1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <linux/dma-mapping.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_host.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_devinfo.h> 33 #include <scsi/scsi_dbg.h> 34 #include <scsi/scsi_transport_fc.h> 35 #include <scsi/scsi_transport.h> 36 37 /* 38 * All wire protocol details (storage protocol between the guest and the host) 39 * are consolidated here. 40 * 41 * Begin protocol definitions. 42 */ 43 44 /* 45 * Version history: 46 * V1 Beta: 0.1 47 * V1 RC < 2008/1/31: 1.0 48 * V1 RC > 2008/1/31: 2.0 49 * Win7: 4.2 50 * Win8: 5.1 51 * Win8.1: 6.0 52 * Win10: 6.2 53 */ 54 55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 56 (((MINOR_) & 0xff))) 57 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 58 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 59 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 60 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 61 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 62 63 /* channel callback timeout in ms */ 64 #define CALLBACK_TIMEOUT 2 65 66 /* Packet structure describing virtual storage requests. */ 67 enum vstor_packet_operation { 68 VSTOR_OPERATION_COMPLETE_IO = 1, 69 VSTOR_OPERATION_REMOVE_DEVICE = 2, 70 VSTOR_OPERATION_EXECUTE_SRB = 3, 71 VSTOR_OPERATION_RESET_LUN = 4, 72 VSTOR_OPERATION_RESET_ADAPTER = 5, 73 VSTOR_OPERATION_RESET_BUS = 6, 74 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 75 VSTOR_OPERATION_END_INITIALIZATION = 8, 76 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 77 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 78 VSTOR_OPERATION_ENUMERATE_BUS = 11, 79 VSTOR_OPERATION_FCHBA_DATA = 12, 80 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 81 VSTOR_OPERATION_MAXIMUM = 13 82 }; 83 84 /* 85 * WWN packet for Fibre Channel HBA 86 */ 87 88 struct hv_fc_wwn_packet { 89 u8 primary_active; 90 u8 reserved1[3]; 91 u8 primary_port_wwn[8]; 92 u8 primary_node_wwn[8]; 93 u8 secondary_port_wwn[8]; 94 u8 secondary_node_wwn[8]; 95 }; 96 97 98 99 /* 100 * SRB Flag Bits 101 */ 102 103 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 104 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 105 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 106 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 107 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 108 #define SRB_FLAGS_DATA_IN 0x00000040 109 #define SRB_FLAGS_DATA_OUT 0x00000080 110 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 111 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 112 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 113 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 114 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 115 116 /* 117 * This flag indicates the request is part of the workflow for processing a D3. 118 */ 119 #define SRB_FLAGS_D3_PROCESSING 0x00000800 120 #define SRB_FLAGS_IS_ACTIVE 0x00010000 121 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 122 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 123 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 124 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 125 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 126 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 127 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 128 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 129 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 130 131 #define SP_UNTAGGED ((unsigned char) ~0) 132 #define SRB_SIMPLE_TAG_REQUEST 0x20 133 134 /* 135 * Platform neutral description of a scsi request - 136 * this remains the same across the write regardless of 32/64 bit 137 * note: it's patterned off the SCSI_PASS_THROUGH structure 138 */ 139 #define STORVSC_MAX_CMD_LEN 0x10 140 141 /* Sense buffer size is the same for all versions since Windows 8 */ 142 #define STORVSC_SENSE_BUFFER_SIZE 0x14 143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 144 145 /* 146 * The storage protocol version is determined during the 147 * initial exchange with the host. It will indicate which 148 * storage functionality is available in the host. 149 */ 150 static int vmstor_proto_version; 151 152 #define STORVSC_LOGGING_NONE 0 153 #define STORVSC_LOGGING_ERROR 1 154 #define STORVSC_LOGGING_WARN 2 155 156 static int logging_level = STORVSC_LOGGING_ERROR; 157 module_param(logging_level, int, S_IRUGO|S_IWUSR); 158 MODULE_PARM_DESC(logging_level, 159 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 160 161 static inline bool do_logging(int level) 162 { 163 return logging_level >= level; 164 } 165 166 #define storvsc_log(dev, level, fmt, ...) \ 167 do { \ 168 if (do_logging(level)) \ 169 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 170 } while (0) 171 172 struct vmscsi_request { 173 u16 length; 174 u8 srb_status; 175 u8 scsi_status; 176 177 u8 port_number; 178 u8 path_id; 179 u8 target_id; 180 u8 lun; 181 182 u8 cdb_length; 183 u8 sense_info_length; 184 u8 data_in; 185 u8 reserved; 186 187 u32 data_transfer_length; 188 189 union { 190 u8 cdb[STORVSC_MAX_CMD_LEN]; 191 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 192 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 193 }; 194 /* 195 * The following was added in win8. 196 */ 197 u16 reserve; 198 u8 queue_tag; 199 u8 queue_action; 200 u32 srb_flags; 201 u32 time_out_value; 202 u32 queue_sort_ey; 203 204 } __attribute((packed)); 205 206 /* 207 * The list of windows version in order of preference. 208 */ 209 210 static const int protocol_version[] = { 211 VMSTOR_PROTO_VERSION_WIN10, 212 VMSTOR_PROTO_VERSION_WIN8_1, 213 VMSTOR_PROTO_VERSION_WIN8, 214 }; 215 216 217 /* 218 * This structure is sent during the initialization phase to get the different 219 * properties of the channel. 220 */ 221 222 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 223 224 struct vmstorage_channel_properties { 225 u32 reserved; 226 u16 max_channel_cnt; 227 u16 reserved1; 228 229 u32 flags; 230 u32 max_transfer_bytes; 231 232 u64 reserved2; 233 } __packed; 234 235 /* This structure is sent during the storage protocol negotiations. */ 236 struct vmstorage_protocol_version { 237 /* Major (MSW) and minor (LSW) version numbers. */ 238 u16 major_minor; 239 240 /* 241 * Revision number is auto-incremented whenever this file is changed 242 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 243 * definitely indicate incompatibility--but it does indicate mismatched 244 * builds. 245 * This is only used on the windows side. Just set it to 0. 246 */ 247 u16 revision; 248 } __packed; 249 250 /* Channel Property Flags */ 251 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 252 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 253 254 struct vstor_packet { 255 /* Requested operation type */ 256 enum vstor_packet_operation operation; 257 258 /* Flags - see below for values */ 259 u32 flags; 260 261 /* Status of the request returned from the server side. */ 262 u32 status; 263 264 /* Data payload area */ 265 union { 266 /* 267 * Structure used to forward SCSI commands from the 268 * client to the server. 269 */ 270 struct vmscsi_request vm_srb; 271 272 /* Structure used to query channel properties. */ 273 struct vmstorage_channel_properties storage_channel_properties; 274 275 /* Used during version negotiations. */ 276 struct vmstorage_protocol_version version; 277 278 /* Fibre channel address packet */ 279 struct hv_fc_wwn_packet wwn_packet; 280 281 /* Number of sub-channels to create */ 282 u16 sub_channel_count; 283 284 /* This will be the maximum of the union members */ 285 u8 buffer[0x34]; 286 }; 287 } __packed; 288 289 /* 290 * Packet Flags: 291 * 292 * This flag indicates that the server should send back a completion for this 293 * packet. 294 */ 295 296 #define REQUEST_COMPLETION_FLAG 0x1 297 298 /* Matches Windows-end */ 299 enum storvsc_request_type { 300 WRITE_TYPE = 0, 301 READ_TYPE, 302 UNKNOWN_TYPE, 303 }; 304 305 /* 306 * SRB status codes and masks. In the 8-bit field, the two high order bits 307 * are flags, while the remaining 6 bits are an integer status code. The 308 * definitions here include only the subset of the integer status codes that 309 * are tested for in this driver. 