; \ 1005 ptr += arg_len; len -= arg_len; 1006 1007 1008 /* 1009 * Parse a control command 1010 */ 1011 1012 static int sym_user_command(struct Scsi_Host *shost, char *buffer, int length) 1013 { 1014 struct sym_hcb *np = sym_get_hcb(shost); 1015 char *ptr = buffer; 1016 int len = length; 1017 struct sym_usrcmd cmd, *uc = &cmd; 1018 int arg_len; 1019 u_long target; 1020 1021 memset(uc, 0, sizeof(*uc)); 1022 1023 if (len > 0 && ptr[len-1] == '\n') 1024 --len; 1025 1026 if ((arg_len = is_keyword(ptr, len, "setsync")) != 0) 1027 uc->cmd = UC_SETSYNC; 1028 else if ((arg_len = is_keyword(ptr, len, "settags")) != 0) 1029 uc->cmd = UC_SETTAGS; 1030 else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0) 1031 uc->cmd = UC_SETVERBOSE; 1032 else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0) 1033 uc->cmd = UC_SETWIDE; 1034 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 1035 else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0) 1036 uc->cmd = UC_SETDEBUG; 1037 #endif 1038 else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0) 1039 uc->cmd = UC_SETFLAG; 1040 else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0) 1041 uc->cmd = UC_RESETDEV; 1042 else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0) 1043 uc->cmd = UC_CLEARDEV; 1044 else 1045 arg_len = 0; 1046 1047 #ifdef DEBUG_PROC_INFO 1048 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd); 1049 #endif 1050 1051 if (!arg_len) 1052 return -EINVAL; 1053 ptr += arg_len; len -= arg_len; 1054 1055 switch(uc->cmd) { 1056 case UC_SETSYNC: 1057 case UC_SETTAGS: 1058 case UC_SETWIDE: 1059 case UC_SETFLAG: 1060 case UC_RESETDEV: 1061 case UC_CLEARDEV: 1062 SKIP_SPACES(ptr, len); 1063 if ((arg_len = is_keyword(ptr, len, "all")) != 0) { 1064 ptr += arg_len; len -= arg_len; 1065 uc->target = ~0; 1066 } else { 1067 GET_INT_ARG(ptr, len, target); 1068 uc->target = (1<<target); 1069 #ifdef DEBUG_PROC_INFO 1070 printk("sym_user_command: target=%ld\n", target); 1071 #endif 1072 } 1073 break; 1074 } 1075 1076 switch(uc->cmd) { 1077 case UC_SETVERBOSE: 1078 case UC_SETSYNC: 1079 case UC_SETTAGS: 1080 case UC_SETWIDE: 1081 SKIP_SPACES(ptr, len); 1082 GET_INT_ARG(ptr, len, uc->data); 1083 #ifdef DEBUG_PROC_INFO 1084 printk("sym_user_command: data=%ld\n", uc->data); 1085 #endif 1086 break; 1087 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT 1088 case UC_SETDEBUG: 1089 while (len > 0) { 1090 SKIP_SPACES(ptr, len); 1091 if ((arg_len = is_keyword(ptr, len, "alloc"))) 1092 uc->data |= DEBUG_ALLOC; 1093 else if ((arg_len = is_keyword(ptr, len, "phase"))) 1094 uc->data |= DEBUG_PHASE; 1095 else if ((arg_len = is_keyword(ptr, len, "queue"))) 1096 uc->data |= DEBUG_QUEUE; 1097 else if ((arg_len = is_keyword(ptr, len, "result"))) 1098 uc->data |= DEBUG_RESULT; 1099 else if ((arg_len = is_keyword(ptr, len, "scatter"))) 1100 uc->data |= DEBUG_SCATTER; 1101 else if ((arg_len = is_keyword(ptr, len, "script"))) 1102 uc->data |= DEBUG_SCRIPT; 1103 else if ((arg_len = is_keyword(ptr, len, "tiny"))) 1104 uc->data |= DEBUG_TINY; 1105 else if ((arg_len = is_keyword(ptr, len, "timing"))) 1106 uc->data |= DEBUG_TIMING; 1107 else if ((arg_len = is_keyword(ptr, len, "nego"))) 1108 uc->data |= DEBUG_NEGO; 1109 else if ((arg_len = is_keyword(ptr, len, "tags"))) 1110 uc->data |= DEBUG_TAGS; 1111 else if ((arg_len = is_keyword(ptr, len, "pointer"))) 1112 uc->data |= DEBUG_POINTER; 1113 else 1114 return -EINVAL; 1115 ptr += arg_len; len -= arg_len; 1116 } 1117 #ifdef DEBUG_PROC_INFO 1118 printk("sym_user_command: data=%ld\n", uc->data); 1119 #endif 1120 break; 1121 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */ 1122 case UC_SETFLAG: 1123 while (len > 0) { 1124 SKIP_SPACES(ptr, len); 1125 if ((arg_len = is_keyword(ptr, len, "no_disc"))) 1126 uc->data &= ~SYM_DISC_ENABLED; 1127 else 1128 return -EINVAL; 1129 ptr += arg_len; len -= arg_len; 1130 } 1131 break; 1132 default: 1133 break; 1134 } 1135 1136 if (len) 1137 return -EINVAL; 1138 else { 1139 unsigned long flags; 1140 1141 spin_lock_irqsave(shost->host_lock, flags); 1142 sym_exec_user_command(np, uc); 1143 spin_unlock_irqrestore(shost->host_lock, flags); 1144 } 1145 return length; 1146 } 1147 1148 #endif /* SYM_LINUX_USER_COMMAND_SUPPORT */ 1149 1150 1151 /* 1152 * Copy formatted information into the input buffer. 