xref: /openbmc/linux/drivers/scsi/storvsc_drv.c (revision f20c7d91)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  *   K. Y. Srinivasan <kys@microsoft.com>
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/wait.h>
13 #include <linux/sched.h>
14 #include <linux/completion.h>
15 #include <linux/string.h>
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/hyperv.h>
23 #include <linux/blkdev.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_host.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_tcq.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_devinfo.h>
31 #include <scsi/scsi_dbg.h>
32 #include <scsi/scsi_transport_fc.h>
33 #include <scsi/scsi_transport.h>
34 
35 /*
36  * All wire protocol details (storage protocol between the guest and the host)
37  * are consolidated here.
38  *
39  * Begin protocol definitions.
40  */
41 
42 /*
43  * Version history:
44  * V1 Beta: 0.1
45  * V1 RC < 2008/1/31: 1.0
46  * V1 RC > 2008/1/31:  2.0
47  * Win7: 4.2
48  * Win8: 5.1
49  * Win8.1: 6.0
50  * Win10: 6.2
51  */
52 
53 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_)	((((MAJOR_) & 0xff) << 8) | \
54 						(((MINOR_) & 0xff)))
55 
56 #define VMSTOR_PROTO_VERSION_WIN6	VMSTOR_PROTO_VERSION(2, 0)
57 #define VMSTOR_PROTO_VERSION_WIN7	VMSTOR_PROTO_VERSION(4, 2)
58 #define VMSTOR_PROTO_VERSION_WIN8	VMSTOR_PROTO_VERSION(5, 1)
59 #define VMSTOR_PROTO_VERSION_WIN8_1	VMSTOR_PROTO_VERSION(6, 0)
60 #define VMSTOR_PROTO_VERSION_WIN10	VMSTOR_PROTO_VERSION(6, 2)
61 
62 /*  Packet structure describing virtual storage requests. */
63 enum vstor_packet_operation {
64 	VSTOR_OPERATION_COMPLETE_IO		= 1,
65 	VSTOR_OPERATION_REMOVE_DEVICE		= 2,
66 	VSTOR_OPERATION_EXECUTE_SRB		= 3,
67 	VSTOR_OPERATION_RESET_LUN		= 4,
68 	VSTOR_OPERATION_RESET_ADAPTER		= 5,
69 	VSTOR_OPERATION_RESET_BUS		= 6,
70 	VSTOR_OPERATION_BEGIN_INITIALIZATION	= 7,
71 	VSTOR_OPERATION_END_INITIALIZATION	= 8,
72 	VSTOR_OPERATION_QUERY_PROTOCOL_VERSION	= 9,
73 	VSTOR_OPERATION_QUERY_PROPERTIES	= 10,
74 	VSTOR_OPERATION_ENUMERATE_BUS		= 11,
75 	VSTOR_OPERATION_FCHBA_DATA              = 12,
76 	VSTOR_OPERATION_CREATE_SUB_CHANNELS     = 13,
77 	VSTOR_OPERATION_MAXIMUM                 = 13
78 };
79 
80 /*
81  * WWN packet for Fibre Channel HBA
82  */
83 
84 struct hv_fc_wwn_packet {
85 	u8	primary_active;
86 	u8	reserved1[3];
87 	u8	primary_port_wwn[8];
88 	u8	primary_node_wwn[8];
89 	u8	secondary_port_wwn[8];
90 	u8	secondary_node_wwn[8];
91 };
92 
93 
94 
95 /*
96  * SRB Flag Bits
97  */
98 
99 #define SRB_FLAGS_QUEUE_ACTION_ENABLE		0x00000002
100 #define SRB_FLAGS_DISABLE_DISCONNECT		0x00000004
101 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER	0x00000008
102 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE		0x00000010
103 #define SRB_FLAGS_DISABLE_AUTOSENSE		0x00000020
104 #define SRB_FLAGS_DATA_IN			0x00000040
105 #define SRB_FLAGS_DATA_OUT			0x00000080
106 #define SRB_FLAGS_NO_DATA_TRANSFER		0x00000000
107 #define SRB_FLAGS_UNSPECIFIED_DIRECTION	(SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT)
108 #define SRB_FLAGS_NO_QUEUE_FREEZE		0x00000100
109 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE		0x00000200
110 #define SRB_FLAGS_FREE_SENSE_BUFFER		0x00000400
111 
112 /*
113  * This flag indicates the request is part of the workflow for processing a D3.
114  */
115 #define SRB_FLAGS_D3_PROCESSING			0x00000800
116 #define SRB_FLAGS_IS_ACTIVE			0x00010000
117 #define SRB_FLAGS_ALLOCATED_FROM_ZONE		0x00020000
118 #define SRB_FLAGS_SGLIST_FROM_POOL		0x00040000
119 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE		0x00080000
120 #define SRB_FLAGS_NO_KEEP_AWAKE			0x00100000
121 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE	0x00200000
122 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT	0x00400000
123 #define SRB_FLAGS_DONT_START_NEXT_PACKET	0x00800000
124 #define SRB_FLAGS_PORT_DRIVER_RESERVED		0x0F000000
125 #define SRB_FLAGS_CLASS_DRIVER_RESERVED		0xF0000000
126 
127 #define SP_UNTAGGED			((unsigned char) ~0)
128 #define SRB_SIMPLE_TAG_REQUEST		0x20
129 
130 /*
131  * Platform neutral description of a scsi request -
132  * this remains the same across the write regardless of 32/64 bit
133  * note: it's patterned off the SCSI_PASS_THROUGH structure
134  */
135 #define STORVSC_MAX_CMD_LEN			0x10
136 
137 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE	0x14
138 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE	0x12
139 
140 #define STORVSC_SENSE_BUFFER_SIZE		0x14
141 #define STORVSC_MAX_BUF_LEN_WITH_PADDING	0x14
142 
143 /*
144  * Sense buffer size changed in win8; have a run-time
145  * variable to track the size we should use.  This value will
146  * likely change during protocol negotiation but it is valid
147  * to start by assuming pre-Win8.
148  */
149 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE;
150 
151 /*
152  * The storage protocol version is determined during the
153  * initial exchange with the host.  It will indicate which
154  * storage functionality is available in the host.
155 */
156 static int vmstor_proto_version;
157 
158 #define STORVSC_LOGGING_NONE	0
159 #define STORVSC_LOGGING_ERROR	1
160 #define STORVSC_LOGGING_WARN	2
161 
162 static int logging_level = STORVSC_LOGGING_ERROR;
163 module_param(logging_level, int, S_IRUGO|S_IWUSR);
164 MODULE_PARM_DESC(logging_level,
165 	"Logging level, 0 - None, 1 - Error (default), 2 - Warning.");
166 
167 static inline bool do_logging(int level)
168 {
169 	return logging_level >= level;
170 }
171 
172 #define storvsc_log(dev, level, fmt, ...)			\
173 do {								\
174 	if (do_logging(level))					\
175 		dev_warn(&(dev)->device, fmt, ##__VA_ARGS__);	\
176 } while (0)
177 
178 struct vmscsi_win8_extension {
179 	/*
180 	 * The following were added in Windows 8
181 	 */
182 	u16 reserve;
183 	u8  queue_tag;
184 	u8  queue_action;
185 	u32 srb_flags;
186 	u32 time_out_value;
187 	u32 queue_sort_ey;
188 } __packed;
189 
190 struct vmscsi_request {
191 	u16 length;
192 	u8 srb_status;
193 	u8 scsi_status;
194 
195 	u8  port_number;
196 	u8  path_id;
197 	u8  target_id;
198 	u8  lun;
199 
200 	u8  cdb_length;
201 	u8  sense_info_length;
202 	u8  data_in;
203 	u8  reserved;
204 
205 	u32 data_transfer_length;
206 
207 	union {
208 		u8 cdb[STORVSC_MAX_CMD_LEN];
209 		u8 sense_data[STORVSC_SENSE_BUFFER_SIZE];
210 		u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING];
211 	};
212 	/*
213 	 * The following was added in win8.
214 	 */
215 	struct vmscsi_win8_extension win8_extension;
216 
217 } __attribute((packed));
218 
219 
220 /*
221  * The size of the vmscsi_request has changed in win8. The
222  * additional size is because of new elements added to the
223  * structure. These elements are valid only when we are talking
224  * to a win8 host.
225  * Track the correction to size we need to apply. This value
226  * will likely change during protocol negotiation but it is
227  * valid to start by assuming pre-Win8.
228  */
229 static int vmscsi_size_delta = sizeof(struct vmscsi_win8_extension);
230 
231 /*
232  * The list of storage protocols in order of preference.
233  */
234 struct vmstor_protocol {
235 	int protocol_version;
236 	int sense_buffer_size;
237 	int vmscsi_size_delta;
238 };
239 
240 
241 static const struct vmstor_protocol vmstor_protocols[] = {
242 	{
243 		VMSTOR_PROTO_VERSION_WIN10,
244 		POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
245 		0
246 	},
247 	{
248 		VMSTOR_PROTO_VERSION_WIN8_1,
249 		POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
250 		0
251 	},
252 	{
253 		VMSTOR_PROTO_VERSION_WIN8,
254 		POST_WIN7_STORVSC_SENSE_BUFFER_SIZE,
255 		0
256 	},
257 	{
258 		VMSTOR_PROTO_VERSION_WIN7,
259 		PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
260 		sizeof(struct vmscsi_win8_extension),
261 	},
262 	{
263 		VMSTOR_PROTO_VERSION_WIN6,
264 		PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE,
265 		sizeof(struct vmscsi_win8_extension),
266 	}
267 };
268 
269 
270 /*
271  * This structure is sent during the initialization phase to get the different
272  * properties of the channel.
