1 /*
2  * Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
3  * of PCI-SCSI IO processors.
4  *
5  * Copyright (C) 1999-2001  Gerard Roudier <groudier@free.fr>
6  *
7  * This driver is derived from the Linux sym53c8xx driver.
8  * Copyright (C) 1998-2000  Gerard Roudier
9  *
10  * The sym53c8xx driver is derived from the ncr53c8xx driver that had been
11  * a port of the FreeBSD ncr driver to Linux-1.2.13.
12  *
13  * The original ncr driver has been written for 386bsd and FreeBSD by
14  *         Wolfgang Stanglmeier        <wolf@cologne.de>
15  *         Stefan Esser                <se@mi.Uni-Koeln.de>
16  * Copyright (C) 1994  Wolfgang Stanglmeier
17  *
18  * Other major contributions:
19  *
20  * NVRAM detection and reading.
21  * Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
22  *
23  *-----------------------------------------------------------------------------
24  *
25  * This program is free software; you can redistribute it and/or modify
26  * it under the terms of the GNU General Public License as published by
27  * the Free Software Foundation; either version 2 of the License, or
28  * (at your option) any later version.
29  *
30  * This program is distributed in the hope that it will be useful,
31  * but WITHOUT ANY WARRANTY; without even the implied warranty of
32  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
33  * GNU General Public License for more details.
34  *
35  * You should have received a copy of the GNU General Public License
36  * along with this program; if not, write to the Free Software
37  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
38  */
39 
40 /*
41  *  Scripts for SYMBIOS-Processor
42  *
43  *  We have to know the offsets of all labels before we reach
44  *  them (for forward jumps). Therefore we declare a struct
45  *  here. If you make changes inside the script,
46  *
47  *  DONT FORGET TO CHANGE THE LENGTHS HERE!
48  */
49 
50 /*
51  *  Script fragments which are loaded into the on-chip RAM
52  *  of 825A, 875, 876, 895, 895A, 896 and 1010 chips.
53  *  Must not exceed 4K bytes.
54  */
55 struct SYM_FWA_SCR {
56 	u32 start		[ 14];
57 	u32 getjob_begin	[  4];
58 	u32 getjob_end		[  4];
59 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
60 	u32 select		[  6];
61 #else
62 	u32 select		[  4];
63 #endif
64 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
65 	u32 is_dmap_dirty	[  4];
66 #endif
67 	u32 wf_sel_done		[  2];
68 	u32 sel_done		[  2];
69 	u32 send_ident		[  2];
70 #ifdef SYM_CONF_IARB_SUPPORT
71 	u32 select2		[  8];
72 #else
73 	u32 select2		[  2];
74 #endif
75 	u32 command		[  2];
76 	u32 dispatch		[ 28];
77 	u32 sel_no_cmd		[ 10];
78 	u32 init		[  6];
79 	u32 clrack		[  4];
80 	u32 datai_done		[ 10];
81 	u32 datai_done_wsr	[ 20];
82 	u32 datao_done		[ 10];
83 	u32 datao_done_wss	[  6];
84 	u32 datai_phase		[  4];
85 	u32 datao_phase		[  6];
86 	u32 msg_in		[  2];
87 	u32 msg_in2		[ 10];
88 #ifdef SYM_CONF_IARB_SUPPORT
89 	u32 status		[ 14];
90 #else
91 	u32 status		[ 10];
92 #endif
93 	u32 complete		[  6];
94 	u32 complete2		[ 12];
95 	u32 done		[ 14];
96 	u32 done_end		[  2];
97 	u32 complete_error	[  4];
98 	u32 save_dp		[ 12];
99 	u32 restore_dp		[  8];
100 	u32 disconnect		[ 12];
101 #ifdef SYM_CONF_IARB_SUPPORT
102 	u32 idle		[  4];
103 #else
104 	u32 idle		[  2];
105 #endif
106 #ifdef SYM_CONF_IARB_SUPPORT
107 	u32 ungetjob		[  6];
108 #else
109 	u32 ungetjob		[  4];
110 #endif
111 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
112 	u32 reselect		[  4];
113 #else
114 	u32 reselect		[  2];
115 #endif
116 	u32 reselected		[ 22];
117 	u32 resel_scntl4	[ 20];
118 	u32 resel_lun0		[  6];
119 #if   SYM_CONF_MAX_TASK*4 > 512
120 	u32 resel_tag		[ 26];
121 #elif SYM_CONF_MAX_TASK*4 > 256
122 	u32 resel_tag		[ 20];
123 #else
124 	u32 resel_tag		[ 16];
125 #endif
126 	u32 resel_dsa		[  2];
127 	u32 resel_dsa1		[  4];
128 	u32 resel_no_tag	[  6];
129 	u32 data_in		[SYM_CONF_MAX_SG * 2];
130 	u32 data_in2		[  4];
131 	u32 data_out		[SYM_CONF_MAX_SG * 2];
132 	u32 data_out2		[  4];
133 	u32 pm0_data		[ 12];
134 	u32 pm0_data_out	[  6];
135 	u32 pm0_data_end	[  6];
136 	u32 pm1_data		[ 12];
137 	u32 pm1_data_out	[  6];
138 	u32 pm1_data_end	[  6];
139 };
140 
141 /*
142  *  Script fragments which stay in main memory for all chips
143  *  except for chips that support 8K on-chip RAM.
144  */
145 struct SYM_FWB_SCR {
146 	u32 start64		[  2];
147 	u32 no_data		[  2];
148 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
149 	u32 sel_for_abort	[ 18];
150 #else
151 	u32 sel_for_abort	[ 16];
152 #endif
153 	u32 sel_for_abort_1	[  2];
154 	u32 msg_in_etc		[ 12];
155 	u32 msg_received	[  4];
156 	u32 msg_weird_seen	[  4];
157 	u32 msg_extended	[ 20];
158 	u32 msg_bad		[  6];
159 	u32 msg_weird		[  4];
160 	u32 msg_weird1		[  8];
161 
162 	u32 wdtr_resp		[  6];
163 	u32 send_wdtr		[  4];
164 	u32 sdtr_resp		[  6];
165 	u32 send_sdtr		[  4];
166 	u32 ppr_resp		[  6];
167 	u32 send_ppr		[  4];
168 	u32 nego_bad_phase	[  4];
169 	u32 msg_out		[  4];
170 	u32 msg_out_done	[  4];
171 	u32 data_ovrun		[  2];
172 	u32 data_ovrun1		[ 22];
173 	u32 data_ovrun2		[  8];
174 	u32 abort_resel		[ 16];
175 	u32 resend_ident	[  4];
176 	u32 ident_break		[  4];
177 	u32 ident_break_atn	[  4];
178 	u32 sdata_in		[  6];
179 	u32 resel_bad_lun	[  4];
180 	u32 bad_i_t_l		[  4];
181 	u32 bad_i_t_l_q		[  4];
182 	u32 bad_status		[  6];
183 	u32 pm_handle		[ 20];
184 	u32 pm_handle1		[  4];
185 	u32 pm_save		[  4];
186 	u32 pm0_save		[ 12];
187 	u32 pm_save_end		[  4];
188 	u32 pm1_save		[ 14];
189 
190 	/* WSR handling */
191 	u32 pm_wsr_handle	[ 38];
192 	u32 wsr_ma_helper	[  4];
193 
194 	/* Data area */
195 	u32 zero		[  1];
196 	u32 scratch		[  1];
197 	u32 pm0_data_addr	[  1];
198 	u32 pm1_data_addr	[  1];
199 	u32 done_pos		[  1];
200 	u32 startpos		[  1];
201 	u32 targtbl		[  1];
202 };
203 
204 /*
205  *  Script fragments used at initialisations.
206  *  Only runs out of main memory.
207  */
208 struct SYM_FWZ_SCR {
209 	u32 snooptest		[  6];
210 	u32 snoopend		[  2];
211 };
212 
213 static struct SYM_FWA_SCR SYM_FWA_SCR = {
214 /*--------------------------< START >----------------------------*/ {
215 	/*
216 	 *  Switch the LED on.
217 	 *  Will be patched with a NO_OP if LED
218 	 *  not needed or not desired.
219 	 */
220 	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
221 		0,
222 	/*
223 	 *      Clear SIGP.
224 	 */
225 	SCR_FROM_REG (ctest2),
226 		0,
227 	/*
228 	 *  Stop here if the C code wants to perform
229 	 *  some error recovery procedure manually.
230 	 *  (Indicate this by setting SEM in ISTAT)
231 	 */
232 	SCR_FROM_REG (istat),
233 		0,
234 	/*
235 	 *  Report to the C code the next position in
236 	 *  the start queue the SCRIPTS will schedule.
237 	 *  The C code must not change SCRATCHA.
238 	 */
239 	SCR_LOAD_ABS (scratcha, 4),
240 		PADDR_B (startpos),
241 	SCR_INT ^ IFTRUE (MASK (SEM, SEM)),
242 		SIR_SCRIPT_STOPPED,
243 	/*
244 	 *  Start the next job.
245 	 *
246 	 *  @DSA     = start point for this job.
247 	 *  SCRATCHA = address of this job in the start queue.
248 	 *
249 	 *  We will restore startpos with SCRATCHA if we fails the
250 	 *  arbitration or if it is the idle job.
251 	 *
252 	 *  The below GETJOB_BEGIN to GETJOB_END section of SCRIPTS
253 	 *  is a critical path. If it is partially executed, it then
254 	 *  may happen that the job address is not yet in the DSA
255 	 *  and the next queue position points to the next JOB.
