1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <linux/dma-mapping.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_host.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_devinfo.h> 33 #include <scsi/scsi_dbg.h> 34 #include <scsi/scsi_transport_fc.h> 35 #include <scsi/scsi_transport.h> 36 37 /* 38 * All wire protocol details (storage protocol between the guest and the host) 39 * are consolidated here. 40 * 41 * Begin protocol definitions. 42 */ 43 44 /* 45 * Version history: 46 * V1 Beta: 0.1 47 * V1 RC < 2008/1/31: 1.0 48 * V1 RC > 2008/1/31: 2.0 49 * Win7: 4.2 50 * Win8: 5.1 51 * Win8.1: 6.0 52 * Win10: 6.2 53 */ 54 55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 56 (((MINOR_) & 0xff))) 57 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 58 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 59 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 60 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 61 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 62 63 /* channel callback timeout in ms */ 64 #define CALLBACK_TIMEOUT 2 65 66 /* Packet structure describing virtual storage requests. */ 67 enum vstor_packet_operation { 68 VSTOR_OPERATION_COMPLETE_IO = 1, 69 VSTOR_OPERATION_REMOVE_DEVICE = 2, 70 VSTOR_OPERATION_EXECUTE_SRB = 3, 71 VSTOR_OPERATION_RESET_LUN = 4, 72 VSTOR_OPERATION_RESET_ADAPTER = 5, 73 VSTOR_OPERATION_RESET_BUS = 6, 74 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 75 VSTOR_OPERATION_END_INITIALIZATION = 8, 76 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 77 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 78 VSTOR_OPERATION_ENUMERATE_BUS = 11, 79 VSTOR_OPERATION_FCHBA_DATA = 12, 80 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 81 VSTOR_OPERATION_MAXIMUM = 13 82 }; 83 84 /* 85 * WWN packet for Fibre Channel HBA 86 */ 87 88 struct hv_fc_wwn_packet { 89 u8 primary_active; 90 u8 reserved1[3]; 91 u8 primary_port_wwn[8]; 92 u8 primary_node_wwn[8]; 93 u8 secondary_port_wwn[8]; 94 u8 secondary_node_wwn[8]; 95 }; 96 97 98 99 /* 100 * SRB Flag Bits 101 */ 102 103 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 104 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 105 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 106 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 107 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 108 #define SRB_FLAGS_DATA_IN 0x00000040 109 #define SRB_FLAGS_DATA_OUT 0x00000080 110 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 111 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 112 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 113 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 114 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 115 116 /* 117 * This flag indicates the request is part of the workflow for processing a D3. 118 */ 119 #define SRB_FLAGS_D3_PROCESSING 0x00000800 120 #define SRB_FLAGS_IS_ACTIVE 0x00010000 121 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 122 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 123 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 124 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 125 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 126 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 127 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 128 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 129 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 130 131 #define SP_UNTAGGED ((unsigned char) ~0) 132 #define SRB_SIMPLE_TAG_REQUEST 0x20 133 134 /* 135 * Platform neutral description of a scsi request - 136 * this remains the same across the write regardless of 32/64 bit 137 * note: it's patterned off the SCSI_PASS_THROUGH structure 138 */ 139 #define STORVSC_MAX_CMD_LEN 0x10 140 141 /* Sense buffer size is the same for all versions since Windows 8 */ 142 #define STORVSC_SENSE_BUFFER_SIZE 0x14 143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 144 145 /* 146 * The storage protocol version is determined during the 147 * initial exchange with the host. It will indicate which 148 * storage functionality is available in the host. 149 */ 150 static int vmstor_proto_version; 151 152 #define STORVSC_LOGGING_NONE 0 153 #define STORVSC_LOGGING_ERROR 1 154 #define STORVSC_LOGGING_WARN 2 155 156 static int logging_level = STORVSC_LOGGING_ERROR; 157 module_param(logging_level, int, S_IRUGO|S_IWUSR); 158 MODULE_PARM_DESC(logging_level, 159 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 160 161 static inline bool do_logging(int level) 162 { 163 return logging_level >= level; 164 } 165 166 #define storvsc_log(dev, level, fmt, ...) \ 167 do { \ 168 if (do_logging(level)) \ 169 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 170 } while (0) 171 172 struct vmscsi_request { 173 u16 length; 174 u8 srb_status; 175 u8 scsi_status; 176 177 u8 port_number; 178 u8 path_id; 179 u8 target_id; 180 u8 lun; 181 182 u8 cdb_length; 183 u8 sense_info_length; 184 u8 data_in; 185 u8 reserved; 186 187 u32 data_transfer_length; 188 189 union { 190 u8 cdb[STORVSC_MAX_CMD_LEN]; 191 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 192 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 193 }; 194 /* 195 * The following was added in win8. 196 */ 197 u16 reserve; 198 u8 queue_tag; 199 u8 queue_action; 200 u32 srb_flags; 201 u32 time_out_value; 202 u32 queue_sort_ey; 203 204 } __attribute((packed)); 205 206 /* 207 * The list of windows version in order of preference. 208 */ 209 210 static const int protocol_version[] = { 211 VMSTOR_PROTO_VERSION_WIN10, 212 VMSTOR_PROTO_VERSION_WIN8_1, 213 VMSTOR_PROTO_VERSION_WIN8, 214 }; 215 216 217 /* 218 * This structure is sent during the initialization phase to get the different 219 * properties of the channel. 220 */ 221 222 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 223 224 struct vmstorage_channel_properties { 225 u32 reserved; 226 u16 max_channel_cnt; 227 u16 reserved1; 228 229 u32 flags; 230 u32 max_transfer_bytes; 231 232 u64 reserved2; 233 } __packed; 234 235 /* This structure is sent during the storage protocol negotiations. */ 236 struct vmstorage_protocol_version { 237 /* Major (MSW) and minor (LSW) version numbers. */ 238 u16 major_minor; 239 240 /* 241 * Revision number is auto-incremented whenever this file is changed 242 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 243 * definitely indicate incompatibility--but it does indicate mismatched 244 * builds. 245 * This is only used on the windows side. Just set it to 0. 246 */ 247 u16 revision; 248 } __packed; 249 250 /* Channel Property Flags */ 251 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 252 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 253 254 struct vstor_packet { 255 /* Requested operation type */ 256 enum vstor_packet_operation operation; 257 258 /* Flags - see below for values */ 259 u32 flags; 260 261 /* Status of the request returned from the server side. */ 262 u32 status; 263 264 /* Data payload area */ 265 union { 266 /* 267 * Structure used to forward SCSI commands from the 268 * client to the server. 269 */ 270 struct vmscsi_request vm_srb; 271 272 /* Structure used to query channel properties. */ 273 struct vmstorage_channel_properties storage_channel_properties; 274 275 /* Used during version negotiations. */ 276 struct vmstorage_protocol_version version; 277 278 /* Fibre channel address packet */ 279 struct hv_fc_wwn_packet wwn_packet; 280 281 /* Number of sub-channels to create */ 282 u16 sub_channel_count; 283 284 /* This will be the maximum of the union members */ 285 u8 buffer[0x34]; 286 }; 287 } __packed; 288 289 /* 290 * Packet Flags: 291 * 292 * This flag indicates that the server should send back a completion for this 293 * packet. 294 */ 295 296 #define REQUEST_COMPLETION_FLAG 0x1 297 298 /* Matches Windows-end */ 299 enum storvsc_request_type { 300 WRITE_TYPE = 0, 301 READ_TYPE, 302 UNKNOWN_TYPE, 303 }; 304 305 /* 306 * SRB status codes and masks. In the 8-bit field, the two high order bits 307 * are flags, while the remaining 6 bits are an integer status code. The 308 * definitions here include only the subset of the integer status codes that 309 * are tested for in this driver. 