310 */ 311 #define SRB_STATUS_AUTOSENSE_VALID 0x80 312 #define SRB_STATUS_QUEUE_FROZEN 0x40 313 314 /* SRB status integer codes */ 315 #define SRB_STATUS_SUCCESS 0x01 316 #define SRB_STATUS_ABORTED 0x02 317 #define SRB_STATUS_ERROR 0x04 318 #define SRB_STATUS_INVALID_REQUEST 0x06 319 #define SRB_STATUS_DATA_OVERRUN 0x12 320 #define SRB_STATUS_INVALID_LUN 0x20 321 #define SRB_STATUS_INTERNAL_ERROR 0x30 322 323 #define SRB_STATUS(status) \ 324 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 325 /* 326 * This is the end of Protocol specific defines. 327 */ 328 329 static int storvsc_ringbuffer_size = (128 * 1024); 330 static u32 max_outstanding_req_per_channel; 331 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 332 333 static int storvsc_vcpus_per_sub_channel = 4; 334 static unsigned int storvsc_max_hw_queues; 335 336 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 337 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 338 339 module_param(storvsc_max_hw_queues, uint, 0644); 340 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 341 342 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 343 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 344 345 static int ring_avail_percent_lowater = 10; 346 module_param(ring_avail_percent_lowater, int, S_IRUGO); 347 MODULE_PARM_DESC(ring_avail_percent_lowater, 348 "Select a channel if available ring size > this in percent"); 349 350 /* 351 * Timeout in seconds for all devices managed by this driver. 352 */ 353 static int storvsc_timeout = 180; 354 355 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 356 static struct scsi_transport_template *fc_transport_template; 357 #endif 358 359 static struct scsi_host_template scsi_driver; 360 static void storvsc_on_channel_callback(void *context); 361 362 #define STORVSC_MAX_LUNS_PER_TARGET 255 363 #define STORVSC_MAX_TARGETS 2 364 #define STORVSC_MAX_CHANNELS 8 365 366 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 367 #define STORVSC_FC_MAX_TARGETS 128 368 #define STORVSC_FC_MAX_CHANNELS 8 369 370 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 371 #define STORVSC_IDE_MAX_TARGETS 1 372 #define STORVSC_IDE_MAX_CHANNELS 1 373 374 /* 375 * Upper bound on the size of a storvsc packet. 376 */ 377 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 378 sizeof(struct vstor_packet)) 379 380 struct storvsc_cmd_request { 381 struct scsi_cmnd *cmd; 382 383 struct hv_device *device; 384 385 /* Synchronize the request/response if needed */ 386 struct completion wait_event; 387 388 struct vmbus_channel_packet_multipage_buffer mpb; 389 struct vmbus_packet_mpb_array *payload; 390 u32 payload_sz; 391 392 struct vstor_packet vstor_packet; 393 }; 394 395 396 /* A storvsc device is a device object that contains a vmbus channel */ 397 struct storvsc_device { 398 struct hv_device *device; 399 400 bool destroy; 401 bool drain_notify; 402 atomic_t num_outstanding_req; 403 struct Scsi_Host *host; 404 405 wait_queue_head_t waiting_to_drain; 406 407 /* 408 * Each unique Port/Path/Target represents 1 channel ie scsi 409 * controller. In reality, the pathid, targetid is always 0 410 * and the port is set by us 411 */ 412 unsigned int port_number; 413 unsigned char path_id; 414 unsigned char target_id; 415 416 /* 417 * Max I/O, the device can support. 418 */ 419 u32 max_transfer_bytes; 420 /* 421 * Number of sub-channels we will open. 422 */ 423 u16 num_sc; 424 struct vmbus_channel **stor_chns; 425 /* 426 * Mask of CPUs bound to subchannels. 427 */ 428 struct cpumask alloced_cpus; 429 /* 430 * Serializes modifications of stor_chns[] from storvsc_do_io() 431 * and storvsc_change_target_cpu(). 432 */ 433 spinlock_t lock; 434 /* Used for vsc/vsp channel reset process */ 435 struct storvsc_cmd_request init_request; 436 struct storvsc_cmd_request reset_request; 437 /* 438 * Currently active port and node names for FC devices. 439 */ 440 u64 node_name; 441 u64 port_name; 442 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 443 struct fc_rport *rport; 444 #endif 445 }; 446 447 struct hv_host_device { 448 struct hv_device *dev; 449 unsigned int port; 450 unsigned char path; 451 unsigned char target; 452 struct workqueue_struct *handle_error_wq; 453 struct work_struct host_scan_work; 454 struct Scsi_Host *host; 455 }; 456 457 struct storvsc_scan_work { 458 struct work_struct work; 459 struct Scsi_Host *host; 460 u8 lun; 461 u8 tgt_id; 462 }; 463 464 static void storvsc_device_scan(struct work_struct *work) 465 { 466 struct storvsc_scan_work *wrk; 467 struct scsi_device *sdev; 468 469 wrk = container_of(work, struct storvsc_scan_work, work); 470 471 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 472 if (!sdev) 473 goto done; 474 scsi_rescan_device(&sdev->sdev_gendev); 475 scsi_device_put(sdev); 476 477 done: 478 kfree(wrk); 479 } 480 481 static void storvsc_host_scan(struct work_struct *work) 482 { 483 struct Scsi_Host *host; 484 struct scsi_device *sdev; 485 struct hv_host_device *host_device = 486 container_of(work, struct hv_host_device, host_scan_work); 487 488 host = host_device->host; 489 /* 490 * Before scanning the host, first check to see if any of the 491 * currently known devices have been hot removed. We issue a 492 * "unit ready" command against all currently known devices. 493 * This I/O will result in an error for devices that have been 494 * removed. As part of handling the I/O error, we remove the device. 495 * 496 * When a LUN is added or removed, the host sends us a signal to 497 * scan the host. Thus we are forced to discover the LUNs that 498 * may have been removed this way. 499 */ 500 mutex_lock(&host->scan_mutex); 501 shost_for_each_device(sdev, host) 502 scsi_test_unit_ready(sdev, 1, 1, NULL); 503 mutex_unlock(&host->scan_mutex); 504 /* 505 * Now scan the host to discover LUNs that may have been added. 506 */ 507 scsi_scan_host(host); 508 } 509 510 static void storvsc_remove_lun(struct work_struct *work) 511 { 512 struct storvsc_scan_work *wrk; 513 struct scsi_device *sdev; 514 515 wrk = container_of(work, struct storvsc_scan_work, work); 516 if (!scsi_host_get(wrk->host)) 517 goto done; 518 519 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 520 521 if (sdev) { 522 scsi_remove_device(sdev); 523 scsi_device_put(sdev); 524 } 525 scsi_host_put(wrk->host); 526 527 done: 528 kfree(wrk); 529 } 530 531 532 /* 533 * We can get incoming messages from the host that are not in response to 534 * messages that we have sent out. An example of this would be messages 535 * received by the guest to notify dynamic addition/removal of LUNs. To 536 * deal with potential race conditions where the driver may be in the 537 * midst of being unloaded when we might receive an unsolicited message 538 * from the host, we have implemented a mechanism to gurantee sequential 539 * consistency: 540 * 541 * 1) Once the device is marked as being destroyed, we will fail all 542 * outgoing messages. 543 * 2) We permit incoming messages when the device is being destroyed, 544 * only to properly account for messages already sent out. 545 */ 546 547 static inline struct storvsc_device *get_out_stor_device( 548 struct hv_device *device) 549 { 550 struct storvsc_device *stor_device; 551 552 stor_device = hv_get_drvdata(device); 553 554 if (stor_device && stor_device->destroy) 555 stor_device = NULL; 556 557 return stor_device; 558 } 559 560 561 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 562 { 563 dev->drain_notify = true; 564 wait_event(dev->waiting_to_drain, 565 atomic_read(&dev->num_outstanding_req) == 0); 566 dev->drain_notify = false; 567 } 568 569 static inline struct storvsc_device *get_in_stor_device( 570 struct hv_device *device) 571 { 572 struct storvsc_device *stor_device; 573 574 stor_device = hv_get_drvdata(device); 575 576 if (!stor_device) 577 goto get_in_err; 578 579 /* 580 * If the device is being destroyed; allow incoming 581 * traffic only to cleanup outstanding requests. 