256 	 */
257 	SCR_LOAD_ABS (dsa, 4),
258 		PADDR_B (startpos),
259 	SCR_LOAD_REL (temp, 4),
260 		4,
261 }/*-------------------------< GETJOB_BEGIN >---------------------*/,{
262 	SCR_STORE_ABS (temp, 4),
263 		PADDR_B (startpos),
264 	SCR_LOAD_REL (dsa, 4),
265 		0,
266 }/*-------------------------< GETJOB_END >-----------------------*/,{
267 	SCR_LOAD_REL (temp, 4),
268 		0,
269 	SCR_RETURN,
270 		0,
271 }/*-------------------------< SELECT >---------------------------*/,{
272 	/*
273 	 *  DSA	contains the address of a scheduled
274 	 *  	data structure.
275 	 *
276 	 *  SCRATCHA contains the address of the start queue
277 	 *  	entry which points to the next job.
278 	 *
279 	 *  Set Initiator mode.
280 	 *
281 	 *  (Target mode is left as an exercise for the reader)
282 	 */
283 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
284 	SCR_CLR (SCR_TRG),
285 		0,
286 #endif
287 	/*
288 	 *      And try to select this target.
289 	 */
290 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_dsb, select),
291 		PADDR_A (ungetjob),
292 	/*
293 	 *  Now there are 4 possibilities:
294 	 *
295 	 *  (1) The chip loses arbitration.
296 	 *  This is ok, because it will try again,
297 	 *  when the bus becomes idle.
298 	 *  (But beware of the timeout function!)
299 	 *
300 	 *  (2) The chip is reselected.
301 	 *  Then the script processor takes the jump
302 	 *  to the RESELECT label.
303 	 *
304 	 *  (3) The chip wins arbitration.
305 	 *  Then it will execute SCRIPTS instruction until
306 	 *  the next instruction that checks SCSI phase.
307 	 *  Then will stop and wait for selection to be
308 	 *  complete or selection time-out to occur.
309 	 *
310 	 *  After having won arbitration, the SCRIPTS
311 	 *  processor is able to execute instructions while
312 	 *  the SCSI core is performing SCSI selection.
313 	 */
314 	/*
315 	 *      Initialize the status registers
316 	 */
317 	SCR_LOAD_REL (scr0, 4),
318 		offsetof (struct sym_ccb, phys.head.status),
319 	/*
320 	 *  We may need help from CPU if the DMA segment
321 	 *  registers aren't up-to-date for this IO.
322 	 *  Patched with NOOP for chips that donnot
323 	 *  support DAC addressing.
324 	 */
325 #if	SYM_CONF_DMA_ADDRESSING_MODE == 2
326 }/*-------------------------< IS_DMAP_DIRTY >--------------------*/,{
327 	SCR_FROM_REG (HX_REG),
328 		0,
329 	SCR_INT ^ IFTRUE (MASK (HX_DMAP_DIRTY, HX_DMAP_DIRTY)),
330 		SIR_DMAP_DIRTY,
331 #endif
332 }/*-------------------------< WF_SEL_DONE >----------------------*/,{
333 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_OUT)),
334 		SIR_SEL_ATN_NO_MSG_OUT,
335 }/*-------------------------< SEL_DONE >-------------------------*/,{
336 	/*
337 	 *  C1010-33 errata work-around.
338 	 *  Due to a race, the SCSI core may not have
339 	 *  loaded SCNTL3 on SEL_TBL instruction.
340 	 *  We reload it once phase is stable.
341 	 *  Patched with a NOOP for other chips.
342 	 */
343 	SCR_LOAD_REL (scntl3, 1),
344 		offsetof(struct sym_dsb, select.sel_scntl3),
345 }/*-------------------------< SEND_IDENT >-----------------------*/,{
346 	/*
347 	 *  Selection complete.
348 	 *  Send the IDENTIFY and possibly the TAG message
349 	 *  and negotiation message if present.
350 	 */
351 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
352 		offsetof (struct sym_dsb, smsg),
353 }/*-------------------------< SELECT2 >--------------------------*/,{
354 #ifdef SYM_CONF_IARB_SUPPORT
355 	/*
356 	 *  Set IMMEDIATE ARBITRATION if we have been given
357 	 *  a hint to do so. (Some job to do after this one).
358 	 */
359 	SCR_FROM_REG (HF_REG),
360 		0,
361 	SCR_JUMPR ^ IFFALSE (MASK (HF_HINT_IARB, HF_HINT_IARB)),
362 		8,
363 	SCR_REG_REG (scntl1, SCR_OR, IARB),
364 		0,
365 #endif
366 	/*
367 	 *  Anticipate the COMMAND phase.
368 	 *  This is the PHASE we expect at this point.
369 	 */
370 	SCR_JUMP ^ IFFALSE (WHEN (SCR_COMMAND)),
371 		PADDR_A (sel_no_cmd),
372 }/*-------------------------< COMMAND >--------------------------*/,{
373 	/*
374 	 *  ... and send the command
375 	 */
376 	SCR_MOVE_TBL ^ SCR_COMMAND,
377 		offsetof (struct sym_dsb, cmd),
378 }/*-------------------------< DISPATCH >-------------------------*/,{
379 	/*
380 	 *  MSG_IN is the only phase that shall be
381 	 *  entered at least once for each (re)selection.
382 	 *  So we test it first.
383 	 */
384 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
385 		PADDR_A (msg_in),
386 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_OUT)),
387 		PADDR_A (datao_phase),
388 	SCR_JUMP ^ IFTRUE (IF (SCR_DATA_IN)),
389 		PADDR_A (datai_phase),
390 	SCR_JUMP ^ IFTRUE (IF (SCR_STATUS)),
391 		PADDR_A (status),
392 	SCR_JUMP ^ IFTRUE (IF (SCR_COMMAND)),
393 		PADDR_A (command),
394 	SCR_JUMP ^ IFTRUE (IF (SCR_MSG_OUT)),
395 		PADDR_B (msg_out),
396 	/*
397 	 *  Discard as many illegal phases as
398 	 *  required and tell the C code about.
399 	 */
400 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_OUT)),
401 		16,
402 	SCR_MOVE_ABS (1) ^ SCR_ILG_OUT,
403 		HADDR_1 (scratch),
404 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_OUT)),
405 		-16,
406 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_ILG_IN)),
407 		16,
408 	SCR_MOVE_ABS (1) ^ SCR_ILG_IN,
409 		HADDR_1 (scratch),
410 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_ILG_IN)),
411 		-16,
412 	SCR_INT,
413 		SIR_BAD_PHASE,
414 	SCR_JUMP,
415 		PADDR_A (dispatch),
416 }/*-------------------------< SEL_NO_CMD >-----------------------*/,{
417 	/*
418 	 *  The target does not switch to command
419 	 *  phase after IDENTIFY has been sent.
420 	 *
421 	 *  If it stays in MSG OUT phase send it
422 	 *  the IDENTIFY again.
423 	 */
424 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
425 		PADDR_B (resend_ident),
426 	/*
427 	 *  If target does not switch to MSG IN phase
428 	 *  and we sent a negotiation, assert the
429 	 *  failure immediately.
430 	 */
431 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
432 		PADDR_A (dispatch),
433 	SCR_FROM_REG (HS_REG),
434 		0,
435 	SCR_INT ^ IFTRUE (DATA (HS_NEGOTIATE)),
436 		SIR_NEGO_FAILED,
437 	/*
438 	 *  Jump to dispatcher.
439 	 */
440 	SCR_JUMP,
441 		PADDR_A (dispatch),
442 }/*-------------------------< INIT >-----------------------------*/,{
443 	/*
444 	 *  Wait for the SCSI RESET signal to be
445 	 *  inactive before restarting operations,
446 	 *  since the chip may hang on SEL_ATN
447 	 *  if SCSI RESET is active.
448 	 */
449 	SCR_FROM_REG (sstat0),
450 		0,
451 	SCR_JUMPR ^ IFTRUE (MASK (IRST, IRST)),
452 		-16,
453 	SCR_JUMP,
454 		PADDR_A (start),
455 }/*-------------------------< CLRACK >---------------------------*/,{
456 	/*
457 	 *  Terminate possible pending message phase.
458 	 */
459 	SCR_CLR (SCR_ACK),
460 		0,
461 	SCR_JUMP,
462 		PADDR_A (dispatch),
463 }/*-------------------------< DATAI_DONE >-----------------------*/,{
464 	/*
465 	 *  Save current pointer to LASTP.
466 	 */
467 	SCR_STORE_REL (temp, 4),
468 		offsetof (struct sym_ccb, phys.head.lastp),
469 	/*
470 	 *  If the SWIDE is not full, jump to dispatcher.
471 	 *  We anticipate a STATUS phase.
472 	 */
473 	SCR_FROM_REG (scntl2),
474 		0,
475 	SCR_JUMP ^ IFTRUE (MASK (WSR, WSR)),
476 		PADDR_A (datai_done_wsr),
477 	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
478 		PADDR_A (status),
479 	SCR_JUMP,
480 		PADDR_A (dispatch),
481 }/*-------------------------< DATAI_DONE_WSR >-------------------*/,{
482 	/*
483 	 *  The SWIDE is full.
484 	 *  Clear this condition.
485 	 */
486 	SCR_REG_REG (scntl2, SCR_OR, WSR),
487 		0,
488 	/*
489 	 *  We are expecting an IGNORE RESIDUE message
490 	 *  from the device, otherwise we are in data
491 	 *  overrun condition. Check against MSG_IN phase.
492 	 */
493 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
494 		SIR_SWIDE_OVERRUN,
495 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
496 		PADDR_A (dispatch),
497 	/*
498 	 *  We are in MSG_IN phase,
499 	 *  Read the first byte of the message.
