1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 * K. Y. Srinivasan <kys@microsoft.com> 9 */ 10 11 #include <linux/kernel.h> 12 #include <linux/wait.h> 13 #include <linux/sched.h> 14 #include <linux/completion.h> 15 #include <linux/string.h> 16 #include <linux/mm.h> 17 #include <linux/delay.h> 18 #include <linux/init.h> 19 #include <linux/slab.h> 20 #include <linux/module.h> 21 #include <linux/device.h> 22 #include <linux/hyperv.h> 23 #include <linux/blkdev.h> 24 #include <linux/dma-mapping.h> 25 26 #include <scsi/scsi.h> 27 #include <scsi/scsi_cmnd.h> 28 #include <scsi/scsi_host.h> 29 #include <scsi/scsi_device.h> 30 #include <scsi/scsi_tcq.h> 31 #include <scsi/scsi_eh.h> 32 #include <scsi/scsi_devinfo.h> 33 #include <scsi/scsi_dbg.h> 34 #include <scsi/scsi_transport_fc.h> 35 #include <scsi/scsi_transport.h> 36 37 /* 38 * All wire protocol details (storage protocol between the guest and the host) 39 * are consolidated here. 40 * 41 * Begin protocol definitions. 42 */ 43 44 /* 45 * Version history: 46 * V1 Beta: 0.1 47 * V1 RC < 2008/1/31: 1.0 48 * V1 RC > 2008/1/31: 2.0 49 * Win7: 4.2 50 * Win8: 5.1 51 * Win8.1: 6.0 52 * Win10: 6.2 53 */ 54 55 #define VMSTOR_PROTO_VERSION(MAJOR_, MINOR_) ((((MAJOR_) & 0xff) << 8) | \ 56 (((MINOR_) & 0xff))) 57 #define VMSTOR_PROTO_VERSION_WIN6 VMSTOR_PROTO_VERSION(2, 0) 58 #define VMSTOR_PROTO_VERSION_WIN7 VMSTOR_PROTO_VERSION(4, 2) 59 #define VMSTOR_PROTO_VERSION_WIN8 VMSTOR_PROTO_VERSION(5, 1) 60 #define VMSTOR_PROTO_VERSION_WIN8_1 VMSTOR_PROTO_VERSION(6, 0) 61 #define VMSTOR_PROTO_VERSION_WIN10 VMSTOR_PROTO_VERSION(6, 2) 62 63 /* channel callback timeout in ms */ 64 #define CALLBACK_TIMEOUT 2 65 66 /* Packet structure describing virtual storage requests. */ 67 enum vstor_packet_operation { 68 VSTOR_OPERATION_COMPLETE_IO = 1, 69 VSTOR_OPERATION_REMOVE_DEVICE = 2, 70 VSTOR_OPERATION_EXECUTE_SRB = 3, 71 VSTOR_OPERATION_RESET_LUN = 4, 72 VSTOR_OPERATION_RESET_ADAPTER = 5, 73 VSTOR_OPERATION_RESET_BUS = 6, 74 VSTOR_OPERATION_BEGIN_INITIALIZATION = 7, 75 VSTOR_OPERATION_END_INITIALIZATION = 8, 76 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION = 9, 77 VSTOR_OPERATION_QUERY_PROPERTIES = 10, 78 VSTOR_OPERATION_ENUMERATE_BUS = 11, 79 VSTOR_OPERATION_FCHBA_DATA = 12, 80 VSTOR_OPERATION_CREATE_SUB_CHANNELS = 13, 81 VSTOR_OPERATION_MAXIMUM = 13 82 }; 83 84 /* 85 * WWN packet for Fibre Channel HBA 86 */ 87 88 struct hv_fc_wwn_packet { 89 u8 primary_active; 90 u8 reserved1[3]; 91 u8 primary_port_wwn[8]; 92 u8 primary_node_wwn[8]; 93 u8 secondary_port_wwn[8]; 94 u8 secondary_node_wwn[8]; 95 }; 96 97 98 99 /* 100 * SRB Flag Bits 101 */ 102 103 #define SRB_FLAGS_QUEUE_ACTION_ENABLE 0x00000002 104 #define SRB_FLAGS_DISABLE_DISCONNECT 0x00000004 105 #define SRB_FLAGS_DISABLE_SYNCH_TRANSFER 0x00000008 106 #define SRB_FLAGS_BYPASS_FROZEN_QUEUE 0x00000010 107 #define SRB_FLAGS_DISABLE_AUTOSENSE 0x00000020 108 #define SRB_FLAGS_DATA_IN 0x00000040 109 #define SRB_FLAGS_DATA_OUT 0x00000080 110 #define SRB_FLAGS_NO_DATA_TRANSFER 0x00000000 111 #define SRB_FLAGS_UNSPECIFIED_DIRECTION (SRB_FLAGS_DATA_IN | SRB_FLAGS_DATA_OUT) 112 #define SRB_FLAGS_NO_QUEUE_FREEZE 0x00000100 113 #define SRB_FLAGS_ADAPTER_CACHE_ENABLE 0x00000200 114 #define SRB_FLAGS_FREE_SENSE_BUFFER 0x00000400 115 116 /* 117 * This flag indicates the request is part of the workflow for processing a D3. 118 */ 119 #define SRB_FLAGS_D3_PROCESSING 0x00000800 120 #define SRB_FLAGS_IS_ACTIVE 0x00010000 121 #define SRB_FLAGS_ALLOCATED_FROM_ZONE 0x00020000 122 #define SRB_FLAGS_SGLIST_FROM_POOL 0x00040000 123 #define SRB_FLAGS_BYPASS_LOCKED_QUEUE 0x00080000 124 #define SRB_FLAGS_NO_KEEP_AWAKE 0x00100000 125 #define SRB_FLAGS_PORT_DRIVER_ALLOCSENSE 0x00200000 126 #define SRB_FLAGS_PORT_DRIVER_SENSEHASPORT 0x00400000 127 #define SRB_FLAGS_DONT_START_NEXT_PACKET 0x00800000 128 #define SRB_FLAGS_PORT_DRIVER_RESERVED 0x0F000000 129 #define SRB_FLAGS_CLASS_DRIVER_RESERVED 0xF0000000 130 131 #define SP_UNTAGGED ((unsigned char) ~0) 132 #define SRB_SIMPLE_TAG_REQUEST 0x20 133 134 /* 135 * Platform neutral description of a scsi request - 136 * this remains the same across the write regardless of 32/64 bit 137 * note: it's patterned off the