1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <linux/dma-mapping.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_host.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_devinfo.h> 33 #include <scsi/scsi_dbg.h> 34 #include <scsi/scsi_transport_fc.h> 35 #include <scsi/scsi_transport.h> 36 37 /* 38 * All wire protocol details (storage protocol between the guest and the host) 39 * are consolidated here. 40 * 41 * Begin protocol definitions. 42 */ 43 44 /* 45 * Version history: 46 * V1 Beta: 0.1 47 * V1 RC < 2008/1/31: 1.0 48 * V1 RC > 2008/1/31: 2.0 49 * Win7: 4.2 50 * Win8: 5.1 51 * Win8.1: 6.0 52 * Win10: 6.2 53 */ 54 55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 56 (((MINOR_) & 0xff))) 57 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 58 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 59 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 60 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 61 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 62 63 /* channel callback timeout in ms */ 64 #define CALLBACK_TIMEOUT 2 65 66 /* Packet structure describing virtual storage requests. */ 67 enum vstor_packet_operation { 68 VSTOR_OPERATION_COMPLETE_IO = 1, 69 VSTOR_OPERATION_REMOVE_DEVICE = 2, 70 VSTOR_OPERATION_EXECUTE_SRB = 3, 71 VSTOR_OPERATION_RESET_LUN = 4, 72 VSTOR_OPERATION_RESET_ADAPTER = 5, 73 VSTOR_OPERATION_RESET_BUS = 6, 74 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 75 VSTOR_OPERATION_END_INITIALIZATION = 8, 76 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 77 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 78 VSTOR_OPERATION_ENUMERATE_BUS = 11, 79 VSTOR_OPERATION_FCHBA_DATA = 12, 80 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 81 VSTOR_OPERATION_MAXIMUM = 13 82 }; 83 84 /* 85 * WWN packet for Fibre Channel HBA 86 */ 87 88 struct hv_fc_wwn_packet { 89 u8 primary_active; 90 u8 reserved1[3]; 91 u8 primary_port_wwn[8]; 92 u8 primary_node_wwn[8]; 93 u8 secondary_port_wwn[8]; 94 u8 secondary_node_wwn[8]; 95 }; 96 97 98 99 /* 100 * SRB Flag Bits 101 */ 102 103 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 104 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 105 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 106 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 107 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 108 #define SRB_FLAGS_DATA_IN 0x00000040 109 #define SRB_FLAGS_DATA_OUT 0x00000080 110 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 111 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 112 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 113 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 114 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 115 116 /* 117 * This flag indicates the request is part of the workflow for processing a D3. 118 */ 119 #define SRB_FLAGS_D3_PROCESSING 0x00000800 120 #define SRB_FLAGS_IS_ACTIVE 0x00010000 121 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 122 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 123 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 124 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 125 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 126 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 127 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 128 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 129 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 130 131 #define SP_UNTAGGED ((unsigned char) ~0) 132 #define SRB_SIMPLE_TAG_REQUEST 0x20 133 134 /* 135 * Platform neutral description of a scsi request - 136 * this remains the same across the write regardless of 32/64 bit 137 * note: it's patterned off the SCSI_PASS_THROUGH structure 138 */ 139 #define STORVSC_MAX_CMD_LEN 0x10 140 141 /* Sense buffer size is the same for all versions since Windows 8 */ 142 #define STORVSC_SENSE_BUFFER_SIZE 0x14 143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 144 145 /* 146 * The storage protocol version is determined during the 147 * initial exchange with the host. It will indicate which 148 * storage functionality is available in the host. 149 */ 150 static int vmstor_proto_version; 151 152 #define STORVSC_LOGGING_NONE 0 153 #define STORVSC_LOGGING_ERROR 1 154 #define STORVSC_LOGGING_WARN 2 155 156 static int logging_level = STORVSC_LOGGING_ERROR; 157 module_param(logging_level, int, S_IRUGO|S_IWUSR); 158 MODULE_PARM_DESC(logging_level, 159 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 160 161 static inline bool do_logging(int level) 162 { 163 return logging_level >= level; 164 } 165 166 #define storvsc_log(dev, level, fmt, ...) \ 167 do { \ 168 if (do_logging(level)) \ 169 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 170 } while (0) 171 172 struct vmscsi_request { 173 u16 length; 174 u8 srb_status; 175 u8 scsi_status; 176 177 u8 port_number; 178 u8 path_id; 179 u8 target_id; 180 u8 lun; 181 182 u8 cdb_length; 183 u8 sense_info_length; 184 u8 data_in; 185 u8 reserved; 186 187 u32 data_transfer_length; 188 189 union { 190 u8 cdb[STORVSC_MAX_CMD_LEN]; 191 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 192 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 193 }; 194 /* 195 * The following was added in win8. 196 */ 197 u16 reserve; 198 u8 queue_tag; 199 u8 queue_action; 200 u32 srb_flags; 201 u32 time_out_value; 202 u32 queue_sort_ey; 203 204 } __attribute((packed)); 205 206 /* 207 * The list of windows version in order of preference. 208 */ 209 210 static const int protocol_version[] = { 211 VMSTOR_PROTO_VERSION_WIN10, 212 VMSTOR_PROTO_VERSION_WIN8_1, 213 VMSTOR_PROTO_VERSION_WIN8, 214 }; 215 216 217 /* 218 * This structure is sent during the initialization phase to get the different 219 * properties of the channel. 220 */ 221 222 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 223 224 struct vmstorage_channel_properties { 225 u32 reserved; 226 u16 max_channel_cnt; 227 u16 reserved1; 228 229 u32 flags; 230 u32 max_transfer_bytes; 231 232 u64 reserved2; 233 } __packed; 234 235 /* This structure is sent during the storage protocol negotiations. */ 236 struct vmstorage_protocol_version { 237 /* Major (MSW) and minor (LSW) version numbers. */ 238 u16 major_minor; 239 240 /* 241 * Revision number is auto-incremented whenever this file is changed 242 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 243 * definitely indicate incompatibility--but it does indicate mismatched 244 * builds. 245 * This is only used on the windows side. Just set it to 0. 246 */ 247 u16 revision; 248 } __packed; 249 250 /* Channel Property Flags */ 251 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 252 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 253 254 struct vstor_packet { 255 /* Requested operation type */ 256 enum vstor_packet_operation operation; 257 258 /* Flags - see below for values */ 259 u32 flags; 260 261 /* Status of the request returned from the server side. */ 262 u32 status; 263 264 /* Data payload area */ 265 union { 266 /* 267 * Structure used to forward SCSI commands from the 268 * client to the server. 269 */ 270 struct vmscsi_request vm_srb; 271 272 /* Structure used to query channel properties. */ 273 struct vmstorage_channel_properties storage_channel_properties; 274 275 /* Used during version negotiations. */ 276 struct vmstorage_protocol_version version; 277 278 /* Fibre channel address packet */ 279 struct hv_fc_wwn_packet wwn_packet; 280 281 /* Number of sub-channels to create */ 282 u16 sub_channel_count; 283 284 /* This will be the maximum of the union members */ 285 u8 buffer[0x34]; 286 }; 287 } __packed; 288 289 /* 290 * Packet Flags: 291 * 292 * This flag indicates that the server should send back a completion for this 293 * packet. 294 */ 295 296 #define REQUEST_COMPLETION_FLAG 0x1 297 298 /* Matches Windows-end */ 299 enum storvsc_request_type { 300 WRITE_TYPE = 0, 301 READ_TYPE, 302 UNKNOWN_TYPE, 303 }; 304 305 /* 306 * SRB status codes and masks. In the 8-bit field, the two high order bits 307 * are flags, while the remaining 6 bits are an integer status code. The 308 * definitions here include only the subset of the integer status codes that 309 * are tested for in this driver. 