310 */ 311 #define SRB_STATUS_AUTOSENSE_VALID 0x80 312 #define SRB_STATUS_QUEUE_FROZEN 0x40 313 314 /* SRB status integer codes */ 315 #define SRB_STATUS_SUCCESS 0x01 316 #define SRB_STATUS_ABORTED 0x02 317 #define SRB_STATUS_ERROR 0x04 318 #define SRB_STATUS_INVALID_REQUEST 0x06 319 #define SRB_STATUS_DATA_OVERRUN 0x12 320 #define SRB_STATUS_INVALID_LUN 0x20 321 322 #define SRB_STATUS(status) \ 323 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 324 /* 325 * This is the end of Protocol specific defines. 326 */ 327 328 static int storvsc_ringbuffer_size = (128 * 1024); 329 static u32 max_outstanding_req_per_channel; 330 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 331 332 static int storvsc_vcpus_per_sub_channel = 4; 333 static unsigned int storvsc_max_hw_queues; 334 335 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 336 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 337 338 module_param(storvsc_max_hw_queues, uint, 0644); 339 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 340 341 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 342 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 343 344 static int ring_avail_percent_lowater = 10; 345 module_param(ring_avail_percent_lowater, int, S_IRUGO); 346 MODULE_PARM_DESC(ring_avail_percent_lowater, 347 "Select a channel if available ring size > this in percent"); 348 349 /* 350 * Timeout in seconds for all devices managed by this driver. 351 */ 352 static int storvsc_timeout = 180; 353 354 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 355 static struct scsi_transport_template *fc_transport_template; 356 #endif 357 358 static struct scsi_host_template scsi_driver; 359 static void storvsc_on_channel_callback(void *context); 360 361 #define STORVSC_MAX_LUNS_PER_TARGET 255 362 #define STORVSC_MAX_TARGETS 2 363 #define STORVSC_MAX_CHANNELS 8 364 365 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 366 #define STORVSC_FC_MAX_TARGETS 128 367 #define STORVSC_FC_MAX_CHANNELS 8 368 369 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 370 #define STORVSC_IDE_MAX_TARGETS 1 371 #define STORVSC_IDE_MAX_CHANNELS 1 372 373 /* 374 * Upper bound on the size of a storvsc packet. 375 */ 376 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 377 sizeof(struct vstor_packet)) 378 379 struct storvsc_cmd_request { 380 struct scsi_cmnd *cmd; 381 382 struct hv_device *device; 383 384 /* Synchronize the request/response if needed */ 385 struct completion wait_event; 386 387 struct vmbus_channel_packet_multipage_buffer mpb; 388 struct vmbus_packet_mpb_array *payload; 389 u32 payload_sz; 390 391 struct vstor_packet vstor_packet; 392 }; 393 394 395 /* A storvsc device is a device object that contains a vmbus channel */ 396 struct storvsc_device { 397 struct hv_device *device; 398 399 bool destroy; 400 bool drain_notify; 401 atomic_t num_outstanding_req; 402 struct Scsi_Host *host; 403 404 wait_queue_head_t waiting_to_drain; 405 406 /* 407 * Each unique Port/Path/Target represents 1 channel ie scsi 408 * controller. In reality, the pathid, targetid is always 0 409 * and the port is set by us 410 */ 411 unsigned int port_number; 412 unsigned char path_id; 413 unsigned char target_id; 414 415 /* 416 * Max I/O, the device can support. 417 */ 418 u32 max_transfer_bytes; 419 /* 420 * Number of sub-channels we will open. 421 */ 422 u16 num_sc; 423 struct vmbus_channel **stor_chns; 424 /* 425 * Mask of CPUs bound to subchannels. 426 */ 427 struct cpumask alloced_cpus; 428 /* 429 * Serializes modifications of stor_chns[] from storvsc_do_io() 430 * and storvsc_change_target_cpu(). 431 */ 432 spinlock_t lock; 433 /* Used for vsc/vsp channel reset process */ 434 struct storvsc_cmd_request init_request; 435 struct storvsc_cmd_request reset_request; 436 /* 437 * Currently active port and node names for FC devices. 438 */ 439 u64 node_name; 440 u64 port_name; 441 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 442 struct fc_rport *rport; 443 #endif 444 }; 445 446 struct hv_host_device { 447 struct hv_device *dev; 448 unsigned int port; 449 unsigned char path; 450 unsigned char target; 451 struct workqueue_struct *handle_error_wq; 452 struct work_struct host_scan_work; 453 struct Scsi_Host *host; 454 }; 455 456 struct storvsc_scan_work { 457 struct work_struct work; 458 struct Scsi_Host *host; 459 u8 lun; 460 u8 tgt_id; 461 }; 462 463 static void storvsc_device_scan(struct work_struct *work) 464 { 465 struct storvsc_scan_work *wrk; 466 struct scsi_device *sdev; 467 468 wrk = container_of(work, struct storvsc_scan_work, work); 469 470 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 471 if (!sdev) 472 goto done; 473 scsi_rescan_device(&sdev->sdev_gendev); 474 scsi_device_put(sdev); 475 476 done: 477 kfree(wrk); 478 } 479 480 static void storvsc_host_scan(struct work_struct *work) 481 { 482 struct Scsi_Host *host; 483 struct scsi_device *sdev; 484 struct hv_host_device *host_device = 485 container_of(work, struct hv_host_device, host_scan_work); 486 487 host = host_device->host; 488 /* 489 * Before scanning the host, first check to see if any of the 490 * currently known devices have been hot removed. We issue a 491 * "unit ready" command against all currently known devices. 492 * This I/O will result in an error for devices that have been 493 * removed. As part of handling the I/O error, we remove the device. 494 * 495 * When a LUN is added or removed, the host sends us a signal to 496 * scan the host. Thus we are forced to discover the LUNs that 497 * may have been removed this way. 498 */ 499 mutex_lock(&host->scan_mutex); 500 shost_for_each_device(sdev, host) 501 scsi_test_unit_ready(sdev, 1, 1, NULL); 502 mutex_unlock(&host->scan_mutex); 503 /* 504 * Now scan the host to discover LUNs that may have been added. 505 */ 506 scsi_scan_host(host); 507 } 508 509 static void storvsc_remove_lun(struct work_struct *work) 510 { 511 struct storvsc_scan_work *wrk; 512 struct scsi_device *sdev; 513 514 wrk = container_of(work, struct storvsc_scan_work, work); 515 if (!scsi_host_get(wrk->host)) 516 goto done; 517 518 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 519 520 if (sdev) { 521 scsi_remove_device(sdev); 522 scsi_device_put(sdev); 523 } 524 scsi_host_put(wrk->host); 525 526 done: 527 kfree(wrk); 528 } 529 530 531 /* 532 * We can get incoming messages from the host that are not in response to 533 * messages that we have sent out. An example of this would be messages 534 * received by the guest to notify dynamic addition/removal of LUNs. To 535 * deal with potential race conditions where the driver may be in the 536 * midst of being unloaded when we might receive an unsolicited message 537 * from the host, we have implemented a mechanism to gurantee sequential 538 * consistency: 539 * 540 * 1) Once the device is marked as being destroyed, we will fail all 541 * outgoing messages. 542 * 2) We permit incoming messages when the device is being destroyed, 543 * only to properly account for messages already sent out. 544 */ 545 546 static inline struct storvsc_device *get_out_stor_device( 547 struct hv_device *device) 548 { 549 struct storvsc_device *stor_device; 550 551 stor_device = hv_get_drvdata(device); 552 553 if (stor_device && stor_device->destroy) 554 stor_device = NULL; 555 556 return stor_device; 557 } 558 559 560 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 561 { 562 dev->drain_notify = true; 563 wait_event(dev->waiting_to_drain, 564 atomic_read(&dev->num_outstanding_req) == 0); 565 dev->drain_notify = false; 566 } 567 568 static inline struct storvsc_device *get_in_stor_device( 569 struct hv_device *device) 570 { 571 struct storvsc_device *stor_device; 572 573 stor_device = hv_get_drvdata(device); 574 575 if (!stor_device) 576 goto get_in_err; 577 578 /* 579 * If the device is being destroyed; allow incoming 580 * traffic only to cleanup outstanding requests. 