1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <linux/dma-mapping.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_host.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_devinfo.h> 33 #include <scsi/scsi_dbg.h> 34 #include <scsi/scsi_transport_fc.h> 35 #include <scsi/scsi_transport.h> 36 37 /* 38 * All wire protocol details (storage protocol between the guest and the host) 39 * are consolidated here. 40 * 41 * Begin protocol definitions. 42 */ 43 44 /* 45 * Version history: 46 * V1 Beta: 0.1 47 * V1 RC < 2008/1/31: 1.0 48 * V1 RC > 2008/1/31: 2.0 49 * Win7: 4.2 50 * Win8: 5.1 51 * Win8.1: 6.0 52 * Win10: 6.2 53 */ 54 55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 56 (((MINOR_) & 0xff))) 57 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 58 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 59 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 60 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 61 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 62 63 /* channel callback timeout in ms */ 64 #define CALLBACK_TIMEOUT 2 65 66 /* Packet structure describing virtual storage requests. */ 67 enum vstor_packet_operation { 68 VSTOR_OPERATION_COMPLETE_IO = 1, 69 VSTOR_OPERATION_REMOVE_DEVICE = 2, 70 VSTOR_OPERATION_EXECUTE_SRB = 3, 71 VSTOR_OPERATION_RESET_LUN = 4, 72 VSTOR_OPERATION_RESET_ADAPTER = 5, 73 VSTOR_OPERATION_RESET_BUS = 6, 74 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 75 VSTOR_OPERATION_END_INITIALIZATION = 8, 76 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 77 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 78 VSTOR_OPERATION_ENUMERATE_BUS = 11, 79 VSTOR_OPERATION_FCHBA_DATA = 12, 80 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 81 VSTOR_OPERATION_MAXIMUM = 13 82 }; 83 84 /* 85 * WWN packet for Fibre Channel HBA 86 */ 87 88 struct hv_fc_wwn_packet { 89 u8 primary_active; 90 u8 reserved1[3]; 91 u8 primary_port_wwn[8]; 92 u8 primary_node_wwn[8]; 93 u8 secondary_port_wwn[8]; 94 u8 secondary_node_wwn[8]; 95 }; 96 97 98 99 /* 100 * SRB Flag Bits 101 */ 102 103 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 104 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 105 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 106 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 107 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 108 #define SRB_FLAGS_DATA_IN 0x00000040 109 #define SRB_FLAGS_DATA_OUT 0x00000080 110 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 111 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 112 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 113 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 114 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 115 116 /* 117 * This flag indicates the request is part of the workflow for processing a D3. 118 */ 119 #define SRB_FLAGS_D3_PROCESSING 0x00000800 120 #define SRB_FLAGS_IS_ACTIVE 0x00010000 121 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 122 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 123 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 124 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 125 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 126 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 127 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 128 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 129 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 130 131 #define SP_UNTAGGED ((unsigned char) ~0) 132 #define SRB_SIMPLE_TAG_REQUEST 0x20 133 134 /* 135 * Platform neutral description of a scsi request - 136 * this remains the same across the write regardless of 32/64 bit 137 * note: it's patterned off the SCSI_PASS_THROUGH structure 138 */ 139 #define STORVSC_MAX_CMD_LEN 0x10 140 141 /* Sense buffer size is the same for all versions since Windows 8 */ 142 #define STORVSC_SENSE_BUFFER_SIZE 0x14 143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 144 145 /* 146 * The storage protocol version is determined during the 147 * initial exchange with the host. It will indicate which 148 * storage functionality is available in the host. 149 */ 150 static int vmstor_proto_version; 151 152 #define STORVSC_LOGGING_NONE 0 153 #define STORVSC_LOGGING_ERROR 1 154 #define STORVSC_LOGGING_WARN 2 155 156 static int logging_level = STORVSC_LOGGING_ERROR; 157 module_param(logging_level, int, S_IRUGO|S_IWUSR); 158 MODULE_PARM_DESC(logging_level, 159 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 160 161 static inline bool do_logging(int level) 162 { 163 return logging_level >= level; 164 } 165 166 #define storvsc_log(dev, level, fmt, ...) \ 167 do { \ 168 if (do_logging(level)) \ 169 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 170 } while (0) 171 172 struct vmscsi_request { 173 u16 length; 174 u8 srb_status; 175 u8 scsi_status; 176 177 u8 port_number; 178 u8 path_id; 179 u8 target_id; 180 u8 lun; 181 182 u8 cdb_length; 183 u8 sense_info_length; 184 u8 data_in; 185 u8 reserved; 186 187 u32 data_transfer_length; 188 189 union { 190 u8 cdb[STORVSC_MAX_CMD_LEN]; 191 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 192 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 193 }; 194 /* 195 * The following was added in win8. 196 */ 197 u16 reserve; 198 u8 queue_tag; 199 u8 queue_action; 200 u32 srb_flags; 201 u32 time_out_value; 202 u32 queue_sort_ey; 203 204 } __attribute((packed)); 205 206 /* 207 * The list of windows version in order of preference. 208 */ 209 210 static const int protocol_version[] = { 211 VMSTOR_PROTO_VERSION_WIN10, 212 VMSTOR_PROTO_VERSION_WIN8_1, 213 VMSTOR_PROTO_VERSION_WIN8, 214 }; 215 216 217 /* 218 * This structure is sent during the initialization phase to get the different 219 * properties of the channel. 220 */ 221 222 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 223 224 struct vmstorage_channel_properties { 225 u32 reserved; 226 u16 max_channel_cnt; 227 u16 reserved1; 228 229 u32 flags; 230 u32 max_transfer_bytes; 231 232 u64 reserved2; 233 } __packed; 234 235 /* This structure is sent during the storage protocol negotiations. */ 236 struct vmstorage_protocol_version { 237 /* Major (MSW) and minor (LSW) version numbers. */ 238 u16 major_minor; 239 240 /* 241 * Revision number is auto-incremented whenever this file is changed 242 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 243 * definitely indicate incompatibility--but it does indicate mismatched 244 * builds. 245 * This is only used on the windows side. Just set it to 0. 246 */ 247 u16 revision; 248 } __packed; 249 250 /* Channel Property Flags */ 251 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 252 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 253 254 struct vstor_packet { 255 /* Requested operation type */ 256 enum vstor_packet_operation operation; 257 258 /* Flags - see below for values */ 259 u32 flags; 260 261 /* Status of the request returned from the server side. */ 262 u32 status; 263 264 /* Data payload area */ 265 union { 266 /* 267 * Structure used to forward SCSI commands from the 268 * client to the server. 269 */ 270 struct vmscsi_request vm_srb; 271 272 /* Structure used to query channel properties. */ 273 struct vmstorage_channel_properties storage_channel_properties; 274 275 /* Used during version negotiations. */ 276 struct vmstorage_protocol_version version; 277 278 /* Fibre channel address packet */ 279 struct hv_fc_wwn_packet wwn_packet; 280 281 /* Number of sub-channels to create */ 282 u16 sub_channel_count; 283 284 /* This will be the maximum of the union members */ 285 u8 buffer[0x34]; 286 }; 287 } __packed; 288 289 /* 290 * Packet Flags: 291 * 292 * This flag indicates that the server should send back a completion for this 293 * packet. 294 */ 295 296 #define REQUEST_COMPLETION_FLAG 0x1 297 298 /* Matches Windows-end */ 299 enum storvsc_request_type { 300 WRITE_TYPE = 0, 301 READ_TYPE, 302 UNKNOWN_TYPE, 303 }; 304 305 /* 306 * SRB status codes and masks. In the 8-bit field, the two high order bits 307 * are flags, while the remaining 6 bits are an integer status code. The 308 * definitions here include only the subset of the integer status codes that 309 * are tested for in this driver. 