310 */ 311 #define SRB_STATUS_AUTOSENSE_VALID 0x80 312 #define SRB_STATUS_QUEUE_FROZEN 0x40 313 314 /* SRB status integer codes */ 315 #define SRB_STATUS_SUCCESS 0x01 316 #define SRB_STATUS_ABORTED 0x02 317 #define SRB_STATUS_ERROR 0x04 318 #define SRB_STATUS_INVALID_REQUEST 0x06 319 #define SRB_STATUS_DATA_OVERRUN 0x12 320 #define SRB_STATUS_INVALID_LUN 0x20 321 322 #define SRB_STATUS(status) \ 323 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 324 /* 325 * This is the end of Protocol specific defines. 326 */ 327 328 static int storvsc_ringbuffer_size = (128 * 1024); 329 static u32 max_outstanding_req_per_channel; 330 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 331 332 static int storvsc_vcpus_per_sub_channel = 4; 333 static unsigned int storvsc_max_hw_queues; 334 335 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 336 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 337 338 module_param(storvsc_max_hw_queues, uint, 0644); 339 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 340 341 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 342 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 343 344 static int ring_avail_percent_lowater = 10; 345 module_param(ring_avail_percent_lowater, int, S_IRUGO); 346 MODULE_PARM_DESC(ring_avail_percent_lowater, 347 "Select a channel if available ring size > this in percent"); 348 349 /* 350 * Timeout in seconds for all devices managed by this driver. 351 */ 352 static int storvsc_timeout = 180; 353 354 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 355 static struct scsi_transport_template *fc_transport_template; 356 #endif 357 358 static struct scsi_host_template scsi_driver; 359 static void storvsc_on_channel_callback(void *context); 360 361 #define STORVSC_MAX_LUNS_PER_TARGET 255 362 #define STORVSC_MAX_TARGETS 2 363 #define STORVSC_MAX_CHANNELS 8 364 365 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 366 #define STORVSC_FC_MAX_TARGETS 128 367 #define STORVSC_FC_MAX_CHANNELS 8 368 369 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 370 #define STORVSC_IDE_MAX_TARGETS 1 371 #define STORVSC_IDE_MAX_CHANNELS 1 372 373 /* 374 * Upper bound on the size of a storvsc packet. 375 */ 376 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 377 sizeof(struct vstor_packet)) 378 379 struct storvsc_cmd_request { 380 struct scsi_cmnd *cmd; 381 382 struct hv_device *device; 383 384 /* Synchronize the request/response if needed */ 385 struct completion wait_event; 386 387 struct vmbus_channel_packet_multipage_buffer mpb; 388 struct vmbus_packet_mpb_array *payload; 389 u32 payload_sz; 390 391 struct vstor_packet vstor_packet; 392 }; 393 394 395 /* A storvsc device is a device object that contains a vmbus channel */ 396 struct storvsc_device { 397 struct hv_device *device; 398 399 bool destroy; 400 bool drain_notify; 401 atomic_t num_outstanding_req; 402 struct Scsi_Host *host; 403 404 wait_queue_head_t waiting_to_drain; 405 406 /* 407 * Each unique Port/Path/Target represents 1 channel ie scsi 408 * controller. In reality, the pathid, targetid is always 0 409 * and the port is set by us 410 */ 411 unsigned int port_number; 412 unsigned char path_id; 413 unsigned char target_id; 414 415 /* 416 * Max I/O, the device can support. 417 */ 418 u32 max_transfer_bytes; 419 /* 420 * Number of sub-channels we will open. 421 */ 422 u16 num_sc; 423 struct vmbus_channel **stor_chns; 424 /* 425 * Mask of CPUs bound to subchannels. 426 */ 427 struct cpumask alloced_cpus; 428 /* 429 * Serializes modifications of stor_chns[] from storvsc_do_io() 430 * and storvsc_change_target_cpu(). 431 */ 432 spinlock_t lock; 433 /* Used for vsc/vsp channel reset process */ 434 struct storvsc_cmd_request init_request; 435 struct storvsc_cmd_request reset_request; 436 /* 437 * Currently active port and node names for FC devices. 438 */ 439 u64 node_name; 440 u64 port_name; 441 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 442 struct fc_rport *rport; 443 #endif 444 }; 445 446 struct hv_host_device { 447 struct hv_device *dev; 448 unsigned int port; 449 unsigned char path; 450 unsigned char target; 451 struct workqueue_struct *handle_error_wq; 452 struct work_struct host_scan_work; 453 struct Scsi_Host *host; 454 }; 455 456 struct storvsc_scan_work { 457 struct work_struct work; 458 struct Scsi_Host *host; 459 u8 lun; 460 u8 tgt_id; 461 }; 462 463 static void storvsc_device_scan(struct work_struct *work) 464 { 465 struct storvsc_scan_work *wrk; 466 struct scsi_device *sdev; 467 468 wrk = container_of(work, struct storvsc_scan_work, work); 469 470 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 471 if (!sdev) 472 goto done; 473 scsi_rescan_device(&sdev->sdev_gendev); 474 scsi_device_put(sdev); 475 476 done: 477 kfree(wrk); 478 } 479 480 static void storvsc_host_scan(struct work_struct *work) 481 { 482 struct Scsi_Host *host; 483 struct scsi_device *sdev; 484 struct hv_host_device *host_device = 485 container_of(work, struct hv_host_device, host_scan_work); 486 487 host = host_device->host; 488 /* 489 * Before scanning the host, first check to see if any of the 490 * currently known devices have been hot removed. We issue a 491 * "unit ready" command against all currently known devices. 492 * This I/O will result in an error for devices that have been 493 * removed. As part of handling the I/O error, we remove the device. 494 * 495 * When a LUN is added or removed, the host sends us a signal to 496 * scan the host. Thus we are forced to discover the LUNs that 497 * may have been removed this way. 498 */ 499 mutex_lock(&host->scan_mutex); 500 shost_for_each_device(sdev, host) 501 scsi_test_unit_ready(sdev, 1, 1, NULL); 502 mutex_unlock(&host->scan_mutex); 503 /* 504 * Now scan the host to discover LUNs that may have been added. 505 */ 506 scsi_scan_host(host); 507 } 508 509 static void storvsc_remove_lun(struct work_struct *work) 510 { 511 struct storvsc_scan_work *wrk; 512 struct scsi_device *sdev; 513 514 wrk = container_of(work, struct storvsc_scan_work, work); 515 if (!scsi_host_get(wrk->host)) 516 goto done; 517 518 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 519 520 if (sdev) { 521 scsi_remove_device(sdev); 522 scsi_device_put(sdev); 523 } 524 scsi_host_put(wrk->host); 525 526 done: 527 kfree(wrk); 528 } 529 530 531 /* 532 * We can get incoming messages from the host that are not in response to 533 * messages that we have sent out. An example of this would be messages 534 * received by the guest to notify dynamic addition/removal of LUNs. To 535 * deal with potential race conditions where the driver may be in the 536 * midst of being unloaded when we might receive an unsolicited message 537 * from the host, we have implemented a mechanism to gurantee sequential 538 * consistency: 539 * 540 * 1) Once the device is marked as being destroyed, we will fail all 541 * outgoing messages. 542 * 2) We permit incoming messages when the device is being destroyed, 543 * only to properly account for messages already sent out. 544 */ 545 546 static inline struct storvsc_device *get_out_stor_device( 547 struct hv_device *device) 548 { 549 struct storvsc_device *stor_device; 550 551 stor_device = hv_get_drvdata(device); 552 553 if (stor_device && stor_device->destroy) 554 stor_device = NULL; 555 556 return stor_device; 557 } 558 559 560 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 561 { 562 dev->drain_notify = true; 563 wait_event(dev->waiting_to_drain, 564 atomic_read(&dev->num_outstanding_req) == 0); 565 dev->drain_notify = false; 566 } 567 568 static inline struct storvsc_device *get_in_stor_device( 569 struct hv_device *device) 570 { 571 struct storvsc_device *stor_device; 572 573 stor_device = hv_get_drvdata(device); 574 575 if (!stor_device) 576 goto get_in_err; 577 578 /* 579 * If the device is being destroyed; allow incoming 580 * traffic only to cleanup outstanding requests. 