1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <scsi/scsi.h> 25 #include <scsi/scsi_cmnd.h> 26 #include <scsi/scsi_host.h> 27 #include <scsi/scsi_device.h> 28 #include <scsi/scsi_tcq.h> 29 #include <scsi/scsi_eh.h> 30 #include <scsi/scsi_devinfo.h> 31 #include <scsi/scsi_dbg.h> 32 #include <scsi/scsi_transport_fc.h> 33 #include <scsi/scsi_transport.h> 34 35 /* 36 * All wire protocol details (storage protocol between the guest and the host) 37 * are consolidated here. 38 * 39 * Begin protocol definitions. 40 */ 41 42 /* 43 * Version history: 44 * V1 Beta: 0.1 45 * V1 RC < 2008/1/31: 1.0 46 * V1 RC > 2008/1/31: 2.0 47 * Win7: 4.2 48 * Win8: 5.1 49 * Win8.1: 6.0 50 * Win10: 6.2 51 */ 52 53 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 54 (((MINOR_) & 0xff))) 55 56 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 57 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 58 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 59 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 60 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 61 62 /* Packet structure describing virtual storage requests. */ 63 enum vstor_packet_operation { 64 VSTOR_OPERATION_COMPLETE_IO = 1, 65 VSTOR_OPERATION_REMOVE_DEVICE = 2, 66 VSTOR_OPERATION_EXECUTE_SRB = 3, 67 VSTOR_OPERATION_RESET_LUN = 4, 68 VSTOR_OPERATION_RESET_ADAPTER = 5, 69 VSTOR_OPERATION_RESET_BUS = 6, 70 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 71 VSTOR_OPERATION_END_INITIALIZATION = 8, 72 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 73 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 74 VSTOR_OPERATION_ENUMERATE_BUS = 11, 75 VSTOR_OPERATION_FCHBA_DATA = 12, 76 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 77 VSTOR_OPERATION_MAXIMUM = 13 78 }; 79 80 /* 81 * WWN packet for Fibre Channel HBA 82 */ 83 84 struct hv_fc_wwn_packet { 85 u8 primary_active; 86 u8 reserved1[3]; 87 u8 primary_port_wwn[8]; 88 u8 primary_node_wwn[8]; 89 u8 secondary_port_wwn[8]; 90 u8 secondary_node_wwn[8]; 91 }; 92 93 94 95 /* 96 * SRB Flag Bits 97 */ 98 99 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 100 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 101 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 102 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 103 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 104 #define SRB_FLAGS_DATA_IN 0x00000040 105 #define SRB_FLAGS_DATA_OUT 0x00000080 106 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 107 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 108 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 109 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 110 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 111 112 /* 113 * This flag indicates the request is part of the workflow for processing a D3. 114 */ 115 #define SRB_FLAGS_D3_PROCESSING 0x00000800 116 #define SRB_FLAGS_IS_ACTIVE 0x00010000 117 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 118 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 119 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 120 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 121 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 122 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 123 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 124 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 125 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 126 127 #define SP_UNTAGGED ((unsigned char) ~0) 128 #define SRB_SIMPLE_TAG_REQUEST 0x20 129 130 /* 131 * Platform neutral description of a scsi request - 132 * this remains the same across the write regardless of 32/64 bit 133 * note: it's patterned off the SCSI_PASS_THROUGH structure 134 */ 135 #define STORVSC_MAX_CMD_LEN 0x10 136 137 #define POST_WIN7_STORVSC_SENSE_BUFFER_SIZE 0x14 138 #define PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE 0x12 139 140 #define STORVSC_SENSE_BUFFER_SIZE 0x14 141 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 142 143 /* 144 * Sense buffer size changed in win8; have a run-time 145 * variable to track the size we should use. This value will 146 * likely change during protocol negotiation but it is valid 147 * to start by assuming pre-Win8. 148 */ 149 static int sense_buffer_size = PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE; 150 151 /* 152 * The storage protocol version is determined during the 153 * initial exchange with the host. It will indicate which 154 * storage functionality is available in the host. 155 */ 156 static int vmstor_proto_version; 157 158 #define STORVSC_LOGGING_NONE 0 159 #define STORVSC_LOGGING_ERROR 1 160 #define STORVSC_LOGGING_WARN 2 161 162 static int logging_level = STORVSC_LOGGING_ERROR; 163 module_param(logging_level, int, S_IRUGO|S_IWUSR); 164 MODULE_PARM_DESC(logging_level, 165 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 166 167 static inline bool do_logging(int level) 168 { 169 return logging_level >= level; 170 } 171 172 #define storvsc_log(dev, level, fmt, ...) \ 173 do { \ 174 if (do_logging(level)) \ 175 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 176 } while (0) 177 178 struct vmscsi_win8_extension { 179 /* 180 * The following were added in Windows 8 181 */ 182 u16 reserve; 183 u8 queue_tag; 184 u8 queue_action; 185 u32 srb_flags; 186 u32 time_out_value; 187 u32 queue_sort_ey; 188 } __packed; 189 190 struct vmscsi_request { 191 u16 length; 192 u8 srb_status; 193 u8 scsi_status; 194 195 u8 port_number; 196 u8 path_id; 197 u8 target_id; 198 u8 lun; 199 200 u8 cdb_length; 201 u8 sense_info_length; 202 u8 data_in; 203 u8 reserved; 204 205 u32 data_transfer_length; 206 207 union { 208 u8 cdb[STORVSC_MAX_CMD_LEN]; 209 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 210 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 211 }; 212 /* 213 * The following was added in win8. 214 */ 215 struct vmscsi_win8_extension win8_extension; 216 217 } __attribute((packed)); 218 219 /* 220 * The list of storage protocols in order of preference. 221 */ 222 struct vmstor_protocol { 223 int protocol_version; 224 int sense_buffer_size; 225 int vmscsi_size_delta; 226 }; 227 228 229 static const struct vmstor_protocol vmstor_protocols[] = { 230 { 231 VMSTOR_PROTO_VERSION_WIN10, 232 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE, 233 0 234 }, 235 { 236 VMSTOR_PROTO_VERSION_WIN8_1, 237 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE, 238 0 239 }, 240 { 241 VMSTOR_PROTO_VERSION_WIN8, 242 POST_WIN7_STORVSC_SENSE_BUFFER_SIZE, 243 0 244 }, 245 { 246 VMSTOR_PROTO_VERSION_WIN7, 247 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE, 248 sizeof(struct vmscsi_win8_extension), 249 }, 250 { 251 VMSTOR_PROTO_VERSION_WIN6, 252 PRE_WIN8_STORVSC_SENSE_BUFFER_SIZE, 253 sizeof(struct vmscsi_win8_extension), 254 } 255 }; 256 257 258 /* 259 * This structure is sent during the initialization phase to get the different 260 * properties of the channel. 261 */ 262 263 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 264 265 struct vmstorage_channel_properties { 266 u32 reserved; 267 u16 max_channel_cnt; 268 u16 reserved1; 269 270 u32 flags; 271 u32 max_transfer_bytes; 272 273 u64 reserved2; 274 } __packed; 275 276 /* This structure is sent during the storage protocol negotiations. */ 277 struct vmstorage_protocol_version { 278 /* Major (MSW) and minor (LSW) version numbers. */ 279 u16 major_minor; 280 281 /* 282 * Revision number is auto-incremented whenever this file is changed 283 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 284 * definitely indicate incompatibility--but it does indicate mismatched 285 * builds. 286 * This is only used on the windows side. Just set it to 0. 287 */ 288 u16 revision; 289 } __packed; 290 291 /* Channel Property Flags */ 292 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 293 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 294 295 struct vstor_packet { 296 /* Requested operation type */ 297 enum vstor_packet_operation operation; 298 299 /* Flags - see below for values */ 300 u32 flags; 301 302 /* Status of the request returned from the server side. */ 303 u32 status; 304 305 /* Data payload area */ 306 union { 307 /* 308 * Structure used to forward SCSI commands from the 309 * client to the server. 