582 */ 583 584 if (stor_device->destroy && 585 (atomic_read(&stor_device->num_outstanding_req) == 0)) 586 stor_device = NULL; 587 588 get_in_err: 589 return stor_device; 590 591 } 592 593 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 594 u32 new) 595 { 596 struct storvsc_device *stor_device; 597 struct vmbus_channel *cur_chn; 598 bool old_is_alloced = false; 599 struct hv_device *device; 600 unsigned long flags; 601 int cpu; 602 603 device = channel->primary_channel ? 604 channel->primary_channel->device_obj 605 : channel->device_obj; 606 stor_device = get_out_stor_device(device); 607 if (!stor_device) 608 return; 609 610 /* See storvsc_do_io() -> get_og_chn(). */ 611 spin_lock_irqsave(&stor_device->lock, flags); 612 613 /* 614 * Determines if the storvsc device has other channels assigned to 615 * the "old" CPU to update the alloced_cpus mask and the stor_chns 616 * array. 617 */ 618 if (device->channel != channel && device->channel->target_cpu == old) { 619 cur_chn = device->channel; 620 old_is_alloced = true; 621 goto old_is_alloced; 622 } 623 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 624 if (cur_chn == channel) 625 continue; 626 if (cur_chn->target_cpu == old) { 627 old_is_alloced = true; 628 goto old_is_alloced; 629 } 630 } 631 632 old_is_alloced: 633 if (old_is_alloced) 634 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 635 else 636 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 637 638 /* "Flush" the stor_chns array. */ 639 for_each_possible_cpu(cpu) { 640 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 641 cpu, &stor_device->alloced_cpus)) 642 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 643 } 644 645 WRITE_ONCE(stor_device->stor_chns[new], channel); 646 cpumask_set_cpu(new, &stor_device->alloced_cpus); 647 648 spin_unlock_irqrestore(&stor_device->lock, flags); 649 } 650 651 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 652 { 653 struct storvsc_cmd_request *request = 654 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 655 656 if (rqst_addr == VMBUS_RQST_INIT) 657 return VMBUS_RQST_INIT; 658 if (rqst_addr == VMBUS_RQST_RESET) 659 return VMBUS_RQST_RESET; 660 661 /* 662 * Cannot return an ID of 0, which is reserved for an unsolicited 663 * message from Hyper-V. 664 */ 665 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 666 } 667 668 static void handle_sc_creation(struct vmbus_channel *new_sc) 669 { 670 struct hv_device *device = new_sc->primary_channel->device_obj; 671 struct device *dev = &device->device; 672 struct storvsc_device *stor_device; 673 struct vmstorage_channel_properties props; 674 int ret; 675 676 stor_device = get_out_stor_device(device); 677 if (!stor_device) 678 return; 679 680 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 681 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 682 683 new_sc->next_request_id_callback = storvsc_next_request_id; 684 685 ret = vmbus_open(new_sc, 686 storvsc_ringbuffer_size, 687 storvsc_ringbuffer_size, 688 (void *)&props, 689 sizeof(struct vmstorage_channel_properties), 690 storvsc_on_channel_callback, new_sc); 691 692 /* In case vmbus_open() fails, we don't use the sub-channel. */ 693 if (ret != 0) { 694 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 695 return; 696 } 697 698 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 699 700 /* Add the sub-channel to the array of available channels. */ 701 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 702 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 703 } 704 705 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 706 { 707 struct device *dev = &device->device; 708 struct storvsc_device *stor_device; 709 int num_sc; 710 struct storvsc_cmd_request *request; 711 struct vstor_packet *vstor_packet; 712 int ret, t; 713 714 /* 715 * If the number of CPUs is artificially restricted, such as 716 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 717 * sub-channels >= the number of CPUs. These sub-channels 718 * should not be created. The primary channel is already created 719 * and assigned to one CPU, so check against # CPUs - 1. 720 */ 721 num_sc = min((int)(num_online_cpus() - 1), max_chns); 722 if (!num_sc) 723 return; 724 725 stor_device = get_out_stor_device(device); 726 if (!stor_device) 727 return; 728 729 stor_device->num_sc = num_sc; 730 request = &stor_device->init_request; 731 vstor_packet = &request->vstor_packet; 732 733 /* 734 * Establish a handler for dealing with subchannels. 735 */ 736 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 737 738 /* 739 * Request the host to create sub-channels. 740 */ 741 memset(request, 0, sizeof(struct storvsc_cmd_request)); 742 init_completion(&request->wait_event); 743 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 744 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 745 vstor_packet->sub_channel_count = num_sc; 746 747 ret = vmbus_sendpacket(device->channel, vstor_packet, 748 sizeof(struct vstor_packet), 749 VMBUS_RQST_INIT, 750 VM_PKT_DATA_INBAND, 751 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 752 753 if (ret != 0) { 754 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 755 return; 756 } 757 758 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 759 if (t == 0) { 760 dev_err(dev, "Failed to create sub-channel: timed out\n"); 761 return; 762 } 763 764 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 765 vstor_packet->status != 0) { 766 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 767 vstor_packet->operation, vstor_packet->status); 768 return; 769 } 770 771 /* 772 * We need to do nothing here, because vmbus_process_offer() 773 * invokes channel->sc_creation_callback, which will open and use 774 * the sub-channel(s). 775 */ 776 } 777 778 static void cache_wwn(struct storvsc_device *stor_device, 779 struct vstor_packet *vstor_packet) 780 { 781 /* 782 * Cache the currently active port and node ww names. 783 */ 784 if (vstor_packet->wwn_packet.primary_active) { 785 stor_device->node_name = 786 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 787 stor_device->port_name = 788 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 789 } else { 790 stor_device->node_name = 791 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 792 stor_device->port_name = 793 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 794 } 795 } 796 797 798 static int storvsc_execute_vstor_op(struct hv_device *device, 799 struct storvsc_cmd_request *request, 800 bool status_check) 801 { 802 struct storvsc_device *stor_device; 803 struct vstor_packet *vstor_packet; 804 int ret, t; 805 806 stor_device = get_out_stor_device(device); 807 if (!stor_device) 808 return -ENODEV; 809 810 vstor_packet = &request->vstor_packet; 811 812 init_completion(&request->wait_event); 813 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 814 815 ret = vmbus_sendpacket(device->channel, vstor_packet, 816 sizeof(struct vstor_packet), 817 VMBUS_RQST_INIT, 818 VM_PKT_DATA_INBAND, 819 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 820 if (ret != 0) 821 return ret; 822 823 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 824 if (t == 0) 825 return -ETIMEDOUT; 826 827 if (!status_check) 828 return ret; 829 830 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 831 vstor_packet->status != 0) 832 return -EINVAL; 833 834 return ret; 835 } 836 837 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 838 { 839 struct storvsc_device *stor_device; 840 struct storvsc_cmd_request *request; 841 struct vstor_packet *vstor_packet; 842 int ret, i; 843 int max_chns; 844 bool process_sub_channels = false; 845 846 stor_device = get_out_stor_device(device); 847 if (!stor_device) 848 return -ENODEV; 849 850 request = &stor_device->init_request; 851 vstor_packet = &request->vstor_packet; 852 853 /* 854 * Now, initiate the vsc/vsp initialization protocol on the open 855 * channel 856 */ 857 memset(request, 0, sizeof(struct storvsc_cmd_request)); 858 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 859 ret = storvsc_execute_vstor_op(device, request, true); 860 if (ret) 861 return ret; 862 /* 863 * Query host supported protocol version. 