273  */
274 
275 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL		0x1
276 
277 struct vmstorage_channel_properties {
278 	u32 reserved;
279 	u16 max_channel_cnt;
280 	u16 reserved1;
281 
282 	u32 flags;
283 	u32   max_transfer_bytes;
284 
285 	u64  reserved2;
286 } __packed;
287 
288 /*  This structure is sent during the storage protocol negotiations. */
289 struct vmstorage_protocol_version {
290 	/* Major (MSW) and minor (LSW) version numbers. */
291 	u16 major_minor;
292 
293 	/*
294 	 * Revision number is auto-incremented whenever this file is changed
295 	 * (See FILL_VMSTOR_REVISION macro above).  Mismatch does not
296 	 * definitely indicate incompatibility--but it does indicate mismatched
297 	 * builds.
298 	 * This is only used on the windows side. Just set it to 0.
299 	 */
300 	u16 revision;
301 } __packed;
302 
303 /* Channel Property Flags */
304 #define STORAGE_CHANNEL_REMOVABLE_FLAG		0x1
305 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG	0x2
306 
307 struct vstor_packet {
308 	/* Requested operation type */
309 	enum vstor_packet_operation operation;
310 
311 	/*  Flags - see below for values */
312 	u32 flags;
313 
314 	/* Status of the request returned from the server side. */
315 	u32 status;
316 
317 	/* Data payload area */
318 	union {
319 		/*
320 		 * Structure used to forward SCSI commands from the
321 		 * client to the server.
322 		 */
323 		struct vmscsi_request vm_srb;
324 
325 		/* Structure used to query channel properties. */
326 		struct vmstorage_channel_properties storage_channel_properties;
327 
328 		/* Used during version negotiations. */
329 		struct vmstorage_protocol_version version;
330 
331 		/* Fibre channel address packet */
332 		struct hv_fc_wwn_packet wwn_packet;
333 
334 		/* Number of sub-channels to create */
335 		u16 sub_channel_count;
336 
337 		/* This will be the maximum of the union members */
338 		u8  buffer[0x34];
339 	};
340 } __packed;
341 
342 /*
343  * Packet Flags:
344  *
345  * This flag indicates that the server should send back a completion for this
346  * packet.
347  */
348 
349 #define REQUEST_COMPLETION_FLAG	0x1
350 
351 /* Matches Windows-end */
352 enum storvsc_request_type {
353 	WRITE_TYPE = 0,
354 	READ_TYPE,
355 	UNKNOWN_TYPE,
356 };
357 
358 /*
359  * SRB status codes and masks; a subset of the codes used here.
360  */
361 
362 #define SRB_STATUS_AUTOSENSE_VALID	0x80
363 #define SRB_STATUS_QUEUE_FROZEN		0x40
364 #define SRB_STATUS_INVALID_LUN	0x20
365 #define SRB_STATUS_SUCCESS	0x01
366 #define SRB_STATUS_ABORTED	0x02
367 #define SRB_STATUS_ERROR	0x04
368 #define SRB_STATUS_DATA_OVERRUN	0x12
369 
370 #define SRB_STATUS(status) \
371 	(status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN))
372 /*
373  * This is the end of Protocol specific defines.
374  */
375 
376 static int storvsc_ringbuffer_size = (128 * 1024);
377 static u32 max_outstanding_req_per_channel;
378 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth);
379 
380 static int storvsc_vcpus_per_sub_channel = 4;
381 
382 module_param(storvsc_ringbuffer_size, int, S_IRUGO);
383 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)");
384 
385 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO);
386 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels");
387 
388 static int ring_avail_percent_lowater = 10;
389 module_param(ring_avail_percent_lowater, int, S_IRUGO);
390 MODULE_PARM_DESC(ring_avail_percent_lowater,
391 		"Select a channel if available ring size > this in percent");
392 
393 /*
394  * Timeout in seconds for all devices managed by this driver.
395  */
396 static int storvsc_timeout = 180;
397 
398 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
399 static struct scsi_transport_template *fc_transport_template;
400 #endif
401 
402 static void storvsc_on_channel_callback(void *context);
403 
404 #define STORVSC_MAX_LUNS_PER_TARGET			255
405 #define STORVSC_MAX_TARGETS				2
406 #define STORVSC_MAX_CHANNELS				8
407 
408 #define STORVSC_FC_MAX_LUNS_PER_TARGET			255
409 #define STORVSC_FC_MAX_TARGETS				128
410 #define STORVSC_FC_MAX_CHANNELS				8
411 
412 #define STORVSC_IDE_MAX_LUNS_PER_TARGET			64
413 #define STORVSC_IDE_MAX_TARGETS				1
414 #define STORVSC_IDE_MAX_CHANNELS			1
415 
416 struct storvsc_cmd_request {
417 	struct scsi_cmnd *cmd;
418 
419 	struct hv_device *device;
420 
421 	/* Synchronize the request/response if needed */
422 	struct completion wait_event;
423 
424 	struct vmbus_channel_packet_multipage_buffer mpb;
425 	struct vmbus_packet_mpb_array *payload;
426 	u32 payload_sz;
427 
428 	struct vstor_packet vstor_packet;
429 };
430 
431 
432 /* A storvsc device is a device object that contains a vmbus channel */
433 struct storvsc_device {
434 	struct hv_device *device;
435 
436 	bool	 destroy;
437 	bool	 drain_notify;
438 	atomic_t num_outstanding_req;
439 	struct Scsi_Host *host;
440 
441 	wait_queue_head_t waiting_to_drain;
442 
443 	/*
444 	 * Each unique Port/Path/Target represents 1 channel ie scsi
445 	 * controller. In reality, the pathid, targetid is always 0
446 	 * and the port is set by us
447 	 */
448 	unsigned int port_number;
449 	unsigned char path_id;
450 	unsigned char target_id;
451 
452 	/*
453 	 * Max I/O, the device can support.
454 	 */
455 	u32   max_transfer_bytes;
456 	/*
457 	 * Number of sub-channels we will open.
458 	 */
459 	u16 num_sc;
460 	struct vmbus_channel **stor_chns;
461 	/*
462 	 * Mask of CPUs bound to subchannels.
463 	 */
464 	struct cpumask alloced_cpus;
465 	/* Used for vsc/vsp channel reset process */
466 	struct storvsc_cmd_request init_request;
467 	struct storvsc_cmd_request reset_request;
468 	/*
469 	 * Currently active port and node names for FC devices.
470 	 */
471 	u64 node_name;
472 	u64 port_name;
473 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
474 	struct fc_rport *rport;
475 #endif
476 };
477 
478 struct hv_host_device {
479 	struct hv_device *dev;
480 	unsigned int port;
481 	unsigned char path;
482 	unsigned char target;
483 	struct workqueue_struct *handle_error_wq;
484 	struct work_struct host_scan_work;
485 	struct Scsi_Host *host;
486 };
487 
488 struct storvsc_scan_work {
489 	struct work_struct work;
490 	struct Scsi_Host *host;
491 	u8 lun;
492 	u8 tgt_id;
493 };
494 
495 static void storvsc_device_scan(struct work_struct *work)
496 {
497 	struct storvsc_scan_work *wrk;
498 	struct scsi_device *sdev;
499 
500 	wrk = container_of(work, struct storvsc_scan_work, work);
501 
502 	sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
503 	if (!sdev)
504 		goto done;
505 	scsi_rescan_device(&sdev->sdev_gendev);
506 	scsi_device_put(sdev);
507 
508 done:
509 	kfree(wrk);
510 }
511 
512 static void storvsc_host_scan(struct work_struct *work)
513 {
514 	struct Scsi_Host *host;
515 	struct scsi_device *sdev;
516 	struct hv_host_device *host_device =
517 		container_of(work, struct hv_host_device, host_scan_work);
518 
519 	host = host_device->host;
520 	/*
521 	 * Before scanning the host, first check to see if any of the
522 	 * currrently known devices have been hot removed. We issue a
523 	 * "unit ready" command against all currently known devices.
524 	 * This I/O will result in an error for devices that have been
525 	 * removed. As part of handling the I/O error, we remove the device.
526 	 *
527 	 * When a LUN is added or removed, the host sends us a signal to
528 	 * scan the host. Thus we are forced to discover the LUNs that
529 	 * may have been removed this way.
530 	 */
531 	mutex_lock(&host->scan_mutex);
532 	shost_for_each_device(sdev, host)
533 		scsi_test_unit_ready(sdev, 1, 1, NULL);
534 	mutex_unlock(&host->scan_mutex);
535 	/*
536 	 * Now scan the host to discover LUNs that may have been added.