310 */ 311 struct vmscsi_request vm_srb; 312 313 /* Structure used to query channel properties. */ 314 struct vmstorage_channel_properties storage_channel_properties; 315 316 /* Used during version negotiations. */ 317 struct vmstorage_protocol_version version; 318 319 /* Fibre channel address packet */ 320 struct hv_fc_wwn_packet wwn_packet; 321 322 /* Number of sub-channels to create */ 323 u16 sub_channel_count; 324 325 /* This will be the maximum of the union members */ 326 u8 buffer[0x34]; 327 }; 328 } __packed; 329 330 /* 331 * Packet Flags: 332 * 333 * This flag indicates that the server should send back a completion for this 334 * packet. 335 */ 336 337 #define REQUEST_COMPLETION_FLAG 0x1 338 339 /* Matches Windows-end */ 340 enum storvsc_request_type { 341 WRITE_TYPE = 0, 342 READ_TYPE, 343 UNKNOWN_TYPE, 344 }; 345 346 /* 347 * SRB status codes and masks; a subset of the codes used here. 348 */ 349 350 #define SRB_STATUS_AUTOSENSE_VALID 0x80 351 #define SRB_STATUS_QUEUE_FROZEN 0x40 352 #define SRB_STATUS_INVALID_LUN 0x20 353 #define SRB_STATUS_SUCCESS 0x01 354 #define SRB_STATUS_ABORTED 0x02 355 #define SRB_STATUS_ERROR 0x04 356 #define SRB_STATUS_DATA_OVERRUN 0x12 357 358 #define SRB_STATUS(status) \ 359 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 360 /* 361 * This is the end of Protocol specific defines. 362 */ 363 364 static int storvsc_ringbuffer_size = (128 * 1024); 365 static u32 max_outstanding_req_per_channel; 366 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 367 368 static int storvsc_vcpus_per_sub_channel = 4; 369 static unsigned int storvsc_max_hw_queues; 370 371 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 372 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 373 374 module_param(storvsc_max_hw_queues, uint, 0644); 375 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 376 377 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 378 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 379 380 static int ring_avail_percent_lowater = 10; 381 module_param(ring_avail_percent_lowater, int, S_IRUGO); 382 MODULE_PARM_DESC(ring_avail_percent_lowater, 383 "Select a channel if available ring size > this in percent"); 384 385 /* 386 * Timeout in seconds for all devices managed by this driver. 387 */ 388 static int storvsc_timeout = 180; 389 390 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 391 static struct scsi_transport_template *fc_transport_template; 392 #endif 393 394 static struct scsi_host_template scsi_driver; 395 static void storvsc_on_channel_callback(void *context); 396 397 #define STORVSC_MAX_LUNS_PER_TARGET 255 398 #define STORVSC_MAX_TARGETS 2 399 #define STORVSC_MAX_CHANNELS 8 400 401 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 402 #define STORVSC_FC_MAX_TARGETS 128 403 #define STORVSC_FC_MAX_CHANNELS 8 404 405 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 406 #define STORVSC_IDE_MAX_TARGETS 1 407 #define STORVSC_IDE_MAX_CHANNELS 1 408 409 /* 410 * Upper bound on the size of a storvsc packet. vmscsi_size_delta is not 411 * included in the calculation because it is set after STORVSC_MAX_PKT_SIZE 412 * is used in storvsc_connect_to_vsp 413 */ 414 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 415 sizeof(struct vstor_packet)) 416 417 struct storvsc_cmd_request { 418 struct scsi_cmnd *cmd; 419 420 struct hv_device *device; 421 422 /* Synchronize the request/response if needed */ 423 struct completion wait_event; 424 425 struct vmbus_channel_packet_multipage_buffer mpb; 426 struct vmbus_packet_mpb_array *payload; 427 u32 payload_sz; 428 429 struct vstor_packet vstor_packet; 430 }; 431 432 433 /* A storvsc device is a device object that contains a vmbus channel */ 434 struct storvsc_device { 435 struct hv_device *device; 436 437 bool destroy; 438 bool drain_notify; 439 atomic_t num_outstanding_req; 440 struct Scsi_Host *host; 441 442 wait_queue_head_t waiting_to_drain; 443 444 /* 445 * Each unique Port/Path/Target represents 1 channel ie scsi 446 * controller. In reality, the pathid, targetid is always 0 447 * and the port is set by us 448 */ 449 unsigned int port_number; 450 unsigned char path_id; 451 unsigned char target_id; 452 453 /* 454 * The size of the vmscsi_request has changed in win8. The 455 * additional size is because of new elements added to the 456 * structure. These elements are valid only when we are talking 457 * to a win8 host. 458 * Track the correction to size we need to apply. This value 459 * will likely change during protocol negotiation but it is 460 * valid to start by assuming pre-Win8. 461 */ 462 int vmscsi_size_delta; 463 464 /* 465 * Max I/O, the device can support. 466 */ 467 u32 max_transfer_bytes; 468 /* 469 * Number of sub-channels we will open. 470 */ 471 u16 num_sc; 472 struct vmbus_channel **stor_chns; 473 /* 474 * Mask of CPUs bound to subchannels. 475 */ 476 struct cpumask alloced_cpus; 477 /* 478 * Serializes modifications of stor_chns[] from storvsc_do_io() 479 * and storvsc_change_target_cpu(). 480 */ 481 spinlock_t lock; 482 /* Used for vsc/vsp channel reset process */ 483 struct storvsc_cmd_request init_request; 484 struct storvsc_cmd_request reset_request; 485 /* 486 * Currently active port and node names for FC devices. 487 */ 488 u64 node_name; 489 u64 port_name; 490 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 491 struct fc_rport *rport; 492 #endif 493 }; 494 495 struct hv_host_device { 496 struct hv_device *dev; 497 unsigned int port; 498 unsigned char path; 499 unsigned char target; 500 struct workqueue_struct *handle_error_wq; 501 struct work_struct host_scan_work; 502 struct Scsi_Host *host; 503 }; 504 505 struct storvsc_scan_work { 506 struct work_struct work; 507 struct Scsi_Host *host; 508 u8 lun; 509 u8 tgt_id; 510 }; 511 512 static void storvsc_device_scan(struct work_struct *work) 513 { 514 struct storvsc_scan_work *wrk; 515 struct scsi_device *sdev; 516 517 wrk = container_of(work, struct storvsc_scan_work, work); 518 519 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 520 if (!sdev) 521 goto done; 522 scsi_rescan_device(&sdev->sdev_gendev); 523 scsi_device_put(sdev); 524 525 done: 526 kfree(wrk); 527 } 528 529 static void storvsc_host_scan(struct work_struct *work) 530 { 531 struct Scsi_Host *host; 532 struct scsi_device *sdev; 533 struct hv_host_device *host_device = 534 container_of(work, struct hv_host_device, host_scan_work); 535 536 host = host_device->host; 537 /* 538 * Before scanning the host, first check to see if any of the 539 * currrently known devices have been hot removed. We issue a 540 * "unit ready" command against all currently known devices. 541 * This I/O will result in an error for devices that have been 542 * removed. As part of handling the I/O error, we remove the device. 543 * 544 * When a LUN is added or removed, the host sends us a signal to 545 * scan the host. Thus we are forced to discover the LUNs that 546 * may have been removed this way. 547 */ 548 mutex_lock(&host->scan_mutex); 549 shost_for_each_device(sdev, host) 550 scsi_test_unit_ready(sdev, 1, 1, NULL); 551 mutex_unlock(&host->scan_mutex); 552 /* 553 * Now scan the host to discover LUNs that may have been added. 554 */ 555 scsi_scan_host(host); 556 } 557 558 static void storvsc_remove_lun(struct work_struct *work) 559 { 560 struct storvsc_scan_work *wrk; 561 struct scsi_device *sdev; 562 563 wrk = container_of(work, struct storvsc_scan_work, work); 564 if (!scsi_host_get(wrk->host)) 565 goto done; 566 567 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 568 569 if (sdev) { 570 scsi_remove_device(sdev); 571 scsi_device_put(sdev); 572 } 573 scsi_host_put(wrk->host); 574 575 done: 576 kfree(wrk); 577 } 578 579 580 /* 581 * We can get incoming messages from the host that are not in response to 582 * messages that we have sent out. An example of this would be messages 583 * received by the guest to notify dynamic addition/removal of LUNs. To 584 * deal with potential race conditions where the driver may be in the 585 * midst of being unloaded when we might receive an unsolicited message 586 * from the host, we have implemented a mechanism to gurantee sequential 587 * consistency: 588 * 589 * 1) Once the device is marked as being destroyed, we will fail all 590 * outgoing messages. 