864 */ 865 866 for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { 867 /* reuse the packet for version range supported */ 868 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 869 vstor_packet->operation = 870 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 871 872 vstor_packet->version.major_minor = protocol_version[i]; 873 874 /* 875 * The revision number is only used in Windows; set it to 0. 876 */ 877 vstor_packet->version.revision = 0; 878 ret = storvsc_execute_vstor_op(device, request, false); 879 if (ret != 0) 880 return ret; 881 882 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 883 return -EINVAL; 884 885 if (vstor_packet->status == 0) { 886 vmstor_proto_version = protocol_version[i]; 887 888 break; 889 } 890 } 891 892 if (vstor_packet->status != 0) { 893 dev_err(&device->device, "Obsolete Hyper-V version\n"); 894 return -EINVAL; 895 } 896 897 898 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 899 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 900 ret = storvsc_execute_vstor_op(device, request, true); 901 if (ret != 0) 902 return ret; 903 904 /* 905 * Check to see if multi-channel support is there. 906 * Hosts that implement protocol version of 5.1 and above 907 * support multi-channel. 908 */ 909 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 910 911 /* 912 * Allocate state to manage the sub-channels. 913 * We allocate an array based on the numbers of possible CPUs 914 * (Hyper-V does not support cpu online/offline). 915 * This Array will be sparseley populated with unique 916 * channels - primary + sub-channels. 917 * We will however populate all the slots to evenly distribute 918 * the load. 919 */ 920 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 921 GFP_KERNEL); 922 if (stor_device->stor_chns == NULL) 923 return -ENOMEM; 924 925 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 926 927 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 928 cpumask_set_cpu(device->channel->target_cpu, 929 &stor_device->alloced_cpus); 930 931 if (vstor_packet->storage_channel_properties.flags & 932 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 933 process_sub_channels = true; 934 935 stor_device->max_transfer_bytes = 936 vstor_packet->storage_channel_properties.max_transfer_bytes; 937 938 if (!is_fc) 939 goto done; 940 941 /* 942 * For FC devices retrieve FC HBA data. 943 */ 944 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 945 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 946 ret = storvsc_execute_vstor_op(device, request, true); 947 if (ret != 0) 948 return ret; 949 950 /* 951 * Cache the currently active port and node ww names. 952 */ 953 cache_wwn(stor_device, vstor_packet); 954 955 done: 956 957 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 958 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 959 ret = storvsc_execute_vstor_op(device, request, true); 960 if (ret != 0) 961 return ret; 962 963 if (process_sub_channels) 964 handle_multichannel_storage(device, max_chns); 965 966 return ret; 967 } 968 969 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 970 struct scsi_cmnd *scmnd, 971 struct Scsi_Host *host, 972 u8 asc, u8 ascq) 973 { 974 struct storvsc_scan_work *wrk; 975 void (*process_err_fn)(struct work_struct *work); 976 struct hv_host_device *host_dev = shost_priv(host); 977 978 switch (SRB_STATUS(vm_srb->srb_status)) { 979 case SRB_STATUS_ERROR: 980 case SRB_STATUS_ABORTED: 981 case SRB_STATUS_INVALID_REQUEST: 982 case SRB_STATUS_INTERNAL_ERROR: 983 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) { 984 /* Check for capacity change */ 985 if ((asc == 0x2a) && (ascq == 0x9)) { 986 process_err_fn = storvsc_device_scan; 987 /* Retry the I/O that triggered this. */ 988 set_host_byte(scmnd, DID_REQUEUE); 989 goto do_work; 990 } 991 992 /* 993 * Check for "Operating parameters have changed" 994 * due to Hyper-V changing the VHD/VHDX BlockSize 995 * when adding/removing a differencing disk. This 996 * causes discard_granularity to change, so do a 997 * rescan to pick up the new granularity. We don't 998 * want scsi_report_sense() to output a message 999 * that a sysadmin wouldn't know what to do with. 1000 */ 1001 if ((asc == 0x3f) && (ascq != 0x03) && 1002 (ascq != 0x0e)) { 1003 process_err_fn = storvsc_device_scan; 1004 set_host_byte(scmnd, DID_REQUEUE); 1005 goto do_work; 1006 } 1007 1008 /* 1009 * Otherwise, let upper layer deal with the 1010 * error when sense message is present 1011 */ 1012 return; 1013 } 1014 1015 /* 1016 * If there is an error; offline the device since all 1017 * error recovery strategies would have already been 1018 * deployed on the host side. However, if the command 1019 * were a pass-through command deal with it appropriately. 1020 */ 1021 switch (scmnd->cmnd[0]) { 1022 case ATA_16: 1023 case ATA_12: 1024 set_host_byte(scmnd, DID_PASSTHROUGH); 1025 break; 1026 /* 1027 * On some Hyper-V hosts TEST_UNIT_READY command can 1028 * return SRB_STATUS_ERROR. Let the upper level code 1029 * deal with it based on the sense information. 1030 */ 1031 case TEST_UNIT_READY: 1032 break; 1033 default: 1034 set_host_byte(scmnd, DID_ERROR); 1035 } 1036 return; 1037 1038 case SRB_STATUS_INVALID_LUN: 1039 set_host_byte(scmnd, DID_NO_CONNECT); 1040 process_err_fn = storvsc_remove_lun; 1041 goto do_work; 1042 1043 } 1044 return; 1045 1046 do_work: 1047 /* 1048 * We need to schedule work to process this error; schedule it. 1049 */ 1050 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1051 if (!wrk) { 1052 set_host_byte(scmnd, DID_BAD_TARGET); 1053 return; 1054 } 1055 1056 wrk->host = host; 1057 wrk->lun = vm_srb->lun; 1058 wrk->tgt_id = vm_srb->target_id; 1059 INIT_WORK(&wrk->work, process_err_fn); 1060 queue_work(host_dev->handle_error_wq, &wrk->work); 1061 } 1062 1063 1064 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1065 struct storvsc_device *stor_dev) 1066 { 1067 struct scsi_cmnd *scmnd = cmd_request->cmd; 1068 struct scsi_sense_hdr sense_hdr; 1069 struct vmscsi_request *vm_srb; 1070 u32 data_transfer_length; 1071 struct Scsi_Host *host; 1072 u32 payload_sz = cmd_request->payload_sz; 1073 void *payload = cmd_request->payload; 1074 bool sense_ok; 1075 1076 host = stor_dev->host; 1077 1078 vm_srb = &cmd_request->vstor_packet.vm_srb; 1079 data_transfer_length = vm_srb->data_transfer_length; 1080 1081 scmnd->result = vm_srb->scsi_status; 1082 1083 if (scmnd->result) { 1084 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1085 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1086 1087 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1088 scsi_print_sense_hdr(scmnd->device, "storvsc", 1089 &sense_hdr); 1090 } 1091 1092 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1093 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1094 sense_hdr.ascq); 1095 /* 1096 * The Windows driver set data_transfer_length on 1097 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1098 * is untouched. In these cases we set it to 0. 1099 */ 1100 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1101 data_transfer_length = 0; 1102 } 1103 1104 /* Validate data_transfer_length (from Hyper-V) */ 1105 if (data_transfer_length > cmd_request->payload->range.len) 1106 data_transfer_length = cmd_request->payload->range.len; 1107 1108 scsi_set_resid(scmnd, 1109 cmd_request->payload->range.len - data_transfer_length); 1110 1111 scsi_done(scmnd); 1112 1113 if (payload_sz > 1114 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1115 kfree(payload); 1116 } 1117 1118 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1119 struct vstor_packet *vstor_packet, 1120 struct storvsc_cmd_request *request) 1121 { 1122 struct vstor_packet *stor_pkt; 1123 struct hv_device *device = stor_device->device; 1124 1125 stor_pkt = &request->vstor_packet; 1126 1127 /* 1128 * The current SCSI handling on the host side does 1129 * not correctly handle: 1130 * INQUIRY command with page code parameter set to 0x80 1131 * MODE_SENSE command with cmd[2] == 0x1c 1132 * 1133 * Setup srb and scsi status so this won't be fatal. 