SCSI_PASS_THROUGH structure 138 */ 139 #define STORVSC_MAX_CMD_LEN 0x10 140 141 /* Sense buffer size is the same for all versions since Windows 8 */ 142 #define STORVSC_SENSE_BUFFER_SIZE 0x14 143 #define STORVSC_MAX_BUF_LEN_WITH_PADDING 0x14 144 145 /* 146 * The storage protocol version is determined during the 147 * initial exchange with the host. It will indicate which 148 * storage functionality is available in the host. 149 */ 150 static int vmstor_proto_version; 151 152 #define STORVSC_LOGGING_NONE 0 153 #define STORVSC_LOGGING_ERROR 1 154 #define STORVSC_LOGGING_WARN 2 155 156 static int logging_level = STORVSC_LOGGING_ERROR; 157 module_param(logging_level, int, S_IRUGO|S_IWUSR); 158 MODULE_PARM_DESC(logging_level, 159 "Logging level, 0 - None, 1 - Error (default), 2 - Warning."); 160 161 static inline bool do_logging(int level) 162 { 163 return logging_level >= level; 164 } 165 166 #define storvsc_log(dev, level, fmt, ...) \ 167 do { \ 168 if (do_logging(level)) \ 169 dev_warn(&(dev)->device, fmt, ##__VA_ARGS__); \ 170 } while (0) 171 172 struct vmscsi_request { 173 u16 length; 174 u8 srb_status; 175 u8 scsi_status; 176 177 u8 port_number; 178 u8 path_id; 179 u8 target_id; 180 u8 lun; 181 182 u8 cdb_length; 183 u8 sense_info_length; 184 u8 data_in; 185 u8 reserved; 186 187 u32 data_transfer_length; 188 189 union { 190 u8 cdb[STORVSC_MAX_CMD_LEN]; 191 u8 sense_data[STORVSC_SENSE_BUFFER_SIZE]; 192 u8 reserved_array[STORVSC_MAX_BUF_LEN_WITH_PADDING]; 193 }; 194 /* 195 * The following was added in win8. 196 */ 197 u16 reserve; 198 u8 queue_tag; 199 u8 queue_action; 200 u32 srb_flags; 201 u32 time_out_value; 202 u32 queue_sort_ey; 203 204 } __attribute((packed)); 205 206 /* 207 * The list of windows version in order of preference. 208 */ 209 210 static const int protocol_version[] = { 211 VMSTOR_PROTO_VERSION_WIN10, 212 VMSTOR_PROTO_VERSION_WIN8_1, 213 VMSTOR_PROTO_VERSION_WIN8, 214 }; 215 216 217 /* 218 * This structure is sent during the initialization phase to get the different 219 * properties of the channel. 220 */ 221 222 #define STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL 0x1 223 224 struct vmstorage_channel_properties { 225 u32 reserved; 226 u16 max_channel_cnt; 227 u16 reserved1; 228 229 u32 flags; 230 u32 max_transfer_bytes; 231 232 u64 reserved2; 233 } __packed; 234 235 /* This structure is sent during the storage protocol negotiations. */ 236 struct vmstorage_protocol_version { 237 /* Major (MSW) and minor (LSW) version numbers. */ 238 u16 major_minor; 239 240 /* 241 * Revision number is auto-incremented whenever this file is changed 242 * (See FILL_VMSTOR_REVISION macro above). Mismatch does not 243 * definitely indicate incompatibility--but it does indicate mismatched 244 * builds. 245 * This is only used on the windows side. Just set it to 0. 246 */ 247 u16 revision; 248 } __packed; 249 250 /* Channel Property Flags */ 251 #define STORAGE_CHANNEL_REMOVABLE_FLAG 0x1 252 #define STORAGE_CHANNEL_EMULATED_IDE_FLAG 0x2 253 254 struct vstor_packet { 255 /* Requested operation type */ 256 enum vstor_packet_operation operation; 257 258 /* Flags - see below for values */ 259 u32 flags; 260 261 /* Status of the request returned from the server side. */ 262 u32 status; 263 264 /* Data payload area */ 265 union { 266 /* 267 * Structure used to forward SCSI commands from the 268 * client to the server. 269 */ 270 struct vmscsi_request vm_srb; 271 272 /* Structure used to query channel properties. */ 273 struct vmstorage_channel_properties storage_channel_properties; 274 275 /* Used during version negotiations. */ 276 struct vmstorage_protocol_version version; 277 278 /* Fibre channel address packet */ 279 struct hv_fc_wwn_packet wwn_packet; 280 281 /* Number of sub-channels to create */ 282 u16 sub_channel_count; 283 284 /* This will be the maximum of the union members */ 285 u8 buffer[0x34]; 286 }; 287 } __packed; 288 289 /* 290 * Packet Flags: 291 * 292 * This flag indicates that the server should send back a completion for this 293 * packet. 