591 * 2) We permit incoming messages when the device is being destroyed, 592 * only to properly account for messages already sent out. 593 */ 594 595 static inline struct storvsc_device *get_out_stor_device( 596 struct hv_device *device) 597 { 598 struct storvsc_device *stor_device; 599 600 stor_device = hv_get_drvdata(device); 601 602 if (stor_device && stor_device->destroy) 603 stor_device = NULL; 604 605 return stor_device; 606 } 607 608 609 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 610 { 611 dev->drain_notify = true; 612 wait_event(dev->waiting_to_drain, 613 atomic_read(&dev->num_outstanding_req) == 0); 614 dev->drain_notify = false; 615 } 616 617 static inline struct storvsc_device *get_in_stor_device( 618 struct hv_device *device) 619 { 620 struct storvsc_device *stor_device; 621 622 stor_device = hv_get_drvdata(device); 623 624 if (!stor_device) 625 goto get_in_err; 626 627 /* 628 * If the device is being destroyed; allow incoming 629 * traffic only to cleanup outstanding requests. 630 */ 631 632 if (stor_device->destroy && 633 (atomic_read(&stor_device->num_outstanding_req) == 0)) 634 stor_device = NULL; 635 636 get_in_err: 637 return stor_device; 638 639 } 640 641 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 642 u32 new) 643 { 644 struct storvsc_device *stor_device; 645 struct vmbus_channel *cur_chn; 646 bool old_is_alloced = false; 647 struct hv_device *device; 648 unsigned long flags; 649 int cpu; 650 651 device = channel->primary_channel ? 652 channel->primary_channel->device_obj 653 : channel->device_obj; 654 stor_device = get_out_stor_device(device); 655 if (!stor_device) 656 return; 657 658 /* See storvsc_do_io() -> get_og_chn(). */ 659 spin_lock_irqsave(&stor_device->lock, flags); 660 661 /* 662 * Determines if the storvsc device has other channels assigned to 663 * the "old" CPU to update the alloced_cpus mask and the stor_chns 664 * array. 665 */ 666 if (device->channel != channel && device->channel->target_cpu == old) { 667 cur_chn = device->channel; 668 old_is_alloced = true; 669 goto old_is_alloced; 670 } 671 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 672 if (cur_chn == channel) 673 continue; 674 if (cur_chn->target_cpu == old) { 675 old_is_alloced = true; 676 goto old_is_alloced; 677 } 678 } 679 680 old_is_alloced: 681 if (old_is_alloced) 682 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 683 else 684 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 685 686 /* "Flush" the stor_chns array. */ 687 for_each_possible_cpu(cpu) { 688 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 689 cpu, &stor_device->alloced_cpus)) 690 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 691 } 692 693 WRITE_ONCE(stor_device->stor_chns[new], channel); 694 cpumask_set_cpu(new, &stor_device->alloced_cpus); 695 696 spin_unlock_irqrestore(&stor_device->lock, flags); 697 } 698 699 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 700 { 701 struct storvsc_cmd_request *request = 702 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 703 704 if (rqst_addr == VMBUS_RQST_INIT) 705 return VMBUS_RQST_INIT; 706 if (rqst_addr == VMBUS_RQST_RESET) 707 return VMBUS_RQST_RESET; 708 709 /* 710 * Cannot return an ID of 0, which is reserved for an unsolicited 711 * message from Hyper-V. 712 */ 713 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 714 } 715 716 static void handle_sc_creation(struct vmbus_channel *new_sc) 717 { 718 struct hv_device *device = new_sc->primary_channel->device_obj; 719 struct device *dev = &device->device; 720 struct storvsc_device *stor_device; 721 struct vmstorage_channel_properties props; 722 int ret; 723 724 stor_device = get_out_stor_device(device); 725 if (!stor_device) 726 return; 727 728 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 729 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 730 731 new_sc->next_request_id_callback = storvsc_next_request_id; 732 733 ret = vmbus_open(new_sc, 734 storvsc_ringbuffer_size, 735 storvsc_ringbuffer_size, 736 (void *)&props, 737 sizeof(struct vmstorage_channel_properties), 738 storvsc_on_channel_callback, new_sc); 739 740 /* In case vmbus_open() fails, we don't use the sub-channel. */ 741 if (ret != 0) { 742 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 743 return; 744 } 745 746 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 747 748 /* Add the sub-channel to the array of available channels. */ 749 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 750 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 751 } 752 753 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 754 { 755 struct device *dev = &device->device; 756 struct storvsc_device *stor_device; 757 int num_sc; 758 struct storvsc_cmd_request *request; 759 struct vstor_packet *vstor_packet; 760 int ret, t; 761 762 /* 763 * If the number of CPUs is artificially restricted, such as 764 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 765 * sub-channels >= the number of CPUs. These sub-channels 766 * should not be created. The primary channel is already created 767 * and assigned to one CPU, so check against # CPUs - 1. 768 */ 769 num_sc = min((int)(num_online_cpus() - 1), max_chns); 770 if (!num_sc) 771 return; 772 773 stor_device = get_out_stor_device(device); 774 if (!stor_device) 775 return; 776 777 stor_device->num_sc = num_sc; 778 request = &stor_device->init_request; 779 vstor_packet = &request->vstor_packet; 780 781 /* 782 * Establish a handler for dealing with subchannels. 783 */ 784 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 785 786 /* 787 * Request the host to create sub-channels. 788 */ 789 memset(request, 0, sizeof(struct storvsc_cmd_request)); 790 init_completion(&request->wait_event); 791 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 792 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 793 vstor_packet->sub_channel_count = num_sc; 794 795 ret = vmbus_sendpacket(device->channel, vstor_packet, 796 (sizeof(struct vstor_packet) - 797 stor_device->vmscsi_size_delta), 798 VMBUS_RQST_INIT, 799 VM_PKT_DATA_INBAND, 800 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 801 802 if (ret != 0) { 803 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 804 return; 805 } 806 807 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 808 if (t == 0) { 809 dev_err(dev, "Failed to create sub-channel: timed out\n"); 810 return; 811 } 812 813 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 814 vstor_packet->status != 0) { 815 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 816 vstor_packet->operation, vstor_packet->status); 817 return; 818 } 819 820 /* 821 * We need to do nothing here, because vmbus_process_offer() 822 * invokes channel->sc_creation_callback, which will open and use 823 * the sub-channel(s). 824 */ 825 } 826 827 static void cache_wwn(struct storvsc_device *stor_device, 828 struct vstor_packet *vstor_packet) 829 { 830 /* 831 * Cache the currently active port and node ww names. 832 */ 833 if (vstor_packet->wwn_packet.primary_active) { 834 stor_device->node_name = 835 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 836 stor_device->port_name = 837 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 838 } else { 839 stor_device->node_name = 840 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 841 stor_device->port_name = 842 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 843 } 844 } 845 846 847 static int storvsc_execute_vstor_op(struct hv_device *device, 848 struct storvsc_cmd_request *request, 849 bool status_check) 850 { 851 struct storvsc_device *stor_device; 852 struct vstor_packet *vstor_packet; 853 int ret, t; 854 855 stor_device = get_out_stor_device(device); 856 if (!stor_device) 857 return -ENODEV; 858 859 vstor_packet = &request->vstor_packet; 860 861 init_completion(&request->wait_event); 862 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 863 864 ret = vmbus_sendpacket(device->channel, vstor_packet, 865 (sizeof(struct vstor_packet) - 866 stor_device->vmscsi_size_delta), 867 VMBUS_RQST_INIT, 868 VM_PKT_DATA_INBAND, 869 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 870 if (ret != 0) 871 return ret; 872 873 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 874 if (t == 0) 875 return -ETIMEDOUT; 876 877 if (!status_check) 878 return ret; 879 880 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 881 vstor_packet->status != 0) 882 return -EINVAL; 883 884 return ret; 885 } 886 887 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 888 { 889 struct storvsc_device *stor_device; 890 struct storvsc_cmd_request *request; 891 struct vstor_packet *vstor_packet; 892 int ret, i; 893 int max_chns; 894 bool process_sub_channels = false; 895 896 stor_device = get_out_stor_device(device); 897 if (!stor_device) 898 return -ENODEV; 899 900 request = &stor_device->init_request; 901 vstor_packet = &request->vstor_packet; 902 903 /* 904 * Now, initiate the vsc/vsp initialization protocol on the open 905 * channel 906 */ 907 memset(request, 0, sizeof(struct storvsc_cmd_request)); 908 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 909 ret = storvsc_execute_vstor_op(device, request, true); 910 if (ret) 911 return ret; 912 /* 913 * Query host supported protocol version. 