537 	 */
538 	scsi_scan_host(host);
539 }
540 
541 static void storvsc_remove_lun(struct work_struct *work)
542 {
543 	struct storvsc_scan_work *wrk;
544 	struct scsi_device *sdev;
545 
546 	wrk = container_of(work, struct storvsc_scan_work, work);
547 	if (!scsi_host_get(wrk->host))
548 		goto done;
549 
550 	sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun);
551 
552 	if (sdev) {
553 		scsi_remove_device(sdev);
554 		scsi_device_put(sdev);
555 	}
556 	scsi_host_put(wrk->host);
557 
558 done:
559 	kfree(wrk);
560 }
561 
562 
563 /*
564  * We can get incoming messages from the host that are not in response to
565  * messages that we have sent out. An example of this would be messages
566  * received by the guest to notify dynamic addition/removal of LUNs. To
567  * deal with potential race conditions where the driver may be in the
568  * midst of being unloaded when we might receive an unsolicited message
569  * from the host, we have implemented a mechanism to gurantee sequential
570  * consistency:
571  *
572  * 1) Once the device is marked as being destroyed, we will fail all
573  *    outgoing messages.
574  * 2) We permit incoming messages when the device is being destroyed,
575  *    only to properly account for messages already sent out.
576  */
577 
578 static inline struct storvsc_device *get_out_stor_device(
579 					struct hv_device *device)
580 {
581 	struct storvsc_device *stor_device;
582 
583 	stor_device = hv_get_drvdata(device);
584 
585 	if (stor_device && stor_device->destroy)
586 		stor_device = NULL;
587 
588 	return stor_device;
589 }
590 
591 
592 static inline void storvsc_wait_to_drain(struct storvsc_device *dev)
593 {
594 	dev->drain_notify = true;
595 	wait_event(dev->waiting_to_drain,
596 		   atomic_read(&dev->num_outstanding_req) == 0);
597 	dev->drain_notify = false;
598 }
599 
600 static inline struct storvsc_device *get_in_stor_device(
601 					struct hv_device *device)
602 {
603 	struct storvsc_device *stor_device;
604 
605 	stor_device = hv_get_drvdata(device);
606 
607 	if (!stor_device)
608 		goto get_in_err;
609 
610 	/*
611 	 * If the device is being destroyed; allow incoming
612 	 * traffic only to cleanup outstanding requests.
613 	 */
614 
615 	if (stor_device->destroy  &&
616 		(atomic_read(&stor_device->num_outstanding_req) == 0))
617 		stor_device = NULL;
618 
619 get_in_err:
620 	return stor_device;
621 
622 }
623 
624 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old,
625 				      u32 new)
626 {
627 	struct storvsc_device *stor_device;
628 	struct vmbus_channel *cur_chn;
629 	bool old_is_alloced = false;
630 	struct hv_device *device;
631 	unsigned long flags;
632 	int cpu;
633 
634 	device = channel->primary_channel ?
635 			channel->primary_channel->device_obj
636 				: channel->device_obj;
637 	stor_device = get_out_stor_device(device);
638 	if (!stor_device)
639 		return;
640 
641 	/* See storvsc_do_io() -> get_og_chn(). */
642 	spin_lock_irqsave(&device->channel->lock, flags);
643 
644 	/*
645 	 * Determines if the storvsc device has other channels assigned to
646 	 * the "old" CPU to update the alloced_cpus mask and the stor_chns
647 	 * array.
648 	 */
649 	if (device->channel != channel && device->channel->target_cpu == old) {
650 		cur_chn = device->channel;
651 		old_is_alloced = true;
652 		goto old_is_alloced;
653 	}
654 	list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) {
655 		if (cur_chn == channel)
656 			continue;
657 		if (cur_chn->target_cpu == old) {
658 			old_is_alloced = true;
659 			goto old_is_alloced;
660 		}
661 	}
662 
663 old_is_alloced:
664 	if (old_is_alloced)
665 		WRITE_ONCE(stor_device->stor_chns[old], cur_chn);
666 	else
667 		cpumask_clear_cpu(old, &stor_device->alloced_cpus);
668 
669 	/* "Flush" the stor_chns array. */
670 	for_each_possible_cpu(cpu) {
671 		if (stor_device->stor_chns[cpu] && !cpumask_test_cpu(
672 					cpu, &stor_device->alloced_cpus))
673 			WRITE_ONCE(stor_device->stor_chns[cpu], NULL);
674 	}
675 
676 	WRITE_ONCE(stor_device->stor_chns[new], channel);
677 	cpumask_set_cpu(new, &stor_device->alloced_cpus);
678 
679 	spin_unlock_irqrestore(&device->channel->lock, flags);
680 }
681 
682 static void handle_sc_creation(struct vmbus_channel *new_sc)
683 {
684 	struct hv_device *device = new_sc->primary_channel->device_obj;
685 	struct device *dev = &device->device;
686 	struct storvsc_device *stor_device;
687 	struct vmstorage_channel_properties props;
688 	int ret;
689 
690 	stor_device = get_out_stor_device(device);
691 	if (!stor_device)
692 		return;
693 
694 	memset(&props, 0, sizeof(struct vmstorage_channel_properties));
695 
696 	ret = vmbus_open(new_sc,
697 			 storvsc_ringbuffer_size,
698 			 storvsc_ringbuffer_size,
699 			 (void *)&props,
700 			 sizeof(struct vmstorage_channel_properties),
701 			 storvsc_on_channel_callback, new_sc);
702 
703 	/* In case vmbus_open() fails, we don't use the sub-channel. */
704 	if (ret != 0) {
705 		dev_err(dev, "Failed to open sub-channel: err=%d\n", ret);
706 		return;
707 	}
708 
709 	new_sc->change_target_cpu_callback = storvsc_change_target_cpu;
710 
711 	/* Add the sub-channel to the array of available channels. */
712 	stor_device->stor_chns[new_sc->target_cpu] = new_sc;
713 	cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus);
714 }
715 
716 static void  handle_multichannel_storage(struct hv_device *device, int max_chns)
717 {
718 	struct device *dev = &device->device;
719 	struct storvsc_device *stor_device;
720 	int num_sc;
721 	struct storvsc_cmd_request *request;
722 	struct vstor_packet *vstor_packet;
723 	int ret, t;
724 
725 	/*
726 	 * If the number of CPUs is artificially restricted, such as
727 	 * with maxcpus=1 on the kernel boot line, Hyper-V could offer
728 	 * sub-channels >= the number of CPUs. These sub-channels
729 	 * should not be created. The primary channel is already created
730 	 * and assigned to one CPU, so check against # CPUs - 1.
731 	 */
732 	num_sc = min((int)(num_online_cpus() - 1), max_chns);
733 	if (!num_sc)
734 		return;
735 
736 	stor_device = get_out_stor_device(device);
737 	if (!stor_device)
738 		return;
739 
740 	stor_device->num_sc = num_sc;
741 	request = &stor_device->init_request;
742 	vstor_packet = &request->vstor_packet;
743 
744 	/*
745 	 * Establish a handler for dealing with subchannels.
746 	 */
747 	vmbus_set_sc_create_callback(device->channel, handle_sc_creation);
748 
749 	/*
750 	 * Request the host to create sub-channels.
751 	 */
752 	memset(request, 0, sizeof(struct storvsc_cmd_request));
753 	init_completion(&request->wait_event);
754 	vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS;
755 	vstor_packet->flags = REQUEST_COMPLETION_FLAG;
756 	vstor_packet->sub_channel_count = num_sc;
757 
758 	ret = vmbus_sendpacket(device->channel, vstor_packet,
759 			       (sizeof(struct vstor_packet) -
760 			       vmscsi_size_delta),
761 			       (unsigned long)request,
762 			       VM_PKT_DATA_INBAND,
763 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
764 
765 	if (ret != 0) {
766 		dev_err(dev, "Failed to create sub-channel: err=%d\n", ret);
767 		return;
768 	}
769 
770 	t = wait_for_completion_timeout(&request->wait_event, 10*HZ);
771 	if (t == 0) {
772 		dev_err(dev, "Failed to create sub-channel: timed out\n");
773 		return;
774 	}
775 
776 	if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
777 	    vstor_packet->status != 0) {
778 		dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n",
779 			vstor_packet->operation, vstor_packet->status);
780 		return;
781 	}
782 
783 	/*
784 	 * We need to do nothing here, because vmbus_process_offer()
785 	 * invokes channel->sc_creation_callback, which will open and use
786 	 * the sub-channel(s).
787 	 */
788 }
789 
790 static void cache_wwn(struct storvsc_device *stor_device,
791 		      struct vstor_packet *vstor_packet)
792 {
793 	/*
794 	 * Cache the currently active port and node ww names.