294 */ 295 296 #define REQUEST_COMPLETION_FLAG 0x1 297 298 /* Matches Windows-end */ 299 enum storvsc_request_type { 300 WRITE_TYPE = 0, 301 READ_TYPE, 302 UNKNOWN_TYPE, 303 }; 304 305 /* 306 * SRB status codes and masks; a subset of the codes used here. 307 */ 308 309 #define SRB_STATUS_AUTOSENSE_VALID 0x80 310 #define SRB_STATUS_QUEUE_FROZEN 0x40 311 #define SRB_STATUS_INVALID_LUN 0x20 312 #define SRB_STATUS_SUCCESS 0x01 313 #define SRB_STATUS_ABORTED 0x02 314 #define SRB_STATUS_ERROR 0x04 315 #define SRB_STATUS_DATA_OVERRUN 0x12 316 317 #define SRB_STATUS(status) \ 318 (status & ~(SRB_STATUS_AUTOSENSE_VALID | SRB_STATUS_QUEUE_FROZEN)) 319 /* 320 * This is the end of Protocol specific defines. 321 */ 322 323 static int storvsc_ringbuffer_size = (128 * 1024); 324 static u32 max_outstanding_req_per_channel; 325 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth); 326 327 static int storvsc_vcpus_per_sub_channel = 4; 328 static unsigned int storvsc_max_hw_queues; 329 330 module_param(storvsc_ringbuffer_size, int, S_IRUGO); 331 MODULE_PARM_DESC(storvsc_ringbuffer_size, "Ring buffer size (bytes)"); 332 333 module_param(storvsc_max_hw_queues, uint, 0644); 334 MODULE_PARM_DESC(storvsc_max_hw_queues, "Maximum number of hardware queues"); 335 336 module_param(storvsc_vcpus_per_sub_channel, int, S_IRUGO); 337 MODULE_PARM_DESC(storvsc_vcpus_per_sub_channel, "Ratio of VCPUs to subchannels"); 338 339 static int ring_avail_percent_lowater = 10; 340 module_param(ring_avail_percent_lowater, int, S_IRUGO); 341 MODULE_PARM_DESC(ring_avail_percent_lowater, 342 "Select a channel if available ring size > this in percent"); 343 344 /* 345 * Timeout in seconds for all devices managed by this driver. 346 */ 347 static int storvsc_timeout = 180; 348 349 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 350 static struct scsi_transport_template *fc_transport_template; 351 #endif 352 353 static struct scsi_host_template scsi_driver; 354 static void storvsc_on_channel_callback(void *context); 355 356 #define STORVSC_MAX_LUNS_PER_TARGET 255 357 #define STORVSC_MAX_TARGETS 2 358 #define STORVSC_MAX_CHANNELS 8 359 360 #define STORVSC_FC_MAX_LUNS_PER_TARGET 255 361 #define STORVSC_FC_MAX_TARGETS 128 362 #define STORVSC_FC_MAX_CHANNELS 8 363 364 #define STORVSC_IDE_MAX_LUNS_PER_TARGET 64 365 #define STORVSC_IDE_MAX_TARGETS 1 366 #define STORVSC_IDE_MAX_CHANNELS 1 367 368 /* 369 * Upper bound on the size of a storvsc packet. 370 */ 371 #define STORVSC_MAX_PKT_SIZE (sizeof(struct vmpacket_descriptor) +\ 372 sizeof(struct vstor_packet)) 373 374 struct storvsc_cmd_request { 375 struct scsi_cmnd *cmd; 376 377 struct hv_device *device; 378 379 /* Synchronize the request/response if needed */ 380 struct completion wait_event; 381 382 struct vmbus_channel_packet_multipage_buffer mpb; 383 struct vmbus_packet_mpb_array *payload; 384 u32 payload_sz; 385 386 struct vstor_packet vstor_packet; 387 }; 388 389 390 /* A storvsc device is a device object that contains a vmbus channel */ 391 struct storvsc_device { 392 struct hv_device *device; 393 394 bool destroy; 395 bool drain_notify; 396 atomic_t num_outstanding_req; 397 struct Scsi_Host *host; 398 399 wait_queue_head_t waiting_to_drain; 400 401 /* 402 * Each unique Port/Path/Target represents 1 channel ie scsi 403 * controller. In reality, the pathid, targetid is always 0 404 * and the port is set by us 405 */ 406 unsigned int port_number; 407 unsigned char path_id; 408 unsigned char target_id; 409 410 /* 411 * Max I/O, the device can support. 412 */ 413 u32 max_transfer_bytes; 414 /* 415 * Number of sub-channels we will open. 416 */ 417 u16 num_sc; 418 struct vmbus_channel **stor_chns; 419 /* 420 * Mask of CPUs bound to subchannels. 421 */ 422 struct cpumask alloced_cpus; 423 /* 424 * Serializes modifications of stor_chns[] from storvsc_do_io() 425 * and storvsc_change_target_cpu(). 426 */ 427 spinlock_t lock; 428 /* Used for vsc/vsp channel reset process */ 429 struct storvsc_cmd_request init_request; 430 struct storvsc_cmd_request reset_request; 431 /* 432 * Currently active port and node names for FC devices. 