1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <scsi/scsi.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_host.h> 27 #include <scsi/scsi_device.h> 28 #include <scsi/scsi_tcq.h> 29 #include <scsi/scsi_eh.h> 30 #include <scsi/scsi_devinfo.h> 31 #include <scsi/scsi_dbg.h> 32 #include <scsi/scsi_transport_fc.h> 33 #include <scsi/scsi_transport.h> 34 35 /* 36 * All wire protocol details (storage protocol between the guest and the host) 37 * are consolidated here. 38 * 39 * Begin protocol definitions. 40 */ 41 42 /* 43 * Version history: 44 * V1 Beta: 0.1 45 * V1 RC < 2008/1/31: 1.0 46 * V1 RC > 2008/1/31: 2.0 47 * Win7: 4.2 48 * Win8: 5.1 49 * Win8.1: 6.0 50 * Win10: 6.2 51 */ 52 53 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 54 (((MINOR_) & 0xff))) 55 56 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 57 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 58 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 59 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 60 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 61 62 /* Packet structure describing virtual storage requests. */ 63 enum vstor_packet_operation { 64 VSTOR_OPERATION_COMPLETE_IO = 1, 65 VSTOR_OPERATION_REMOVE_DEVICE = 2, 66 VSTOR_OPERATION_EXECUTE_SRB = 3, 67 VSTOR_OPERATION_RESET_LUN = 4, 68 VSTOR_OPERATION_RESET_ADAPTER = 5, 69 VSTOR_OPERATION_RESET_BUS = 6, 70 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 71 VSTOR_OPERATION_END_INITIALIZATION = 8, 72 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 73 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 74 VSTOR_OPERATION_ENUMERATE_BUS = 11, 75 VSTOR_OPERATION_FCHBA_DATA = 12, 76 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 77 VSTOR_OPERATION_MAXIMUM = 13 78 }; 79 80 /* 81 * WWN packet for Fibre Channel HBA 82 */ 83 84 struct hv_fc_wwn_packet { 85 u8 primary_active; 86 u8 reserved1[3]; 87 u8 primary_port_wwn[8]; 88 u8 primary_node_wwn[8]; 89 u8 secondary_port_wwn[8]; 90 u8 secondary_node_wwn[8]; 91 }; 92 93 94 95 /* 96 * SRB Flag Bits 97 */ 98 99 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 100 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 101 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 102 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 103 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 104 #define SRB_FLAGS_DATA_IN 0x00000040 105 #define SRB_FLAGS_DATA_OUT 0x00000080 106 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 107 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 108 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 109 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 110 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 111 112 /* 113 * This flag indicates the request is part of the workflow for processing a D3. 114 */ 115 #define SRB_FLAGS_D3_PROCESSING 0x00000800 116 #define SRB_FLAGS_IS_ACTIVE 0x00010000 117 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 118 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 119 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 120 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 121 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 122 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 123 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 124 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 125 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 126 127 #define SP_UNTAGGED ((unsigned char) ~0) 128 #define SRB_SIMPLE_TAG_REQUEST 0x20 129 130 /* 131 * Platform neutral description of a scsi request - 132 * this remains the same across the write regardless of 32/64 bit 133 * note: it's patterned off the SCSI_PASS_THROUGH structure 134 */ 135 #define STORVSC_MAX_CMD_LEN 0x10 136 137 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE 0x14 138 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE 0x12 139 140 #define STORVSC_SENSE_BUFFER_SIZE 0x14 141 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 142 143 /* 144 * Sense buffer size changed in win8; have a run-time 145 * variable to track the size we should use. This value will 146 * likely change during protocol negotiation but it is valid 147 * to start by assuming pre-Win8. 148 */ 149 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE; 150 151 /* 152 * The storage protocol version is determined during the 153 * initial exchange with the host. It will indicate which 154 * storage functionality is available in the host. 155 */ 156 static int vmstor_proto_version; 157 158 #define STORVSC_LOGGING_NONE 0 159 #define STORVSC_LOGGING_ERROR 1 160 #define STORVSC_LOGGING_WARN 2 161 162 static int logging_level = STORVSC_LOGGING_ERROR; 163 module_param(logging_level, int, S_IRUGO|S_IWUSR); 164 MODULE_PARM_DESC(logging_level, 165 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 166 167 static inline bool do_logging(int level) 168 { 169 return logging_level >= level; 170 } 171 172 #define storvsc_log(dev, level, fmt, ...) \ 173 do { \ 174 if (do_logging(level)) \ 175 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 176 } while (0) 177 178 struct vmscsi_win8_extension { 179 /* 180 * The following were added in Windows 8 181 */ 182 u16 reserve; 183 u8 queue_tag; 184 u8 queue_action; 185 u32 srb_flags; 186 u32 time_out_value; 187 u32 queue_sort_ey; 188 } __packed; 189 190 struct vmscsi_request { 191 u16 length; 192 u8 srb_status; 193 u8 scsi_status; 194 195 u8 port_number; 196 u8 path_id; 197 u8 target_id; 198 u8 lun; 199 200 u8 cdb_length; 201 u8 sense_info_length; 202 u8 data_in; 203 u8 reserved; 204 205 u32 data_transfer_length; 206 207 union { 208 u8 cdb[STORVSC_MAX_CMD_LEN]; 209 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 210 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 211 }; 212 /* 213 * The following was added in win8. 214 */ 215 struct vmscsi_win8_extension win8_extension; 216 217 } __attribute((packed)); 218 219 220 /* 221 * The size of the vmscsi_request has changed in win8. The 222 * additional size is because of new elements added to the 223 * structure. These elements are valid only when we are talking 224 * to a win8 host. 225 * Track the correction to size we need to apply. This value 226 * will likely change during protocol negotiation but it is 227 * valid to start by assuming pre-Win8. 228 */ 229 static int vmscsi_size_delta = sizeof(struct vmscsi_win8_extension); 230 231 /* 232 * The list of storage protocols in order of preference. 233 */ 234 struct vmstor_protocol { 235 int protocol_version; 236 int sense_buffer_size; 237 int vmscsi_size_delta; 238 }; 239 240 241 static const struct vmstor_protocol vmstor_protocols[] = { 242 { 243 VMSTOR_PROTO_VERSION_WIN10, 244 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE, 245 0 246 }, 247 { 248 VMSTOR_PROTO_VERSION_WIN8_1, 249 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE, 250 0 251 }, 252 { 253 VMSTOR_PROTO_VERSION_WIN8, 254 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE, 255 0 256 }, 257 { 258 VMSTOR_PROTO_VERSION_WIN7, 259 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE, 260 sizeof(struct vmscsi_win8_extension), 261 }, 262 { 263 VMSTOR_PROTO_VERSION_WIN6, 264 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE, 265 sizeof(struct vmscsi_win8_extension), 266 } 267 }; 268 269 270 /* 271 * This structure is sent during the initialization phase to get the different 272 * properties of the channel. 273 */ 274 275 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 276 277 struct vmstorage_channel_properties { 278 u32 reserved; 279 u16 max_channel_cnt; 280 u16 reserved1; 281 282 u32 flags; 283 u32 max_transfer_bytes; 284 285 u64 reserved2; 286 } __packed; 287 288 /* This structure is sent during the storage protocol negotiations. */ 289 struct vmstorage_protocol_version { 290 /* Major (MSW) and minor (LSW) version numbers. */ 291 u16 major_minor; 292 293 /* 294 * Revision number is auto-incremented whenever this file is changed 295 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 296 * definitely indicate incompatibility--but it does indicate mismatched 297 * builds. 