1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  * Copyright (c) 2003-2005  Matthew Wilcox <matthew@wil.cx>
7  *
8  * This driver is derived from the Linux sym53c8xx driver.
9  * Copyright (C) 1998-2000  Gerard Roudier
10  *
11  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
12  * a port of the FreeBSD ncr driver to Linux-1.2.13.
13  *
14  * The original ncr driver has been written for 386bsd and FreeBSD by
15  *         Wolfgang Stanglmeier        <wolf@cologne.de>
16  *         Stefan Esser                <se@mi.Uni-Koeln.de>
17  * Copyright (C) 1994  Wolfgang Stanglmeier
18  *
19  * Other major contributions:
20  *
21  * NVRAM detection and reading.
22  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
23  *
24  *-----------------------------------------------------------------------------
25  *
26  * This program is free software; you can redistribute it and/or modify
27  * it under the terms of the GNU General Public License as published by
28  * the Free Software Foundation; either version 2 of the License, or
29  * (at your option) any later version.
30  *
31  * This program is distributed in the hope that it will be useful,
32  * but WITHOUT ANY WARRANTY; without even the implied warranty of
33  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
34  * GNU General Public License for more details.
35  *
36  * You should have received a copy of the GNU General Public License
37  * along with this program; if not, write to the Free Software
38  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
39  */
40 #include <linux/ctype.h>
41 #include <linux/init.h>
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/spinlock.h>
45 #include <scsi/scsi.h>
46 #include <scsi/scsi_tcq.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_transport.h>
49 
50 #include "sym_glue.h"
51 #include "sym_nvram.h"
52 
53 #define NAME53C		"sym53c"
54 #define NAME53C8XX	"sym53c8xx"
55 
56 struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
57 unsigned int sym_debug_flags = 0;
58 
59 static char *excl_string;
60 static char *safe_string;
61 module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
62 module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
63 module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
64 module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
65 module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
66 module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
67 module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
68 module_param_named(verb, sym_driver_setup.verbose, byte, 0);
69 module_param_named(debug, sym_debug_flags, uint, 0);
70 module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
71 module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
72 module_param_named(excl, excl_string, charp, 0);
73 module_param_named(safe, safe_string, charp, 0);
74 
75 MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
76 MODULE_PARM_DESC(burst, "Maximum burst.  0 to disable, 255 to read from registers");
77 MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
78 MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
79 MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
80 MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
81 MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
82 MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
83 MODULE_PARM_DESC(debug, "Set bits to enable debugging");
84 MODULE_PARM_DESC(settle, "Settle delay in seconds.  Default 3");
85 MODULE_PARM_DESC(nvram, "Option currently not used");
86 MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
87 MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");
88 
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(SYM_VERSION);
91 MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
92 MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");
93 
94 static void sym2_setup_params(void)
95 {
96 	char *p = excl_string;
97 	int xi = 0;
98 
99 	while (p && (xi < 8)) {
100 		char *next_p;
101 		int val = (int) simple_strtoul(p, &next_p, 0);
102 		sym_driver_setup.excludes[xi++] = val;
103 		p = next_p;
104 	}
105 
106 	if (safe_string) {
107 		if (*safe_string == 'y') {
108 			sym_driver_setup.max_tag = 0;
109 			sym_driver_setup.burst_order = 0;
110 			sym_driver_setup.scsi_led = 0;
111 			sym_driver_setup.scsi_diff = 1;
112 			sym_driver_setup.irq_mode = 0;
113 			sym_driver_setup.scsi_bus_check = 2;
114 			sym_driver_setup.host_id = 7;
115 			sym_driver_setup.verbose = 2;
116 			sym_driver_setup.settle_delay = 10;
117 			sym_driver_setup.use_nvram = 1;
118 		} else if (*safe_string != 'n') {
119 			printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
120 					" passed to safe option", safe_string);
121 		}
122 	}
123 }
124 
125 static struct scsi_transport_template *sym2_transport_template = NULL;
126 
127 /*
128  *  Driver private area in the SCSI command structure.
129  */
130 struct sym_ucmd {		/* Override the SCSI pointer structure */
131 	struct completion *eh_done;		/* SCSI error handling */
132 };
133 
134 #define SYM_UCMD_PTR(cmd)  ((struct sym_ucmd *)(&(cmd)->SCp))
135 #define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
136 
137 /*
138  *  Complete a pending CAM CCB.
139  */
140 void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
141 {
142 	struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
143 	BUILD_BUG_ON(sizeof(struct scsi_pointer) < sizeof(struct sym_ucmd));
144 
145 	if (ucmd->eh_done)
146 		complete(ucmd->eh_done);
147 
148 	scsi_dma_unmap(cmd);
149 	cmd->scsi_done(cmd);
150 }
151 
152 /*
153  *  Tell the SCSI layer about a BUS RESET.
154  */
155 void sym_xpt_async_bus_reset(struct sym_hcb *np)
156 {
157 	printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
158 	np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
159 	np->s.settle_time_valid = 1;
160 	if (sym_verbose >= 2)
161 		printf_info("%s: command processing suspended for %d seconds\n",
162 			    sym_name(np), sym_driver_setup.settle_delay);
163 }
164 
165 /*
166  *  Choose the more appropriate CAM status if
167  *  the IO encountered an extended error.
168  */
169 static int sym_xerr_cam_status(int cam_status, int x_status)
170 {
171 	if (x_status) {
172 		if	(x_status & XE_PARITY_ERR)
173 			cam_status = DID_PARITY;
174 		else if	(x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
175 			cam_status = DID_ERROR;
176 		else if	(x_status & XE_BAD_PHASE)
177 			cam_status = DID_ERROR;
178 		else
179 			cam_status = DID_ERROR;
180 	}
181 	return cam_status;
182 }
183 
184 /*
185  *  Build CAM result for a failed or auto-sensed IO.
186  */
187 void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
188 {
189 	struct scsi_cmnd *cmd = cp->cmd;
190 	u_int cam_status, scsi_status, drv_status;
191 
192 	drv_status  = 0;
193 	cam_status  = DID_OK;
194 	scsi_status = cp->ssss_status;
195 
196 	if (cp->host_flags & HF_SENSE) {
197 		scsi_status = cp->sv_scsi_status;
198 		resid = cp->sv_resid;
199 		if (sym_verbose && cp->sv_xerr_status)
200 			sym_print_xerr(cmd, cp->sv_xerr_status);
201 		if (cp->host_status == HS_COMPLETE &&
202 		    cp->ssss_status == S_GOOD &&
203 		    cp->xerr_status == 0) {
204 			cam_status = sym_xerr_cam_status(DID_OK,
205 							 cp->sv_xerr_status);
206 			drv_status = DRIVER_SENSE;
207 			/*
208 			 *  Bounce back the sense data to user.
209 			 */
210 			memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
211 			memcpy(cmd->sense_buffer, cp->sns_bbuf,
212 			       min(SCSI_SENSE_BUFFERSIZE, SYM_SNS_BBUF_LEN));
213 #if 0
214 			/*
215 			 *  If the device reports a UNIT ATTENTION condition
216 			 *  due to a RESET condition, we should consider all
217 			 *  disconnect CCBs for this unit as aborted.
218 			 */
219 			if (1) {
220 				u_char *p;
221 				p  = (u_char *) cmd->sense_data;
222 				if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
223 					sym_clear_tasks(np, DID_ABORT,
224 							cp->target,cp->lun, -1);
225 			}
226 #endif
227 		} else {
228 			/*
229 			 * Error return from our internal request sense.  This
230 			 * is bad: we must clear the contingent allegiance
231 			 * condition otherwise the device will always return
232 			 * BUSY.  Use a big stick.
233 			 */
234 			sym_reset_scsi_target(np, cmd->device->id);
235 			cam_status = DID_ERROR;
236 		}
237 	} else if (cp->host_status == HS_COMPLETE) 	/* Bad SCSI status */
238 		cam_status = DID_OK;
239 	else if (cp->host_status == HS_SEL_TIMEOUT)	/* Selection timeout */
240 		cam_status = DID_NO_CONNECT;
241 	else if (cp->host_status == HS_UNEXPECTED)	/* Unexpected BUS FREE*/
242 		cam_status = DID_ERROR;
243 	else {						/* Extended error */
244 		if (sym_verbose) {
245 			sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
246 				cp->host_status, cp->ssss_status,
247 				cp->xerr_status);
248 		}
249 		/*
250 		 *  Set the most appropriate value for CAM status.