581 */ 582 583 if (stor_device->destroy && 584 (atomic_read(&stor_device->num_outstanding_req) == 0)) 585 stor_device = NULL; 586 587 get_in_err: 588 return stor_device; 589 590 } 591 592 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 593 u32 new) 594 { 595 struct storvsc_device *stor_device; 596 struct vmbus_channel *cur_chn; 597 bool old_is_alloced = false; 598 struct hv_device *device; 599 unsigned long flags; 600 int cpu; 601 602 device = channel->primary_channel ? 603 channel->primary_channel->device_obj 604 : channel->device_obj; 605 stor_device = get_out_stor_device(device); 606 if (!stor_device) 607 return; 608 609 /* See storvsc_do_io() -> get_og_chn(). */ 610 spin_lock_irqsave(&stor_device->lock, flags); 611 612 /* 613 * Determines if the storvsc device has other channels assigned to 614 * the "old" CPU to update the alloced_cpus mask and the stor_chns 615 * array. 616 */ 617 if (device->channel != channel && device->channel->target_cpu == old) { 618 cur_chn = device->channel; 619 old_is_alloced = true; 620 goto old_is_alloced; 621 } 622 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 623 if (cur_chn == channel) 624 continue; 625 if (cur_chn->target_cpu == old) { 626 old_is_alloced = true; 627 goto old_is_alloced; 628 } 629 } 630 631 old_is_alloced: 632 if (old_is_alloced) 633 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 634 else 635 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 636 637 /* "Flush" the stor_chns array. */ 638 for_each_possible_cpu(cpu) { 639 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 640 cpu, &stor_device->alloced_cpus)) 641 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 642 } 643 644 WRITE_ONCE(stor_device->stor_chns[new], channel); 645 cpumask_set_cpu(new, &stor_device->alloced_cpus); 646 647 spin_unlock_irqrestore(&stor_device->lock, flags); 648 } 649 650 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 651 { 652 struct storvsc_cmd_request *request = 653 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 654 655 if (rqst_addr == VMBUS_RQST_INIT) 656 return VMBUS_RQST_INIT; 657 if (rqst_addr == VMBUS_RQST_RESET) 658 return VMBUS_RQST_RESET; 659 660 /* 661 * Cannot return an ID of 0, which is reserved for an unsolicited 662 * message from Hyper-V. 663 */ 664 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 665 } 666 667 static void handle_sc_creation(struct vmbus_channel *new_sc) 668 { 669 struct hv_device *device = new_sc->primary_channel->device_obj; 670 struct device *dev = &device->device; 671 struct storvsc_device *stor_device; 672 struct vmstorage_channel_properties props; 673 int ret; 674 675 stor_device = get_out_stor_device(device); 676 if (!stor_device) 677 return; 678 679 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 680 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 681 682 new_sc->next_request_id_callback = storvsc_next_request_id; 683 684 ret = vmbus_open(new_sc, 685 storvsc_ringbuffer_size, 686 storvsc_ringbuffer_size, 687 (void *)&props, 688 sizeof(struct vmstorage_channel_properties), 689 storvsc_on_channel_callback, new_sc); 690 691 /* In case vmbus_open() fails, we don't use the sub-channel. */ 692 if (ret != 0) { 693 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 694 return; 695 } 696 697 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 698 699 /* Add the sub-channel to the array of available channels. */ 700 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 701 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 702 } 703 704 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 705 { 706 struct device *dev = &device->device; 707 struct storvsc_device *stor_device; 708 int num_sc; 709 struct storvsc_cmd_request *request; 710 struct vstor_packet *vstor_packet; 711 int ret, t; 712 713 /* 714 * If the number of CPUs is artificially restricted, such as 715 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 716 * sub-channels >= the number of CPUs. These sub-channels 717 * should not be created. The primary channel is already created 718 * and assigned to one CPU, so check against # CPUs - 1. 719 */ 720 num_sc = min((int)(num_online_cpus() - 1), max_chns); 721 if (!num_sc) 722 return; 723 724 stor_device = get_out_stor_device(device); 725 if (!stor_device) 726 return; 727 728 stor_device->num_sc = num_sc; 729 request = &stor_device->init_request; 730 vstor_packet = &request->vstor_packet; 731 732 /* 733 * Establish a handler for dealing with subchannels. 734 */ 735 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 736 737 /* 738 * Request the host to create sub-channels. 739 */ 740 memset(request, 0, sizeof(struct storvsc_cmd_request)); 741 init_completion(&request->wait_event); 742 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 743 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 744 vstor_packet->sub_channel_count = num_sc; 745 746 ret = vmbus_sendpacket(device->channel, vstor_packet, 747 sizeof(struct vstor_packet), 748 VMBUS_RQST_INIT, 749 VM_PKT_DATA_INBAND, 750 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 751 752 if (ret != 0) { 753 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 754 return; 755 } 756 757 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 758 if (t == 0) { 759 dev_err(dev, "Failed to create sub-channel: timed out\n"); 760 return; 761 } 762 763 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 764 vstor_packet->status != 0) { 765 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 766 vstor_packet->operation, vstor_packet->status); 767 return; 768 } 769 770 /* 771 * We need to do nothing here, because vmbus_process_offer() 772 * invokes channel->sc_creation_callback, which will open and use 773 * the sub-channel(s). 774 */ 775 } 776 777 static void cache_wwn(struct storvsc_device *stor_device, 778 struct vstor_packet *vstor_packet) 779 { 780 /* 781 * Cache the currently active port and node ww names. 782 */ 783 if (vstor_packet->wwn_packet.primary_active) { 784 stor_device->node_name = 785 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 786 stor_device->port_name = 787 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 788 } else { 789 stor_device->node_name = 790 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 791 stor_device->port_name = 792 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 793 } 794 } 795 796 797 static int storvsc_execute_vstor_op(struct hv_device *device, 798 struct storvsc_cmd_request *request, 799 bool status_check) 800 { 801 struct storvsc_device *stor_device; 802 struct vstor_packet *vstor_packet; 803 int ret, t; 804 805 stor_device = get_out_stor_device(device); 806 if (!stor_device) 807 return -ENODEV; 808 809 vstor_packet = &request->vstor_packet; 810 811 init_completion(&request->wait_event); 812 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 813 814 ret = vmbus_sendpacket(device->channel, vstor_packet, 815 sizeof(struct vstor_packet), 816 VMBUS_RQST_INIT, 817 VM_PKT_DATA_INBAND, 818 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 819 if (ret != 0) 820 return ret; 821 822 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 823 if (t == 0) 824 return -ETIMEDOUT; 825 826 if (!status_check) 827 return ret; 828 829 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 830 vstor_packet->status != 0) 831 return -EINVAL; 832 833 return ret; 834 } 835 836 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 837 { 838 struct storvsc_device *stor_device; 839 struct storvsc_cmd_request *request; 840 struct vstor_packet *vstor_packet; 841 int ret, i; 842 int max_chns; 843 bool process_sub_channels = false; 844 845 stor_device = get_out_stor_device(device); 846 if (!stor_device) 847 return -ENODEV; 848 849 request = &stor_device->init_request; 850 vstor_packet = &request->vstor_packet; 851 852 /* 853 * Now, initiate the vsc/vsp initialization protocol on the open 854 * channel 855 */ 856 memset(request, 0, sizeof(struct storvsc_cmd_request)); 857 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 858 ret = storvsc_execute_vstor_op(device, request, true); 859 if (ret) 860 return ret; 861 /* 862 * Query host supported protocol version. 