310 */ 311 #define SRB_STATUS_AUTOSENSE_VALID 0x80 312 #define SRB_STATUS_QUEUE_FROZEN 0x40 313 314 /* SRB status integer codes */ 315 #define SRB_STATUS_SUCCESS 0x01 316 #define SRB_STATUS_ABORTED 0x02 317 #define SRB_STATUS_ERROR 0x04 318 #define SRB_STATUS_INVALID_REQUEST 0x06 319 #define SRB_STATUS_DATA_OVERRUN 0x12 320 #define SRB_STATUS_INVALID_LUN 0x20 321 #define SRB_STATUS_INTERNAL_ERROR 0x30 322 323 #define SRB_STATUS(status) \ 324 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 325 /* 326 * This is the end of Protocol specific defines. 327 */ 328 329 static int storvsc_ringbuffer_size = (128 * 1024); 330 static u32 max_outstanding_req_per_channel; 331 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 332 333 static int storvsc_vcpus_per_sub_channel = 4; 334 static unsigned int storvsc_max_hw_queues; 335 336 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 337 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 338 339 module_param(storvsc_max_hw_queues, uint, 0644); 340 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 341 342 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 343 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 344 345 static int ring_avail_percent_lowater = 10; 346 module_param(ring_avail_percent_lowater, int, S_IRUGO); 347 MODULE_PARM_DESC(ring_avail_percent_lowater, 348 "Select a channel if available ring size > this in percent"); 349 350 /* 351 * Timeout in seconds for all devices managed by this driver. 352 */ 353 static int storvsc_timeout = 180; 354 355 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 356 static struct scsi_transport_template *fc_transport_template; 357 #endif 358 359 static struct scsi_host_template scsi_driver; 360 static void storvsc_on_channel_callback(void *context); 361 362 #define STORVSC_MAX_LUNS_PER_TARGET 255 363 #define STORVSC_MAX_TARGETS 2 364 #define STORVSC_MAX_CHANNELS 8 365 366 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 367 #define STORVSC_FC_MAX_TARGETS 128 368 #define STORVSC_FC_MAX_CHANNELS 8 369 #define STORVSC_FC_MAX_XFER_SIZE ((u32)(512 * 1024)) 370 371 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 372 #define STORVSC_IDE_MAX_TARGETS 1 373 #define STORVSC_IDE_MAX_CHANNELS 1 374 375 /* 376 * Upper bound on the size of a storvsc packet. 377 */ 378 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 379 sizeof(struct vstor_packet)) 380 381 struct storvsc_cmd_request { 382 struct scsi_cmnd *cmd; 383 384 struct hv_device *device; 385 386 /* Synchronize the request/response if needed */ 387 struct completion wait_event; 388 389 struct vmbus_channel_packet_multipage_buffer mpb; 390 struct vmbus_packet_mpb_array *payload; 391 u32 payload_sz; 392 393 struct vstor_packet vstor_packet; 394 }; 395 396 397 /* A storvsc device is a device object that contains a vmbus channel */ 398 struct storvsc_device { 399 struct hv_device *device; 400 401 bool destroy; 402 bool drain_notify; 403 atomic_t num_outstanding_req; 404 struct Scsi_Host *host; 405 406 wait_queue_head_t waiting_to_drain; 407 408 /* 409 * Each unique Port/Path/Target represents 1 channel ie scsi 410 * controller. In reality, the pathid, targetid is always 0 411 * and the port is set by us 412 */ 413 unsigned int port_number; 414 unsigned char path_id; 415 unsigned char target_id; 416 417 /* 418 * Max I/O, the device can support. 419 */ 420 u32 max_transfer_bytes; 421 /* 422 * Number of sub-channels we will open. 423 */ 424 u16 num_sc; 425 struct vmbus_channel **stor_chns; 426 /* 427 * Mask of CPUs bound to subchannels. 428 */ 429 struct cpumask alloced_cpus; 430 /* 431 * Serializes modifications of stor_chns[] from storvsc_do_io() 432 * and storvsc_change_target_cpu(). 433 */ 434 spinlock_t lock; 435 /* Used for vsc/vsp channel reset process */ 436 struct storvsc_cmd_request init_request; 437 struct storvsc_cmd_request reset_request; 438 /* 439 * Currently active port and node names for FC devices. 440 */ 441 u64 node_name; 442 u64 port_name; 443 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 444 struct fc_rport *rport; 445 #endif 446 }; 447 448 struct hv_host_device { 449 struct hv_device *dev; 450 unsigned int port; 451 unsigned char path; 452 unsigned char target; 453 struct workqueue_struct *handle_error_wq; 454 struct work_struct host_scan_work; 455 struct Scsi_Host *host; 456 }; 457 458 struct storvsc_scan_work { 459 struct work_struct work; 460 struct Scsi_Host *host; 461 u8 lun; 462 u8 tgt_id; 463 }; 464 465 static void storvsc_device_scan(struct work_struct *work) 466 { 467 struct storvsc_scan_work *wrk; 468 struct scsi_device *sdev; 469 470 wrk = container_of(work, struct storvsc_scan_work, work); 471 472 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 473 if (!sdev) 474 goto done; 475 scsi_rescan_device(&sdev->sdev_gendev); 476 scsi_device_put(sdev); 477 478 done: 479 kfree(wrk); 480 } 481 482 static void storvsc_host_scan(struct work_struct *work) 483 { 484 struct Scsi_Host *host; 485 struct scsi_device *sdev; 486 struct hv_host_device *host_device = 487 container_of(work, struct hv_host_device, host_scan_work); 488 489 host = host_device->host; 490 /* 491 * Before scanning the host, first check to see if any of the 492 * currently known devices have been hot removed. We issue a 493 * "unit ready" command against all currently known devices. 494 * This I/O will result in an error for devices that have been 495 * removed. As part of handling the I/O error, we remove the device. 496 * 497 * When a LUN is added or removed, the host sends us a signal to 498 * scan the host. Thus we are forced to discover the LUNs that 499 * may have been removed this way. 500 */ 501 mutex_lock(&host->scan_mutex); 502 shost_for_each_device(sdev, host) 503 scsi_test_unit_ready(sdev, 1, 1, NULL); 504 mutex_unlock(&host->scan_mutex); 505 /* 506 * Now scan the host to discover LUNs that may have been added. 507 */ 508 scsi_scan_host(host); 509 } 510 511 static void storvsc_remove_lun(struct work_struct *work) 512 { 513 struct storvsc_scan_work *wrk; 514 struct scsi_device *sdev; 515 516 wrk = container_of(work, struct storvsc_scan_work, work); 517 if (!scsi_host_get(wrk->host)) 518 goto done; 519 520 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 521 522 if (sdev) { 523 scsi_remove_device(sdev); 524 scsi_device_put(sdev); 525 } 526 scsi_host_put(wrk->host); 527 528 done: 529 kfree(wrk); 530 } 531 532 533 /* 534 * We can get incoming messages from the host that are not in response to 535 * messages that we have sent out. An example of this would be messages 536 * received by the guest to notify dynamic addition/removal of LUNs. To 537 * deal with potential race conditions where the driver may be in the 538 * midst of being unloaded when we might receive an unsolicited message 539 * from the host, we have implemented a mechanism to gurantee sequential 540 * consistency: 541 * 542 * 1) Once the device is marked as being destroyed, we will fail all 543 * outgoing messages. 544 * 2) We permit incoming messages when the device is being destroyed, 545 * only to properly account for messages already sent out. 546 */ 547 548 static inline struct storvsc_device *get_out_stor_device( 549 struct hv_device *device) 550 { 551 struct storvsc_device *stor_device; 552 553 stor_device = hv_get_drvdata(device); 554 555 if (stor_device && stor_device->destroy) 556 stor_device = NULL; 557 558 return stor_device; 559 } 560 561 562 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 563 { 564 dev->drain_notify = true; 565 wait_event(dev->waiting_to_drain, 566 atomic_read(&dev->num_outstanding_req) == 0); 567 dev->drain_notify = false; 568 } 569 570 static inline struct storvsc_device *get_in_stor_device( 571 struct hv_device *device) 572 { 573 struct storvsc_device *stor_device; 574 575 stor_device = hv_get_drvdata(device); 576 577 if (!stor_device) 578 goto get_in_err; 579 580 /* 581 * If the device is being destroyed; allow incoming 582 * traffic only to cleanup outstanding requests. 