581 */ 582 583 if (stor_device->destroy && 584 (atomic_read(&stor_device->num_outstanding_req) == 0)) 585 stor_device = NULL; 586 587 get_in_err: 588 return stor_device; 589 590 } 591 592 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 593 u32 new) 594 { 595 struct storvsc_device *stor_device; 596 struct vmbus_channel *cur_chn; 597 bool old_is_alloced = false; 598 struct hv_device *device; 599 unsigned long flags; 600 int cpu; 601 602 device = channel->primary_channel ? 603 channel->primary_channel->device_obj 604 : channel->device_obj; 605 stor_device = get_out_stor_device(device); 606 if (!stor_device) 607 return; 608 609 /* See storvsc_do_io() -> get_og_chn(). */ 610 spin_lock_irqsave(&stor_device->lock, flags); 611 612 /* 613 * Determines if the storvsc device has other channels assigned to 614 * the "old" CPU to update the alloced_cpus mask and the stor_chns 615 * array. 616 */ 617 if (device->channel != channel && device->channel->target_cpu == old) { 618 cur_chn = device->channel; 619 old_is_alloced = true; 620 goto old_is_alloced; 621 } 622 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 623 if (cur_chn == channel) 624 continue; 625 if (cur_chn->target_cpu == old) { 626 old_is_alloced = true; 627 goto old_is_alloced; 628 } 629 } 630 631 old_is_alloced: 632 if (old_is_alloced) 633 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 634 else 635 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 636 637 /* "Flush" the stor_chns array. */ 638 for_each_possible_cpu(cpu) { 639 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 640 cpu, &stor_device->alloced_cpus)) 641 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 642 } 643 644 WRITE_ONCE(stor_device->stor_chns[new], channel); 645 cpumask_set_cpu(new, &stor_device->alloced_cpus); 646 647 spin_unlock_irqrestore(&stor_device->lock, flags); 648 } 649 650 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 651 { 652 struct storvsc_cmd_request *request = 653 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 654 655 if (rqst_addr == VMBUS_RQST_INIT) 656 return VMBUS_RQST_INIT; 657 if (rqst_addr == VMBUS_RQST_RESET) 658 return VMBUS_RQST_RESET; 659 660 /* 661 * Cannot return an ID of 0, which is reserved for an unsolicited 662 * message from Hyper-V. 663 */ 664 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 665 } 666 667 static void handle_sc_creation(struct vmbus_channel *new_sc) 668 { 669 struct hv_device *device = new_sc->primary_channel->device_obj; 670 struct device *dev = &device->device; 671 struct storvsc_device *stor_device; 672 struct vmstorage_channel_properties props; 673 int ret; 674 675 stor_device = get_out_stor_device(device); 676 if (!stor_device) 677 return; 678 679 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 680 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 681 682 new_sc->next_request_id_callback = storvsc_next_request_id; 683 684 ret = vmbus_open(new_sc, 685 storvsc_ringbuffer_size, 686 storvsc_ringbuffer_size, 687 (void *)&props, 688 sizeof(struct vmstorage_channel_properties), 689 storvsc_on_channel_callback, new_sc); 690 691 /* In case vmbus_open() fails, we don't use the sub-channel. */ 692 if (ret != 0) { 693 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 694 return; 695 } 696 697 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 698 699 /* Add the sub-channel to the array of available channels. */ 700 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 701 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 702 } 703 704 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 705 { 706 struct device *dev = &device->device; 707 struct storvsc_device *stor_device; 708 int num_sc; 709 struct storvsc_cmd_request *request; 710 struct vstor_packet *vstor_packet; 711 int ret, t; 712 713 /* 714 * If the number of CPUs is artificially restricted, such as 715 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 716 * sub-channels >= the number of CPUs. These sub-channels 717 * should not be created. The primary channel is already created 718 * and assigned to one CPU, so check against # CPUs - 1. 719 */ 720 num_sc = min((int)(num_online_cpus() - 1), max_chns); 721 if (!num_sc) 722 return; 723 724 stor_device = get_out_stor_device(device); 725 if (!stor_device) 726 return; 727 728 stor_device->num_sc = num_sc; 729 request = &stor_device->init_request; 730 vstor_packet = &request->vstor_packet; 731 732 /* 733 * Establish a handler for dealing with subchannels. 734 */ 735 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 736 737 /* 738 * Request the host to create sub-channels. 739 */ 740 memset(request, 0, sizeof(struct storvsc_cmd_request)); 741 init_completion(&request->wait_event); 742 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 743 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 744 vstor_packet->sub_channel_count = num_sc; 745 746 ret = vmbus_sendpacket(device->channel, vstor_packet, 747 sizeof(struct vstor_packet), 748 VMBUS_RQST_INIT, 749 VM_PKT_DATA_INBAND, 750 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 751 752 if (ret != 0) { 753 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 754 return; 755 } 756 757 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 758 if (t == 0) { 759 dev_err(dev, "Failed to create sub-channel: timed out\n"); 760 return; 761 } 762 763 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 764 vstor_packet->status != 0) { 765 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 766 vstor_packet->operation, vstor_packet->status); 767 return; 768 } 769 770 /* 771 * We need to do nothing here, because vmbus_process_offer() 772 * invokes channel->sc_creation_callback, which will open and use 773 * the sub-channel(s). 774 */ 775 } 776 777 static void cache_wwn(struct storvsc_device *stor_device, 778 struct vstor_packet *vstor_packet) 779 { 780 /* 781 * Cache the currently active port and node ww names. 782 */ 783 if (vstor_packet->wwn_packet.primary_active) { 784 stor_device->node_name = 785 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 786 stor_device->port_name = 787 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 788 } else { 789 stor_device->node_name = 790 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 791 stor_device->port_name = 792 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 793 } 794 } 795 796 797 static int storvsc_execute_vstor_op(struct hv_device *device, 798 struct storvsc_cmd_request *request, 799 bool status_check) 800 { 801 struct storvsc_device *stor_device; 802 struct vstor_packet *vstor_packet; 803 int ret, t; 804 805 stor_device = get_out_stor_device(device); 806 if (!stor_device) 807 return -ENODEV; 808 809 vstor_packet = &request->vstor_packet; 810 811 init_completion(&request->wait_event); 812 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 813 814 ret = vmbus_sendpacket(device->channel, vstor_packet, 815 sizeof(struct vstor_packet), 816 VMBUS_RQST_INIT, 817 VM_PKT_DATA_INBAND, 818 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 819 if (ret != 0) 820 return ret; 821 822 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 823 if (t == 0) 824 return -ETIMEDOUT; 825 826 if (!status_check) 827 return ret; 828 829 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 830 vstor_packet->status != 0) 831 return -EINVAL; 832 833 return ret; 834 } 835 836 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 837 { 838 struct storvsc_device *stor_device; 839 struct storvsc_cmd_request *request; 840 struct vstor_packet *vstor_packet; 841 int ret, i; 842 int max_chns; 843 bool process_sub_channels = false; 844 845 stor_device = get_out_stor_device(device); 846 if (!stor_device) 847 return -ENODEV; 848 849 request = &stor_device->init_request; 850 vstor_packet = &request->vstor_packet; 851 852 /* 853 * Now, initiate the vsc/vsp initialization protocol on the open 854 * channel 855 */ 856 memset(request, 0, sizeof(struct storvsc_cmd_request)); 857 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 858 ret = storvsc_execute_vstor_op(device, request, true); 859 if (ret) 860 return ret; 861 /* 862 * Query host supported protocol version. 