1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <linux/dma-mapping.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_host.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_devinfo.h> 33 #include <scsi/scsi_dbg.h> 34 #include <scsi/scsi_transport_fc.h> 35 #include <scsi/scsi_transport.h> 36 37 /* 38 * All wire protocol details (storage protocol between the guest and the host) 39 * are consolidated here. 40 * 41 * Begin protocol definitions. 42 */ 43 44 /* 45 * Version history: 46 * V1 Beta: 0.1 47 * V1 RC < 2008/1/31: 1.0 48 * V1 RC > 2008/1/31: 2.0 49 * Win7: 4.2 50 * Win8: 5.1 51 * Win8.1: 6.0 52 * Win10: 6.2 53 */ 54 55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 56 (((MINOR_) & 0xff))) 57 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 58 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 59 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 60 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 61 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 62 63 /* channel callback timeout in ms */ 64 #define CALLBACK_TIMEOUT 2 65 66 /* Packet structure describing virtual storage requests. */ 67 enum vstor_packet_operation { 68 VSTOR_OPERATION_COMPLETE_IO = 1, 69 VSTOR_OPERATION_REMOVE_DEVICE = 2, 70 VSTOR_OPERATION_EXECUTE_SRB = 3, 71 VSTOR_OPERATION_RESET_LUN = 4, 72 VSTOR_OPERATION_RESET_ADAPTER = 5, 73 VSTOR_OPERATION_RESET_BUS = 6, 74 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 75 VSTOR_OPERATION_END_INITIALIZATION = 8, 76 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 77 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 78 VSTOR_OPERATION_ENUMERATE_BUS = 11, 79 VSTOR_OPERATION_FCHBA_DATA = 12, 80 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 81 VSTOR_OPERATION_MAXIMUM = 13 82 }; 83 84 /* 85 * WWN packet for Fibre Channel HBA 86 */ 87 88 struct hv_fc_wwn_packet { 89 u8 primary_active; 90 u8 reserved1[3]; 91 u8 primary_port_wwn[8]; 92 u8 primary_node_wwn[8]; 93 u8 secondary_port_wwn[8]; 94 u8 secondary_node_wwn[8]; 95 }; 96 97 98 99 /* 100 * SRB Flag Bits 101 */ 102 103 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 104 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 105 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 106 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 107 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 108 #define SRB_FLAGS_DATA_IN 0x00000040 109 #define SRB_FLAGS_DATA_OUT 0x00000080 110 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 111 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 112 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 113 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 114 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 115 116 /* 117 * This flag indicates the request is part of the workflow for processing a D3. 118 */ 119 #define SRB_FLAGS_D3_PROCESSING 0x00000800 120 #define SRB_FLAGS_IS_ACTIVE 0x00010000 121 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 122 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 123 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 124 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 125 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 126 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 127 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 128 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 129 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 130 131 #define SP_UNTAGGED ((unsigned char) ~0) 132 #define SRB_SIMPLE_TAG_REQUEST 0x20 133 134 /* 135 * Platform neutral description of a scsi request - 136 * this remains the same across the write regardless of 32/64 bit 137 * note: it's patterned off the SCSI_PASS_THROUGH structure 138 */ 139 #define STORVSC_MAX_CMD_LEN 0x10 140 141 /* Sense buffer size is the same for all versions since Windows 8 */ 142 #define STORVSC_SENSE_BUFFER_SIZE 0x14 143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 144 145 /* 146 * The storage protocol version is determined during the 147 * initial exchange with the host. It will indicate which 148 * storage functionality is available in the host. 149 */ 150 static int vmstor_proto_version; 151 152 #define STORVSC_LOGGING_NONE 0 153 #define STORVSC_LOGGING_ERROR 1 154 #define STORVSC_LOGGING_WARN 2 155 156 static int logging_level = STORVSC_LOGGING_ERROR; 157 module_param(logging_level, int, S_IRUGO|S_IWUSR); 158 MODULE_PARM_DESC(logging_level, 159 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 160 161 static inline bool do_logging(int level) 162 { 163 return logging_level >= level; 164 } 165 166 #define storvsc_log(dev, level, fmt, ...) \ 167 do { \ 168 if (do_logging(level)) \ 169 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 170 } while (0) 171 172 struct vmscsi_request { 173 u16 length; 174 u8 srb_status; 175 u8 scsi_status; 176 177 u8 port_number; 178 u8 path_id; 179 u8 target_id; 180 u8 lun; 181 182 u8 cdb_length; 183 u8 sense_info_length; 184 u8 data_in; 185 u8 reserved; 186 187 u32 data_transfer_length; 188 189 union { 190 u8 cdb[STORVSC_MAX_CMD_LEN]; 191 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 192 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 193 }; 194 /* 195 * The following was added in win8. 196 */ 197 u16 reserve; 198 u8 queue_tag; 199 u8 queue_action; 200 u32 srb_flags; 201 u32 time_out_value; 202 u32 queue_sort_ey; 203 204 } __attribute((packed)); 205 206 /* 207 * The list of windows version in order of preference. 208 */ 209 210 static const int protocol_version[] = { 211 VMSTOR_PROTO_VERSION_WIN10, 212 VMSTOR_PROTO_VERSION_WIN8_1, 213 VMSTOR_PROTO_VERSION_WIN8, 214 }; 215 216 217 /* 218 * This structure is sent during the initialization phase to get the different 219 * properties of the channel. 220 */ 221 222 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 223 224 struct vmstorage_channel_properties { 225 u32 reserved; 226 u16 max_channel_cnt; 227 u16 reserved1; 228 229 u32 flags; 230 u32 max_transfer_bytes; 231 232 u64 reserved2; 233 } __packed; 234 235 /* This structure is sent during the storage protocol negotiations. */ 236 struct vmstorage_protocol_version { 237 /* Major (MSW) and minor (LSW) version numbers. */ 238 u16 major_minor; 239 240 /* 241 * Revision number is auto-incremented whenever this file is changed 242 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 243 * definitely indicate incompatibility--but it does indicate mismatched 244 * builds. 245 * This is only used on the windows side. Just set it to 0. 246 */ 247 u16 revision; 248 } __packed; 249 250 /* Channel Property Flags */ 251 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 252 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 253 254 struct vstor_packet { 255 /* Requested operation type */ 256 enum vstor_packet_operation operation; 257 258 /* Flags - see below for values */ 259 u32 flags; 260 261 /* Status of the request returned from the server side. */ 262 u32 status; 263 264 /* Data payload area */ 265 union { 266 /* 267 * Structure used to forward SCSI commands from the 268 * client to the server. 269 */ 270 struct vmscsi_request vm_srb; 271 272 /* Structure used to query channel properties. */ 273 struct vmstorage_channel_properties storage_channel_properties; 274 275 /* Used during version negotiations. */ 276 struct vmstorage_protocol_version version; 277 278 /* Fibre channel address packet */ 279 struct hv_fc_wwn_packet wwn_packet; 280 281 /* Number of sub-channels to create */ 282 u16 sub_channel_count; 283 284 /* This will be the maximum of the union members */ 285 u8 buffer[0x34]; 286 }; 287 } __packed; 288 289 /* 290 * Packet Flags: 291 * 292 * This flag indicates that the server should send back a completion for this 293 * packet. 294 */ 295 296 #define REQUEST_COMPLETION_FLAG 0x1 297 298 /* Matches Windows-end */ 299 enum storvsc_request_type { 300 WRITE_TYPE = 0, 301 READ_TYPE, 302 UNKNOWN_TYPE, 303 }; 304 305 /* 306 * SRB status codes and masks. In the 8-bit field, the two high order bits 307 * are flags, while the remaining 6 bits are an integer status code. The 308 * definitions here include only the subset of the integer status codes that 309 * are tested for in this driver. 