795 	 */
796 	if (vstor_packet->wwn_packet.primary_active) {
797 		stor_device->node_name =
798 			wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn);
799 		stor_device->port_name =
800 			wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn);
801 	} else {
802 		stor_device->node_name =
803 			wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn);
804 		stor_device->port_name =
805 			wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn);
806 	}
807 }
808 
809 
810 static int storvsc_execute_vstor_op(struct hv_device *device,
811 				    struct storvsc_cmd_request *request,
812 				    bool status_check)
813 {
814 	struct vstor_packet *vstor_packet;
815 	int ret, t;
816 
817 	vstor_packet = &request->vstor_packet;
818 
819 	init_completion(&request->wait_event);
820 	vstor_packet->flags = REQUEST_COMPLETION_FLAG;
821 
822 	ret = vmbus_sendpacket(device->channel, vstor_packet,
823 			       (sizeof(struct vstor_packet) -
824 			       vmscsi_size_delta),
825 			       (unsigned long)request,
826 			       VM_PKT_DATA_INBAND,
827 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
828 	if (ret != 0)
829 		return ret;
830 
831 	t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
832 	if (t == 0)
833 		return -ETIMEDOUT;
834 
835 	if (!status_check)
836 		return ret;
837 
838 	if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO ||
839 	    vstor_packet->status != 0)
840 		return -EINVAL;
841 
842 	return ret;
843 }
844 
845 static int storvsc_channel_init(struct hv_device *device, bool is_fc)
846 {
847 	struct storvsc_device *stor_device;
848 	struct storvsc_cmd_request *request;
849 	struct vstor_packet *vstor_packet;
850 	int ret, i;
851 	int max_chns;
852 	bool process_sub_channels = false;
853 
854 	stor_device = get_out_stor_device(device);
855 	if (!stor_device)
856 		return -ENODEV;
857 
858 	request = &stor_device->init_request;
859 	vstor_packet = &request->vstor_packet;
860 
861 	/*
862 	 * Now, initiate the vsc/vsp initialization protocol on the open
863 	 * channel
864 	 */
865 	memset(request, 0, sizeof(struct storvsc_cmd_request));
866 	vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION;
867 	ret = storvsc_execute_vstor_op(device, request, true);
868 	if (ret)
869 		return ret;
870 	/*
871 	 * Query host supported protocol version.
872 	 */
873 
874 	for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) {
875 		/* reuse the packet for version range supported */
876 		memset(vstor_packet, 0, sizeof(struct vstor_packet));
877 		vstor_packet->operation =
878 			VSTOR_OPERATION_QUERY_PROTOCOL_VERSION;
879 
880 		vstor_packet->version.major_minor =
881 			vmstor_protocols[i].protocol_version;
882 
883 		/*
884 		 * The revision number is only used in Windows; set it to 0.
885 		 */
886 		vstor_packet->version.revision = 0;
887 		ret = storvsc_execute_vstor_op(device, request, false);
888 		if (ret != 0)
889 			return ret;
890 
891 		if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO)
892 			return -EINVAL;
893 
894 		if (vstor_packet->status == 0) {
895 			vmstor_proto_version =
896 				vmstor_protocols[i].protocol_version;
897 
898 			sense_buffer_size =
899 				vmstor_protocols[i].sense_buffer_size;
900 
901 			vmscsi_size_delta =
902 				vmstor_protocols[i].vmscsi_size_delta;
903 
904 			break;
905 		}
906 	}
907 
908 	if (vstor_packet->status != 0)
909 		return -EINVAL;
910 
911 
912 	memset(vstor_packet, 0, sizeof(struct vstor_packet));
913 	vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES;
914 	ret = storvsc_execute_vstor_op(device, request, true);
915 	if (ret != 0)
916 		return ret;
917 
918 	/*
919 	 * Check to see if multi-channel support is there.
920 	 * Hosts that implement protocol version of 5.1 and above
921 	 * support multi-channel.
922 	 */
923 	max_chns = vstor_packet->storage_channel_properties.max_channel_cnt;
924 
925 	/*
926 	 * Allocate state to manage the sub-channels.
927 	 * We allocate an array based on the numbers of possible CPUs
928 	 * (Hyper-V does not support cpu online/offline).
929 	 * This Array will be sparseley populated with unique
930 	 * channels - primary + sub-channels.
931 	 * We will however populate all the slots to evenly distribute
932 	 * the load.
933 	 */
934 	stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *),
935 					 GFP_KERNEL);
936 	if (stor_device->stor_chns == NULL)
937 		return -ENOMEM;
938 
939 	device->channel->change_target_cpu_callback = storvsc_change_target_cpu;
940 
941 	stor_device->stor_chns[device->channel->target_cpu] = device->channel;
942 	cpumask_set_cpu(device->channel->target_cpu,
943 			&stor_device->alloced_cpus);
944 
945 	if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) {
946 		if (vstor_packet->storage_channel_properties.flags &
947 		    STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL)
948 			process_sub_channels = true;
949 	}
950 	stor_device->max_transfer_bytes =
951 		vstor_packet->storage_channel_properties.max_transfer_bytes;
952 
953 	if (!is_fc)
954 		goto done;
955 
956 	/*
957 	 * For FC devices retrieve FC HBA data.
958 	 */
959 	memset(vstor_packet, 0, sizeof(struct vstor_packet));
960 	vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA;
961 	ret = storvsc_execute_vstor_op(device, request, true);
962 	if (ret != 0)
963 		return ret;
964 
965 	/*
966 	 * Cache the currently active port and node ww names.
967 	 */
968 	cache_wwn(stor_device, vstor_packet);
969 
970 done:
971 
972 	memset(vstor_packet, 0, sizeof(struct vstor_packet));
973 	vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION;
974 	ret = storvsc_execute_vstor_op(device, request, true);
975 	if (ret != 0)
976 		return ret;
977 
978 	if (process_sub_channels)
979 		handle_multichannel_storage(device, max_chns);
980 
981 	return ret;
982 }
983 
984 static void storvsc_handle_error(struct vmscsi_request *vm_srb,
985 				struct scsi_cmnd *scmnd,
986 				struct Scsi_Host *host,
987 				u8 asc, u8 ascq)
988 {
989 	struct storvsc_scan_work *wrk;
990 	void (*process_err_fn)(struct work_struct *work);
991 	struct hv_host_device *host_dev = shost_priv(host);
992 	bool do_work = false;
993 
994 	switch (SRB_STATUS(vm_srb->srb_status)) {
995 	case SRB_STATUS_ERROR:
996 		/*
997 		 * Let upper layer deal with error when
998 		 * sense message is present.
999 		 */
1000 
1001 		if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID)
1002 			break;
1003 		/*
1004 		 * If there is an error; offline the device since all
1005 		 * error recovery strategies would have already been
1006 		 * deployed on the host side. However, if the command
1007 		 * were a pass-through command deal with it appropriately.
1008 		 */
1009 		switch (scmnd->cmnd[0]) {
1010 		case ATA_16:
1011 		case ATA_12:
1012 			set_host_byte(scmnd, DID_PASSTHROUGH);
1013 			break;
1014 		/*
1015 		 * On Some Windows hosts TEST_UNIT_READY command can return
1016 		 * SRB_STATUS_ERROR, let the upper level code deal with it
1017 		 * based on the sense information.
1018 		 */
1019 		case TEST_UNIT_READY:
1020 			break;
1021 		default:
1022 			set_host_byte(scmnd, DID_ERROR);
1023 		}
1024 		break;
1025 	case SRB_STATUS_INVALID_LUN:
1026 		set_host_byte(scmnd, DID_NO_CONNECT);
1027 		do_work = true;
1028 		process_err_fn = storvsc_remove_lun;
1029 		break;
1030 	case SRB_STATUS_ABORTED:
1031 		if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID &&
1032 		    (asc == 0x2a) && (ascq == 0x9)) {
1033 			do_work = true;
1034 			process_err_fn = storvsc_device_scan;
1035 			/*
1036 			 * Retry the I/O that trigerred this.
1037 			 */
1038 			set_host_byte(scmnd, DID_REQUEUE);
1039 		}
1040 		break;
1041 	}
1042 
1043 	if (!do_work)
1044 		return;
1045 
1046 	/*
1047 	 * We need to schedule work to process this error; schedule it.
1048 	 */
1049 	wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC);
1050 	if (!wrk) {
1051 		set_host_byte(scmnd, DID_TARGET_FAILURE);
1052 		return;
1053 	}
1054 
1055 	wrk->host = host;
1056 	wrk->lun = vm_srb->lun;
1057 	wrk->tgt_id = vm_srb->target_id;
1058 	INIT_WORK(&wrk->work, process_err_fn);
1059 	queue_work(host_dev->handle_error_wq, &wrk->work);
1060 }
1061 
1062 
1063 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request,
1064 				       struct storvsc_device *stor_dev)
1065 {
1066 	struct scsi_cmnd *scmnd = cmd_request->cmd;
1067 	struct scsi_sense_hdr sense_hdr;
1068 	struct vmscsi_request *vm_srb;
1069 	u32 data_transfer_length;
1070 	struct Scsi_Host *host;
1071 	u32 payload_sz = cmd_request->payload_sz;
1072 	void *payload = cmd_request->payload;
1073 
1074 	host = stor_dev->host;
1075 
1076 	vm_srb = &cmd_request->vstor_packet.vm_srb;
1077 	data_transfer_length = vm_srb->data_transfer_length;
1078 
1079 	scmnd->result = vm_srb->scsi_status;
1080 
1081 	if (scmnd->result) {
1082 		if (scsi_normalize_sense(scmnd->sense_buffer,
1083 				SCSI_SENSE_BUFFERSIZE, &sense_hdr) &&
1084 		    !(sense_hdr.sense_key == NOT_READY &&
1085 				 sense_hdr.asc == 0x03A) &&
1086 		    do_logging(STORVSC_LOGGING_ERROR))
1087 			scsi_print_sense_hdr(scmnd->device, "storvsc",
1088 					     &sense_hdr);
1089 	}
1090 
1091 	if (vm_srb->srb_status != SRB_STATUS_SUCCESS) {
1092 		storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc,
1093 					 sense_hdr.ascq);
1094 		/*
1095 		 * The Windows driver set data_transfer_length on
1096 		 * SRB_STATUS_DATA_OVERRUN. On other errors, this value
1097 		 * is untouched.  In these cases we set it to 0.