863 */ 864 865 for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { 866 /* reuse the packet for version range supported */ 867 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 868 vstor_packet->operation = 869 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 870 871 vstor_packet->version.major_minor = protocol_version[i]; 872 873 /* 874 * The revision number is only used in Windows; set it to 0. 875 */ 876 vstor_packet->version.revision = 0; 877 ret = storvsc_execute_vstor_op(device, request, false); 878 if (ret != 0) 879 return ret; 880 881 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 882 return -EINVAL; 883 884 if (vstor_packet->status == 0) { 885 vmstor_proto_version = protocol_version[i]; 886 887 break; 888 } 889 } 890 891 if (vstor_packet->status != 0) { 892 dev_err(&device->device, "Obsolete Hyper-V version\n"); 893 return -EINVAL; 894 } 895 896 897 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 898 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 899 ret = storvsc_execute_vstor_op(device, request, true); 900 if (ret != 0) 901 return ret; 902 903 /* 904 * Check to see if multi-channel support is there. 905 * Hosts that implement protocol version of 5.1 and above 906 * support multi-channel. 907 */ 908 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 909 910 /* 911 * Allocate state to manage the sub-channels. 912 * We allocate an array based on the numbers of possible CPUs 913 * (Hyper-V does not support cpu online/offline). 914 * This Array will be sparseley populated with unique 915 * channels - primary + sub-channels. 916 * We will however populate all the slots to evenly distribute 917 * the load. 918 */ 919 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 920 GFP_KERNEL); 921 if (stor_device->stor_chns == NULL) 922 return -ENOMEM; 923 924 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 925 926 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 927 cpumask_set_cpu(device->channel->target_cpu, 928 &stor_device->alloced_cpus); 929 930 if (vstor_packet->storage_channel_properties.flags & 931 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 932 process_sub_channels = true; 933 934 stor_device->max_transfer_bytes = 935 vstor_packet->storage_channel_properties.max_transfer_bytes; 936 937 if (!is_fc) 938 goto done; 939 940 /* 941 * For FC devices retrieve FC HBA data. 942 */ 943 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 944 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 945 ret = storvsc_execute_vstor_op(device, request, true); 946 if (ret != 0) 947 return ret; 948 949 /* 950 * Cache the currently active port and node ww names. 951 */ 952 cache_wwn(stor_device, vstor_packet); 953 954 done: 955 956 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 957 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 958 ret = storvsc_execute_vstor_op(device, request, true); 959 if (ret != 0) 960 return ret; 961 962 if (process_sub_channels) 963 handle_multichannel_storage(device, max_chns); 964 965 return ret; 966 } 967 968 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 969 struct scsi_cmnd *scmnd, 970 struct Scsi_Host *host, 971 u8 asc, u8 ascq) 972 { 973 struct storvsc_scan_work *wrk; 974 void (*process_err_fn)(struct work_struct *work); 975 struct hv_host_device *host_dev = shost_priv(host); 976 977 switch (SRB_STATUS(vm_srb->srb_status)) { 978 case SRB_STATUS_ERROR: 979 case SRB_STATUS_ABORTED: 980 case SRB_STATUS_INVALID_REQUEST: 981 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) { 982 /* Check for capacity change */ 983 if ((asc == 0x2a) && (ascq == 0x9)) { 984 process_err_fn = storvsc_device_scan; 985 /* Retry the I/O that triggered this. */ 986 set_host_byte(scmnd, DID_REQUEUE); 987 goto do_work; 988 } 989 990 /* 991 * Check for "Operating parameters have changed" 992 * due to Hyper-V changing the VHD/VHDX BlockSize 993 * when adding/removing a differencing disk. This 994 * causes discard_granularity to change, so do a 995 * rescan to pick up the new granularity. We don't 996 * want scsi_report_sense() to output a message 997 * that a sysadmin wouldn't know what to do with. 998 */ 999 if ((asc == 0x3f) && (ascq != 0x03) && 1000 (ascq != 0x0e)) { 1001 process_err_fn = storvsc_device_scan; 1002 set_host_byte(scmnd, DID_REQUEUE); 1003 goto do_work; 1004 } 1005 1006 /* 1007 * Otherwise, let upper layer deal with the 1008 * error when sense message is present 1009 */ 1010 return; 1011 } 1012 1013 /* 1014 * If there is an error; offline the device since all 1015 * error recovery strategies would have already been 1016 * deployed on the host side. However, if the command 1017 * were a pass-through command deal with it appropriately. 1018 */ 1019 switch (scmnd->cmnd[0]) { 1020 case ATA_16: 1021 case ATA_12: 1022 set_host_byte(scmnd, DID_PASSTHROUGH); 1023 break; 1024 /* 1025 * On some Hyper-V hosts TEST_UNIT_READY command can 1026 * return SRB_STATUS_ERROR. Let the upper level code 1027 * deal with it based on the sense information. 1028 */ 1029 case TEST_UNIT_READY: 1030 break; 1031 default: 1032 set_host_byte(scmnd, DID_ERROR); 1033 } 1034 return; 1035 1036 case SRB_STATUS_INVALID_LUN: 1037 set_host_byte(scmnd, DID_NO_CONNECT); 1038 process_err_fn = storvsc_remove_lun; 1039 goto do_work; 1040 1041 } 1042 return; 1043 1044 do_work: 1045 /* 1046 * We need to schedule work to process this error; schedule it. 1047 */ 1048 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1049 if (!wrk) { 1050 set_host_byte(scmnd, DID_BAD_TARGET); 1051 return; 1052 } 1053 1054 wrk->host = host; 1055 wrk->lun = vm_srb->lun; 1056 wrk->tgt_id = vm_srb->target_id; 1057 INIT_WORK(&wrk->work, process_err_fn); 1058 queue_work(host_dev->handle_error_wq, &wrk->work); 1059 } 1060 1061 1062 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1063 struct storvsc_device *stor_dev) 1064 { 1065 struct scsi_cmnd *scmnd = cmd_request->cmd; 1066 struct scsi_sense_hdr sense_hdr; 1067 struct vmscsi_request *vm_srb; 1068 u32 data_transfer_length; 1069 struct Scsi_Host *host; 1070 u32 payload_sz = cmd_request->payload_sz; 1071 void *payload = cmd_request->payload; 1072 bool sense_ok; 1073 1074 host = stor_dev->host; 1075 1076 vm_srb = &cmd_request->vstor_packet.vm_srb; 1077 data_transfer_length = vm_srb->data_transfer_length; 1078 1079 scmnd->result = vm_srb->scsi_status; 1080 1081 if (scmnd->result) { 1082 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1083 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1084 1085 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1086 scsi_print_sense_hdr(scmnd->device, "storvsc", 1087 &sense_hdr); 1088 } 1089 1090 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1091 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1092 sense_hdr.ascq); 1093 /* 1094 * The Windows driver set data_transfer_length on 1095 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1096 * is untouched. In these cases we set it to 0. 1097 */ 1098 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1099 data_transfer_length = 0; 1100 } 1101 1102 /* Validate data_transfer_length (from Hyper-V) */ 1103 if (data_transfer_length > cmd_request->payload->range.len) 1104 data_transfer_length = cmd_request->payload->range.len; 1105 1106 scsi_set_resid(scmnd, 1107 cmd_request->payload->range.len - data_transfer_length); 1108 1109 scsi_done(scmnd); 1110 1111 if (payload_sz > 1112 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1113 kfree(payload); 1114 } 1115 1116 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1117 struct vstor_packet *vstor_packet, 1118 struct storvsc_cmd_request *request) 1119 { 1120 struct vstor_packet *stor_pkt; 1121 struct hv_device *device = stor_device->device; 1122 1123 stor_pkt = &request->vstor_packet; 1124 1125 /* 1126 * The current SCSI handling on the host side does 1127 * not correctly handle: 1128 * INQUIRY command with page code parameter set to 0x80 1129 * MODE_SENSE command with cmd[2] == 0x1c 1130 * 1131 * Setup srb and scsi status so this won't be fatal. 