863 */ 864 865 for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { 866 /* reuse the packet for version range supported */ 867 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 868 vstor_packet->operation = 869 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 870 871 vstor_packet->version.major_minor = protocol_version[i]; 872 873 /* 874 * The revision number is only used in Windows; set it to 0. 875 */ 876 vstor_packet->version.revision = 0; 877 ret = storvsc_execute_vstor_op(device, request, false); 878 if (ret != 0) 879 return ret; 880 881 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 882 return -EINVAL; 883 884 if (vstor_packet->status == 0) { 885 vmstor_proto_version = protocol_version[i]; 886 887 break; 888 } 889 } 890 891 if (vstor_packet->status != 0) { 892 dev_err(&device->device, "Obsolete Hyper-V version\n"); 893 return -EINVAL; 894 } 895 896 897 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 898 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 899 ret = storvsc_execute_vstor_op(device, request, true); 900 if (ret != 0) 901 return ret; 902 903 /* 904 * Check to see if multi-channel support is there. 905 * Hosts that implement protocol version of 5.1 and above 906 * support multi-channel. 907 */ 908 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 909 910 /* 911 * Allocate state to manage the sub-channels. 912 * We allocate an array based on the numbers of possible CPUs 913 * (Hyper-V does not support cpu online/offline). 914 * This Array will be sparseley populated with unique 915 * channels - primary + sub-channels. 916 * We will however populate all the slots to evenly distribute 917 * the load. 918 */ 919 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 920 GFP_KERNEL); 921 if (stor_device->stor_chns == NULL) 922 return -ENOMEM; 923 924 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 925 926 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 927 cpumask_set_cpu(device->channel->target_cpu, 928 &stor_device->alloced_cpus); 929 930 if (vstor_packet->storage_channel_properties.flags & 931 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 932 process_sub_channels = true; 933 934 stor_device->max_transfer_bytes = 935 vstor_packet->storage_channel_properties.max_transfer_bytes; 936 937 if (!is_fc) 938 goto done; 939 940 /* 941 * For FC devices retrieve FC HBA data. 942 */ 943 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 944 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 945 ret = storvsc_execute_vstor_op(device, request, true); 946 if (ret != 0) 947 return ret; 948 949 /* 950 * Cache the currently active port and node ww names. 951 */ 952 cache_wwn(stor_device, vstor_packet); 953 954 done: 955 956 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 957 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 958 ret = storvsc_execute_vstor_op(device, request, true); 959 if (ret != 0) 960 return ret; 961 962 if (process_sub_channels) 963 handle_multichannel_storage(device, max_chns); 964 965 return ret; 966 } 967 968 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 969 struct scsi_cmnd *scmnd, 970 struct Scsi_Host *host, 971 u8 asc, u8 ascq) 972 { 973 struct storvsc_scan_work *wrk; 974 void (*process_err_fn)(struct work_struct *work); 975 struct hv_host_device *host_dev = shost_priv(host); 976 977 switch (SRB_STATUS(vm_srb->srb_status)) { 978 case SRB_STATUS_ERROR: 979 case SRB_STATUS_ABORTED: 980 case SRB_STATUS_INVALID_REQUEST: 981 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) { 982 /* Check for capacity change */ 983 if ((asc == 0x2a) && (ascq == 0x9)) { 984 process_err_fn = storvsc_device_scan; 985 /* Retry the I/O that triggered this. */ 986 set_host_byte(scmnd, DID_REQUEUE); 987 goto do_work; 988 } 989 990 /* 991 * Otherwise, let upper layer deal with the 992 * error when sense message is present 993 */ 994 return; 995 } 996 997 /* 998 * If there is an error; offline the device since all 999 * error recovery strategies would have already been 1000 * deployed on the host side. However, if the command 1001 * were a pass-through command deal with it appropriately. 1002 */ 1003 switch (scmnd->cmnd[0]) { 1004 case ATA_16: 1005 case ATA_12: 1006 set_host_byte(scmnd, DID_PASSTHROUGH); 1007 break; 1008 /* 1009 * On some Hyper-V hosts TEST_UNIT_READY command can 1010 * return SRB_STATUS_ERROR. Let the upper level code 1011 * deal with it based on the sense information. 1012 */ 1013 case TEST_UNIT_READY: 1014 break; 1015 default: 1016 set_host_byte(scmnd, DID_ERROR); 1017 } 1018 return; 1019 1020 case SRB_STATUS_INVALID_LUN: 1021 set_host_byte(scmnd, DID_NO_CONNECT); 1022 process_err_fn = storvsc_remove_lun; 1023 goto do_work; 1024 1025 } 1026 return; 1027 1028 do_work: 1029 /* 1030 * We need to schedule work to process this error; schedule it. 1031 */ 1032 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1033 if (!wrk) { 1034 set_host_byte(scmnd, DID_BAD_TARGET); 1035 return; 1036 } 1037 1038 wrk->host = host; 1039 wrk->lun = vm_srb->lun; 1040 wrk->tgt_id = vm_srb->target_id; 1041 INIT_WORK(&wrk->work, process_err_fn); 1042 queue_work(host_dev->handle_error_wq, &wrk->work); 1043 } 1044 1045 1046 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1047 struct storvsc_device *stor_dev) 1048 { 1049 struct scsi_cmnd *scmnd = cmd_request->cmd; 1050 struct scsi_sense_hdr sense_hdr; 1051 struct vmscsi_request *vm_srb; 1052 u32 data_transfer_length; 1053 struct Scsi_Host *host; 1054 u32 payload_sz = cmd_request->payload_sz; 1055 void *payload = cmd_request->payload; 1056 bool sense_ok; 1057 1058 host = stor_dev->host; 1059 1060 vm_srb = &cmd_request->vstor_packet.vm_srb; 1061 data_transfer_length = vm_srb->data_transfer_length; 1062 1063 scmnd->result = vm_srb->scsi_status; 1064 1065 if (scmnd->result) { 1066 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1067 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1068 1069 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1070 scsi_print_sense_hdr(scmnd->device, "storvsc", 1071 &sense_hdr); 1072 } 1073 1074 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1075 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1076 sense_hdr.ascq); 1077 /* 1078 * The Windows driver set data_transfer_length on 1079 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1080 * is untouched. In these cases we set it to 0. 1081 */ 1082 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1083 data_transfer_length = 0; 1084 } 1085 1086 /* Validate data_transfer_length (from Hyper-V) */ 1087 if (data_transfer_length > cmd_request->payload->range.len) 1088 data_transfer_length = cmd_request->payload->range.len; 1089 1090 scsi_set_resid(scmnd, 1091 cmd_request->payload->range.len - data_transfer_length); 1092 1093 scsi_done(scmnd); 1094 1095 if (payload_sz > 1096 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1097 kfree(payload); 1098 } 1099 1100 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1101 struct vstor_packet *vstor_packet, 1102 struct storvsc_cmd_request *request) 1103 { 1104 struct vstor_packet *stor_pkt; 1105 struct hv_device *device = stor_device->device; 1106 1107 stor_pkt = &request->vstor_packet; 1108 1109 /* 1110 * The current SCSI handling on the host side does 1111 * not correctly handle: 1112 * INQUIRY command with page code parameter set to 0x80 1113 * MODE_SENSE command with cmd[2] == 0x1c 1114 * 1115 * Setup srb and scsi status so this won't be fatal. 1116 * We do this so we can distinguish truly fatal failues 1117 * (srb status == 0x4) and off-line the device in that case. 1118 */ 1119 1120 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1121 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { 1122 vstor_packet->vm_srb.scsi_status = 0; 1123 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1124 } 1125 1126 /* Copy over the status...etc */ 1127 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1128 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1129 1130 /* 1131 * Copy over the sense_info_length, but limit to the known max 1132 * size if Hyper-V returns a bad value. 