251 		 */
252 		cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
253 	}
254 	scsi_set_resid(cmd, resid);
255 	cmd->result = (drv_status << 24) + (cam_status << 16) + scsi_status;
256 }
257 
258 static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
259 {
260 	int segment;
261 	int use_sg;
262 
263 	cp->data_len = 0;
264 
265 	use_sg = scsi_dma_map(cmd);
266 	if (use_sg > 0) {
267 		struct scatterlist *sg;
268 		struct sym_tcb *tp = &np->target[cp->target];
269 		struct sym_tblmove *data;
270 
271 		if (use_sg > SYM_CONF_MAX_SG) {
272 			scsi_dma_unmap(cmd);
273 			return -1;
274 		}
275 
276 		data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];
277 
278 		scsi_for_each_sg(cmd, sg, use_sg, segment) {
279 			dma_addr_t baddr = sg_dma_address(sg);
280 			unsigned int len = sg_dma_len(sg);
281 
282 			if ((len & 1) && (tp->head.wval & EWS)) {
283 				len++;
284 				cp->odd_byte_adjustment++;
285 			}
286 
287 			sym_build_sge(np, &data[segment], baddr, len);
288 			cp->data_len += len;
289 		}
290 	} else {
291 		segment = -2;
292 	}
293 
294 	return segment;
295 }
296 
297 /*
298  *  Queue a SCSI command.
299  */
300 static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
301 {
302 	struct scsi_device *sdev = cmd->device;
303 	struct sym_tcb *tp;
304 	struct sym_lcb *lp;
305 	struct sym_ccb *cp;
306 	int	order;
307 
308 	/*
309 	 *  Retrieve the target descriptor.
310 	 */
311 	tp = &np->target[sdev->id];
312 
313 	/*
314 	 *  Select tagged/untagged.
315 	 */
316 	lp = sym_lp(tp, sdev->lun);
317 	order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;
318 
319 	/*
320 	 *  Queue the SCSI IO.
321 	 */
322 	cp = sym_get_ccb(np, cmd, order);
323 	if (!cp)
324 		return 1;	/* Means resource shortage */
325 	sym_queue_scsiio(np, cmd, cp);
326 	return 0;
327 }
328 
329 /*
330  *  Setup buffers and pointers that address the CDB.
331  */
332 static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
333 {
334 	memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);
335 
336 	cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]);
337 	cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
338 
339 	return 0;
340 }
341 
342 /*
343  *  Setup pointers that address the data and start the I/O.
344  */
345 int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
346 {
347 	u32 lastp, goalp;
348 	int dir;
349 
350 	/*
351 	 *  Build the CDB.
352 	 */
353 	if (sym_setup_cdb(np, cmd, cp))
354 		goto out_abort;
355 
356 	/*
357 	 *  No direction means no data.
358 	 */
359 	dir = cmd->sc_data_direction;
360 	if (dir != DMA_NONE) {
361 		cp->segments = sym_scatter(np, cp, cmd);
362 		if (cp->segments < 0) {
363 			sym_set_cam_status(cmd, DID_ERROR);
364 			goto out_abort;
365 		}
366 
367 		/*
368 		 *  No segments means no data.
369 		 */
370 		if (!cp->segments)
371 			dir = DMA_NONE;
372 	} else {
373 		cp->data_len = 0;
374 		cp->segments = 0;
375 	}
376 
377 	/*
378 	 *  Set the data pointer.
379 	 */
380 	switch (dir) {
381 	case DMA_BIDIRECTIONAL:
382 		scmd_printk(KERN_INFO, cmd, "got DMA_BIDIRECTIONAL command");
383 		sym_set_cam_status(cmd, DID_ERROR);
384 		goto out_abort;
385 	case DMA_TO_DEVICE:
386 		goalp = SCRIPTA_BA(np, data_out2) + 8;
387 		lastp = goalp - 8 - (cp->segments * (2*4));
388 		break;
389 	case DMA_FROM_DEVICE:
390 		cp->host_flags |= HF_DATA_IN;
391 		goalp = SCRIPTA_BA(np, data_in2) + 8;
392 		lastp = goalp - 8 - (cp->segments * (2*4));
393 		break;
394 	case DMA_NONE:
395 	default:
396 		lastp = goalp = SCRIPTB_BA(np, no_data);
397 		break;
398 	}
399 
400 	/*
401 	 *  Set all pointers values needed by SCRIPTS.
402 	 */
403 	cp->phys.head.lastp = cpu_to_scr(lastp);
404 	cp->phys.head.savep = cpu_to_scr(lastp);
405 	cp->startp	    = cp->phys.head.savep;
406 	cp->goalp	    = cpu_to_scr(goalp);
407 
408 	/*
409 	 *  When `#ifed 1', the code below makes the driver
410 	 *  panic on the first attempt to write to a SCSI device.
411 	 *  It is the first test we want to do after a driver
412 	 *  change that does not seem obviously safe. :)
413 	 */
414 #if 0
415 	switch (cp->cdb_buf[0]) {
416 	case 0x0A: case 0x2A: case 0xAA:
417 		panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
418 		break;
419 	default:
420 		break;
421 	}
422 #endif
423 
424 	/*
425 	 *	activate this job.
426 	 */
427 	sym_put_start_queue(np, cp);
428 	return 0;
429 
430 out_abort:
431 	sym_free_ccb(np, cp);
432 	sym_xpt_done(np, cmd);
433 	return 0;
434 }
435 
436 
437 /*
438  *  timer daemon.
439  *
440  *  Misused to keep the driver running when
441  *  interrupts are not configured correctly.
442  */
443 static void sym_timer(struct sym_hcb *np)
444 {
445 	unsigned long thistime = jiffies;
446 
447 	/*
448 	 *  Restart the timer.
449 	 */
450 	np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
451 	add_timer(&np->s.timer);
452 
453 	/*
454 	 *  If we are resetting the ncr, wait for settle_time before
455 	 *  clearing it. Then command processing will be resumed.
456 	 */
457 	if (np->s.settle_time_valid) {
458 		if (time_before_eq(np->s.settle_time, thistime)) {
459 			if (sym_verbose >= 2 )
460 				printk("%s: command processing resumed\n",
461 				       sym_name(np));
462 			np->s.settle_time_valid = 0;
463 		}
464 		return;
465 	}
466 
467 	/*
468 	 *	Nothing to do for now, but that may come.
469 	 */
470 	if (np->s.lasttime + 4*HZ < thistime) {
471 		np->s.lasttime = thistime;
472 	}
473 
474 #ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
475 	/*
476 	 *  Some way-broken PCI bridges may lead to
477 	 *  completions being lost when the clearing
478 	 *  of the INTFLY flag by the CPU occurs
479 	 *  concurrently with the chip raising this flag.
480 	 *  If this ever happen, lost completions will
481 	 * be reaped here.
482 	 */
483 	sym_wakeup_done(np);
484 #endif
485 }
486 
487 
488 /*
489  *  PCI BUS error handler.
490  */
491 void sym_log_bus_error(struct Scsi_Host *shost)
492 {
493 	struct sym_data *sym_data = shost_priv(shost);
494 	struct pci_dev *pdev = sym_data->pdev;
495 	unsigned short pci_sts;
496 	pci_read_config_word(pdev, PCI_STATUS, &pci_sts);
497 	if (pci_sts & 0xf900) {
498 		pci_write_config_word(pdev, PCI_STATUS, pci_sts);
499 		shost_printk(KERN_WARNING, shost,
500 			"PCI bus error: status = 0x%04x\n", pci_sts & 0xf900);
501 	}
502 }
503 
504 /*
505  * queuecommand method.  Entered with the host adapter lock held and
506  * interrupts disabled.
507  */
508 static int sym53c8xx_queue_command(struct scsi_cmnd *cmd,
509 					void (*done)(struct scsi_cmnd *))
510 {
511 	struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
512 	struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
513 	int sts = 0;
514 
515 	cmd->scsi_done = done;
516 	memset(ucp, 0, sizeof(*ucp));
517 
518 	/*
519 	 *  Shorten our settle_time if needed for
520 	 *  this command not to time out.
521 	 */
522 	if (np->s.settle_time_valid && cmd->timeout_per_command) {
523 		unsigned long tlimit = jiffies + cmd->timeout_per_command;
524 		tlimit -= SYM_CONF_TIMER_INTERVAL*2;
525 		if (time_after(np->s.settle_time, tlimit)) {
526 			np->s.settle_time = tlimit;
527 		}
528 	}
529 
530 	if (np->s.settle_time_valid)
531 		return SCSI_MLQUEUE_HOST_BUSY;
532 
533 	sts = sym_queue_command(np, cmd);
534 	if (sts)
535 		return SCSI_MLQUEUE_HOST_BUSY;
536 	return 0;
537 }
538 
539 /*
540  *  Linux entry point of the interrupt handler.
541  */
542 static irqreturn_t sym53c8xx_intr(int irq, void *dev_id)
543 {
544 	struct Scsi_Host *shost = dev_id;
545 	struct sym_data *sym_data = shost_priv(shost);
546 	irqreturn_t result;
547 
548 	/* Avoid spinloop trying to handle interrupts on frozen device */
549 	if (pci_channel_offline(sym_data->pdev))
550 		return IRQ_NONE;
551 
552 	if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
553 
554 	spin_lock(shost->host_lock);
555 	result = sym_interrupt(shost);
556 	spin_unlock(shost->host_lock);
557 
558 	if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
559 
560 	return result;
561 }
562 
563 /*
564  *  Linux entry point of the timer handler
565  */
566 static void sym53c8xx_timer(unsigned long npref)
567 {
568 	struct sym_hcb *np = (struct sym_hcb *)npref;
569 	unsigned long flags;
570 
571 	spin_lock_irqsave(np->s.host->host_lock, flags);
572 	sym_timer(np);
573 	spin_unlock_irqrestore(np->s.host->host_lock, flags);
574 }
575 
576 
577 /*
578  *  What the eh thread wants us to perform.