1132 * We do this so we can distinguish truly fatal failues 1133 * (srb status == 0x4) and off-line the device in that case. 1134 */ 1135 1136 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1137 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { 1138 vstor_packet->vm_srb.scsi_status = 0; 1139 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1140 } 1141 1142 /* Copy over the status...etc */ 1143 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1144 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1145 1146 /* 1147 * Copy over the sense_info_length, but limit to the known max 1148 * size if Hyper-V returns a bad value. 1149 */ 1150 stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, 1151 vstor_packet->vm_srb.sense_info_length); 1152 1153 if (vstor_packet->vm_srb.scsi_status != 0 || 1154 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1155 1156 /* 1157 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1158 * return errors when detecting devices using TEST_UNIT_READY, 1159 * and logging these as errors produces unhelpful noise. 1160 */ 1161 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1162 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1163 1164 storvsc_log(device, loglevel, 1165 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", 1166 scsi_cmd_to_rq(request->cmd)->tag, 1167 stor_pkt->vm_srb.cdb[0], 1168 vstor_packet->vm_srb.scsi_status, 1169 vstor_packet->vm_srb.srb_status, 1170 vstor_packet->status); 1171 } 1172 1173 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1174 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1175 memcpy(request->cmd->sense_buffer, 1176 vstor_packet->vm_srb.sense_data, 1177 stor_pkt->vm_srb.sense_info_length); 1178 1179 stor_pkt->vm_srb.data_transfer_length = 1180 vstor_packet->vm_srb.data_transfer_length; 1181 1182 storvsc_command_completion(request, stor_device); 1183 1184 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1185 stor_device->drain_notify) 1186 wake_up(&stor_device->waiting_to_drain); 1187 } 1188 1189 static void storvsc_on_receive(struct storvsc_device *stor_device, 1190 struct vstor_packet *vstor_packet, 1191 struct storvsc_cmd_request *request) 1192 { 1193 struct hv_host_device *host_dev; 1194 switch (vstor_packet->operation) { 1195 case VSTOR_OPERATION_COMPLETE_IO: 1196 storvsc_on_io_completion(stor_device, vstor_packet, request); 1197 break; 1198 1199 case VSTOR_OPERATION_REMOVE_DEVICE: 1200 case VSTOR_OPERATION_ENUMERATE_BUS: 1201 host_dev = shost_priv(stor_device->host); 1202 queue_work( 1203 host_dev->handle_error_wq, &host_dev->host_scan_work); 1204 break; 1205 1206 case VSTOR_OPERATION_FCHBA_DATA: 1207 cache_wwn(stor_device, vstor_packet); 1208 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1209 fc_host_node_name(stor_device->host) = stor_device->node_name; 1210 fc_host_port_name(stor_device->host) = stor_device->port_name; 1211 #endif 1212 break; 1213 default: 1214 break; 1215 } 1216 } 1217 1218 static void storvsc_on_channel_callback(void *context) 1219 { 1220 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1221 const struct vmpacket_descriptor *desc; 1222 struct hv_device *device; 1223 struct storvsc_device *stor_device; 1224 struct Scsi_Host *shost; 1225 unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT); 1226 1227 if (channel->primary_channel != NULL) 1228 device = channel->primary_channel->device_obj; 1229 else 1230 device = channel->device_obj; 1231 1232 stor_device = get_in_stor_device(device); 1233 if (!stor_device) 1234 return; 1235 1236 shost = stor_device->host; 1237 1238 foreach_vmbus_pkt(desc, channel) { 1239 struct vstor_packet *packet = hv_pkt_data(desc); 1240 struct storvsc_cmd_request *request = NULL; 1241 u32 pktlen = hv_pkt_datalen(desc); 1242 u64 rqst_id = desc->trans_id; 1243 u32 minlen = rqst_id ? sizeof(struct vstor_packet) : 1244 sizeof(enum vstor_packet_operation); 1245 1246 if (unlikely(time_after(jiffies, time_limit))) { 1247 hv_pkt_iter_close(channel); 1248 return; 1249 } 1250 1251 if (pktlen < minlen) { 1252 dev_err(&device->device, 1253 "Invalid pkt: id=%llu, len=%u, minlen=%u\n", 1254 rqst_id, pktlen, minlen); 1255 continue; 1256 } 1257 1258 if (rqst_id == VMBUS_RQST_INIT) { 1259 request = &stor_device->init_request; 1260 } else if (rqst_id == VMBUS_RQST_RESET) { 1261 request = &stor_device->reset_request; 1262 } else { 1263 /* Hyper-V can send an unsolicited message with ID of 0 */ 1264 if (rqst_id == 0) { 1265 /* 1266 * storvsc_on_receive() looks at the vstor_packet in the message 1267 * from the ring buffer. 1268 * 1269 * - If the operation in the vstor_packet is COMPLETE_IO, then 1270 * we call storvsc_on_io_completion(), and dereference the 1271 * guest memory address. Make sure we don't call 1272 * storvsc_on_io_completion() with a guest memory address 1273 * that is zero if Hyper-V were to construct and send such 1274 * a bogus packet. 1275 * 1276 * - If the operation in the vstor_packet is FCHBA_DATA, then 1277 * we call cache_wwn(), and access the data payload area of 1278 * the packet (wwn_packet); however, there is no guarantee 1279 * that the packet is big enough to contain such area. 1280 * Future-proof the code by rejecting such a bogus packet. 1281 */ 1282 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || 1283 packet->operation == VSTOR_OPERATION_FCHBA_DATA) { 1284 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1285 continue; 1286 } 1287 } else { 1288 struct scsi_cmnd *scmnd; 1289 1290 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1291 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1292 if (scmnd == NULL) { 1293 dev_err(&device->device, "Incorrect transaction ID\n"); 1294 continue; 1295 } 1296 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1297 scsi_dma_unmap(scmnd); 1298 } 1299 1300 storvsc_on_receive(stor_device, packet, request); 1301 continue; 1302 } 1303 1304 memcpy(&request->vstor_packet, packet, 1305 sizeof(struct vstor_packet)); 1306 complete(&request->wait_event); 1307 } 1308 } 1309 1310 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1311 bool is_fc) 1312 { 1313 struct vmstorage_channel_properties props; 1314 int ret; 1315 1316 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1317 1318 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1319 device->channel->next_request_id_callback = storvsc_next_request_id; 1320 1321 ret = vmbus_open(device->channel, 1322 ring_size, 1323 ring_size, 1324 (void *)&props, 1325 sizeof(struct vmstorage_channel_properties), 1326 storvsc_on_channel_callback, device->channel); 1327 1328 if (ret != 0) 1329 return ret; 1330 1331 ret = storvsc_channel_init(device, is_fc); 1332 1333 return ret; 1334 } 1335 1336 static int storvsc_dev_remove(struct hv_device *device) 1337 { 1338 struct storvsc_device *stor_device; 1339 1340 stor_device = hv_get_drvdata(device); 1341 1342 stor_device->destroy = true; 1343 1344 /* Make sure flag is set before waiting */ 1345 wmb(); 1346 1347 /* 1348 * At this point, all outbound traffic should be disable. We 1349 * only allow inbound traffic (responses) to proceed so that 1350 * outstanding requests can be completed. 1351 */ 1352 1353 storvsc_wait_to_drain(stor_device); 1354 1355 /* 1356 * Since we have already drained, we don't need to busy wait 1357 * as was done in final_release_stor_device() 1358 * Note that we cannot set the ext pointer to NULL until 1359 * we have drained - to drain the outgoing packets, we need to 1360 * allow incoming packets. 