310 */ 311 #define SRB_STATUS_AUTOSENSE_VALID 0x80 312 #define SRB_STATUS_QUEUE_FROZEN 0x40 313 314 /* SRB status integer codes */ 315 #define SRB_STATUS_SUCCESS 0x01 316 #define SRB_STATUS_ABORTED 0x02 317 #define SRB_STATUS_ERROR 0x04 318 #define SRB_STATUS_INVALID_REQUEST 0x06 319 #define SRB_STATUS_TIMEOUT 0x09 320 #define SRB_STATUS_SELECTION_TIMEOUT 0x0A 321 #define SRB_STATUS_BUS_RESET 0x0E 322 #define SRB_STATUS_DATA_OVERRUN 0x12 323 #define SRB_STATUS_INVALID_LUN 0x20 324 #define SRB_STATUS_INTERNAL_ERROR 0x30 325 326 #define SRB_STATUS(status) \ 327 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 328 /* 329 * This is the end of Protocol specific defines. 330 */ 331 332 static int storvsc_ringbuffer_size = (128 * 1024); 333 static u32 max_outstanding_req_per_channel; 334 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 335 336 static int storvsc_vcpus_per_sub_channel = 4; 337 static unsigned int storvsc_max_hw_queues; 338 339 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 340 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 341 342 module_param(storvsc_max_hw_queues, uint, 0644); 343 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 344 345 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 346 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 347 348 static int ring_avail_percent_lowater = 10; 349 module_param(ring_avail_percent_lowater, int, S_IRUGO); 350 MODULE_PARM_DESC(ring_avail_percent_lowater, 351 "Select a channel if available ring size > this in percent"); 352 353 /* 354 * Timeout in seconds for all devices managed by this driver. 355 */ 356 static int storvsc_timeout = 180; 357 358 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 359 static struct scsi_transport_template *fc_transport_template; 360 #endif 361 362 static struct scsi_host_template scsi_driver; 363 static void storvsc_on_channel_callback(void *context); 364 365 #define STORVSC_MAX_LUNS_PER_TARGET 255 366 #define STORVSC_MAX_TARGETS 2 367 #define STORVSC_MAX_CHANNELS 8 368 369 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 370 #define STORVSC_FC_MAX_TARGETS 128 371 #define STORVSC_FC_MAX_CHANNELS 8 372 #define STORVSC_FC_MAX_XFER_SIZE ((u32)(512 * 1024)) 373 374 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 375 #define STORVSC_IDE_MAX_TARGETS 1 376 #define STORVSC_IDE_MAX_CHANNELS 1 377 378 /* 379 * Upper bound on the size of a storvsc packet. 380 */ 381 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 382 sizeof(struct vstor_packet)) 383 384 struct storvsc_cmd_request { 385 struct scsi_cmnd *cmd; 386 387 struct hv_device *device; 388 389 /* Synchronize the request/response if needed */ 390 struct completion wait_event; 391 392 struct vmbus_channel_packet_multipage_buffer mpb; 393 struct vmbus_packet_mpb_array *payload; 394 u32 payload_sz; 395 396 struct vstor_packet vstor_packet; 397 }; 398 399 400 /* A storvsc device is a device object that contains a vmbus channel */ 401 struct storvsc_device { 402 struct hv_device *device; 403 404 bool destroy; 405 bool drain_notify; 406 atomic_t num_outstanding_req; 407 struct Scsi_Host *host; 408 409 wait_queue_head_t waiting_to_drain; 410 411 /* 412 * Each unique Port/Path/Target represents 1 channel ie scsi 413 * controller. In reality, the pathid, targetid is always 0 414 * and the port is set by us 415 */ 416 unsigned int port_number; 417 unsigned char path_id; 418 unsigned char target_id; 419 420 /* 421 * Max I/O, the device can support. 422 */ 423 u32 max_transfer_bytes; 424 /* 425 * Number of sub-channels we will open. 426 */ 427 u16 num_sc; 428 struct vmbus_channel **stor_chns; 429 /* 430 * Mask of CPUs bound to subchannels. 431 */ 432 struct cpumask alloced_cpus; 433 /* 434 * Serializes modifications of stor_chns[] from storvsc_do_io() 435 * and storvsc_change_target_cpu(). 436 */ 437 spinlock_t lock; 438 /* Used for vsc/vsp channel reset process */ 439 struct storvsc_cmd_request init_request; 440 struct storvsc_cmd_request reset_request; 441 /* 442 * Currently active port and node names for FC devices. 443 */ 444 u64 node_name; 445 u64 port_name; 446 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 447 struct fc_rport *rport; 448 #endif 449 }; 450 451 struct hv_host_device { 452 struct hv_device *dev; 453 unsigned int port; 454 unsigned char path; 455 unsigned char target; 456 struct workqueue_struct *handle_error_wq; 457 struct work_struct host_scan_work; 458 struct Scsi_Host *host; 459 }; 460 461 struct storvsc_scan_work { 462 struct work_struct work; 463 struct Scsi_Host *host; 464 u8 lun; 465 u8 tgt_id; 466 }; 467 468 static void storvsc_device_scan(struct work_struct *work) 469 { 470 struct storvsc_scan_work *wrk; 471 struct scsi_device *sdev; 472 473 wrk = container_of(work, struct storvsc_scan_work, work); 474 475 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 476 if (!sdev) 477 goto done; 478 scsi_rescan_device(sdev); 479 scsi_device_put(sdev); 480 481 done: 482 kfree(wrk); 483 } 484 485 static void storvsc_host_scan(struct work_struct *work) 486 { 487 struct Scsi_Host *host; 488 struct scsi_device *sdev; 489 struct hv_host_device *host_device = 490 container_of(work, struct hv_host_device, host_scan_work); 491 492 host = host_device->host; 493 /* 494 * Before scanning the host, first check to see if any of the 495 * currently known devices have been hot removed. We issue a 496 * "unit ready" command against all currently known devices. 497 * This I/O will result in an error for devices that have been 498 * removed. As part of handling the I/O error, we remove the device. 499 * 500 * When a LUN is added or removed, the host sends us a signal to 501 * scan the host. Thus we are forced to discover the LUNs that 502 * may have been removed this way. 503 */ 504 mutex_lock(&host->scan_mutex); 505 shost_for_each_device(sdev, host) 506 scsi_test_unit_ready(sdev, 1, 1, NULL); 507 mutex_unlock(&host->scan_mutex); 508 /* 509 * Now scan the host to discover LUNs that may have been added. 510 */ 511 scsi_scan_host(host); 512 } 513 514 static void storvsc_remove_lun(struct work_struct *work) 515 { 516 struct storvsc_scan_work *wrk; 517 struct scsi_device *sdev; 518 519 wrk = container_of(work, struct storvsc_scan_work, work); 520 if (!scsi_host_get(wrk->host)) 521 goto done; 522 523 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 524 525 if (sdev) { 526 scsi_remove_device(sdev); 527 scsi_device_put(sdev); 528 } 529 scsi_host_put(wrk->host); 530 531 done: 532 kfree(wrk); 533 } 534 535 536 /* 537 * We can get incoming messages from the host that are not in response to 538 * messages that we have sent out. An example of this would be messages 539 * received by the guest to notify dynamic addition/removal of LUNs. To 540 * deal with potential race conditions where the driver may be in the 541 * midst of being unloaded when we might receive an unsolicited message 542 * from the host, we have implemented a mechanism to gurantee sequential 543 * consistency: 544 * 545 * 1) Once the device is marked as being destroyed, we will fail all 546 * outgoing messages. 547 * 2) We permit incoming messages when the device is being destroyed, 548 * only to properly account for messages already sent out. 549 */ 550 551 static inline struct storvsc_device *get_out_stor_device( 552 struct hv_device *device) 553 { 554 struct storvsc_device *stor_device; 555 556 stor_device = hv_get_drvdata(device); 557 558 if (stor_device && stor_device->destroy) 559 stor_device = NULL; 560 561 return stor_device; 562 } 563 564 565 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 566 { 567 dev->drain_notify = true; 568 wait_event(dev->waiting_to_drain, 569 atomic_read(&dev->num_outstanding_req) == 0); 570 dev->drain_notify = false; 571 } 572 573 static inline struct storvsc_device *get_in_stor_device( 574 struct hv_device *device) 575 { 576 struct storvsc_device *stor_device; 577 578 stor_device = hv_get_drvdata(device); 579 580 if (!stor_device) 581 goto get_in_err; 582 583 /* 584 * If the device is being destroyed; allow incoming 585 * traffic only to cleanup outstanding requests. 