579  */
580 #define SYM_EH_ABORT		0
581 #define SYM_EH_DEVICE_RESET	1
582 #define SYM_EH_BUS_RESET	2
583 #define SYM_EH_HOST_RESET	3
584 
585 /*
586  *  Generic method for our eh processing.
587  *  The 'op' argument tells what we have to do.
588  */
589 static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
590 {
591 	struct sym_ucmd *ucmd = SYM_UCMD_PTR(cmd);
592 	struct Scsi_Host *shost = cmd->device->host;
593 	struct sym_data *sym_data = shost_priv(shost);
594 	struct pci_dev *pdev = sym_data->pdev;
595 	struct sym_hcb *np = sym_data->ncb;
596 	SYM_QUEHEAD *qp;
597 	int cmd_queued = 0;
598 	int sts = -1;
599 	struct completion eh_done;
600 
601 	scmd_printk(KERN_WARNING, cmd, "%s operation started\n", opname);
602 
603 	/* We may be in an error condition because the PCI bus
604 	 * went down. In this case, we need to wait until the
605 	 * PCI bus is reset, the card is reset, and only then
606 	 * proceed with the scsi error recovery.  There's no
607 	 * point in hurrying; take a leisurely wait.
608 	 */
609 #define WAIT_FOR_PCI_RECOVERY	35
610 	if (pci_channel_offline(pdev)) {
611 		int finished_reset = 0;
612 		init_completion(&eh_done);
613 		spin_lock_irq(shost->host_lock);
614 		/* Make sure we didn't race */
615 		if (pci_channel_offline(pdev)) {
616 			BUG_ON(sym_data->io_reset);
617 			sym_data->io_reset = &eh_done;
618 		} else {
619 			finished_reset = 1;
620 		}
621 		spin_unlock_irq(shost->host_lock);
622 		if (!finished_reset)
623 			finished_reset = wait_for_completion_timeout
624 						(sym_data->io_reset,
625 						WAIT_FOR_PCI_RECOVERY*HZ);
626 		spin_lock_irq(shost->host_lock);
627 		sym_data->io_reset = NULL;
628 		spin_unlock_irq(shost->host_lock);
629 		if (!finished_reset)
630 			return SCSI_FAILED;
631 	}
632 
633 	spin_lock_irq(shost->host_lock);
634 	/* This one is queued in some place -> to wait for completion */
635 	FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
636 		struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
637 		if (cp->cmd == cmd) {
638 			cmd_queued = 1;
639 			break;
640 		}
641 	}
642 
643 	/* Try to proceed the operation we have been asked for */
644 	sts = -1;
645 	switch(op) {
646 	case SYM_EH_ABORT:
647 		sts = sym_abort_scsiio(np, cmd, 1);
648 		break;
649 	case SYM_EH_DEVICE_RESET:
650 		sts = sym_reset_scsi_target(np, cmd->device->id);
651 		break;
652 	case SYM_EH_BUS_RESET:
653 		sym_reset_scsi_bus(np, 1);
654 		sts = 0;
655 		break;
656 	case SYM_EH_HOST_RESET:
657 		sym_reset_scsi_bus(np, 0);
658 		sym_start_up(shost, 1);
659 		sts = 0;
660 		break;
661 	default:
662 		break;
663 	}
664 
665 	/* On error, restore everything and cross fingers :) */
666 	if (sts)
667 		cmd_queued = 0;
668 
669 	if (cmd_queued) {
670 		init_completion(&eh_done);
671 		ucmd->eh_done = &eh_done;
672 		spin_unlock_irq(shost->host_lock);
673 		if (!wait_for_completion_timeout(&eh_done, 5*HZ)) {
674 			ucmd->eh_done = NULL;
675 			sts = -2;
676 		}
677 	} else {
678 		spin_unlock_irq(shost->host_lock);
679 	}
680 
681 	dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
682 			sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
683 	return sts ? SCSI_FAILED : SCSI_SUCCESS;
684 }
685 
686 
687 /*
688  * Error handlers called from the eh thread (one thread per HBA).
689  */
690 static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
691 {
692 	return sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd);
693 }
694 
695 static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd)
696 {
697 	return sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd);
698 }
699 
700 static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
701 {
702 	return sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd);
703 }
704 
705 static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
706 {
707 	return sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd);
708 }
709 
710 /*
711  *  Tune device queuing depth, according to various limits.
712  */
713 static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
714 {
715 	struct sym_lcb *lp = sym_lp(tp, lun);
716 	u_short	oldtags;
717 
718 	if (!lp)
719 		return;
720 
721 	oldtags = lp->s.reqtags;
722 
723 	if (reqtags > lp->s.scdev_depth)
724 		reqtags = lp->s.scdev_depth;
725 
726 	lp->s.reqtags     = reqtags;
727 
728 	if (reqtags != oldtags) {
729 		dev_info(&tp->starget->dev,
730 		         "tagged command queuing %s, command queue depth %d.\n",
731 		          lp->s.reqtags ? "enabled" : "disabled", reqtags);
732 	}
733 }
734 
735 static int sym53c8xx_slave_alloc(struct scsi_device *sdev)
736 {
737 	struct sym_hcb *np = sym_get_hcb(sdev->host);
738 	struct sym_tcb *tp = &np->target[sdev->id];
739 	struct sym_lcb *lp;
740 
741 	if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN)
742 		return -ENXIO;
743 
744 	tp->starget = sdev->sdev_target;
745 	/*
746 	 * Fail the device init if the device is flagged NOSCAN at BOOT in
747 	 * the NVRAM.  This may speed up boot and maintain coherency with
748 	 * BIOS device numbering.  Clearing the flag allows the user to
749 	 * rescan skipped devices later.  We also return an error for
750 	 * devices not flagged for SCAN LUNS in the NVRAM since some single
751 	 * lun devices behave badly when asked for a non zero LUN.
752 	 */
753 
754 	if (tp->usrflags & SYM_SCAN_BOOT_DISABLED) {
755 		tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
756 		starget_printk(KERN_INFO, tp->starget,
757 				"Scan at boot disabled in NVRAM\n");
758 		return -ENXIO;
759 	}
760 
761 	if (tp->usrflags & SYM_SCAN_LUNS_DISABLED) {
762 		if (sdev->lun != 0)
763 			return -ENXIO;
764 		starget_printk(KERN_INFO, tp->starget,
765 				"Multiple LUNs disabled in NVRAM\n");
766 	}
767 
768 	lp = sym_alloc_lcb(np, sdev->id, sdev->lun);
769 	if (!lp)
770 		return -ENOMEM;
771 
772 	spi_min_period(tp->starget) = tp->usr_period;
773 	spi_max_width(tp->starget) = tp->usr_width;
774 
775 	return 0;
776 }
777 
778 /*
779  * Linux entry point for device queue sizing.
780  */
781 static int sym53c8xx_slave_configure(struct scsi_device *sdev)
782 {
783 	struct sym_hcb *np = sym_get_hcb(sdev->host);
784 	struct sym_tcb *tp = &np->target[sdev->id];
785 	struct sym_lcb *lp = sym_lp(tp, sdev->lun);
786 	int reqtags, depth_to_use;
787 
788 	/*
789 	 *  Get user flags.
790 	 */
791 	lp->curr_flags = lp->user_flags;
792 
793 	/*
794 	 *  Select queue depth from driver setup.
795 	 *  Donnot use more than configured by user.
796 	 *  Use at least 2.
797 	 *  Donnot use more than our maximum.
798 	 */
799 	reqtags = sym_driver_setup.max_tag;
800 	if (reqtags > tp->usrtags)
801 		reqtags = tp->usrtags;
802 	if (!sdev->tagged_supported)
803 		reqtags = 0;
804 	if (reqtags > SYM_CONF_MAX_TAG)
805 		reqtags = SYM_CONF_MAX_TAG;
806 	depth_to_use = reqtags ? reqtags : 2;
807 	scsi_adjust_queue_depth(sdev,
808 				sdev->tagged_supported ? MSG_SIMPLE_TAG : 0,
809 				depth_to_use);
810 	lp->s.scdev_depth = depth_to_use;
811 	sym_tune_dev_queuing(tp, sdev->lun, reqtags);
812 
813 	if (!spi_initial_dv(sdev->sdev_target))
814 		spi_dv_device(sdev);
815 
816 	return 0;
817 }
818 
819 static void sym53c8xx_slave_destroy(struct scsi_device *sdev)
820 {
821 	struct sym_hcb *np = sym_get_hcb(sdev->host);
822 	struct sym_lcb *lp = sym_lp(&np->target[sdev->id], sdev->lun);
823 
824 	if (lp->itlq_tbl)
825 		sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK * 4, "ITLQ_TBL");
826 	kfree(lp->cb_tags);
827 	sym_mfree_dma(lp, sizeof(*lp), "LCB");
828 }
829 
830 /*
831  *  Linux entry point for info() function
832  */
833 static const char *sym53c8xx_info (struct Scsi_Host *host)
834 {
835 	return SYM_DRIVER_NAME;
836 }
837 
838 
839 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
840 /*
841  *  Proc file system stuff
842  *
843  *  A read operation returns adapter information.