500 	 *  If it is not an IGNORE RESIDUE message,
501 	 *  signal overrun and jump to message
502 	 *  processing.
503 	 */
504 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
505 		HADDR_1 (msgin[0]),
506 	SCR_INT ^ IFFALSE (DATA (M_IGN_RESIDUE)),
507 		SIR_SWIDE_OVERRUN,
508 	SCR_JUMP ^ IFFALSE (DATA (M_IGN_RESIDUE)),
509 		PADDR_A (msg_in2),
510 	/*
511 	 *  We got the message we expected.
512 	 *  Read the 2nd byte, and jump to dispatcher.
513 	 */
514 	SCR_CLR (SCR_ACK),
515 		0,
516 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
517 		HADDR_1 (msgin[1]),
518 	SCR_CLR (SCR_ACK),
519 		0,
520 	SCR_JUMP,
521 		PADDR_A (dispatch),
522 }/*-------------------------< DATAO_DONE >-----------------------*/,{
523 	/*
524 	 *  Save current pointer to LASTP.
525 	 */
526 	SCR_STORE_REL (temp, 4),
527 		offsetof (struct sym_ccb, phys.head.lastp),
528 	/*
529 	 *  If the SODL is not full jump to dispatcher.
530 	 *  We anticipate a STATUS phase.
531 	 */
532 	SCR_FROM_REG (scntl2),
533 		0,
534 	SCR_JUMP ^ IFTRUE (MASK (WSS, WSS)),
535 		PADDR_A (datao_done_wss),
536 	SCR_JUMP ^ IFTRUE (WHEN (SCR_STATUS)),
537 		PADDR_A (status),
538 	SCR_JUMP,
539 		PADDR_A (dispatch),
540 }/*-------------------------< DATAO_DONE_WSS >-------------------*/,{
541 	/*
542 	 *  The SODL is full, clear this condition.
543 	 */
544 	SCR_REG_REG (scntl2, SCR_OR, WSS),
545 		0,
546 	/*
547 	 *  And signal a DATA UNDERRUN condition
548 	 *  to the C code.
549 	 */
550 	SCR_INT,
551 		SIR_SODL_UNDERRUN,
552 	SCR_JUMP,
553 		PADDR_A (dispatch),
554 }/*-------------------------< DATAI_PHASE >----------------------*/,{
555 	/*
556 	 *  Jump to current pointer.
557 	 */
558 	SCR_LOAD_REL (temp, 4),
559 		offsetof (struct sym_ccb, phys.head.lastp),
560 	SCR_RETURN,
561 		0,
562 }/*-------------------------< DATAO_PHASE >----------------------*/,{
563 	/*
564 	 *  C1010-66 errata work-around.
565 	 *  Extra clocks of data hold must be inserted
566 	 *  in DATA OUT phase on 33 MHz PCI BUS.
567 	 *  Patched with a NOOP for other chips.
568 	 */
569 	SCR_REG_REG (scntl4, SCR_OR, (XCLKH_DT|XCLKH_ST)),
570 		0,
571 	/*
572 	 *  Jump to current pointer.
573 	 */
574 	SCR_LOAD_REL (temp, 4),
575 		offsetof (struct sym_ccb, phys.head.lastp),
576 	SCR_RETURN,
577 		0,
578 }/*-------------------------< MSG_IN >---------------------------*/,{
579 	/*
580 	 *  Get the first byte of the message.
581 	 *
582 	 *  The script processor doesn't negate the
583 	 *  ACK signal after this transfer.
584 	 */
585 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
586 		HADDR_1 (msgin[0]),
587 }/*-------------------------< MSG_IN2 >--------------------------*/,{
588 	/*
589 	 *  Check first against 1 byte messages
590 	 *  that we handle from SCRIPTS.
591 	 */
592 	SCR_JUMP ^ IFTRUE (DATA (M_COMPLETE)),
593 		PADDR_A (complete),
594 	SCR_JUMP ^ IFTRUE (DATA (M_DISCONNECT)),
595 		PADDR_A (disconnect),
596 	SCR_JUMP ^ IFTRUE (DATA (M_SAVE_DP)),
597 		PADDR_A (save_dp),
598 	SCR_JUMP ^ IFTRUE (DATA (M_RESTORE_DP)),
599 		PADDR_A (restore_dp),
600 	/*
601 	 *  We handle all other messages from the
602 	 *  C code, so no need to waste on-chip RAM
603 	 *  for those ones.
604 	 */
605 	SCR_JUMP,
606 		PADDR_B (msg_in_etc),
607 }/*-------------------------< STATUS >---------------------------*/,{
608 	/*
609 	 *  get the status
610 	 */
611 	SCR_MOVE_ABS (1) ^ SCR_STATUS,
612 		HADDR_1 (scratch),
613 #ifdef SYM_CONF_IARB_SUPPORT
614 	/*
615 	 *  If STATUS is not GOOD, clear IMMEDIATE ARBITRATION,
616 	 *  since we may have to tamper the start queue from
617 	 *  the C code.
618 	 */
619 	SCR_JUMPR ^ IFTRUE (DATA (S_GOOD)),
620 		8,
621 	SCR_REG_REG (scntl1, SCR_AND, ~IARB),
622 		0,
623 #endif
624 	/*
625 	 *  save status to scsi_status.
626 	 *  mark as complete.
627 	 */
628 	SCR_TO_REG (SS_REG),
629 		0,
630 	SCR_LOAD_REG (HS_REG, HS_COMPLETE),
631 		0,
632 	/*
633 	 *  Anticipate the MESSAGE PHASE for
634 	 *  the TASK COMPLETE message.
635 	 */
636 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
637 		PADDR_A (msg_in),
638 	SCR_JUMP,
639 		PADDR_A (dispatch),
640 }/*-------------------------< COMPLETE >-------------------------*/,{
641 	/*
642 	 *  Complete message.
643 	 *
644 	 *  When we terminate the cycle by clearing ACK,
645 	 *  the target may disconnect immediately.
646 	 *
647 	 *  We don't want to be told of an "unexpected disconnect",
648 	 *  so we disable this feature.
649 	 */
650 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
651 		0,
652 	/*
653 	 *  Terminate cycle ...
654 	 */
655 	SCR_CLR (SCR_ACK|SCR_ATN),
656 		0,
657 	/*
658 	 *  ... and wait for the disconnect.
659 	 */
660 	SCR_WAIT_DISC,
661 		0,
662 }/*-------------------------< COMPLETE2 >------------------------*/,{
663 	/*
664 	 *  Save host status.
665 	 */
666 	SCR_STORE_REL (scr0, 4),
667 		offsetof (struct sym_ccb, phys.head.status),
668 	/*
669 	 *  Some bridges may reorder DMA writes to memory.
670 	 *  We donnot want the CPU to deal with completions
671 	 *  without all the posted write having been flushed
672 	 *  to memory. This DUMMY READ should flush posted
673 	 *  buffers prior to the CPU having to deal with
674 	 *  completions.
675 	 */
676 	SCR_LOAD_REL (scr0, 4),	/* DUMMY READ */
677 		offsetof (struct sym_ccb, phys.head.status),
678 
679 	/*
680 	 *  If command resulted in not GOOD status,
681 	 *  call the C code if needed.
682 	 */
683 	SCR_FROM_REG (SS_REG),
684 		0,
685 	SCR_CALL ^ IFFALSE (DATA (S_GOOD)),
686 		PADDR_B (bad_status),
687 	/*
688 	 *  If we performed an auto-sense, call
689 	 *  the C code to synchronyze task aborts
690 	 *  with UNIT ATTENTION conditions.
691 	 */
692 	SCR_FROM_REG (HF_REG),
693 		0,
694 	SCR_JUMP ^ IFFALSE (MASK (0 ,(HF_SENSE|HF_EXT_ERR))),
695 		PADDR_A (complete_error),
696 }/*-------------------------< DONE >-----------------------------*/,{
697 	/*
698 	 *  Copy the DSA to the DONE QUEUE and
699 	 *  signal completion to the host.
700 	 *  If we are interrupted between DONE
701 	 *  and DONE_END, we must reset, otherwise
702 	 *  the completed CCB may be lost.
703 	 */
704 	SCR_STORE_ABS (dsa, 4),
705 		PADDR_B (scratch),
706 	SCR_LOAD_ABS (dsa, 4),
707 		PADDR_B (done_pos),
708 	SCR_LOAD_ABS (scratcha, 4),
709 		PADDR_B (scratch),
710 	SCR_STORE_REL (scratcha, 4),
711 		0,
712 	/*
713 	 *  The instruction below reads the DONE QUEUE next
714 	 *  free position from memory.
715 	 *  In addition it ensures that all PCI posted writes
716 	 *  are flushed and so the DSA value of the done
717 	 *  CCB is visible by the CPU before INTFLY is raised.
718 	 */
719 	SCR_LOAD_REL (scratcha, 4),
720 		4,
721 	SCR_INT_FLY,
722 		0,
723 	SCR_STORE_ABS (scratcha, 4),
724 		PADDR_B (done_pos),
725 }/*-------------------------< DONE_END >-------------------------*/,{
726 	SCR_JUMP,
727 		PADDR_A (start),
728 }/*-------------------------< COMPLETE_ERROR >-------------------*/,{
729 	SCR_LOAD_ABS (scratcha, 4),
730 		PADDR_B (startpos),
731 	SCR_INT,
732 		SIR_COMPLETE_ERROR,
733 }/*-------------------------< SAVE_DP >--------------------------*/,{
734 	/*
735 	 *  Clear ACK immediately.