586 */ 587 588 if (stor_device->destroy && 589 (atomic_read(&stor_device->num_outstanding_req) == 0)) 590 stor_device = NULL; 591 592 get_in_err: 593 return stor_device; 594 595 } 596 597 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 598 u32 new) 599 { 600 struct storvsc_device *stor_device; 601 struct vmbus_channel *cur_chn; 602 bool old_is_alloced = false; 603 struct hv_device *device; 604 unsigned long flags; 605 int cpu; 606 607 device = channel->primary_channel ? 608 channel->primary_channel->device_obj 609 : channel->device_obj; 610 stor_device = get_out_stor_device(device); 611 if (!stor_device) 612 return; 613 614 /* See storvsc_do_io() -> get_og_chn(). */ 615 spin_lock_irqsave(&stor_device->lock, flags); 616 617 /* 618 * Determines if the storvsc device has other channels assigned to 619 * the "old" CPU to update the alloced_cpus mask and the stor_chns 620 * array. 621 */ 622 if (device->channel != channel && device->channel->target_cpu == old) { 623 cur_chn = device->channel; 624 old_is_alloced = true; 625 goto old_is_alloced; 626 } 627 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 628 if (cur_chn == channel) 629 continue; 630 if (cur_chn->target_cpu == old) { 631 old_is_alloced = true; 632 goto old_is_alloced; 633 } 634 } 635 636 old_is_alloced: 637 if (old_is_alloced) 638 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 639 else 640 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 641 642 /* "Flush" the stor_chns array. */ 643 for_each_possible_cpu(cpu) { 644 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 645 cpu, &stor_device->alloced_cpus)) 646 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 647 } 648 649 WRITE_ONCE(stor_device->stor_chns[new], channel); 650 cpumask_set_cpu(new, &stor_device->alloced_cpus); 651 652 spin_unlock_irqrestore(&stor_device->lock, flags); 653 } 654 655 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 656 { 657 struct storvsc_cmd_request *request = 658 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 659 660 if (rqst_addr == VMBUS_RQST_INIT) 661 return VMBUS_RQST_INIT; 662 if (rqst_addr == VMBUS_RQST_RESET) 663 return VMBUS_RQST_RESET; 664 665 /* 666 * Cannot return an ID of 0, which is reserved for an unsolicited 667 * message from Hyper-V. 668 */ 669 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 670 } 671 672 static void handle_sc_creation(struct vmbus_channel *new_sc) 673 { 674 struct hv_device *device = new_sc->primary_channel->device_obj; 675 struct device *dev = &device->device; 676 struct storvsc_device *stor_device; 677 struct vmstorage_channel_properties props; 678 int ret; 679 680 stor_device = get_out_stor_device(device); 681 if (!stor_device) 682 return; 683 684 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 685 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 686 687 new_sc->next_request_id_callback = storvsc_next_request_id; 688 689 ret = vmbus_open(new_sc, 690 storvsc_ringbuffer_size, 691 storvsc_ringbuffer_size, 692 (void *)&props, 693 sizeof(struct vmstorage_channel_properties), 694 storvsc_on_channel_callback, new_sc); 695 696 /* In case vmbus_open() fails, we don't use the sub-channel. */ 697 if (ret != 0) { 698 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 699 return; 700 } 701 702 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 703 704 /* Add the sub-channel to the array of available channels. */ 705 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 706 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 707 } 708 709 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 710 { 711 struct device *dev = &device->device; 712 struct storvsc_device *stor_device; 713 int num_sc; 714 struct storvsc_cmd_request *request; 715 struct vstor_packet *vstor_packet; 716 int ret, t; 717 718 /* 719 * If the number of CPUs is artificially restricted, such as 720 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 721 * sub-channels >= the number of CPUs. These sub-channels 722 * should not be created. The primary channel is already created 723 * and assigned to one CPU, so check against # CPUs - 1. 724 */ 725 num_sc = min((int)(num_online_cpus() - 1), max_chns); 726 if (!num_sc) 727 return; 728 729 stor_device = get_out_stor_device(device); 730 if (!stor_device) 731 return; 732 733 stor_device->num_sc = num_sc; 734 request = &stor_device->init_request; 735 vstor_packet = &request->vstor_packet; 736 737 /* 738 * Establish a handler for dealing with subchannels. 739 */ 740 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 741 742 /* 743 * Request the host to create sub-channels. 744 */ 745 memset(request, 0, sizeof(struct storvsc_cmd_request)); 746 init_completion(&request->wait_event); 747 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 748 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 749 vstor_packet->sub_channel_count = num_sc; 750 751 ret = vmbus_sendpacket(device->channel, vstor_packet, 752 sizeof(struct vstor_packet), 753 VMBUS_RQST_INIT, 754 VM_PKT_DATA_INBAND, 755 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 756 757 if (ret != 0) { 758 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 759 return; 760 } 761 762 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 763 if (t == 0) { 764 dev_err(dev, "Failed to create sub-channel: timed out\n"); 765 return; 766 } 767 768 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 769 vstor_packet->status != 0) { 770 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 771 vstor_packet->operation, vstor_packet->status); 772 return; 773 } 774 775 /* 776 * We need to do nothing here, because vmbus_process_offer() 777 * invokes channel->sc_creation_callback, which will open and use 778 * the sub-channel(s). 779 */ 780 } 781 782 static void cache_wwn(struct storvsc_device *stor_device, 783 struct vstor_packet *vstor_packet) 784 { 785 /* 786 * Cache the currently active port and node ww names. 787 */ 788 if (vstor_packet->wwn_packet.primary_active) { 789 stor_device->node_name = 790 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 791 stor_device->port_name = 792 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 793 } else { 794 stor_device->node_name = 795 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 796 stor_device->port_name = 797 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 798 } 799 } 800 801 802 static int storvsc_execute_vstor_op(struct hv_device *device, 803 struct storvsc_cmd_request *request, 804 bool status_check) 805 { 806 struct storvsc_device *stor_device; 807 struct vstor_packet *vstor_packet; 808 int ret, t; 809 810 stor_device = get_out_stor_device(device); 811 if (!stor_device) 812 return -ENODEV; 813 814 vstor_packet = &request->vstor_packet; 815 816 init_completion(&request->wait_event); 817 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 818 819 ret = vmbus_sendpacket(device->channel, vstor_packet, 820 sizeof(struct vstor_packet), 821 VMBUS_RQST_INIT, 822 VM_PKT_DATA_INBAND, 823 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 824 if (ret != 0) 825 return ret; 826 827 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 828 if (t == 0) 829 return -ETIMEDOUT; 830 831 if (!status_check) 832 return ret; 833 834 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 835 vstor_packet->status != 0) 836 return -EINVAL; 837 838 return ret; 839 } 840 841 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 842 { 843 struct storvsc_device *stor_device; 844 struct storvsc_cmd_request *request; 845 struct vstor_packet *vstor_packet; 846 int ret, i; 847 int max_chns; 848 bool process_sub_channels = false; 849 850 stor_device = get_out_stor_device(device); 851 if (!stor_device) 852 return -ENODEV; 853 854 request = &stor_device->init_request; 855 vstor_packet = &request->vstor_packet; 856 857 /* 858 * Now, initiate the vsc/vsp initialization protocol on the open 859 * channel 860 */ 861 memset(request, 0, sizeof(struct storvsc_cmd_request)); 862 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 863 ret = storvsc_execute_vstor_op(device, request, true); 864 if (ret) 865 return ret; 866 /* 867 * Query host supported protocol version. 