1153 */ 1154 static int sym_show_info(struct seq_file *m, struct Scsi_Host *shost) 1155 { 1156 #ifdef SYM_LINUX_USER_INFO_SUPPORT 1157 struct sym_data *sym_data = shost_priv(shost); 1158 struct pci_dev *pdev = sym_data->pdev; 1159 struct sym_hcb *np = sym_data->ncb; 1160 1161 seq_printf(m, "Chip " NAME53C "%s, device id 0x%x, " 1162 "revision id 0x%x\n", np->s.chip_name, 1163 pdev->device, pdev->revision); 1164 seq_printf(m, "At PCI address %s, IRQ %u\n", 1165 pci_name(pdev), pdev->irq); 1166 seq_printf(m, "Min. period factor %d, %s SCSI BUS%s\n", 1167 (int) (np->minsync_dt ? np->minsync_dt : np->minsync), 1168 np->maxwide ? "Wide" : "Narrow", 1169 np->minsync_dt ? ", DT capable" : ""); 1170 1171 seq_printf(m, "Max. started commands %d, " 1172 "max. commands per LUN %d\n", 1173 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG); 1174 1175 return 0; 1176 #else 1177 return -EINVAL; 1178 #endif /* SYM_LINUX_USER_INFO_SUPPORT */ 1179 } 1180 1181 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */ 1182 1183 /* 1184 * Free resources claimed by sym_iomap_device(). Note that 1185 * sym_free_resources() should be used instead of this function after calling 1186 * sym_attach(). 1187 */ 1188 static void sym_iounmap_device(struct sym_device *device) 1189 { 1190 if (device->s.ioaddr) 1191 pci_iounmap(device->pdev, device->s.ioaddr); 1192 if (device->s.ramaddr) 1193 pci_iounmap(device->pdev, device->s.ramaddr); 1194 } 1195 1196 /* 1197 * Free controller resources. 1198 */ 1199 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev, 1200 int do_free_irq) 1201 { 1202 /* 1203 * Free O/S specific resources. 1204 */ 1205 if (do_free_irq) 1206 free_irq(pdev->irq, np->s.host); 1207 if (np->s.ioaddr) 1208 pci_iounmap(pdev, np->s.ioaddr); 1209 if (np->s.ramaddr) 1210 pci_iounmap(pdev, np->s.ramaddr); 1211 /* 1212 * Free O/S independent resources. 1213 */ 1214 sym_hcb_free(np); 1215 1216 sym_mfree_dma(np, sizeof(*np), "HCB"); 1217 } 1218 1219 /* 1220 * Host attach and initialisations. 1221 * 1222 * Allocate host data and ncb structure. 1223 * Remap MMIO region. 1224 * Do chip initialization. 1225 * If all is OK, install interrupt handling and 1226 * start the timer daemon. 1227 */ 1228 static struct Scsi_Host *sym_attach(struct scsi_host_template *tpnt, int unit, 1229 struct sym_device *dev) 1230 { 1231 struct sym_data *sym_data; 1232 struct sym_hcb *np = NULL; 1233 struct Scsi_Host *shost = NULL; 1234 struct pci_dev *pdev = dev->pdev; 1235 unsigned long flags; 1236 struct sym_fw *fw; 1237 int do_free_irq = 0; 1238 1239 printk(KERN_INFO "sym%d: <%s> rev 0x%x at pci %s irq %u\n", 1240 unit, dev->chip.name, pdev->revision, pci_name(pdev), 1241 pdev->irq); 1242 1243 /* 1244 * Get the firmware for this chip. 1245 */ 1246 fw = sym_find_firmware(&dev->chip); 1247 if (!fw) 1248 goto attach_failed; 1249 1250 shost = scsi_host_alloc(tpnt, sizeof(*sym_data)); 1251 if (!shost) 1252 goto attach_failed; 1253 sym_data = shost_priv(shost); 1254 1255 /* 1256 * Allocate immediately the host control block, 1257 * since we are only expecting to succeed. :) 1258 * We keep track in the HCB of all the resources that 1259 * are to be released on error. 