1098 		 */
1099 		if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN)
1100 			data_transfer_length = 0;
1101 	}
1102 
1103 	scsi_set_resid(scmnd,
1104 		cmd_request->payload->range.len - data_transfer_length);
1105 
1106 	scmnd->scsi_done(scmnd);
1107 
1108 	if (payload_sz >
1109 		sizeof(struct vmbus_channel_packet_multipage_buffer))
1110 		kfree(payload);
1111 }
1112 
1113 static void storvsc_on_io_completion(struct storvsc_device *stor_device,
1114 				  struct vstor_packet *vstor_packet,
1115 				  struct storvsc_cmd_request *request)
1116 {
1117 	struct vstor_packet *stor_pkt;
1118 	struct hv_device *device = stor_device->device;
1119 
1120 	stor_pkt = &request->vstor_packet;
1121 
1122 	/*
1123 	 * The current SCSI handling on the host side does
1124 	 * not correctly handle:
1125 	 * INQUIRY command with page code parameter set to 0x80
1126 	 * MODE_SENSE command with cmd[2] == 0x1c
1127 	 *
1128 	 * Setup srb and scsi status so this won't be fatal.
1129 	 * We do this so we can distinguish truly fatal failues
1130 	 * (srb status == 0x4) and off-line the device in that case.
1131 	 */
1132 
1133 	if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) ||
1134 	   (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) {
1135 		vstor_packet->vm_srb.scsi_status = 0;
1136 		vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS;
1137 	}
1138 
1139 
1140 	/* Copy over the status...etc */
1141 	stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status;
1142 	stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status;
1143 	stor_pkt->vm_srb.sense_info_length =
1144 	vstor_packet->vm_srb.sense_info_length;
1145 
1146 	if (vstor_packet->vm_srb.scsi_status != 0 ||
1147 	    vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS)
1148 		storvsc_log(device, STORVSC_LOGGING_WARN,
1149 			"cmd 0x%x scsi status 0x%x srb status 0x%x\n",
1150 			stor_pkt->vm_srb.cdb[0],
1151 			vstor_packet->vm_srb.scsi_status,
1152 			vstor_packet->vm_srb.srb_status);
1153 
1154 	if ((vstor_packet->vm_srb.scsi_status & 0xFF) == 0x02) {
1155 		/* CHECK_CONDITION */
1156 		if (vstor_packet->vm_srb.srb_status &
1157 			SRB_STATUS_AUTOSENSE_VALID) {
1158 			/* autosense data available */
1159 
1160 			storvsc_log(device, STORVSC_LOGGING_WARN,
1161 				"stor pkt %p autosense data valid - len %d\n",
1162 				request, vstor_packet->vm_srb.sense_info_length);
1163 
1164 			memcpy(request->cmd->sense_buffer,
1165 			       vstor_packet->vm_srb.sense_data,
1166 			       vstor_packet->vm_srb.sense_info_length);
1167 
1168 		}
1169 	}
1170 
1171 	stor_pkt->vm_srb.data_transfer_length =
1172 	vstor_packet->vm_srb.data_transfer_length;
1173 
1174 	storvsc_command_completion(request, stor_device);
1175 
1176 	if (atomic_dec_and_test(&stor_device->num_outstanding_req) &&
1177 		stor_device->drain_notify)
1178 		wake_up(&stor_device->waiting_to_drain);
1179 
1180 
1181 }
1182 
1183 static void storvsc_on_receive(struct storvsc_device *stor_device,
1184 			     struct vstor_packet *vstor_packet,
1185 			     struct storvsc_cmd_request *request)
1186 {
1187 	struct hv_host_device *host_dev;
1188 	switch (vstor_packet->operation) {
1189 	case VSTOR_OPERATION_COMPLETE_IO:
1190 		storvsc_on_io_completion(stor_device, vstor_packet, request);
1191 		break;
1192 
1193 	case VSTOR_OPERATION_REMOVE_DEVICE:
1194 	case VSTOR_OPERATION_ENUMERATE_BUS:
1195 		host_dev = shost_priv(stor_device->host);
1196 		queue_work(
1197 			host_dev->handle_error_wq, &host_dev->host_scan_work);
1198 		break;
1199 
1200 	case VSTOR_OPERATION_FCHBA_DATA:
1201 		cache_wwn(stor_device, vstor_packet);
1202 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1203 		fc_host_node_name(stor_device->host) = stor_device->node_name;
1204 		fc_host_port_name(stor_device->host) = stor_device->port_name;
1205 #endif
1206 		break;
1207 	default:
1208 		break;
1209 	}
1210 }
1211 
1212 static void storvsc_on_channel_callback(void *context)
1213 {
1214 	struct vmbus_channel *channel = (struct vmbus_channel *)context;
1215 	const struct vmpacket_descriptor *desc;
1216 	struct hv_device *device;
1217 	struct storvsc_device *stor_device;
1218 
1219 	if (channel->primary_channel != NULL)
1220 		device = channel->primary_channel->device_obj;
1221 	else
1222 		device = channel->device_obj;
1223 
1224 	stor_device = get_in_stor_device(device);
1225 	if (!stor_device)
1226 		return;
1227 
1228 	foreach_vmbus_pkt(desc, channel) {
1229 		void *packet = hv_pkt_data(desc);
1230 		struct storvsc_cmd_request *request;
1231 
1232 		request = (struct storvsc_cmd_request *)
1233 			((unsigned long)desc->trans_id);
1234 
1235 		if (request == &stor_device->init_request ||
1236 		    request == &stor_device->reset_request) {
1237 			memcpy(&request->vstor_packet, packet,
1238 			       (sizeof(struct vstor_packet) - vmscsi_size_delta));
1239 			complete(&request->wait_event);
1240 		} else {
1241 			storvsc_on_receive(stor_device, packet, request);
1242 		}
1243 	}
1244 }
1245 
1246 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size,
1247 				  bool is_fc)
1248 {
1249 	struct vmstorage_channel_properties props;
1250 	int ret;
1251 
1252 	memset(&props, 0, sizeof(struct vmstorage_channel_properties));
1253 
1254 	ret = vmbus_open(device->channel,
1255 			 ring_size,
1256 			 ring_size,
1257 			 (void *)&props,
1258 			 sizeof(struct vmstorage_channel_properties),
1259 			 storvsc_on_channel_callback, device->channel);
1260 
1261 	if (ret != 0)
1262 		return ret;
1263 
1264 	ret = storvsc_channel_init(device, is_fc);
1265 
1266 	return ret;
1267 }
1268 
1269 static int storvsc_dev_remove(struct hv_device *device)
1270 {
1271 	struct storvsc_device *stor_device;
1272 
1273 	stor_device = hv_get_drvdata(device);
1274 
1275 	stor_device->destroy = true;
1276 
1277 	/* Make sure flag is set before waiting */
1278 	wmb();
1279 
1280 	/*
1281 	 * At this point, all outbound traffic should be disable. We
1282 	 * only allow inbound traffic (responses) to proceed so that
1283 	 * outstanding requests can be completed.
1284 	 */
1285 
1286 	storvsc_wait_to_drain(stor_device);
1287 
1288 	/*
1289 	 * Since we have already drained, we don't need to busy wait
1290 	 * as was done in final_release_stor_device()
1291 	 * Note that we cannot set the ext pointer to NULL until
1292 	 * we have drained - to drain the outgoing packets, we need to
1293 	 * allow incoming packets.
1294 	 */
1295 	hv_set_drvdata(device, NULL);
1296 
1297 	/* Close the channel */
1298 	vmbus_close(device->channel);
1299 
1300 	kfree(stor_device->stor_chns);
1301 	kfree(stor_device);
1302 	return 0;
1303 }
1304 
1305 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device,
1306 					u16 q_num)
1307 {
1308 	u16 slot = 0;
1309 	u16 hash_qnum;
1310 	const struct cpumask *node_mask;
1311 	int num_channels, tgt_cpu;
1312 
1313 	if (stor_device->num_sc == 0) {
1314 		stor_device->stor_chns[q_num] = stor_device->device->channel;
1315 		return stor_device->device->channel;
1316 	}
1317 
1318 	/*
1319 	 * Our channel array is sparsley populated and we
1320 	 * initiated I/O on a processor/hw-q that does not
1321 	 * currently have a designated channel. Fix this.