844  *  A write operation is a control command.
845  *  The string is parsed in the driver code and the command is passed
846  *  to the sym_usercmd() function.
847  */
848 
849 #ifdef SYM_LINUX_USER_COMMAND_SUPPORT
850 
851 struct	sym_usrcmd {
852 	u_long	target;
853 	u_long	lun;
854 	u_long	data;
855 	u_long	cmd;
856 };
857 
858 #define UC_SETSYNC      10
859 #define UC_SETTAGS	11
860 #define UC_SETDEBUG	12
861 #define UC_SETWIDE	14
862 #define UC_SETFLAG	15
863 #define UC_SETVERBOSE	17
864 #define UC_RESETDEV	18
865 #define UC_CLEARDEV	19
866 
867 static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
868 {
869 	struct sym_tcb *tp;
870 	int t, l;
871 
872 	switch (uc->cmd) {
873 	case 0: return;
874 
875 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
876 	case UC_SETDEBUG:
877 		sym_debug_flags = uc->data;
878 		break;
879 #endif
880 	case UC_SETVERBOSE:
881 		np->verbose = uc->data;
882 		break;
883 	default:
884 		/*
885 		 * We assume that other commands apply to targets.
886 		 * This should always be the case and avoid the below
887 		 * 4 lines to be repeated 6 times.
888 		 */
889 		for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
890 			if (!((uc->target >> t) & 1))
891 				continue;
892 			tp = &np->target[t];
893 
894 			switch (uc->cmd) {
895 
896 			case UC_SETSYNC:
897 				if (!uc->data || uc->data >= 255) {
898 					tp->tgoal.iu = tp->tgoal.dt =
899 						tp->tgoal.qas = 0;
900 					tp->tgoal.offset = 0;
901 				} else if (uc->data <= 9 && np->minsync_dt) {
902 					if (uc->data < np->minsync_dt)
903 						uc->data = np->minsync_dt;
904 					tp->tgoal.iu = tp->tgoal.dt =
905 						tp->tgoal.qas = 1;
906 					tp->tgoal.width = 1;
907 					tp->tgoal.period = uc->data;
908 					tp->tgoal.offset = np->maxoffs_dt;
909 				} else {
910 					if (uc->data < np->minsync)
911 						uc->data = np->minsync;
912 					tp->tgoal.iu = tp->tgoal.dt =
913 						tp->tgoal.qas = 0;
914 					tp->tgoal.period = uc->data;
915 					tp->tgoal.offset = np->maxoffs;
916 				}
917 				tp->tgoal.check_nego = 1;
918 				break;
919 			case UC_SETWIDE:
920 				tp->tgoal.width = uc->data ? 1 : 0;
921 				tp->tgoal.check_nego = 1;
922 				break;
923 			case UC_SETTAGS:
924 				for (l = 0; l < SYM_CONF_MAX_LUN; l++)
925 					sym_tune_dev_queuing(tp, l, uc->data);
926 				break;
927 			case UC_RESETDEV:
928 				tp->to_reset = 1;
929 				np->istat_sem = SEM;
930 				OUTB(np, nc_istat, SIGP|SEM);
931 				break;
932 			case UC_CLEARDEV:
933 				for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
934 					struct sym_lcb *lp = sym_lp(tp, l);
935 					if (lp) lp->to_clear = 1;
936 				}
937 				np->istat_sem = SEM;
938 				OUTB(np, nc_istat, SIGP|SEM);
939 				break;
940 			case UC_SETFLAG:
941 				tp->usrflags = uc->data;
942 				break;
943 			}
944 		}
945 		break;
946 	}
947 }
948 
949 static int skip_spaces(char *ptr, int len)
950 {
951 	int cnt, c;
952 
953 	for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);
954 
955 	return (len - cnt);
956 }
957 
958 static int get_int_arg(char *ptr, int len, u_long *pv)
959 {
960 	char *end;
961 
962 	*pv = simple_strtoul(ptr, &end, 10);
963 	return (end - ptr);
964 }
965 
966 static int is_keyword(char *ptr, int len, char *verb)
967 {
968 	int verb_len = strlen(verb);
969 
970 	if (len >= verb_len && !memcmp(verb, ptr, verb_len))
971 		return verb_len;
972 	else
973 		return 0;
974 }
975 
976 #define SKIP_SPACES(ptr, len)						\
977 	if ((arg_len = skip_spaces(ptr, len)) < 1)			\
978 		return -EINVAL;						\
979 	ptr += arg_len; len -= arg_len;
980 
981 #define GET_INT_ARG(ptr, len, v)					\
982 	if (!(arg_len = get_int_arg(ptr, len, &(v))))			\
983 		return -EINVAL;						\
984 	ptr += arg_len; len -= arg_len;
985 
986 
987 /*
988  * Parse a control command
989  */
990 
991 static int sym_user_command(struct Scsi_Host *shost, char *buffer, int length)
992 {
993 	struct sym_hcb *np = sym_get_hcb(shost);
994 	char *ptr	= buffer;
995 	int len		= length;
996 	struct sym_usrcmd cmd, *uc = &cmd;
997 	int		arg_len;
998 	u_long 		target;
999 
1000 	memset(uc, 0, sizeof(*uc));
1001 
1002 	if (len > 0 && ptr[len-1] == '\n')
1003 		--len;
1004 
1005 	if	((arg_len = is_keyword(ptr, len, "setsync")) != 0)
1006 		uc->cmd = UC_SETSYNC;
1007 	else if	((arg_len = is_keyword(ptr, len, "settags")) != 0)
1008 		uc->cmd = UC_SETTAGS;
1009 	else if	((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
1010 		uc->cmd = UC_SETVERBOSE;
1011 	else if	((arg_len = is_keyword(ptr, len, "setwide")) != 0)
1012 		uc->cmd = UC_SETWIDE;
1013 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1014 	else if	((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
1015 		uc->cmd = UC_SETDEBUG;
1016 #endif
1017 	else if	((arg_len = is_keyword(ptr, len, "setflag")) != 0)
1018 		uc->cmd = UC_SETFLAG;
1019 	else if	((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
1020 		uc->cmd = UC_RESETDEV;
1021 	else if	((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
1022 		uc->cmd = UC_CLEARDEV;
1023 	else
1024 		arg_len = 0;
1025 
1026 #ifdef DEBUG_PROC_INFO
1027 printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
1028 #endif
1029 
1030 	if (!arg_len)
1031 		return -EINVAL;
1032 	ptr += arg_len; len -= arg_len;
1033 
1034 	switch(uc->cmd) {
1035 	case UC_SETSYNC:
1036 	case UC_SETTAGS:
1037 	case UC_SETWIDE:
1038 	case UC_SETFLAG:
1039 	case UC_RESETDEV:
1040 	case UC_CLEARDEV:
1041 		SKIP_SPACES(ptr, len);
1042 		if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
1043 			ptr += arg_len; len -= arg_len;
1044 			uc->target = ~0;
1045 		} else {
1046 			GET_INT_ARG(ptr, len, target);
1047 			uc->target = (1<<target);
1048 #ifdef DEBUG_PROC_INFO
1049 printk("sym_user_command: target=%ld\n", target);
1050 #endif
1051 		}
1052 		break;
1053 	}
1054 
1055 	switch(uc->cmd) {
1056 	case UC_SETVERBOSE:
1057 	case UC_SETSYNC:
1058 	case UC_SETTAGS:
1059 	case UC_SETWIDE:
1060 		SKIP_SPACES(ptr, len);
1061 		GET_INT_ARG(ptr, len, uc->data);
1062 #ifdef DEBUG_PROC_INFO
1063 printk("sym_user_command: data=%ld\n", uc->data);
1064 #endif
1065 		break;
1066 #ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
1067 	case UC_SETDEBUG:
1068 		while (len > 0) {
1069 			SKIP_SPACES(ptr, len);
1070 			if	((arg_len = is_keyword(ptr, len, "alloc")))
1071 				uc->data |= DEBUG_ALLOC;
1072 			else if	((arg_len = is_keyword(ptr, len, "phase")))
1073 				uc->data |= DEBUG_PHASE;
1074 			else if	((arg_len = is_keyword(ptr, len, "queue")))
1075 				uc->data |= DEBUG_QUEUE;
1076 			else if	((arg_len = is_keyword(ptr, len, "result")))
1077 				uc->data |= DEBUG_RESULT;
1078 			else if	((arg_len = is_keyword(ptr, len, "scatter")))
1079 				uc->data |= DEBUG_SCATTER;
1080 			else if	((arg_len = is_keyword(ptr, len, "script")))
1081 				uc->data |= DEBUG_SCRIPT;
1082 			else if	((arg_len = is_keyword(ptr, len, "tiny")))
1083 				uc->data |= DEBUG_TINY;
1084 			else if	((arg_len = is_keyword(ptr, len, "timing")))
1085 				uc->data |= DEBUG_TIMING;
1086 			else if	((arg_len = is_keyword(ptr, len, "nego")))
1087 				uc->data |= DEBUG_NEGO;
1088 			else if	((arg_len = is_keyword(ptr, len, "tags")))
1089 				uc->data |= DEBUG_TAGS;
1090 			else if	((arg_len = is_keyword(ptr, len, "pointer")))
1091 				uc->data |= DEBUG_POINTER;
1092 			else
1093 				return -EINVAL;
1094 			ptr += arg_len; len -= arg_len;
1095 		}
1096 #ifdef DEBUG_PROC_INFO
1097 printk("sym_user_command: data=%ld\n", uc->data);
1098 #endif
1099 		break;
1100 #endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
1101 	case UC_SETFLAG:
1102 		while (len > 0) {
1103 			SKIP_SPACES(ptr, len);
1104 			if	((arg_len = is_keyword(ptr, len, "no_disc")))
1105 				uc->data &= ~SYM_DISC_ENABLED;
1106 			else
1107 				return -EINVAL;
1108 			ptr += arg_len; len -= arg_len;
1109 		}
1110 		break;
1111 	default:
1112 		break;
1113 	}
1114 
1115 	if (len)
1116 		return -EINVAL;
1117 	else {
1118 		unsigned long flags;
1119 
1120 		spin_lock_irqsave(shost->host_lock, flags);
1121 		sym_exec_user_command(np, uc);
1122 		spin_unlock_irqrestore(shost->host_lock, flags);
1123 	}
1124 	return length;
1125 }
1126 
1127 #endif	/* SYM_LINUX_USER_COMMAND_SUPPORT */
1128 
1129 
1130 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1131 /*
1132  *  Informations through the proc file system.