1361 */ 1362 hv_set_drvdata(device, NULL); 1363 1364 /* Close the channel */ 1365 vmbus_close(device->channel); 1366 1367 kfree(stor_device->stor_chns); 1368 kfree(stor_device); 1369 return 0; 1370 } 1371 1372 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1373 u16 q_num) 1374 { 1375 u16 slot = 0; 1376 u16 hash_qnum; 1377 const struct cpumask *node_mask; 1378 int num_channels, tgt_cpu; 1379 1380 if (stor_device->num_sc == 0) { 1381 stor_device->stor_chns[q_num] = stor_device->device->channel; 1382 return stor_device->device->channel; 1383 } 1384 1385 /* 1386 * Our channel array is sparsley populated and we 1387 * initiated I/O on a processor/hw-q that does not 1388 * currently have a designated channel. Fix this. 1389 * The strategy is simple: 1390 * I. Ensure NUMA locality 1391 * II. Distribute evenly (best effort) 1392 */ 1393 1394 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1395 1396 num_channels = 0; 1397 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1398 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1399 num_channels++; 1400 } 1401 if (num_channels == 0) { 1402 stor_device->stor_chns[q_num] = stor_device->device->channel; 1403 return stor_device->device->channel; 1404 } 1405 1406 hash_qnum = q_num; 1407 while (hash_qnum >= num_channels) 1408 hash_qnum -= num_channels; 1409 1410 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1411 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1412 continue; 1413 if (slot == hash_qnum) 1414 break; 1415 slot++; 1416 } 1417 1418 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1419 1420 return stor_device->stor_chns[q_num]; 1421 } 1422 1423 1424 static int storvsc_do_io(struct hv_device *device, 1425 struct storvsc_cmd_request *request, u16 q_num) 1426 { 1427 struct storvsc_device *stor_device; 1428 struct vstor_packet *vstor_packet; 1429 struct vmbus_channel *outgoing_channel, *channel; 1430 unsigned long flags; 1431 int ret = 0; 1432 const struct cpumask *node_mask; 1433 int tgt_cpu; 1434 1435 vstor_packet = &request->vstor_packet; 1436 stor_device = get_out_stor_device(device); 1437 1438 if (!stor_device) 1439 return -ENODEV; 1440 1441 1442 request->device = device; 1443 /* 1444 * Select an appropriate channel to send the request out. 1445 */ 1446 /* See storvsc_change_target_cpu(). */ 1447 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1448 if (outgoing_channel != NULL) { 1449 if (outgoing_channel->target_cpu == q_num) { 1450 /* 1451 * Ideally, we want to pick a different channel if 1452 * available on the same NUMA node. 1453 */ 1454 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1455 for_each_cpu_wrap(tgt_cpu, 1456 &stor_device->alloced_cpus, q_num + 1) { 1457 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1458 continue; 1459 if (tgt_cpu == q_num) 1460 continue; 1461 channel = READ_ONCE( 1462 stor_device->stor_chns[tgt_cpu]); 1463 if (channel == NULL) 1464 continue; 1465 if (hv_get_avail_to_write_percent( 1466 &channel->outbound) 1467 > ring_avail_percent_lowater) { 1468 outgoing_channel = channel; 1469 goto found_channel; 1470 } 1471 } 1472 1473 /* 1474 * All the other channels on the same NUMA node are 1475 * busy. Try to use the channel on the current CPU 1476 */ 1477 if (hv_get_avail_to_write_percent( 1478 &outgoing_channel->outbound) 1479 > ring_avail_percent_lowater) 1480 goto found_channel; 1481 1482 /* 1483 * If we reach here, all the channels on the current 1484 * NUMA node are busy. Try to find a channel in 1485 * other NUMA nodes 1486 */ 1487 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1488 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1489 continue; 1490 channel = READ_ONCE( 1491 stor_device->stor_chns[tgt_cpu]); 1492 if (channel == NULL) 1493 continue; 1494 if (hv_get_avail_to_write_percent( 1495 &channel->outbound) 1496 > ring_avail_percent_lowater) { 1497 outgoing_channel = channel; 1498 goto found_channel; 1499 } 1500 } 1501 } 1502 } else { 1503 spin_lock_irqsave(&stor_device->lock, flags); 1504 outgoing_channel = stor_device->stor_chns[q_num]; 1505 if (outgoing_channel != NULL) { 1506 spin_unlock_irqrestore(&stor_device->lock, flags); 1507 goto found_channel; 1508 } 1509 outgoing_channel = get_og_chn(stor_device, q_num); 1510 spin_unlock_irqrestore(&stor_device->lock, flags); 1511 } 1512 1513 found_channel: 1514 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1515 1516 vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); 1517 1518 1519 vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; 1520 1521 1522 vstor_packet->vm_srb.data_transfer_length = 1523 request->payload->range.len; 1524 1525 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1526 1527 if (request->payload->range.len) { 1528 1529 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1530 request->payload, request->payload_sz, 1531 vstor_packet, 1532 sizeof(struct vstor_packet), 1533 (unsigned long)request); 1534 } else { 1535 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1536 sizeof(struct vstor_packet), 1537 (unsigned long)request, 1538 VM_PKT_DATA_INBAND, 1539 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1540 } 1541 1542 if (ret != 0) 1543 return ret; 1544 1545 atomic_inc(&stor_device->num_outstanding_req); 1546 1547 return ret; 1548 } 1549 1550 static int storvsc_device_alloc(struct scsi_device *sdevice) 1551 { 1552 /* 1553 * Set blist flag to permit the reading of the VPD pages even when 1554 * the target may claim SPC-2 compliance. MSFT targets currently 1555 * claim SPC-2 compliance while they implement post SPC-2 features. 1556 * With this flag we can correctly handle WRITE_SAME_16 issues. 1557 * 1558 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1559 * still supports REPORT LUN. 1560 */ 1561 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1562 1563 return 0; 1564 } 1565 1566 static int storvsc_device_configure(struct scsi_device *sdevice) 1567 { 1568 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1569 1570 sdevice->no_write_same = 1; 1571 1572 /* 1573 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1574 * if the device is a MSFT virtual device. If the host is 1575 * WIN10 or newer, allow write_same. 1576 */ 1577 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1578 switch (vmstor_proto_version) { 1579 case VMSTOR_PROTO_VERSION_WIN8: 1580 case VMSTOR_PROTO_VERSION_WIN8_1: 1581 sdevice->scsi_level = SCSI_SPC_3; 1582 break; 1583 } 1584 1585 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1586 sdevice->no_write_same = 0; 1587 } 1588 1589 return 0; 1590 } 1591 1592 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1593 sector_t capacity, int *info) 1594 { 1595 sector_t nsect = capacity; 1596 sector_t cylinders = nsect; 1597 int heads, sectors_pt; 1598 1599 /* 1600 * We are making up these values; let us keep it simple. 1601 */ 1602 heads = 0xff; 1603 sectors_pt = 0x3f; /* Sectors per track */ 1604 sector_div(cylinders, heads * sectors_pt); 1605 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1606 cylinders = 0xffff; 1607 1608 info[0] = heads; 1609 info[1] = sectors_pt; 1610 info[2] = (int)cylinders; 1611 1612 return 0; 1613 } 1614 1615 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1616 { 1617 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1618 struct hv_device *device = host_dev->dev; 1619 1620 struct storvsc_device *stor_device; 1621 struct storvsc_cmd_request *request; 1622 struct vstor_packet *vstor_packet; 1623 int ret, t; 1624 1625 stor_device = get_out_stor_device(device); 1626 if (!stor_device) 1627 return FAILED; 1628 1629 request = &stor_device->reset_request; 1630 vstor_packet = &request->vstor_packet; 1631 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1632 1633 init_completion(&request->wait_event); 1634 1635 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1636 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1637 vstor_packet->vm_srb.path_id = stor_device->path_id; 1638 1639 ret = vmbus_sendpacket(device->channel, vstor_packet, 1640 sizeof(struct vstor_packet), 1641 VMBUS_RQST_RESET, 1642 VM_PKT_DATA_INBAND, 1643 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1644 if (ret != 0) 1645 return FAILED; 1646 1647 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1648 if (t == 0) 1649 return TIMEOUT_ERROR; 1650 1651 1652 /* 1653 * At this point, all outstanding requests in the adapter 1654 * should have been flushed out and return to us 1655 * There is a potential race here where the host may be in 1656 * the process of responding when we return from here. 1657 * Just wait for all in-transit packets to be accounted for 1658 * before we return from here. 1659 */ 1660 storvsc_wait_to_drain(stor_device); 1661 1662 return SUCCESS; 1663 } 1664 1665 /* 1666 * The host guarantees to respond to each command, although I/O latencies might 1667 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1668 * chance to perform EH. 1669 */ 1670 static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1671 { 1672 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1673 if (scmnd->device->host->transportt == fc_transport_template) 1674 return fc_eh_timed_out(scmnd); 1675 #endif 1676 return SCSI_EH_RESET_TIMER; 1677 } 1678 1679 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1680 { 1681 bool allowed = true; 1682 u8 scsi_op = scmnd->cmnd[0]; 1683 1684 switch (scsi_op) { 1685 /* the host does not handle WRITE_SAME, log accident usage */ 1686 case WRITE_SAME: 1687 /* 1688 * smartd sends this command and the host does not handle 1689 * this. So, don't send it. 1690 */ 1691 case SET_WINDOW: 1692 set_host_byte(scmnd, DID_ERROR); 1693 allowed = false; 1694 break; 1695 default: 1696 break; 1697 } 1698 return allowed; 1699 } 1700 1701 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1702 { 1703 int ret; 1704 struct hv_host_device *host_dev = shost_priv(host); 1705 struct hv_device *dev = host_dev->dev; 1706 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1707 struct scatterlist *sgl; 1708 struct vmscsi_request *vm_srb; 1709 struct vmbus_packet_mpb_array *payload; 1710 u32 payload_sz; 1711 u32 length; 1712 1713 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1714 /* 1715 * On legacy hosts filter unimplemented commands. 