1134 * We do this so we can distinguish truly fatal failues 1135 * (srb status == 0x4) and off-line the device in that case. 1136 */ 1137 1138 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1139 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { 1140 vstor_packet->vm_srb.scsi_status = 0; 1141 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1142 } 1143 1144 /* Copy over the status...etc */ 1145 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1146 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1147 1148 /* 1149 * Copy over the sense_info_length, but limit to the known max 1150 * size if Hyper-V returns a bad value. 1151 */ 1152 stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, 1153 vstor_packet->vm_srb.sense_info_length); 1154 1155 if (vstor_packet->vm_srb.scsi_status != 0 || 1156 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1157 1158 /* 1159 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1160 * return errors when detecting devices using TEST_UNIT_READY, 1161 * and logging these as errors produces unhelpful noise. 1162 */ 1163 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1164 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1165 1166 storvsc_log(device, loglevel, 1167 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", 1168 scsi_cmd_to_rq(request->cmd)->tag, 1169 stor_pkt->vm_srb.cdb[0], 1170 vstor_packet->vm_srb.scsi_status, 1171 vstor_packet->vm_srb.srb_status, 1172 vstor_packet->status); 1173 } 1174 1175 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1176 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1177 memcpy(request->cmd->sense_buffer, 1178 vstor_packet->vm_srb.sense_data, 1179 stor_pkt->vm_srb.sense_info_length); 1180 1181 stor_pkt->vm_srb.data_transfer_length = 1182 vstor_packet->vm_srb.data_transfer_length; 1183 1184 storvsc_command_completion(request, stor_device); 1185 1186 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1187 stor_device->drain_notify) 1188 wake_up(&stor_device->waiting_to_drain); 1189 } 1190 1191 static void storvsc_on_receive(struct storvsc_device *stor_device, 1192 struct vstor_packet *vstor_packet, 1193 struct storvsc_cmd_request *request) 1194 { 1195 struct hv_host_device *host_dev; 1196 switch (vstor_packet->operation) { 1197 case VSTOR_OPERATION_COMPLETE_IO: 1198 storvsc_on_io_completion(stor_device, vstor_packet, request); 1199 break; 1200 1201 case VSTOR_OPERATION_REMOVE_DEVICE: 1202 case VSTOR_OPERATION_ENUMERATE_BUS: 1203 host_dev = shost_priv(stor_device->host); 1204 queue_work( 1205 host_dev->handle_error_wq, &host_dev->host_scan_work); 1206 break; 1207 1208 case VSTOR_OPERATION_FCHBA_DATA: 1209 cache_wwn(stor_device, vstor_packet); 1210 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1211 fc_host_node_name(stor_device->host) = stor_device->node_name; 1212 fc_host_port_name(stor_device->host) = stor_device->port_name; 1213 #endif 1214 break; 1215 default: 1216 break; 1217 } 1218 } 1219 1220 static void storvsc_on_channel_callback(void *context) 1221 { 1222 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1223 const struct vmpacket_descriptor *desc; 1224 struct hv_device *device; 1225 struct storvsc_device *stor_device; 1226 struct Scsi_Host *shost; 1227 unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT); 1228 1229 if (channel->primary_channel != NULL) 1230 device = channel->primary_channel->device_obj; 1231 else 1232 device = channel->device_obj; 1233 1234 stor_device = get_in_stor_device(device); 1235 if (!stor_device) 1236 return; 1237 1238 shost = stor_device->host; 1239 1240 foreach_vmbus_pkt(desc, channel) { 1241 struct vstor_packet *packet = hv_pkt_data(desc); 1242 struct storvsc_cmd_request *request = NULL; 1243 u32 pktlen = hv_pkt_datalen(desc); 1244 u64 rqst_id = desc->trans_id; 1245 u32 minlen = rqst_id ? sizeof(struct vstor_packet) : 1246 sizeof(enum vstor_packet_operation); 1247 1248 if (unlikely(time_after(jiffies, time_limit))) { 1249 hv_pkt_iter_close(channel); 1250 return; 1251 } 1252 1253 if (pktlen < minlen) { 1254 dev_err(&device->device, 1255 "Invalid pkt: id=%llu, len=%u, minlen=%u\n", 1256 rqst_id, pktlen, minlen); 1257 continue; 1258 } 1259 1260 if (rqst_id == VMBUS_RQST_INIT) { 1261 request = &stor_device->init_request; 1262 } else if (rqst_id == VMBUS_RQST_RESET) { 1263 request = &stor_device->reset_request; 1264 } else { 1265 /* Hyper-V can send an unsolicited message with ID of 0 */ 1266 if (rqst_id == 0) { 1267 /* 1268 * storvsc_on_receive() looks at the vstor_packet in the message 1269 * from the ring buffer. 1270 * 1271 * - If the operation in the vstor_packet is COMPLETE_IO, then 1272 * we call storvsc_on_io_completion(), and dereference the 1273 * guest memory address. Make sure we don't call 1274 * storvsc_on_io_completion() with a guest memory address 1275 * that is zero if Hyper-V were to construct and send such 1276 * a bogus packet. 1277 * 1278 * - If the operation in the vstor_packet is FCHBA_DATA, then 1279 * we call cache_wwn(), and access the data payload area of 1280 * the packet (wwn_packet); however, there is no guarantee 1281 * that the packet is big enough to contain such area. 1282 * Future-proof the code by rejecting such a bogus packet. 1283 */ 1284 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || 1285 packet->operation == VSTOR_OPERATION_FCHBA_DATA) { 1286 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1287 continue; 1288 } 1289 } else { 1290 struct scsi_cmnd *scmnd; 1291 1292 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1293 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1294 if (scmnd == NULL) { 1295 dev_err(&device->device, "Incorrect transaction ID\n"); 1296 continue; 1297 } 1298 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1299 scsi_dma_unmap(scmnd); 1300 } 1301 1302 storvsc_on_receive(stor_device, packet, request); 1303 continue; 1304 } 1305 1306 memcpy(&request->vstor_packet, packet, 1307 sizeof(struct vstor_packet)); 1308 complete(&request->wait_event); 1309 } 1310 } 1311 1312 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1313 bool is_fc) 1314 { 1315 struct vmstorage_channel_properties props; 1316 int ret; 1317 1318 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1319 1320 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1321 device->channel->next_request_id_callback = storvsc_next_request_id; 1322 1323 ret = vmbus_open(device->channel, 1324 ring_size, 1325 ring_size, 1326 (void *)&props, 1327 sizeof(struct vmstorage_channel_properties), 1328 storvsc_on_channel_callback, device->channel); 1329 1330 if (ret != 0) 1331 return ret; 1332 1333 ret = storvsc_channel_init(device, is_fc); 1334 1335 return ret; 1336 } 1337 1338 static int storvsc_dev_remove(struct hv_device *device) 1339 { 1340 struct storvsc_device *stor_device; 1341 1342 stor_device = hv_get_drvdata(device); 1343 1344 stor_device->destroy = true; 1345 1346 /* Make sure flag is set before waiting */ 1347 wmb(); 1348 1349 /* 1350 * At this point, all outbound traffic should be disable. We 1351 * only allow inbound traffic (responses) to proceed so that 1352 * outstanding requests can be completed. 1353 */ 1354 1355 storvsc_wait_to_drain(stor_device); 1356 1357 /* 1358 * Since we have already drained, we don't need to busy wait 1359 * as was done in final_release_stor_device() 1360 * Note that we cannot set the ext pointer to NULL until 1361 * we have drained - to drain the outgoing packets, we need to 1362 * allow incoming packets. 