583 */ 584 585 if (stor_device->destroy && 586 (atomic_read(&stor_device->num_outstanding_req) == 0)) 587 stor_device = NULL; 588 589 get_in_err: 590 return stor_device; 591 592 } 593 594 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 595 u32 new) 596 { 597 struct storvsc_device *stor_device; 598 struct vmbus_channel *cur_chn; 599 bool old_is_alloced = false; 600 struct hv_device *device; 601 unsigned long flags; 602 int cpu; 603 604 device = channel->primary_channel ? 605 channel->primary_channel->device_obj 606 : channel->device_obj; 607 stor_device = get_out_stor_device(device); 608 if (!stor_device) 609 return; 610 611 /* See storvsc_do_io() -> get_og_chn(). */ 612 spin_lock_irqsave(&stor_device->lock, flags); 613 614 /* 615 * Determines if the storvsc device has other channels assigned to 616 * the "old" CPU to update the alloced_cpus mask and the stor_chns 617 * array. 618 */ 619 if (device->channel != channel && device->channel->target_cpu == old) { 620 cur_chn = device->channel; 621 old_is_alloced = true; 622 goto old_is_alloced; 623 } 624 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 625 if (cur_chn == channel) 626 continue; 627 if (cur_chn->target_cpu == old) { 628 old_is_alloced = true; 629 goto old_is_alloced; 630 } 631 } 632 633 old_is_alloced: 634 if (old_is_alloced) 635 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 636 else 637 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 638 639 /* "Flush" the stor_chns array. */ 640 for_each_possible_cpu(cpu) { 641 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 642 cpu, &stor_device->alloced_cpus)) 643 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 644 } 645 646 WRITE_ONCE(stor_device->stor_chns[new], channel); 647 cpumask_set_cpu(new, &stor_device->alloced_cpus); 648 649 spin_unlock_irqrestore(&stor_device->lock, flags); 650 } 651 652 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 653 { 654 struct storvsc_cmd_request *request = 655 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 656 657 if (rqst_addr == VMBUS_RQST_INIT) 658 return VMBUS_RQST_INIT; 659 if (rqst_addr == VMBUS_RQST_RESET) 660 return VMBUS_RQST_RESET; 661 662 /* 663 * Cannot return an ID of 0, which is reserved for an unsolicited 664 * message from Hyper-V. 665 */ 666 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 667 } 668 669 static void handle_sc_creation(struct vmbus_channel *new_sc) 670 { 671 struct hv_device *device = new_sc->primary_channel->device_obj; 672 struct device *dev = &device->device; 673 struct storvsc_device *stor_device; 674 struct vmstorage_channel_properties props; 675 int ret; 676 677 stor_device = get_out_stor_device(device); 678 if (!stor_device) 679 return; 680 681 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 682 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 683 684 new_sc->next_request_id_callback = storvsc_next_request_id; 685 686 ret = vmbus_open(new_sc, 687 storvsc_ringbuffer_size, 688 storvsc_ringbuffer_size, 689 (void *)&props, 690 sizeof(struct vmstorage_channel_properties), 691 storvsc_on_channel_callback, new_sc); 692 693 /* In case vmbus_open() fails, we don't use the sub-channel. */ 694 if (ret != 0) { 695 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 696 return; 697 } 698 699 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 700 701 /* Add the sub-channel to the array of available channels. */ 702 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 703 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 704 } 705 706 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 707 { 708 struct device *dev = &device->device; 709 struct storvsc_device *stor_device; 710 int num_sc; 711 struct storvsc_cmd_request *request; 712 struct vstor_packet *vstor_packet; 713 int ret, t; 714 715 /* 716 * If the number of CPUs is artificially restricted, such as 717 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 718 * sub-channels >= the number of CPUs. These sub-channels 719 * should not be created. The primary channel is already created 720 * and assigned to one CPU, so check against # CPUs - 1. 721 */ 722 num_sc = min((int)(num_online_cpus() - 1), max_chns); 723 if (!num_sc) 724 return; 725 726 stor_device = get_out_stor_device(device); 727 if (!stor_device) 728 return; 729 730 stor_device->num_sc = num_sc; 731 request = &stor_device->init_request; 732 vstor_packet = &request->vstor_packet; 733 734 /* 735 * Establish a handler for dealing with subchannels. 736 */ 737 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 738 739 /* 740 * Request the host to create sub-channels. 741 */ 742 memset(request, 0, sizeof(struct storvsc_cmd_request)); 743 init_completion(&request->wait_event); 744 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 745 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 746 vstor_packet->sub_channel_count = num_sc; 747 748 ret = vmbus_sendpacket(device->channel, vstor_packet, 749 sizeof(struct vstor_packet), 750 VMBUS_RQST_INIT, 751 VM_PKT_DATA_INBAND, 752 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 753 754 if (ret != 0) { 755 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 756 return; 757 } 758 759 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 760 if (t == 0) { 761 dev_err(dev, "Failed to create sub-channel: timed out\n"); 762 return; 763 } 764 765 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 766 vstor_packet->status != 0) { 767 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 768 vstor_packet->operation, vstor_packet->status); 769 return; 770 } 771 772 /* 773 * We need to do nothing here, because vmbus_process_offer() 774 * invokes channel->sc_creation_callback, which will open and use 775 * the sub-channel(s). 776 */ 777 } 778 779 static void cache_wwn(struct storvsc_device *stor_device, 780 struct vstor_packet *vstor_packet) 781 { 782 /* 783 * Cache the currently active port and node ww names. 784 */ 785 if (vstor_packet->wwn_packet.primary_active) { 786 stor_device->node_name = 787 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 788 stor_device->port_name = 789 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 790 } else { 791 stor_device->node_name = 792 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 793 stor_device->port_name = 794 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 795 } 796 } 797 798 799 static int storvsc_execute_vstor_op(struct hv_device *device, 800 struct storvsc_cmd_request *request, 801 bool status_check) 802 { 803 struct storvsc_device *stor_device; 804 struct vstor_packet *vstor_packet; 805 int ret, t; 806 807 stor_device = get_out_stor_device(device); 808 if (!stor_device) 809 return -ENODEV; 810 811 vstor_packet = &request->vstor_packet; 812 813 init_completion(&request->wait_event); 814 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 815 816 ret = vmbus_sendpacket(device->channel, vstor_packet, 817 sizeof(struct vstor_packet), 818 VMBUS_RQST_INIT, 819 VM_PKT_DATA_INBAND, 820 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 821 if (ret != 0) 822 return ret; 823 824 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 825 if (t == 0) 826 return -ETIMEDOUT; 827 828 if (!status_check) 829 return ret; 830 831 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 832 vstor_packet->status != 0) 833 return -EINVAL; 834 835 return ret; 836 } 837 838 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 839 { 840 struct storvsc_device *stor_device; 841 struct storvsc_cmd_request *request; 842 struct vstor_packet *vstor_packet; 843 int ret, i; 844 int max_chns; 845 bool process_sub_channels = false; 846 847 stor_device = get_out_stor_device(device); 848 if (!stor_device) 849 return -ENODEV; 850 851 request = &stor_device->init_request; 852 vstor_packet = &request->vstor_packet; 853 854 /* 855 * Now, initiate the vsc/vsp initialization protocol on the open 856 * channel 857 */ 858 memset(request, 0, sizeof(struct storvsc_cmd_request)); 859 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 860 ret = storvsc_execute_vstor_op(device, request, true); 861 if (ret) 862 return ret; 863 /* 864 * Query host supported protocol version. 