736 	 *  No need to delay it.
737 	 */
738 	SCR_CLR (SCR_ACK),
739 		0,
740 	/*
741 	 *  Keep track we received a SAVE DP, so
742 	 *  we will switch to the other PM context
743 	 *  on the next PM since the DP may point
744 	 *  to the current PM context.
745 	 */
746 	SCR_REG_REG (HF_REG, SCR_OR, HF_DP_SAVED),
747 		0,
748 	/*
749 	 *  SAVE_DP message:
750 	 *  Copy LASTP to SAVEP.
751 	 */
752 	SCR_LOAD_REL (scratcha, 4),
753 		offsetof (struct sym_ccb, phys.head.lastp),
754 	SCR_STORE_REL (scratcha, 4),
755 		offsetof (struct sym_ccb, phys.head.savep),
756 	/*
757 	 *  Anticipate the MESSAGE PHASE for
758 	 *  the DISCONNECT message.
759 	 */
760 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_IN)),
761 		PADDR_A (msg_in),
762 	SCR_JUMP,
763 		PADDR_A (dispatch),
764 }/*-------------------------< RESTORE_DP >-----------------------*/,{
765 	/*
766 	 *  Clear ACK immediately.
767 	 *  No need to delay it.
768 	 */
769 	SCR_CLR (SCR_ACK),
770 		0,
771 	/*
772 	 *  Copy SAVEP to LASTP.
773 	 */
774 	SCR_LOAD_REL  (scratcha, 4),
775 		offsetof (struct sym_ccb, phys.head.savep),
776 	SCR_STORE_REL (scratcha, 4),
777 		offsetof (struct sym_ccb, phys.head.lastp),
778 	SCR_JUMP,
779 		PADDR_A (dispatch),
780 }/*-------------------------< DISCONNECT >-----------------------*/,{
781 	/*
782 	 *  DISCONNECTing  ...
783 	 *
784 	 *  disable the "unexpected disconnect" feature,
785 	 *  and remove the ACK signal.
786 	 */
787 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
788 		0,
789 	SCR_CLR (SCR_ACK|SCR_ATN),
790 		0,
791 	/*
792 	 *  Wait for the disconnect.
793 	 */
794 	SCR_WAIT_DISC,
795 		0,
796 	/*
797 	 *  Status is: DISCONNECTED.
798 	 */
799 	SCR_LOAD_REG (HS_REG, HS_DISCONNECT),
800 		0,
801 	/*
802 	 *  Save host status.
803 	 */
804 	SCR_STORE_REL (scr0, 4),
805 		offsetof (struct sym_ccb, phys.head.status),
806 	SCR_JUMP,
807 		PADDR_A (start),
808 }/*-------------------------< IDLE >-----------------------------*/,{
809 	/*
810 	 *  Nothing to do?
811 	 *  Switch the LED off and wait for reselect.
812 	 *  Will be patched with a NO_OP if LED
813 	 *  not needed or not desired.
814 	 */
815 	SCR_REG_REG (gpreg, SCR_OR, 0x01),
816 		0,
817 #ifdef SYM_CONF_IARB_SUPPORT
818 	SCR_JUMPR,
819 		8,
820 #endif
821 }/*-------------------------< UNGETJOB >-------------------------*/,{
822 #ifdef SYM_CONF_IARB_SUPPORT
823 	/*
824 	 *  Set IMMEDIATE ARBITRATION, for the next time.
825 	 *  This will give us better chance to win arbitration
826 	 *  for the job we just wanted to do.
827 	 */
828 	SCR_REG_REG (scntl1, SCR_OR, IARB),
829 		0,
830 #endif
831 	/*
832 	 *  We are not able to restart the SCRIPTS if we are
833 	 *  interrupted and these instruction haven't been
834 	 *  all executed. BTW, this is very unlikely to
835 	 *  happen, but we check that from the C code.
836 	 */
837 	SCR_LOAD_REG (dsa, 0xff),
838 		0,
839 	SCR_STORE_ABS (scratcha, 4),
840 		PADDR_B (startpos),
841 }/*-------------------------< RESELECT >-------------------------*/,{
842 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
843 	/*
844 	 *  Make sure we are in initiator mode.
845 	 */
846 	SCR_CLR (SCR_TRG),
847 		0,
848 #endif
849 	/*
850 	 *  Sleep waiting for a reselection.
851 	 */
852 	SCR_WAIT_RESEL,
853 		PADDR_A(start),
854 }/*-------------------------< RESELECTED >-----------------------*/,{
855 	/*
856 	 *  Switch the LED on.
857 	 *  Will be patched with a NO_OP if LED
858 	 *  not needed or not desired.
859 	 */
860 	SCR_REG_REG (gpreg, SCR_AND, 0xfe),
861 		0,
862 	/*
863 	 *  load the target id into the sdid
864 	 */
865 	SCR_REG_SFBR (ssid, SCR_AND, 0x8F),
866 		0,
867 	SCR_TO_REG (sdid),
868 		0,
869 	/*
870 	 *  Load the target control block address
871 	 */
872 	SCR_LOAD_ABS (dsa, 4),
873 		PADDR_B (targtbl),
874 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
875 		0,
876 	SCR_REG_REG (dsa, SCR_SHL, 0),
877 		0,
878 	SCR_REG_REG (dsa, SCR_AND, 0x3c),
879 		0,
880 	SCR_LOAD_REL (dsa, 4),
881 		0,
882 	/*
883 	 *  We expect MESSAGE IN phase.
884 	 *  If not, get help from the C code.
885 	 */
886 	SCR_INT ^ IFFALSE (WHEN (SCR_MSG_IN)),
887 		SIR_RESEL_NO_MSG_IN,
888 	/*
889 	 *  Load the legacy synchronous transfer registers.
890 	 */
891 	SCR_LOAD_REL (scntl3, 1),
892 		offsetof(struct sym_tcb, head.wval),
893 	SCR_LOAD_REL (sxfer, 1),
894 		offsetof(struct sym_tcb, head.sval),
895 }/*-------------------------< RESEL_SCNTL4 >---------------------*/,{
896 	/*
897 	 *  The C1010 uses a new synchronous timing scheme.
898 	 *  Will be patched with a NO_OP if not a C1010.
899 	 */
900 	SCR_LOAD_REL (scntl4, 1),
901 		offsetof(struct sym_tcb, head.uval),
902 	/*
903 	 *  Get the IDENTIFY message.
904 	 */
905 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
906 		HADDR_1 (msgin),
907 	/*
908 	 *  If IDENTIFY LUN #0, use a faster path
909 	 *  to find the LCB structure.
910 	 */
911 	SCR_JUMP ^ IFTRUE (MASK (0x80, 0xbf)),
912 		PADDR_A (resel_lun0),
913 	/*
914 	 *  If message isn't an IDENTIFY,
915 	 *  tell the C code about.
916 	 */
917 	SCR_INT ^ IFFALSE (MASK (0x80, 0x80)),
918 		SIR_RESEL_NO_IDENTIFY,
919 	/*
920 	 *  It is an IDENTIFY message,
921 	 *  Load the LUN control block address.
922 	 */
923 	SCR_LOAD_REL (dsa, 4),
924 		offsetof(struct sym_tcb, head.luntbl_sa),
925 	SCR_SFBR_REG (dsa, SCR_SHL, 0),
926 		0,
927 	SCR_REG_REG (dsa, SCR_SHL, 0),
928 		0,
929 	SCR_REG_REG (dsa, SCR_AND, 0xfc),
930 		0,
931 	SCR_LOAD_REL (dsa, 4),
932 		0,
933 	SCR_JUMPR,
934 		8,
935 }/*-------------------------< RESEL_LUN0 >-----------------------*/,{
936 	/*
937 	 *  LUN 0 special case (but usual one :))
938 	 */
939 	SCR_LOAD_REL (dsa, 4),
940 		offsetof(struct sym_tcb, head.lun0_sa),
941 	/*
942 	 *  Jump indirectly to the reselect action for this LUN.
943 	 */
944 	SCR_LOAD_REL (temp, 4),
945 		offsetof(struct sym_lcb, head.resel_sa),
946 	SCR_RETURN,
947 		0,
948 	/* In normal situations, we jump to RESEL_TAG or RESEL_NO_TAG */
949 }/*-------------------------< RESEL_TAG >------------------------*/,{
950 	/*
951 	 *  ACK the IDENTIFY previously received.
952 	 */
953 	SCR_CLR (SCR_ACK),
954 		0,
955 	/*
956 	 *  It shall be a tagged command.
957 	 *  Read SIMPLE+TAG.
958 	 *  The C code will deal with errors.
959 	 *  Aggressive optimization, isn't it? :)
960 	 */
961 	SCR_MOVE_ABS (2) ^ SCR_MSG_IN,
962 		HADDR_1 (msgin),
963 	/*
964 	 *  Load the pointer to the tagged task
965 	 *  table for this LUN.
966 	 */
967 	SCR_LOAD_REL (dsa, 4),
968 		offsetof(struct sym_lcb, head.itlq_tbl_sa),
969 	/*
970 	 *  The SIDL still contains the TAG value.