1260 */ 1261 np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB"); 1262 if (!np) 1263 goto attach_failed; 1264 np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */ 1265 sym_data->ncb = np; 1266 sym_data->pdev = pdev; 1267 np->s.host = shost; 1268 1269 pci_set_drvdata(pdev, shost); 1270 1271 /* 1272 * Copy some useful infos to the HCB. 1273 */ 1274 np->hcb_ba = vtobus(np); 1275 np->verbose = sym_driver_setup.verbose; 1276 np->s.unit = unit; 1277 np->features = dev->chip.features; 1278 np->clock_divn = dev->chip.nr_divisor; 1279 np->maxoffs = dev->chip.offset_max; 1280 np->maxburst = dev->chip.burst_max; 1281 np->myaddr = dev->host_id; 1282 np->mmio_ba = (u32)dev->mmio_base; 1283 np->ram_ba = (u32)dev->ram_base; 1284 np->s.ioaddr = dev->s.ioaddr; 1285 np->s.ramaddr = dev->s.ramaddr; 1286 1287 /* 1288 * Edit its name. 1289 */ 1290 strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name)); 1291 sprintf(np->s.inst_name, "sym%d", np->s.unit); 1292 1293 if ((SYM_CONF_DMA_ADDRESSING_MODE > 0) && (np->features & FE_DAC) && 1294 !dma_set_mask(&pdev->dev, DMA_DAC_MASK)) { 1295 set_dac(np); 1296 } else if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { 1297 printf_warning("%s: No suitable DMA available\n", sym_name(np)); 1298 goto attach_failed; 1299 } 1300 1301 if (sym_hcb_attach(shost, fw, dev->nvram)) 1302 goto attach_failed; 1303 1304 /* 1305 * Install the interrupt handler. 1306 * If we synchonize the C code with SCRIPTS on interrupt, 1307 * we do not want to share the INTR line at all. 1308 */ 1309 if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX, 1310 shost)) { 1311 printf_err("%s: request irq %u failure\n", 1312 sym_name(np), pdev->irq); 1313 goto attach_failed; 1314 } 1315 do_free_irq = 1; 1316 1317 /* 1318 * After SCSI devices have been opened, we cannot 1319 * reset the bus safely, so we do it here. 1320 */ 1321 spin_lock_irqsave(shost->host_lock, flags); 1322 if (sym_reset_scsi_bus(np, 0)) 1323 goto reset_failed; 1324 1325 /* 1326 * Start the SCRIPTS. 1327 */ 1328 sym_start_up(shost, 1); 1329 1330 /* 1331 * Start the timer daemon 1332 */ 1333 timer_setup(&np->s.timer, sym53c8xx_timer, 0); 1334 np->s.lasttime=0; 1335 sym_timer (np); 1336 1337 /* 1338 * Fill Linux host instance structure 1339 * and return success. 1340 */ 1341 shost->max_channel = 0; 1342 shost->this_id = np->myaddr; 1343 shost->max_id = np->maxwide ? 16 : 8; 1344 shost->max_lun = SYM_CONF_MAX_LUN; 1345 shost->unique_id = pci_resource_start(pdev, 0); 1346 shost->cmd_per_lun = SYM_CONF_MAX_TAG; 1347 shost->can_queue = (SYM_CONF_MAX_START-2); 1348 shost->sg_tablesize = SYM_CONF_MAX_SG; 1349 shost->max_cmd_len = 16; 1350 BUG_ON(sym2_transport_template == NULL); 1351 shost->transportt = sym2_transport_template; 1352 1353 /* 53c896 rev 1 errata: DMA may not cross 16MB boundary */ 1354 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 2) 1355 shost->dma_boundary = 0xFFFFFF; 1356 1357 spin_unlock_irqrestore(shost->host_lock, flags); 1358 1359 return shost; 1360 1361 reset_failed: 1362 printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, " 1363 "TERMINATION, DEVICE POWER etc.!\n", sym_name(np)); 1364 spin_unlock_irqrestore(shost->host_lock, flags); 1365 attach_failed: 1366 printf_info("sym%d: giving up ...\n", unit); 1367 if (np) 1368 sym_free_resources(np, pdev, do_free_irq); 1369 else 1370 sym_iounmap_device(dev); 1371 if (shost) 1372 scsi_host_put(shost); 1373 1374 return NULL; 1375 } 1376 1377 1378 /* 1379 * Detect and try to read SYMBIOS and TEKRAM NVRAM. 1380 */ 1381 #if SYM_CONF_NVRAM_SUPPORT 1382 static void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) 1383 { 1384 devp->nvram = nvp; 1385 nvp->type = 0; 1386 1387 sym_read_nvram(devp, nvp); 1388 } 1389 #else 1390 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp) 1391 { 1392 } 1393 #endif /* SYM_CONF_NVRAM_SUPPORT */ 1394 1395 static int sym_check_supported(struct sym_device *device) 1396 { 1397 struct sym_chip *chip; 1398 struct pci_dev *pdev = device->pdev; 1399 unsigned long io_port = pci_resource_start(pdev, 0); 1400 int i; 1401 1402 /* 1403 * If user excluded this chip, do not initialize it. 1404 * I hate this code so much. Must kill it. 1405 */ 1406 if (io_port) { 1407 for (i = 0 ; i < 8 ; i++) { 1408 if (sym_driver_setup.excludes[i] == io_port) 1409 return -ENODEV; 1410 } 1411 } 1412 1413 /* 1414 * Check if the chip is supported. Then copy the chip description 1415 * to our device structure so we can make it match the actual device 1416 * and options. 