865 */ 866 867 for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { 868 /* reuse the packet for version range supported */ 869 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 870 vstor_packet->operation = 871 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 872 873 vstor_packet->version.major_minor = protocol_version[i]; 874 875 /* 876 * The revision number is only used in Windows; set it to 0. 877 */ 878 vstor_packet->version.revision = 0; 879 ret = storvsc_execute_vstor_op(device, request, false); 880 if (ret != 0) 881 return ret; 882 883 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 884 return -EINVAL; 885 886 if (vstor_packet->status == 0) { 887 vmstor_proto_version = protocol_version[i]; 888 889 break; 890 } 891 } 892 893 if (vstor_packet->status != 0) { 894 dev_err(&device->device, "Obsolete Hyper-V version\n"); 895 return -EINVAL; 896 } 897 898 899 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 900 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 901 ret = storvsc_execute_vstor_op(device, request, true); 902 if (ret != 0) 903 return ret; 904 905 /* 906 * Check to see if multi-channel support is there. 907 * Hosts that implement protocol version of 5.1 and above 908 * support multi-channel. 909 */ 910 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 911 912 /* 913 * Allocate state to manage the sub-channels. 914 * We allocate an array based on the numbers of possible CPUs 915 * (Hyper-V does not support cpu online/offline). 916 * This Array will be sparseley populated with unique 917 * channels - primary + sub-channels. 918 * We will however populate all the slots to evenly distribute 919 * the load. 920 */ 921 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 922 GFP_KERNEL); 923 if (stor_device->stor_chns == NULL) 924 return -ENOMEM; 925 926 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 927 928 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 929 cpumask_set_cpu(device->channel->target_cpu, 930 &stor_device->alloced_cpus); 931 932 if (vstor_packet->storage_channel_properties.flags & 933 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 934 process_sub_channels = true; 935 936 stor_device->max_transfer_bytes = 937 vstor_packet->storage_channel_properties.max_transfer_bytes; 938 939 if (!is_fc) 940 goto done; 941 942 /* 943 * For FC devices retrieve FC HBA data. 944 */ 945 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 946 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 947 ret = storvsc_execute_vstor_op(device, request, true); 948 if (ret != 0) 949 return ret; 950 951 /* 952 * Cache the currently active port and node ww names. 953 */ 954 cache_wwn(stor_device, vstor_packet); 955 956 done: 957 958 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 959 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 960 ret = storvsc_execute_vstor_op(device, request, true); 961 if (ret != 0) 962 return ret; 963 964 if (process_sub_channels) 965 handle_multichannel_storage(device, max_chns); 966 967 return ret; 968 } 969 970 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 971 struct scsi_cmnd *scmnd, 972 struct Scsi_Host *host, 973 u8 asc, u8 ascq) 974 { 975 struct storvsc_scan_work *wrk; 976 void (*process_err_fn)(struct work_struct *work); 977 struct hv_host_device *host_dev = shost_priv(host); 978 979 switch (SRB_STATUS(vm_srb->srb_status)) { 980 case SRB_STATUS_ERROR: 981 case SRB_STATUS_ABORTED: 982 case SRB_STATUS_INVALID_REQUEST: 983 case SRB_STATUS_INTERNAL_ERROR: 984 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) { 985 /* Check for capacity change */ 986 if ((asc == 0x2a) && (ascq == 0x9)) { 987 process_err_fn = storvsc_device_scan; 988 /* Retry the I/O that triggered this. */ 989 set_host_byte(scmnd, DID_REQUEUE); 990 goto do_work; 991 } 992 993 /* 994 * Check for "Operating parameters have changed" 995 * due to Hyper-V changing the VHD/VHDX BlockSize 996 * when adding/removing a differencing disk. This 997 * causes discard_granularity to change, so do a 998 * rescan to pick up the new granularity. We don't 999 * want scsi_report_sense() to output a message 1000 * that a sysadmin wouldn't know what to do with. 1001 */ 1002 if ((asc == 0x3f) && (ascq != 0x03) && 1003 (ascq != 0x0e)) { 1004 process_err_fn = storvsc_device_scan; 1005 set_host_byte(scmnd, DID_REQUEUE); 1006 goto do_work; 1007 } 1008 1009 /* 1010 * Otherwise, let upper layer deal with the 1011 * error when sense message is present 1012 */ 1013 return; 1014 } 1015 1016 /* 1017 * If there is an error; offline the device since all 1018 * error recovery strategies would have already been 1019 * deployed on the host side. However, if the command 1020 * were a pass-through command deal with it appropriately. 1021 */ 1022 switch (scmnd->cmnd[0]) { 1023 case ATA_16: 1024 case ATA_12: 1025 set_host_byte(scmnd, DID_PASSTHROUGH); 1026 break; 1027 /* 1028 * On some Hyper-V hosts TEST_UNIT_READY command can 1029 * return SRB_STATUS_ERROR. Let the upper level code 1030 * deal with it based on the sense information. 1031 */ 1032 case TEST_UNIT_READY: 1033 break; 1034 default: 1035 set_host_byte(scmnd, DID_ERROR); 1036 } 1037 return; 1038 1039 case SRB_STATUS_INVALID_LUN: 1040 set_host_byte(scmnd, DID_NO_CONNECT); 1041 process_err_fn = storvsc_remove_lun; 1042 goto do_work; 1043 1044 } 1045 return; 1046 1047 do_work: 1048 /* 1049 * We need to schedule work to process this error; schedule it. 1050 */ 1051 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1052 if (!wrk) { 1053 set_host_byte(scmnd, DID_BAD_TARGET); 1054 return; 1055 } 1056 1057 wrk->host = host; 1058 wrk->lun = vm_srb->lun; 1059 wrk->tgt_id = vm_srb->target_id; 1060 INIT_WORK(&wrk->work, process_err_fn); 1061 queue_work(host_dev->handle_error_wq, &wrk->work); 1062 } 1063 1064 1065 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1066 struct storvsc_device *stor_dev) 1067 { 1068 struct scsi_cmnd *scmnd = cmd_request->cmd; 1069 struct scsi_sense_hdr sense_hdr; 1070 struct vmscsi_request *vm_srb; 1071 u32 data_transfer_length; 1072 struct Scsi_Host *host; 1073 u32 payload_sz = cmd_request->payload_sz; 1074 void *payload = cmd_request->payload; 1075 bool sense_ok; 1076 1077 host = stor_dev->host; 1078 1079 vm_srb = &cmd_request->vstor_packet.vm_srb; 1080 data_transfer_length = vm_srb->data_transfer_length; 1081 1082 scmnd->result = vm_srb->scsi_status; 1083 1084 if (scmnd->result) { 1085 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1086 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1087 1088 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1089 scsi_print_sense_hdr(scmnd->device, "storvsc", 1090 &sense_hdr); 1091 } 1092 1093 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1094 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1095 sense_hdr.ascq); 1096 /* 1097 * The Windows driver set data_transfer_length on 1098 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1099 * is untouched. In these cases we set it to 0. 1100 */ 1101 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1102 data_transfer_length = 0; 1103 } 1104 1105 /* Validate data_transfer_length (from Hyper-V) */ 1106 if (data_transfer_length > cmd_request->payload->range.len) 1107 data_transfer_length = cmd_request->payload->range.len; 1108 1109 scsi_set_resid(scmnd, 1110 cmd_request->payload->range.len - data_transfer_length); 1111 1112 scsi_done(scmnd); 1113 1114 if (payload_sz > 1115 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1116 kfree(payload); 1117 } 1118 1119 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1120 struct vstor_packet *vstor_packet, 1121 struct storvsc_cmd_request *request) 1122 { 1123 struct vstor_packet *stor_pkt; 1124 struct hv_device *device = stor_device->device; 1125 1126 stor_pkt = &request->vstor_packet; 1127 1128 /* 1129 * The current SCSI handling on the host side does 1130 * not correctly handle: 1131 * INQUIRY command with page code parameter set to 0x80 1132 * MODE_SENSE command with cmd[2] == 0x1c 1133 * 1134 * Setup srb and scsi status so this won't be fatal. 1135 * We do this so we can distinguish truly fatal failues 1136 * (srb status == 0x4) and off-line the device in that case. 1137 */ 1138 1139 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1140 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { 1141 vstor_packet->vm_srb.scsi_status = 0; 1142 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1143 } 1144 1145 /* Copy over the status...etc */ 1146 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1147 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1148 1149 /* 1150 * Copy over the sense_info_length, but limit to the known max 1151 * size if Hyper-V returns a bad value. 