1133 */ 1134 stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, 1135 vstor_packet->vm_srb.sense_info_length); 1136 1137 if (vstor_packet->vm_srb.scsi_status != 0 || 1138 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1139 1140 /* 1141 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1142 * return errors when detecting devices using TEST_UNIT_READY, 1143 * and logging these as errors produces unhelpful noise. 1144 */ 1145 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1146 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1147 1148 storvsc_log(device, loglevel, 1149 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", 1150 scsi_cmd_to_rq(request->cmd)->tag, 1151 stor_pkt->vm_srb.cdb[0], 1152 vstor_packet->vm_srb.scsi_status, 1153 vstor_packet->vm_srb.srb_status, 1154 vstor_packet->status); 1155 } 1156 1157 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1158 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1159 memcpy(request->cmd->sense_buffer, 1160 vstor_packet->vm_srb.sense_data, 1161 stor_pkt->vm_srb.sense_info_length); 1162 1163 stor_pkt->vm_srb.data_transfer_length = 1164 vstor_packet->vm_srb.data_transfer_length; 1165 1166 storvsc_command_completion(request, stor_device); 1167 1168 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1169 stor_device->drain_notify) 1170 wake_up(&stor_device->waiting_to_drain); 1171 } 1172 1173 static void storvsc_on_receive(struct storvsc_device *stor_device, 1174 struct vstor_packet *vstor_packet, 1175 struct storvsc_cmd_request *request) 1176 { 1177 struct hv_host_device *host_dev; 1178 switch (vstor_packet->operation) { 1179 case VSTOR_OPERATION_COMPLETE_IO: 1180 storvsc_on_io_completion(stor_device, vstor_packet, request); 1181 break; 1182 1183 case VSTOR_OPERATION_REMOVE_DEVICE: 1184 case VSTOR_OPERATION_ENUMERATE_BUS: 1185 host_dev = shost_priv(stor_device->host); 1186 queue_work( 1187 host_dev->handle_error_wq, &host_dev->host_scan_work); 1188 break; 1189 1190 case VSTOR_OPERATION_FCHBA_DATA: 1191 cache_wwn(stor_device, vstor_packet); 1192 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1193 fc_host_node_name(stor_device->host) = stor_device->node_name; 1194 fc_host_port_name(stor_device->host) = stor_device->port_name; 1195 #endif 1196 break; 1197 default: 1198 break; 1199 } 1200 } 1201 1202 static void storvsc_on_channel_callback(void *context) 1203 { 1204 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1205 const struct vmpacket_descriptor *desc; 1206 struct hv_device *device; 1207 struct storvsc_device *stor_device; 1208 struct Scsi_Host *shost; 1209 unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT); 1210 1211 if (channel->primary_channel != NULL) 1212 device = channel->primary_channel->device_obj; 1213 else 1214 device = channel->device_obj; 1215 1216 stor_device = get_in_stor_device(device); 1217 if (!stor_device) 1218 return; 1219 1220 shost = stor_device->host; 1221 1222 foreach_vmbus_pkt(desc, channel) { 1223 struct vstor_packet *packet = hv_pkt_data(desc); 1224 struct storvsc_cmd_request *request = NULL; 1225 u32 pktlen = hv_pkt_datalen(desc); 1226 u64 rqst_id = desc->trans_id; 1227 u32 minlen = rqst_id ? sizeof(struct vstor_packet) : 1228 sizeof(enum vstor_packet_operation); 1229 1230 if (unlikely(time_after(jiffies, time_limit))) { 1231 hv_pkt_iter_close(channel); 1232 return; 1233 } 1234 1235 if (pktlen < minlen) { 1236 dev_err(&device->device, 1237 "Invalid pkt: id=%llu, len=%u, minlen=%u\n", 1238 rqst_id, pktlen, minlen); 1239 continue; 1240 } 1241 1242 if (rqst_id == VMBUS_RQST_INIT) { 1243 request = &stor_device->init_request; 1244 } else if (rqst_id == VMBUS_RQST_RESET) { 1245 request = &stor_device->reset_request; 1246 } else { 1247 /* Hyper-V can send an unsolicited message with ID of 0 */ 1248 if (rqst_id == 0) { 1249 /* 1250 * storvsc_on_receive() looks at the vstor_packet in the message 1251 * from the ring buffer. 1252 * 1253 * - If the operation in the vstor_packet is COMPLETE_IO, then 1254 * we call storvsc_on_io_completion(), and dereference the 1255 * guest memory address. Make sure we don't call 1256 * storvsc_on_io_completion() with a guest memory address 1257 * that is zero if Hyper-V were to construct and send such 1258 * a bogus packet. 1259 * 1260 * - If the operation in the vstor_packet is FCHBA_DATA, then 1261 * we call cache_wwn(), and access the data payload area of 1262 * the packet (wwn_packet); however, there is no guarantee 1263 * that the packet is big enough to contain such area. 1264 * Future-proof the code by rejecting such a bogus packet. 1265 */ 1266 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || 1267 packet->operation == VSTOR_OPERATION_FCHBA_DATA) { 1268 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1269 continue; 1270 } 1271 } else { 1272 struct scsi_cmnd *scmnd; 1273 1274 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1275 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1276 if (scmnd == NULL) { 1277 dev_err(&device->device, "Incorrect transaction ID\n"); 1278 continue; 1279 } 1280 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1281 scsi_dma_unmap(scmnd); 1282 } 1283 1284 storvsc_on_receive(stor_device, packet, request); 1285 continue; 1286 } 1287 1288 memcpy(&request->vstor_packet, packet, 1289 sizeof(struct vstor_packet)); 1290 complete(&request->wait_event); 1291 } 1292 } 1293 1294 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1295 bool is_fc) 1296 { 1297 struct vmstorage_channel_properties props; 1298 int ret; 1299 1300 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1301 1302 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1303 device->channel->next_request_id_callback = storvsc_next_request_id; 1304 1305 ret = vmbus_open(device->channel, 1306 ring_size, 1307 ring_size, 1308 (void *)&props, 1309 sizeof(struct vmstorage_channel_properties), 1310 storvsc_on_channel_callback, device->channel); 1311 1312 if (ret != 0) 1313 return ret; 1314 1315 ret = storvsc_channel_init(device, is_fc); 1316 1317 return ret; 1318 } 1319 1320 static int storvsc_dev_remove(struct hv_device *device) 1321 { 1322 struct storvsc_device *stor_device; 1323 1324 stor_device = hv_get_drvdata(device); 1325 1326 stor_device->destroy = true; 1327 1328 /* Make sure flag is set before waiting */ 1329 wmb(); 1330 1331 /* 1332 * At this point, all outbound traffic should be disable. We 1333 * only allow inbound traffic (responses) to proceed so that 1334 * outstanding requests can be completed. 1335 */ 1336 1337 storvsc_wait_to_drain(stor_device); 1338 1339 /* 1340 * Since we have already drained, we don't need to busy wait 1341 * as was done in final_release_stor_device() 1342 * Note that we cannot set the ext pointer to NULL until 1343 * we have drained - to drain the outgoing packets, we need to 1344 * allow incoming packets. 1345 */ 1346 hv_set_drvdata(device, NULL); 1347 1348 /* Close the channel */ 1349 vmbus_close(device->channel); 1350 1351 kfree(stor_device->stor_chns); 1352 kfree(stor_device); 1353 return 0; 1354 } 1355 1356 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1357 u16 q_num) 1358 { 1359 u16 slot = 0; 1360 u16 hash_qnum; 1361 const struct cpumask *node_mask; 1362 int num_channels, tgt_cpu; 1363 1364 if (stor_device->num_sc == 0) { 1365 stor_device->stor_chns[q_num] = stor_device->device->channel; 1366 return stor_device->device->channel; 1367 } 1368 1369 /* 1370 * Our channel array is sparsley populated and we 1371 * initiated I/O on a processor/hw-q that does not 1372 * currently have a designated channel. Fix this. 1373 * The strategy is simple: 1374 * I. Ensure NUMA locality 1375 * II. Distribute evenly (best effort) 1376 */ 1377 1378 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1379 1380 num_channels = 0; 1381 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1382 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1383 num_channels++; 1384 } 1385 if (num_channels == 0) { 1386 stor_device->stor_chns[q_num] = stor_device->device->channel; 1387 return stor_device->device->channel; 1388 } 1389 1390 