914 */ 915 916 for (i = 0; i < ARRAY_SIZE(vmstor_protocols); i++) { 917 /* reuse the packet for version range supported */ 918 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 919 vstor_packet->operation = 920 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 921 922 vstor_packet->version.major_minor = 923 vmstor_protocols[i].protocol_version; 924 925 /* 926 * The revision number is only used in Windows; set it to 0. 927 */ 928 vstor_packet->version.revision = 0; 929 ret = storvsc_execute_vstor_op(device, request, false); 930 if (ret != 0) 931 return ret; 932 933 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 934 return -EINVAL; 935 936 if (vstor_packet->status == 0) { 937 vmstor_proto_version = 938 vmstor_protocols[i].protocol_version; 939 940 sense_buffer_size = 941 vmstor_protocols[i].sense_buffer_size; 942 943 stor_device->vmscsi_size_delta = 944 vmstor_protocols[i].vmscsi_size_delta; 945 946 break; 947 } 948 } 949 950 if (vstor_packet->status != 0) 951 return -EINVAL; 952 953 954 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 955 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 956 ret = storvsc_execute_vstor_op(device, request, true); 957 if (ret != 0) 958 return ret; 959 960 /* 961 * Check to see if multi-channel support is there. 962 * Hosts that implement protocol version of 5.1 and above 963 * support multi-channel. 964 */ 965 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 966 967 /* 968 * Allocate state to manage the sub-channels. 969 * We allocate an array based on the numbers of possible CPUs 970 * (Hyper-V does not support cpu online/offline). 971 * This Array will be sparseley populated with unique 972 * channels - primary + sub-channels. 973 * We will however populate all the slots to evenly distribute 974 * the load. 975 */ 976 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 977 GFP_KERNEL); 978 if (stor_device->stor_chns == NULL) 979 return -ENOMEM; 980 981 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 982 983 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 984 cpumask_set_cpu(device->channel->target_cpu, 985 &stor_device->alloced_cpus); 986 987 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN8) { 988 if (vstor_packet->storage_channel_properties.flags & 989 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 990 process_sub_channels = true; 991 } 992 stor_device->max_transfer_bytes = 993 vstor_packet->storage_channel_properties.max_transfer_bytes; 994 995 if (!is_fc) 996 goto done; 997 998 /* 999 * For FC devices retrieve FC HBA data. 1000 */ 1001 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1002 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 1003 ret = storvsc_execute_vstor_op(device, request, true); 1004 if (ret != 0) 1005 return ret; 1006 1007 /* 1008 * Cache the currently active port and node ww names. 1009 */ 1010 cache_wwn(stor_device, vstor_packet); 1011 1012 done: 1013 1014 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1015 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 1016 ret = storvsc_execute_vstor_op(device, request, true); 1017 if (ret != 0) 1018 return ret; 1019 1020 if (process_sub_channels) 1021 handle_multichannel_storage(device, max_chns); 1022 1023 return ret; 1024 } 1025 1026 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 1027 struct scsi_cmnd *scmnd, 1028 struct Scsi_Host *host, 1029 u8 asc, u8 ascq) 1030 { 1031 struct storvsc_scan_work *wrk; 1032 void (*process_err_fn)(struct work_struct *work); 1033 struct hv_host_device *host_dev = shost_priv(host); 1034 1035 /* 1036 * In some situations, Hyper-V sets multiple bits in the 1037 * srb_status, such as ABORTED and ERROR. So process them 1038 * individually, with the most specific bits first. 1039 */ 1040 1041 if (vm_srb->srb_status & SRB_STATUS_INVALID_LUN) { 1042 set_host_byte(scmnd, DID_NO_CONNECT); 1043 process_err_fn = storvsc_remove_lun; 1044 goto do_work; 1045 } 1046 1047 if (vm_srb->srb_status & SRB_STATUS_ABORTED) { 1048 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID && 1049 /* Capacity data has changed */ 1050 (asc == 0x2a) && (ascq == 0x9)) { 1051 process_err_fn = storvsc_device_scan; 1052 /* 1053 * Retry the I/O that triggered this. 1054 */ 1055 set_host_byte(scmnd, DID_REQUEUE); 1056 goto do_work; 1057 } 1058 } 1059 1060 if (vm_srb->srb_status & SRB_STATUS_ERROR) { 1061 /* 1062 * Let upper layer deal with error when 1063 * sense message is present. 1064 */ 1065 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) 1066 return; 1067 1068 /* 1069 * If there is an error; offline the device since all 1070 * error recovery strategies would have already been 1071 * deployed on the host side. However, if the command 1072 * were a pass-through command deal with it appropriately. 1073 */ 1074 switch (scmnd->cmnd[0]) { 1075 case ATA_16: 1076 case ATA_12: 1077 set_host_byte(scmnd, DID_PASSTHROUGH); 1078 break; 1079 /* 1080 * On some Hyper-V hosts TEST_UNIT_READY command can 1081 * return SRB_STATUS_ERROR. Let the upper level code 1082 * deal with it based on the sense information. 1083 */ 1084 case TEST_UNIT_READY: 1085 break; 1086 default: 1087 set_host_byte(scmnd, DID_ERROR); 1088 } 1089 } 1090 return; 1091 1092 do_work: 1093 /* 1094 * We need to schedule work to process this error; schedule it. 1095 */ 1096 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1097 if (!wrk) { 1098 set_host_byte(scmnd, DID_TARGET_FAILURE); 1099 return; 1100 } 1101 1102 wrk->host = host; 1103 wrk->lun = vm_srb->lun; 1104 wrk->tgt_id = vm_srb->target_id; 1105 INIT_WORK(&wrk->work, process_err_fn); 1106 queue_work(host_dev->handle_error_wq, &wrk->work); 1107 } 1108 1109 1110 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1111 struct storvsc_device *stor_dev) 1112 { 1113 struct scsi_cmnd *scmnd = cmd_request->cmd; 1114 struct scsi_sense_hdr sense_hdr; 1115 struct vmscsi_request *vm_srb; 1116 u32 data_transfer_length; 1117 struct Scsi_Host *host; 1118 u32 payload_sz = cmd_request->payload_sz; 1119 void *payload = cmd_request->payload; 1120 bool sense_ok; 1121 1122 host = stor_dev->host; 1123 1124 vm_srb = &cmd_request->vstor_packet.vm_srb; 1125 data_transfer_length = vm_srb->data_transfer_length; 1126 1127 scmnd->result = vm_srb->scsi_status; 1128 1129 if (scmnd->result) { 1130 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1131 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1132 1133 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1134 scsi_print_sense_hdr(scmnd->device, "storvsc", 1135 &sense_hdr); 1136 } 1137 1138 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1139 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1140 sense_hdr.ascq); 1141 /* 1142 * The Windows driver set data_transfer_length on 1143 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1144 * is untouched. In these cases we set it to 0. 