1152 */ 1153 stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, 1154 vstor_packet->vm_srb.sense_info_length); 1155 1156 if (vstor_packet->vm_srb.scsi_status != 0 || 1157 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1158 1159 /* 1160 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1161 * return errors when detecting devices using TEST_UNIT_READY, 1162 * and logging these as errors produces unhelpful noise. 1163 */ 1164 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1165 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1166 1167 storvsc_log(device, loglevel, 1168 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", 1169 scsi_cmd_to_rq(request->cmd)->tag, 1170 stor_pkt->vm_srb.cdb[0], 1171 vstor_packet->vm_srb.scsi_status, 1172 vstor_packet->vm_srb.srb_status, 1173 vstor_packet->status); 1174 } 1175 1176 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1177 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1178 memcpy(request->cmd->sense_buffer, 1179 vstor_packet->vm_srb.sense_data, 1180 stor_pkt->vm_srb.sense_info_length); 1181 1182 stor_pkt->vm_srb.data_transfer_length = 1183 vstor_packet->vm_srb.data_transfer_length; 1184 1185 storvsc_command_completion(request, stor_device); 1186 1187 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1188 stor_device->drain_notify) 1189 wake_up(&stor_device->waiting_to_drain); 1190 } 1191 1192 static void storvsc_on_receive(struct storvsc_device *stor_device, 1193 struct vstor_packet *vstor_packet, 1194 struct storvsc_cmd_request *request) 1195 { 1196 struct hv_host_device *host_dev; 1197 switch (vstor_packet->operation) { 1198 case VSTOR_OPERATION_COMPLETE_IO: 1199 storvsc_on_io_completion(stor_device, vstor_packet, request); 1200 break; 1201 1202 case VSTOR_OPERATION_REMOVE_DEVICE: 1203 case VSTOR_OPERATION_ENUMERATE_BUS: 1204 host_dev = shost_priv(stor_device->host); 1205 queue_work( 1206 host_dev->handle_error_wq, &host_dev->host_scan_work); 1207 break; 1208 1209 case VSTOR_OPERATION_FCHBA_DATA: 1210 cache_wwn(stor_device, vstor_packet); 1211 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1212 fc_host_node_name(stor_device->host) = stor_device->node_name; 1213 fc_host_port_name(stor_device->host) = stor_device->port_name; 1214 #endif 1215 break; 1216 default: 1217 break; 1218 } 1219 } 1220 1221 static void storvsc_on_channel_callback(void *context) 1222 { 1223 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1224 const struct vmpacket_descriptor *desc; 1225 struct hv_device *device; 1226 struct storvsc_device *stor_device; 1227 struct Scsi_Host *shost; 1228 unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT); 1229 1230 if (channel->primary_channel != NULL) 1231 device = channel->primary_channel->device_obj; 1232 else 1233 device = channel->device_obj; 1234 1235 stor_device = get_in_stor_device(device); 1236 if (!stor_device) 1237 return; 1238 1239 shost = stor_device->host; 1240 1241 foreach_vmbus_pkt(desc, channel) { 1242 struct vstor_packet *packet = hv_pkt_data(desc); 1243 struct storvsc_cmd_request *request = NULL; 1244 u32 pktlen = hv_pkt_datalen(desc); 1245 u64 rqst_id = desc->trans_id; 1246 u32 minlen = rqst_id ? sizeof(struct vstor_packet) : 1247 sizeof(enum vstor_packet_operation); 1248 1249 if (unlikely(time_after(jiffies, time_limit))) { 1250 hv_pkt_iter_close(channel); 1251 return; 1252 } 1253 1254 if (pktlen < minlen) { 1255 dev_err(&device->device, 1256 "Invalid pkt: id=%llu, len=%u, minlen=%u\n", 1257 rqst_id, pktlen, minlen); 1258 continue; 1259 } 1260 1261 if (rqst_id == VMBUS_RQST_INIT) { 1262 request = &stor_device->init_request; 1263 } else if (rqst_id == VMBUS_RQST_RESET) { 1264 request = &stor_device->reset_request; 1265 } else { 1266 /* Hyper-V can send an unsolicited message with ID of 0 */ 1267 if (rqst_id == 0) { 1268 /* 1269 * storvsc_on_receive() looks at the vstor_packet in the message 1270 * from the ring buffer. 1271 * 1272 * - If the operation in the vstor_packet is COMPLETE_IO, then 1273 * we call storvsc_on_io_completion(), and dereference the 1274 * guest memory address. Make sure we don't call 1275 * storvsc_on_io_completion() with a guest memory address 1276 * that is zero if Hyper-V were to construct and send such 1277 * a bogus packet. 1278 * 1279 * - If the operation in the vstor_packet is FCHBA_DATA, then 1280 * we call cache_wwn(), and access the data payload area of 1281 * the packet (wwn_packet); however, there is no guarantee 1282 * that the packet is big enough to contain such area. 1283 * Future-proof the code by rejecting such a bogus packet. 1284 */ 1285 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || 1286 packet->operation == VSTOR_OPERATION_FCHBA_DATA) { 1287 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1288 continue; 1289 } 1290 } else { 1291 struct scsi_cmnd *scmnd; 1292 1293 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1294 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1295 if (scmnd == NULL) { 1296 dev_err(&device->device, "Incorrect transaction ID\n"); 1297 continue; 1298 } 1299 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1300 scsi_dma_unmap(scmnd); 1301 } 1302 1303 storvsc_on_receive(stor_device, packet, request); 1304 continue; 1305 } 1306 1307 memcpy(&request->vstor_packet, packet, 1308 sizeof(struct vstor_packet)); 1309 complete(&request->wait_event); 1310 } 1311 } 1312 1313 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1314 bool is_fc) 1315 { 1316 struct vmstorage_channel_properties props; 1317 int ret; 1318 1319 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1320 1321 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1322 device->channel->next_request_id_callback = storvsc_next_request_id; 1323 1324 ret = vmbus_open(device->channel, 1325 ring_size, 1326 ring_size, 1327 (void *)&props, 1328 sizeof(struct vmstorage_channel_properties), 1329 storvsc_on_channel_callback, device->channel); 1330 1331 if (ret != 0) 1332 return ret; 1333 1334 ret = storvsc_channel_init(device, is_fc); 1335 1336 return ret; 1337 } 1338 1339 static int storvsc_dev_remove(struct hv_device *device) 1340 { 1341 struct storvsc_device *stor_device; 1342 1343 stor_device = hv_get_drvdata(device); 1344 1345 stor_device->destroy = true; 1346 1347 /* Make sure flag is set before waiting */ 1348 wmb(); 1349 1350 /* 1351 * At this point, all outbound traffic should be disable. We 1352 * only allow inbound traffic (responses) to proceed so that 1353 * outstanding requests can be completed. 1354 */ 1355 1356 storvsc_wait_to_drain(stor_device); 1357 1358 /* 1359 * Since we have already drained, we don't need to busy wait 1360 * as was done in final_release_stor_device() 1361 * Note that we cannot set the ext pointer to NULL until 1362 * we have drained - to drain the outgoing packets, we need to 1363 * allow incoming packets. 