433 */ 434 u64 node_name; 435 u64 port_name; 436 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 437 struct fc_rport *rport; 438 #endif 439 }; 440 441 struct hv_host_device { 442 struct hv_device *dev; 443 unsigned int port; 444 unsigned char path; 445 unsigned char target; 446 struct workqueue_struct *handle_error_wq; 447 struct work_struct host_scan_work; 448 struct Scsi_Host *host; 449 }; 450 451 struct storvsc_scan_work { 452 struct work_struct work; 453 struct Scsi_Host *host; 454 u8 lun; 455 u8 tgt_id; 456 }; 457 458 static void storvsc_device_scan(struct work_struct *work) 459 { 460 struct storvsc_scan_work *wrk; 461 struct scsi_device *sdev; 462 463 wrk = container_of(work, struct storvsc_scan_work, work); 464 465 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 466 if (!sdev) 467 goto done; 468 scsi_rescan_device(&sdev->sdev_gendev); 469 scsi_device_put(sdev); 470 471 done: 472 kfree(wrk); 473 } 474 475 static void storvsc_host_scan(struct work_struct *work) 476 { 477 struct Scsi_Host *host; 478 struct scsi_device *sdev; 479 struct hv_host_device *host_device = 480 container_of(work, struct hv_host_device, host_scan_work); 481 482 host = host_device->host; 483 /* 484 * Before scanning the host, first check to see if any of the 485 * currently known devices have been hot removed. We issue a 486 * "unit ready" command against all currently known devices. 487 * This I/O will result in an error for devices that have been 488 * removed. As part of handling the I/O error, we remove the device. 489 * 490 * When a LUN is added or removed, the host sends us a signal to 491 * scan the host. Thus we are forced to discover the LUNs that 492 * may have been removed this way. 493 */ 494 mutex_lock(&host->scan_mutex); 495 shost_for_each_device(sdev, host) 496 scsi_test_unit_ready(sdev, 1, 1, NULL); 497 mutex_unlock(&host->scan_mutex); 498 /* 499 * Now scan the host to discover LUNs that may have been added. 500 */ 501 scsi_scan_host(host); 502 } 503 504 static void storvsc_remove_lun(struct work_struct *work) 505 { 506 struct storvsc_scan_work *wrk; 507 struct scsi_device *sdev; 508 509 wrk = container_of(work, struct storvsc_scan_work, work); 510 if (!scsi_host_get(wrk->host)) 511 goto done; 512 513 sdev = scsi_device_lookup(wrk->host, 0, wrk->tgt_id, wrk->lun); 514 515 if (sdev) { 516 scsi_remove_device(sdev); 517 scsi_device_put(sdev); 518 } 519 scsi_host_put(wrk->host); 520 521 done: 522 kfree(wrk); 523 } 524 525 526 /* 527 * We can get incoming messages from the host that are not in response to 528 * messages that we have sent out. An example of this would be messages 529 * received by the guest to notify dynamic addition/removal of LUNs. To 530 * deal with potential race conditions where the driver may be in the 531 * midst of being unloaded when we might receive an unsolicited message 532 * from the host, we have implemented a mechanism to gurantee sequential 533 * consistency: 534 * 535 * 1) Once the device is marked as being destroyed, we will fail all 536 * outgoing messages. 537 * 2) We permit incoming messages when the device is being destroyed, 538 * only to properly account for messages already sent out. 539 */ 540 541 static inline struct storvsc_device *get_out_stor_device( 542 struct hv_device *device) 543 { 544 struct storvsc_device *stor_device; 545 546 stor_device = hv_get_drvdata(device); 547 548 if (stor_device && stor_device->destroy) 549 stor_device = NULL; 550 551 return stor_device; 552 } 553 554 555 static inline void storvsc_wait_to_drain(struct storvsc_device *dev) 556 { 557 dev->drain_notify = true; 558 wait_event(dev->waiting_to_drain, 559 atomic_read(&dev->num_outstanding_req) == 0); 560 dev->drain_notify = false; 561 } 562 563 static inline struct storvsc_device *get_in_stor_device( 564 struct hv_device *device) 565 { 566 struct storvsc_device *stor_device; 567 568 stor_device = hv_get_drvdata(device); 569 570 if (!stor_device) 571 goto get_in_err; 572 573 /* 574 * If the device is being destroyed; allow incoming 575 * traffic only to cleanup outstanding requests. 576 */ 577 578 if (stor_device->destroy && 579 (atomic_read(&stor_device->num_outstanding_req) == 0)) 580 stor_device = NULL; 581 582 get_in_err: 583 return stor_device; 584 585 } 586 587 static void storvsc_change_target_cpu(struct vmbus_channel *channel, u32 old, 588 u32 new) 589 { 590 struct storvsc_device *stor_device; 591 struct vmbus_channel *cur_chn; 592 bool old_is_alloced = false; 593 struct hv_device *device; 594 unsigned long flags; 595 int cpu; 596 597 device = channel->primary_channel ? 