1363 */ 1364 hv_set_drvdata(device, NULL); 1365 1366 /* Close the channel */ 1367 vmbus_close(device->channel); 1368 1369 kfree(stor_device->stor_chns); 1370 kfree(stor_device); 1371 return 0; 1372 } 1373 1374 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1375 u16 q_num) 1376 { 1377 u16 slot = 0; 1378 u16 hash_qnum; 1379 const struct cpumask *node_mask; 1380 int num_channels, tgt_cpu; 1381 1382 if (stor_device->num_sc == 0) { 1383 stor_device->stor_chns[q_num] = stor_device->device->channel; 1384 return stor_device->device->channel; 1385 } 1386 1387 /* 1388 * Our channel array is sparsley populated and we 1389 * initiated I/O on a processor/hw-q that does not 1390 * currently have a designated channel. Fix this. 1391 * The strategy is simple: 1392 * I. Ensure NUMA locality 1393 * II. Distribute evenly (best effort) 1394 */ 1395 1396 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1397 1398 num_channels = 0; 1399 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1400 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1401 num_channels++; 1402 } 1403 if (num_channels == 0) { 1404 stor_device->stor_chns[q_num] = stor_device->device->channel; 1405 return stor_device->device->channel; 1406 } 1407 1408 hash_qnum = q_num; 1409 while (hash_qnum >= num_channels) 1410 hash_qnum -= num_channels; 1411 1412 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1413 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1414 continue; 1415 if (slot == hash_qnum) 1416 break; 1417 slot++; 1418 } 1419 1420 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1421 1422 return stor_device->stor_chns[q_num]; 1423 } 1424 1425 1426 static int storvsc_do_io(struct hv_device *device, 1427 struct storvsc_cmd_request *request, u16 q_num) 1428 { 1429 struct storvsc_device *stor_device; 1430 struct vstor_packet *vstor_packet; 1431 struct vmbus_channel *outgoing_channel, *channel; 1432 unsigned long flags; 1433 int ret = 0; 1434 const struct cpumask *node_mask; 1435 int tgt_cpu; 1436 1437 vstor_packet = &request->vstor_packet; 1438 stor_device = get_out_stor_device(device); 1439 1440 if (!stor_device) 1441 return -ENODEV; 1442 1443 1444 request->device = device; 1445 /* 1446 * Select an appropriate channel to send the request out. 1447 */ 1448 /* See storvsc_change_target_cpu(). */ 1449 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1450 if (outgoing_channel != NULL) { 1451 if (outgoing_channel->target_cpu == q_num) { 1452 /* 1453 * Ideally, we want to pick a different channel if 1454 * available on the same NUMA node. 1455 */ 1456 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1457 for_each_cpu_wrap(tgt_cpu, 1458 &stor_device->alloced_cpus, q_num + 1) { 1459 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1460 continue; 1461 if (tgt_cpu == q_num) 1462 continue; 1463 channel = READ_ONCE( 1464 stor_device->stor_chns[tgt_cpu]); 1465 if (channel == NULL) 1466 continue; 1467 if (hv_get_avail_to_write_percent( 1468 &channel->outbound) 1469 > ring_avail_percent_lowater) { 1470 outgoing_channel = channel; 1471 goto found_channel; 1472 } 1473 } 1474 1475 /* 1476 * All the other channels on the same NUMA node are 1477 * busy. Try to use the channel on the current CPU 1478 */ 1479 if (hv_get_avail_to_write_percent( 1480 &outgoing_channel->outbound) 1481 > ring_avail_percent_lowater) 1482 goto found_channel; 1483 1484 /* 1485 * If we reach here, all the channels on the current 1486 * NUMA node are busy. Try to find a channel in 1487 * other NUMA nodes 1488 */ 1489 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1490 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1491 continue; 1492 channel = READ_ONCE( 1493 stor_device->stor_chns[tgt_cpu]); 1494 if (channel == NULL) 1495 continue; 1496 if (hv_get_avail_to_write_percent( 1497 &channel->outbound) 1498 > ring_avail_percent_lowater) { 1499 outgoing_channel = channel; 1500 goto found_channel; 1501 } 1502 } 1503 } 1504 } else { 1505 spin_lock_irqsave(&stor_device->lock, flags); 1506 outgoing_channel = stor_device->stor_chns[q_num]; 1507 if (outgoing_channel != NULL) { 1508 spin_unlock_irqrestore(&stor_device->lock, flags); 1509 goto found_channel; 1510 } 1511 outgoing_channel = get_og_chn(stor_device, q_num); 1512 spin_unlock_irqrestore(&stor_device->lock, flags); 1513 } 1514 1515 found_channel: 1516 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1517 1518 vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); 1519 1520 1521 vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; 1522 1523 1524 vstor_packet->vm_srb.data_transfer_length = 1525 request->payload->range.len; 1526 1527 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1528 1529 if (request->payload->range.len) { 1530 1531 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1532 request->payload, request->payload_sz, 1533 vstor_packet, 1534 sizeof(struct vstor_packet), 1535 (unsigned long)request); 1536 } else { 1537 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1538 sizeof(struct vstor_packet), 1539 (unsigned long)request, 1540 VM_PKT_DATA_INBAND, 1541 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1542 } 1543 1544 if (ret != 0) 1545 return ret; 1546 1547 atomic_inc(&stor_device->num_outstanding_req); 1548 1549 return ret; 1550 } 1551 1552 static int storvsc_device_alloc(struct scsi_device *sdevice) 1553 { 1554 /* 1555 * Set blist flag to permit the reading of the VPD pages even when 1556 * the target may claim SPC-2 compliance. MSFT targets currently 1557 * claim SPC-2 compliance while they implement post SPC-2 features. 1558 * With this flag we can correctly handle WRITE_SAME_16 issues. 1559 * 1560 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1561 * still supports REPORT LUN. 1562 */ 1563 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1564 1565 return 0; 1566 } 1567 1568 static int storvsc_device_configure(struct scsi_device *sdevice) 1569 { 1570 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1571 1572 /* storvsc devices don't support MAINTENANCE_IN SCSI cmd */ 1573 sdevice->no_report_opcodes = 1; 1574 sdevice->no_write_same = 1; 1575 1576 /* 1577 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1578 * if the device is a MSFT virtual device. If the host is 1579 * WIN10 or newer, allow write_same. 1580 */ 1581 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1582 switch (vmstor_proto_version) { 1583 case VMSTOR_PROTO_VERSION_WIN8: 1584 case VMSTOR_PROTO_VERSION_WIN8_1: 1585 sdevice->scsi_level = SCSI_SPC_3; 1586 break; 1587 } 1588 1589 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1590 sdevice->no_write_same = 0; 1591 } 1592 1593 return 0; 1594 } 1595 1596 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1597 sector_t capacity, int *info) 1598 { 1599 sector_t nsect = capacity; 1600 sector_t cylinders = nsect; 1601 int heads, sectors_pt; 1602 1603 /* 1604 * We are making up these values; let us keep it simple. 1605 */ 1606 heads = 0xff; 1607 sectors_pt = 0x3f; /* Sectors per track */ 1608 sector_div(cylinders, heads * sectors_pt); 1609 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1610 cylinders = 0xffff; 1611 1612 info[0] = heads; 1613 info[1] = sectors_pt; 1614 info[2] = (int)cylinders; 1615 1616 return 0; 1617 } 1618 1619 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1620 { 1621 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1622 struct hv_device *device = host_dev->dev; 1623 1624 struct storvsc_device *stor_device; 1625 struct storvsc_cmd_request *request; 1626 struct vstor_packet *vstor_packet; 1627 int ret, t; 1628 1629 stor_device = get_out_stor_device(device); 1630 if (!stor_device) 1631 return FAILED; 1632 1633 request = &stor_device->reset_request; 1634 vstor_packet = &request->vstor_packet; 1635 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1636 1637 init_completion(&request->wait_event); 1638 1639 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1640 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1641 vstor_packet->vm_srb.path_id = stor_device->path_id; 1642 1643 ret = vmbus_sendpacket(device->channel, vstor_packet, 1644 sizeof(struct vstor_packet), 1645 VMBUS_RQST_RESET, 1646 VM_PKT_DATA_INBAND, 1647 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1648 if (ret != 0) 1649 return FAILED; 1650 1651 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1652 if (t == 0) 1653 return TIMEOUT_ERROR; 1654 1655 1656 /* 1657 * At this point, all outstanding requests in the adapter 1658 * should have been flushed out and return to us 1659 * There is a potential race here where the host may be in 1660 * the process of responding when we return from here. 1661 * Just wait for all in-transit packets to be accounted for 1662 * before we return from here. 1663 */ 1664 storvsc_wait_to_drain(stor_device); 1665 1666 return SUCCESS; 1667 } 1668 1669 /* 1670 * The host guarantees to respond to each command, although I/O latencies might 1671 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1672 * chance to perform EH. 1673 */ 1674 static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1675 { 1676 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1677 if (scmnd->device->host->transportt == fc_transport_template) 1678 return fc_eh_timed_out(scmnd); 1679 #endif 1680 return SCSI_EH_RESET_TIMER; 1681 } 1682 1683 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1684 { 1685 bool allowed = true; 1686 u8 scsi_op = scmnd->cmnd[0]; 1687 1688 switch (scsi_op) { 1689 /* the host does not handle WRITE_SAME, log accident usage */ 1690 case WRITE_SAME: 1691 /* 1692 * smartd sends this command and the host does not handle 1693 * this. So, don't send it. 1694 */ 1695 case SET_WINDOW: 1696 set_host_byte(scmnd, DID_ERROR); 1697 allowed = false; 1698 break; 1699 default: 1700 break; 1701 } 1702 return allowed; 1703 } 1704 1705 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1706 { 1707 int ret; 1708 struct hv_host_device *host_dev = shost_priv(host); 1709 struct hv_device *dev = host_dev->dev; 1710 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1711 struct scatterlist *sgl; 1712 struct vmscsi_request *vm_srb; 1713 struct vmbus_packet_mpb_array *payload; 1714 u32 payload_sz; 1715 u32 length; 1716 1717 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1718 /* 1719 * On legacy hosts filter unimplemented commands. 