1364 */ 1365 hv_set_drvdata(device, NULL); 1366 1367 /* Close the channel */ 1368 vmbus_close(device->channel); 1369 1370 kfree(stor_device->stor_chns); 1371 kfree(stor_device); 1372 return 0; 1373 } 1374 1375 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1376 u16 q_num) 1377 { 1378 u16 slot = 0; 1379 u16 hash_qnum; 1380 const struct cpumask *node_mask; 1381 int num_channels, tgt_cpu; 1382 1383 if (stor_device->num_sc == 0) { 1384 stor_device->stor_chns[q_num] = stor_device->device->channel; 1385 return stor_device->device->channel; 1386 } 1387 1388 /* 1389 * Our channel array is sparsley populated and we 1390 * initiated I/O on a processor/hw-q that does not 1391 * currently have a designated channel. Fix this. 1392 * The strategy is simple: 1393 * I. Ensure NUMA locality 1394 * II. Distribute evenly (best effort) 1395 */ 1396 1397 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1398 1399 num_channels = 0; 1400 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1401 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1402 num_channels++; 1403 } 1404 if (num_channels == 0) { 1405 stor_device->stor_chns[q_num] = stor_device->device->channel; 1406 return stor_device->device->channel; 1407 } 1408 1409 hash_qnum = q_num; 1410 while (hash_qnum >= num_channels) 1411 hash_qnum -= num_channels; 1412 1413 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1414 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1415 continue; 1416 if (slot == hash_qnum) 1417 break; 1418 slot++; 1419 } 1420 1421 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1422 1423 return stor_device->stor_chns[q_num]; 1424 } 1425 1426 1427 static int storvsc_do_io(struct hv_device *device, 1428 struct storvsc_cmd_request *request, u16 q_num) 1429 { 1430 struct storvsc_device *stor_device; 1431 struct vstor_packet *vstor_packet; 1432 struct vmbus_channel *outgoing_channel, *channel; 1433 unsigned long flags; 1434 int ret = 0; 1435 const struct cpumask *node_mask; 1436 int tgt_cpu; 1437 1438 vstor_packet = &request->vstor_packet; 1439 stor_device = get_out_stor_device(device); 1440 1441 if (!stor_device) 1442 return -ENODEV; 1443 1444 1445 request->device = device; 1446 /* 1447 * Select an appropriate channel to send the request out. 1448 */ 1449 /* See storvsc_change_target_cpu(). */ 1450 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1451 if (outgoing_channel != NULL) { 1452 if (outgoing_channel->target_cpu == q_num) { 1453 /* 1454 * Ideally, we want to pick a different channel if 1455 * available on the same NUMA node. 1456 */ 1457 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1458 for_each_cpu_wrap(tgt_cpu, 1459 &stor_device->alloced_cpus, q_num + 1) { 1460 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1461 continue; 1462 if (tgt_cpu == q_num) 1463 continue; 1464 channel = READ_ONCE( 1465 stor_device->stor_chns[tgt_cpu]); 1466 if (channel == NULL) 1467 continue; 1468 if (hv_get_avail_to_write_percent( 1469 &channel->outbound) 1470 > ring_avail_percent_lowater) { 1471 outgoing_channel = channel; 1472 goto found_channel; 1473 } 1474 } 1475 1476 /* 1477 * All the other channels on the same NUMA node are 1478 * busy. Try to use the channel on the current CPU 1479 */ 1480 if (hv_get_avail_to_write_percent( 1481 &outgoing_channel->outbound) 1482 > ring_avail_percent_lowater) 1483 goto found_channel; 1484 1485 /* 1486 * If we reach here, all the channels on the current 1487 * NUMA node are busy. Try to find a channel in 1488 * other NUMA nodes 1489 */ 1490 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1491 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1492 continue; 1493 channel = READ_ONCE( 1494 stor_device->stor_chns[tgt_cpu]); 1495 if (channel == NULL) 1496 continue; 1497 if (hv_get_avail_to_write_percent( 1498 &channel->outbound) 1499 > ring_avail_percent_lowater) { 1500 outgoing_channel = channel; 1501 goto found_channel; 1502 } 1503 } 1504 } 1505 } else { 1506 spin_lock_irqsave(&stor_device->lock, flags); 1507 outgoing_channel = stor_device->stor_chns[q_num]; 1508 if (outgoing_channel != NULL) { 1509 spin_unlock_irqrestore(&stor_device->lock, flags); 1510 goto found_channel; 1511 } 1512 outgoing_channel = get_og_chn(stor_device, q_num); 1513 spin_unlock_irqrestore(&stor_device->lock, flags); 1514 } 1515 1516 found_channel: 1517 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1518 1519 vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); 1520 1521 1522 vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; 1523 1524 1525 vstor_packet->vm_srb.data_transfer_length = 1526 request->payload->range.len; 1527 1528 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1529 1530 if (request->payload->range.len) { 1531 1532 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1533 request->payload, request->payload_sz, 1534 vstor_packet, 1535 sizeof(struct vstor_packet), 1536 (unsigned long)request); 1537 } else { 1538 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1539 sizeof(struct vstor_packet), 1540 (unsigned long)request, 1541 VM_PKT_DATA_INBAND, 1542 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1543 } 1544 1545 if (ret != 0) 1546 return ret; 1547 1548 atomic_inc(&stor_device->num_outstanding_req); 1549 1550 return ret; 1551 } 1552 1553 static int storvsc_device_alloc(struct scsi_device *sdevice) 1554 { 1555 /* 1556 * Set blist flag to permit the reading of the VPD pages even when 1557 * the target may claim SPC-2 compliance. MSFT targets currently 1558 * claim SPC-2 compliance while they implement post SPC-2 features. 1559 * With this flag we can correctly handle WRITE_SAME_16 issues. 1560 * 1561 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1562 * still supports REPORT LUN. 1563 */ 1564 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1565 1566 return 0; 1567 } 1568 1569 static int storvsc_device_configure(struct scsi_device *sdevice) 1570 { 1571 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1572 1573 /* storvsc devices don't support MAINTENANCE_IN SCSI cmd */ 1574 sdevice->no_report_opcodes = 1; 1575 sdevice->no_write_same = 1; 1576 1577 /* 1578 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1579 * if the device is a MSFT virtual device. If the host is 1580 * WIN10 or newer, allow write_same. 1581 */ 1582 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1583 switch (vmstor_proto_version) { 1584 case VMSTOR_PROTO_VERSION_WIN8: 1585 case VMSTOR_PROTO_VERSION_WIN8_1: 1586 sdevice->scsi_level = SCSI_SPC_3; 1587 break; 1588 } 1589 1590 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1591 sdevice->no_write_same = 0; 1592 } 1593 1594 return 0; 1595 } 1596 1597 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1598 sector_t capacity, int *info) 1599 { 1600 sector_t nsect = capacity; 1601 sector_t cylinders = nsect; 1602 int heads, sectors_pt; 1603 1604 /* 1605 * We are making up these values; let us keep it simple. 1606 */ 1607 heads = 0xff; 1608 sectors_pt = 0x3f; /* Sectors per track */ 1609 sector_div(cylinders, heads * sectors_pt); 1610 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1611 cylinders = 0xffff; 1612 1613 info[0] = heads; 1614 info[1] = sectors_pt; 1615 info[2] = (int)cylinders; 1616 1617 return 0; 1618 } 1619 1620 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1621 { 1622 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1623 struct hv_device *device = host_dev->dev; 1624 1625 struct storvsc_device *stor_device; 1626 struct storvsc_cmd_request *request; 1627 struct vstor_packet *vstor_packet; 1628 int ret, t; 1629 1630 stor_device = get_out_stor_device(device); 1631 if (!stor_device) 1632 return FAILED; 1633 1634 request = &stor_device->reset_request; 1635 vstor_packet = &request->vstor_packet; 1636 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1637 1638 init_completion(&request->wait_event); 1639 1640 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1641 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1642 vstor_packet->vm_srb.path_id = stor_device->path_id; 1643 1644 ret = vmbus_sendpacket(device->channel, vstor_packet, 1645 sizeof(struct vstor_packet), 1646 VMBUS_RQST_RESET, 1647 VM_PKT_DATA_INBAND, 1648 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1649 if (ret != 0) 1650 return FAILED; 1651 1652 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1653 if (t == 0) 1654 return TIMEOUT_ERROR; 1655 1656 1657 /* 1658 * At this point, all outstanding requests in the adapter 1659 * should have been flushed out and return to us 1660 * There is a potential race here where the host may be in 1661 * the process of responding when we return from here. 1662 * Just wait for all in-transit packets to be accounted for 1663 * before we return from here. 1664 */ 1665 storvsc_wait_to_drain(stor_device); 1666 1667 return SUCCESS; 1668 } 1669 1670 /* 1671 * The host guarantees to respond to each command, although I/O latencies might 1672 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1673 * chance to perform EH. 1674 */ 1675 static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1676 { 1677 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1678 if (scmnd->device->host->transportt == fc_transport_template) 1679 return fc_eh_timed_out(scmnd); 1680 #endif 1681 return SCSI_EH_RESET_TIMER; 1682 } 1683 1684 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1685 { 1686 bool allowed = true; 1687 u8 scsi_op = scmnd->cmnd[0]; 1688 1689 switch (scsi_op) { 1690 /* the host does not handle WRITE_SAME, log accident usage */ 1691 case WRITE_SAME: 1692 /* 1693 * smartd sends this command and the host does not handle 1694 * this. So, don't send it. 1695 */ 1696 case SET_WINDOW: 1697 set_host_byte(scmnd, DID_ERROR); 1698 allowed = false; 1699 break; 1700 default: 1701 break; 1702 } 1703 return allowed; 1704 } 1705 1706 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1707 { 1708 int ret; 1709 struct hv_host_device *host_dev = shost_priv(host); 1710 struct hv_device *dev = host_dev->dev; 1711 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1712 struct scatterlist *sgl; 1713 struct vmscsi_request *vm_srb; 1714 struct vmbus_packet_mpb_array *payload; 1715 u32 payload_sz; 1716 u32 length; 1717 1718 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1719 /* 1720 * On legacy hosts filter unimplemented commands. 