1145 */ 1146 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1147 data_transfer_length = 0; 1148 } 1149 1150 /* Validate data_transfer_length (from Hyper-V) */ 1151 if (data_transfer_length > cmd_request->payload->range.len) 1152 data_transfer_length = cmd_request->payload->range.len; 1153 1154 scsi_set_resid(scmnd, 1155 cmd_request->payload->range.len - data_transfer_length); 1156 1157 scmnd->scsi_done(scmnd); 1158 1159 if (payload_sz > 1160 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1161 kfree(payload); 1162 } 1163 1164 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1165 struct vstor_packet *vstor_packet, 1166 struct storvsc_cmd_request *request) 1167 { 1168 struct vstor_packet *stor_pkt; 1169 struct hv_device *device = stor_device->device; 1170 1171 stor_pkt = &request->vstor_packet; 1172 1173 /* 1174 * The current SCSI handling on the host side does 1175 * not correctly handle: 1176 * INQUIRY command with page code parameter set to 0x80 1177 * MODE_SENSE command with cmd[2] == 0x1c 1178 * 1179 * Setup srb and scsi status so this won't be fatal. 1180 * We do this so we can distinguish truly fatal failues 1181 * (srb status == 0x4) and off-line the device in that case. 1182 */ 1183 1184 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1185 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { 1186 vstor_packet->vm_srb.scsi_status = 0; 1187 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1188 } 1189 1190 /* Copy over the status...etc */ 1191 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1192 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1193 1194 /* 1195 * Copy over the sense_info_length, but limit to the known max 1196 * size if Hyper-V returns a bad value. 1197 */ 1198 stor_pkt->vm_srb.sense_info_length = min_t(u8, sense_buffer_size, 1199 vstor_packet->vm_srb.sense_info_length); 1200 1201 if (vstor_packet->vm_srb.scsi_status != 0 || 1202 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1203 1204 /* 1205 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1206 * return errors when detecting devices using TEST_UNIT_READY, 1207 * and logging these as errors produces unhelpful noise. 1208 */ 1209 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1210 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1211 1212 storvsc_log(device, loglevel, 1213 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", 1214 scsi_cmd_to_rq(request->cmd)->tag, 1215 stor_pkt->vm_srb.cdb[0], 1216 vstor_packet->vm_srb.scsi_status, 1217 vstor_packet->vm_srb.srb_status, 1218 vstor_packet->status); 1219 } 1220 1221 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1222 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1223 memcpy(request->cmd->sense_buffer, 1224 vstor_packet->vm_srb.sense_data, 1225 stor_pkt->vm_srb.sense_info_length); 1226 1227 stor_pkt->vm_srb.data_transfer_length = 1228 vstor_packet->vm_srb.data_transfer_length; 1229 1230 storvsc_command_completion(request, stor_device); 1231 1232 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1233 stor_device->drain_notify) 1234 wake_up(&stor_device->waiting_to_drain); 1235 } 1236 1237 static void storvsc_on_receive(struct storvsc_device *stor_device, 1238 struct vstor_packet *vstor_packet, 1239 struct storvsc_cmd_request *request) 1240 { 1241 struct hv_host_device *host_dev; 1242 switch (vstor_packet->operation) { 1243 case VSTOR_OPERATION_COMPLETE_IO: 1244 storvsc_on_io_completion(stor_device, vstor_packet, request); 1245 break; 1246 1247 case VSTOR_OPERATION_REMOVE_DEVICE: 1248 case VSTOR_OPERATION_ENUMERATE_BUS: 1249 host_dev = shost_priv(stor_device->host); 1250 queue_work( 1251 host_dev->handle_error_wq, &host_dev->host_scan_work); 1252 break; 1253 1254 case VSTOR_OPERATION_FCHBA_DATA: 1255 cache_wwn(stor_device, vstor_packet); 1256 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1257 fc_host_node_name(stor_device->host) = stor_device->node_name; 1258 fc_host_port_name(stor_device->host) = stor_device->port_name; 1259 #endif 1260 break; 1261 default: 1262 break; 1263 } 1264 } 1265 1266 static void storvsc_on_channel_callback(void *context) 1267 { 1268 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1269 const struct vmpacket_descriptor *desc; 1270 struct hv_device *device; 1271 struct storvsc_device *stor_device; 1272 struct Scsi_Host *shost; 1273 1274 if (channel->primary_channel != NULL) 1275 device = channel->primary_channel->device_obj; 1276 else 1277 device = channel->device_obj; 1278 1279 stor_device = get_in_stor_device(device); 1280 if (!stor_device) 1281 return; 1282 1283 shost = stor_device->host; 1284 1285 foreach_vmbus_pkt(desc, channel) { 1286 struct vstor_packet *packet = hv_pkt_data(desc); 1287 struct storvsc_cmd_request *request = NULL; 1288 u64 rqst_id = desc->trans_id; 1289 1290 if (hv_pkt_datalen(desc) < sizeof(struct vstor_packet) - 1291 stor_device->vmscsi_size_delta) { 1292 dev_err(&device->device, "Invalid packet len\n"); 1293 continue; 1294 } 1295 1296 if (rqst_id == VMBUS_RQST_INIT) { 1297 request = &stor_device->init_request; 1298 } else if (rqst_id == VMBUS_RQST_RESET) { 1299 request = &stor_device->reset_request; 1300 } else { 1301 /* Hyper-V can send an unsolicited message with ID of 0 */ 1302 if (rqst_id == 0) { 1303 /* 1304 * storvsc_on_receive() looks at the vstor_packet in the message 1305 * from the ring buffer. If the operation in the vstor_packet is 1306 * COMPLETE_IO, then we call storvsc_on_io_completion(), and 1307 * dereference the guest memory address. Make sure we don't call 1308 * storvsc_on_io_completion() with a guest memory address that is 1309 * zero if Hyper-V were to construct and send such a bogus packet. 1310 */ 1311 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO) { 1312 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1313 continue; 1314 } 1315 } else { 1316 struct scsi_cmnd *scmnd; 1317 1318 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1319 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1320 if (scmnd == NULL) { 1321 dev_err(&device->device, "Incorrect transaction ID\n"); 1322 continue; 1323 } 1324 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1325 } 1326 1327 storvsc_on_receive(stor_device, packet, request); 1328 continue; 1329 } 1330 1331 memcpy(&request->vstor_packet, packet, 1332 (sizeof(struct vstor_packet) - stor_device->vmscsi_size_delta)); 1333 complete(&request->wait_event); 1334 } 1335 } 1336 1337 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1338 bool is_fc) 1339 { 1340 struct vmstorage_channel_properties props; 1341 int ret; 1342 1343 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1344 1345 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1346 device->channel->next_request_id_callback = storvsc_next_request_id; 1347 1348 ret = vmbus_open(device->channel, 1349 ring_size, 1350 ring_size, 1351 (void *)&props, 1352 sizeof(struct vmstorage_channel_properties), 1353 storvsc_on_channel_callback, device->channel); 1354 1355 if (ret != 0) 1356 return ret; 1357 1358 ret = storvsc_channel_init(device, is_fc); 1359 1360 return ret; 1361 } 1362 1363 static int storvsc_dev_remove(struct hv_device *device) 1364 { 1365 struct storvsc_device *stor_device; 1366 1367 stor_device = hv_get_drvdata(device); 1368 1369 stor_device->destroy = true; 1370 1371 /* Make sure flag is set before waiting */ 1372 wmb(); 1373 1374 /* 1375 * At this point, all outbound traffic should be disable. We 1376 * only allow inbound traffic (responses) to proceed so that 1377 * outstanding requests can be completed. 1378 */ 1379 1380 storvsc_wait_to_drain(stor_device); 1381 1382 /* 1383 * Since we have already drained, we don't need to busy wait 1384 * as was done in final_release_stor_device() 1385 * Note that we cannot set the ext pointer to NULL until 1386 * we have drained - to drain the outgoing packets, we need to 1387 * allow incoming packets. 