hash_qnum = q_num; 1391 while (hash_qnum >= num_channels) 1392 hash_qnum -= num_channels; 1393 1394 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1395 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1396 continue; 1397 if (slot == hash_qnum) 1398 break; 1399 slot++; 1400 } 1401 1402 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1403 1404 return stor_device->stor_chns[q_num]; 1405 } 1406 1407 1408 static int storvsc_do_io(struct hv_device *device, 1409 struct storvsc_cmd_request *request, u16 q_num) 1410 { 1411 struct storvsc_device *stor_device; 1412 struct vstor_packet *vstor_packet; 1413 struct vmbus_channel *outgoing_channel, *channel; 1414 unsigned long flags; 1415 int ret = 0; 1416 const struct cpumask *node_mask; 1417 int tgt_cpu; 1418 1419 vstor_packet = &request->vstor_packet; 1420 stor_device = get_out_stor_device(device); 1421 1422 if (!stor_device) 1423 return -ENODEV; 1424 1425 1426 request->device = device; 1427 /* 1428 * Select an appropriate channel to send the request out. 1429 */ 1430 /* See storvsc_change_target_cpu(). */ 1431 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1432 if (outgoing_channel != NULL) { 1433 if (outgoing_channel->target_cpu == q_num) { 1434 /* 1435 * Ideally, we want to pick a different channel if 1436 * available on the same NUMA node. 1437 */ 1438 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1439 for_each_cpu_wrap(tgt_cpu, 1440 &stor_device->alloced_cpus, q_num + 1) { 1441 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1442 continue; 1443 if (tgt_cpu == q_num) 1444 continue; 1445 channel = READ_ONCE( 1446 stor_device->stor_chns[tgt_cpu]); 1447 if (channel == NULL) 1448 continue; 1449 if (hv_get_avail_to_write_percent( 1450 &channel->outbound) 1451 > ring_avail_percent_lowater) { 1452 outgoing_channel = channel; 1453 goto found_channel; 1454 } 1455 } 1456 1457 /* 1458 * All the other channels on the same NUMA node are 1459 * busy. Try to use the channel on the current CPU 1460 */ 1461 if (hv_get_avail_to_write_percent( 1462 &outgoing_channel->outbound) 1463 > ring_avail_percent_lowater) 1464 goto found_channel; 1465 1466 /* 1467 * If we reach here, all the channels on the current 1468 * NUMA node are busy. Try to find a channel in 1469 * other NUMA nodes 1470 */ 1471 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1472 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1473 continue; 1474 channel = READ_ONCE( 1475 stor_device->stor_chns[tgt_cpu]); 1476 if (channel == NULL) 1477 continue; 1478 if (hv_get_avail_to_write_percent( 1479 &channel->outbound) 1480 > ring_avail_percent_lowater) { 1481 outgoing_channel = channel; 1482 goto found_channel; 1483 } 1484 } 1485 } 1486 } else { 1487 spin_lock_irqsave(&stor_device->lock, flags); 1488 outgoing_channel = stor_device->stor_chns[q_num]; 1489 if (outgoing_channel != NULL) { 1490 spin_unlock_irqrestore(&stor_device->lock, flags); 1491 goto found_channel; 1492 } 1493 outgoing_channel = get_og_chn(stor_device, q_num); 1494 spin_unlock_irqrestore(&stor_device->lock, flags); 1495 } 1496 1497 found_channel: 1498 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1499 1500 vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); 1501 1502 1503 vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; 1504 1505 1506 vstor_packet->vm_srb.data_transfer_length = 1507 request->payload->range.len; 1508 1509 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1510 1511 if (request->payload->range.len) { 1512 1513 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1514 request->payload, request->payload_sz, 1515 vstor_packet, 1516 sizeof(struct vstor_packet), 1517 (unsigned long)request); 1518 } else { 1519 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1520 sizeof(struct vstor_packet), 1521 (unsigned long)request, 1522 VM_PKT_DATA_INBAND, 1523 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1524 } 1525 1526 if (ret != 0) 1527 return ret; 1528 1529 atomic_inc(&stor_device->num_outstanding_req); 1530 1531 return ret; 1532 } 1533 1534 static int storvsc_device_alloc(struct scsi_device *sdevice) 1535 { 1536 /* 1537 * Set blist flag to permit the reading of the VPD pages even when 1538 * the target may claim SPC-2 compliance. MSFT targets currently 1539 * claim SPC-2 compliance while they implement post SPC-2 features. 1540 * With this flag we can correctly handle WRITE_SAME_16 issues. 1541 * 1542 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1543 * still supports REPORT LUN. 1544 */ 1545 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1546 1547 return 0; 1548 } 1549 1550 static int storvsc_device_configure(struct scsi_device *sdevice) 1551 { 1552 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1553 1554 sdevice->no_write_same = 1; 1555 1556 /* 1557 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1558 * if the device is a MSFT virtual device. If the host is 1559 * WIN10 or newer, allow write_same. 1560 */ 1561 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1562 switch (vmstor_proto_version) { 1563 case VMSTOR_PROTO_VERSION_WIN8: 1564 case VMSTOR_PROTO_VERSION_WIN8_1: 1565 sdevice->scsi_level = SCSI_SPC_3; 1566 break; 1567 } 1568 1569 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1570 sdevice->no_write_same = 0; 1571 } 1572 1573 return 0; 1574 } 1575 1576 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1577 sector_t capacity, int *info) 1578 { 1579 sector_t nsect = capacity; 1580 sector_t cylinders = nsect; 1581 int heads, sectors_pt; 1582 1583 /* 1584 * We are making up these values; let us keep it simple. 1585 */ 1586 heads = 0xff; 1587 sectors_pt = 0x3f; /* Sectors per track */ 1588 sector_div(cylinders, heads * sectors_pt); 1589 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1590 cylinders = 0xffff; 1591 1592 info[0] = heads; 1593 info[1] = sectors_pt; 1594 info[2] = (int)cylinders; 1595 1596 return 0; 1597 } 1598 1599 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1600 { 1601 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1602 struct hv_device *device = host_dev->dev; 1603 1604 struct storvsc_device *stor_device; 1605 struct storvsc_cmd_request *request; 1606 struct vstor_packet *vstor_packet; 1607 int ret, t; 1608 1609 stor_device = get_out_stor_device(device); 1610 if (!stor_device) 1611 return FAILED; 1612 1613 request = &stor_device->reset_request; 1614 vstor_packet = &request->vstor_packet; 1615 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1616 1617 init_completion(&request->wait_event); 1618 1619 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1620 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1621 vstor_packet->vm_srb.path_id = stor_device->path_id; 1622 1623 ret = vmbus_sendpacket(device->channel, vstor_packet, 1624 sizeof(struct vstor_packet), 1625 VMBUS_RQST_RESET, 1626 VM_PKT_DATA_INBAND, 1627 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1628 if (ret != 0) 1629 return FAILED; 1630 1631 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1632 if (t == 0) 1633 return TIMEOUT_ERROR; 1634 1635 1636 /* 1637 * At this point, all outstanding requests in the adapter 1638 * should have been flushed out and return to us 1639 * There is a potential race here where the host may be in 1640 * the process of responding when we return from here. 1641 * Just wait for all in-transit packets to be accounted for 1642 * before we return from here. 1643 */ 1644 storvsc_wait_to_drain(stor_device); 1645 1646 return SUCCESS; 1647 } 1648 1649 /* 1650 * The host guarantees to respond to each command, although I/O latencies might 1651 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1652 * chance to perform EH. 1653 */ 1654 static enum scsi_timeout_action storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1655 { 1656 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1657 if (scmnd->device->host->transportt == fc_transport_template) 1658 return fc_eh_timed_out(scmnd); 1659 #endif 1660 return SCSI_EH_RESET_TIMER; 1661 } 1662 1663 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1664 { 1665 bool allowed = true; 1666 u8 scsi_op = scmnd->cmnd[0]; 1667 1668 switch (scsi_op) { 1669 /* the host does not handle WRITE_SAME, log accident usage */ 1670 case WRITE_SAME: 1671 /* 1672 * smartd sends this command and the host does not handle 1673 * this. So, don't send it. 1674 */ 1675 case SET_WINDOW: 1676 set_host_byte(scmnd, DID_ERROR); 1677 allowed = false; 1678 break; 1679 default: 1680 break; 1681 } 1682 return allowed; 1683 } 1684 1685 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1686 { 1687 int ret; 1688 struct hv_host_device *host_dev = shost_priv(host); 1689 struct hv_device *dev = host_dev->dev; 1690 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1691 struct scatterlist *sgl; 1692 struct vmscsi_request *vm_srb; 1693 struct vmbus_packet_mpb_array *payload; 1694 u32 payload_sz; 1695 u32 length; 1696 1697 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1698 /* 1699 * On legacy hosts filter unimplemented commands. 