1721 * Future hosts are expected to correctly handle 1722 * unsupported commands. Furthermore, it is 1723 * possible that some of the currently 1724 * unsupported commands maybe supported in 1725 * future versions of the host. 1726 */ 1727 if (!storvsc_scsi_cmd_ok(scmnd)) { 1728 scsi_done(scmnd); 1729 return 0; 1730 } 1731 } 1732 1733 /* Setup the cmd request */ 1734 cmd_request->cmd = scmnd; 1735 1736 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1737 vm_srb = &cmd_request->vstor_packet.vm_srb; 1738 vm_srb->time_out_value = 60; 1739 1740 vm_srb->srb_flags |= 1741 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1742 1743 if (scmnd->device->tagged_supported) { 1744 vm_srb->srb_flags |= 1745 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1746 vm_srb->queue_tag = SP_UNTAGGED; 1747 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; 1748 } 1749 1750 /* Build the SRB */ 1751 switch (scmnd->sc_data_direction) { 1752 case DMA_TO_DEVICE: 1753 vm_srb->data_in = WRITE_TYPE; 1754 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; 1755 break; 1756 case DMA_FROM_DEVICE: 1757 vm_srb->data_in = READ_TYPE; 1758 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; 1759 break; 1760 case DMA_NONE: 1761 vm_srb->data_in = UNKNOWN_TYPE; 1762 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1763 break; 1764 default: 1765 /* 1766 * This is DMA_BIDIRECTIONAL or something else we are never 1767 * supposed to see here. 1768 */ 1769 WARN(1, "Unexpected data direction: %d\n", 1770 scmnd->sc_data_direction); 1771 return -EINVAL; 1772 } 1773 1774 1775 vm_srb->port_number = host_dev->port; 1776 vm_srb->path_id = scmnd->device->channel; 1777 vm_srb->target_id = scmnd->device->id; 1778 vm_srb->lun = scmnd->device->lun; 1779 1780 vm_srb->cdb_length = scmnd->cmd_len; 1781 1782 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1783 1784 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1785 1786 length = scsi_bufflen(scmnd); 1787 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1788 payload_sz = 0; 1789 1790 if (scsi_sg_count(scmnd)) { 1791 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1792 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1793 struct scatterlist *sg; 1794 unsigned long hvpfn, hvpfns_to_add; 1795 int j, i = 0, sg_count; 1796 1797 payload_sz = (hvpg_count * sizeof(u64) + 1798 sizeof(struct vmbus_packet_mpb_array)); 1799 1800 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1801 payload = kzalloc(payload_sz, GFP_ATOMIC); 1802 if (!payload) 1803 return SCSI_MLQUEUE_DEVICE_BUSY; 1804 } 1805 1806 payload->range.len = length; 1807 payload->range.offset = offset_in_hvpg; 1808 1809 sg_count = scsi_dma_map(scmnd); 1810 if (sg_count < 0) { 1811 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1812 goto err_free_payload; 1813 } 1814 1815 for_each_sg(sgl, sg, sg_count, j) { 1816 /* 1817 * Init values for the current sgl entry. hvpfns_to_add 1818 * is in units of Hyper-V size pages. Handling the 1819 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles 1820 * values of sgl->offset that are larger than PAGE_SIZE. 1821 * Such offsets are handled even on other than the first 1822 * sgl entry, provided they are a multiple of PAGE_SIZE. 1823 */ 1824 hvpfn = HVPFN_DOWN(sg_dma_address(sg)); 1825 hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + 1826 sg_dma_len(sg)) - hvpfn; 1827 1828 /* 1829 * Fill the next portion of the PFN array with 1830 * sequential Hyper-V PFNs for the continguous physical 1831 * memory described by the sgl entry. The end of the 1832 * last sgl should be reached at the same time that 1833 * the PFN array is filled. 1834 */ 1835 while (hvpfns_to_add--) 1836 payload->range.pfn_array[i++] = hvpfn++; 1837 } 1838 } 1839 1840 cmd_request->payload = payload; 1841 cmd_request->payload_sz = payload_sz; 1842 1843 /* Invokes the vsc to start an IO */ 1844 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1845 put_cpu(); 1846 1847 if (ret) 1848 scsi_dma_unmap(scmnd); 1849 1850 if (ret == -EAGAIN) { 1851 /* no more space */ 1852 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1853 goto err_free_payload; 1854 } 1855 1856 return 0; 1857 1858 err_free_payload: 1859 if (payload_sz > sizeof(cmd_request->mpb)) 1860 kfree(payload); 1861 1862 return ret; 1863 } 1864 1865 static struct scsi_host_template scsi_driver = { 1866 .module = THIS_MODULE, 1867 .name = "storvsc_host_t", 1868 .cmd_size = sizeof(struct storvsc_cmd_request), 1869 .bios_param = storvsc_get_chs, 1870 .queuecommand = storvsc_queuecommand, 1871 .eh_host_reset_handler = storvsc_host_reset_handler, 1872 .proc_name = "storvsc_host", 1873 .eh_timed_out = storvsc_eh_timed_out, 1874 .slave_alloc = storvsc_device_alloc, 1875 .slave_configure = storvsc_device_configure, 1876 .cmd_per_lun = 2048, 1877 .this_id = -1, 1878 /* Ensure there are no gaps in presented sgls */ 1879 .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, 1880 .no_write_same = 1, 1881 .track_queue_depth = 1, 1882 .change_queue_depth = storvsc_change_queue_depth, 1883 }; 1884 1885 enum { 1886 SCSI_GUID, 1887 IDE_GUID, 1888 SFC_GUID, 1889 }; 1890 1891 static const struct hv_vmbus_device_id id_table[] = { 1892 /* SCSI guid */ 1893 { HV_SCSI_GUID, 1894 .driver_data = SCSI_GUID 1895 }, 1896 /* IDE guid */ 1897 { HV_IDE_GUID, 1898 .driver_data = IDE_GUID 1899 }, 1900 /* Fibre Channel GUID */ 1901 { 1902 HV_SYNTHFC_GUID, 1903 .driver_data = SFC_GUID 1904 }, 1905 { }, 1906 }; 1907 1908 MODULE_DEVICE_TABLE(vmbus, id_table); 1909 1910 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1911 1912 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1913 { 1914 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1915 } 1916 1917 static int storvsc_probe(struct hv_device *device, 1918 const struct hv_vmbus_device_id *dev_id) 1919 { 1920 int ret; 1921 int num_cpus = num_online_cpus(); 1922 int num_present_cpus = num_present_cpus(); 1923 struct Scsi_Host *host; 1924 struct hv_host_device *host_dev; 1925 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1926 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1927 int target = 0; 1928 struct storvsc_device *stor_device; 1929 int max_sub_channels = 0; 1930 u32 max_xfer_bytes; 1931 1932 /* 1933 * We support sub-channels for storage on SCSI and FC controllers. 1934 * The number of sub-channels offerred is based on the number of 1935 * VCPUs in the guest. 