298 * This is only used on the windows side. Just set it to 0. 299 */ 300 u16 revision; 301 } __packed; 302 303 /* Channel Property Flags */ 304 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 305 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 306 307 struct vstor_packet { 308 /* Requested operation type */ 309 enum vstor_packet_operation operation; 310 311 /* Flags - see below for values */ 312 u32 flags; 313 314 /* Status of the request returned from the server side. */ 315 u32 status; 316 317 /* Data payload area */ 318 union { 319 /* 320 * Structure used to forward SCSI commands from the 321 * client to the server. 322 */ 323 struct vmscsi_request vm_srb; 324 325 /* Structure used to query channel properties. */ 326 struct vmstorage_channel_properties storage_channel_properties; 327 328 /* Used during version negotiations. */ 329 struct vmstorage_protocol_version version; 330 331 /* Fibre channel address packet */ 332 struct hv_fc_wwn_packet wwn_packet; 333 334 /* Number of sub-channels to create */ 335 u16 sub_channel_count; 336 337 /* This will be the maximum of the union members */ 338 u8 buffer[0x34]; 339 }; 340 } __packed; 341 342 /* 343 * Packet Flags: 344 * 345 * This flag indicates that the server should send back a completion for this 346 * packet. 347 */ 348 349 #define REQUEST_COMPLETION_FLAG 0x1 350 351 /* Matches Windows-end */ 352 enum storvsc_request_type { 353 WRITE_TYPE = 0, 354 READ_TYPE, 355 UNKNOWN_TYPE, 356 }; 357 358 /* 359 * SRB status codes and masks; a subset of the codes used here. 360 */ 361 362 #define SRB_STATUS_AUTOSENSE_VALID 0x80 363 #define SRB_STATUS_QUEUE_FROZEN 0x40 364 #define SRB_STATUS_INVALID_LUN 0x20 365 #define SRB_STATUS_SUCCESS 0x01 366 #define SRB_STATUS_ABORTED 0x02 367 #define SRB_STATUS_ERROR 0x04 368 #define SRB_STATUS_DATA_OVERRUN 0x12 369 370 #define SRB_STATUS(status) \ 371 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 372 /* 373 * This is the end of Protocol specific defines. 374 */ 375 376 static int storvsc_ringbuffer_size = (128 * 1024); 377 static u32 max_outstanding_req_per_channel; 378 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 379 380 static int storvsc_vcpus_per_sub_channel = 4; 381 382 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 383 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 384 385 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 386 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 387 388 static int ring_avail_percent_lowater = 10; 389 module_param(ring_avail_percent_lowater, int, S_IRUGO); 390 MODULE_PARM_DESC(ring_avail_percent_lowater, 391 "Select a channel if available ring size > this in percent"); 392 393 /* 394 * Timeout in seconds for all devices managed by this driver. 395 */ 396 static int storvsc_timeout = 180; 397 398 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 399 static struct scsi_transport_template *fc_transport_template; 400 #endif 401 402 static struct scsi_host_template scsi_driver; 403 static void storvsc_on_channel_callback(void *context); 404 405 #define STORVSC_MAX_LUNS_PER_TARGET 255 406 #define STORVSC_MAX_TARGETS 2 407 #define STORVSC_MAX_CHANNELS 8 408 409 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 410 #define STORVSC_FC_MAX_TARGETS 128 411 #define STORVSC_FC_MAX_CHANNELS 8 412 413 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 414 #define STORVSC_IDE_MAX_TARGETS 1 415 #define STORVSC_IDE_MAX_CHANNELS 1 416 417 struct storvsc_cmd_request { 418 struct scsi_cmnd *cmd; 419 420 struct hv_device *device; 421 422 /* Synchronize the request/response if needed */ 423 struct completion wait_event; 424 425 struct vmbus_channel_packet_multipage_buffer mpb; 426 struct vmbus_packet_mpb_array *payload; 427 u32 payload_sz; 428 429 struct vstor_packet vstor_packet; 430 }; 431 432 433 /* A storvsc device is a device object that contains a vmbus channel */ 434 struct storvsc_device { 435 struct hv_device *device; 436 437 bool destroy; 438 bool drain_notify; 439 atomic_t num_outstanding_req; 440 struct Scsi_Host *host; 441 442 wait_queue_head_t waiting_to_drain; 443 444 /* 445 * Each unique Port/Path/Target represents 1 channel ie scsi 446 * controller. In reality, the pathid, targetid is always 0 447 * and the port is set by us 448 */ 449 unsigned int port_number; 450 unsigned char path_id; 451 unsigned char target_id; 452 453 /* 454 * Max I/O, the device can support. 455 */ 456 u32 max_transfer_bytes; 457 /* 458 * Number of sub-channels we will open. 459 */ 460 u16 num_sc; 461 struct vmbus_channel **stor_chns; 462 /* 463 * Mask of CPUs bound to subchannels. 464 */ 465 struct cpumask alloced_cpus; 466 /* 467 * Serializes modifications of stor_chns[] from storvsc_do_io() 468 * and storvsc_change_target_cpu(). 469 */ 470 spinlock_t lock; 471 /* Used for vsc/vsp channel reset process */ 472 struct storvsc_cmd_request init_request; 473 struct storvsc_cmd_request reset_request; 474 /* 475 * Currently active port and node names for FC devices. 476 */ 477 u64 node_name; 478 u64 port_name; 479 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 480 struct fc_rport *rport; 481 #endif 482 }; 483 484 struct hv_host_device { 485 struct hv_device *dev; 486 unsigned int port; 487 unsigned char path; 488 unsigned char target; 489 struct workqueue_struct *handle_error_wq; 490 struct work_struct host_scan_work; 491 struct Scsi_Host *host; 492 }; 493 494 struct storvsc_scan_work { 495 struct work_struct work; 496 struct Scsi_Host *host; 497 u8 lun; 498 u8 tgt_id; 499 }; 500 501 static void storvsc_device_scan(struct work_struct *work) 502 { 503 struct storvsc_scan_work *wrk; 504 struct scsi_device *sdev; 505 506 wrk = container_of(work, struct storvsc_scan_work, work); 507 508 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 509 if (!sdev) 510 goto done; 511 scsi_rescan_device(&sdev->sdev_gendev); 512 scsi_device_put(sdev); 513 514 done: 515 kfree(wrk); 516 } 517 518 static void storvsc_host_scan(struct work_struct *work) 519 { 520 struct Scsi_Host *host; 521 struct scsi_device *sdev; 522 struct hv_host_device *host_device = 523 container_of(work, struct hv_host_device, host_scan_work); 524 525 host = host_device->host; 526 /* 527 * Before scanning the host, first check to see if any of the 528 * currrently known devices have been hot removed. We issue a 529 * "unit ready" command against all currently known devices. 530 * This I/O will result in an error for devices that have been 531 * removed. As part of handling the I/O error, we remove the device. 532 * 533 * When a LUN is added or removed, the host sends us a signal to 534 * scan the host. Thus we are forced to discover the LUNs that 535 * may have been removed this way. 536 */ 537 mutex_lock(&host->scan_mutex); 538 shost_for_each_device(sdev, host) 539 scsi_test_unit_ready(sdev, 1, 1, NULL); 540 mutex_unlock(&host->scan_mutex); 541 /* 542 * Now scan the host to discover LUNs that may have been added. 543 */ 544 scsi_scan_host(host); 545 } 546 547 static void storvsc_remove_lun(struct work_struct *work) 548 { 549 struct storvsc_scan_work *wrk; 550 struct scsi_device *sdev; 551 552 wrk = container_of(work, struct storvsc_scan_work, work); 553 if (!scsi_host_get(wrk->host)) 554 goto done; 555 556 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 557 558 if (sdev) { 559 scsi_remove_device(sdev); 560 scsi_device_put(sdev); 561 } 562 scsi_host_put(wrk->host); 563 564 done: 565 kfree(wrk); 566 } 567 568 569 /* 570 * We can get incoming messages from the host that are not in response to 571 * messages that we have sent out. An example of this would be messages 572 * received by the guest to notify dynamic addition/removal of LUNs. To 573 * deal with potential race conditions where the driver may be in the 574 * midst of being unloaded when we might receive an unsolicited message 575 * from the host, we have implemented a mechanism to gurantee sequential 576 * consistency: 577 * 578 * 1) Once the device is marked as being destroyed, we will fail all 579 * outgoing messages. 