868 */ 869 870 for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { 871 /* reuse the packet for version range supported */ 872 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 873 vstor_packet->operation = 874 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 875 876 vstor_packet->version.major_minor = protocol_version[i]; 877 878 /* 879 * The revision number is only used in Windows; set it to 0. 880 */ 881 vstor_packet->version.revision = 0; 882 ret = storvsc_execute_vstor_op(device, request, false); 883 if (ret != 0) 884 return ret; 885 886 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 887 return -EINVAL; 888 889 if (vstor_packet->status == 0) { 890 vmstor_proto_version = protocol_version[i]; 891 892 break; 893 } 894 } 895 896 if (vstor_packet->status != 0) { 897 dev_err(&device->device, "Obsolete Hyper-V version\n"); 898 return -EINVAL; 899 } 900 901 902 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 903 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 904 ret = storvsc_execute_vstor_op(device, request, true); 905 if (ret != 0) 906 return ret; 907 908 /* 909 * Check to see if multi-channel support is there. 910 * Hosts that implement protocol version of 5.1 and above 911 * support multi-channel. 912 */ 913 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 914 915 /* 916 * Allocate state to manage the sub-channels. 917 * We allocate an array based on the numbers of possible CPUs 918 * (Hyper-V does not support cpu online/offline). 919 * This Array will be sparseley populated with unique 920 * channels - primary + sub-channels. 921 * We will however populate all the slots to evenly distribute 922 * the load. 923 */ 924 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 925 GFP_KERNEL); 926 if (stor_device->stor_chns == NULL) 927 return -ENOMEM; 928 929 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 930 931 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 932 cpumask_set_cpu(device->channel->target_cpu, 933 &stor_device->alloced_cpus); 934 935 if (vstor_packet->storage_channel_properties.flags & 936 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 937 process_sub_channels = true; 938 939 stor_device->max_transfer_bytes = 940 vstor_packet->storage_channel_properties.max_transfer_bytes; 941 942 if (!is_fc) 943 goto done; 944 945 /* 946 * For FC devices retrieve FC HBA data. 947 */ 948 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 949 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 950 ret = storvsc_execute_vstor_op(device, request, true); 951 if (ret != 0) 952 return ret; 953 954 /* 955 * Cache the currently active port and node ww names. 956 */ 957 cache_wwn(stor_device, vstor_packet); 958 959 done: 960 961 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 962 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 963 ret = storvsc_execute_vstor_op(device, request, true); 964 if (ret != 0) 965 return ret; 966 967 if (process_sub_channels) 968 handle_multichannel_storage(device, max_chns); 969 970 return ret; 971 } 972 973 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 974 struct scsi_cmnd *scmnd, 975 struct Scsi_Host *host, 976 u8 asc, u8 ascq) 977 { 978 struct storvsc_scan_work *wrk; 979 void (*process_err_fn)(struct work_struct *work); 980 struct hv_host_device *host_dev = shost_priv(host); 981 982 switch (SRB_STATUS(vm_srb->srb_status)) { 983 case SRB_STATUS_ERROR: 984 case SRB_STATUS_ABORTED: 985 case SRB_STATUS_INVALID_REQUEST: 986 case SRB_STATUS_INTERNAL_ERROR: 987 case SRB_STATUS_TIMEOUT: 988 case SRB_STATUS_SELECTION_TIMEOUT: 989 case SRB_STATUS_BUS_RESET: 990 case SRB_STATUS_DATA_OVERRUN: 991 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) { 992 /* Check for capacity change */ 993 if ((asc == 0x2a) && (ascq == 0x9)) { 994 process_err_fn = storvsc_device_scan; 995 /* Retry the I/O that triggered this. */ 996 set_host_byte(scmnd, DID_REQUEUE); 997 goto do_work; 998 } 999 1000 /* 1001 * Check for "Operating parameters have changed" 1002 * due to Hyper-V changing the VHD/VHDX BlockSize 1003 * when adding/removing a differencing disk. This 1004 * causes discard_granularity to change, so do a 1005 * rescan to pick up the new granularity. We don't 1006 * want scsi_report_sense() to output a message 1007 * that a sysadmin wouldn't know what to do with. 1008 */ 1009 if ((asc == 0x3f) && (ascq != 0x03) && 1010 (ascq != 0x0e)) { 1011 process_err_fn = storvsc_device_scan; 1012 set_host_byte(scmnd, DID_REQUEUE); 1013 goto do_work; 1014 } 1015 1016 /* 1017 * Otherwise, let upper layer deal with the 1018 * error when sense message is present 1019 */ 1020 return; 1021 } 1022 1023 /* 1024 * If there is an error; offline the device since all 1025 * error recovery strategies would have already been 1026 * deployed on the host side. However, if the command 1027 * were a pass-through command deal with it appropriately. 1028 */ 1029 switch (scmnd->cmnd[0]) { 1030 case ATA_16: 1031 case ATA_12: 1032 set_host_byte(scmnd, DID_PASSTHROUGH); 1033 break; 1034 /* 1035 * On some Hyper-V hosts TEST_UNIT_READY command can 1036 * return SRB_STATUS_ERROR. Let the upper level code 1037 * deal with it based on the sense information. 1038 */ 1039 case TEST_UNIT_READY: 1040 break; 1041 default: 1042 set_host_byte(scmnd, DID_ERROR); 1043 } 1044 return; 1045 1046 case SRB_STATUS_INVALID_LUN: 1047 set_host_byte(scmnd, DID_NO_CONNECT); 1048 process_err_fn = storvsc_remove_lun; 1049 goto do_work; 1050 1051 } 1052 return; 1053 1054 do_work: 1055 /* 1056 * We need to schedule work to process this error; schedule it. 1057 */ 1058 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1059 if (!wrk) { 1060 set_host_byte(scmnd, DID_BAD_TARGET); 1061 return; 1062 } 1063 1064 wrk->host = host; 1065 wrk->lun = vm_srb->lun; 1066 wrk->tgt_id = vm_srb->target_id; 1067 INIT_WORK(&wrk->work, process_err_fn); 1068 queue_work(host_dev->handle_error_wq, &wrk->work); 1069 } 1070 1071 1072 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1073 struct storvsc_device *stor_dev) 1074 { 1075 struct scsi_cmnd *scmnd = cmd_request->cmd; 1076 struct scsi_sense_hdr sense_hdr; 1077 struct vmscsi_request *vm_srb; 1078 u32 data_transfer_length; 1079 struct Scsi_Host *host; 1080 u32 payload_sz = cmd_request->payload_sz; 1081 void *payload = cmd_request->payload; 1082 bool sense_ok; 1083 1084 host = stor_dev->host; 1085 1086 vm_srb = &cmd_request->vstor_packet.vm_srb; 1087 data_transfer_length = vm_srb->data_transfer_length; 1088 1089 scmnd->result = vm_srb->scsi_status; 1090 1091 if (scmnd->result) { 1092 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1093 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1094 1095 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1096 scsi_print_sense_hdr(scmnd->device, "storvsc", 1097 &sense_hdr); 1098 } 1099 1100 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1101 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1102 sense_hdr.ascq); 1103 /* 1104 * The Windows driver set data_transfer_length on 1105 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1106 * is untouched. In these cases we set it to 0. 1107 */ 1108 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1109 data_transfer_length = 0; 1110 } 1111 1112 /* Validate data_transfer_length (from Hyper-V) */ 1113 if (data_transfer_length > cmd_request->payload->range.len) 1114 data_transfer_length = cmd_request->payload->range.len; 1115 1116 scsi_set_resid(scmnd, 1117 cmd_request->payload->range.len - data_transfer_length); 1118 1119 scsi_done(scmnd); 1120 1121 if (payload_sz > 1122 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1123 kfree(payload); 1124 } 1125 1126 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1127 struct vstor_packet *vstor_packet, 1128 struct storvsc_cmd_request *request) 1129 { 1130 struct vstor_packet *stor_pkt; 1131 struct hv_device *device = stor_device->device; 1132 1133 stor_pkt = &request->vstor_packet; 1134 1135 /* 1136 * The current SCSI handling on the host side does 1137 * not correctly handle: 1138 * INQUIRY command with page code parameter set to 0x80 1139 * MODE_SENSE command with cmd[2] == 0x1c 1140 * 1141 * Setup srb and scsi status so this won't be fatal. 