1700 * Future hosts are expected to correctly handle 1701 * unsupported commands. Furthermore, it is 1702 * possible that some of the currently 1703 * unsupported commands maybe supported in 1704 * future versions of the host. 1705 */ 1706 if (!storvsc_scsi_cmd_ok(scmnd)) { 1707 scsi_done(scmnd); 1708 return 0; 1709 } 1710 } 1711 1712 /* Setup the cmd request */ 1713 cmd_request->cmd = scmnd; 1714 1715 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1716 vm_srb = &cmd_request->vstor_packet.vm_srb; 1717 vm_srb->time_out_value = 60; 1718 1719 vm_srb->srb_flags |= 1720 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1721 1722 if (scmnd->device->tagged_supported) { 1723 vm_srb->srb_flags |= 1724 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1725 vm_srb->queue_tag = SP_UNTAGGED; 1726 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; 1727 } 1728 1729 /* Build the SRB */ 1730 switch (scmnd->sc_data_direction) { 1731 case DMA_TO_DEVICE: 1732 vm_srb->data_in = WRITE_TYPE; 1733 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; 1734 break; 1735 case DMA_FROM_DEVICE: 1736 vm_srb->data_in = READ_TYPE; 1737 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; 1738 break; 1739 case DMA_NONE: 1740 vm_srb->data_in = UNKNOWN_TYPE; 1741 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1742 break; 1743 default: 1744 /* 1745 * This is DMA_BIDIRECTIONAL or something else we are never 1746 * supposed to see here. 1747 */ 1748 WARN(1, "Unexpected data direction: %d\n", 1749 scmnd->sc_data_direction); 1750 return -EINVAL; 1751 } 1752 1753 1754 vm_srb->port_number = host_dev->port; 1755 vm_srb->path_id = scmnd->device->channel; 1756 vm_srb->target_id = scmnd->device->id; 1757 vm_srb->lun = scmnd->device->lun; 1758 1759 vm_srb->cdb_length = scmnd->cmd_len; 1760 1761 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1762 1763 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1764 1765 length = scsi_bufflen(scmnd); 1766 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1767 payload_sz = sizeof(cmd_request->mpb); 1768 1769 if (scsi_sg_count(scmnd)) { 1770 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1771 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1772 struct scatterlist *sg; 1773 unsigned long hvpfn, hvpfns_to_add; 1774 int j, i = 0, sg_count; 1775 1776 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1777 1778 payload_sz = (hvpg_count * sizeof(u64) + 1779 sizeof(struct vmbus_packet_mpb_array)); 1780 payload = kzalloc(payload_sz, GFP_ATOMIC); 1781 if (!payload) 1782 return SCSI_MLQUEUE_DEVICE_BUSY; 1783 } 1784 1785 payload->range.len = length; 1786 payload->range.offset = offset_in_hvpg; 1787 1788 sg_count = scsi_dma_map(scmnd); 1789 if (sg_count < 0) { 1790 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1791 goto err_free_payload; 1792 } 1793 1794 for_each_sg(sgl, sg, sg_count, j) { 1795 /* 1796 * Init values for the current sgl entry. hvpfns_to_add 1797 * is in units of Hyper-V size pages. Handling the 1798 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles 1799 * values of sgl->offset that are larger than PAGE_SIZE. 1800 * Such offsets are handled even on other than the first 1801 * sgl entry, provided they are a multiple of PAGE_SIZE. 1802 */ 1803 hvpfn = HVPFN_DOWN(sg_dma_address(sg)); 1804 hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + 1805 sg_dma_len(sg)) - hvpfn; 1806 1807 /* 1808 * Fill the next portion of the PFN array with 1809 * sequential Hyper-V PFNs for the continguous physical 1810 * memory described by the sgl entry. The end of the 1811 * last sgl should be reached at the same time that 1812 * the PFN array is filled. 1813 */ 1814 while (hvpfns_to_add--) 1815 payload->range.pfn_array[i++] = hvpfn++; 1816 } 1817 } 1818 1819 cmd_request->payload = payload; 1820 cmd_request->payload_sz = payload_sz; 1821 1822 /* Invokes the vsc to start an IO */ 1823 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1824 put_cpu(); 1825 1826 if (ret) 1827 scsi_dma_unmap(scmnd); 1828 1829 if (ret == -EAGAIN) { 1830 /* no more space */ 1831 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1832 goto err_free_payload; 1833 } 1834 1835 return 0; 1836 1837 err_free_payload: 1838 if (payload_sz > sizeof(cmd_request->mpb)) 1839 kfree(payload); 1840 1841 return ret; 1842 } 1843 1844 static struct scsi_host_template scsi_driver = { 1845 .module = THIS_MODULE, 1846 .name = "storvsc_host_t", 1847 .cmd_size = sizeof(struct storvsc_cmd_request), 1848 .bios_param = storvsc_get_chs, 1849 .queuecommand = storvsc_queuecommand, 1850 .eh_host_reset_handler = storvsc_host_reset_handler, 1851 .proc_name = "storvsc_host", 1852 .eh_timed_out = storvsc_eh_timed_out, 1853 .slave_alloc = storvsc_device_alloc, 1854 .slave_configure = storvsc_device_configure, 1855 .cmd_per_lun = 2048, 1856 .this_id = -1, 1857 /* Ensure there are no gaps in presented sgls */ 1858 .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, 1859 .no_write_same = 1, 1860 .track_queue_depth = 1, 1861 .change_queue_depth = storvsc_change_queue_depth, 1862 }; 1863 1864 enum { 1865 SCSI_GUID, 1866 IDE_GUID, 1867 SFC_GUID, 1868 }; 1869 1870 static const struct hv_vmbus_device_id id_table[] = { 1871 /* SCSI guid */ 1872 { HV_SCSI_GUID, 1873 .driver_data = SCSI_GUID 1874 }, 1875 /* IDE guid */ 1876 { HV_IDE_GUID, 1877 .driver_data = IDE_GUID 1878 }, 1879 /* Fibre Channel GUID */ 1880 { 1881 HV_SYNTHFC_GUID, 1882 .driver_data = SFC_GUID 1883 }, 1884 { }, 1885 }; 1886 1887 MODULE_DEVICE_TABLE(vmbus, id_table); 1888 1889 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1890 1891 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1892 { 1893 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1894 } 1895 1896 static int storvsc_probe(struct hv_device *device, 1897 const struct hv_vmbus_device_id *dev_id) 1898 { 1899 int ret; 1900 int num_cpus = num_online_cpus(); 1901 int num_present_cpus = num_present_cpus(); 1902 struct Scsi_Host *host; 1903 struct hv_host_device *host_dev; 1904 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1905 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1906 int target = 0; 1907 struct storvsc_device *stor_device; 1908 int max_sub_channels = 0; 1909 u32 max_xfer_bytes; 1910 1911 /* 1912 * We support sub-channels for storage on SCSI and FC controllers. 1913 * The number of sub-channels offerred is based on the number of 1914 * VCPUs in the guest. 