598 channel->primary_channel->device_obj 599 : channel->device_obj; 600 stor_device = get_out_stor_device(device); 601 if (!stor_device) 602 return; 603 604 /* See storvsc_do_io() -> get_og_chn(). */ 605 spin_lock_irqsave(&stor_device->lock, flags); 606 607 /* 608 * Determines if the storvsc device has other channels assigned to 609 * the "old" CPU to update the alloced_cpus mask and the stor_chns 610 * array. 611 */ 612 if (device->channel != channel && device->channel->target_cpu == old) { 613 cur_chn = device->channel; 614 old_is_alloced = true; 615 goto old_is_alloced; 616 } 617 list_for_each_entry(cur_chn, &device->channel->sc_list, sc_list) { 618 if (cur_chn == channel) 619 continue; 620 if (cur_chn->target_cpu == old) { 621 old_is_alloced = true; 622 goto old_is_alloced; 623 } 624 } 625 626 old_is_alloced: 627 if (old_is_alloced) 628 WRITE_ONCE(stor_device->stor_chns[old], cur_chn); 629 else 630 cpumask_clear_cpu(old, &stor_device->alloced_cpus); 631 632 /* "Flush" the stor_chns array. */ 633 for_each_possible_cpu(cpu) { 634 if (stor_device->stor_chns[cpu] && !cpumask_test_cpu( 635 cpu, &stor_device->alloced_cpus)) 636 WRITE_ONCE(stor_device->stor_chns[cpu], NULL); 637 } 638 639 WRITE_ONCE(stor_device->stor_chns[new], channel); 640 cpumask_set_cpu(new, &stor_device->alloced_cpus); 641 642 spin_unlock_irqrestore(&stor_device->lock, flags); 643 } 644 645 static u64 storvsc_next_request_id(struct vmbus_channel *channel, u64 rqst_addr) 646 { 647 struct storvsc_cmd_request *request = 648 (struct storvsc_cmd_request *)(unsigned long)rqst_addr; 649 650 if (rqst_addr == VMBUS_RQST_INIT) 651 return VMBUS_RQST_INIT; 652 if (rqst_addr == VMBUS_RQST_RESET) 653 return VMBUS_RQST_RESET; 654 655 /* 656 * Cannot return an ID of 0, which is reserved for an unsolicited 657 * message from Hyper-V. 658 */ 659 return (u64)blk_mq_unique_tag(scsi_cmd_to_rq(request->cmd)) + 1; 660 } 661 662 static void handle_sc_creation(struct vmbus_channel *new_sc) 663 { 664 struct hv_device *device = new_sc->primary_channel->device_obj; 665 struct device *dev = &device->device; 666 struct storvsc_device *stor_device; 667 struct vmstorage_channel_properties props; 668 int ret; 669 670 stor_device = get_out_stor_device(device); 671 if (!stor_device) 672 return; 673 674 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 675 new_sc->max_pkt_size = STORVSC_MAX_PKT_SIZE; 676 677 new_sc->next_request_id_callback = storvsc_next_request_id; 678 679 ret = vmbus_open(new_sc, 680 storvsc_ringbuffer_size, 681 storvsc_ringbuffer_size, 682 (void *)&props, 683 sizeof(struct vmstorage_channel_properties), 684 storvsc_on_channel_callback, new_sc); 685 686 /* In case vmbus_open() fails, we don't use the sub-channel. */ 687 if (ret != 0) { 688 dev_err(dev, "Failed to open sub-channel: err=%d\n", ret); 689 return; 690 } 691 692 new_sc->change_target_cpu_callback = storvsc_change_target_cpu; 693 694 /* Add the sub-channel to the array of available channels. */ 695 stor_device->stor_chns[new_sc->target_cpu] = new_sc; 696 cpumask_set_cpu(new_sc->target_cpu, &stor_device->alloced_cpus); 697 } 698 699 static void handle_multichannel_storage(struct hv_device *device, int max_chns) 700 { 701 struct device *dev = &device->device; 702 struct storvsc_device *stor_device; 703 int num_sc; 704 struct storvsc_cmd_request *request; 705 struct vstor_packet *vstor_packet; 706 int ret, t; 707 708 /* 709 * If the number of CPUs is artificially restricted, such as 710 * with maxcpus=1 on the kernel boot line, Hyper-V could offer 711 * sub-channels >= the number of CPUs. These sub-channels 712 * should not be created. The primary channel is already created 713 * and assigned to one CPU, so check against # CPUs - 1. 714 */ 715 num_sc = min((int)(num_online_cpus() - 1), max_chns); 716 if (!num_sc) 717 return; 718 719 stor_device = get_out_stor_device(device); 720 if (!stor_device) 721 return; 722 723 stor_device->num_sc = num_sc; 724 request = &stor_device->init_request; 725 vstor_packet = &request->vstor_packet; 726 727 /* 728 * Establish a handler for dealing with subchannels. 