1716 * Future hosts are expected to correctly handle 1717 * unsupported commands. Furthermore, it is 1718 * possible that some of the currently 1719 * unsupported commands maybe supported in 1720 * future versions of the host. 1721 */ 1722 if (!storvsc_scsi_cmd_ok(scmnd)) { 1723 scsi_done(scmnd); 1724 return 0; 1725 } 1726 } 1727 1728 /* Setup the cmd request */ 1729 cmd_request->cmd = scmnd; 1730 1731 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1732 vm_srb = &cmd_request->vstor_packet.vm_srb; 1733 vm_srb->time_out_value = 60; 1734 1735 vm_srb->srb_flags |= 1736 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1737 1738 if (scmnd->device->tagged_supported) { 1739 vm_srb->srb_flags |= 1740 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1741 vm_srb->queue_tag = SP_UNTAGGED; 1742 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; 1743 } 1744 1745 /* Build the SRB */ 1746 switch (scmnd->sc_data_direction) { 1747 case DMA_TO_DEVICE: 1748 vm_srb->data_in = WRITE_TYPE; 1749 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; 1750 break; 1751 case DMA_FROM_DEVICE: 1752 vm_srb->data_in = READ_TYPE; 1753 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; 1754 break; 1755 case DMA_NONE: 1756 vm_srb->data_in = UNKNOWN_TYPE; 1757 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1758 break; 1759 default: 1760 /* 1761 * This is DMA_BIDIRECTIONAL or something else we are never 1762 * supposed to see here. 1763 */ 1764 WARN(1, "Unexpected data direction: %d\n", 1765 scmnd->sc_data_direction); 1766 return -EINVAL; 1767 } 1768 1769 1770 vm_srb->port_number = host_dev->port; 1771 vm_srb->path_id = scmnd->device->channel; 1772 vm_srb->target_id = scmnd->device->id; 1773 vm_srb->lun = scmnd->device->lun; 1774 1775 vm_srb->cdb_length = scmnd->cmd_len; 1776 1777 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1778 1779 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1780 1781 length = scsi_bufflen(scmnd); 1782 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1783 payload_sz = 0; 1784 1785 if (scsi_sg_count(scmnd)) { 1786 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1787 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1788 struct scatterlist *sg; 1789 unsigned long hvpfn, hvpfns_to_add; 1790 int j, i = 0, sg_count; 1791 1792 payload_sz = (hvpg_count * sizeof(u64) + 1793 sizeof(struct vmbus_packet_mpb_array)); 1794 1795 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1796 payload = kzalloc(payload_sz, GFP_ATOMIC); 1797 if (!payload) 1798 return SCSI_MLQUEUE_DEVICE_BUSY; 1799 } 1800 1801 payload->range.len = length; 1802 payload->range.offset = offset_in_hvpg; 1803 1804 sg_count = scsi_dma_map(scmnd); 1805 if (sg_count < 0) { 1806 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1807 goto err_free_payload; 1808 } 1809 1810 for_each_sg(sgl, sg, sg_count, j) { 1811 /* 1812 * Init values for the current sgl entry. hvpfns_to_add 1813 * is in units of Hyper-V size pages. Handling the 1814 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles 1815 * values of sgl->offset that are larger than PAGE_SIZE. 1816 * Such offsets are handled even on other than the first 1817 * sgl entry, provided they are a multiple of PAGE_SIZE. 1818 */ 1819 hvpfn = HVPFN_DOWN(sg_dma_address(sg)); 1820 hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + 1821 sg_dma_len(sg)) - hvpfn; 1822 1823 /* 1824 * Fill the next portion of the PFN array with 1825 * sequential Hyper-V PFNs for the continguous physical 1826 * memory described by the sgl entry. The end of the 1827 * last sgl should be reached at the same time that 1828 * the PFN array is filled. 1829 */ 1830 while (hvpfns_to_add--) 1831 payload->range.pfn_array[i++] = hvpfn++; 1832 } 1833 } 1834 1835 cmd_request->payload = payload; 1836 cmd_request->payload_sz = payload_sz; 1837 1838 /* Invokes the vsc to start an IO */ 1839 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1840 put_cpu(); 1841 1842 if (ret) 1843 scsi_dma_unmap(scmnd); 1844 1845 if (ret == -EAGAIN) { 1846 /* no more space */ 1847 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1848 goto err_free_payload; 1849 } 1850 1851 return 0; 1852 1853 err_free_payload: 1854 if (payload_sz > sizeof(cmd_request->mpb)) 1855 kfree(payload); 1856 1857 return ret; 1858 } 1859 1860 static struct scsi_host_template scsi_driver = { 1861 .module = THIS_MODULE, 1862 .name = "storvsc_host_t", 1863 .cmd_size = sizeof(struct storvsc_cmd_request), 1864 .bios_param = storvsc_get_chs, 1865 .queuecommand = storvsc_queuecommand, 1866 .eh_host_reset_handler = storvsc_host_reset_handler, 1867 .proc_name = "storvsc_host", 1868 .eh_timed_out = storvsc_eh_timed_out, 1869 .slave_alloc = storvsc_device_alloc, 1870 .slave_configure = storvsc_device_configure, 1871 .cmd_per_lun = 2048, 1872 .this_id = -1, 1873 /* Ensure there are no gaps in presented sgls */ 1874 .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, 1875 .no_write_same = 1, 1876 .track_queue_depth = 1, 1877 .change_queue_depth = storvsc_change_queue_depth, 1878 }; 1879 1880 enum { 1881 SCSI_GUID, 1882 IDE_GUID, 1883 SFC_GUID, 1884 }; 1885 1886 static const struct hv_vmbus_device_id id_table[] = { 1887 /* SCSI guid */ 1888 { HV_SCSI_GUID, 1889 .driver_data = SCSI_GUID 1890 }, 1891 /* IDE guid */ 1892 { HV_IDE_GUID, 1893 .driver_data = IDE_GUID 1894 }, 1895 /* Fibre Channel GUID */ 1896 { 1897 HV_SYNTHFC_GUID, 1898 .driver_data = SFC_GUID 1899 }, 1900 { }, 1901 }; 1902 1903 MODULE_DEVICE_TABLE(vmbus, id_table); 1904 1905 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1906 1907 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1908 { 1909 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1910 } 1911 1912 static int storvsc_probe(struct hv_device *device, 1913 const struct hv_vmbus_device_id *dev_id) 1914 { 1915 int ret; 1916 int num_cpus = num_online_cpus(); 1917 int num_present_cpus = num_present_cpus(); 1918 struct Scsi_Host *host; 1919 struct hv_host_device *host_dev; 1920 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1921 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1922 int target = 0; 1923 struct storvsc_device *stor_device; 1924 int max_sub_channels = 0; 1925 u32 max_xfer_bytes; 1926 1927 /* 1928 * We support sub-channels for storage on SCSI and FC controllers. 1929 * The number of sub-channels offerred is based on the number of 1930 * VCPUs in the guest. 