1322 	 * The strategy is simple:
1323 	 * I. Ensure NUMA locality
1324 	 * II. Distribute evenly (best effort)
1325 	 */
1326 
1327 	node_mask = cpumask_of_node(cpu_to_node(q_num));
1328 
1329 	num_channels = 0;
1330 	for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1331 		if (cpumask_test_cpu(tgt_cpu, node_mask))
1332 			num_channels++;
1333 	}
1334 	if (num_channels == 0) {
1335 		stor_device->stor_chns[q_num] = stor_device->device->channel;
1336 		return stor_device->device->channel;
1337 	}
1338 
1339 	hash_qnum = q_num;
1340 	while (hash_qnum >= num_channels)
1341 		hash_qnum -= num_channels;
1342 
1343 	for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1344 		if (!cpumask_test_cpu(tgt_cpu, node_mask))
1345 			continue;
1346 		if (slot == hash_qnum)
1347 			break;
1348 		slot++;
1349 	}
1350 
1351 	stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu];
1352 
1353 	return stor_device->stor_chns[q_num];
1354 }
1355 
1356 
1357 static int storvsc_do_io(struct hv_device *device,
1358 			 struct storvsc_cmd_request *request, u16 q_num)
1359 {
1360 	struct storvsc_device *stor_device;
1361 	struct vstor_packet *vstor_packet;
1362 	struct vmbus_channel *outgoing_channel, *channel;
1363 	unsigned long flags;
1364 	int ret = 0;
1365 	const struct cpumask *node_mask;
1366 	int tgt_cpu;
1367 
1368 	vstor_packet = &request->vstor_packet;
1369 	stor_device = get_out_stor_device(device);
1370 
1371 	if (!stor_device)
1372 		return -ENODEV;
1373 
1374 
1375 	request->device  = device;
1376 	/*
1377 	 * Select an appropriate channel to send the request out.
1378 	 */
1379 	/* See storvsc_change_target_cpu(). */
1380 	outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]);
1381 	if (outgoing_channel != NULL) {
1382 		if (outgoing_channel->target_cpu == q_num) {
1383 			/*
1384 			 * Ideally, we want to pick a different channel if
1385 			 * available on the same NUMA node.
1386 			 */
1387 			node_mask = cpumask_of_node(cpu_to_node(q_num));
1388 			for_each_cpu_wrap(tgt_cpu,
1389 				 &stor_device->alloced_cpus, q_num + 1) {
1390 				if (!cpumask_test_cpu(tgt_cpu, node_mask))
1391 					continue;
1392 				if (tgt_cpu == q_num)
1393 					continue;
1394 				channel = READ_ONCE(
1395 					stor_device->stor_chns[tgt_cpu]);
1396 				if (channel == NULL)
1397 					continue;
1398 				if (hv_get_avail_to_write_percent(
1399 							&channel->outbound)
1400 						> ring_avail_percent_lowater) {
1401 					outgoing_channel = channel;
1402 					goto found_channel;
1403 				}
1404 			}
1405 
1406 			/*
1407 			 * All the other channels on the same NUMA node are
1408 			 * busy. Try to use the channel on the current CPU
1409 			 */
1410 			if (hv_get_avail_to_write_percent(
1411 						&outgoing_channel->outbound)
1412 					> ring_avail_percent_lowater)
1413 				goto found_channel;
1414 
1415 			/*
1416 			 * If we reach here, all the channels on the current
1417 			 * NUMA node are busy. Try to find a channel in
1418 			 * other NUMA nodes
1419 			 */
1420 			for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) {
1421 				if (cpumask_test_cpu(tgt_cpu, node_mask))
1422 					continue;
1423 				channel = READ_ONCE(
1424 					stor_device->stor_chns[tgt_cpu]);
1425 				if (channel == NULL)
1426 					continue;
1427 				if (hv_get_avail_to_write_percent(
1428 							&channel->outbound)
1429 						> ring_avail_percent_lowater) {
1430 					outgoing_channel = channel;
1431 					goto found_channel;
1432 				}
1433 			}
1434 		}
1435 	} else {
1436 		spin_lock_irqsave(&device->channel->lock, flags);
1437 		outgoing_channel = stor_device->stor_chns[q_num];
1438 		if (outgoing_channel != NULL) {
1439 			spin_unlock_irqrestore(&device->channel->lock, flags);
1440 			goto found_channel;
1441 		}
1442 		outgoing_channel = get_og_chn(stor_device, q_num);
1443 		spin_unlock_irqrestore(&device->channel->lock, flags);
1444 	}
1445 
1446 found_channel:
1447 	vstor_packet->flags |= REQUEST_COMPLETION_FLAG;
1448 
1449 	vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) -
1450 					vmscsi_size_delta);
1451 
1452 
1453 	vstor_packet->vm_srb.sense_info_length = sense_buffer_size;
1454 
1455 
1456 	vstor_packet->vm_srb.data_transfer_length =
1457 	request->payload->range.len;
1458 
1459 	vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB;
1460 
1461 	if (request->payload->range.len) {
1462 
1463 		ret = vmbus_sendpacket_mpb_desc(outgoing_channel,
1464 				request->payload, request->payload_sz,
1465 				vstor_packet,
1466 				(sizeof(struct vstor_packet) -
1467 				vmscsi_size_delta),
1468 				(unsigned long)request);
1469 	} else {
1470 		ret = vmbus_sendpacket(outgoing_channel, vstor_packet,
1471 			       (sizeof(struct vstor_packet) -
1472 				vmscsi_size_delta),
1473 			       (unsigned long)request,
1474 			       VM_PKT_DATA_INBAND,
1475 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1476 	}
1477 
1478 	if (ret != 0)
1479 		return ret;
1480 
1481 	atomic_inc(&stor_device->num_outstanding_req);
1482 
1483 	return ret;
1484 }
1485 
1486 static int storvsc_device_alloc(struct scsi_device *sdevice)
1487 {
1488 	/*
1489 	 * Set blist flag to permit the reading of the VPD pages even when
1490 	 * the target may claim SPC-2 compliance. MSFT targets currently
1491 	 * claim SPC-2 compliance while they implement post SPC-2 features.
1492 	 * With this flag we can correctly handle WRITE_SAME_16 issues.
1493 	 *
1494 	 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but
1495 	 * still supports REPORT LUN.
1496 	 */
1497 	sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES;
1498 
1499 	return 0;
1500 }
1501 
1502 static int storvsc_device_configure(struct scsi_device *sdevice)
1503 {
1504 	blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ));
1505 
1506 	sdevice->no_write_same = 1;
1507 
1508 	/*
1509 	 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3
1510 	 * if the device is a MSFT virtual device.  If the host is
1511 	 * WIN10 or newer, allow write_same.
1512 	 */
1513 	if (!strncmp(sdevice->vendor, "Msft", 4)) {
1514 		switch (vmstor_proto_version) {
1515 		case VMSTOR_PROTO_VERSION_WIN8:
1516 		case VMSTOR_PROTO_VERSION_WIN8_1:
1517 			sdevice->scsi_level = SCSI_SPC_3;
1518 			break;
1519 		}
1520 
1521 		if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10)
1522 			sdevice->no_write_same = 0;
1523 	}
1524 
1525 	return 0;
1526 }
1527 
1528 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev,
1529 			   sector_t capacity, int *info)
1530 {
1531 	sector_t nsect = capacity;
1532 	sector_t cylinders = nsect;
1533 	int heads, sectors_pt;
1534 
1535 	/*
1536 	 * We are making up these values; let us keep it simple.
1537 	 */
1538 	heads = 0xff;
1539 	sectors_pt = 0x3f;      /* Sectors per track */
1540 	sector_div(cylinders, heads * sectors_pt);
1541 	if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect)
1542 		cylinders = 0xffff;
1543 
1544 	info[0] = heads;
1545 	info[1] = sectors_pt;
1546 	info[2] = (int)cylinders;
1547 
1548 	return 0;
1549 }
1550 
1551 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd)
1552 {
1553 	struct hv_host_device *host_dev = shost_priv(scmnd->device->host);
1554 	struct hv_device *device = host_dev->dev;
1555 
1556 	struct storvsc_device *stor_device;
1557 	struct storvsc_cmd_request *request;
1558 	struct vstor_packet *vstor_packet;
1559 	int ret, t;
1560 
1561 
1562 	stor_device = get_out_stor_device(device);
1563 	if (!stor_device)
1564 		return FAILED;
1565 
1566 	request = &stor_device->reset_request;
1567 	vstor_packet = &request->vstor_packet;
1568 
1569 	init_completion(&request->wait_event);
1570 
1571 	vstor_packet->operation = VSTOR_OPERATION_RESET_BUS;
1572 	vstor_packet->flags = REQUEST_COMPLETION_FLAG;
1573 	vstor_packet->vm_srb.path_id = stor_device->path_id;
1574 
1575 	ret = vmbus_sendpacket(device->channel, vstor_packet,
1576 			       (sizeof(struct vstor_packet) -
1577 				vmscsi_size_delta),
1578 			       (unsigned long)&stor_device->reset_request,
1579 			       VM_PKT_DATA_INBAND,
1580 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1581 	if (ret != 0)
1582 		return FAILED;
1583 
1584 	t = wait_for_completion_timeout(&request->wait_event, 5*HZ);
1585 	if (t == 0)
1586 		return TIMEOUT_ERROR;
1587 
1588 
1589 	/*
1590 	 * At this point, all outstanding requests in the adapter
1591 	 * should have been flushed out and return to us
1592 	 * There is a potential race here where the host may be in
1593 	 * the process of responding when we return from here.
1594 	 * Just wait for all in-transit packets to be accounted for
1595 	 * before we return from here.