729 */ 730 vmbus_set_sc_create_callback(device->channel, handle_sc_creation); 731 732 /* 733 * Request the host to create sub-channels. 734 */ 735 memset(request, 0, sizeof(struct storvsc_cmd_request)); 736 init_completion(&request->wait_event); 737 vstor_packet->operation = VSTOR_OPERATION_CREATE_SUB_CHANNELS; 738 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 739 vstor_packet->sub_channel_count = num_sc; 740 741 ret = vmbus_sendpacket(device->channel, vstor_packet, 742 sizeof(struct vstor_packet), 743 VMBUS_RQST_INIT, 744 VM_PKT_DATA_INBAND, 745 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 746 747 if (ret != 0) { 748 dev_err(dev, "Failed to create sub-channel: err=%d\n", ret); 749 return; 750 } 751 752 t = wait_for_completion_timeout(&request->wait_event, 10*HZ); 753 if (t == 0) { 754 dev_err(dev, "Failed to create sub-channel: timed out\n"); 755 return; 756 } 757 758 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 759 vstor_packet->status != 0) { 760 dev_err(dev, "Failed to create sub-channel: op=%d, sts=%d\n", 761 vstor_packet->operation, vstor_packet->status); 762 return; 763 } 764 765 /* 766 * We need to do nothing here, because vmbus_process_offer() 767 * invokes channel->sc_creation_callback, which will open and use 768 * the sub-channel(s). 769 */ 770 } 771 772 static void cache_wwn(struct storvsc_device *stor_device, 773 struct vstor_packet *vstor_packet) 774 { 775 /* 776 * Cache the currently active port and node ww names. 777 */ 778 if (vstor_packet->wwn_packet.primary_active) { 779 stor_device->node_name = 780 wwn_to_u64(vstor_packet->wwn_packet.primary_node_wwn); 781 stor_device->port_name = 782 wwn_to_u64(vstor_packet->wwn_packet.primary_port_wwn); 783 } else { 784 stor_device->node_name = 785 wwn_to_u64(vstor_packet->wwn_packet.secondary_node_wwn); 786 stor_device->port_name = 787 wwn_to_u64(vstor_packet->wwn_packet.secondary_port_wwn); 788 } 789 } 790 791 792 static int storvsc_execute_vstor_op(struct hv_device *device, 793 struct storvsc_cmd_request *request, 794 bool status_check) 795 { 796 struct storvsc_device *stor_device; 797 struct vstor_packet *vstor_packet; 798 int ret, t; 799 800 stor_device = get_out_stor_device(device); 801 if (!stor_device) 802 return -ENODEV; 803 804 vstor_packet = &request->vstor_packet; 805 806 init_completion(&request->wait_event); 807 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 808 809 ret = vmbus_sendpacket(device->channel, vstor_packet, 810 sizeof(struct vstor_packet), 811 VMBUS_RQST_INIT, 812 VM_PKT_DATA_INBAND, 813 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 814 if (ret != 0) 815 return ret; 816 817 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 818 if (t == 0) 819 return -ETIMEDOUT; 820 821 if (!status_check) 822 return ret; 823 824 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO || 825 vstor_packet->status != 0) 826 return -EINVAL; 827 828 return ret; 829 } 830 831 static int storvsc_channel_init(struct hv_device *device, bool is_fc) 832 { 833 struct storvsc_device *stor_device; 834 struct storvsc_cmd_request *request; 835 struct vstor_packet *vstor_packet; 836 int ret, i; 837 int max_chns; 838 bool process_sub_channels = false; 839 840 stor_device = get_out_stor_device(device); 841 if (!stor_device) 842 return -ENODEV; 843 844 request = &stor_device->init_request; 845 vstor_packet = &request->vstor_packet; 846 847 /* 848 * Now, initiate the vsc/vsp initialization protocol on the open 849 * channel 850 */ 851 memset(request, 0, sizeof(struct storvsc_cmd_request)); 852 vstor_packet->operation = VSTOR_OPERATION_BEGIN_INITIALIZATION; 853 ret = storvsc_execute_vstor_op(device, request, true); 854 if (ret) 855 return ret; 856 /* 857 * Query host supported protocol version. 858 */ 859 860 for (i = 0; i < ARRAY_SIZE(protocol_version); i++) { 861 /* reuse the packet for version range supported */ 862 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 863 vstor_packet->operation = 864 VSTOR_OPERATION_QUERY_PROTOCOL_VERSION; 865 866 vstor_packet->version.major_minor = protocol_version[i]; 867 868 /* 869 * The revision number is only used in Windows; set it to 0. 