1931 */ 1932 if (!dev_is_ide) 1933 max_sub_channels = 1934 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1935 1936 scsi_driver.can_queue = max_outstanding_req_per_channel * 1937 (max_sub_channels + 1) * 1938 (100 - ring_avail_percent_lowater) / 100; 1939 1940 host = scsi_host_alloc(&scsi_driver, 1941 sizeof(struct hv_host_device)); 1942 if (!host) 1943 return -ENOMEM; 1944 1945 host_dev = shost_priv(host); 1946 memset(host_dev, 0, sizeof(struct hv_host_device)); 1947 1948 host_dev->port = host->host_no; 1949 host_dev->dev = device; 1950 host_dev->host = host; 1951 1952 1953 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1954 if (!stor_device) { 1955 ret = -ENOMEM; 1956 goto err_out0; 1957 } 1958 1959 stor_device->destroy = false; 1960 init_waitqueue_head(&stor_device->waiting_to_drain); 1961 stor_device->device = device; 1962 stor_device->host = host; 1963 spin_lock_init(&stor_device->lock); 1964 hv_set_drvdata(device, stor_device); 1965 dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); 1966 1967 stor_device->port_number = host->host_no; 1968 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); 1969 if (ret) 1970 goto err_out1; 1971 1972 host_dev->path = stor_device->path_id; 1973 host_dev->target = stor_device->target_id; 1974 1975 switch (dev_id->driver_data) { 1976 case SFC_GUID: 1977 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1978 host->max_id = STORVSC_FC_MAX_TARGETS; 1979 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 1980 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1981 host->transportt = fc_transport_template; 1982 #endif 1983 break; 1984 1985 case SCSI_GUID: 1986 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; 1987 host->max_id = STORVSC_MAX_TARGETS; 1988 host->max_channel = STORVSC_MAX_CHANNELS - 1; 1989 break; 1990 1991 default: 1992 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 1993 host->max_id = STORVSC_IDE_MAX_TARGETS; 1994 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 1995 break; 1996 } 1997 /* max cmd length */ 1998 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 1999 /* 2000 * Any reasonable Hyper-V configuration should provide 2001 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, 2002 * protecting it from any weird value. 2003 */ 2004 max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); 2005 /* max_hw_sectors_kb */ 2006 host->max_sectors = max_xfer_bytes >> 9; 2007 /* 2008 * There are 2 requirements for Hyper-V storvsc sgl segments, 2009 * based on which the below calculation for max segments is 2010 * done: 2011 * 2012 * 1. Except for the first and last sgl segment, all sgl segments 2013 * should be align to HV_HYP_PAGE_SIZE, that also means the 2014 * maximum number of segments in a sgl can be calculated by 2015 * dividing the total max transfer length by HV_HYP_PAGE_SIZE. 2016 * 2017 * 2. Except for the first and last, each entry in the SGL must 2018 * have an offset that is a multiple of HV_HYP_PAGE_SIZE. 2019 */ 2020 host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; 2021 /* 2022 * For non-IDE disks, the host supports multiple channels. 2023 * Set the number of HW queues we are supporting. 2024 */ 2025 if (!dev_is_ide) { 2026 if (storvsc_max_hw_queues > num_present_cpus) { 2027 storvsc_max_hw_queues = 0; 2028 storvsc_log(device, STORVSC_LOGGING_WARN, 2029 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2030 } 2031 if (storvsc_max_hw_queues) 2032 host->nr_hw_queues = storvsc_max_hw_queues; 2033 else 2034 host->nr_hw_queues = num_present_cpus; 2035 } 2036 2037 /* 2038 * Set the error handler work queue. 2039 */ 2040 host_dev->handle_error_wq = 2041 alloc_ordered_workqueue("storvsc_error_wq_%d", 2042 0, 2043 host->host_no); 2044 if (!host_dev->handle_error_wq) { 2045 ret = -ENOMEM; 2046 goto err_out2; 2047 } 2048 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2049 /* Register the HBA and start the scsi bus scan */ 2050 ret = scsi_add_host(host, &device->device); 2051 if (ret != 0) 2052 goto err_out3; 2053 2054 if (!dev_is_ide) { 2055 scsi_scan_host(host); 2056 } else { 2057 target = (device->dev_instance.b[5] << 8 | 2058 device->dev_instance.b[4]); 2059 ret = scsi_add_device(host, 0, target, 0); 2060 if (ret) 2061 goto err_out4; 2062 } 2063 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2064 if (host->transportt == fc_transport_template) { 2065 struct fc_rport_identifiers ids = { 2066 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2067 }; 2068 2069 fc_host_node_name(host) = stor_device->node_name; 2070 fc_host_port_name(host) = stor_device->port_name; 2071 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2072 if (!stor_device->rport) { 2073 ret = -ENOMEM; 2074 goto err_out4; 2075 } 2076 } 2077 #endif 2078 return 0; 2079 2080 err_out4: 2081 scsi_remove_host(host); 2082 2083 err_out3: 2084 destroy_workqueue(host_dev->handle_error_wq); 2085 2086 err_out2: 2087 /* 2088 * Once we have connected with the host, we would need to 2089 * invoke storvsc_dev_remove() to rollback this state and 2090 * this call also frees up the stor_device; hence the jump around 2091 * err_out1 label. 2092 */ 2093 storvsc_dev_remove(device); 2094 goto err_out0; 2095 2096 err_out1: 2097 kfree(stor_device->stor_chns); 2098 kfree(stor_device); 2099 2100 err_out0: 2101 scsi_host_put(host); 2102 return ret; 2103 } 2104 2105 /* Change a scsi target's queue depth */ 2106 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2107 { 2108 if (queue_depth > scsi_driver.can_queue) 2109 queue_depth = scsi_driver.can_queue; 2110 2111 return scsi_change_queue_depth(sdev, queue_depth); 2112 } 2113 2114 static void storvsc_remove(struct hv_device *dev) 2115 { 2116 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2117 struct Scsi_Host *host = stor_device->host; 2118 struct hv_host_device *host_dev = shost_priv(host); 2119 2120 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2121 if (host->transportt == fc_transport_template) { 2122 fc_remote_port_delete(stor_device->rport); 2123 fc_remove_host(host); 2124 } 2125 #endif 2126 destroy_workqueue(host_dev->handle_error_wq); 2127 scsi_remove_host(host); 2128 storvsc_dev_remove(dev); 2129 scsi_host_put(host); 2130 } 2131 2132 static int storvsc_suspend(struct hv_device *hv_dev) 2133 { 2134 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2135 struct Scsi_Host *host = stor_device->host; 2136 struct hv_host_device *host_dev = shost_priv(host); 2137 2138 storvsc_wait_to_drain(stor_device); 2139 2140 drain_workqueue(host_dev->handle_error_wq); 2141 2142 vmbus_close(hv_dev->channel); 2143 2144 kfree(stor_device->stor_chns); 2145 stor_device->stor_chns = NULL; 2146 2147 cpumask_clear(&stor_device->alloced_cpus); 2148 2149 return 0; 2150 } 2151 2152 static int storvsc_resume(struct hv_device *hv_dev) 2153 { 2154 int ret; 2155 2156 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size, 2157 hv_dev_is_fc(hv_dev)); 2158 return ret; 2159 } 2160 2161 static struct hv_driver storvsc_drv = { 2162 .name = KBUILD_MODNAME, 2163 .id_table = id_table, 2164 .probe = storvsc_probe, 2165 .remove = storvsc_remove, 2166 .suspend = storvsc_suspend, 2167 .resume = storvsc_resume, 2168 .driver = { 2169 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2170 }, 2171 }; 2172 2173 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2174 static struct fc_function_template fc_transport_functions = { 2175 .show_host_node_name = 1, 2176 .show_host_port_name = 1, 2177 }; 2178 #endif 2179 2180 static int __init storvsc_drv_init(void) 2181 { 2182 int ret; 2183 2184 /* 2185 * Divide the ring buffer data size (which is 1 page less 2186 * than the ring buffer size since that page is reserved for 2187 * the ring buffer indices) by the max request size (which is 2188 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2189 */ 2190 max_outstanding_req_per_channel = 2191 ((storvsc_ringbuffer_size - PAGE_SIZE) / 2192 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2193 sizeof(struct vstor_packet) + sizeof(u64), 2194 sizeof(u64))); 2195 2196 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2197 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2198 if (!fc_transport_template) 2199 return -ENODEV; 2200 #endif 2201 2202 ret = vmbus_driver_register(&storvsc_drv); 2203 2204 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2205 if (ret) 2206 fc_release_transport(fc_transport_template); 2207 #endif 2208 2209 return ret; 2210 } 2211 2212 static void __exit storvsc_drv_exit(void) 2213 { 2214 vmbus_driver_unregister(&storvsc_drv); 2215 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2216 fc_release_transport(fc_transport_template); 2217 #endif 2218 } 2219 2220 MODULE_LICENSE("GPL"); 2221 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2222 module_init(storvsc_drv_init); 2223 module_exit(storvsc_drv_exit); 2224