1133  */
1134 struct info_str {
1135 	char *buffer;
1136 	int length;
1137 	int offset;
1138 	int pos;
1139 };
1140 
1141 static void copy_mem_info(struct info_str *info, char *data, int len)
1142 {
1143 	if (info->pos + len > info->length)
1144 		len = info->length - info->pos;
1145 
1146 	if (info->pos + len < info->offset) {
1147 		info->pos += len;
1148 		return;
1149 	}
1150 	if (info->pos < info->offset) {
1151 		data += (info->offset - info->pos);
1152 		len  -= (info->offset - info->pos);
1153 	}
1154 
1155 	if (len > 0) {
1156 		memcpy(info->buffer + info->pos, data, len);
1157 		info->pos += len;
1158 	}
1159 }
1160 
1161 static int copy_info(struct info_str *info, char *fmt, ...)
1162 {
1163 	va_list args;
1164 	char buf[81];
1165 	int len;
1166 
1167 	va_start(args, fmt);
1168 	len = vsprintf(buf, fmt, args);
1169 	va_end(args);
1170 
1171 	copy_mem_info(info, buf, len);
1172 	return len;
1173 }
1174 
1175 /*
1176  *  Copy formatted information into the input buffer.
1177  */
1178 static int sym_host_info(struct Scsi_Host *shost, char *ptr, off_t offset, int len)
1179 {
1180 	struct sym_data *sym_data = shost_priv(shost);
1181 	struct pci_dev *pdev = sym_data->pdev;
1182 	struct sym_hcb *np = sym_data->ncb;
1183 	struct info_str info;
1184 
1185 	info.buffer	= ptr;
1186 	info.length	= len;
1187 	info.offset	= offset;
1188 	info.pos	= 0;
1189 
1190 	copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, "
1191 			 "revision id 0x%x\n", np->s.chip_name,
1192 			 pdev->device, pdev->revision);
1193 	copy_info(&info, "At PCI address %s, IRQ %u\n",
1194 			 pci_name(pdev), pdev->irq);
1195 	copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n",
1196 			 (int) (np->minsync_dt ? np->minsync_dt : np->minsync),
1197 			 np->maxwide ? "Wide" : "Narrow",
1198 			 np->minsync_dt ? ", DT capable" : "");
1199 
1200 	copy_info(&info, "Max. started commands %d, "
1201 			 "max. commands per LUN %d\n",
1202 			 SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);
1203 
1204 	return info.pos > info.offset? info.pos - info.offset : 0;
1205 }
1206 #endif /* SYM_LINUX_USER_INFO_SUPPORT */
1207 
1208 /*
1209  *  Entry point of the scsi proc fs of the driver.
1210  *  - func = 0 means read  (returns adapter infos)
1211  *  - func = 1 means write (not yet merget from sym53c8xx)
1212  */
1213 static int sym53c8xx_proc_info(struct Scsi_Host *shost, char *buffer,
1214 			char **start, off_t offset, int length, int func)
1215 {
1216 	int retv;
1217 
1218 	if (func) {
1219 #ifdef	SYM_LINUX_USER_COMMAND_SUPPORT
1220 		retv = sym_user_command(shost, buffer, length);
1221 #else
1222 		retv = -EINVAL;
1223 #endif
1224 	} else {
1225 		if (start)
1226 			*start = buffer;
1227 #ifdef SYM_LINUX_USER_INFO_SUPPORT
1228 		retv = sym_host_info(shost, buffer, offset, length);
1229 #else
1230 		retv = -EINVAL;
1231 #endif
1232 	}
1233 
1234 	return retv;
1235 }
1236 #endif /* SYM_LINUX_PROC_INFO_SUPPORT */
1237 
1238 /*
1239  *	Free controller resources.
1240  */
1241 static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev)
1242 {
1243 	/*
1244 	 *  Free O/S specific resources.
1245 	 */
1246 	if (pdev->irq)
1247 		free_irq(pdev->irq, np->s.host);
1248 	if (np->s.ioaddr)
1249 		pci_iounmap(pdev, np->s.ioaddr);
1250 	if (np->s.ramaddr)
1251 		pci_iounmap(pdev, np->s.ramaddr);
1252 	/*
1253 	 *  Free O/S independent resources.
1254 	 */
1255 	sym_hcb_free(np);
1256 
1257 	sym_mfree_dma(np, sizeof(*np), "HCB");
1258 }
1259 
1260 /*
1261  *  Host attach and initialisations.
1262  *
1263  *  Allocate host data and ncb structure.
1264  *  Remap MMIO region.
1265  *  Do chip initialization.
1266  *  If all is OK, install interrupt handling and
1267  *  start the timer daemon.
1268  */
1269 static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
1270 		int unit, struct sym_device *dev)
1271 {
1272 	struct sym_data *sym_data;
1273 	struct sym_hcb *np = NULL;
1274 	struct Scsi_Host *shost;
1275 	struct pci_dev *pdev = dev->pdev;
1276 	unsigned long flags;
1277 	struct sym_fw *fw;
1278 
1279 	printk(KERN_INFO "sym%d: <%s> rev 0x%x at pci %s irq %u\n",
1280 		unit, dev->chip.name, pdev->revision, pci_name(pdev),
1281 		pdev->irq);
1282 
1283 	/*
1284 	 *  Get the firmware for this chip.
1285 	 */
1286 	fw = sym_find_firmware(&dev->chip);
1287 	if (!fw)
1288 		return NULL;
1289 
1290 	shost = scsi_host_alloc(tpnt, sizeof(*sym_data));
1291 	if (!shost)
1292 		return NULL;
1293 	sym_data = shost_priv(shost);
1294 
1295 	/*
1296 	 *  Allocate immediately the host control block,
1297 	 *  since we are only expecting to succeed. :)
1298 	 *  We keep track in the HCB of all the resources that
1299 	 *  are to be released on error.
1300 	 */
1301 	np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
1302 	if (!np)
1303 		goto attach_failed;
1304 	np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
1305 	sym_data->ncb = np;
1306 	sym_data->pdev = pdev;
1307 	np->s.host = shost;
1308 
1309 	pci_set_drvdata(pdev, shost);
1310 
1311 	/*
1312 	 *  Copy some useful infos to the HCB.
1313 	 */
1314 	np->hcb_ba	= vtobus(np);
1315 	np->verbose	= sym_driver_setup.verbose;
1316 	np->s.unit	= unit;
1317 	np->features	= dev->chip.features;
1318 	np->clock_divn	= dev->chip.nr_divisor;
1319 	np->maxoffs	= dev->chip.offset_max;
1320 	np->maxburst	= dev->chip.burst_max;
1321 	np->myaddr	= dev->host_id;
1322 
1323 	/*
1324 	 *  Edit its name.
1325 	 */
1326 	strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
1327 	sprintf(np->s.inst_name, "sym%d", np->s.unit);
1328 
1329 	if ((SYM_CONF_DMA_ADDRESSING_MODE > 0) && (np->features & FE_DAC) &&
1330 			!pci_set_dma_mask(pdev, DMA_DAC_MASK)) {
1331 		set_dac(np);
1332 	} else if (pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
1333 		printf_warning("%s: No suitable DMA available\n", sym_name(np));
1334 		goto attach_failed;
1335 	}
1336 
1337 	/*
1338 	 *  Try to map the controller chip to
1339 	 *  virtual and physical memory.