870 */ 871 vstor_packet->version.revision = 0; 872 ret = storvsc_execute_vstor_op(device, request, false); 873 if (ret != 0) 874 return ret; 875 876 if (vstor_packet->operation != VSTOR_OPERATION_COMPLETE_IO) 877 return -EINVAL; 878 879 if (vstor_packet->status == 0) { 880 vmstor_proto_version = protocol_version[i]; 881 882 break; 883 } 884 } 885 886 if (vstor_packet->status != 0) { 887 dev_err(&device->device, "Obsolete Hyper-V version\n"); 888 return -EINVAL; 889 } 890 891 892 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 893 vstor_packet->operation = VSTOR_OPERATION_QUERY_PROPERTIES; 894 ret = storvsc_execute_vstor_op(device, request, true); 895 if (ret != 0) 896 return ret; 897 898 /* 899 * Check to see if multi-channel support is there. 900 * Hosts that implement protocol version of 5.1 and above 901 * support multi-channel. 902 */ 903 max_chns = vstor_packet->storage_channel_properties.max_channel_cnt; 904 905 /* 906 * Allocate state to manage the sub-channels. 907 * We allocate an array based on the numbers of possible CPUs 908 * (Hyper-V does not support cpu online/offline). 909 * This Array will be sparseley populated with unique 910 * channels - primary + sub-channels. 911 * We will however populate all the slots to evenly distribute 912 * the load. 913 */ 914 stor_device->stor_chns = kcalloc(num_possible_cpus(), sizeof(void *), 915 GFP_KERNEL); 916 if (stor_device->stor_chns == NULL) 917 return -ENOMEM; 918 919 device->channel->change_target_cpu_callback = storvsc_change_target_cpu; 920 921 stor_device->stor_chns[device->channel->target_cpu] = device->channel; 922 cpumask_set_cpu(device->channel->target_cpu, 923 &stor_device->alloced_cpus); 924 925 if (vstor_packet->storage_channel_properties.flags & 926 STORAGE_CHANNEL_SUPPORTS_MULTI_CHANNEL) 927 process_sub_channels = true; 928 929 stor_device->max_transfer_bytes = 930 vstor_packet->storage_channel_properties.max_transfer_bytes; 931 932 if (!is_fc) 933 goto done; 934 935 /* 936 * For FC devices retrieve FC HBA data. 937 */ 938 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 939 vstor_packet->operation = VSTOR_OPERATION_FCHBA_DATA; 940 ret = storvsc_execute_vstor_op(device, request, true); 941 if (ret != 0) 942 return ret; 943 944 /* 945 * Cache the currently active port and node ww names. 946 */ 947 cache_wwn(stor_device, vstor_packet); 948 949 done: 950 951 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 952 vstor_packet->operation = VSTOR_OPERATION_END_INITIALIZATION; 953 ret = storvsc_execute_vstor_op(device, request, true); 954 if (ret != 0) 955 return ret; 956 957 if (process_sub_channels) 958 handle_multichannel_storage(device, max_chns); 959 960 return ret; 961 } 962 963 static void storvsc_handle_error(struct vmscsi_request *vm_srb, 964 struct scsi_cmnd *scmnd, 965 struct Scsi_Host *host, 966 u8 asc, u8 ascq) 967 { 968 struct storvsc_scan_work *wrk; 969 void (*process_err_fn)(struct work_struct *work); 970 struct hv_host_device *host_dev = shost_priv(host); 971 972 /* 973 * In some situations, Hyper-V sets multiple bits in the 974 * srb_status, such as ABORTED and ERROR. So process them 975 * individually, with the most specific bits first. 976 */ 977 978 if (vm_srb->srb_status & SRB_STATUS_INVALID_LUN) { 979 set_host_byte(scmnd, DID_NO_CONNECT); 980 process_err_fn = storvsc_remove_lun; 981 goto do_work; 982 } 983 984 if (vm_srb->srb_status & SRB_STATUS_ABORTED) { 985 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID && 986 /* Capacity data has changed */ 987 (asc == 0x2a) && (ascq == 0x9)) { 988 process_err_fn = storvsc_device_scan; 989 /* 990 * Retry the I/O that triggered this. 991 */ 992 set_host_byte(scmnd, DID_REQUEUE); 993 goto do_work; 994 } 995 } 996 997 if (vm_srb->srb_status & SRB_STATUS_ERROR) { 998 /* 999 * Let upper layer deal with error when 1000 * sense message is present. 1001 */ 1002 if (vm_srb->srb_status & SRB_STATUS_AUTOSENSE_VALID) 1003 return; 1004 1005 /* 1006 * If there is an error; offline the device since all 1007 * error recovery strategies would have already been 1008 * deployed on the host side. However, if the command 1009 * were a pass-through command deal with it appropriately. 