1142 * We do this so we can distinguish truly fatal failues 1143 * (srb status == 0x4) and off-line the device in that case. 1144 */ 1145 1146 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1147 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { 1148 vstor_packet->vm_srb.scsi_status = 0; 1149 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1150 } 1151 1152 /* Copy over the status...etc */ 1153 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1154 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1155 1156 /* 1157 * Copy over the sense_info_length, but limit to the known max 1158 * size if Hyper-V returns a bad value. 1159 */ 1160 stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, 1161 vstor_packet->vm_srb.sense_info_length); 1162 1163 if (vstor_packet->vm_srb.scsi_status != 0 || 1164 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1165 1166 /* 1167 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1168 * return errors when detecting devices using TEST_UNIT_READY, 1169 * and logging these as errors produces unhelpful noise. 1170 */ 1171 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1172 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1173 1174 storvsc_log(device, loglevel, 1175 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", 1176 scsi_cmd_to_rq(request->cmd)->tag, 1177 stor_pkt->vm_srb.cdb[0], 1178 vstor_packet->vm_srb.scsi_status, 1179 vstor_packet->vm_srb.srb_status, 1180 vstor_packet->status); 1181 } 1182 1183 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1184 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1185 memcpy(request->cmd->sense_buffer, 1186 vstor_packet->vm_srb.sense_data, 1187 stor_pkt->vm_srb.sense_info_length); 1188 1189 stor_pkt->vm_srb.data_transfer_length = 1190 vstor_packet->vm_srb.data_transfer_length; 1191 1192 storvsc_command_completion(request, stor_device); 1193 1194 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1195 stor_device->drain_notify) 1196 wake_up(&stor_device->waiting_to_drain); 1197 } 1198 1199 static void storvsc_on_receive(struct storvsc_device *stor_device, 1200 struct vstor_packet *vstor_packet, 1201 struct storvsc_cmd_request *request) 1202 { 1203 struct hv_host_device *host_dev; 1204 switch (vstor_packet->operation) { 1205 case VSTOR_OPERATION_COMPLETE_IO: 1206 storvsc_on_io_completion(stor_device, vstor_packet, request); 1207 break; 1208 1209 case VSTOR_OPERATION_REMOVE_DEVICE: 1210 case VSTOR_OPERATION_ENUMERATE_BUS: 1211 host_dev = shost_priv(stor_device->host); 1212 queue_work( 1213 host_dev->handle_error_wq, &host_dev->host_scan_work); 1214 break; 1215 1216 case VSTOR_OPERATION_FCHBA_DATA: 1217 cache_wwn(stor_device, vstor_packet); 1218 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1219 fc_host_node_name(stor_device->host) = stor_device->node_name; 1220 fc_host_port_name(stor_device->host) = stor_device->port_name; 1221 #endif 1222 break; 1223 default: 1224 break; 1225 } 1226 } 1227 1228 static void storvsc_on_channel_callback(void *context) 1229 { 1230 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1231 const struct vmpacket_descriptor *desc; 1232 struct hv_device *device; 1233 struct storvsc_device *stor_device; 1234 struct Scsi_Host *shost; 1235 unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT); 1236 1237 if (channel->primary_channel != NULL) 1238 device = channel->primary_channel->device_obj; 1239 else 1240 device = channel->device_obj; 1241 1242 stor_device = get_in_stor_device(device); 1243 if (!stor_device) 1244 return; 1245 1246 shost = stor_device->host; 1247 1248 foreach_vmbus_pkt(desc, channel) { 1249 struct vstor_packet *packet = hv_pkt_data(desc); 1250 struct storvsc_cmd_request *request = NULL; 1251 u32 pktlen = hv_pkt_datalen(desc); 1252 u64 rqst_id = desc->trans_id; 1253 u32 minlen = rqst_id ? sizeof(struct vstor_packet) : 1254 sizeof(enum vstor_packet_operation); 1255 1256 if (unlikely(time_after(jiffies, time_limit))) { 1257 hv_pkt_iter_close(channel); 1258 return; 1259 } 1260 1261 if (pktlen < minlen) { 1262 dev_err(&device->device, 1263 "Invalid pkt: id=%llu, len=%u, minlen=%u\n", 1264 rqst_id, pktlen, minlen); 1265 continue; 1266 } 1267 1268 if (rqst_id == VMBUS_RQST_INIT) { 1269 request = &stor_device->init_request; 1270 } else if (rqst_id == VMBUS_RQST_RESET) { 1271 request = &stor_device->reset_request; 1272 } else { 1273 /* Hyper-V can send an unsolicited message with ID of 0 */ 1274 if (rqst_id == 0) { 1275 /* 1276 * storvsc_on_receive() looks at the vstor_packet in the message 1277 * from the ring buffer. 1278 * 1279 * - If the operation in the vstor_packet is COMPLETE_IO, then 1280 * we call storvsc_on_io_completion(), and dereference the 1281 * guest memory address. Make sure we don't call 1282 * storvsc_on_io_completion() with a guest memory address 1283 * that is zero if Hyper-V were to construct and send such 1284 * a bogus packet. 1285 * 1286 * - If the operation in the vstor_packet is FCHBA_DATA, then 1287 * we call cache_wwn(), and access the data payload area of 1288 * the packet (wwn_packet); however, there is no guarantee 1289 * that the packet is big enough to contain such area. 1290 * Future-proof the code by rejecting such a bogus packet. 1291 */ 1292 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || 1293 packet->operation == VSTOR_OPERATION_FCHBA_DATA) { 1294 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1295 continue; 1296 } 1297 } else { 1298 struct scsi_cmnd *scmnd; 1299 1300 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1301 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1302 if (scmnd == NULL) { 1303 dev_err(&device->device, "Incorrect transaction ID\n"); 1304 continue; 1305 } 1306 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1307 scsi_dma_unmap(scmnd); 1308 } 1309 1310 storvsc_on_receive(stor_device, packet, request); 1311 continue; 1312 } 1313 1314 memcpy(&request->vstor_packet, packet, 1315 sizeof(struct vstor_packet)); 1316 complete(&request->wait_event); 1317 } 1318 } 1319 1320 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1321 bool is_fc) 1322 { 1323 struct vmstorage_channel_properties props; 1324 int ret; 1325 1326 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1327 1328 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1329 device->channel->next_request_id_callback = storvsc_next_request_id; 1330 1331 ret = vmbus_open(device->channel, 1332 ring_size, 1333 ring_size, 1334 (void *)&props, 1335 sizeof(struct vmstorage_channel_properties), 1336 storvsc_on_channel_callback, device->channel); 1337 1338 if (ret != 0) 1339 return ret; 1340 1341 ret = storvsc_channel_init(device, is_fc); 1342 1343 return ret; 1344 } 1345 1346 static int storvsc_dev_remove(struct hv_device *device) 1347 { 1348 struct storvsc_device *stor_device; 1349 1350 stor_device = hv_get_drvdata(device); 1351 1352 stor_device->destroy = true; 1353 1354 /* Make sure flag is set before waiting */ 1355 wmb(); 1356 1357 /* 1358 * At this point, all outbound traffic should be disable. We 1359 * only allow inbound traffic (responses) to proceed so that 1360 * outstanding requests can be completed. 1361 */ 1362 1363 storvsc_wait_to_drain(stor_device); 1364 1365 /* 1366 * Since we have already drained, we don't need to busy wait 1367 * as was done in final_release_stor_device() 1368 * Note that we cannot set the ext pointer to NULL until 1369 * we have drained - to drain the outgoing packets, we need to 1370 * allow incoming packets. 