1596 	 */
1597 	storvsc_wait_to_drain(stor_device);
1598 
1599 	return SUCCESS;
1600 }
1601 
1602 /*
1603  * The host guarantees to respond to each command, although I/O latencies might
1604  * be unbounded on Azure.  Reset the timer unconditionally to give the host a
1605  * chance to perform EH.
1606  */
1607 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd)
1608 {
1609 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1610 	if (scmnd->device->host->transportt == fc_transport_template)
1611 		return fc_eh_timed_out(scmnd);
1612 #endif
1613 	return BLK_EH_RESET_TIMER;
1614 }
1615 
1616 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd)
1617 {
1618 	bool allowed = true;
1619 	u8 scsi_op = scmnd->cmnd[0];
1620 
1621 	switch (scsi_op) {
1622 	/* the host does not handle WRITE_SAME, log accident usage */
1623 	case WRITE_SAME:
1624 	/*
1625 	 * smartd sends this command and the host does not handle
1626 	 * this. So, don't send it.
1627 	 */
1628 	case SET_WINDOW:
1629 		scmnd->result = ILLEGAL_REQUEST << 16;
1630 		allowed = false;
1631 		break;
1632 	default:
1633 		break;
1634 	}
1635 	return allowed;
1636 }
1637 
1638 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd)
1639 {
1640 	int ret;
1641 	struct hv_host_device *host_dev = shost_priv(host);
1642 	struct hv_device *dev = host_dev->dev;
1643 	struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd);
1644 	int i;
1645 	struct scatterlist *sgl;
1646 	unsigned int sg_count = 0;
1647 	struct vmscsi_request *vm_srb;
1648 	struct scatterlist *cur_sgl;
1649 	struct vmbus_packet_mpb_array  *payload;
1650 	u32 payload_sz;
1651 	u32 length;
1652 
1653 	if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) {
1654 		/*
1655 		 * On legacy hosts filter unimplemented commands.
1656 		 * Future hosts are expected to correctly handle
1657 		 * unsupported commands. Furthermore, it is
1658 		 * possible that some of the currently
1659 		 * unsupported commands maybe supported in
1660 		 * future versions of the host.
1661 		 */
1662 		if (!storvsc_scsi_cmd_ok(scmnd)) {
1663 			scmnd->scsi_done(scmnd);
1664 			return 0;
1665 		}
1666 	}
1667 
1668 	/* Setup the cmd request */
1669 	cmd_request->cmd = scmnd;
1670 
1671 	vm_srb = &cmd_request->vstor_packet.vm_srb;
1672 	vm_srb->win8_extension.time_out_value = 60;
1673 
1674 	vm_srb->win8_extension.srb_flags |=
1675 		SRB_FLAGS_DISABLE_SYNCH_TRANSFER;
1676 
1677 	if (scmnd->device->tagged_supported) {
1678 		vm_srb->win8_extension.srb_flags |=
1679 		(SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE);
1680 		vm_srb->win8_extension.queue_tag = SP_UNTAGGED;
1681 		vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST;
1682 	}
1683 
1684 	/* Build the SRB */
1685 	switch (scmnd->sc_data_direction) {
1686 	case DMA_TO_DEVICE:
1687 		vm_srb->data_in = WRITE_TYPE;
1688 		vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT;
1689 		break;
1690 	case DMA_FROM_DEVICE:
1691 		vm_srb->data_in = READ_TYPE;
1692 		vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN;
1693 		break;
1694 	case DMA_NONE:
1695 		vm_srb->data_in = UNKNOWN_TYPE;
1696 		vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER;
1697 		break;
1698 	default:
1699 		/*
1700 		 * This is DMA_BIDIRECTIONAL or something else we are never
1701 		 * supposed to see here.
1702 		 */
1703 		WARN(1, "Unexpected data direction: %d\n",
1704 		     scmnd->sc_data_direction);
1705 		return -EINVAL;
1706 	}
1707 
1708 
1709 	vm_srb->port_number = host_dev->port;
1710 	vm_srb->path_id = scmnd->device->channel;
1711 	vm_srb->target_id = scmnd->device->id;
1712 	vm_srb->lun = scmnd->device->lun;
1713 
1714 	vm_srb->cdb_length = scmnd->cmd_len;
1715 
1716 	memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length);
1717 
1718 	sgl = (struct scatterlist *)scsi_sglist(scmnd);
1719 	sg_count = scsi_sg_count(scmnd);
1720 
1721 	length = scsi_bufflen(scmnd);
1722 	payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb;
1723 	payload_sz = sizeof(cmd_request->mpb);
1724 
1725 	if (sg_count) {
1726 		if (sg_count > MAX_PAGE_BUFFER_COUNT) {
1727 
1728 			payload_sz = (sg_count * sizeof(u64) +
1729 				      sizeof(struct vmbus_packet_mpb_array));
1730 			payload = kzalloc(payload_sz, GFP_ATOMIC);
1731 			if (!payload)
1732 				return SCSI_MLQUEUE_DEVICE_BUSY;
1733 		}
1734 
1735 		payload->range.len = length;
1736 		payload->range.offset = sgl[0].offset;
1737 
1738 		cur_sgl = sgl;
1739 		for (i = 0; i < sg_count; i++) {
1740 			payload->range.pfn_array[i] =
1741 				page_to_pfn(sg_page((cur_sgl)));
1742 			cur_sgl = sg_next(cur_sgl);
1743 		}
1744 	}
1745 
1746 	cmd_request->payload = payload;
1747 	cmd_request->payload_sz = payload_sz;
1748 
1749 	/* Invokes the vsc to start an IO */
1750 	ret = storvsc_do_io(dev, cmd_request, get_cpu());
1751 	put_cpu();
1752 
1753 	if (ret == -EAGAIN) {
1754 		if (payload_sz > sizeof(cmd_request->mpb))
1755 			kfree(payload);
1756 		/* no more space */
1757 		return SCSI_MLQUEUE_DEVICE_BUSY;
1758 	}
1759 
1760 	return 0;
1761 }
1762 
1763 static struct scsi_host_template scsi_driver = {
1764 	.module	=		THIS_MODULE,
1765 	.name =			"storvsc_host_t",
1766 	.cmd_size =             sizeof(struct storvsc_cmd_request),
1767 	.bios_param =		storvsc_get_chs,
1768 	.queuecommand =		storvsc_queuecommand,
1769 	.eh_host_reset_handler =	storvsc_host_reset_handler,
1770 	.proc_name =		"storvsc_host",
1771 	.eh_timed_out =		storvsc_eh_timed_out,
1772 	.slave_alloc =		storvsc_device_alloc,
1773 	.slave_configure =	storvsc_device_configure,
1774 	.cmd_per_lun =		2048,
1775 	.this_id =		-1,
1776 	/* Make sure we dont get a sg segment crosses a page boundary */
1777 	.dma_boundary =		PAGE_SIZE-1,
1778 	/* Ensure there are no gaps in presented sgls */
1779 	.virt_boundary_mask =	PAGE_SIZE-1,
1780 	.no_write_same =	1,
1781 	.track_queue_depth =	1,
1782 	.change_queue_depth =	storvsc_change_queue_depth,
1783 };
1784 
1785 enum {
1786 	SCSI_GUID,
1787 	IDE_GUID,
1788 	SFC_GUID,
1789 };
1790 
1791 static const struct hv_vmbus_device_id id_table[] = {
1792 	/* SCSI guid */
1793 	{ HV_SCSI_GUID,
1794 	  .driver_data = SCSI_GUID
1795 	},
1796 	/* IDE guid */
1797 	{ HV_IDE_GUID,
1798 	  .driver_data = IDE_GUID
1799 	},
1800 	/* Fibre Channel GUID */
1801 	{
1802 	  HV_SYNTHFC_GUID,
1803 	  .driver_data = SFC_GUID
1804 	},
1805 	{ },
1806 };
1807 
1808 MODULE_DEVICE_TABLE(vmbus, id_table);
1809 
1810 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID };
1811 
1812 static bool hv_dev_is_fc(struct hv_device *hv_dev)
1813 {
1814 	return guid_equal(&fc_guid.guid, &hv_dev->dev_type);
1815 }
1816 
1817 static int storvsc_probe(struct hv_device *device,
1818 			const struct hv_vmbus_device_id *dev_id)
1819 {
1820 	int ret;
1821 	int num_cpus = num_online_cpus();
1822 	struct Scsi_Host *host;
1823 	struct hv_host_device *host_dev;
1824 	bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false);
1825 	bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false);
1826 	int target = 0;
1827 	struct storvsc_device *stor_device;
1828 	int max_luns_per_target;
1829 	int max_targets;
1830 	int max_channels;
1831 	int max_sub_channels = 0;
1832 
1833 	/*
1834 	 * Based on the windows host we are running on,
1835 	 * set state to properly communicate with the host.
1836 	 */
1837 
1838 	if (vmbus_proto_version < VERSION_WIN8) {
1839 		max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1840 		max_targets = STORVSC_IDE_MAX_TARGETS;
1841 		max_channels = STORVSC_IDE_MAX_CHANNELS;
1842 	} else {
1843 		max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET;
1844 		max_targets = STORVSC_MAX_TARGETS;
1845 		max_channels = STORVSC_MAX_CHANNELS;
1846 		/*
1847 		 * On Windows8 and above, we support sub-channels for storage
1848 		 * on SCSI and FC controllers.