971 	 *  Aggressive optimization, isn't it? :):)
972 	 */
973 	SCR_REG_SFBR (sidl, SCR_SHL, 0),
974 		0,
975 #if SYM_CONF_MAX_TASK*4 > 512
976 	SCR_JUMPR ^ IFFALSE (CARRYSET),
977 		8,
978 	SCR_REG_REG (dsa1, SCR_OR, 2),
979 		0,
980 	SCR_REG_REG (sfbr, SCR_SHL, 0),
981 		0,
982 	SCR_JUMPR ^ IFFALSE (CARRYSET),
983 		8,
984 	SCR_REG_REG (dsa1, SCR_OR, 1),
985 		0,
986 #elif SYM_CONF_MAX_TASK*4 > 256
987 	SCR_JUMPR ^ IFFALSE (CARRYSET),
988 		8,
989 	SCR_REG_REG (dsa1, SCR_OR, 1),
990 		0,
991 #endif
992 	/*
993 	 *  Retrieve the DSA of this task.
994 	 *  JUMP indirectly to the restart point of the CCB.
995 	 */
996 	SCR_SFBR_REG (dsa, SCR_AND, 0xfc),
997 		0,
998 	SCR_LOAD_REL (dsa, 4),
999 		0,
1000 	SCR_LOAD_REL (temp, 4),
1001 		offsetof(struct sym_ccb, phys.head.go.restart),
1002 	SCR_RETURN,
1003 		0,
1004 	/* In normal situations we branch to RESEL_DSA */
1005 }/*-------------------------< RESEL_DSA >------------------------*/,{
1006 	/*
1007 	 *  ACK the IDENTIFY or TAG previously received.
1008 	 */
1009 	SCR_CLR (SCR_ACK),
1010 		0,
1011 }/*-------------------------< RESEL_DSA1 >-----------------------*/,{
1012 	/*
1013 	 *      Initialize the status registers
1014 	 */
1015 	SCR_LOAD_REL (scr0, 4),
1016 		offsetof (struct sym_ccb, phys.head.status),
1017 	/*
1018 	 *  Jump to dispatcher.
1019 	 */
1020 	SCR_JUMP,
1021 		PADDR_A (dispatch),
1022 }/*-------------------------< RESEL_NO_TAG >---------------------*/,{
1023 	/*
1024 	 *  Load the DSA with the unique ITL task.
1025 	 */
1026 	SCR_LOAD_REL (dsa, 4),
1027 		offsetof(struct sym_lcb, head.itl_task_sa),
1028 	/*
1029 	 *  JUMP indirectly to the restart point of the CCB.
1030 	 */
1031 	SCR_LOAD_REL (temp, 4),
1032 		offsetof(struct sym_ccb, phys.head.go.restart),
1033 	SCR_RETURN,
1034 		0,
1035 	/* In normal situations we branch to RESEL_DSA */
1036 }/*-------------------------< DATA_IN >--------------------------*/,{
1037 /*
1038  *  Because the size depends on the
1039  *  #define SYM_CONF_MAX_SG parameter,
1040  *  it is filled in at runtime.
1041  *
1042  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1043  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1044  *  ||		offsetof (struct sym_dsb, data[ i]),
1045  *  ##==========================================
1046  */
1047 0
1048 }/*-------------------------< DATA_IN2 >-------------------------*/,{
1049 	SCR_CALL,
1050 		PADDR_A (datai_done),
1051 	SCR_JUMP,
1052 		PADDR_B (data_ovrun),
1053 }/*-------------------------< DATA_OUT >-------------------------*/,{
1054 /*
1055  *  Because the size depends on the
1056  *  #define SYM_CONF_MAX_SG parameter,
1057  *  it is filled in at runtime.
1058  *
1059  *  ##===========< i=0; i<SYM_CONF_MAX_SG >=========
1060  *  ||	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1061  *  ||		offsetof (struct sym_dsb, data[ i]),
1062  *  ##==========================================
1063  */
1064 0
1065 }/*-------------------------< DATA_OUT2 >------------------------*/,{
1066 	SCR_CALL,
1067 		PADDR_A (datao_done),
1068 	SCR_JUMP,
1069 		PADDR_B (data_ovrun),
1070 }/*-------------------------< PM0_DATA >-------------------------*/,{
1071 	/*
1072 	 *  Read our host flags to SFBR, so we will be able
1073 	 *  to check against the data direction we expect.
1074 	 */
1075 	SCR_FROM_REG (HF_REG),
1076 		0,
1077 	/*
1078 	 *  Check against actual DATA PHASE.
1079 	 */
1080 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1081 		PADDR_A (pm0_data_out),
1082 	/*
1083 	 *  Actual phase is DATA IN.
1084 	 *  Check against expected direction.
1085 	 */
1086 	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1087 		PADDR_B (data_ovrun),
1088 	/*
1089 	 *  Keep track we are moving data from the
1090 	 *  PM0 DATA mini-script.
1091 	 */
1092 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1093 		0,
1094 	/*
1095 	 *  Move the data to memory.
1096 	 */
1097 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1098 		offsetof (struct sym_ccb, phys.pm0.sg),
1099 	SCR_JUMP,
1100 		PADDR_A (pm0_data_end),
1101 }/*-------------------------< PM0_DATA_OUT >---------------------*/,{
1102 	/*
1103 	 *  Actual phase is DATA OUT.
1104 	 *  Check against expected direction.
1105 	 */
1106 	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1107 		PADDR_B (data_ovrun),
1108 	/*
1109 	 *  Keep track we are moving data from the
1110 	 *  PM0 DATA mini-script.
1111 	 */
1112 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM0),
1113 		0,
1114 	/*
1115 	 *  Move the data from memory.
1116 	 */
1117 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1118 		offsetof (struct sym_ccb, phys.pm0.sg),
1119 }/*-------------------------< PM0_DATA_END >---------------------*/,{
1120 	/*
1121 	 *  Clear the flag that told we were moving
1122 	 *  data from the PM0 DATA mini-script.
1123 	 */
1124 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM0)),
1125 		0,
1126 	/*
1127 	 *  Return to the previous DATA script which
1128 	 *  is guaranteed by design (if no bug) to be
1129 	 *  the main DATA script for this transfer.
1130 	 */
1131 	SCR_LOAD_REL (temp, 4),
1132 		offsetof (struct sym_ccb, phys.pm0.ret),
1133 	SCR_RETURN,
1134 		0,
1135 }/*-------------------------< PM1_DATA >-------------------------*/,{
1136 	/*
1137 	 *  Read our host flags to SFBR, so we will be able
1138 	 *  to check against the data direction we expect.
1139 	 */
1140 	SCR_FROM_REG (HF_REG),
1141 		0,
1142 	/*
1143 	 *  Check against actual DATA PHASE.
1144 	 */
1145 	SCR_JUMP ^ IFFALSE (WHEN (SCR_DATA_IN)),
1146 		PADDR_A (pm1_data_out),
1147 	/*
1148 	 *  Actual phase is DATA IN.
1149 	 *  Check against expected direction.
1150 	 */
1151 	SCR_JUMP ^ IFFALSE (MASK (HF_DATA_IN, HF_DATA_IN)),
1152 		PADDR_B (data_ovrun),
1153 	/*
1154 	 *  Keep track we are moving data from the
1155 	 *  PM1 DATA mini-script.
1156 	 */
1157 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1158 		0,
1159 	/*
1160 	 *  Move the data to memory.
1161 	 */
1162 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1163 		offsetof (struct sym_ccb, phys.pm1.sg),
1164 	SCR_JUMP,
1165 		PADDR_A (pm1_data_end),
1166 }/*-------------------------< PM1_DATA_OUT >---------------------*/,{
1167 	/*
1168 	 *  Actual phase is DATA OUT.
1169 	 *  Check against expected direction.
1170 	 */
1171 	SCR_JUMP ^ IFTRUE (MASK (HF_DATA_IN, HF_DATA_IN)),
1172 		PADDR_B (data_ovrun),
1173 	/*
1174 	 *  Keep track we are moving data from the
1175 	 *  PM1 DATA mini-script.
1176 	 */
1177 	SCR_REG_REG (HF_REG, SCR_OR, HF_IN_PM1),
1178 		0,
1179 	/*
1180 	 *  Move the data from memory.
1181 	 */
1182 	SCR_CHMOV_TBL ^ SCR_DATA_OUT,
1183 		offsetof (struct sym_ccb, phys.pm1.sg),
1184 }/*-------------------------< PM1_DATA_END >---------------------*/,{
1185 	/*
1186 	 *  Clear the flag that told we were moving
1187 	 *  data from the PM1 DATA mini-script.
1188 	 */
1189 	SCR_REG_REG (HF_REG, SCR_AND, (~HF_IN_PM1)),
1190 		0,
1191 	/*
1192 	 *  Return to the previous DATA script which
1193 	 *  is guaranteed by design (if no bug) to be
1194 	 *  the main DATA script for this transfer.
1195 	 */
1196 	SCR_LOAD_REL (temp, 4),
1197 		offsetof (struct sym_ccb, phys.pm1.ret),
1198 	SCR_RETURN,
1199 		0,
1200 }/*-------------------------<>-----------------------------------*/
1201 };
1202 
1203 static struct SYM_FWB_SCR SYM_FWB_SCR = {
1204 /*--------------------------< START64 >--------------------------*/ {
1205 	/*
1206 	 *  SCRIPT entry point for the 895A, 896 and 1010.
1207 	 *  For now, there is no specific stuff for those
1208 	 *  chips at this point, but this may come.
1209 	 */
1210 	SCR_JUMP,
1211 		PADDR_A (init),
1212 }/*-------------------------< NO_DATA >--------------------------*/,{
1213 	SCR_JUMP,
1214 		PADDR_B (data_ovrun),
1215 }/*-------------------------< SEL_FOR_ABORT >--------------------*/,{
1216 	/*
1217 	 *  We are jumped here by the C code, if we have
1218 	 *  some target to reset or some disconnected
1219 	 *  job to abort. Since error recovery is a serious
1220 	 *  busyness, we will really reset the SCSI BUS, if
1221 	 *  case of a SCSI interrupt occurring in this path.