1936 */ 1937 if (!dev_is_ide) 1938 max_sub_channels = 1939 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1940 1941 scsi_driver.can_queue = max_outstanding_req_per_channel * 1942 (max_sub_channels + 1) * 1943 (100 - ring_avail_percent_lowater) / 100; 1944 1945 host = scsi_host_alloc(&scsi_driver, 1946 sizeof(struct hv_host_device)); 1947 if (!host) 1948 return -ENOMEM; 1949 1950 host_dev = shost_priv(host); 1951 memset(host_dev, 0, sizeof(struct hv_host_device)); 1952 1953 host_dev->port = host->host_no; 1954 host_dev->dev = device; 1955 host_dev->host = host; 1956 1957 1958 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1959 if (!stor_device) { 1960 ret = -ENOMEM; 1961 goto err_out0; 1962 } 1963 1964 stor_device->destroy = false; 1965 init_waitqueue_head(&stor_device->waiting_to_drain); 1966 stor_device->device = device; 1967 stor_device->host = host; 1968 spin_lock_init(&stor_device->lock); 1969 hv_set_drvdata(device, stor_device); 1970 dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); 1971 1972 stor_device->port_number = host->host_no; 1973 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); 1974 if (ret) 1975 goto err_out1; 1976 1977 host_dev->path = stor_device->path_id; 1978 host_dev->target = stor_device->target_id; 1979 1980 switch (dev_id->driver_data) { 1981 case SFC_GUID: 1982 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1983 host->max_id = STORVSC_FC_MAX_TARGETS; 1984 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 1985 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1986 host->transportt = fc_transport_template; 1987 #endif 1988 break; 1989 1990 case SCSI_GUID: 1991 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; 1992 host->max_id = STORVSC_MAX_TARGETS; 1993 host->max_channel = STORVSC_MAX_CHANNELS - 1; 1994 break; 1995 1996 default: 1997 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 1998 host->max_id = STORVSC_IDE_MAX_TARGETS; 1999 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 2000 break; 2001 } 2002 /* max cmd length */ 2003 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 2004 /* 2005 * Any reasonable Hyper-V configuration should provide 2006 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, 2007 * protecting it from any weird value. 2008 */ 2009 max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); 2010 if (is_fc) 2011 max_xfer_bytes = min(max_xfer_bytes, STORVSC_FC_MAX_XFER_SIZE); 2012 2013 /* max_hw_sectors_kb */ 2014 host->max_sectors = max_xfer_bytes >> 9; 2015 /* 2016 * There are 2 requirements for Hyper-V storvsc sgl segments, 2017 * based on which the below calculation for max segments is 2018 * done: 2019 * 2020 * 1. Except for the first and last sgl segment, all sgl segments 2021 * should be align to HV_HYP_PAGE_SIZE, that also means the 2022 * maximum number of segments in a sgl can be calculated by 2023 * dividing the total max transfer length by HV_HYP_PAGE_SIZE. 2024 * 2025 * 2. Except for the first and last, each entry in the SGL must 2026 * have an offset that is a multiple of HV_HYP_PAGE_SIZE. 2027 */ 2028 host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; 2029 /* 2030 * For non-IDE disks, the host supports multiple channels. 2031 * Set the number of HW queues we are supporting. 2032 */ 2033 if (!dev_is_ide) { 2034 if (storvsc_max_hw_queues > num_present_cpus) { 2035 storvsc_max_hw_queues = 0; 2036 storvsc_log(device, STORVSC_LOGGING_WARN, 2037 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2038 } 2039 if (storvsc_max_hw_queues) 2040 host->nr_hw_queues = storvsc_max_hw_queues; 2041 else 2042 host->nr_hw_queues = num_present_cpus; 2043 } 2044 2045 /* 2046 * Set the error handler work queue. 2047 */ 2048 host_dev->handle_error_wq = 2049 alloc_ordered_workqueue("storvsc_error_wq_%d", 2050 0, 2051 host->host_no); 2052 if (!host_dev->handle_error_wq) { 2053 ret = -ENOMEM; 2054 goto err_out2; 2055 } 2056 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2057 /* Register the HBA and start the scsi bus scan */ 2058 ret = scsi_add_host(host, &device->device); 2059 if (ret != 0) 2060 goto err_out3; 2061 2062 if (!dev_is_ide) { 2063 scsi_scan_host(host); 2064 } else { 2065 target = (device->dev_instance.b[5] << 8 | 2066 device->dev_instance.b[4]); 2067 ret = scsi_add_device(host, 0, target, 0); 2068 if (ret) 2069 goto err_out4; 2070 } 2071 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2072 if (host->transportt == fc_transport_template) { 2073 struct fc_rport_identifiers ids = { 2074 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2075 }; 2076 2077 fc_host_node_name(host) = stor_device->node_name; 2078 fc_host_port_name(host) = stor_device->port_name; 2079 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2080 if (!stor_device->rport) { 2081 ret = -ENOMEM; 2082 goto err_out4; 2083 } 2084 } 2085 #endif 2086 return 0; 2087 2088 err_out4: 2089 scsi_remove_host(host); 2090 2091 err_out3: 2092 destroy_workqueue(host_dev->handle_error_wq); 2093 2094 err_out2: 2095 /* 2096 * Once we have connected with the host, we would need to 2097 * invoke storvsc_dev_remove() to rollback this state and 2098 * this call also frees up the stor_device; hence the jump around 2099 * err_out1 label. 2100 */ 2101 storvsc_dev_remove(device); 2102 goto err_out0; 2103 2104 err_out1: 2105 kfree(stor_device->stor_chns); 2106 kfree(stor_device); 2107 2108 err_out0: 2109 scsi_host_put(host); 2110 return ret; 2111 } 2112 2113 /* Change a scsi target's queue depth */ 2114 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2115 { 2116 if (queue_depth > scsi_driver.can_queue) 2117 queue_depth = scsi_driver.can_queue; 2118 2119 return scsi_change_queue_depth(sdev, queue_depth); 2120 } 2121 2122 static void storvsc_remove(struct hv_device *dev) 2123 { 2124 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2125 struct Scsi_Host *host = stor_device->host; 2126 struct hv_host_device *host_dev = shost_priv(host); 2127 2128 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2129 if (host->transportt == fc_transport_template) { 2130 fc_remote_port_delete(stor_device->rport); 2131 fc_remove_host(host); 2132 } 2133 #endif 2134 destroy_workqueue(host_dev->handle_error_wq); 2135 scsi_remove_host(host); 2136 storvsc_dev_remove(dev); 2137 scsi_host_put(host); 2138 } 2139 2140 static int storvsc_suspend(struct hv_device *hv_dev) 2141 { 2142 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2143 struct Scsi_Host *host = stor_device->host; 2144 struct hv_host_device *host_dev = shost_priv(host); 2145 2146 storvsc_wait_to_drain(stor_device); 2147 2148 drain_workqueue(host_dev->handle_error_wq); 2149 2150 vmbus_close(hv_dev->channel); 2151 2152 kfree(stor_device->stor_chns); 2153 stor_device->stor_chns = NULL; 2154 2155 cpumask_clear(&stor_device->alloced_cpus); 2156 2157 return 0; 2158 } 2159 2160 static int storvsc_resume(struct hv_device *hv_dev) 2161 { 2162 int ret; 2163 2164 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size, 2165 hv_dev_is_fc(hv_dev)); 2166 return ret; 2167 } 2168 2169 static struct hv_driver storvsc_drv = { 2170 .name = KBUILD_MODNAME, 2171 .id_table = id_table, 2172 .probe = storvsc_probe, 2173 .remove = storvsc_remove, 2174 .suspend = storvsc_suspend, 2175 .resume = storvsc_resume, 2176 .driver = { 2177 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2178 }, 2179 }; 2180 2181 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2182 static struct fc_function_template fc_transport_functions = { 2183 .show_host_node_name = 1, 2184 .show_host_port_name = 1, 2185 }; 2186 #endif 2187 2188 static int __init storvsc_drv_init(void) 2189 { 2190 int ret; 2191 2192 /* 2193 * Divide the ring buffer data size (which is 1 page less 2194 * than the ring buffer size since that page is reserved for 2195 * the ring buffer indices) by the max request size (which is 2196 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2197 */ 2198 max_outstanding_req_per_channel = 2199 ((storvsc_ringbuffer_size - PAGE_SIZE) / 2200 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2201 sizeof(struct vstor_packet) + sizeof(u64), 2202 sizeof(u64))); 2203 2204 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2205 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2206 if (!fc_transport_template) 2207 return -ENODEV; 2208 #endif 2209 2210 ret = vmbus_driver_register(&storvsc_drv); 2211 2212 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2213 if (ret) 2214 fc_release_transport(fc_transport_template); 2215 #endif 2216 2217 return ret; 2218 } 2219 2220 static void __exit storvsc_drv_exit(void) 2221 { 2222 vmbus_driver_unregister(&storvsc_drv); 2223 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2224 fc_release_transport(fc_transport_template); 2225 #endif 2226 } 2227 2228 MODULE_LICENSE("GPL"); 2229 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2230 module_init(storvsc_drv_init); 2231 module_exit(storvsc_drv_exit); 2232