580 * 2) We permit incoming messages when the device is being destroyed, 581 * only to properly account for messages already sent out. 582 */ 583 584 static inline struct storvsc_device *get_out_stor_device( 585 struct hv_device *device) 586 { 587 struct storvsc_device *stor_device; 588 589 stor_device = hv_get_drvdata(device); 590 591 if (stor_device && stor_device->destroy) 592 stor_device = NULL; 593 594 return stor_device; 595 } 596 597 598 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 599 { 600 dev->drain_notify = true; 601 wait_event(dev->waiting_to_drain, 602 atomic_read(&dev->num_outstanding_req) == 0); 603 dev->drain_notify = false; 604 } 605 606 static inline struct storvsc_device *get_in_stor_device( 607 struct hv_device *device) 608 { 609 struct storvsc_device *stor_device; 610 611 stor_device = hv_get_drvdata(device); 612 613 if (!stor_device) 614 goto get_in_err; 615 616 /* 617 * If the device is being destroyed; allow incoming 618 * traffic only to cleanup outstanding requests. 619 */ 620 621 if (stor_device->destroy && 622 (atomic_read(&stor_device->num_outstanding_req) == 0)) 623 stor_device = NULL; 624 625 get_in_err: 626 return stor_device; 627 628 } 629 630 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 631 u32 new) 632 { 633 struct storvsc_device *stor_device; 634 struct vmbus_channel *cur_chn; 635 bool old_is_alloced = false; 636 struct hv_device *device; 637 unsigned long flags; 638 int cpu; 639 640 device = channel->primary_channel ? 641 channel->primary_channel->device_obj 642 : channel->device_obj; 643 stor_device = get_out_stor_device(device); 644 if (!stor_device) 645 return; 646 647 /* See storvsc_do_io() -> get_og_chn(). */ 648 spin_lock_irqsave(&stor_device->lock, flags); 649 650 /* 651 * Determines if the storvsc device has other channels assigned to 652 * the "old" CPU to update the alloced_cpus mask and the stor_chns 653 * array. 654 */ 655 if (device->channel != channel && device->channel->target_cpu == old) { 656 cur_chn = device->channel; 657 old_is_alloced = true; 658 goto old_is_alloced; 659 } 660 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 661 if (cur_chn == channel) 662 continue; 663 if (cur_chn->target_cpu == old) { 664 old_is_alloced = true; 665 goto old_is_alloced; 666 } 667 } 668 669 old_is_alloced: 670 if (old_is_alloced) 671 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 672 else 673 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 674 675 /* "Flush" the stor_chns array. */ 676 for_each_possible_cpu(cpu) { 677 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 678 cpu, &stor_device->alloced_cpus)) 679 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 680 } 681 682 WRITE_ONCE(stor_device->stor_chns[new], channel); 683 cpumask_set_cpu(new, &stor_device->alloced_cpus); 684 685 spin_unlock_irqrestore(&stor_device->lock, flags); 686 } 687 688 static void handle_sc_creation(struct vmbus_channel *new_sc) 689 { 690 struct hv_device *device = new_sc->primary_channel->device_obj; 691 struct device *dev = &device->device; 692 struct storvsc_device *stor_device; 693 struct vmstorage_channel_properties props; 694 int ret; 695 696 stor_device = get_out_stor_device(device); 697 if (!stor_device) 698 return; 699 700 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 701 702 /* 703 * The size of vmbus_requestor is an upper bound on the number of requests 704 * that can be in-progress at any one time across all channels. 705 */ 706 new_sc->rqstor_size = scsi_driver.can_queue; 707 708 ret = vmbus_open(new_sc, 709 storvsc_ringbuffer_size, 710 storvsc_ringbuffer_size, 711 (void *)&props, 712 sizeof(struct vmstorage_channel_properties), 713 storvsc_on_channel_callback, new_sc); 714 715 /* In case vmbus_open() fails, we don't use the sub-channel. */ 716 if (ret != 0) { 717 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 718 return; 719 } 720 721 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 722 723 /* Add the sub-channel to the array of available channels. */ 724 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 725 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 726 } 727 728 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 729 { 730 struct device *dev = &device->device; 731 struct storvsc_device *stor_device; 732 int num_sc; 733 struct storvsc_cmd_request *request; 734 struct vstor_packet *vstor_packet; 735 int ret, t; 736 737 /* 738 * If the number of CPUs is artificially restricted, such as 739 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 740 * sub-channels >= the number of CPUs. These sub-channels 741 * should not be created. The primary channel is already created 742 * and assigned to one CPU, so check against # CPUs - 1. 743 */ 744 num_sc = min((int)(num_online_cpus() - 1), max_chns); 745 if (!num_sc) 746 return; 747 748 stor_device = get_out_stor_device(device); 749 if (!stor_device) 750 return; 751 752 stor_device->num_sc = num_sc; 753 request = &stor_device->init_request; 754 vstor_packet = &request->vstor_packet; 755 756 /* 757 * Establish a handler for dealing with subchannels. 758 */ 759 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 760 761 /* 762 * Request the host to create sub-channels. 763 */ 764 memset(request, 0, sizeof(struct storvsc_cmd_request)); 765 init_completion(&request->wait_event); 766 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 767 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 768 vstor_packet->sub_channel_count = num_sc; 769 770 ret = vmbus_sendpacket(device->channel, vstor_packet, 771 (sizeof(struct vstor_packet) - 772 vmscsi_size_delta), 773 (unsigned long)request, 774 VM_PKT_DATA_INBAND, 775 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 776 777 if (ret != 0) { 778 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 779 return; 780 } 781 782 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 783 if (t == 0) { 784 dev_err(dev, "Failed to create sub-channel: timed out\n"); 785 return; 786 } 787 788 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 789 vstor_packet->status != 0) { 790 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 791 vstor_packet->operation, vstor_packet->status); 792 return; 793 } 794 795 /* 796 * We need to do nothing here, because vmbus_process_offer() 797 * invokes channel->sc_creation_callback, which will open and use 798 * the sub-channel(s). 799 */ 800 } 801 802 static void cache_wwn(struct storvsc_device *stor_device, 803 struct vstor_packet *vstor_packet) 804 { 805 /* 806 * Cache the currently active port and node ww names. 807 */ 808 if (vstor_packet->wwn_packet.primary_active) { 809 stor_device->node_name = 810 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 811 stor_device->port_name = 812 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 813 } else { 814 stor_device->node_name = 815 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 816 stor_device->port_name = 817 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 818 } 819 } 820 821 822 static int storvsc_execute_vstor_op(struct hv_device *device, 823 struct storvsc_cmd_request *request, 824 bool status_check) 825 { 826 struct vstor_packet *vstor_packet; 827 int ret, t; 828 829 vstor_packet = &request->vstor_packet; 830 831 init_completion(&request->wait_event); 832 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 833 834 ret = vmbus_sendpacket(device->channel, vstor_packet, 835 (sizeof(struct vstor_packet) - 836 vmscsi_size_delta), 837 (unsigned long)request, 838 VM_PKT_DATA_INBAND, 839 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 840 if (ret != 0) 841 return ret; 842 843 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 844 if (t == 0) 845 return -ETIMEDOUT; 846 847 if (!status_check) 848 return ret; 849 850 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 851 vstor_packet->status != 0) 852 return -EINVAL; 853 854 return ret; 855 } 856 857 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 858 { 859 struct storvsc_device *stor_device; 860 struct storvsc_cmd_request *request; 861 struct vstor_packet *vstor_packet; 862 int ret, i; 863 int max_chns; 864 bool process_sub_channels = false; 865 866 stor_device = get_out_stor_device(device); 867 if (!stor_device) 868 return -ENODEV; 869 870 request = &stor_device->init_request; 871 vstor_packet = &request->vstor_packet; 872 873 /* 874 * Now, initiate the vsc/vsp initialization protocol on the open 875 * channel 876 */ 877 memset(request, 0, sizeof(struct storvsc_cmd_request)); 878 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 879 ret = storvsc_execute_vstor_op(device, request, true); 880 if (ret) 881 return ret; 882 /* 883 * Query host supported protocol version. 