1417 */ 1418 chip = sym_lookup_chip_table(pdev->device, pdev->revision); 1419 if (!chip) { 1420 dev_info(&pdev->dev, "device not supported\n"); 1421 return -ENODEV; 1422 } 1423 memcpy(&device->chip, chip, sizeof(device->chip)); 1424 1425 return 0; 1426 } 1427 1428 /* 1429 * Ignore Symbios chips controlled by various RAID controllers. 1430 * These controllers set value 0x52414944 at RAM end - 16. 1431 */ 1432 static int sym_check_raid(struct sym_device *device) 1433 { 1434 unsigned int ram_size, ram_val; 1435 1436 if (!device->s.ramaddr) 1437 return 0; 1438 1439 if (device->chip.features & FE_RAM8K) 1440 ram_size = 8192; 1441 else 1442 ram_size = 4096; 1443 1444 ram_val = readl(device->s.ramaddr + ram_size - 16); 1445 if (ram_val != 0x52414944) 1446 return 0; 1447 1448 dev_info(&device->pdev->dev, 1449 "not initializing, driven by RAID controller.\n"); 1450 return -ENODEV; 1451 } 1452 1453 static int sym_set_workarounds(struct sym_device *device) 1454 { 1455 struct sym_chip *chip = &device->chip; 1456 struct pci_dev *pdev = device->pdev; 1457 u_short status_reg; 1458 1459 /* 1460 * (ITEM 12 of a DEL about the 896 I haven't yet). 1461 * We must ensure the chip will use WRITE AND INVALIDATE. 1462 * The revision number limit is for now arbitrary. 1463 */ 1464 if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 0x4) { 1465 chip->features |= (FE_WRIE | FE_CLSE); 1466 } 1467 1468 /* If the chip can do Memory Write Invalidate, enable it */ 1469 if (chip->features & FE_WRIE) { 1470 if (pci_set_mwi(pdev)) 1471 return -ENODEV; 1472 } 1473 1474 /* 1475 * Work around for errant bit in 895A. The 66Mhz 1476 * capable bit is set erroneously. Clear this bit. 1477 * (Item 1 DEL 533) 1478 * 1479 * Make sure Config space and Features agree. 1480 * 1481 * Recall: writes are not normal to status register - 1482 * write a 1 to clear and a 0 to leave unchanged. 1483 * Can only reset bits. 1484 */ 1485 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1486 if (chip->features & FE_66MHZ) { 1487 if (!(status_reg & PCI_STATUS_66MHZ)) 1488 chip->features &= ~FE_66MHZ; 1489 } else { 1490 if (status_reg & PCI_STATUS_66MHZ) { 1491 status_reg = PCI_STATUS_66MHZ; 1492 pci_write_config_word(pdev, PCI_STATUS, status_reg); 1493 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1494 } 1495 } 1496 1497 return 0; 1498 } 1499 1500 /* 1501 * Map HBA registers and on-chip SRAM (if present). 1502 */ 1503 static int sym_iomap_device(struct sym_device *device) 1504 { 1505 struct pci_dev *pdev = device->pdev; 1506 struct pci_bus_region bus_addr; 1507 int i = 2; 1508 1509 pcibios_resource_to_bus(pdev->bus, &bus_addr, &pdev->resource[1]); 1510 device->mmio_base = bus_addr.start; 1511 1512 if (device->chip.features & FE_RAM) { 1513 /* 1514 * If the BAR is 64-bit, resource 2 will be occupied by the 1515 * upper 32 bits 1516 */ 1517 if (!pdev->resource[i].flags) 1518 i++; 1519 pcibios_resource_to_bus(pdev->bus, &bus_addr, 1520 &pdev->resource[i]); 1521 device->ram_base = bus_addr.start; 1522 } 1523 1524 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO 1525 if (device->mmio_base) 1526 device->s.ioaddr = pci_iomap(pdev, 1, 1527 pci_resource_len(pdev, 1)); 1528 #endif 1529 if (!device->s.ioaddr) 1530 device->s.ioaddr = pci_iomap(pdev, 0, 1531 pci_resource_len(pdev, 0)); 1532 if (!device->s.ioaddr) { 1533 dev_err(&pdev->dev, "could not map registers; giving up.\n"); 1534 return -EIO; 1535 } 1536 if (device->ram_base) { 1537 device->s.ramaddr = pci_iomap(pdev, i, 1538 pci_resource_len(pdev, i)); 1539 if (!device->s.ramaddr) { 1540 dev_warn(&pdev->dev, 1541 "could not map SRAM; continuing anyway.