1222 	 */
1223 #ifdef SYM_CONF_TARGET_ROLE_SUPPORT
1224 	/*
1225 	 *  Set initiator mode.
1226 	 */
1227 	SCR_CLR (SCR_TRG),
1228 		0,
1229 #endif
1230 	/*
1231 	 *      And try to select this target.
1232 	 */
1233 	SCR_SEL_TBL_ATN ^ offsetof (struct sym_hcb, abrt_sel),
1234 		PADDR_A (reselect),
1235 	/*
1236 	 *  Wait for the selection to complete or
1237 	 *  the selection to time out.
1238 	 */
1239 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1240 		-8,
1241 	/*
1242 	 *  Call the C code.
1243 	 */
1244 	SCR_INT,
1245 		SIR_TARGET_SELECTED,
1246 	/*
1247 	 *  The C code should let us continue here.
1248 	 *  Send the 'kiss of death' message.
1249 	 *  We expect an immediate disconnect once
1250 	 *  the target has eaten the message.
1251 	 */
1252 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1253 		0,
1254 	SCR_MOVE_TBL ^ SCR_MSG_OUT,
1255 		offsetof (struct sym_hcb, abrt_tbl),
1256 	SCR_CLR (SCR_ACK|SCR_ATN),
1257 		0,
1258 	SCR_WAIT_DISC,
1259 		0,
1260 	/*
1261 	 *  Tell the C code that we are done.
1262 	 */
1263 	SCR_INT,
1264 		SIR_ABORT_SENT,
1265 }/*-------------------------< SEL_FOR_ABORT_1 >------------------*/,{
1266 	/*
1267 	 *  Jump at scheduler.
1268 	 */
1269 	SCR_JUMP,
1270 		PADDR_A (start),
1271 }/*-------------------------< MSG_IN_ETC >-----------------------*/,{
1272 	/*
1273 	 *  If it is an EXTENDED (variable size message)
1274 	 *  Handle it.
1275 	 */
1276 	SCR_JUMP ^ IFTRUE (DATA (M_EXTENDED)),
1277 		PADDR_B (msg_extended),
1278 	/*
1279 	 *  Let the C code handle any other
1280 	 *  1 byte message.
1281 	 */
1282 	SCR_JUMP ^ IFTRUE (MASK (0x00, 0xf0)),
1283 		PADDR_B (msg_received),
1284 	SCR_JUMP ^ IFTRUE (MASK (0x10, 0xf0)),
1285 		PADDR_B (msg_received),
1286 	/*
1287 	 *  We donnot handle 2 bytes messages from SCRIPTS.
1288 	 *  So, let the C code deal with these ones too.
1289 	 */
1290 	SCR_JUMP ^ IFFALSE (MASK (0x20, 0xf0)),
1291 		PADDR_B (msg_weird_seen),
1292 	SCR_CLR (SCR_ACK),
1293 		0,
1294 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1295 		HADDR_1 (msgin[1]),
1296 }/*-------------------------< MSG_RECEIVED >---------------------*/,{
1297 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1298 		0,
1299 	SCR_INT,
1300 		SIR_MSG_RECEIVED,
1301 }/*-------------------------< MSG_WEIRD_SEEN >-------------------*/,{
1302 	SCR_LOAD_REL (scratcha, 4),	/* DUMMY READ */
1303 		0,
1304 	SCR_INT,
1305 		SIR_MSG_WEIRD,
1306 }/*-------------------------< MSG_EXTENDED >---------------------*/,{
1307 	/*
1308 	 *  Clear ACK and get the next byte
1309 	 *  assumed to be the message length.
1310 	 */
1311 	SCR_CLR (SCR_ACK),
1312 		0,
1313 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1314 		HADDR_1 (msgin[1]),
1315 	/*
1316 	 *  Try to catch some unlikely situations as 0 length
1317 	 *  or too large the length.
1318 	 */
1319 	SCR_JUMP ^ IFTRUE (DATA (0)),
1320 		PADDR_B (msg_weird_seen),
1321 	SCR_TO_REG (scratcha),
1322 		0,
1323 	SCR_REG_REG (sfbr, SCR_ADD, (256-8)),
1324 		0,
1325 	SCR_JUMP ^ IFTRUE (CARRYSET),
1326 		PADDR_B (msg_weird_seen),
1327 	/*
1328 	 *  We donnot handle extended messages from SCRIPTS.
1329 	 *  Read the amount of data correponding to the
1330 	 *  message length and call the C code.
1331 	 */
1332 	SCR_STORE_REL (scratcha, 1),
1333 		offsetof (struct sym_dsb, smsg_ext.size),
1334 	SCR_CLR (SCR_ACK),
1335 		0,
1336 	SCR_MOVE_TBL ^ SCR_MSG_IN,
1337 		offsetof (struct sym_dsb, smsg_ext),
1338 	SCR_JUMP,
1339 		PADDR_B (msg_received),
1340 }/*-------------------------< MSG_BAD >--------------------------*/,{
1341 	/*
1342 	 *  unimplemented message - reject it.
1343 	 */
1344 	SCR_INT,
1345 		SIR_REJECT_TO_SEND,
1346 	SCR_SET (SCR_ATN),
1347 		0,
1348 	SCR_JUMP,
1349 		PADDR_A (clrack),
1350 }/*-------------------------< MSG_WEIRD >------------------------*/,{
1351 	/*
1352 	 *  weird message received
1353 	 *  ignore all MSG IN phases and reject it.
1354 	 */
1355 	SCR_INT,
1356 		SIR_REJECT_TO_SEND,
1357 	SCR_SET (SCR_ATN),
1358 		0,
1359 }/*-------------------------< MSG_WEIRD1 >-----------------------*/,{
1360 	SCR_CLR (SCR_ACK),
1361 		0,
1362 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_IN)),
1363 		PADDR_A (dispatch),
1364 	SCR_MOVE_ABS (1) ^ SCR_MSG_IN,
1365 		HADDR_1 (scratch),
1366 	SCR_JUMP,
1367 		PADDR_B (msg_weird1),
1368 }/*-------------------------< WDTR_RESP >------------------------*/,{
1369 	/*
1370 	 *  let the target fetch our answer.
1371 	 */
1372 	SCR_SET (SCR_ATN),
1373 		0,
1374 	SCR_CLR (SCR_ACK),
1375 		0,
1376 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1377 		PADDR_B (nego_bad_phase),
1378 }/*-------------------------< SEND_WDTR >------------------------*/,{
1379 	/*
1380 	 *  Send the M_X_WIDE_REQ
1381 	 */
1382 	SCR_MOVE_ABS (4) ^ SCR_MSG_OUT,
1383 		HADDR_1 (msgout),
1384 	SCR_JUMP,
1385 		PADDR_B (msg_out_done),
1386 }/*-------------------------< SDTR_RESP >------------------------*/,{
1387 	/*
1388 	 *  let the target fetch our answer.
1389 	 */
1390 	SCR_SET (SCR_ATN),
1391 		0,
1392 	SCR_CLR (SCR_ACK),
1393 		0,
1394 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1395 		PADDR_B (nego_bad_phase),
1396 }/*-------------------------< SEND_SDTR >------------------------*/,{
1397 	/*
1398 	 *  Send the M_X_SYNC_REQ
1399 	 */
1400 	SCR_MOVE_ABS (5) ^ SCR_MSG_OUT,
1401 		HADDR_1 (msgout),
1402 	SCR_JUMP,
1403 		PADDR_B (msg_out_done),
1404 }/*-------------------------< PPR_RESP >-------------------------*/,{
1405 	/*
1406 	 *  let the target fetch our answer.
1407 	 */
1408 	SCR_SET (SCR_ATN),
1409 		0,
1410 	SCR_CLR (SCR_ACK),
1411 		0,
1412 	SCR_JUMP ^ IFFALSE (WHEN (SCR_MSG_OUT)),
1413 		PADDR_B (nego_bad_phase),
1414 }/*-------------------------< SEND_PPR >-------------------------*/,{
1415 	/*
1416 	 *  Send the M_X_PPR_REQ
1417 	 */
1418 	SCR_MOVE_ABS (8) ^ SCR_MSG_OUT,
1419 		HADDR_1 (msgout),
1420 	SCR_JUMP,
1421 		PADDR_B (msg_out_done),
1422 }/*-------------------------< NEGO_BAD_PHASE >-------------------*/,{
1423 	SCR_INT,
1424 		SIR_NEGO_PROTO,
1425 	SCR_JUMP,
1426 		PADDR_A (dispatch),
1427 }/*-------------------------< MSG_OUT >--------------------------*/,{
1428 	/*
1429 	 *  The target requests a message.
1430 	 *  We donnot send messages that may
1431 	 *  require the device to go to bus free.
1432 	 */
1433 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1434 		HADDR_1 (msgout),
1435 	/*
1436 	 *  ... wait for the next phase
1437 	 *  if it's a message out, send it again, ...
1438 	 */
1439 	SCR_JUMP ^ IFTRUE (WHEN (SCR_MSG_OUT)),
1440 		PADDR_B (msg_out),
1441 }/*-------------------------< MSG_OUT_DONE >---------------------*/,{
1442 	/*
1443 	 *  Let the C code be aware of the
1444 	 *  sent message and clear the message.
1445 	 */
1446 	SCR_INT,
1447 		SIR_MSG_OUT_DONE,
1448 	/*
1449 	 *  ... and process the next phase
1450 	 */
1451 	SCR_JUMP,
1452 		PADDR_A (dispatch),
1453 }/*-------------------------< DATA_OVRUN >-----------------------*/,{
1454 	/*
1455 	 *  Use scratcha to count the extra bytes.