1340 	 */
1341 	np->mmio_ba = (u32)dev->mmio_base;
1342 	np->s.ioaddr	= dev->s.ioaddr;
1343 	np->s.ramaddr	= dev->s.ramaddr;
1344 
1345 	/*
1346 	 *  Map on-chip RAM if present and supported.
1347 	 */
1348 	if (!(np->features & FE_RAM))
1349 		dev->ram_base = 0;
1350 	if (dev->ram_base)
1351 		np->ram_ba = (u32)dev->ram_base;
1352 
1353 	if (sym_hcb_attach(shost, fw, dev->nvram))
1354 		goto attach_failed;
1355 
1356 	/*
1357 	 *  Install the interrupt handler.
1358 	 *  If we synchonize the C code with SCRIPTS on interrupt,
1359 	 *  we do not want to share the INTR line at all.
1360 	 */
1361 	if (request_irq(pdev->irq, sym53c8xx_intr, IRQF_SHARED, NAME53C8XX,
1362 			shost)) {
1363 		printf_err("%s: request irq %u failure\n",
1364 			sym_name(np), pdev->irq);
1365 		goto attach_failed;
1366 	}
1367 
1368 	/*
1369 	 *  After SCSI devices have been opened, we cannot
1370 	 *  reset the bus safely, so we do it here.
1371 	 */
1372 	spin_lock_irqsave(shost->host_lock, flags);
1373 	if (sym_reset_scsi_bus(np, 0))
1374 		goto reset_failed;
1375 
1376 	/*
1377 	 *  Start the SCRIPTS.
1378 	 */
1379 	sym_start_up(shost, 1);
1380 
1381 	/*
1382 	 *  Start the timer daemon
1383 	 */
1384 	init_timer(&np->s.timer);
1385 	np->s.timer.data     = (unsigned long) np;
1386 	np->s.timer.function = sym53c8xx_timer;
1387 	np->s.lasttime=0;
1388 	sym_timer (np);
1389 
1390 	/*
1391 	 *  Fill Linux host instance structure
1392 	 *  and return success.
1393 	 */
1394 	shost->max_channel	= 0;
1395 	shost->this_id		= np->myaddr;
1396 	shost->max_id		= np->maxwide ? 16 : 8;
1397 	shost->max_lun		= SYM_CONF_MAX_LUN;
1398 	shost->unique_id	= pci_resource_start(pdev, 0);
1399 	shost->cmd_per_lun	= SYM_CONF_MAX_TAG;
1400 	shost->can_queue	= (SYM_CONF_MAX_START-2);
1401 	shost->sg_tablesize	= SYM_CONF_MAX_SG;
1402 	shost->max_cmd_len	= 16;
1403 	BUG_ON(sym2_transport_template == NULL);
1404 	shost->transportt	= sym2_transport_template;
1405 
1406 	/* 53c896 rev 1 errata: DMA may not cross 16MB boundary */
1407 	if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 2)
1408 		shost->dma_boundary = 0xFFFFFF;
1409 
1410 	spin_unlock_irqrestore(shost->host_lock, flags);
1411 
1412 	return shost;
1413 
1414  reset_failed:
1415 	printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
1416 		   "TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
1417 	spin_unlock_irqrestore(shost->host_lock, flags);
1418  attach_failed:
1419 	if (!shost)
1420 		return NULL;
1421 	printf_info("%s: giving up ...\n", sym_name(np));
1422 	if (np)
1423 		sym_free_resources(np, pdev);
1424 	scsi_host_put(shost);
1425 
1426 	return NULL;
1427  }
1428 
1429 
1430 /*
1431  *    Detect and try to read SYMBIOS and TEKRAM NVRAM.
1432  */
1433 #if SYM_CONF_NVRAM_SUPPORT
1434 static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1435 {
1436 	devp->nvram = nvp;
1437 	nvp->type = 0;
1438 
1439 	sym_read_nvram(devp, nvp);
1440 }
1441 #else
1442 static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
1443 {
1444 }
1445 #endif	/* SYM_CONF_NVRAM_SUPPORT */
1446 
1447 static int __devinit sym_check_supported(struct sym_device *device)
1448 {
1449 	struct sym_chip *chip;
1450 	struct pci_dev *pdev = device->pdev;
1451 	unsigned long io_port = pci_resource_start(pdev, 0);
1452 	int i;
1453 
1454 	/*
1455 	 *  If user excluded this chip, do not initialize it.
1456 	 *  I hate this code so much.  Must kill it.
1457 	 */
1458 	if (io_port) {
1459 		for (i = 0 ; i < 8 ; i++) {
1460 			if (sym_driver_setup.excludes[i] == io_port)
1461 				return -ENODEV;
1462 		}
1463 	}
1464 
1465 	/*
1466 	 * Check if the chip is supported.  Then copy the chip description
1467 	 * to our device structure so we can make it match the actual device
1468 	 * and options.
1469 	 */
1470 	chip = sym_lookup_chip_table(pdev->device, pdev->revision);
1471 	if (!chip) {
1472 		dev_info(&pdev->dev, "device not supported\n");
1473 		return -ENODEV;
1474 	}
1475 	memcpy(&device->chip, chip, sizeof(device->chip));
1476 
1477 	return 0;
1478 }
1479 
1480 /*
1481  * Ignore Symbios chips controlled by various RAID controllers.
1482  * These controllers set value 0x52414944 at RAM end - 16.
1483  */
1484 static int __devinit sym_check_raid(struct sym_device *device)
1485 {
1486 	unsigned int ram_size, ram_val;
1487 
1488 	if (!device->s.ramaddr)
1489 		return 0;
1490 
1491 	if (device->chip.features & FE_RAM8K)
1492 		ram_size = 8192;
1493 	else
1494 		ram_size = 4096;
1495 
1496 	ram_val = readl(device->s.ramaddr + ram_size - 16);
1497 	if (ram_val != 0x52414944)
1498 		return 0;
1499 
1500 	dev_info(&device->pdev->dev,
1501 			"not initializing, driven by RAID controller.\n");
1502 	return -ENODEV;
1503 }
1504 
1505 static int __devinit sym_set_workarounds(struct sym_device *device)
1506 {
1507 	struct sym_chip *chip = &device->chip;
1508 	struct pci_dev *pdev = device->pdev;
1509 	u_short status_reg;
1510 
1511 	/*
1512 	 *  (ITEM 12 of a DEL about the 896 I haven't yet).
1513 	 *  We must ensure the chip will use WRITE AND INVALIDATE.
1514 	 *  The revision number limit is for now arbitrary.
1515 	 */
1516 	if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && pdev->revision < 0x4) {
1517 		chip->features	|= (FE_WRIE | FE_CLSE);
1518 	}
1519 
1520 	/* If the chip can do Memory Write Invalidate, enable it */
1521 	if (chip->features & FE_WRIE) {
1522 		if (pci_set_mwi(pdev))
1523 			return -ENODEV;
1524 	}
1525 
1526 	/*
1527 	 *  Work around for errant bit in 895A. The 66Mhz
1528 	 *  capable bit is set erroneously. Clear this bit.
1529 	 *  (Item 1 DEL 533)
1530 	 *
1531 	 *  Make sure Config space and Features agree.
1532 	 *
1533 	 *  Recall: writes are not normal to status register -
1534 	 *  write a 1 to clear and a 0 to leave unchanged.
1535 	 *  Can only reset bits.
1536 	 */
1537 	pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1538 	if (chip->features & FE_66MHZ) {
1539 		if (!(status_reg & PCI_STATUS_66MHZ))
1540 			chip->features &= ~FE_66MHZ;
1541 	} else {
1542 		if (status_reg & PCI_STATUS_66MHZ) {
1543 			status_reg = PCI_STATUS_66MHZ;
1544 			pci_write_config_word(pdev, PCI_STATUS, status_reg);
1545 			pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1546 		}
1547 	}
1548 
1549 	return 0;
1550 }
1551 
1552 /*
1553  *  Read and check the PCI configuration for any detected NCR
1554  *  boards and save data for attaching after all boards have
1555  *  been detected.