884 */ 885 886 for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) { 887 /* reuse the packet for version range supported */ 888 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 889 vstor_packet->operation = 890 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 891 892 vstor_packet->version.major_minor = 893 vmstor_protocols[i].protocol_version; 894 895 /* 896 * The revision number is only used in Windows; set it to 0. 897 */ 898 vstor_packet->version.revision = 0; 899 ret = storvsc_execute_vstor_op(device, request, false); 900 if (ret != 0) 901 return ret; 902 903 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 904 return -EINVAL; 905 906 if (vstor_packet->status == 0) { 907 vmstor_proto_version = 908 vmstor_protocols[i].protocol_version; 909 910 sense_buffer_size = 911 vmstor_protocols[i].sense_buffer_size; 912 913 vmscsi_size_delta = 914 vmstor_protocols[i].vmscsi_size_delta; 915 916 break; 917 } 918 } 919 920 if (vstor_packet->status != 0) 921 return -EINVAL; 922 923 924 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 925 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 926 ret = storvsc_execute_vstor_op(device, request, true); 927 if (ret != 0) 928 return ret; 929 930 /* 931 * Check to see if multi-channel support is there. 932 * Hosts that implement protocol version of 5.1 and above 933 * support multi-channel. 934 */ 935 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 936 937 /* 938 * Allocate state to manage the sub-channels. 939 * We allocate an array based on the numbers of possible CPUs 940 * (Hyper-V does not support cpu online/offline). 941 * This Array will be sparseley populated with unique 942 * channels - primary + sub-channels. 943 * We will however populate all the slots to evenly distribute 944 * the load. 945 */ 946 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 947 GFP_KERNEL); 948 if (stor_device->stor_chns == NULL) 949 return -ENOMEM; 950 951 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 952 953 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 954 cpumask_set_cpu(device->channel->target_cpu, 955 &stor_device->alloced_cpus); 956 957 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) { 958 if (vstor_packet->storage_channel_properties.flags & 959 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 960 process_sub_channels = true; 961 } 962 stor_device->max_transfer_bytes = 963 vstor_packet->storage_channel_properties.max_transfer_bytes; 964 965 if (!is_fc) 966 goto done; 967 968 /* 969 * For FC devices retrieve FC HBA data. 970 */ 971 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 972 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 973 ret = storvsc_execute_vstor_op(device, request, true); 974 if (ret != 0) 975 return ret; 976 977 /* 978 * Cache the currently active port and node ww names. 979 */ 980 cache_wwn(stor_device, vstor_packet); 981 982 done: 983 984 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 985 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 986 ret = storvsc_execute_vstor_op(device, request, true); 987 if (ret != 0) 988 return ret; 989 990 if (process_sub_channels) 991 handle_multichannel_storage(device, max_chns); 992 993 return ret; 994 } 995 996 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 997 struct scsi_cmnd *scmnd, 998 struct Scsi_Host *host, 999 u8 asc, u8 ascq) 1000 { 1001 struct storvsc_scan_work *wrk; 1002 void (*process_err_fn)(struct work_struct *work); 1003 struct hv_host_device *host_dev = shost_priv(host); 1004 bool do_work = false; 1005 1006 switch (SRB_STATUS(vm_srb->srb_status)) { 1007 case SRB_STATUS_ERROR: 1008 /* 1009 * Let upper layer deal with error when 1010 * sense message is present. 1011 */ 1012 1013 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) 1014 break; 1015 /* 1016 * If there is an error; offline the device since all 1017 * error recovery strategies would have already been 1018 * deployed on the host side. However, if the command 1019 * were a pass-through command deal with it appropriately. 1020 */ 1021 switch (scmnd->cmnd[0]) { 1022 case ATA_16: 1023 case ATA_12: 1024 set_host_byte(scmnd, DID_PASSTHROUGH); 1025 break; 1026 /* 1027 * On Some Windows hosts TEST_UNIT_READY command can return 1028 * SRB_STATUS_ERROR, let the upper level code deal with it 1029 * based on the sense information. 1030 */ 1031 case TEST_UNIT_READY: 1032 break; 1033 default: 1034 set_host_byte(scmnd, DID_ERROR); 1035 } 1036 break; 1037 case SRB_STATUS_INVALID_LUN: 1038 set_host_byte(scmnd, DID_NO_CONNECT); 1039 do_work = true; 1040 process_err_fn = storvsc_remove_lun; 1041 break; 1042 case SRB_STATUS_ABORTED: 1043 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID && 1044 (asc == 0x2a) && (ascq == 0x9)) { 1045 do_work = true; 1046 process_err_fn = storvsc_device_scan; 1047 /* 1048 * Retry the I/O that triggered this. 1049 */ 1050 set_host_byte(scmnd, DID_REQUEUE); 1051 } 1052 break; 1053 } 1054 1055 if (!do_work) 1056 return; 1057 1058 /* 1059 * We need to schedule work to process this error; schedule it. 1060 */ 1061 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1062 if (!wrk) { 1063 set_host_byte(scmnd, DID_TARGET_FAILURE); 1064 return; 1065 } 1066 1067 wrk->host = host; 1068 wrk->lun = vm_srb->lun; 1069 wrk->tgt_id = vm_srb->target_id; 1070 INIT_WORK(&wrk->work, process_err_fn); 1071 queue_work(host_dev->handle_error_wq, &wrk->work); 1072 } 1073 1074 1075 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1076 struct storvsc_device *stor_dev) 1077 { 1078 struct scsi_cmnd *scmnd = cmd_request->cmd; 1079 struct scsi_sense_hdr sense_hdr; 1080 struct vmscsi_request *vm_srb; 1081 u32 data_transfer_length; 1082 struct Scsi_Host *host; 1083 u32 payload_sz = cmd_request->payload_sz; 1084 void *payload = cmd_request->payload; 1085 1086 host = stor_dev->host; 1087 1088 vm_srb = &cmd_request->vstor_packet.vm_srb; 1089 data_transfer_length = vm_srb->data_transfer_length; 1090 1091 scmnd->result = vm_srb->scsi_status; 1092 1093 if (scmnd->result) { 1094 if (scsi_normalize_sense(scmnd->sense_buffer, 1095 SCSI_SENSE_BUFFERSIZE, &sense_hdr) && 1096 !(sense_hdr.sense_key == NOT_READY && 1097 sense_hdr.asc == 0x03A) && 1098 do_logging(STORVSC_LOGGING_ERROR)) 1099 scsi_print_sense_hdr(scmnd->device, "storvsc", 1100 &sense_hdr); 1101 } 1102 1103 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1104 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1105 sense_hdr.ascq); 1106 /* 1107 * The Windows driver set data_transfer_length on 1108 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1109 * is untouched. In these cases we set it to 0. 