1720 * Future hosts are expected to correctly handle 1721 * unsupported commands. Furthermore, it is 1722 * possible that some of the currently 1723 * unsupported commands maybe supported in 1724 * future versions of the host. 1725 */ 1726 if (!storvsc_scsi_cmd_ok(scmnd)) { 1727 scsi_done(scmnd); 1728 return 0; 1729 } 1730 } 1731 1732 /* Setup the cmd request */ 1733 cmd_request->cmd = scmnd; 1734 1735 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1736 vm_srb = &cmd_request->vstor_packet.vm_srb; 1737 vm_srb->time_out_value = 60; 1738 1739 vm_srb->srb_flags |= 1740 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1741 1742 if (scmnd->device->tagged_supported) { 1743 vm_srb->srb_flags |= 1744 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1745 vm_srb->queue_tag = SP_UNTAGGED; 1746 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; 1747 } 1748 1749 /* Build the SRB */ 1750 switch (scmnd->sc_data_direction) { 1751 case DMA_TO_DEVICE: 1752 vm_srb->data_in = WRITE_TYPE; 1753 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; 1754 break; 1755 case DMA_FROM_DEVICE: 1756 vm_srb->data_in = READ_TYPE; 1757 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; 1758 break; 1759 case DMA_NONE: 1760 vm_srb->data_in = UNKNOWN_TYPE; 1761 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1762 break; 1763 default: 1764 /* 1765 * This is DMA_BIDIRECTIONAL or something else we are never 1766 * supposed to see here. 1767 */ 1768 WARN(1, "Unexpected data direction: %d\n", 1769 scmnd->sc_data_direction); 1770 return -EINVAL; 1771 } 1772 1773 1774 vm_srb->port_number = host_dev->port; 1775 vm_srb->path_id = scmnd->device->channel; 1776 vm_srb->target_id = scmnd->device->id; 1777 vm_srb->lun = scmnd->device->lun; 1778 1779 vm_srb->cdb_length = scmnd->cmd_len; 1780 1781 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1782 1783 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1784 1785 length = scsi_bufflen(scmnd); 1786 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1787 payload_sz = 0; 1788 1789 if (scsi_sg_count(scmnd)) { 1790 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1791 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1792 struct scatterlist *sg; 1793 unsigned long hvpfn, hvpfns_to_add; 1794 int j, i = 0, sg_count; 1795 1796 payload_sz = (hvpg_count * sizeof(u64) + 1797 sizeof(struct vmbus_packet_mpb_array)); 1798 1799 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1800 payload = kzalloc(payload_sz, GFP_ATOMIC); 1801 if (!payload) 1802 return SCSI_MLQUEUE_DEVICE_BUSY; 1803 } 1804 1805 payload->range.len = length; 1806 payload->range.offset = offset_in_hvpg; 1807 1808 sg_count = scsi_dma_map(scmnd); 1809 if (sg_count < 0) { 1810 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1811 goto err_free_payload; 1812 } 1813 1814 for_each_sg(sgl, sg, sg_count, j) { 1815 /* 1816 * Init values for the current sgl entry. hvpfns_to_add 1817 * is in units of Hyper-V size pages. Handling the 1818 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles 1819 * values of sgl->offset that are larger than PAGE_SIZE. 1820 * Such offsets are handled even on other than the first 1821 * sgl entry, provided they are a multiple of PAGE_SIZE. 1822 */ 1823 hvpfn = HVPFN_DOWN(sg_dma_address(sg)); 1824 hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + 1825 sg_dma_len(sg)) - hvpfn; 1826 1827 /* 1828 * Fill the next portion of the PFN array with 1829 * sequential Hyper-V PFNs for the continguous physical 1830 * memory described by the sgl entry. The end of the 1831 * last sgl should be reached at the same time that 1832 * the PFN array is filled. 1833 */ 1834 while (hvpfns_to_add--) 1835 payload->range.pfn_array[i++] = hvpfn++; 1836 } 1837 } 1838 1839 cmd_request->payload = payload; 1840 cmd_request->payload_sz = payload_sz; 1841 1842 /* Invokes the vsc to start an IO */ 1843 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1844 put_cpu(); 1845 1846 if (ret) 1847 scsi_dma_unmap(scmnd); 1848 1849 if (ret == -EAGAIN) { 1850 /* no more space */ 1851 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1852 goto err_free_payload; 1853 } 1854 1855 return 0; 1856 1857 err_free_payload: 1858 if (payload_sz > sizeof(cmd_request->mpb)) 1859 kfree(payload); 1860 1861 return ret; 1862 } 1863 1864 static struct scsi_host_template scsi_driver = { 1865 .module = THIS_MODULE, 1866 .name = "storvsc_host_t", 1867 .cmd_size = sizeof(struct storvsc_cmd_request), 1868 .bios_param = storvsc_get_chs, 1869 .queuecommand = storvsc_queuecommand, 1870 .eh_host_reset_handler = storvsc_host_reset_handler, 1871 .proc_name = "storvsc_host", 1872 .eh_timed_out = storvsc_eh_timed_out, 1873 .slave_alloc = storvsc_device_alloc, 1874 .slave_configure = storvsc_device_configure, 1875 .cmd_per_lun = 2048, 1876 .this_id = -1, 1877 /* Ensure there are no gaps in presented sgls */ 1878 .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, 1879 .no_write_same = 1, 1880 .track_queue_depth = 1, 1881 .change_queue_depth = storvsc_change_queue_depth, 1882 }; 1883 1884 enum { 1885 SCSI_GUID, 1886 IDE_GUID, 1887 SFC_GUID, 1888 }; 1889 1890 static const struct hv_vmbus_device_id id_table[] = { 1891 /* SCSI guid */ 1892 { HV_SCSI_GUID, 1893 .driver_data = SCSI_GUID 1894 }, 1895 /* IDE guid */ 1896 { HV_IDE_GUID, 1897 .driver_data = IDE_GUID 1898 }, 1899 /* Fibre Channel GUID */ 1900 { 1901 HV_SYNTHFC_GUID, 1902 .driver_data = SFC_GUID 1903 }, 1904 { }, 1905 }; 1906 1907 MODULE_DEVICE_TABLE(vmbus, id_table); 1908 1909 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1910 1911 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1912 { 1913 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1914 } 1915 1916 static int storvsc_probe(struct hv_device *device, 1917 const struct hv_vmbus_device_id *dev_id) 1918 { 1919 int ret; 1920 int num_cpus = num_online_cpus(); 1921 int num_present_cpus = num_present_cpus(); 1922 struct Scsi_Host *host; 1923 struct hv_host_device *host_dev; 1924 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1925 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1926 int target = 0; 1927 struct storvsc_device *stor_device; 1928 int max_sub_channels = 0; 1929 u32 max_xfer_bytes; 1930 1931 /* 1932 * We support sub-channels for storage on SCSI and FC controllers. 1933 * The number of sub-channels offerred is based on the number of 1934 * VCPUs in the guest. 