1456 	 */
1457 	SCR_LOAD_ABS (scratcha, 4),
1458 		PADDR_B (zero),
1459 }/*-------------------------< DATA_OVRUN1 >----------------------*/,{
1460 	/*
1461 	 *  The target may want to transfer too much data.
1462 	 *
1463 	 *  If phase is DATA OUT write 1 byte and count it.
1464 	 */
1465 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_OUT)),
1466 		16,
1467 	SCR_CHMOV_ABS (1) ^ SCR_DATA_OUT,
1468 		HADDR_1 (scratch),
1469 	SCR_JUMP,
1470 		PADDR_B (data_ovrun2),
1471 	/*
1472 	 *  If WSR is set, clear this condition, and
1473 	 *  count this byte.
1474 	 */
1475 	SCR_FROM_REG (scntl2),
1476 		0,
1477 	SCR_JUMPR ^ IFFALSE (MASK (WSR, WSR)),
1478 		16,
1479 	SCR_REG_REG (scntl2, SCR_OR, WSR),
1480 		0,
1481 	SCR_JUMP,
1482 		PADDR_B (data_ovrun2),
1483 	/*
1484 	 *  Finally check against DATA IN phase.
1485 	 *  Signal data overrun to the C code
1486 	 *  and jump to dispatcher if not so.
1487 	 *  Read 1 byte otherwise and count it.
1488 	 */
1489 	SCR_JUMPR ^ IFTRUE (WHEN (SCR_DATA_IN)),
1490 		16,
1491 	SCR_INT,
1492 		SIR_DATA_OVERRUN,
1493 	SCR_JUMP,
1494 		PADDR_A (dispatch),
1495 	SCR_CHMOV_ABS (1) ^ SCR_DATA_IN,
1496 		HADDR_1 (scratch),
1497 }/*-------------------------< DATA_OVRUN2 >----------------------*/,{
1498 	/*
1499 	 *  Count this byte.
1500 	 *  This will allow to return a negative
1501 	 *  residual to user.
1502 	 */
1503 	SCR_REG_REG (scratcha,  SCR_ADD,  0x01),
1504 		0,
1505 	SCR_REG_REG (scratcha1, SCR_ADDC, 0),
1506 		0,
1507 	SCR_REG_REG (scratcha2, SCR_ADDC, 0),
1508 		0,
1509 	/*
1510 	 *  .. and repeat as required.
1511 	 */
1512 	SCR_JUMP,
1513 		PADDR_B (data_ovrun1),
1514 }/*-------------------------< ABORT_RESEL >----------------------*/,{
1515 	SCR_SET (SCR_ATN),
1516 		0,
1517 	SCR_CLR (SCR_ACK),
1518 		0,
1519 	/*
1520 	 *  send the abort/abortag/reset message
1521 	 *  we expect an immediate disconnect
1522 	 */
1523 	SCR_REG_REG (scntl2, SCR_AND, 0x7f),
1524 		0,
1525 	SCR_MOVE_ABS (1) ^ SCR_MSG_OUT,
1526 		HADDR_1 (msgout),
1527 	SCR_CLR (SCR_ACK|SCR_ATN),
1528 		0,
1529 	SCR_WAIT_DISC,
1530 		0,
1531 	SCR_INT,
1532 		SIR_RESEL_ABORTED,
1533 	SCR_JUMP,
1534 		PADDR_A (start),
1535 }/*-------------------------< RESEND_IDENT >---------------------*/,{
1536 	/*
1537 	 *  The target stays in MSG OUT phase after having acked
1538 	 *  Identify [+ Tag [+ Extended message ]]. Targets shall
1539 	 *  behave this way on parity error.
1540 	 *  We must send it again all the messages.
1541 	 */
1542 	SCR_SET (SCR_ATN), /* Shall be asserted 2 deskew delays before the  */
1543 		0,         /* 1rst ACK = 90 ns. Hope the chip isn't too fast */
1544 	SCR_JUMP,
1545 		PADDR_A (send_ident),
1546 }/*-------------------------< IDENT_BREAK >----------------------*/,{
1547 	SCR_CLR (SCR_ATN),
1548 		0,
1549 	SCR_JUMP,
1550 		PADDR_A (select2),
1551 }/*-------------------------< IDENT_BREAK_ATN >------------------*/,{
1552 	SCR_SET (SCR_ATN),
1553 		0,
1554 	SCR_JUMP,
1555 		PADDR_A (select2),
1556 }/*-------------------------< SDATA_IN >-------------------------*/,{
1557 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1558 		offsetof (struct sym_dsb, sense),
1559 	SCR_CALL,
1560 		PADDR_A (datai_done),
1561 	SCR_JUMP,
1562 		PADDR_B (data_ovrun),
1563 }/*-------------------------< RESEL_BAD_LUN >--------------------*/,{
1564 	/*
1565 	 *  Message is an IDENTIFY, but lun is unknown.
1566 	 *  Signal problem to C code for logging the event.
1567 	 *  Send a M_ABORT to clear all pending tasks.
1568 	 */
1569 	SCR_INT,
1570 		SIR_RESEL_BAD_LUN,
1571 	SCR_JUMP,
1572 		PADDR_B (abort_resel),
1573 }/*-------------------------< BAD_I_T_L >------------------------*/,{
1574 	/*
1575 	 *  We donnot have a task for that I_T_L.
1576 	 *  Signal problem to C code for logging the event.
1577 	 *  Send a M_ABORT message.
1578 	 */
1579 	SCR_INT,
1580 		SIR_RESEL_BAD_I_T_L,
1581 	SCR_JUMP,
1582 		PADDR_B (abort_resel),
1583 }/*-------------------------< BAD_I_T_L_Q >----------------------*/,{
1584 	/*
1585 	 *  We donnot have a task that matches the tag.
1586 	 *  Signal problem to C code for logging the event.
1587 	 *  Send a M_ABORTTAG message.
1588 	 */
1589 	SCR_INT,
1590 		SIR_RESEL_BAD_I_T_L_Q,
1591 	SCR_JUMP,
1592 		PADDR_B (abort_resel),
1593 }/*-------------------------< BAD_STATUS >-----------------------*/,{
1594 	/*
1595 	 *  Anything different from INTERMEDIATE
1596 	 *  CONDITION MET should be a bad SCSI status,
1597 	 *  given that GOOD status has already been tested.
1598 	 *  Call the C code.
1599 	 */
1600 	SCR_LOAD_ABS (scratcha, 4),
1601 		PADDR_B (startpos),
1602 	SCR_INT ^ IFFALSE (DATA (S_COND_MET)),
1603 		SIR_BAD_SCSI_STATUS,
1604 	SCR_RETURN,
1605 		0,
1606 }/*-------------------------< PM_HANDLE >------------------------*/,{
1607 	/*
1608 	 *  Phase mismatch handling.
1609 	 *
1610 	 *  Since we have to deal with 2 SCSI data pointers
1611 	 *  (current and saved), we need at least 2 contexts.
1612 	 *  Each context (pm0 and pm1) has a saved area, a
1613 	 *  SAVE mini-script and a DATA phase mini-script.
1614 	 */
1615 	/*
1616 	 *  Get the PM handling flags.
1617 	 */
1618 	SCR_FROM_REG (HF_REG),
1619 		0,
1620 	/*
1621 	 *  If no flags (1rst PM for example), avoid
1622 	 *  all the below heavy flags testing.
1623 	 *  This makes the normal case a bit faster.
1624 	 */
1625 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1 | HF_DP_SAVED))),
1626 		PADDR_B (pm_handle1),
1627 	/*
1628 	 *  If we received a SAVE DP, switch to the
1629 	 *  other PM context since the savep may point
1630 	 *  to the current PM context.
1631 	 */
1632 	SCR_JUMPR ^ IFFALSE (MASK (HF_DP_SAVED, HF_DP_SAVED)),
1633 		8,
1634 	SCR_REG_REG (sfbr, SCR_XOR, HF_ACT_PM),
1635 		0,
1636 	/*
1637 	 *  If we have been interrupt in a PM DATA mini-script,
1638 	 *  we take the return address from the corresponding
1639 	 *  saved area.
1640 	 *  This ensure the return address always points to the
1641 	 *  main DATA script for this transfer.
1642 	 */
1643 	SCR_JUMP ^ IFTRUE (MASK (0, (HF_IN_PM0 | HF_IN_PM1))),
1644 		PADDR_B (pm_handle1),
1645 	SCR_JUMPR ^ IFFALSE (MASK (HF_IN_PM0, HF_IN_PM0)),
1646 		16,
1647 	SCR_LOAD_REL (ia, 4),
1648 		offsetof(struct sym_ccb, phys.pm0.ret),
1649 	SCR_JUMP,
1650 		PADDR_B (pm_save),
1651 	SCR_LOAD_REL (ia, 4),
1652 		offsetof(struct sym_ccb, phys.pm1.ret),
1653 	SCR_JUMP,
1654 		PADDR_B (pm_save),
1655 }/*-------------------------< PM_HANDLE1 >-----------------------*/,{
1656 	/*
1657 	 *  Normal case.
1658 	 *  Update the return address so that it
1659 	 *  will point after the interrupted MOVE.
1660 	 */
1661 	SCR_REG_REG (ia, SCR_ADD, 8),
1662 		0,
1663 	SCR_REG_REG (ia1, SCR_ADDC, 0),
1664 		0,
1665 }/*-------------------------< PM_SAVE >--------------------------*/,{
1666 	/*
1667 	 *  Clear all the flags that told us if we were
1668 	 *  interrupted in a PM DATA mini-script and/or
1669 	 *  we received a SAVE DP.