1110 */ 1111 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1112 data_transfer_length = 0; 1113 } 1114 1115 /* Validate data_transfer_length (from Hyper-V) */ 1116 if (data_transfer_length > cmd_request->payload->range.len) 1117 data_transfer_length = cmd_request->payload->range.len; 1118 1119 scsi_set_resid(scmnd, 1120 cmd_request->payload->range.len - data_transfer_length); 1121 1122 scmnd->scsi_done(scmnd); 1123 1124 if (payload_sz > 1125 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1126 kfree(payload); 1127 } 1128 1129 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1130 struct vstor_packet *vstor_packet, 1131 struct storvsc_cmd_request *request) 1132 { 1133 struct vstor_packet *stor_pkt; 1134 struct hv_device *device = stor_device->device; 1135 1136 stor_pkt = &request->vstor_packet; 1137 1138 /* 1139 * The current SCSI handling on the host side does 1140 * not correctly handle: 1141 * INQUIRY command with page code parameter set to 0x80 1142 * MODE_SENSE command with cmd[2] == 0x1c 1143 * 1144 * Setup srb and scsi status so this won't be fatal. 1145 * We do this so we can distinguish truly fatal failues 1146 * (srb status == 0x4) and off-line the device in that case. 1147 */ 1148 1149 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1150 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { 1151 vstor_packet->vm_srb.scsi_status = 0; 1152 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1153 } 1154 1155 1156 /* Copy over the status...etc */ 1157 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1158 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1159 1160 /* Validate sense_info_length (from Hyper-V) */ 1161 if (vstor_packet->vm_srb.sense_info_length > sense_buffer_size) 1162 vstor_packet->vm_srb.sense_info_length = sense_buffer_size; 1163 1164 stor_pkt->vm_srb.sense_info_length = 1165 vstor_packet->vm_srb.sense_info_length; 1166 1167 if (vstor_packet->vm_srb.scsi_status != 0 || 1168 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) 1169 storvsc_log(device, STORVSC_LOGGING_WARN, 1170 "cmd 0x%x scsi status 0x%x srb status 0x%x\n", 1171 stor_pkt->vm_srb.cdb[0], 1172 vstor_packet->vm_srb.scsi_status, 1173 vstor_packet->vm_srb.srb_status); 1174 1175 if ((vstor_packet->vm_srb.scsi_status & 0xFF) == 0x02) { 1176 /* CHECK_CONDITION */ 1177 if (vstor_packet->vm_srb.srb_status & 1178 SRB_STATUS_AUTOSENSE_VALID) { 1179 /* autosense data available */ 1180 1181 storvsc_log(device, STORVSC_LOGGING_WARN, 1182 "stor pkt %p autosense data valid - len %d\n", 1183 request, vstor_packet->vm_srb.sense_info_length); 1184 1185 memcpy(request->cmd->sense_buffer, 1186 vstor_packet->vm_srb.sense_data, 1187 vstor_packet->vm_srb.sense_info_length); 1188 1189 } 1190 } 1191 1192 stor_pkt->vm_srb.data_transfer_length = 1193 vstor_packet->vm_srb.data_transfer_length; 1194 1195 storvsc_command_completion(request, stor_device); 1196 1197 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1198 stor_device->drain_notify) 1199 wake_up(&stor_device->waiting_to_drain); 1200 1201 1202 } 1203 1204 static void storvsc_on_receive(struct storvsc_device *stor_device, 1205 struct vstor_packet *vstor_packet, 1206 struct storvsc_cmd_request *request) 1207 { 1208 struct hv_host_device *host_dev; 1209 switch (vstor_packet->operation) { 1210 case VSTOR_OPERATION_COMPLETE_IO: 1211 storvsc_on_io_completion(stor_device, vstor_packet, request); 1212 break; 1213 1214 case VSTOR_OPERATION_REMOVE_DEVICE: 1215 case VSTOR_OPERATION_ENUMERATE_BUS: 1216 host_dev = shost_priv(stor_device->host); 1217 queue_work( 1218 host_dev->handle_error_wq, &host_dev->host_scan_work); 1219 break; 1220 1221 case VSTOR_OPERATION_FCHBA_DATA: 1222 cache_wwn(stor_device, vstor_packet); 1223 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1224 fc_host_node_name(stor_device->host) = stor_device->node_name; 1225 fc_host_port_name(stor_device->host) = stor_device->port_name; 1226 #endif 1227 break; 1228 default: 1229 break; 1230 } 1231 } 1232 1233 static void storvsc_on_channel_callback(void *context) 1234 { 1235 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1236 const struct vmpacket_descriptor *desc; 1237 struct hv_device *device; 1238 struct storvsc_device *stor_device; 1239 1240 if (channel->primary_channel != NULL) 1241 device = channel->primary_channel->device_obj; 1242 else 1243 device = channel->device_obj; 1244 1245 stor_device = get_in_stor_device(device); 1246 if (!stor_device) 1247 return; 1248 1249 foreach_vmbus_pkt(desc, channel) { 1250 void *packet = hv_pkt_data(desc); 1251 struct storvsc_cmd_request *request; 1252 u64 cmd_rqst; 1253 1254 cmd_rqst = vmbus_request_addr(&channel->requestor, 1255 desc->trans_id); 1256 if (cmd_rqst == VMBUS_RQST_ERROR) { 1257 dev_err(&device->device, 1258 "Incorrect transaction id\n"); 1259 continue; 1260 } 1261 1262 request = (struct storvsc_cmd_request *)(unsigned long)cmd_rqst; 1263 1264 if (request == &stor_device->init_request || 1265 request == &stor_device->reset_request) { 1266 memcpy(&request->vstor_packet, packet, 1267 (sizeof(struct vstor_packet) - vmscsi_size_delta)); 1268 complete(&request->wait_event); 1269 } else { 1270 storvsc_on_receive(stor_device, packet, request); 1271 } 1272 } 1273 } 1274 1275 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1276 bool is_fc) 1277 { 1278 struct vmstorage_channel_properties props; 1279 int ret; 1280 1281 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1282 1283 /* 1284 * The size of vmbus_requestor is an upper bound on the number of requests 1285 * that can be in-progress at any one time across all channels. 1286 */ 1287 device->channel->rqstor_size = scsi_driver.can_queue; 1288 1289 ret = vmbus_open(device->channel, 1290 ring_size, 1291 ring_size, 1292 (void *)&props, 1293 sizeof(struct vmstorage_channel_properties), 1294 storvsc_on_channel_callback, device->channel); 1295 1296 if (ret != 0) 1297 return ret; 1298 1299 ret = storvsc_channel_init(device, is_fc); 1300 1301 return ret; 1302 } 1303 1304 static int storvsc_dev_remove(struct hv_device *device) 1305 { 1306 struct storvsc_device *stor_device; 1307 1308 stor_device = hv_get_drvdata(device); 1309 1310 stor_device->destroy = true; 1311 1312 /* Make sure flag is set before waiting */ 1313 wmb(); 1314 1315 /* 1316 * At this point, all outbound traffic should be disable. We 1317 * only allow inbound traffic (responses) to proceed so that 1318 * outstanding requests can be completed. 1319 */ 1320 1321 storvsc_wait_to_drain(stor_device); 1322 1323 /* 1324 * Since we have already drained, we don't need to busy wait 1325 * as was done in final_release_stor_device() 1326 * Note that we cannot set the ext pointer to NULL until 1327 * we have drained - to drain the outgoing packets, we need to 1328 * allow incoming packets. 1329 */ 1330 hv_set_drvdata(device, NULL); 1331 1332 /* Close the channel */ 1333 vmbus_close(device->channel); 1334 1335 kfree(stor_device->stor_chns); 1336 kfree(stor_device); 1337 return 0; 1338 } 1339 1340 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1341 u16 q_num) 1342 { 1343 u16 slot = 0; 1344 u16 hash_qnum; 1345 const struct cpumask *node_mask; 1346 int num_channels, tgt_cpu; 1347 1348 if (stor_device->num_sc == 0) { 1349 stor_device->stor_chns[q_num] = stor_device->device->channel; 1350 return stor_device->device->channel; 1351 } 1352 1353 /* 1354 * Our channel array is sparsley populated and we 1355 * initiated I/O on a processor/hw-q that does not 1356 * currently have a designated channel. Fix this. 1357 * The strategy is simple: 1358 * I. Ensure NUMA locality 1359 * II. Distribute evenly (best effort) 1360 */ 1361 1362 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1363 1364 num_channels = 0; 1365 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1366 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1367 num_channels++; 1368 } 1369 if (num_channels == 0) { 1370 stor_device->stor_chns[q_num] = stor_device->device->channel; 1371 return stor_device->device->channel; 1372 } 1373 1374 hash_qnum = q_num; 1375 while (hash_qnum >= num_channels) 1376 hash_qnum -= num_channels; 1377 1378 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1379 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1380 continue; 1381 if (slot == hash_qnum) 1382 break; 1383 slot++; 1384 } 1385 1386 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1387 1388 return