1388 */ 1389 hv_set_drvdata(device, NULL); 1390 1391 /* Close the channel */ 1392 vmbus_close(device->channel); 1393 1394 kfree(stor_device->stor_chns); 1395 kfree(stor_device); 1396 return 0; 1397 } 1398 1399 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1400 u16 q_num) 1401 { 1402 u16 slot = 0; 1403 u16 hash_qnum; 1404 const struct cpumask *node_mask; 1405 int num_channels, tgt_cpu; 1406 1407 if (stor_device->num_sc == 0) { 1408 stor_device->stor_chns[q_num] = stor_device->device->channel; 1409 return stor_device->device->channel; 1410 } 1411 1412 /* 1413 * Our channel array is sparsley populated and we 1414 * initiated I/O on a processor/hw-q that does not 1415 * currently have a designated channel. Fix this. 1416 * The strategy is simple: 1417 * I. Ensure NUMA locality 1418 * II. Distribute evenly (best effort) 1419 */ 1420 1421 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1422 1423 num_channels = 0; 1424 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1425 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1426 num_channels++; 1427 } 1428 if (num_channels == 0) { 1429 stor_device->stor_chns[q_num] = stor_device->device->channel; 1430 return stor_device->device->channel; 1431 } 1432 1433 hash_qnum = q_num; 1434 while (hash_qnum >= num_channels) 1435 hash_qnum -= num_channels; 1436 1437 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1438 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1439 continue; 1440 if (slot == hash_qnum) 1441 break; 1442 slot++; 1443 } 1444 1445 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1446 1447 return stor_device->stor_chns[q_num]; 1448 } 1449 1450 1451 static int storvsc_do_io(struct hv_device *device, 1452 struct storvsc_cmd_request *request, u16 q_num) 1453 { 1454 struct storvsc_device *stor_device; 1455 struct vstor_packet *vstor_packet; 1456 struct vmbus_channel *outgoing_channel, *channel; 1457 unsigned long flags; 1458 int ret = 0; 1459 const struct cpumask *node_mask; 1460 int tgt_cpu; 1461 1462 vstor_packet = &request->vstor_packet; 1463 stor_device = get_out_stor_device(device); 1464 1465 if (!stor_device) 1466 return -ENODEV; 1467 1468 1469 request->device = device; 1470 /* 1471 * Select an appropriate channel to send the request out. 1472 */ 1473 /* See storvsc_change_target_cpu(). */ 1474 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1475 if (outgoing_channel != NULL) { 1476 if (outgoing_channel->target_cpu == q_num) { 1477 /* 1478 * Ideally, we want to pick a different channel if 1479 * available on the same NUMA node. 1480 */ 1481 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1482 for_each_cpu_wrap(tgt_cpu, 1483 &stor_device->alloced_cpus, q_num + 1) { 1484 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1485 continue; 1486 if (tgt_cpu == q_num) 1487 continue; 1488 channel = READ_ONCE( 1489 stor_device->stor_chns[tgt_cpu]); 1490 if (channel == NULL) 1491 continue; 1492 if (hv_get_avail_to_write_percent( 1493 &channel->outbound) 1494 > ring_avail_percent_lowater) { 1495 outgoing_channel = channel; 1496 goto found_channel; 1497 } 1498 } 1499 1500 /* 1501 * All the other channels on the same NUMA node are 1502 * busy. Try to use the channel on the current CPU 1503 */ 1504 if (hv_get_avail_to_write_percent( 1505 &outgoing_channel->outbound) 1506 > ring_avail_percent_lowater) 1507 goto found_channel; 1508 1509 /* 1510 * If we reach here, all the channels on the current 1511 * NUMA node are busy. Try to find a channel in 1512 * other NUMA nodes 1513 */ 1514 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1515 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1516 continue; 1517 channel = READ_ONCE( 1518 stor_device->stor_chns[tgt_cpu]); 1519 if (channel == NULL) 1520 continue; 1521 if (hv_get_avail_to_write_percent( 1522 &channel->outbound) 1523 > ring_avail_percent_lowater) { 1524 outgoing_channel = channel; 1525 goto found_channel; 1526 } 1527 } 1528 } 1529 } else { 1530 spin_lock_irqsave(&stor_device->lock, flags); 1531 outgoing_channel = stor_device->stor_chns[q_num]; 1532 if (outgoing_channel != NULL) { 1533 spin_unlock_irqrestore(&stor_device->lock, flags); 1534 goto found_channel; 1535 } 1536 outgoing_channel = get_og_chn(stor_device, q_num); 1537 spin_unlock_irqrestore(&stor_device->lock, flags); 1538 } 1539 1540 found_channel: 1541 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1542 1543 vstor_packet->vm_srb.length = (sizeof(struct vmscsi_request) - 1544 stor_device->vmscsi_size_delta); 1545 1546 1547 vstor_packet->vm_srb.sense_info_length = sense_buffer_size; 1548 1549 1550 vstor_packet->vm_srb.data_transfer_length = 1551 request->payload->range.len; 1552 1553 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1554 1555 if (request->payload->range.len) { 1556 1557 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1558 request->payload, request->payload_sz, 1559 vstor_packet, 1560 (sizeof(struct vstor_packet) - 1561 stor_device->vmscsi_size_delta), 1562 (unsigned long)request); 1563 } else { 1564 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1565 (sizeof(struct vstor_packet) - 1566 stor_device->vmscsi_size_delta), 1567 (unsigned long)request, 1568 VM_PKT_DATA_INBAND, 1569 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1570 } 1571 1572 if (ret != 0) 1573 return ret; 1574 1575 atomic_inc(&stor_device->num_outstanding_req); 1576 1577 return ret; 1578 } 1579 1580 static int storvsc_device_alloc(struct scsi_device *sdevice) 1581 { 1582 /* 1583 * Set blist flag to permit the reading of the VPD pages even when 1584 * the target may claim SPC-2 compliance. MSFT targets currently 1585 * claim SPC-2 compliance while they implement post SPC-2 features. 1586 * With this flag we can correctly handle WRITE_SAME_16 issues. 1587 * 1588 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1589 * still supports REPORT LUN. 1590 */ 1591 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1592 1593 return 0; 1594 } 1595 1596 static int storvsc_device_configure(struct scsi_device *sdevice) 1597 { 1598 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1599 1600 sdevice->no_write_same = 1; 1601 1602 /* 1603 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1604 * if the device is a MSFT virtual device. If the host is 1605 * WIN10 or newer, allow write_same. 1606 */ 1607 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1608 switch (vmstor_proto_version) { 1609 case VMSTOR_PROTO_VERSION_WIN8: 1610 case VMSTOR_PROTO_VERSION_WIN8_1: 1611 sdevice->scsi_level = SCSI_SPC_3; 1612 break; 1613 } 1614 1615 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1616 sdevice->no_write_same = 0; 1617 } 1618 1619 return 0; 1620 } 1621 1622 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1623 sector_t capacity, int *info) 1624 { 1625 sector_t nsect = capacity; 1626 sector_t cylinders = nsect; 1627 int heads, sectors_pt; 1628 1629 /* 1630 * We are making up these values; let us keep it simple. 1631 */ 1632 heads = 0xff; 1633 sectors_pt = 0x3f; /* Sectors per track */ 1634 sector_div(cylinders, heads * sectors_pt); 1635 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1636 cylinders = 0xffff; 1637 1638 info[0] = heads; 1639 info[1] = sectors_pt; 1640 info[2] = (int)cylinders; 1641 1642 return 0; 1643 } 1644 1645 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1646 { 1647 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1648 struct hv_device *device = host_dev->dev; 1649 1650 struct storvsc_device *stor_device; 1651 struct storvsc_cmd_request *request; 1652 struct vstor_packet *vstor_packet; 1653 int ret, t; 1654 1655 stor_device = get_out_stor_device(device); 1656 if (!stor_device) 1657 return FAILED; 1658 1659 request = &stor_device->reset_request; 1660 vstor_packet = &request->vstor_packet; 1661 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1662 1663 init_completion(&request->wait_event); 1664 1665 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1666 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1667 vstor_packet->vm_srb.path_id = stor_device->path_id; 1668 1669 ret = vmbus_sendpacket(device->channel, vstor_packet, 1670 (sizeof(struct vstor_packet) - 1671 stor_device->vmscsi_size_delta), 1672 VMBUS_RQST_RESET, 1673 VM_PKT_DATA_INBAND, 1674 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1675 if (ret != 0) 1676 return FAILED; 1677 1678 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1679 if (t == 0) 1680 return TIMEOUT_ERROR; 1681 1682 1683 /* 1684 * At this point, all outstanding requests in the adapter 1685 * should have been flushed out and return to us 1686 * There is a potential race here where the host may be in 1687 * the process of responding when we return from here. 1688 * Just wait for all in-transit packets to be accounted for 1689 * before we return from here. 1690 */ 1691 storvsc_wait_to_drain(stor_device); 1692 1693 return SUCCESS; 1694 } 1695 1696 /* 1697 * The host guarantees to respond to each command, although I/O latencies might 