1371 */ 1372 hv_set_drvdata(device, NULL); 1373 1374 /* Close the channel */ 1375 vmbus_close(device->channel); 1376 1377 kfree(stor_device->stor_chns); 1378 kfree(stor_device); 1379 return 0; 1380 } 1381 1382 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1383 u16 q_num) 1384 { 1385 u16 slot = 0; 1386 u16 hash_qnum; 1387 const struct cpumask *node_mask; 1388 int num_channels, tgt_cpu; 1389 1390 if (stor_device->num_sc == 0) { 1391 stor_device->stor_chns[q_num] = stor_device->device->channel; 1392 return stor_device->device->channel; 1393 } 1394 1395 /* 1396 * Our channel array is sparsley populated and we 1397 * initiated I/O on a processor/hw-q that does not 1398 * currently have a designated channel. Fix this. 1399 * The strategy is simple: 1400 * I. Ensure NUMA locality 1401 * II. Distribute evenly (best effort) 1402 */ 1403 1404 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1405 1406 num_channels = 0; 1407 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1408 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1409 num_channels++; 1410 } 1411 if (num_channels == 0) { 1412 stor_device->stor_chns[q_num] = stor_device->device->channel; 1413 return stor_device->device->channel; 1414 } 1415 1416 hash_qnum = q_num; 1417 while (hash_qnum >= num_channels) 1418 hash_qnum -= num_channels; 1419 1420 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1421 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1422 continue; 1423 if (slot == hash_qnum) 1424 break; 1425 slot++; 1426 } 1427 1428 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1429 1430 return stor_device->stor_chns[q_num]; 1431 } 1432 1433 1434 static int storvsc_do_io(struct hv_device *device, 1435 struct storvsc_cmd_request *request, u16 q_num) 1436 { 1437 struct storvsc_device *stor_device; 1438 struct vstor_packet *vstor_packet; 1439 struct vmbus_channel *outgoing_channel, *channel; 1440 unsigned long flags; 1441 int ret = 0; 1442 const struct cpumask *node_mask; 1443 int tgt_cpu; 1444 1445 vstor_packet = &request->vstor_packet; 1446 stor_device = get_out_stor_device(device); 1447 1448 if (!stor_device) 1449 return -ENODEV; 1450 1451 1452 request->device = device; 1453 /* 1454 * Select an appropriate channel to send the request out. 1455 */ 1456 /* See storvsc_change_target_cpu(). */ 1457 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1458 if (outgoing_channel != NULL) { 1459 if (outgoing_channel->target_cpu == q_num) { 1460 /* 1461 * Ideally, we want to pick a different channel if 1462 * available on the same NUMA node. 1463 */ 1464 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1465 for_each_cpu_wrap(tgt_cpu, 1466 &stor_device->alloced_cpus, q_num + 1) { 1467 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1468 continue; 1469 if (tgt_cpu == q_num) 1470 continue; 1471 channel = READ_ONCE( 1472 stor_device->stor_chns[tgt_cpu]); 1473 if (channel == NULL) 1474 continue; 1475 if (hv_get_avail_to_write_percent( 1476 &channel->outbound) 1477 > ring_avail_percent_lowater) { 1478 outgoing_channel = channel; 1479 goto found_channel; 1480 } 1481 } 1482 1483 /* 1484 * All the other channels on the same NUMA node are 1485 * busy. Try to use the channel on the current CPU 1486 */ 1487 if (hv_get_avail_to_write_percent( 1488 &outgoing_channel->outbound) 1489 > ring_avail_percent_lowater) 1490 goto found_channel; 1491 1492 /* 1493 * If we reach here, all the channels on the current 1494 * NUMA node are busy. Try to find a channel in 1495 * other NUMA nodes 1496 */ 1497 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1498 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1499 continue; 1500 channel = READ_ONCE( 1501 stor_device->stor_chns[tgt_cpu]); 1502 if (channel == NULL) 1503 continue; 1504 if (hv_get_avail_to_write_percent( 1505 &channel->outbound) 1506 > ring_avail_percent_lowater) { 1507 outgoing_channel = channel; 1508 goto found_channel; 1509 } 1510 } 1511 } 1512 } else { 1513 spin_lock_irqsave(&stor_device->lock, flags); 1514 outgoing_channel = stor_device->stor_chns[q_num]; 1515 if (outgoing_channel != NULL) { 1516 spin_unlock_irqrestore(&stor_device->lock, flags); 1517 goto found_channel; 1518 } 1519 outgoing_channel = get_og_chn(stor_device, q_num); 1520 spin_unlock_irqrestore(&stor_device->lock, flags); 1521 } 1522 1523 found_channel: 1524 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1525 1526 vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); 1527 1528 1529 vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; 1530 1531 1532 vstor_packet->vm_srb.data_transfer_length = 1533 request->payload->range.len; 1534 1535 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1536 1537 if (request->payload->range.len) { 1538 1539 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1540 request->payload, request->payload_sz, 1541 vstor_packet, 1542 sizeof(struct vstor_packet), 1543 (unsigned long)request); 1544 } else { 1545 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1546 sizeof(struct vstor_packet), 1547 (unsigned long)request, 1548 VM_PKT_DATA_INBAND, 1549 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1550 } 1551 1552 if (ret != 0) 1553 return ret; 1554 1555 atomic_inc(&stor_device->num_outstanding_req); 1556 1557 return ret; 1558 } 1559 1560 static int storvsc_device_alloc(struct scsi_device *sdevice) 1561 { 1562 /* 1563 * Set blist flag to permit the reading of the VPD pages even when 1564 * the target may claim SPC-2 compliance. MSFT targets currently 1565 * claim SPC-2 compliance while they implement post SPC-2 features. 1566 * With this flag we can correctly handle WRITE_SAME_16 issues. 1567 * 1568 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1569 * still supports REPORT LUN. 1570 */ 1571 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1572 1573 return 0; 1574 } 1575 1576 static int storvsc_device_configure(struct scsi_device *sdevice) 1577 { 1578 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1579 1580 /* storvsc devices don't support MAINTENANCE_IN SCSI cmd */ 1581 sdevice->no_report_opcodes = 1; 1582 sdevice->no_write_same = 1; 1583 1584 /* 1585 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1586 * if the device is a MSFT virtual device. If the host is 1587 * WIN10 or newer, allow write_same. 1588 */ 1589 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1590 switch (vmstor_proto_version) { 1591 case VMSTOR_PROTO_VERSION_WIN8: 1592 case VMSTOR_PROTO_VERSION_WIN8_1: 1593 sdevice->scsi_level = SCSI_SPC_3; 1594 break; 1595 } 1596 1597 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1598 sdevice->no_write_same = 0; 1599 } 1600 1601 return 0; 1602 } 1603 1604 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1605 sector_t capacity, int *info) 1606 { 1607 sector_t nsect = capacity; 1608 sector_t cylinders = nsect; 1609 int heads, sectors_pt; 1610 1611 /* 1612 * We are making up these values; let us keep it simple. 1613 */ 1614 heads = 0xff; 1615 sectors_pt = 0x3f; /* Sectors per track */ 1616 sector_div(cylinders, heads * sectors_pt); 1617 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1618 cylinders = 0xffff; 1619 1620 info[0] = heads; 1621 info[1] = sectors_pt; 1622 info[2] = (int)cylinders; 1623 1624 return 0; 1625 } 1626 1627 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1628 { 1629 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1630 struct hv_device *device = host_dev->dev; 1631 1632 struct storvsc_device *stor_device; 1633 struct storvsc_cmd_request *request; 1634 struct vstor_packet *vstor_packet; 1635 int ret, t; 1636 1637 stor_device = get_out_stor_device(device); 1638 if (!stor_device) 1639 return FAILED; 1640 1641 request = &stor_device->reset_request; 1642 vstor_packet = &request->vstor_packet; 1643 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1644 1645 init_completion(&request->wait_event); 1646 1647 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1648 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1649 vstor_packet->vm_srb.path_id = stor_device->path_id; 1650 1651 ret = vmbus_sendpacket(device->channel, vstor_packet, 1652 sizeof(struct vstor_packet), 1653 VMBUS_RQST_RESET, 1654 VM_PKT_DATA_INBAND, 1655 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1656 if (ret != 0) 1657 return FAILED; 1658 1659 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1660 if (t == 0) 1661 return TIMEOUT_ERROR; 1662 1663 1664 /* 1665 * At this point, all outstanding requests in the adapter 1666 * should have been flushed out and return to us 1667 * There is a potential race here where the host may be in 1668 * the process of responding when we return from here. 1669 * Just wait for all in-transit packets to be accounted for 1670 * before we return from here. 1671 */ 1672 storvsc_wait_to_drain(stor_device); 1673 1674 return SUCCESS; 1675 } 1676 1677 /* 1678 * The host guarantees to respond to each command, although I/O latencies might 1679 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1680 * chance to perform EH. 1681 */ 1682 static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1683 { 1684 return SCSI_EH_RESET_TIMER; 1685 } 1686 1687 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1688 { 1689 bool allowed = true; 1690 u8 scsi_op = scmnd->cmnd[0]; 1691 1692 switch (scsi_op) { 1693 /* the host does not handle WRITE_SAME, log accident usage */ 1694 case WRITE_SAME: 1695 /* 1696 * smartd sends this command and the host does not handle 1697 * this. So, don't send it. 1698 */ 1699 case SET_WINDOW: 1700 set_host_byte(scmnd, DID_ERROR); 1701 allowed = false; 1702 break; 1703 default: 1704 break; 1705 } 1706 return allowed; 1707 } 1708 1709 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1710 { 1711 int ret; 1712 struct hv_host_device *host_dev = shost_priv(host); 1713 struct hv_device *dev = host_dev->dev; 1714 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1715 struct scatterlist *sgl; 1716 struct vmscsi_request *vm_srb; 1717 struct vmbus_packet_mpb_array *payload; 1718 u32 payload_sz; 1719 u32 length; 1720 1721 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1722 /* 1723 * On legacy hosts filter unimplemented commands. 