stor_device->stor_chns[q_num]; 1389 } 1390 1391 1392 static int storvsc_do_io(struct hv_device *device, 1393 struct storvsc_cmd_request *request, u16 q_num) 1394 { 1395 struct storvsc_device *stor_device; 1396 struct vstor_packet *vstor_packet; 1397 struct vmbus_channel *outgoing_channel, *channel; 1398 unsigned long flags; 1399 int ret = 0; 1400 const struct cpumask *node_mask; 1401 int tgt_cpu; 1402 1403 vstor_packet = &request->vstor_packet; 1404 stor_device = get_out_stor_device(device); 1405 1406 if (!stor_device) 1407 return -ENODEV; 1408 1409 1410 request->device = device; 1411 /* 1412 * Select an appropriate channel to send the request out. 1413 */ 1414 /* See storvsc_change_target_cpu(). */ 1415 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1416 if (outgoing_channel != NULL) { 1417 if (outgoing_channel->target_cpu == q_num) { 1418 /* 1419 * Ideally, we want to pick a different channel if 1420 * available on the same NUMA node. 1421 */ 1422 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1423 for_each_cpu_wrap(tgt_cpu, 1424 &stor_device->alloced_cpus, q_num + 1) { 1425 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1426 continue; 1427 if (tgt_cpu == q_num) 1428 continue; 1429 channel = READ_ONCE( 1430 stor_device->stor_chns[tgt_cpu]); 1431 if (channel == NULL) 1432 continue; 1433 if (hv_get_avail_to_write_percent( 1434 &channel->outbound) 1435 > ring_avail_percent_lowater) { 1436 outgoing_channel = channel; 1437 goto found_channel; 1438 } 1439 } 1440 1441 /* 1442 * All the other channels on the same NUMA node are 1443 * busy. Try to use the channel on the current CPU 1444 */ 1445 if (hv_get_avail_to_write_percent( 1446 &outgoing_channel->outbound) 1447 > ring_avail_percent_lowater) 1448 goto found_channel; 1449 1450 /* 1451 * If we reach here, all the channels on the current 1452 * NUMA node are busy. Try to find a channel in 1453 * other NUMA nodes 1454 */ 1455 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1456 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1457 continue; 1458 channel = READ_ONCE( 1459 stor_device->stor_chns[tgt_cpu]); 1460 if (channel == NULL) 1461 continue; 1462 if (hv_get_avail_to_write_percent( 1463 &channel->outbound) 1464 > ring_avail_percent_lowater) { 1465 outgoing_channel = channel; 1466 goto found_channel; 1467 } 1468 } 1469 } 1470 } else { 1471 spin_lock_irqsave(&stor_device->lock, flags); 1472 outgoing_channel = stor_device->stor_chns[q_num]; 1473 if (outgoing_channel != NULL) { 1474 spin_unlock_irqrestore(&stor_device->lock, flags); 1475 goto found_channel; 1476 } 1477 outgoing_channel = get_og_chn(stor_device, q_num); 1478 spin_unlock_irqrestore(&stor_device->lock, flags); 1479 } 1480 1481 found_channel: 1482 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1483 1484 vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) - 1485 vmscsi_size_delta); 1486 1487 1488 vstor_packet->vm_srb.sense_info_length = sense_buffer_size; 1489 1490 1491 vstor_packet->vm_srb.data_transfer_length = 1492 request->payload->range.len; 1493 1494 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1495 1496 if (request->payload->range.len) { 1497 1498 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1499 request->payload, request->payload_sz, 1500 vstor_packet, 1501 (sizeof(struct vstor_packet) - 1502 vmscsi_size_delta), 1503 (unsigned long)request); 1504 } else { 1505 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1506 (sizeof(struct vstor_packet) - 1507 vmscsi_size_delta), 1508 (unsigned long)request, 1509 VM_PKT_DATA_INBAND, 1510 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1511 } 1512 1513 if (ret != 0) 1514 return ret; 1515 1516 atomic_inc(&stor_device->num_outstanding_req); 1517 1518 return ret; 1519 } 1520 1521 static int storvsc_device_alloc(struct scsi_device *sdevice) 1522 { 1523 /* 1524 * Set blist flag to permit the reading of the VPD pages even when 1525 * the target may claim SPC-2 compliance. MSFT targets currently 1526 * claim SPC-2 compliance while they implement post SPC-2 features. 1527 * With this flag we can correctly handle WRITE_SAME_16 issues. 1528 * 1529 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1530 * still supports REPORT LUN. 1531 */ 1532 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1533 1534 return 0; 1535 } 1536 1537 static int storvsc_device_configure(struct scsi_device *sdevice) 1538 { 1539 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1540 1541 sdevice->no_write_same = 1; 1542 1543 /* 1544 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1545 * if the device is a MSFT virtual device. If the host is 1546 * WIN10 or newer, allow write_same. 1547 */ 1548 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1549 switch (vmstor_proto_version) { 1550 case VMSTOR_PROTO_VERSION_WIN8: 1551 case VMSTOR_PROTO_VERSION_WIN8_1: 1552 sdevice->scsi_level = SCSI_SPC_3; 1553 break; 1554 } 1555 1556 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1557 sdevice->no_write_same = 0; 1558 } 1559 1560 return 0; 1561 } 1562 1563 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1564 sector_t capacity, int *info) 1565 { 1566 sector_t nsect = capacity; 1567 sector_t cylinders = nsect; 1568 int heads, sectors_pt; 1569 1570 /* 1571 * We are making up these values; let us keep it simple. 1572 */ 1573 heads = 0xff; 1574 sectors_pt = 0x3f; /* Sectors per track */ 1575 sector_div(cylinders, heads * sectors_pt); 1576 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1577 cylinders = 0xffff; 1578 1579 info[0] = heads; 1580 info[1] = sectors_pt; 1581 info[2] = (int)cylinders; 1582 1583 return 0; 1584 } 1585 1586 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1587 { 1588 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1589 struct hv_device *device = host_dev->dev; 1590 1591 struct storvsc_device *stor_device; 1592 struct storvsc_cmd_request *request; 1593 struct vstor_packet *vstor_packet; 1594 int ret, t; 1595 1596 stor_device = get_out_stor_device(device); 1597 if (!stor_device) 1598 return FAILED; 1599 1600 request = &stor_device->reset_request; 1601 vstor_packet = &request->vstor_packet; 1602 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1603 1604 init_completion(&request->wait_event); 1605 1606 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1607 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1608 vstor_packet->vm_srb.path_id = stor_device->path_id; 1609 1610 ret = vmbus_sendpacket(device->channel, vstor_packet, 1611 (sizeof(struct vstor_packet) - 1612 vmscsi_size_delta), 1613 (unsigned long)&stor_device->reset_request, 1614 VM_PKT_DATA_INBAND, 1615 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1616 if (ret != 0) 1617 return FAILED; 1618 1619 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1620 if (t == 0) 1621 return TIMEOUT_ERROR; 1622 1623 1624 /* 1625 * At this point, all outstanding requests in the adapter 1626 * should have been flushed out and return to us 1627 * There is a potential race here where the host may be in 1628 * the process of responding when we return from here. 1629 * Just wait for all in-transit packets to be accounted for 1630 * before we return from here. 1631 */ 1632 storvsc_wait_to_drain(stor_device); 1633 1634 return SUCCESS; 1635 } 1636 1637 /* 1638 * The host guarantees to respond to each command, although I/O latencies might 1639 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1640 * chance to perform EH. 1641 */ 1642 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1643 { 1644 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1645 if (scmnd->device->host->transportt == fc_transport_template) 1646 return fc_eh_timed_out(scmnd); 1647 #endif 1648 return BLK_EH_RESET_TIMER; 1649 } 1650 1651 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1652 { 1653 bool allowed = true; 1654 u8 scsi_op = scmnd->cmnd[0]; 1655 1656 switch (scsi_op) { 1657 /* the host does not handle WRITE_SAME, log accident usage */ 1658 case WRITE_SAME: 1659 /* 1660 * smartd sends this command and the host does not handle 1661 * this. So, don't send it. 1662 */ 1663 case SET_WINDOW: 1664 scmnd->result = ILLEGAL_REQUEST << 16; 1665 allowed = false; 1666 break; 1667 default: 1668 break; 1669 } 1670 return allowed; 1671 } 1672 1673 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1674 { 1675 int ret; 1676 struct hv_host_device *host_dev = shost_priv(host); 1677 struct hv_device *dev = host_dev->dev; 1678 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1679 int i; 1680 struct scatterlist *sgl; 1681 unsigned int sg_count = 0; 1682 struct vmscsi_request *vm_srb; 1683 struct scatterlist *cur_sgl; 1684 struct vmbus_packet_mpb_array *payload; 1685 u32 payload_sz; 1686 u32 length; 1687 1688 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1689 /* 1690 * On legacy hosts filter unimplemented commands. 