1915 */ 1916 if (!dev_is_ide) 1917 max_sub_channels = 1918 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1919 1920 scsi_driver.can_queue = max_outstanding_req_per_channel * 1921 (max_sub_channels + 1) * 1922 (100 - ring_avail_percent_lowater) / 100; 1923 1924 host = scsi_host_alloc(&scsi_driver, 1925 sizeof(struct hv_host_device)); 1926 if (!host) 1927 return -ENOMEM; 1928 1929 host_dev = shost_priv(host); 1930 memset(host_dev, 0, sizeof(struct hv_host_device)); 1931 1932 host_dev->port = host->host_no; 1933 host_dev->dev = device; 1934 host_dev->host = host; 1935 1936 1937 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1938 if (!stor_device) { 1939 ret = -ENOMEM; 1940 goto err_out0; 1941 } 1942 1943 stor_device->destroy = false; 1944 init_waitqueue_head(&stor_device->waiting_to_drain); 1945 stor_device->device = device; 1946 stor_device->host = host; 1947 spin_lock_init(&stor_device->lock); 1948 hv_set_drvdata(device, stor_device); 1949 dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); 1950 1951 stor_device->port_number = host->host_no; 1952 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); 1953 if (ret) 1954 goto err_out1; 1955 1956 host_dev->path = stor_device->path_id; 1957 host_dev->target = stor_device->target_id; 1958 1959 switch (dev_id->driver_data) { 1960 case SFC_GUID: 1961 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1962 host->max_id = STORVSC_FC_MAX_TARGETS; 1963 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 1964 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1965 host->transportt = fc_transport_template; 1966 #endif 1967 break; 1968 1969 case SCSI_GUID: 1970 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; 1971 host->max_id = STORVSC_MAX_TARGETS; 1972 host->max_channel = STORVSC_MAX_CHANNELS - 1; 1973 break; 1974 1975 default: 1976 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 1977 host->max_id = STORVSC_IDE_MAX_TARGETS; 1978 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 1979 break; 1980 } 1981 /* max cmd length */ 1982 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 1983 /* 1984 * Any reasonable Hyper-V configuration should provide 1985 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, 1986 * protecting it from any weird value. 1987 */ 1988 max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); 1989 /* max_hw_sectors_kb */ 1990 host->max_sectors = max_xfer_bytes >> 9; 1991 /* 1992 * There are 2 requirements for Hyper-V storvsc sgl segments, 1993 * based on which the below calculation for max segments is 1994 * done: 1995 * 1996 * 1. Except for the first and last sgl segment, all sgl segments 1997 * should be align to HV_HYP_PAGE_SIZE, that also means the 1998 * maximum number of segments in a sgl can be calculated by 1999 * dividing the total max transfer length by HV_HYP_PAGE_SIZE. 2000 * 2001 * 2. Except for the first and last, each entry in the SGL must 2002 * have an offset that is a multiple of HV_HYP_PAGE_SIZE. 2003 */ 2004 host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; 2005 /* 2006 * For non-IDE disks, the host supports multiple channels. 2007 * Set the number of HW queues we are supporting. 2008 */ 2009 if (!dev_is_ide) { 2010 if (storvsc_max_hw_queues > num_present_cpus) { 2011 storvsc_max_hw_queues = 0; 2012 storvsc_log(device, STORVSC_LOGGING_WARN, 2013 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2014 } 2015 if (storvsc_max_hw_queues) 2016 host->nr_hw_queues = storvsc_max_hw_queues; 2017 else 2018 host->nr_hw_queues = num_present_cpus; 2019 } 2020 2021 /* 2022 * Set the error handler work queue. 2023 */ 2024 host_dev->handle_error_wq = 2025 alloc_ordered_workqueue("storvsc_error_wq_%d", 2026 0, 2027 host->host_no); 2028 if (!host_dev->handle_error_wq) { 2029 ret = -ENOMEM; 2030 goto err_out2; 2031 } 2032 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2033 /* Register the HBA and start the scsi bus scan */ 2034 ret = scsi_add_host(host, &device->device); 2035 if (ret != 0) 2036 goto err_out3; 2037 2038 if (!dev_is_ide) { 2039 scsi_scan_host(host); 2040 } else { 2041 target = (device->dev_instance.b[5] << 8 | 2042 device->dev_instance.b[4]); 2043 ret = scsi_add_device(host, 0, target, 0); 2044 if (ret) 2045 goto err_out4; 2046 } 2047 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2048 if (host->transportt == fc_transport_template) { 2049 struct fc_rport_identifiers ids = { 2050 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2051 }; 2052 2053 fc_host_node_name(host) = stor_device->node_name; 2054 fc_host_port_name(host) = stor_device->port_name; 2055 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2056 if (!stor_device->rport) { 2057 ret = -ENOMEM; 2058 goto err_out4; 2059 } 2060 } 2061 #endif 2062 return 0; 2063 2064 err_out4: 2065 scsi_remove_host(host); 2066 2067 err_out3: 2068 destroy_workqueue(host_dev->handle_error_wq); 2069 2070 err_out2: 2071 /* 2072 * Once we have connected with the host, we would need to 2073 * invoke storvsc_dev_remove() to rollback this state and 2074 * this call also frees up the stor_device; hence the jump around 2075 * err_out1 label. 2076 */ 2077 storvsc_dev_remove(device); 2078 goto err_out0; 2079 2080 err_out1: 2081 kfree(stor_device->stor_chns); 2082 kfree(stor_device); 2083 2084 err_out0: 2085 scsi_host_put(host); 2086 return ret; 2087 } 2088 2089 /* Change a scsi target's queue depth */ 2090 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2091 { 2092 if (queue_depth > scsi_driver.can_queue) 2093 queue_depth = scsi_driver.can_queue; 2094 2095 return scsi_change_queue_depth(sdev, queue_depth); 2096 } 2097 2098 static int storvsc_remove(struct hv_device *dev) 2099 { 2100 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2101 struct Scsi_Host *host = stor_device->host; 2102 struct hv_host_device *host_dev = shost_priv(host); 2103 2104 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2105 if (host->transportt == fc_transport_template) { 2106 fc_remote_port_delete(stor_device->rport); 2107 fc_remove_host(host); 2108 } 2109 #endif 2110 destroy_workqueue(host_dev->handle_error_wq); 2111 scsi_remove_host(host); 2112 storvsc_dev_remove(dev); 2113 scsi_host_put(host); 2114 2115 return 0; 2116 } 2117 2118 static int storvsc_suspend(struct hv_device *hv_dev) 2119 { 2120 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2121 struct Scsi_Host *host = stor_device->host; 2122 struct hv_host_device *host_dev = shost_priv(host); 2123 2124 storvsc_wait_to_drain(stor_device); 2125 2126 drain_workqueue(host_dev->handle_error_wq); 2127 2128 vmbus_close(hv_dev->channel); 2129 2130 kfree(stor_device->stor_chns); 2131 stor_device->stor_chns = NULL; 2132 2133 cpumask_clear(&stor_device->alloced_cpus); 2134 2135 return 0; 2136 } 2137 2138 static int storvsc_resume(struct hv_device *hv_dev) 2139 { 2140 int ret; 2141 2142 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size, 2143 hv_dev_is_fc(hv_dev)); 2144 return ret; 2145 } 2146 2147 static struct hv_driver storvsc_drv = { 2148 .name = KBUILD_MODNAME, 2149 .id_table = id_table, 2150 .probe = storvsc_probe, 2151 .remove = storvsc_remove, 2152 .suspend = storvsc_suspend, 2153 .resume = storvsc_resume, 2154 .driver = { 2155 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2156 }, 2157 }; 2158 2159 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2160 static struct fc_function_template fc_transport_functions = { 2161 .show_host_node_name = 1, 2162 .show_host_port_name = 1, 2163 }; 2164 #endif 2165 2166 static int __init storvsc_drv_init(void) 2167 { 2168 int ret; 2169 2170 /* 2171 * Divide the ring buffer data size (which is 1 page less 2172 * than the ring buffer size since that page is reserved for 2173 * the ring buffer indices) by the max request size (which is 2174 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2175 */ 2176 max_outstanding_req_per_channel = 2177 ((storvsc_ringbuffer_size - PAGE_SIZE) / 2178 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2179 sizeof(struct vstor_packet) + sizeof(u64), 2180 sizeof(u64))); 2181 2182 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2183 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2184 if (!fc_transport_template) 2185 return -ENODEV; 2186 #endif 2187 2188 ret = vmbus_driver_register(&storvsc_drv); 2189 2190 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2191 if (ret) 2192 fc_release_transport(fc_transport_template); 2193 #endif 2194 2195 return ret; 2196 } 2197 2198 static void __exit storvsc_drv_exit(void) 2199 { 2200 vmbus_driver_unregister(&storvsc_drv); 2201 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2202 fc_release_transport(fc_transport_template); 2203 #endif 2204 } 2205 2206 MODULE_LICENSE("GPL"); 2207 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2208 module_init(storvsc_drv_init); 2209 module_exit(storvsc_drv_exit); 2210