1935 */ 1936 if (!dev_is_ide) 1937 max_sub_channels = 1938 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1939 1940 scsi_driver.can_queue = max_outstanding_req_per_channel * 1941 (max_sub_channels + 1) * 1942 (100 - ring_avail_percent_lowater) / 100; 1943 1944 host = scsi_host_alloc(&scsi_driver, 1945 sizeof(struct hv_host_device)); 1946 if (!host) 1947 return -ENOMEM; 1948 1949 host_dev = shost_priv(host); 1950 memset(host_dev, 0, sizeof(struct hv_host_device)); 1951 1952 host_dev->port = host->host_no; 1953 host_dev->dev = device; 1954 host_dev->host = host; 1955 1956 1957 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1958 if (!stor_device) { 1959 ret = -ENOMEM; 1960 goto err_out0; 1961 } 1962 1963 stor_device->destroy = false; 1964 init_waitqueue_head(&stor_device->waiting_to_drain); 1965 stor_device->device = device; 1966 stor_device->host = host; 1967 spin_lock_init(&stor_device->lock); 1968 hv_set_drvdata(device, stor_device); 1969 dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); 1970 1971 stor_device->port_number = host->host_no; 1972 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); 1973 if (ret) 1974 goto err_out1; 1975 1976 host_dev->path = stor_device->path_id; 1977 host_dev->target = stor_device->target_id; 1978 1979 switch (dev_id->driver_data) { 1980 case SFC_GUID: 1981 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1982 host->max_id = STORVSC_FC_MAX_TARGETS; 1983 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 1984 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1985 host->transportt = fc_transport_template; 1986 #endif 1987 break; 1988 1989 case SCSI_GUID: 1990 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; 1991 host->max_id = STORVSC_MAX_TARGETS; 1992 host->max_channel = STORVSC_MAX_CHANNELS - 1; 1993 break; 1994 1995 default: 1996 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 1997 host->max_id = STORVSC_IDE_MAX_TARGETS; 1998 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 1999 break; 2000 } 2001 /* max cmd length */ 2002 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 2003 /* 2004 * Any reasonable Hyper-V configuration should provide 2005 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, 2006 * protecting it from any weird value. 2007 */ 2008 max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); 2009 /* max_hw_sectors_kb */ 2010 host->max_sectors = max_xfer_bytes >> 9; 2011 /* 2012 * There are 2 requirements for Hyper-V storvsc sgl segments, 2013 * based on which the below calculation for max segments is 2014 * done: 2015 * 2016 * 1. Except for the first and last sgl segment, all sgl segments 2017 * should be align to HV_HYP_PAGE_SIZE, that also means the 2018 * maximum number of segments in a sgl can be calculated by 2019 * dividing the total max transfer length by HV_HYP_PAGE_SIZE. 2020 * 2021 * 2. Except for the first and last, each entry in the SGL must 2022 * have an offset that is a multiple of HV_HYP_PAGE_SIZE. 2023 */ 2024 host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; 2025 /* 2026 * For non-IDE disks, the host supports multiple channels. 2027 * Set the number of HW queues we are supporting. 2028 */ 2029 if (!dev_is_ide) { 2030 if (storvsc_max_hw_queues > num_present_cpus) { 2031 storvsc_max_hw_queues = 0; 2032 storvsc_log(device, STORVSC_LOGGING_WARN, 2033 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2034 } 2035 if (storvsc_max_hw_queues) 2036 host->nr_hw_queues = storvsc_max_hw_queues; 2037 else 2038 host->nr_hw_queues = num_present_cpus; 2039 } 2040 2041 /* 2042 * Set the error handler work queue. 2043 */ 2044 host_dev->handle_error_wq = 2045 alloc_ordered_workqueue("storvsc_error_wq_%d", 2046 0, 2047 host->host_no); 2048 if (!host_dev->handle_error_wq) { 2049 ret = -ENOMEM; 2050 goto err_out2; 2051 } 2052 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2053 /* Register the HBA and start the scsi bus scan */ 2054 ret = scsi_add_host(host, &device->device); 2055 if (ret != 0) 2056 goto err_out3; 2057 2058 if (!dev_is_ide) { 2059 scsi_scan_host(host); 2060 } else { 2061 target = (device->dev_instance.b[5] << 8 | 2062 device->dev_instance.b[4]); 2063 ret = scsi_add_device(host, 0, target, 0); 2064 if (ret) 2065 goto err_out4; 2066 } 2067 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2068 if (host->transportt == fc_transport_template) { 2069 struct fc_rport_identifiers ids = { 2070 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2071 }; 2072 2073 fc_host_node_name(host) = stor_device->node_name; 2074 fc_host_port_name(host) = stor_device->port_name; 2075 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2076 if (!stor_device->rport) { 2077 ret = -ENOMEM; 2078 goto err_out4; 2079 } 2080 } 2081 #endif 2082 return 0; 2083 2084 err_out4: 2085 scsi_remove_host(host); 2086 2087 err_out3: 2088 destroy_workqueue(host_dev->handle_error_wq); 2089 2090 err_out2: 2091 /* 2092 * Once we have connected with the host, we would need to 2093 * invoke storvsc_dev_remove() to rollback this state and 2094 * this call also frees up the stor_device; hence the jump around 2095 * err_out1 label. 2096 */ 2097 storvsc_dev_remove(device); 2098 goto err_out0; 2099 2100 err_out1: 2101 kfree(stor_device->stor_chns); 2102 kfree(stor_device); 2103 2104 err_out0: 2105 scsi_host_put(host); 2106 return ret; 2107 } 2108 2109 /* Change a scsi target's queue depth */ 2110 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2111 { 2112 if (queue_depth > scsi_driver.can_queue) 2113 queue_depth = scsi_driver.can_queue; 2114 2115 return scsi_change_queue_depth(sdev, queue_depth); 2116 } 2117 2118 static void storvsc_remove(struct hv_device *dev) 2119 { 2120 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2121 struct Scsi_Host *host = stor_device->host; 2122 struct hv_host_device *host_dev = shost_priv(host); 2123 2124 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2125 if (host->transportt == fc_transport_template) { 2126 fc_remote_port_delete(stor_device->rport); 2127 fc_remove_host(host); 2128 } 2129 #endif 2130 destroy_workqueue(host_dev->handle_error_wq); 2131 scsi_remove_host(host); 2132 storvsc_dev_remove(dev); 2133 scsi_host_put(host); 2134 } 2135 2136 static int storvsc_suspend(struct hv_device *hv_dev) 2137 { 2138 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2139 struct Scsi_Host *host = stor_device->host; 2140 struct hv_host_device *host_dev = shost_priv(host); 2141 2142 storvsc_wait_to_drain(stor_device); 2143 2144 drain_workqueue(host_dev->handle_error_wq); 2145 2146 vmbus_close(hv_dev->channel); 2147 2148 kfree(stor_device->stor_chns); 2149 stor_device->stor_chns = NULL; 2150 2151 cpumask_clear(&stor_device->alloced_cpus); 2152 2153 return 0; 2154 } 2155 2156 static int storvsc_resume(struct hv_device *hv_dev) 2157 { 2158 int ret; 2159 2160 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size, 2161 hv_dev_is_fc(hv_dev)); 2162 return ret; 2163 } 2164 2165 static struct hv_driver storvsc_drv = { 2166 .name = KBUILD_MODNAME, 2167 .id_table = id_table, 2168 .probe = storvsc_probe, 2169 .remove = storvsc_remove, 2170 .suspend = storvsc_suspend, 2171 .resume = storvsc_resume, 2172 .driver = { 2173 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2174 }, 2175 }; 2176 2177 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2178 static struct fc_function_template fc_transport_functions = { 2179 .show_host_node_name = 1, 2180 .show_host_port_name = 1, 2181 }; 2182 #endif 2183 2184 static int __init storvsc_drv_init(void) 2185 { 2186 int ret; 2187 2188 /* 2189 * Divide the ring buffer data size (which is 1 page less 2190 * than the ring buffer size since that page is reserved for 2191 * the ring buffer indices) by the max request size (which is 2192 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2193 */ 2194 max_outstanding_req_per_channel = 2195 ((storvsc_ringbuffer_size - PAGE_SIZE) / 2196 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2197 sizeof(struct vstor_packet) + sizeof(u64), 2198 sizeof(u64))); 2199 2200 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2201 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2202 if (!fc_transport_template) 2203 return -ENODEV; 2204 #endif 2205 2206 ret = vmbus_driver_register(&storvsc_drv); 2207 2208 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2209 if (ret) 2210 fc_release_transport(fc_transport_template); 2211 #endif 2212 2213 return ret; 2214 } 2215 2216 static void __exit storvsc_drv_exit(void) 2217 { 2218 vmbus_driver_unregister(&storvsc_drv); 2219 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2220 fc_release_transport(fc_transport_template); 2221 #endif 2222 } 2223 2224 MODULE_LICENSE("GPL"); 2225 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2226 module_init(storvsc_drv_init); 2227 module_exit(storvsc_drv_exit); 2228