1698 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1699 * chance to perform EH. 1700 */ 1701 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1702 { 1703 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1704 if (scmnd->device->host->transportt == fc_transport_template) 1705 return fc_eh_timed_out(scmnd); 1706 #endif 1707 return BLK_EH_RESET_TIMER; 1708 } 1709 1710 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1711 { 1712 bool allowed = true; 1713 u8 scsi_op = scmnd->cmnd[0]; 1714 1715 switch (scsi_op) { 1716 /* the host does not handle WRITE_SAME, log accident usage */ 1717 case WRITE_SAME: 1718 /* 1719 * smartd sends this command and the host does not handle 1720 * this. So, don't send it. 1721 */ 1722 case SET_WINDOW: 1723 set_host_byte(scmnd, DID_ERROR); 1724 allowed = false; 1725 break; 1726 default: 1727 break; 1728 } 1729 return allowed; 1730 } 1731 1732 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1733 { 1734 int ret; 1735 struct hv_host_device *host_dev = shost_priv(host); 1736 struct hv_device *dev = host_dev->dev; 1737 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1738 int i; 1739 struct scatterlist *sgl; 1740 unsigned int sg_count; 1741 struct vmscsi_request *vm_srb; 1742 struct vmbus_packet_mpb_array *payload; 1743 u32 payload_sz; 1744 u32 length; 1745 1746 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1747 /* 1748 * On legacy hosts filter unimplemented commands. 1749 * Future hosts are expected to correctly handle 1750 * unsupported commands. Furthermore, it is 1751 * possible that some of the currently 1752 * unsupported commands maybe supported in 1753 * future versions of the host. 1754 */ 1755 if (!storvsc_scsi_cmd_ok(scmnd)) { 1756 scmnd->scsi_done(scmnd); 1757 return 0; 1758 } 1759 } 1760 1761 /* Setup the cmd request */ 1762 cmd_request->cmd = scmnd; 1763 1764 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1765 vm_srb = &cmd_request->vstor_packet.vm_srb; 1766 vm_srb->win8_extension.time_out_value = 60; 1767 1768 vm_srb->win8_extension.srb_flags |= 1769 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1770 1771 if (scmnd->device->tagged_supported) { 1772 vm_srb->win8_extension.srb_flags |= 1773 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1774 vm_srb->win8_extension.queue_tag = SP_UNTAGGED; 1775 vm_srb->win8_extension.queue_action = SRB_SIMPLE_TAG_REQUEST; 1776 } 1777 1778 /* Build the SRB */ 1779 switch (scmnd->sc_data_direction) { 1780 case DMA_TO_DEVICE: 1781 vm_srb->data_in = WRITE_TYPE; 1782 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_OUT; 1783 break; 1784 case DMA_FROM_DEVICE: 1785 vm_srb->data_in = READ_TYPE; 1786 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_DATA_IN; 1787 break; 1788 case DMA_NONE: 1789 vm_srb->data_in = UNKNOWN_TYPE; 1790 vm_srb->win8_extension.srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1791 break; 1792 default: 1793 /* 1794 * This is DMA_BIDIRECTIONAL or something else we are never 1795 * supposed to see here. 1796 */ 1797 WARN(1, "Unexpected data direction: %d\n", 1798 scmnd->sc_data_direction); 1799 return -EINVAL; 1800 } 1801 1802 1803 vm_srb->port_number = host_dev->port; 1804 vm_srb->path_id = scmnd->device->channel; 1805 vm_srb->target_id = scmnd->device->id; 1806 vm_srb->lun = scmnd->device->lun; 1807 1808 vm_srb->cdb_length = scmnd->cmd_len; 1809 1810 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1811 1812 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1813 sg_count = scsi_sg_count(scmnd); 1814 1815 length = scsi_bufflen(scmnd); 1816 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1817 payload_sz = sizeof(cmd_request->mpb); 1818 1819 if (sg_count) { 1820 unsigned int hvpgoff, hvpfns_to_add; 1821 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1822 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1823 u64 hvpfn; 1824 1825 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1826 1827 payload_sz = (hvpg_count * sizeof(u64) + 1828 sizeof(struct vmbus_packet_mpb_array)); 1829 payload = kzalloc(payload_sz, GFP_ATOMIC); 1830 if (!payload) 1831 return SCSI_MLQUEUE_DEVICE_BUSY; 1832 } 1833 1834 payload->range.len = length; 1835 payload->range.offset = offset_in_hvpg; 1836 1837 1838 for (i = 0; sgl != NULL; sgl = sg_next(sgl)) { 1839 /* 1840 * Init values for the current sgl entry. hvpgoff 1841 * and hvpfns_to_add are in units of Hyper-V size 1842 * pages. Handling the PAGE_SIZE != HV_HYP_PAGE_SIZE 1843 * case also handles values of sgl->offset that are 1844 * larger than PAGE_SIZE. Such offsets are handled 1845 * even on other than the first sgl entry, provided 1846 * they are a multiple of PAGE_SIZE. 1847 */ 1848 hvpgoff = HVPFN_DOWN(sgl->offset); 1849 hvpfn = page_to_hvpfn(sg_page(sgl)) + hvpgoff; 1850 hvpfns_to_add = HVPFN_UP(sgl->offset + sgl->length) - 1851 hvpgoff; 1852 1853 /* 1854 * Fill the next portion of the PFN array with 1855 * sequential Hyper-V PFNs for the continguous physical 1856 * memory described by the sgl entry. The end of the 1857 * last sgl should be reached at the same time that 1858 * the PFN array is filled. 1859 */ 1860 while (hvpfns_to_add--) 1861 payload->range.pfn_array[i++] = hvpfn++; 1862 } 1863 } 1864 1865 cmd_request->payload = payload; 1866 cmd_request->payload_sz = payload_sz; 1867 1868 /* Invokes the vsc to start an IO */ 1869 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1870 put_cpu(); 1871 1872 if (ret == -EAGAIN) { 1873 if (payload_sz > sizeof(cmd_request->mpb)) 1874 kfree(payload); 1875 /* no more space */ 1876 return SCSI_MLQUEUE_DEVICE_BUSY; 1877 } 1878 1879 return 0; 1880 } 1881 1882 static struct scsi_host_template scsi_driver = { 1883 .module = THIS_MODULE, 1884 .name = "storvsc_host_t", 1885 .cmd_size = sizeof(struct storvsc_cmd_request), 1886 .bios_param = storvsc_get_chs, 1887 .queuecommand = storvsc_queuecommand, 1888 .eh_host_reset_handler = storvsc_host_reset_handler, 1889 .proc_name = "storvsc_host", 1890 .eh_timed_out = storvsc_eh_timed_out, 1891 .slave_alloc = storvsc_device_alloc, 1892 .slave_configure = storvsc_device_configure, 1893 .cmd_per_lun = 2048, 1894 .this_id = -1, 1895 /* Ensure there are no gaps in presented sgls */ 1896 .virt_boundary_mask = PAGE_SIZE-1, 1897 .no_write_same = 1, 1898 .track_queue_depth = 1, 1899 .change_queue_depth = storvsc_change_queue_depth, 1900 }; 1901 1902 enum { 1903 SCSI_GUID, 1904 IDE_GUID, 1905 SFC_GUID, 1906 }; 1907 1908 static const struct hv_vmbus_device_id id_table[] = { 1909 /* SCSI guid */ 1910 { HV_SCSI_GUID, 1911 .driver_data = SCSI_GUID 1912 }, 1913 /* IDE guid */ 1914 { HV_IDE_GUID, 1915 .driver_data = IDE_GUID 1916 }, 1917 /* Fibre Channel GUID */ 1918 { 1919 HV_SYNTHFC_GUID, 1920 .driver_data = SFC_GUID 1921 }, 1922 { }, 1923 }; 1924 1925 MODULE_DEVICE_TABLE(vmbus, id_table); 1926 1927 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1928 1929 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1930 { 1931 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1932 } 1933 1934 static int storvsc_probe(struct hv_device *device, 1935 const struct hv_vmbus_device_id *dev_id) 1936 { 1937 int ret; 1938 int num_cpus = num_online_cpus(); 1939 int num_present_cpus = num_present_cpus(); 1940 struct Scsi_Host *host; 1941 struct hv_host_device *host_dev; 1942 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1943 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1944 int target = 0; 1945 struct storvsc_device *stor_device; 1946 int max_luns_per_target; 1947 int max_targets; 1948 int max_channels; 1949 int max_sub_channels = 0; 1950 1951 /* 1952 * Based on the windows host we are running on, 1953 * set state to properly communicate with the host. 1954 */ 1955 1956 if (vmbus_proto_version < VERSION_WIN8) { 1957 max_luns_per_target = STORVSC_IDE_MAX_LUNS_PER_TARGET; 1958 max_targets = STORVSC_IDE_MAX_TARGETS; 1959 max_channels = STORVSC_IDE_MAX_CHANNELS; 1960 } else { 1961 max_luns_per_target = STORVSC_MAX_LUNS_PER_TARGET; 1962 max_targets = STORVSC_MAX_TARGETS; 1963 max_channels = STORVSC_MAX_CHANNELS; 1964 /* 1965 * On Windows8 and above, we support sub-channels for storage 1966 * on SCSI and FC controllers. 1967 * The number of sub-channels offerred is based on the number of 1968 * VCPUs in the guest. 