1724 * Future hosts are expected to correctly handle 1725 * unsupported commands. Furthermore, it is 1726 * possible that some of the currently 1727 * unsupported commands maybe supported in 1728 * future versions of the host. 1729 */ 1730 if (!storvsc_scsi_cmd_ok(scmnd)) { 1731 scsi_done(scmnd); 1732 return 0; 1733 } 1734 } 1735 1736 /* Setup the cmd request */ 1737 cmd_request->cmd = scmnd; 1738 1739 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1740 vm_srb = &cmd_request->vstor_packet.vm_srb; 1741 vm_srb->time_out_value = 60; 1742 1743 vm_srb->srb_flags |= 1744 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1745 1746 if (scmnd->device->tagged_supported) { 1747 vm_srb->srb_flags |= 1748 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1749 vm_srb->queue_tag = SP_UNTAGGED; 1750 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; 1751 } 1752 1753 /* Build the SRB */ 1754 switch (scmnd->sc_data_direction) { 1755 case DMA_TO_DEVICE: 1756 vm_srb->data_in = WRITE_TYPE; 1757 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; 1758 break; 1759 case DMA_FROM_DEVICE: 1760 vm_srb->data_in = READ_TYPE; 1761 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; 1762 break; 1763 case DMA_NONE: 1764 vm_srb->data_in = UNKNOWN_TYPE; 1765 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1766 break; 1767 default: 1768 /* 1769 * This is DMA_BIDIRECTIONAL or something else we are never 1770 * supposed to see here. 1771 */ 1772 WARN(1, "Unexpected data direction: %d\n", 1773 scmnd->sc_data_direction); 1774 return -EINVAL; 1775 } 1776 1777 1778 vm_srb->port_number = host_dev->port; 1779 vm_srb->path_id = scmnd->device->channel; 1780 vm_srb->target_id = scmnd->device->id; 1781 vm_srb->lun = scmnd->device->lun; 1782 1783 vm_srb->cdb_length = scmnd->cmd_len; 1784 1785 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1786 1787 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1788 1789 length = scsi_bufflen(scmnd); 1790 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1791 payload_sz = 0; 1792 1793 if (scsi_sg_count(scmnd)) { 1794 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1795 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1796 struct scatterlist *sg; 1797 unsigned long hvpfn, hvpfns_to_add; 1798 int j, i = 0, sg_count; 1799 1800 payload_sz = (hvpg_count * sizeof(u64) + 1801 sizeof(struct vmbus_packet_mpb_array)); 1802 1803 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1804 payload = kzalloc(payload_sz, GFP_ATOMIC); 1805 if (!payload) 1806 return SCSI_MLQUEUE_DEVICE_BUSY; 1807 } 1808 1809 payload->range.len = length; 1810 payload->range.offset = offset_in_hvpg; 1811 1812 sg_count = scsi_dma_map(scmnd); 1813 if (sg_count < 0) { 1814 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1815 goto err_free_payload; 1816 } 1817 1818 for_each_sg(sgl, sg, sg_count, j) { 1819 /* 1820 * Init values for the current sgl entry. hvpfns_to_add 1821 * is in units of Hyper-V size pages. Handling the 1822 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles 1823 * values of sgl->offset that are larger than PAGE_SIZE. 1824 * Such offsets are handled even on other than the first 1825 * sgl entry, provided they are a multiple of PAGE_SIZE. 1826 */ 1827 hvpfn = HVPFN_DOWN(sg_dma_address(sg)); 1828 hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + 1829 sg_dma_len(sg)) - hvpfn; 1830 1831 /* 1832 * Fill the next portion of the PFN array with 1833 * sequential Hyper-V PFNs for the continguous physical 1834 * memory described by the sgl entry. The end of the 1835 * last sgl should be reached at the same time that 1836 * the PFN array is filled. 1837 */ 1838 while (hvpfns_to_add--) 1839 payload->range.pfn_array[i++] = hvpfn++; 1840 } 1841 } 1842 1843 cmd_request->payload = payload; 1844 cmd_request->payload_sz = payload_sz; 1845 1846 /* Invokes the vsc to start an IO */ 1847 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1848 put_cpu(); 1849 1850 if (ret) 1851 scsi_dma_unmap(scmnd); 1852 1853 if (ret == -EAGAIN) { 1854 /* no more space */ 1855 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1856 goto err_free_payload; 1857 } 1858 1859 return 0; 1860 1861 err_free_payload: 1862 if (payload_sz > sizeof(cmd_request->mpb)) 1863 kfree(payload); 1864 1865 return ret; 1866 } 1867 1868 static struct scsi_host_template scsi_driver = { 1869 .module = THIS_MODULE, 1870 .name = "storvsc_host_t", 1871 .cmd_size = sizeof(struct storvsc_cmd_request), 1872 .bios_param = storvsc_get_chs, 1873 .queuecommand = storvsc_queuecommand, 1874 .eh_host_reset_handler = storvsc_host_reset_handler, 1875 .proc_name = "storvsc_host", 1876 .eh_timed_out = storvsc_eh_timed_out, 1877 .slave_alloc = storvsc_device_alloc, 1878 .slave_configure = storvsc_device_configure, 1879 .cmd_per_lun = 2048, 1880 .this_id = -1, 1881 /* Ensure there are no gaps in presented sgls */ 1882 .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, 1883 .no_write_same = 1, 1884 .track_queue_depth = 1, 1885 .change_queue_depth = storvsc_change_queue_depth, 1886 }; 1887 1888 enum { 1889 SCSI_GUID, 1890 IDE_GUID, 1891 SFC_GUID, 1892 }; 1893 1894 static const struct hv_vmbus_device_id id_table[] = { 1895 /* SCSI guid */ 1896 { HV_SCSI_GUID, 1897 .driver_data = SCSI_GUID 1898 }, 1899 /* IDE guid */ 1900 { HV_IDE_GUID, 1901 .driver_data = IDE_GUID 1902 }, 1903 /* Fibre Channel GUID */ 1904 { 1905 HV_SYNTHFC_GUID, 1906 .driver_data = SFC_GUID 1907 }, 1908 { }, 1909 }; 1910 1911 MODULE_DEVICE_TABLE(vmbus, id_table); 1912 1913 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1914 1915 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1916 { 1917 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1918 } 1919 1920 static int storvsc_probe(struct hv_device *device, 1921 const struct hv_vmbus_device_id *dev_id) 1922 { 1923 int ret; 1924 int num_cpus = num_online_cpus(); 1925 int num_present_cpus = num_present_cpus(); 1926 struct Scsi_Host *host; 1927 struct hv_host_device *host_dev; 1928 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1929 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1930 int target = 0; 1931 struct storvsc_device *stor_device; 1932 int max_sub_channels = 0; 1933 u32 max_xfer_bytes; 1934 1935 /* 1936 * We support sub-channels for storage on SCSI and FC controllers. 1937 * The number of sub-channels offerred is based on the number of 1938 * VCPUs in the guest. 