\n"); 1542 device->ram_base = 0; 1543 } 1544 } 1545 1546 return 0; 1547 } 1548 1549 /* 1550 * The NCR PQS and PDS cards are constructed as a DEC bridge 1551 * behind which sits a proprietary NCR memory controller and 1552 * either four or two 53c875s as separate devices. We can tell 1553 * if an 875 is part of a PQS/PDS or not since if it is, it will 1554 * be on the same bus as the memory controller. In its usual 1555 * mode of operation, the 875s are slaved to the memory 1556 * controller for all transfers. To operate with the Linux 1557 * driver, the memory controller is disabled and the 875s 1558 * freed to function independently. The only wrinkle is that 1559 * the preset SCSI ID (which may be zero) must be read in from 1560 * a special configuration space register of the 875. 1561 */ 1562 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev) 1563 { 1564 int slot; 1565 u8 tmp; 1566 1567 for (slot = 0; slot < 256; slot++) { 1568 struct pci_dev *memc = pci_get_slot(pdev->bus, slot); 1569 1570 if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) { 1571 pci_dev_put(memc); 1572 continue; 1573 } 1574 1575 /* bit 1: allow individual 875 configuration */ 1576 pci_read_config_byte(memc, 0x44, &tmp); 1577 if ((tmp & 0x2) == 0) { 1578 tmp |= 0x2; 1579 pci_write_config_byte(memc, 0x44, tmp); 1580 } 1581 1582 /* bit 2: drive individual 875 interrupts to the bus */ 1583 pci_read_config_byte(memc, 0x45, &tmp); 1584 if ((tmp & 0x4) == 0) { 1585 tmp |= 0x4; 1586 pci_write_config_byte(memc, 0x45, tmp); 1587 } 1588 1589 pci_dev_put(memc); 1590 break; 1591 } 1592 1593 pci_read_config_byte(pdev, 0x84, &tmp); 1594 sym_dev->host_id = tmp; 1595 } 1596 1597 /* 1598 * Called before unloading the module. 1599 * Detach the host. 1600 * We have to free resources and halt the NCR chip. 1601 */ 1602 static int sym_detach(struct Scsi_Host *shost, struct pci_dev *pdev) 1603 { 1604 struct sym_hcb *np = sym_get_hcb(shost); 1605 printk("%s: detaching ...\n", sym_name(np)); 1606 1607 del_timer_sync(&np->s.timer); 1608 1609 /* 1610 * Reset NCR chip. 1611 * We should use sym_soft_reset(), but we don't want to do 1612 * so, since we may not be safe if interrupts occur. 1613 */ 1614 printk("%s: resetting chip\n", sym_name(np)); 1615 OUTB(np, nc_istat, SRST); 1616 INB(np, nc_mbox1); 1617 udelay(10); 1618 OUTB(np, nc_istat, 0); 1619 1620 sym_free_resources(np, pdev, 1); 1621 scsi_host_put(shost); 1622 1623 return 1; 1624 } 1625 1626 /* 1627 * Driver host template. 1628 */ 1629 static struct scsi_host_template sym2_template = { 1630 .module = THIS_MODULE, 1631 .name = "sym53c8xx", 1632 .info = sym53c8xx_info, 1633 .queuecommand = sym53c8xx_queue_command, 1634 .slave_alloc = sym53c8xx_slave_alloc, 1635 .slave_configure = sym53c8xx_slave_configure, 1636 .slave_destroy = sym53c8xx_slave_destroy, 1637 .eh_abort_handler = sym53c8xx_eh_abort_handler, 1638 .eh_device_reset_handler = sym53c8xx_eh_device_reset_handler, 1639 .eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler, 1640 .eh_host_reset_handler = sym53c8xx_eh_host_reset_handler, 1641 .this_id = 7, 1642 .max_sectors = 0xFFFF, 1643 #ifdef SYM_LINUX_PROC_INFO_SUPPORT 1644 .show_info = sym_show_info, 1645 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT 1646 .write_info = sym_user_command, 1647 #endif 1648 .proc_name = NAME53C8XX, 1649 #endif 1650 }; 1651 1652 static int attach_count; 1653 1654 static int sym2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 1655 { 1656 struct sym_device sym_dev; 1657 struct sym_nvram nvram; 1658 struct Scsi_Host *shost; 1659 int do_iounmap = 0; 1660 int do_disable_device = 1; 1661 1662 memset(&sym_dev, 0, sizeof(sym_dev)); 1663 memset(&nvram, 0, sizeof(nvram)); 1664 sym_dev.pdev = pdev; 1665 sym_dev.host_id = SYM_SETUP_HOST_ID; 1666 1667 if (pci_enable_device(pdev)) 1668 goto leave; 1669 1670 pci_set_master(pdev); 1671 1672 if (pci_request_regions(pdev, NAME53C8XX)) 1673 goto disable; 1674 1675 if (sym_check_supported(&sym_dev)) 1676 goto free; 1677 1678 if (sym_iomap_device(&sym_dev)) 1679 goto free; 1680 do_iounmap = 1; 1681 1682 if (sym_check_raid(&sym_dev)) { 1683 do_disable_device = 0; /* Don't disable the device */ 1684 goto free; 1685 } 1686 1687 if (sym_set_workarounds(&sym_dev)) 1688 goto free; 1689 1690 sym_config_pqs(pdev, &sym_dev); 1691 1692 sym_get_nvram(&sym_dev, &nvram); 1693 1694 do_iounmap = 0; /* Don't sym_iounmap_device() after sym_attach(). */ 1695 shost = sym_attach(&sym2_template, attach_count, &sym_dev); 1696 if (!shost) 1697 goto free; 1698 1699 if (scsi_add_host(shost, &pdev->dev)) 1700 goto detach; 1701 scsi_scan_host(shost); 1702 1703 attach_count++; 1704 1705 return 0; 1706 1707 detach: 1708 sym_detach(pci_get_drvdata(pdev), pdev); 1709 free: 1710 if (do_iounmap) 1711 sym_iounmap_device(&sym_dev); 1712 pci_release_regions(pdev); 1713 disable: 1714 if (do_disable_device) 1715 pci_disable_device(pdev); 1716 leave: 1717 return -ENODEV; 1718 } 1719 1720 static void sym2_remove(struct pci_dev *pdev) 1721 { 1722 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1723 1724 scsi_remove_host(shost); 1725 sym_detach(shost, pdev); 1726 pci_release_regions(pdev); 1727 pci_disable_device(pdev); 1728 1729 attach_count--; 1730 } 1731 1732 /** 1733 * sym2_io_error_detected() - called when PCI error is detected 1734 * @pdev: pointer to PCI device 1735 * @state: current state of the PCI slot 1736 */ 1737 static pci_ers_result_t sym2_io_error_detected(struct pci_dev *pdev, 1738 pci_channel_state_t state) 1739 { 1740 /* If slot is permanently frozen, turn everything off */ 1741 if (state == pci_channel_io_perm_failure) { 1742 sym2_remove(pdev); 1743 return PCI_ERS_RESULT_DISCONNECT; 1744 } 1745 1746 disable_irq(pdev->irq); 1747 pci_disable_device(pdev); 1748 1749 /* Request that MMIO be enabled, so register dump can be taken. */ 1750 return PCI_ERS_RESULT_CAN_RECOVER; 1751 } 1752 1753 /** 1754 * sym2_io_slot_dump - Enable MMIO and dump debug registers 1755 * @pdev: pointer to PCI device 1756 */ 1757 static pci_ers_result_t sym2_io_slot_dump(struct pci_dev *pdev) 1758 { 1759 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1760 1761 sym_dump_registers(shost); 1762 1763 /* Request a slot reset. */ 1764 return PCI_ERS_RESULT_NEED_RESET; 1765 } 1766 1767 /** 1768 * sym2_reset_workarounds - hardware-specific work-arounds 1769 * @pdev: pointer to PCI device 1770 * 1771 * This routine is similar to sym_set_workarounds(), except 1772 * that, at this point, we already know that the device was 1773 * successfully initialized at least once before, and so most 1774 * of the steps taken there are un-needed here. 1775 */ 1776 static void sym2_reset_workarounds(struct pci_dev *pdev) 1777 { 1778 u_short status_reg; 1779 struct sym_chip *chip; 1780 1781 chip = sym_lookup_chip_table(pdev->device, pdev->revision); 1782 1783 /* Work around for errant bit in 895A, in a fashion 1784 * similar to what is done in sym_set_workarounds(). 1785 */ 1786 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1787 if (!(chip->features & FE_66MHZ) && (status_reg & PCI_STATUS_66MHZ)) { 1788 status_reg = PCI_STATUS_66MHZ; 1789 pci_write_config_word(pdev, PCI_STATUS, status_reg); 1790 pci_read_config_word(pdev, PCI_STATUS, &status_reg); 1791 } 1792 } 1793 1794 /** 1795 * sym2_io_slot_reset() - called when the pci bus has been reset. 1796 * @pdev: pointer to PCI device 1797 * 1798 * Restart the card from scratch. 1799 */ 1800 static pci_ers_result_t sym2_io_slot_reset(struct pci_dev *pdev) 1801 { 1802 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1803 struct sym_hcb *np = sym_get_hcb(shost); 1804 1805 printk(KERN_INFO "%s: recovering from a PCI slot reset\n", 1806 sym_name(np)); 1807 1808 if (pci_enable_device(pdev)) { 1809 printk(KERN_ERR "%s: Unable to enable after PCI reset\n", 1810 sym_name(np)); 1811 return PCI_ERS_RESULT_DISCONNECT; 1812 } 1813 1814 pci_set_master(pdev); 1815 enable_irq(pdev->irq); 1816 1817 /* If the chip can do Memory Write Invalidate, enable it */ 1818 if (np->features & FE_WRIE) { 1819 if (pci_set_mwi(pdev)) 1820 return PCI_ERS_RESULT_DISCONNECT; 1821 } 1822 1823 /* Perform work-arounds, analogous to sym_set_workarounds() */ 1824 sym2_reset_workarounds(pdev); 1825 1826 /* Perform host reset only on one instance of the card */ 1827 if (PCI_FUNC(pdev->devfn) == 0) { 1828 if (sym_reset_scsi_bus(np, 0)) { 1829 printk(KERN_ERR "%s: Unable to reset scsi host\n", 1830 sym_name(np)); 1831 return PCI_ERS_RESULT_DISCONNECT; 1832 } 1833 sym_start_up(shost, 1); 1834 } 1835 1836 return PCI_ERS_RESULT_RECOVERED; 1837 } 1838 1839 /** 1840 * sym2_io_resume() - resume normal ops after PCI reset 1841 * @pdev: pointer to PCI device 1842 * 1843 * Called when the error recovery driver tells us that its 1844 * OK to resume normal operation. Use completion to allow 1845 * halted scsi ops to resume. 1846 */ 1847 static void sym2_io_resume(struct pci_dev *pdev) 1848 { 1849 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1850 struct sym_data *sym_data = shost_priv(shost); 1851 1852 spin_lock_irq(shost->host_lock); 1853 if (sym_data->io_reset) 1854 complete(sym_data->io_reset); 1855 spin_unlock_irq(shost->host_lock); 1856 } 1857 1858 static void sym2_get_signalling(struct Scsi_Host *shost) 1859 { 1860 struct sym_hcb *np = sym_get_hcb(shost); 1861 enum spi_signal_type type; 1862 1863 switch (np->scsi_mode) { 1864 case SMODE_SE: 1865 type = SPI_SIGNAL_SE; 1866 break; 1867 case SMODE_LVD: 1868 type = SPI_SIGNAL_LVD; 1869 break; 1870 case SMODE_HVD: 1871 type = SPI_SIGNAL_HVD; 1872 break; 1873 default: 1874 type = SPI_SIGNAL_UNKNOWN; 1875 break; 1876 } 1877 spi_signalling(shost) = type; 1878 } 1879 1880 static void sym2_set_offset(struct scsi_target *starget, int offset) 1881 { 1882 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1883 struct sym_hcb *np = sym_get_hcb(shost); 1884 struct sym_tcb *tp = &np->target[starget->id]; 1885 1886 tp->tgoal.offset = offset; 1887 tp->tgoal.check_nego = 1; 1888 } 1889 1890 static void sym2_set_period(struct scsi_target *starget, int period) 1891 { 1892 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1893 struct sym_hcb *np = sym_get_hcb(shost); 1894 struct sym_tcb *tp = &np->target[starget->id]; 1895 1896 /* have to have DT for these transfers, but DT will also 1897 * set width, so check that this is allowed */ 1898 if (period <= np->minsync && spi_width(starget)) 1899 tp->tgoal.dt = 1; 1900 1901 tp->tgoal.period = period; 1902 tp->tgoal.check_nego = 1; 1903 } 1904 1905 static void sym2_set_width(struct scsi_target *starget, int width) 1906 { 1907 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1908 struct sym_hcb *np = sym_get_hcb(shost); 1909 struct sym_tcb *tp = &np->target[starget->id]; 1910 1911 /* It is illegal to have DT set on narrow transfers. If DT is 1912 * clear, we must also clear IU and QAS. */ 1913 if (width == 0) 1914 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 1915 1916 tp->tgoal.width = width; 1917 tp->tgoal.check_nego = 1; 1918 } 1919 1920 static void sym2_set_dt(struct scsi_target *starget, int dt) 1921 { 1922 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1923 struct sym_hcb *np = sym_get_hcb(shost); 1924 struct sym_tcb *tp = &np->target[starget->id]; 1925 1926 /* We must clear QAS and IU if DT is clear */ 1927 if (dt) 1928 tp->tgoal.dt = 1; 1929 else 1930 tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0; 1931 tp->tgoal.check_nego = 1; 1932 } 1933 1934 #if 0 1935 static void sym2_set_iu(struct scsi_target *starget, int iu) 1936 { 1937 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1938 struct sym_hcb *np = sym_get_hcb(shost); 1939 struct sym_tcb *tp = &np->target[starget->id]; 1940 1941 if (iu) 1942 tp->tgoal.iu = tp->tgoal.dt = 1; 1943 else 1944 tp->tgoal.iu = 0; 1945 tp->tgoal.check_nego = 1; 1946 } 1947 1948 static void sym2_set_qas(struct scsi_target *starget, int qas) 1949 { 1950 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 1951 struct sym_hcb *np = sym_get_hcb(shost); 