1556  */
1557 static void __devinit
1558 sym_init_device(struct pci_dev *pdev, struct sym_device *device)
1559 {
1560 	int i = 2;
1561 	struct pci_bus_region bus_addr;
1562 
1563 	device->host_id = SYM_SETUP_HOST_ID;
1564 	device->pdev = pdev;
1565 
1566 	pcibios_resource_to_bus(pdev, &bus_addr, &pdev->resource[1]);
1567 	device->mmio_base = bus_addr.start;
1568 
1569 	/*
1570 	 * If the BAR is 64-bit, resource 2 will be occupied by the
1571 	 * upper 32 bits
1572 	 */
1573 	if (!pdev->resource[i].flags)
1574 		i++;
1575 	pcibios_resource_to_bus(pdev, &bus_addr, &pdev->resource[i]);
1576 	device->ram_base = bus_addr.start;
1577 
1578 #ifdef CONFIG_SCSI_SYM53C8XX_MMIO
1579 	if (device->mmio_base)
1580 		device->s.ioaddr = pci_iomap(pdev, 1,
1581 						pci_resource_len(pdev, 1));
1582 #endif
1583 	if (!device->s.ioaddr)
1584 		device->s.ioaddr = pci_iomap(pdev, 0,
1585 						pci_resource_len(pdev, 0));
1586 	if (device->ram_base)
1587 		device->s.ramaddr = pci_iomap(pdev, i,
1588 						pci_resource_len(pdev, i));
1589 }
1590 
1591 /*
1592  * The NCR PQS and PDS cards are constructed as a DEC bridge
1593  * behind which sits a proprietary NCR memory controller and
1594  * either four or two 53c875s as separate devices.  We can tell
1595  * if an 875 is part of a PQS/PDS or not since if it is, it will
1596  * be on the same bus as the memory controller.  In its usual
1597  * mode of operation, the 875s are slaved to the memory
1598  * controller for all transfers.  To operate with the Linux
1599  * driver, the memory controller is disabled and the 875s
1600  * freed to function independently.  The only wrinkle is that
1601  * the preset SCSI ID (which may be zero) must be read in from
1602  * a special configuration space register of the 875.
1603  */
1604 static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
1605 {
1606 	int slot;
1607 	u8 tmp;
1608 
1609 	for (slot = 0; slot < 256; slot++) {
1610 		struct pci_dev *memc = pci_get_slot(pdev->bus, slot);
1611 
1612 		if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
1613 			pci_dev_put(memc);
1614 			continue;
1615 		}
1616 
1617 		/* bit 1: allow individual 875 configuration */
1618 		pci_read_config_byte(memc, 0x44, &tmp);
1619 		if ((tmp & 0x2) == 0) {
1620 			tmp |= 0x2;
1621 			pci_write_config_byte(memc, 0x44, tmp);
1622 		}
1623 
1624 		/* bit 2: drive individual 875 interrupts to the bus */
1625 		pci_read_config_byte(memc, 0x45, &tmp);
1626 		if ((tmp & 0x4) == 0) {
1627 			tmp |= 0x4;
1628 			pci_write_config_byte(memc, 0x45, tmp);
1629 		}
1630 
1631 		pci_dev_put(memc);
1632 		break;
1633 	}
1634 
1635 	pci_read_config_byte(pdev, 0x84, &tmp);
1636 	sym_dev->host_id = tmp;
1637 }
1638 
1639 /*
1640  *  Called before unloading the module.
1641  *  Detach the host.
1642  *  We have to free resources and halt the NCR chip.
1643  */
1644 static int sym_detach(struct Scsi_Host *shost, struct pci_dev *pdev)
1645 {
1646 	struct sym_hcb *np = sym_get_hcb(shost);
1647 	printk("%s: detaching ...\n", sym_name(np));
1648 
1649 	del_timer_sync(&np->s.timer);
1650 
1651 	/*
1652 	 * Reset NCR chip.
1653 	 * We should use sym_soft_reset(), but we don't want to do
1654 	 * so, since we may not be safe if interrupts occur.
1655 	 */
1656 	printk("%s: resetting chip\n", sym_name(np));
1657 	OUTB(np, nc_istat, SRST);
1658 	INB(np, nc_mbox1);
1659 	udelay(10);
1660 	OUTB(np, nc_istat, 0);
1661 
1662 	sym_free_resources(np, pdev);
1663 
1664 	return 1;
1665 }
1666 
1667 /*
1668  * Driver host template.
1669  */
1670 static struct scsi_host_template sym2_template = {
1671 	.module			= THIS_MODULE,
1672 	.name			= "sym53c8xx",
1673 	.info			= sym53c8xx_info,
1674 	.queuecommand		= sym53c8xx_queue_command,
1675 	.slave_alloc		= sym53c8xx_slave_alloc,
1676 	.slave_configure	= sym53c8xx_slave_configure,
1677 	.slave_destroy		= sym53c8xx_slave_destroy,
1678 	.eh_abort_handler	= sym53c8xx_eh_abort_handler,
1679 	.eh_device_reset_handler = sym53c8xx_eh_device_reset_handler,
1680 	.eh_bus_reset_handler	= sym53c8xx_eh_bus_reset_handler,
1681 	.eh_host_reset_handler	= sym53c8xx_eh_host_reset_handler,
1682 	.this_id		= 7,
1683 	.use_clustering		= ENABLE_CLUSTERING,
1684 	.max_sectors		= 0xFFFF,
1685 #ifdef SYM_LINUX_PROC_INFO_SUPPORT
1686 	.proc_info		= sym53c8xx_proc_info,
1687 	.proc_name		= NAME53C8XX,
1688 #endif
1689 };
1690 
1691 static int attach_count;
1692 
1693 static int __devinit sym2_probe(struct pci_dev *pdev,
1694 				const struct pci_device_id *ent)
1695 {
1696 	struct sym_device sym_dev;
1697 	struct sym_nvram nvram;
1698 	struct Scsi_Host *shost;
1699 
1700 	memset(&sym_dev, 0, sizeof(sym_dev));
1701 	memset(&nvram, 0, sizeof(nvram));
1702 
1703 	if (pci_enable_device(pdev))
1704 		goto leave;
1705 
1706 	pci_set_master(pdev);
1707 
1708 	if (pci_request_regions(pdev, NAME53C8XX))
1709 		goto disable;
1710 
1711 	sym_init_device(pdev, &sym_dev);
1712 	if (sym_check_supported(&sym_dev))
1713 		goto free;
1714 
1715 	if (sym_check_raid(&sym_dev))
1716 		goto leave;	/* Don't disable the device */
1717 
1718 	if (sym_set_workarounds(&sym_dev))
1719 		goto free;
1720 
1721 	sym_config_pqs(pdev, &sym_dev);
1722 
1723 	sym_get_nvram(&sym_dev, &nvram);
1724 
1725 	shost = sym_attach(&sym2_template, attach_count, &sym_dev);
1726 	if (!shost)
1727 		goto free;
1728 
1729 	if (scsi_add_host(shost, &pdev->dev))
1730 		goto detach;
1731 	scsi_scan_host(shost);
1732 
1733 	attach_count++;
1734 
1735 	return 0;
1736 
1737  detach:
1738 	sym_detach(pci_get_drvdata(pdev), pdev);
1739  free:
1740 	pci_release_regions(pdev);
1741  disable:
1742 	pci_disable_device(pdev);
1743  leave:
1744 	return -ENODEV;
1745 }
1746 
1747 static void sym2_remove(struct pci_dev *pdev)
1748 {
1749 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1750 
1751 	scsi_remove_host(shost);
1752 	scsi_host_put(shost);
1753 	sym_detach(shost, pdev);
1754 	pci_release_regions(pdev);
1755 	pci_disable_device(pdev);
1756 
1757 	attach_count--;
1758 }
1759 
1760 /**
1761  * sym2_io_error_detected() - called when PCI error is detected
1762  * @pdev: pointer to PCI device
1763  * @state: current state of the PCI slot
1764  */
1765 static pci_ers_result_t sym2_io_error_detected(struct pci_dev *pdev,
1766                                          enum pci_channel_state state)
1767 {
1768 	/* If slot is permanently frozen, turn everything off */
1769 	if (state == pci_channel_io_perm_failure) {
1770 		sym2_remove(pdev);
1771 		return PCI_ERS_RESULT_DISCONNECT;
1772 	}
1773 
1774 	disable_irq(pdev->irq);
1775 	pci_disable_device(pdev);
1776 
1777 	/* Request that MMIO be enabled, so register dump can be taken. */
1778 	return PCI_ERS_RESULT_CAN_RECOVER;
1779 }
1780 
1781 /**
1782  * sym2_io_slot_dump - Enable MMIO and dump debug registers
1783  * @pdev: pointer to PCI device
1784  */
1785 static pci_ers_result_t sym2_io_slot_dump(struct pci_dev *pdev)
1786 {
1787 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1788 
1789 	sym_dump_registers(shost);
1790 
1791 	/* Request a slot reset. */
1792 	return PCI_ERS_RESULT_NEED_RESET;
1793 }
1794 
1795 /**
1796  * sym2_reset_workarounds - hardware-specific work-arounds
1797  *
1798  * This routine is similar to sym_set_workarounds(), except
1799  * that, at this point, we already know that the device was
1800  * succesfully intialized at least once before, and so most
1801  * of the steps taken there are un-needed here.
1802  */
1803 static void sym2_reset_workarounds(struct pci_dev *pdev)
1804 {
1805 	u_short status_reg;
1806 	struct sym_chip *chip;
1807 
1808 	chip = sym_lookup_chip_table(pdev->device, pdev->revision);
1809 
1810 	/* Work around for errant bit in 895A, in a fashion
1811 	 * similar to what is done in sym_set_workarounds().
1812 	 */
1813 	pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1814 	if (!(chip->features & FE_66MHZ) && (status_reg & PCI_STATUS_66MHZ)) {
1815 		status_reg = PCI_STATUS_66MHZ;
1816 		pci_write_config_word(pdev, PCI_STATUS, status_reg);
1817 		pci_read_config_word(pdev, PCI_STATUS, &status_reg);
1818 	}
1819 }
1820 
1821 /**
1822  * sym2_io_slot_reset() - called when the pci bus has been reset.