1939 */ 1940 if (!dev_is_ide) 1941 max_sub_channels = 1942 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1943 1944 scsi_driver.can_queue = max_outstanding_req_per_channel * 1945 (max_sub_channels + 1) * 1946 (100 - ring_avail_percent_lowater) / 100; 1947 1948 host = scsi_host_alloc(&scsi_driver, 1949 sizeof(struct hv_host_device)); 1950 if (!host) 1951 return -ENOMEM; 1952 1953 host_dev = shost_priv(host); 1954 memset(host_dev, 0, sizeof(struct hv_host_device)); 1955 1956 host_dev->port = host->host_no; 1957 host_dev->dev = device; 1958 host_dev->host = host; 1959 1960 1961 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1962 if (!stor_device) { 1963 ret = -ENOMEM; 1964 goto err_out0; 1965 } 1966 1967 stor_device->destroy = false; 1968 init_waitqueue_head(&stor_device->waiting_to_drain); 1969 stor_device->device = device; 1970 stor_device->host = host; 1971 spin_lock_init(&stor_device->lock); 1972 hv_set_drvdata(device, stor_device); 1973 dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); 1974 1975 stor_device->port_number = host->host_no; 1976 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); 1977 if (ret) 1978 goto err_out1; 1979 1980 host_dev->path = stor_device->path_id; 1981 host_dev->target = stor_device->target_id; 1982 1983 switch (dev_id->driver_data) { 1984 case SFC_GUID: 1985 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1986 host->max_id = STORVSC_FC_MAX_TARGETS; 1987 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 1988 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1989 host->transportt = fc_transport_template; 1990 #endif 1991 break; 1992 1993 case SCSI_GUID: 1994 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; 1995 host->max_id = STORVSC_MAX_TARGETS; 1996 host->max_channel = STORVSC_MAX_CHANNELS - 1; 1997 break; 1998 1999 default: 2000 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 2001 host->max_id = STORVSC_IDE_MAX_TARGETS; 2002 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 2003 break; 2004 } 2005 /* max cmd length */ 2006 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 2007 /* 2008 * Any reasonable Hyper-V configuration should provide 2009 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, 2010 * protecting it from any weird value. 2011 */ 2012 max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); 2013 if (is_fc) 2014 max_xfer_bytes = min(max_xfer_bytes, STORVSC_FC_MAX_XFER_SIZE); 2015 2016 /* max_hw_sectors_kb */ 2017 host->max_sectors = max_xfer_bytes >> 9; 2018 /* 2019 * There are 2 requirements for Hyper-V storvsc sgl segments, 2020 * based on which the below calculation for max segments is 2021 * done: 2022 * 2023 * 1. Except for the first and last sgl segment, all sgl segments 2024 * should be align to HV_HYP_PAGE_SIZE, that also means the 2025 * maximum number of segments in a sgl can be calculated by 2026 * dividing the total max transfer length by HV_HYP_PAGE_SIZE. 2027 * 2028 * 2. Except for the first and last, each entry in the SGL must 2029 * have an offset that is a multiple of HV_HYP_PAGE_SIZE. 2030 */ 2031 host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; 2032 /* 2033 * For non-IDE disks, the host supports multiple channels. 2034 * Set the number of HW queues we are supporting. 2035 */ 2036 if (!dev_is_ide) { 2037 if (storvsc_max_hw_queues > num_present_cpus) { 2038 storvsc_max_hw_queues = 0; 2039 storvsc_log(device, STORVSC_LOGGING_WARN, 2040 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2041 } 2042 if (storvsc_max_hw_queues) 2043 host->nr_hw_queues = storvsc_max_hw_queues; 2044 else 2045 host->nr_hw_queues = num_present_cpus; 2046 } 2047 2048 /* 2049 * Set the error handler work queue. 2050 */ 2051 host_dev->handle_error_wq = 2052 alloc_ordered_workqueue("storvsc_error_wq_%d", 2053 0, 2054 host->host_no); 2055 if (!host_dev->handle_error_wq) { 2056 ret = -ENOMEM; 2057 goto err_out2; 2058 } 2059 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2060 /* Register the HBA and start the scsi bus scan */ 2061 ret = scsi_add_host(host, &device->device); 2062 if (ret != 0) 2063 goto err_out3; 2064 2065 if (!dev_is_ide) { 2066 scsi_scan_host(host); 2067 } else { 2068 target = (device->dev_instance.b[5] << 8 | 2069 device->dev_instance.b[4]); 2070 ret = scsi_add_device(host, 0, target, 0); 2071 if (ret) 2072 goto err_out4; 2073 } 2074 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2075 if (host->transportt == fc_transport_template) { 2076 struct fc_rport_identifiers ids = { 2077 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2078 }; 2079 2080 fc_host_node_name(host) = stor_device->node_name; 2081 fc_host_port_name(host) = stor_device->port_name; 2082 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2083 if (!stor_device->rport) { 2084 ret = -ENOMEM; 2085 goto err_out4; 2086 } 2087 } 2088 #endif 2089 return 0; 2090 2091 err_out4: 2092 scsi_remove_host(host); 2093 2094 err_out3: 2095 destroy_workqueue(host_dev->handle_error_wq); 2096 2097 err_out2: 2098 /* 2099 * Once we have connected with the host, we would need to 2100 * invoke storvsc_dev_remove() to rollback this state and 2101 * this call also frees up the stor_device; hence the jump around 2102 * err_out1 label. 2103 */ 2104 storvsc_dev_remove(device); 2105 goto err_out0; 2106 2107 err_out1: 2108 kfree(stor_device->stor_chns); 2109 kfree(stor_device); 2110 2111 err_out0: 2112 scsi_host_put(host); 2113 return ret; 2114 } 2115 2116 /* Change a scsi target's queue depth */ 2117 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2118 { 2119 if (queue_depth > scsi_driver.can_queue) 2120 queue_depth = scsi_driver.can_queue; 2121 2122 return scsi_change_queue_depth(sdev, queue_depth); 2123 } 2124 2125 static void storvsc_remove(struct hv_device *dev) 2126 { 2127 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2128 struct Scsi_Host *host = stor_device->host; 2129 struct hv_host_device *host_dev = shost_priv(host); 2130 2131 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2132 if (host->transportt == fc_transport_template) { 2133 fc_remote_port_delete(stor_device->rport); 2134 fc_remove_host(host); 2135 } 2136 #endif 2137 destroy_workqueue(host_dev->handle_error_wq); 2138 scsi_remove_host(host); 2139 storvsc_dev_remove(dev); 2140 scsi_host_put(host); 2141 } 2142 2143 static int storvsc_suspend(struct hv_device *hv_dev) 2144 { 2145 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2146 struct Scsi_Host *host = stor_device->host; 2147 struct hv_host_device *host_dev = shost_priv(host); 2148 2149 storvsc_wait_to_drain(stor_device); 2150 2151 drain_workqueue(host_dev->handle_error_wq); 2152 2153 vmbus_close(hv_dev->channel); 2154 2155 kfree(stor_device->stor_chns); 2156 stor_device->stor_chns = NULL; 2157 2158 cpumask_clear(&stor_device->alloced_cpus); 2159 2160 return 0; 2161 } 2162 2163 static int storvsc_resume(struct hv_device *hv_dev) 2164 { 2165 int ret; 2166 2167 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size, 2168 hv_dev_is_fc(hv_dev)); 2169 return ret; 2170 } 2171 2172 static struct hv_driver storvsc_drv = { 2173 .name = KBUILD_MODNAME, 2174 .id_table = id_table, 2175 .probe = storvsc_probe, 2176 .remove = storvsc_remove, 2177 .suspend = storvsc_suspend, 2178 .resume = storvsc_resume, 2179 .driver = { 2180 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2181 }, 2182 }; 2183 2184 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2185 static struct fc_function_template fc_transport_functions = { 2186 .show_host_node_name = 1, 2187 .show_host_port_name = 1, 2188 }; 2189 #endif 2190 2191 static int __init storvsc_drv_init(void) 2192 { 2193 int ret; 2194 2195 /* 2196 * Divide the ring buffer data size (which is 1 page less 2197 * than the ring buffer size since that page is reserved for 2198 * the ring buffer indices) by the max request size (which is 2199 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2200 */ 2201 max_outstanding_req_per_channel = 2202 ((storvsc_ringbuffer_size - PAGE_SIZE) / 2203 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2204 sizeof(struct vstor_packet) + sizeof(u64), 2205 sizeof(u64))); 2206 2207 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2208 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2209 if (!fc_transport_template) 2210 return -ENODEV; 2211 #endif 2212 2213 ret = vmbus_driver_register(&storvsc_drv); 2214 2215 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2216 if (ret) 2217 fc_release_transport(fc_transport_template); 2218 #endif 2219 2220 return ret; 2221 } 2222 2223 static void __exit storvsc_drv_exit(void) 2224 { 2225 vmbus_driver_unregister(&storvsc_drv); 2226 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2227 fc_release_transport(fc_transport_template); 2228 #endif 2229 } 2230 2231 MODULE_LICENSE("GPL"); 2232 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2233 module_init(storvsc_drv_init); 2234 module_exit(storvsc_drv_exit); 2235