1670 	 */
1671 	SCR_SFBR_REG (HF_REG, SCR_AND, (~(HF_IN_PM0|HF_IN_PM1|HF_DP_SAVED))),
1672 		0,
1673 	/*
1674 	 *  Choose the current PM context.
1675 	 */
1676 	SCR_JUMP ^ IFTRUE (MASK (HF_ACT_PM, HF_ACT_PM)),
1677 		PADDR_B (pm1_save),
1678 }/*-------------------------< PM0_SAVE >-------------------------*/,{
1679 	SCR_STORE_REL (ia, 4),
1680 		offsetof(struct sym_ccb, phys.pm0.ret),
1681 	/*
1682 	 *  If WSR bit is set, either UA and RBC may
1683 	 *  have to be changed whether the device wants
1684 	 *  to ignore this residue or not.
1685 	 */
1686 	SCR_FROM_REG (scntl2),
1687 		0,
1688 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1689 		PADDR_B (pm_wsr_handle),
1690 	/*
1691 	 *  Save the remaining byte count, the updated
1692 	 *  address and the return address.
1693 	 */
1694 	SCR_STORE_REL (rbc, 4),
1695 		offsetof(struct sym_ccb, phys.pm0.sg.size),
1696 	SCR_STORE_REL (ua, 4),
1697 		offsetof(struct sym_ccb, phys.pm0.sg.addr),
1698 	/*
1699 	 *  Set the current pointer at the PM0 DATA mini-script.
1700 	 */
1701 	SCR_LOAD_ABS (ia, 4),
1702 		PADDR_B (pm0_data_addr),
1703 }/*-------------------------< PM_SAVE_END >----------------------*/,{
1704 	SCR_STORE_REL (ia, 4),
1705 		offsetof(struct sym_ccb, phys.head.lastp),
1706 	SCR_JUMP,
1707 		PADDR_A (dispatch),
1708 }/*-------------------------< PM1_SAVE >-------------------------*/,{
1709 	SCR_STORE_REL (ia, 4),
1710 		offsetof(struct sym_ccb, phys.pm1.ret),
1711 	/*
1712 	 *  If WSR bit is set, either UA and RBC may
1713 	 *  have to be changed whether the device wants
1714 	 *  to ignore this residue or not.
1715 	 */
1716 	SCR_FROM_REG (scntl2),
1717 		0,
1718 	SCR_CALL ^ IFTRUE (MASK (WSR, WSR)),
1719 		PADDR_B (pm_wsr_handle),
1720 	/*
1721 	 *  Save the remaining byte count, the updated
1722 	 *  address and the return address.
1723 	 */
1724 	SCR_STORE_REL (rbc, 4),
1725 		offsetof(struct sym_ccb, phys.pm1.sg.size),
1726 	SCR_STORE_REL (ua, 4),
1727 		offsetof(struct sym_ccb, phys.pm1.sg.addr),
1728 	/*
1729 	 *  Set the current pointer at the PM1 DATA mini-script.
1730 	 */
1731 	SCR_LOAD_ABS (ia, 4),
1732 		PADDR_B (pm1_data_addr),
1733 	SCR_JUMP,
1734 		PADDR_B (pm_save_end),
1735 }/*-------------------------< PM_WSR_HANDLE >--------------------*/,{
1736 	/*
1737 	 *  Phase mismatch handling from SCRIPT with WSR set.
1738 	 *  Such a condition can occur if the chip wants to
1739 	 *  execute a CHMOV(size > 1) when the WSR bit is
1740 	 *  set and the target changes PHASE.
1741 	 *
1742 	 *  We must move the residual byte to memory.
1743 	 *
1744 	 *  UA contains bit 0..31 of the address to
1745 	 *  move the residual byte.
1746 	 *  Move it to the table indirect.
1747 	 */
1748 	SCR_STORE_REL (ua, 4),
1749 		offsetof (struct sym_ccb, phys.wresid.addr),
1750 	/*
1751 	 *  Increment UA (move address to next position).
1752 	 */
1753 	SCR_REG_REG (ua, SCR_ADD, 1),
1754 		0,
1755 	SCR_REG_REG (ua1, SCR_ADDC, 0),
1756 		0,
1757 	SCR_REG_REG (ua2, SCR_ADDC, 0),
1758 		0,
1759 	SCR_REG_REG (ua3, SCR_ADDC, 0),
1760 		0,
1761 	/*
1762 	 *  Compute SCRATCHA as:
1763 	 *  - size to transfer = 1 byte.
1764 	 *  - bit 24..31 = high address bit [32...39].
1765 	 */
1766 	SCR_LOAD_ABS (scratcha, 4),
1767 		PADDR_B (zero),
1768 	SCR_REG_REG (scratcha, SCR_OR, 1),
1769 		0,
1770 	SCR_FROM_REG (rbc3),
1771 		0,
1772 	SCR_TO_REG (scratcha3),
1773 		0,
1774 	/*
1775 	 *  Move this value to the table indirect.
1776 	 */
1777 	SCR_STORE_REL (scratcha, 4),
1778 		offsetof (struct sym_ccb, phys.wresid.size),
1779 	/*
1780 	 *  Wait for a valid phase.
1781 	 *  While testing with bogus QUANTUM drives, the C1010
1782 	 *  sometimes raised a spurious phase mismatch with
1783 	 *  WSR and the CHMOV(1) triggered another PM.
1784 	 *  Waiting explicitly for the PHASE seemed to avoid
1785 	 *  the nested phase mismatch. Btw, this didn't happen
1786 	 *  using my IBM drives.
1787 	 */
1788 	SCR_JUMPR ^ IFFALSE (WHEN (SCR_DATA_IN)),
1789 		0,
1790 	/*
1791 	 *  Perform the move of the residual byte.
1792 	 */
1793 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1794 		offsetof (struct sym_ccb, phys.wresid),
1795 	/*
1796 	 *  We can now handle the phase mismatch with UA fixed.
1797 	 *  RBC[0..23]=0 is a special case that does not require
1798 	 *  a PM context. The C code also checks against this.
1799 	 */
1800 	SCR_FROM_REG (rbc),
1801 		0,
1802 	SCR_RETURN ^ IFFALSE (DATA (0)),
1803 		0,
1804 	SCR_FROM_REG (rbc1),
1805 		0,
1806 	SCR_RETURN ^ IFFALSE (DATA (0)),
1807 		0,
1808 	SCR_FROM_REG (rbc2),
1809 		0,
1810 	SCR_RETURN ^ IFFALSE (DATA (0)),
1811 		0,
1812 	/*
1813 	 *  RBC[0..23]=0.
1814 	 *  Not only we donnot need a PM context, but this would
1815 	 *  lead to a bogus CHMOV(0). This condition means that
1816 	 *  the residual was the last byte to move from this CHMOV.
1817 	 *  So, we just have to move the current data script pointer
1818 	 *  (i.e. TEMP) to the SCRIPTS address following the
1819 	 *  interrupted CHMOV and jump to dispatcher.
1820 	 *  IA contains the data pointer to save.
1821 	 */
1822 	SCR_JUMP,
1823 		PADDR_B (pm_save_end),
1824 }/*-------------------------< WSR_MA_HELPER >--------------------*/,{
1825 	/*
1826 	 *  Helper for the C code when WSR bit is set.
1827 	 *  Perform the move of the residual byte.
1828 	 */
1829 	SCR_CHMOV_TBL ^ SCR_DATA_IN,
1830 		offsetof (struct sym_ccb, phys.wresid),
1831 	SCR_JUMP,
1832 		PADDR_A (dispatch),
1833 
1834 }/*-------------------------< ZERO >-----------------------------*/,{
1835 	SCR_DATA_ZERO,
1836 }/*-------------------------< SCRATCH >--------------------------*/,{
1837 	SCR_DATA_ZERO,
1838 }/*-------------------------< PM0_DATA_ADDR >--------------------*/,{
1839 	SCR_DATA_ZERO,
1840 }/*-------------------------< PM1_DATA_ADDR >--------------------*/,{
1841 	SCR_DATA_ZERO,
1842 }/*-------------------------< DONE_POS >-------------------------*/,{
1843 	SCR_DATA_ZERO,
1844 }/*-------------------------< STARTPOS >-------------------------*/,{
1845 	SCR_DATA_ZERO,
1846 }/*-------------------------< TARGTBL >--------------------------*/,{
1847 	SCR_DATA_ZERO,
1848 }/*-------------------------<>-----------------------------------*/
1849 };
1850 
1851 static struct SYM_FWZ_SCR SYM_FWZ_SCR = {
1852  /*-------------------------< SNOOPTEST >------------------------*/{
1853 	/*
1854 	 *  Read the variable from memory.
1855 	 */
1856 	SCR_LOAD_REL (scratcha, 4),
1857 		offsetof(struct sym_hcb, scratch),
1858 	/*
1859 	 *  Write the variable to memory.
1860 	 */
1861 	SCR_STORE_REL (temp, 4),
1862 		offsetof(struct sym_hcb, scratch),
1863 	/*
1864 	 *  Read back the variable from memory.
1865 	 */
1866 	SCR_LOAD_REL (temp, 4),
1867 		offsetof(struct sym_hcb, scratch),
1868 }/*-------------------------< SNOOPEND >-------------------------*/,{
1869 	/*
1870 	 *  And stop.
1871 	 */
1872 	SCR_INT,
1873 		99,
1874 }/*-------------------------<>-----------------------------------*/
1875 };
1876