1691 * Future hosts are expected to correctly handle 1692 * unsupported commands. Furthermore, it is 1693 * possible that some of the currently 1694 * unsupported commands maybe supported in 1695 * future versions of the host. 1696 */ 1697 if (!storvsc_scsi_cmd_ok(scmnd)) { 1698 scmnd->scsi_done(scmnd); 1699 return 0; 1700 } 1701 } 1702 1703 /* Setup the cmd request */ 1704 cmd_request->cmd = scmnd; 1705 1706 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1707 vm_srb = &cmd_request->vstor_packet.vm_srb; 1708 vm_srb->win8_extension.time_out_value = 60; 1709 1710 vm_srb->win8_extension.srb_flags |= 1711 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1712 1713 if (scmnd->device->tagged_supported) { 1714 vm_srb->win8_extension.srb_flags |= 1715 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1716 vm_srb->win8_extension.queue_tag = SP_UNTAGGED; 1717 vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST; 1718 } 1719 1720 /* Build the SRB */ 1721 switch (scmnd->sc_data_direction) { 1722 case DMA_TO_DEVICE: 1723 vm_srb->data_in = WRITE_TYPE; 1724 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT; 1725 break; 1726 case DMA_FROM_DEVICE: 1727 vm_srb->data_in = READ_TYPE; 1728 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN; 1729 break; 1730 case DMA_NONE: 1731 vm_srb->data_in = UNKNOWN_TYPE; 1732 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1733 break; 1734 default: 1735 /* 1736 * This is DMA_BIDIRECTIONAL or something else we are never 1737 * supposed to see here. 1738 */ 1739 WARN(1, "Unexpected data direction: %d\n", 1740 scmnd->sc_data_direction); 1741 return -EINVAL; 1742 } 1743 1744 1745 vm_srb->port_number = host_dev->port; 1746 vm_srb->path_id = scmnd->device->channel; 1747 vm_srb->target_id = scmnd->device->id; 1748 vm_srb->lun = scmnd->device->lun; 1749 1750 vm_srb->cdb_length = scmnd->cmd_len; 1751 1752 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1753 1754 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1755 sg_count = scsi_sg_count(scmnd); 1756 1757 length = scsi_bufflen(scmnd); 1758 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1759 payload_sz = sizeof(cmd_request->mpb); 1760 1761 if (sg_count) { 1762 unsigned int hvpgoff = 0; 1763 unsigned long offset_in_hvpg = sgl->offset & ~HV_HYP_PAGE_MASK; 1764 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1765 u64 hvpfn; 1766 1767 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1768 1769 payload_sz = (hvpg_count * sizeof(u64) + 1770 sizeof(struct vmbus_packet_mpb_array)); 1771 payload = kzalloc(payload_sz, GFP_ATOMIC); 1772 if (!payload) 1773 return SCSI_MLQUEUE_DEVICE_BUSY; 1774 } 1775 1776 /* 1777 * sgl is a list of PAGEs, and payload->range.pfn_array 1778 * expects the page number in the unit of HV_HYP_PAGE_SIZE (the 1779 * page size that Hyper-V uses, so here we need to divide PAGEs 1780 * into HV_HYP_PAGE in case that PAGE_SIZE > HV_HYP_PAGE_SIZE. 1781 * Besides, payload->range.offset should be the offset in one 1782 * HV_HYP_PAGE. 1783 */ 1784 payload->range.len = length; 1785 payload->range.offset = offset_in_hvpg; 1786 hvpgoff = sgl->offset >> HV_HYP_PAGE_SHIFT; 1787 1788 cur_sgl = sgl; 1789 for (i = 0; i < hvpg_count; i++) { 1790 /* 1791 * 'i' is the index of hv pages in the payload and 1792 * 'hvpgoff' is the offset (in hv pages) of the first 1793 * hv page in the the first page. The relationship 1794 * between the sum of 'i' and 'hvpgoff' and the offset 1795 * (in hv pages) in a payload page ('hvpgoff_in_page') 1796 * is as follow: 1797 * 1798 * |------------------ PAGE -------------------| 1799 * | NR_HV_HYP_PAGES_IN_PAGE hvpgs in total | 1800 * |hvpg|hvpg| ... |hvpg|... |hvpg| 1801 * ^ ^ ^ ^ 1802 * +-hvpgoff-+ +-hvpgoff_in_page-+ 1803 * ^ | 1804 * +--------------------- i ---------------------------+ 1805 */ 1806 unsigned int hvpgoff_in_page = 1807 (i + hvpgoff) % NR_HV_HYP_PAGES_IN_PAGE; 1808 1809 /* 1810 * Two cases that we need to fetch a page: 1811 * 1) i == 0, the first step or 1812 * 2) hvpgoff_in_page == 0, when we reach the boundary 1813 * of a page. 1814 */ 1815 if (hvpgoff_in_page == 0 || i == 0) { 1816 hvpfn = page_to_hvpfn(sg_page(cur_sgl)); 1817 cur_sgl = sg_next(cur_sgl); 1818 } 1819 1820 payload->range.pfn_array[i] = hvpfn + hvpgoff_in_page; 1821 } 1822 } 1823 1824 cmd_request->payload = payload; 1825 cmd_request->payload_sz = payload_sz; 1826 1827 /* Invokes the vsc to start an IO */ 1828 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1829 put_cpu(); 1830 1831 if (ret == -EAGAIN) { 1832 if (payload_sz > sizeof(cmd_request->mpb)) 1833 kfree(payload); 1834 /* no more space */ 1835 return SCSI_MLQUEUE_DEVICE_BUSY; 1836 } 1837 1838 return 0; 1839 } 1840 1841 static struct scsi_host_template scsi_driver = { 1842 .module = THIS_MODULE, 1843 .name = "storvsc_host_t", 1844 .cmd_size = sizeof(struct storvsc_cmd_request), 1845 .bios_param = storvsc_get_chs, 1846 .queuecommand = storvsc_queuecommand, 1847 .eh_host_reset_handler = storvsc_host_reset_handler, 1848 .proc_name = "storvsc_host", 1849 .eh_timed_out = storvsc_eh_timed_out, 1850 .slave_alloc = storvsc_device_alloc, 1851 .slave_configure = storvsc_device_configure, 1852 .cmd_per_lun = 2048, 1853 .this_id = -1, 1854 /* Make sure we dont get a sg segment crosses a page boundary */ 1855 .dma_boundary = PAGE_SIZE-1, 1856 /* Ensure there are no gaps in presented sgls */ 1857 .virt_boundary_mask = PAGE_SIZE-1, 1858 .no_write_same = 1, 1859 .track_queue_depth = 1, 1860 .change_queue_depth = storvsc_change_queue_depth, 1861 }; 1862 1863 enum { 1864 SCSI_GUID, 1865 IDE_GUID, 1866 SFC_GUID, 1867 }; 1868 1869 static const struct hv_vmbus_device_id id_table[] = { 1870 /* SCSI guid */ 1871 { HV_SCSI_GUID, 1872 .driver_data = SCSI_GUID 1873 }, 1874 /* IDE guid */ 1875 { HV_IDE_GUID, 1876 .driver_data = IDE_GUID 1877 }, 1878 /* Fibre Channel GUID */ 1879 { 1880 HV_SYNTHFC_GUID, 1881 .driver_data = SFC_GUID 1882 }, 1883 { }, 1884 }; 1885 1886 MODULE_DEVICE_TABLE(vmbus, id_table); 1887 1888 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1889 1890 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1891 { 1892 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1893 } 1894 1895 static int storvsc_probe(struct hv_device *device, 1896 const struct hv_vmbus_device_id *dev_id) 1897 { 1898 int ret; 1899 int num_cpus = num_online_cpus(); 1900 struct Scsi_Host *host; 1901 struct hv_host_device *host_dev; 1902 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1903 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1904 int target = 0; 1905 struct storvsc_device *stor_device; 1906 int max_luns_per_target; 1907 int max_targets; 1908 int max_channels; 1909 int max_sub_channels = 0; 1910 1911 /* 1912 * Based on the windows host we are running on, 1913 * set state to properly communicate with the host. 1914 */ 1915 1916 if (vmbus_proto_version < VERSION_WIN8) { 1917 max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET; 1918 max_targets = STORVSC_IDE_MAX_TARGETS; 1919 max_channels = STORVSC_IDE_MAX_CHANNELS; 1920 } else { 1921 max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET; 1922 max_targets = STORVSC_MAX_TARGETS; 1923 max_channels = STORVSC_MAX_CHANNELS; 1924 /* 1925 * On Windows8 and above, we support sub-channels for storage 1926 * on SCSI and FC controllers. 