1952 struct sym_tcb *tp = &np->target[starget->id]; 1953 1954 if (qas) 1955 tp->tgoal.dt = tp->tgoal.qas = 1; 1956 else 1957 tp->tgoal.qas = 0; 1958 tp->tgoal.check_nego = 1; 1959 } 1960 #endif 1961 1962 static struct spi_function_template sym2_transport_functions = { 1963 .set_offset = sym2_set_offset, 1964 .show_offset = 1, 1965 .set_period = sym2_set_period, 1966 .show_period = 1, 1967 .set_width = sym2_set_width, 1968 .show_width = 1, 1969 .set_dt = sym2_set_dt, 1970 .show_dt = 1, 1971 #if 0 1972 .set_iu = sym2_set_iu, 1973 .show_iu = 1, 1974 .set_qas = sym2_set_qas, 1975 .show_qas = 1, 1976 #endif 1977 .get_signalling = sym2_get_signalling, 1978 }; 1979 1980 static struct pci_device_id sym2_id_table[] = { 1981 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810, 1982 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1983 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820, 1984 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ 1985 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825, 1986 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1987 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815, 1988 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1989 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP, 1990 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */ 1991 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860, 1992 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1993 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510, 1994 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL }, 1995 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896, 1996 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1997 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895, 1998 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 1999 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885, 2000 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2001 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875, 2002 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2003 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510, 2004 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8, 0xffff00, 0UL }, /* new */ 2005 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A, 2006 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2007 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A, 2008 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2009 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33, 2010 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2011 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66, 2012 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2013 { PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J, 2014 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, 2015 { 0, } 2016 }; 2017 2018 MODULE_DEVICE_TABLE(pci, sym2_id_table); 2019 2020 static const struct pci_error_handlers sym2_err_handler = { 2021 .error_detected = sym2_io_error_detected, 2022 .mmio_enabled = sym2_io_slot_dump, 2023 .slot_reset = sym2_io_slot_reset, 2024 .resume = sym2_io_resume, 2025 }; 2026 2027 static struct pci_driver sym2_driver = { 2028 .name = NAME53C8XX, 2029 .id_table = sym2_id_table, 2030 .probe = sym2_probe, 2031 .remove = sym2_remove, 2032 .err_handler = &sym2_err_handler, 2033 }; 2034 2035 static int __init sym2_init(void) 2036 { 2037 int error; 2038 2039 sym2_setup_params(); 2040 sym2_transport_template = spi_attach_transport(&sym2_transport_functions); 2041 if (!sym2_transport_template) 2042 return -ENODEV; 2043 2044 error = pci_register_driver(&sym2_driver); 2045 if (error) 2046 spi_release_transport(sym2_transport_template); 2047 return error; 2048 } 2049 2050 static void __exit sym2_exit(void) 2051 { 2052 pci_unregister_driver(&sym2_driver); 2053 spi_release_transport(sym2_transport_template); 2054 } 2055 2056 module_init(sym2_init); 2057 module_exit(sym2_exit); 2058