1849 		 * The number of sub-channels offerred is based on the number of
1850 		 * VCPUs in the guest.
1851 		 */
1852 		if (!dev_is_ide)
1853 			max_sub_channels =
1854 				(num_cpus - 1) / storvsc_vcpus_per_sub_channel;
1855 	}
1856 
1857 	scsi_driver.can_queue = max_outstanding_req_per_channel *
1858 				(max_sub_channels + 1) *
1859 				(100 - ring_avail_percent_lowater) / 100;
1860 
1861 	host = scsi_host_alloc(&scsi_driver,
1862 			       sizeof(struct hv_host_device));
1863 	if (!host)
1864 		return -ENOMEM;
1865 
1866 	host_dev = shost_priv(host);
1867 	memset(host_dev, 0, sizeof(struct hv_host_device));
1868 
1869 	host_dev->port = host->host_no;
1870 	host_dev->dev = device;
1871 	host_dev->host = host;
1872 
1873 
1874 	stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL);
1875 	if (!stor_device) {
1876 		ret = -ENOMEM;
1877 		goto err_out0;
1878 	}
1879 
1880 	stor_device->destroy = false;
1881 	init_waitqueue_head(&stor_device->waiting_to_drain);
1882 	stor_device->device = device;
1883 	stor_device->host = host;
1884 	hv_set_drvdata(device, stor_device);
1885 
1886 	stor_device->port_number = host->host_no;
1887 	ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc);
1888 	if (ret)
1889 		goto err_out1;
1890 
1891 	host_dev->path = stor_device->path_id;
1892 	host_dev->target = stor_device->target_id;
1893 
1894 	switch (dev_id->driver_data) {
1895 	case SFC_GUID:
1896 		host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET;
1897 		host->max_id = STORVSC_FC_MAX_TARGETS;
1898 		host->max_channel = STORVSC_FC_MAX_CHANNELS - 1;
1899 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1900 		host->transportt = fc_transport_template;
1901 #endif
1902 		break;
1903 
1904 	case SCSI_GUID:
1905 		host->max_lun = max_luns_per_target;
1906 		host->max_id = max_targets;
1907 		host->max_channel = max_channels - 1;
1908 		break;
1909 
1910 	default:
1911 		host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET;
1912 		host->max_id = STORVSC_IDE_MAX_TARGETS;
1913 		host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1;
1914 		break;
1915 	}
1916 	/* max cmd length */
1917 	host->max_cmd_len = STORVSC_MAX_CMD_LEN;
1918 
1919 	/*
1920 	 * set the table size based on the info we got
1921 	 * from the host.
1922 	 */
1923 	host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT);
1924 	/*
1925 	 * For non-IDE disks, the host supports multiple channels.
1926 	 * Set the number of HW queues we are supporting.
1927 	 */
1928 	if (!dev_is_ide)
1929 		host->nr_hw_queues = num_present_cpus();
1930 
1931 	/*
1932 	 * Set the error handler work queue.
1933 	 */
1934 	host_dev->handle_error_wq =
1935 			alloc_ordered_workqueue("storvsc_error_wq_%d",
1936 						WQ_MEM_RECLAIM,
1937 						host->host_no);
1938 	if (!host_dev->handle_error_wq)
1939 		goto err_out2;
1940 	INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan);
1941 	/* Register the HBA and start the scsi bus scan */
1942 	ret = scsi_add_host(host, &device->device);
1943 	if (ret != 0)
1944 		goto err_out3;
1945 
1946 	if (!dev_is_ide) {
1947 		scsi_scan_host(host);
1948 	} else {
1949 		target = (device->dev_instance.b[5] << 8 |
1950 			 device->dev_instance.b[4]);
1951 		ret = scsi_add_device(host, 0, target, 0);
1952 		if (ret)
1953 			goto err_out4;
1954 	}
1955 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
1956 	if (host->transportt == fc_transport_template) {
1957 		struct fc_rport_identifiers ids = {
1958 			.roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR,
1959 		};
1960 
1961 		fc_host_node_name(host) = stor_device->node_name;
1962 		fc_host_port_name(host) = stor_device->port_name;
1963 		stor_device->rport = fc_remote_port_add(host, 0, &ids);
1964 		if (!stor_device->rport) {
1965 			ret = -ENOMEM;
1966 			goto err_out4;
1967 		}
1968 	}
1969 #endif
1970 	return 0;
1971 
1972 err_out4:
1973 	scsi_remove_host(host);
1974 
1975 err_out3:
1976 	destroy_workqueue(host_dev->handle_error_wq);
1977 
1978 err_out2:
1979 	/*
1980 	 * Once we have connected with the host, we would need to
1981 	 * to invoke storvsc_dev_remove() to rollback this state and
1982 	 * this call also frees up the stor_device; hence the jump around
1983 	 * err_out1 label.
1984 	 */
1985 	storvsc_dev_remove(device);
1986 	goto err_out0;
1987 
1988 err_out1:
1989 	kfree(stor_device->stor_chns);
1990 	kfree(stor_device);
1991 
1992 err_out0:
1993 	scsi_host_put(host);
1994 	return ret;
1995 }
1996 
1997 /* Change a scsi target's queue depth */
1998 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth)
1999 {
2000 	if (queue_depth > scsi_driver.can_queue)
2001 		queue_depth = scsi_driver.can_queue;
2002 
2003 	return scsi_change_queue_depth(sdev, queue_depth);
2004 }
2005 
2006 static int storvsc_remove(struct hv_device *dev)
2007 {
2008 	struct storvsc_device *stor_device = hv_get_drvdata(dev);
2009 	struct Scsi_Host *host = stor_device->host;
2010 	struct hv_host_device *host_dev = shost_priv(host);
2011 
2012 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2013 	if (host->transportt == fc_transport_template) {
2014 		fc_remote_port_delete(stor_device->rport);
2015 		fc_remove_host(host);
2016 	}
2017 #endif
2018 	destroy_workqueue(host_dev->handle_error_wq);
2019 	scsi_remove_host(host);
2020 	storvsc_dev_remove(dev);
2021 	scsi_host_put(host);
2022 
2023 	return 0;
2024 }
2025 
2026 static int storvsc_suspend(struct hv_device *hv_dev)
2027 {
2028 	struct storvsc_device *stor_device = hv_get_drvdata(hv_dev);
2029 	struct Scsi_Host *host = stor_device->host;
2030 	struct hv_host_device *host_dev = shost_priv(host);
2031 
2032 	storvsc_wait_to_drain(stor_device);
2033 
2034 	drain_workqueue(host_dev->handle_error_wq);
2035 
2036 	vmbus_close(hv_dev->channel);
2037 
2038 	kfree(stor_device->stor_chns);
2039 	stor_device->stor_chns = NULL;
2040 
2041 	cpumask_clear(&stor_device->alloced_cpus);
2042 
2043 	return 0;
2044 }
2045 
2046 static int storvsc_resume(struct hv_device *hv_dev)
2047 {
2048 	int ret;
2049 
2050 	ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size,
2051 				     hv_dev_is_fc(hv_dev));
2052 	return ret;
2053 }
2054 
2055 static struct hv_driver storvsc_drv = {
2056 	.name = KBUILD_MODNAME,
2057 	.id_table = id_table,
2058 	.probe = storvsc_probe,
2059 	.remove = storvsc_remove,
2060 	.suspend = storvsc_suspend,
2061 	.resume = storvsc_resume,
2062 	.driver = {
2063 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
2064 	},
2065 };
2066 
2067 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2068 static struct fc_function_template fc_transport_functions = {
2069 	.show_host_node_name = 1,
2070 	.show_host_port_name = 1,
2071 };
2072 #endif
2073 
2074 static int __init storvsc_drv_init(void)
2075 {
2076 	int ret;
2077 
2078 	/*
2079 	 * Divide the ring buffer data size (which is 1 page less
2080 	 * than the ring buffer size since that page is reserved for
2081 	 * the ring buffer indices) by the max request size (which is
2082 	 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64)
2083 	 */
2084 	max_outstanding_req_per_channel =
2085 		((storvsc_ringbuffer_size - PAGE_SIZE) /
2086 		ALIGN(MAX_MULTIPAGE_BUFFER_PACKET +
2087 		sizeof(struct vstor_packet) + sizeof(u64) -
2088 		vmscsi_size_delta,
2089 		sizeof(u64)));
2090 
2091 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2092 	fc_transport_template = fc_attach_transport(&fc_transport_functions);
2093 	if (!fc_transport_template)
2094 		return -ENODEV;
2095 #endif
2096 
2097 	ret = vmbus_driver_register(&storvsc_drv);
2098 
2099 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2100 	if (ret)
2101 		fc_release_transport(fc_transport_template);
2102 #endif
2103 
2104 	return ret;
2105 }
2106 
2107 static void __exit storvsc_drv_exit(void)
2108 {
2109 	vmbus_driver_unregister(&storvsc_drv);
2110 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS)
2111 	fc_release_transport(fc_transport_template);
2112 #endif
2113 }
2114 
2115 MODULE_LICENSE("GPL");
2116 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver");
2117 module_init(storvsc_drv_init);
2118 module_exit(storvsc_drv_exit);
2119