1927 * The number of sub-channels offerred is based on the number of 1928 * VCPUs in the guest. 1929 */ 1930 if (!dev_is_ide) 1931 max_sub_channels = 1932 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1933 } 1934 1935 scsi_driver.can_queue = max_outstanding_req_per_channel * 1936 (max_sub_channels + 1) * 1937 (100 - ring_avail_percent_lowater) / 100; 1938 1939 host = scsi_host_alloc(&scsi_driver, 1940 sizeof(struct hv_host_device)); 1941 if (!host) 1942 return -ENOMEM; 1943 1944 host_dev = shost_priv(host); 1945 memset(host_dev, 0, sizeof(struct hv_host_device)); 1946 1947 host_dev->port = host->host_no; 1948 host_dev->dev = device; 1949 host_dev->host = host; 1950 1951 1952 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1953 if (!stor_device) { 1954 ret = -ENOMEM; 1955 goto err_out0; 1956 } 1957 1958 stor_device->destroy = false; 1959 init_waitqueue_head(&stor_device->waiting_to_drain); 1960 stor_device->device = device; 1961 stor_device->host = host; 1962 spin_lock_init(&stor_device->lock); 1963 hv_set_drvdata(device, stor_device); 1964 1965 stor_device->port_number = host->host_no; 1966 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); 1967 if (ret) 1968 goto err_out1; 1969 1970 host_dev->path = stor_device->path_id; 1971 host_dev->target = stor_device->target_id; 1972 1973 switch (dev_id->driver_data) { 1974 case SFC_GUID: 1975 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1976 host->max_id = STORVSC_FC_MAX_TARGETS; 1977 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 1978 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1979 host->transportt = fc_transport_template; 1980 #endif 1981 break; 1982 1983 case SCSI_GUID: 1984 host->max_lun = max_luns_per_target; 1985 host->max_id = max_targets; 1986 host->max_channel = max_channels - 1; 1987 break; 1988 1989 default: 1990 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 1991 host->max_id = STORVSC_IDE_MAX_TARGETS; 1992 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 1993 break; 1994 } 1995 /* max cmd length */ 1996 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 1997 1998 /* 1999 * set the table size based on the info we got 2000 * from the host. 2001 */ 2002 host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT); 2003 /* 2004 * For non-IDE disks, the host supports multiple channels. 2005 * Set the number of HW queues we are supporting. 2006 */ 2007 if (!dev_is_ide) 2008 host->nr_hw_queues = num_present_cpus(); 2009 2010 /* 2011 * Set the error handler work queue. 2012 */ 2013 host_dev->handle_error_wq = 2014 alloc_ordered_workqueue("storvsc_error_wq_%d", 2015 WQ_MEM_RECLAIM, 2016 host->host_no); 2017 if (!host_dev->handle_error_wq) { 2018 ret = -ENOMEM; 2019 goto err_out2; 2020 } 2021 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2022 /* Register the HBA and start the scsi bus scan */ 2023 ret = scsi_add_host(host, &device->device); 2024 if (ret != 0) 2025 goto err_out3; 2026 2027 if (!dev_is_ide) { 2028 scsi_scan_host(host); 2029 } else { 2030 target = (device->dev_instance.b[5] << 8 | 2031 device->dev_instance.b[4]); 2032 ret = scsi_add_device(host, 0, target, 0); 2033 if (ret) 2034 goto err_out4; 2035 } 2036 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2037 if (host->transportt == fc_transport_template) { 2038 struct fc_rport_identifiers ids = { 2039 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2040 }; 2041 2042 fc_host_node_name(host) = stor_device->node_name; 2043 fc_host_port_name(host) = stor_device->port_name; 2044 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2045 if (!stor_device->rport) { 2046 ret = -ENOMEM; 2047 goto err_out4; 2048 } 2049 } 2050 #endif 2051 return 0; 2052 2053 err_out4: 2054 scsi_remove_host(host); 2055 2056 err_out3: 2057 destroy_workqueue(host_dev->handle_error_wq); 2058 2059 err_out2: 2060 /* 2061 * Once we have connected with the host, we would need to 2062 * to invoke storvsc_dev_remove() to rollback this state and 2063 * this call also frees up the stor_device; hence the jump around 2064 * err_out1 label. 2065 */ 2066 storvsc_dev_remove(device); 2067 goto err_out0; 2068 2069 err_out1: 2070 kfree(stor_device->stor_chns); 2071 kfree(stor_device); 2072 2073 err_out0: 2074 scsi_host_put(host); 2075 return ret; 2076 } 2077 2078 /* Change a scsi target's queue depth */ 2079 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2080 { 2081 if (queue_depth > scsi_driver.can_queue) 2082 queue_depth = scsi_driver.can_queue; 2083 2084 return scsi_change_queue_depth(sdev, queue_depth); 2085 } 2086 2087 static int storvsc_remove(struct hv_device *dev) 2088 { 2089 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2090 struct Scsi_Host *host = stor_device->host; 2091 struct hv_host_device *host_dev = shost_priv(host); 2092 2093 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2094 if (host->transportt == fc_transport_template) { 2095 fc_remote_port_delete(stor_device->rport); 2096 fc_remove_host(host); 2097 } 2098 #endif 2099 destroy_workqueue(host_dev->handle_error_wq); 2100 scsi_remove_host(host); 2101 storvsc_dev_remove(dev); 2102 scsi_host_put(host); 2103 2104 return 0; 2105 } 2106 2107 static int storvsc_suspend(struct hv_device *hv_dev) 2108 { 2109 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2110 struct Scsi_Host *host = stor_device->host; 2111 struct hv_host_device *host_dev = shost_priv(host); 2112 2113 storvsc_wait_to_drain(stor_device); 2114 2115 drain_workqueue(host_dev->handle_error_wq); 2116 2117 vmbus_close(hv_dev->channel); 2118 2119 kfree(stor_device->stor_chns); 2120 stor_device->stor_chns = NULL; 2121 2122 cpumask_clear(&stor_device->alloced_cpus); 2123 2124 return 0; 2125 } 2126 2127 static int storvsc_resume(struct hv_device *hv_dev) 2128 { 2129 int ret; 2130 2131 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size, 2132 hv_dev_is_fc(hv_dev)); 2133 return ret; 2134 } 2135 2136 static struct hv_driver storvsc_drv = { 2137 .name = KBUILD_MODNAME, 2138 .id_table = id_table, 2139 .probe = storvsc_probe, 2140 .remove = storvsc_remove, 2141 .suspend = storvsc_suspend, 2142 .resume = storvsc_resume, 2143 .driver = { 2144 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2145 }, 2146 }; 2147 2148 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2149 static struct fc_function_template fc_transport_functions = { 2150 .show_host_node_name = 1, 2151 .show_host_port_name = 1, 2152 }; 2153 #endif 2154 2155 static int __init storvsc_drv_init(void) 2156 { 2157 int ret; 2158 2159 /* 2160 * Divide the ring buffer data size (which is 1 page less 2161 * than the ring buffer size since that page is reserved for 2162 * the ring buffer indices) by the max request size (which is 2163 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2164 */ 2165 max_outstanding_req_per_channel = 2166 ((storvsc_ringbuffer_size - PAGE_SIZE) / 2167 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2168 sizeof(struct vstor_packet) + sizeof(u64) - 2169 vmscsi_size_delta, 2170 sizeof(u64))); 2171 2172 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2173 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2174 if (!fc_transport_template) 2175 return -ENODEV; 2176 #endif 2177 2178 ret = vmbus_driver_register(&storvsc_drv); 2179 2180 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2181 if (ret) 2182 fc_release_transport(fc_transport_template); 2183 #endif 2184 2185 return ret; 2186 } 2187 2188 static void __exit storvsc_drv_exit(void) 2189 { 2190 vmbus_driver_unregister(&storvsc_drv); 2191 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2192 fc_release_transport(fc_transport_template); 2193 #endif 2194 } 2195 2196 MODULE_LICENSE("GPL"); 2197 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2198 module_init(storvsc_drv_init); 2199 module_exit(storvsc_drv_exit); 2200