1969 */ 1970 if (!dev_is_ide) 1971 max_sub_channels = 1972 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1973 } 1974 1975 scsi_driver.can_queue = max_outstanding_req_per_channel * 1976 (max_sub_channels + 1) * 1977 (100 - ring_avail_percent_lowater) / 100; 1978 1979 host = scsi_host_alloc(&scsi_driver, 1980 sizeof(struct hv_host_device)); 1981 if (!host) 1982 return -ENOMEM; 1983 1984 host_dev = shost_priv(host); 1985 memset(host_dev, 0, sizeof(struct hv_host_device)); 1986 1987 host_dev->port = host->host_no; 1988 host_dev->dev = device; 1989 host_dev->host = host; 1990 1991 1992 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1993 if (!stor_device) { 1994 ret = -ENOMEM; 1995 goto err_out0; 1996 } 1997 1998 stor_device->destroy = false; 1999 init_waitqueue_head(&stor_device->waiting_to_drain); 2000 stor_device->device = device; 2001 stor_device->host = host; 2002 stor_device->vmscsi_size_delta = sizeof(struct vmscsi_win8_extension); 2003 spin_lock_init(&stor_device->lock); 2004 hv_set_drvdata(device, stor_device); 2005 2006 stor_device->port_number = host->host_no; 2007 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); 2008 if (ret) 2009 goto err_out1; 2010 2011 host_dev->path = stor_device->path_id; 2012 host_dev->target = stor_device->target_id; 2013 2014 switch (dev_id->driver_data) { 2015 case SFC_GUID: 2016 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 2017 host->max_id = STORVSC_FC_MAX_TARGETS; 2018 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 2019 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2020 host->transportt = fc_transport_template; 2021 #endif 2022 break; 2023 2024 case SCSI_GUID: 2025 host->max_lun = max_luns_per_target; 2026 host->max_id = max_targets; 2027 host->max_channel = max_channels - 1; 2028 break; 2029 2030 default: 2031 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 2032 host->max_id = STORVSC_IDE_MAX_TARGETS; 2033 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 2034 break; 2035 } 2036 /* max cmd length */ 2037 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 2038 2039 /* 2040 * set the table size based on the info we got 2041 * from the host. 2042 */ 2043 host->sg_tablesize = (stor_device->max_transfer_bytes >> PAGE_SHIFT); 2044 /* 2045 * For non-IDE disks, the host supports multiple channels. 2046 * Set the number of HW queues we are supporting. 2047 */ 2048 if (!dev_is_ide) { 2049 if (storvsc_max_hw_queues > num_present_cpus) { 2050 storvsc_max_hw_queues = 0; 2051 storvsc_log(device, STORVSC_LOGGING_WARN, 2052 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2053 } 2054 if (storvsc_max_hw_queues) 2055 host->nr_hw_queues = storvsc_max_hw_queues; 2056 else 2057 host->nr_hw_queues = num_present_cpus; 2058 } 2059 2060 /* 2061 * Set the error handler work queue. 2062 */ 2063 host_dev->handle_error_wq = 2064 alloc_ordered_workqueue("storvsc_error_wq_%d", 2065 WQ_MEM_RECLAIM, 2066 host->host_no); 2067 if (!host_dev->handle_error_wq) { 2068 ret = -ENOMEM; 2069 goto err_out2; 2070 } 2071 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2072 /* Register the HBA and start the scsi bus scan */ 2073 ret = scsi_add_host(host, &device->device); 2074 if (ret != 0) 2075 goto err_out3; 2076 2077 if (!dev_is_ide) { 2078 scsi_scan_host(host); 2079 } else { 2080 target = (device->dev_instance.b[5] << 8 | 2081 device->dev_instance.b[4]); 2082 ret = scsi_add_device(host, 0, target, 0); 2083 if (ret) 2084 goto err_out4; 2085 } 2086 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2087 if (host->transportt == fc_transport_template) { 2088 struct fc_rport_identifiers ids = { 2089 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2090 }; 2091 2092 fc_host_node_name(host) = stor_device->node_name; 2093 fc_host_port_name(host) = stor_device->port_name; 2094 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2095 if (!stor_device->rport) { 2096 ret = -ENOMEM; 2097 goto err_out4; 2098 } 2099 } 2100 #endif 2101 return 0; 2102 2103 err_out4: 2104 scsi_remove_host(host); 2105 2106 err_out3: 2107 destroy_workqueue(host_dev->handle_error_wq); 2108 2109 err_out2: 2110 /* 2111 * Once we have connected with the host, we would need to 2112 * to invoke storvsc_dev_remove() to rollback this state and 2113 * this call also frees up the stor_device; hence the jump around 2114 * err_out1 label. 2115 */ 2116 storvsc_dev_remove(device); 2117 goto err_out0; 2118 2119 err_out1: 2120 kfree(stor_device->stor_chns); 2121 kfree(stor_device); 2122 2123 err_out0: 2124 scsi_host_put(host); 2125 return ret; 2126 } 2127 2128 /* Change a scsi target's queue depth */ 2129 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2130 { 2131 if (queue_depth > scsi_driver.can_queue) 2132 queue_depth = scsi_driver.can_queue; 2133 2134 return scsi_change_queue_depth(sdev, queue_depth); 2135 } 2136 2137 static int storvsc_remove(struct hv_device *dev) 2138 { 2139 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2140 struct Scsi_Host *host = stor_device->host; 2141 struct hv_host_device *host_dev = shost_priv(host); 2142 2143 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2144 if (host->transportt == fc_transport_template) { 2145 fc_remote_port_delete(stor_device->rport); 2146 fc_remove_host(host); 2147 } 2148 #endif 2149 destroy_workqueue(host_dev->handle_error_wq); 2150 scsi_remove_host(host); 2151 storvsc_dev_remove(dev); 2152 scsi_host_put(host); 2153 2154 return 0; 2155 } 2156 2157 static int storvsc_suspend(struct hv_device *hv_dev) 2158 { 2159 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2160 struct Scsi_Host *host = stor_device->host; 2161 struct hv_host_device *host_dev = shost_priv(host); 2162 2163 storvsc_wait_to_drain(stor_device); 2164 2165 drain_workqueue(host_dev->handle_error_wq); 2166 2167 vmbus_close(hv_dev->channel); 2168 2169 kfree(stor_device->stor_chns); 2170 stor_device->stor_chns = NULL; 2171 2172 cpumask_clear(&stor_device->alloced_cpus); 2173 2174 return 0; 2175 } 2176 2177 static int storvsc_resume(struct hv_device *hv_dev) 2178 { 2179 int ret; 2180 2181 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size, 2182 hv_dev_is_fc(hv_dev)); 2183 return ret; 2184 } 2185 2186 static struct hv_driver storvsc_drv = { 2187 .name = KBUILD_MODNAME, 2188 .id_table = id_table, 2189 .probe = storvsc_probe, 2190 .remove = storvsc_remove, 2191 .suspend = storvsc_suspend, 2192 .resume = storvsc_resume, 2193 .driver = { 2194 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2195 }, 2196 }; 2197 2198 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2199 static struct fc_function_template fc_transport_functions = { 2200 .show_host_node_name = 1, 2201 .show_host_port_name = 1, 2202 }; 2203 #endif 2204 2205 static int __init storvsc_drv_init(void) 2206 { 2207 int ret; 2208 2209 /* 2210 * Divide the ring buffer data size (which is 1 page less 2211 * than the ring buffer size since that page is reserved for 2212 * the ring buffer indices) by the max request size (which is 2213 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2214 * 2215 * The computation underestimates max_outstanding_req_per_channel 2216 * for Win7 and older hosts because it does not take into account 2217 * the vmscsi_size_delta correction to the max request size. 2218 */ 2219 max_outstanding_req_per_channel = 2220 ((storvsc_ringbuffer_size - PAGE_SIZE) / 2221 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2222 sizeof(struct vstor_packet) + sizeof(u64), 2223 sizeof(u64))); 2224 2225 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2226 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2227 if (!fc_transport_template) 2228 return -ENODEV; 2229 #endif 2230 2231 ret = vmbus_driver_register(&storvsc_drv); 2232 2233 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2234 if (ret) 2235 fc_release_transport(fc_transport_template); 2236 #endif 2237 2238 return ret; 2239 } 2240 2241 static void __exit storvsc_drv_exit(void) 2242 { 2243 vmbus_driver_unregister(&storvsc_drv); 2244 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2245 fc_release_transport(fc_transport_template); 2246 #endif 2247 } 2248 2249 MODULE_LICENSE("GPL"); 2250 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2251 module_init(storvsc_drv_init); 2252 module_exit(storvsc_drv_exit); 2253