1823  * @pdev: pointer to PCI device
1824  *
1825  * Restart the card from scratch.
1826  */
1827 static pci_ers_result_t sym2_io_slot_reset(struct pci_dev *pdev)
1828 {
1829 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1830 	struct sym_hcb *np = sym_get_hcb(shost);
1831 
1832 	printk(KERN_INFO "%s: recovering from a PCI slot reset\n",
1833 	          sym_name(np));
1834 
1835 	if (pci_enable_device(pdev)) {
1836 		printk(KERN_ERR "%s: Unable to enable after PCI reset\n",
1837 		        sym_name(np));
1838 		return PCI_ERS_RESULT_DISCONNECT;
1839 	}
1840 
1841 	pci_set_master(pdev);
1842 	enable_irq(pdev->irq);
1843 
1844 	/* If the chip can do Memory Write Invalidate, enable it */
1845 	if (np->features & FE_WRIE) {
1846 		if (pci_set_mwi(pdev))
1847 			return PCI_ERS_RESULT_DISCONNECT;
1848 	}
1849 
1850 	/* Perform work-arounds, analogous to sym_set_workarounds() */
1851 	sym2_reset_workarounds(pdev);
1852 
1853 	/* Perform host reset only on one instance of the card */
1854 	if (PCI_FUNC(pdev->devfn) == 0) {
1855 		if (sym_reset_scsi_bus(np, 0)) {
1856 			printk(KERN_ERR "%s: Unable to reset scsi host\n",
1857 			        sym_name(np));
1858 			return PCI_ERS_RESULT_DISCONNECT;
1859 		}
1860 		sym_start_up(shost, 1);
1861 	}
1862 
1863 	return PCI_ERS_RESULT_RECOVERED;
1864 }
1865 
1866 /**
1867  * sym2_io_resume() - resume normal ops after PCI reset
1868  * @pdev: pointer to PCI device
1869  *
1870  * Called when the error recovery driver tells us that its
1871  * OK to resume normal operation. Use completion to allow
1872  * halted scsi ops to resume.
1873  */
1874 static void sym2_io_resume(struct pci_dev *pdev)
1875 {
1876 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1877 	struct sym_data *sym_data = shost_priv(shost);
1878 
1879 	spin_lock_irq(shost->host_lock);
1880 	if (sym_data->io_reset)
1881 		complete_all(sym_data->io_reset);
1882 	spin_unlock_irq(shost->host_lock);
1883 }
1884 
1885 static void sym2_get_signalling(struct Scsi_Host *shost)
1886 {
1887 	struct sym_hcb *np = sym_get_hcb(shost);
1888 	enum spi_signal_type type;
1889 
1890 	switch (np->scsi_mode) {
1891 	case SMODE_SE:
1892 		type = SPI_SIGNAL_SE;
1893 		break;
1894 	case SMODE_LVD:
1895 		type = SPI_SIGNAL_LVD;
1896 		break;
1897 	case SMODE_HVD:
1898 		type = SPI_SIGNAL_HVD;
1899 		break;
1900 	default:
1901 		type = SPI_SIGNAL_UNKNOWN;
1902 		break;
1903 	}
1904 	spi_signalling(shost) = type;
1905 }
1906 
1907 static void sym2_set_offset(struct scsi_target *starget, int offset)
1908 {
1909 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1910 	struct sym_hcb *np = sym_get_hcb(shost);
1911 	struct sym_tcb *tp = &np->target[starget->id];
1912 
1913 	tp->tgoal.offset = offset;
1914 	tp->tgoal.check_nego = 1;
1915 }
1916 
1917 static void sym2_set_period(struct scsi_target *starget, int period)
1918 {
1919 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1920 	struct sym_hcb *np = sym_get_hcb(shost);
1921 	struct sym_tcb *tp = &np->target[starget->id];
1922 
1923 	/* have to have DT for these transfers, but DT will also
1924 	 * set width, so check that this is allowed */
1925 	if (period <= np->minsync && spi_width(starget))
1926 		tp->tgoal.dt = 1;
1927 
1928 	tp->tgoal.period = period;
1929 	tp->tgoal.check_nego = 1;
1930 }
1931 
1932 static void sym2_set_width(struct scsi_target *starget, int width)
1933 {
1934 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1935 	struct sym_hcb *np = sym_get_hcb(shost);
1936 	struct sym_tcb *tp = &np->target[starget->id];
1937 
1938 	/* It is illegal to have DT set on narrow transfers.  If DT is
1939 	 * clear, we must also clear IU and QAS.  */
1940 	if (width == 0)
1941 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
1942 
1943 	tp->tgoal.width = width;
1944 	tp->tgoal.check_nego = 1;
1945 }
1946 
1947 static void sym2_set_dt(struct scsi_target *starget, int dt)
1948 {
1949 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1950 	struct sym_hcb *np = sym_get_hcb(shost);
1951 	struct sym_tcb *tp = &np->target[starget->id];
1952 
1953 	/* We must clear QAS and IU if DT is clear */
1954 	if (dt)
1955 		tp->tgoal.dt = 1;
1956 	else
1957 		tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
1958 	tp->tgoal.check_nego = 1;
1959 }
1960 
1961 #if 0
1962 static void sym2_set_iu(struct scsi_target *starget, int iu)
1963 {
1964 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1965 	struct sym_hcb *np = sym_get_hcb(shost);
1966 	struct sym_tcb *tp = &np->target[starget->id];
1967 
1968 	if (iu)
1969 		tp->tgoal.iu = tp->tgoal.dt = 1;
1970 	else
1971 		tp->tgoal.iu = 0;
1972 	tp->tgoal.check_nego = 1;
1973 }
1974 
1975 static void sym2_set_qas(struct scsi_target *starget, int qas)
1976 {
1977 	struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
1978 	struct sym_hcb *np = sym_get_hcb(shost);
1979 	struct sym_tcb *tp = &np->target[starget->id];
1980 
1981 	if (qas)
1982 		tp->tgoal.dt = tp->tgoal.qas = 1;
1983 	else
1984 		tp->tgoal.qas = 0;
1985 	tp->tgoal.check_nego = 1;
1986 }
1987 #endif
1988 
1989 static struct spi_function_template sym2_transport_functions = {
1990 	.set_offset	= sym2_set_offset,
1991 	.show_offset	= 1,
1992 	.set_period	= sym2_set_period,
1993 	.show_period	= 1,
1994 	.set_width	= sym2_set_width,
1995 	.show_width	= 1,
1996 	.set_dt		= sym2_set_dt,
1997 	.show_dt	= 1,
1998 #if 0
1999 	.set_iu		= sym2_set_iu,
2000 	.show_iu	= 1,
2001 	.set_qas	= sym2_set_qas,
2002 	.show_qas	= 1,
2003 #endif
2004 	.get_signalling	= sym2_get_signalling,
2005 };
2006 
2007 static struct pci_device_id sym2_id_table[] __devinitdata = {
2008 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
2009 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2010 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
2011 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2012 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
2013 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2014 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
2015 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2016 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
2017 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
2018 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
2019 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2020 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
2021 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_STORAGE_SCSI<<8,  0xffff00, 0UL },
2022 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
2023 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2024 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
2025 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2026 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
2027 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2028 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
2029 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2030 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
2031 	  PCI_ANY_ID, PCI_ANY_ID,  PCI_CLASS_STORAGE_SCSI<<8,  0xffff00, 0UL }, /* new */
2032 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
2033 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2034 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
2035 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2036 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
2037 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2038 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
2039 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2040 	{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
2041 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
2042 	{ 0, }
2043 };
2044 
2045 MODULE_DEVICE_TABLE(pci, sym2_id_table);
2046 
2047 static struct pci_error_handlers sym2_err_handler = {
2048 	.error_detected	= sym2_io_error_detected,
2049 	.mmio_enabled	= sym2_io_slot_dump,
2050 	.slot_reset	= sym2_io_slot_reset,
2051 	.resume		= sym2_io_resume,
2052 };
2053 
2054 static struct pci_driver sym2_driver = {
2055 	.name		= NAME53C8XX,
2056 	.id_table	= sym2_id_table,
2057 	.probe		= sym2_probe,
2058 	.remove		= sym2_remove,
2059 	.err_handler 	= &sym2_err_handler,
2060 };
2061 
2062 static int __init sym2_init(void)
2063 {
2064 	int error;
2065 
2066 	sym2_setup_params();
2067 	sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
2068 	if (!sym2_transport_template)
2069 		return -ENODEV;
2070 
2071 	error = pci_register_driver(&sym2_driver);
2072 	if (error)
2073 		spi_release_transport(sym2_transport_template);
2074 	return error;
2075 }
2076 
2077 static void __exit sym2_exit(void)
2078 {
2079 	pci_unregister_driver(&sym2_driver);
2080 	spi_release_transport(sym2_transport_template);
2081 }
2082 
2083 module_init(sym2_init);
2084 module_exit(sym2_exit);
2085