1010 */ 1011 switch (scmnd->cmnd[0]) { 1012 case ATA_16: 1013 case ATA_12: 1014 set_host_byte(scmnd, DID_PASSTHROUGH); 1015 break; 1016 /* 1017 * On some Hyper-V hosts TEST_UNIT_READY command can 1018 * return SRB_STATUS_ERROR. Let the upper level code 1019 * deal with it based on the sense information. 1020 */ 1021 case TEST_UNIT_READY: 1022 break; 1023 default: 1024 set_host_byte(scmnd, DID_ERROR); 1025 } 1026 } 1027 return; 1028 1029 do_work: 1030 /* 1031 * We need to schedule work to process this error; schedule it. 1032 */ 1033 wrk = kmalloc(sizeof(struct storvsc_scan_work), GFP_ATOMIC); 1034 if (!wrk) { 1035 set_host_byte(scmnd, DID_BAD_TARGET); 1036 return; 1037 } 1038 1039 wrk->host = host; 1040 wrk->lun = vm_srb->lun; 1041 wrk->tgt_id = vm_srb->target_id; 1042 INIT_WORK(&wrk->work, process_err_fn); 1043 queue_work(host_dev->handle_error_wq, &wrk->work); 1044 } 1045 1046 1047 static void storvsc_command_completion(struct storvsc_cmd_request *cmd_request, 1048 struct storvsc_device *stor_dev) 1049 { 1050 struct scsi_cmnd *scmnd = cmd_request->cmd; 1051 struct scsi_sense_hdr sense_hdr; 1052 struct vmscsi_request *vm_srb; 1053 u32 data_transfer_length; 1054 struct Scsi_Host *host; 1055 u32 payload_sz = cmd_request->payload_sz; 1056 void *payload = cmd_request->payload; 1057 bool sense_ok; 1058 1059 host = stor_dev->host; 1060 1061 vm_srb = &cmd_request->vstor_packet.vm_srb; 1062 data_transfer_length = vm_srb->data_transfer_length; 1063 1064 scmnd->result = vm_srb->scsi_status; 1065 1066 if (scmnd->result) { 1067 sense_ok = scsi_normalize_sense(scmnd->sense_buffer, 1068 SCSI_SENSE_BUFFERSIZE, &sense_hdr); 1069 1070 if (sense_ok && do_logging(STORVSC_LOGGING_WARN)) 1071 scsi_print_sense_hdr(scmnd->device, "storvsc", 1072 &sense_hdr); 1073 } 1074 1075 if (vm_srb->srb_status != SRB_STATUS_SUCCESS) { 1076 storvsc_handle_error(vm_srb, scmnd, host, sense_hdr.asc, 1077 sense_hdr.ascq); 1078 /* 1079 * The Windows driver set data_transfer_length on 1080 * SRB_STATUS_DATA_OVERRUN. On other errors, this value 1081 * is untouched. In these cases we set it to 0. 1082 */ 1083 if (vm_srb->srb_status != SRB_STATUS_DATA_OVERRUN) 1084 data_transfer_length = 0; 1085 } 1086 1087 /* Validate data_transfer_length (from Hyper-V) */ 1088 if (data_transfer_length > cmd_request->payload->range.len) 1089 data_transfer_length = cmd_request->payload->range.len; 1090 1091 scsi_set_resid(scmnd, 1092 cmd_request->payload->range.len - data_transfer_length); 1093 1094 scsi_done(scmnd); 1095 1096 if (payload_sz > 1097 sizeof(struct vmbus_channel_packet_multipage_buffer)) 1098 kfree(payload); 1099 } 1100 1101 static void storvsc_on_io_completion(struct storvsc_device *stor_device, 1102 struct vstor_packet *vstor_packet, 1103 struct storvsc_cmd_request *request) 1104 { 1105 struct vstor_packet *stor_pkt; 1106 struct hv_device *device = stor_device->device; 1107 1108 stor_pkt = &request->vstor_packet; 1109 1110 /* 1111 * The current SCSI handling on the host side does 1112 * not correctly handle: 1113 * INQUIRY command with page code parameter set to 0x80 1114 * MODE_SENSE command with cmd[2] == 0x1c 1115 * 1116 * Setup srb and scsi status so this won't be fatal. 1117 * We do this so we can distinguish truly fatal failues 1118 * (srb status == 0x4) and off-line the device in that case. 1119 */ 1120 1121 if ((stor_pkt->vm_srb.cdb[0] == INQUIRY) || 1122 (stor_pkt->vm_srb.cdb[0] == MODE_SENSE)) { 1123 vstor_packet->vm_srb.scsi_status = 0; 1124 vstor_packet->vm_srb.srb_status = SRB_STATUS_SUCCESS; 1125 } 1126 1127 /* Copy over the status...etc */ 1128 stor_pkt->vm_srb.scsi_status = vstor_packet->vm_srb.scsi_status; 1129 stor_pkt->vm_srb.srb_status = vstor_packet->vm_srb.srb_status; 1130 1131 /* 1132 * Copy over the sense_info_length, but limit to the known max 1133 * size if Hyper-V returns a bad value. 1134 */ 1135 stor_pkt->vm_srb.sense_info_length = min_t(u8, STORVSC_SENSE_BUFFER_SIZE, 1136 vstor_packet->vm_srb.sense_info_length); 1137 1138 if (vstor_packet->vm_srb.scsi_status != 0 || 1139 vstor_packet->vm_srb.srb_status != SRB_STATUS_SUCCESS) { 1140 1141 /* 1142 * Log TEST_UNIT_READY errors only as warnings. Hyper-V can 1143 * return errors when detecting devices using TEST_UNIT_READY, 1144 * and logging these as errors produces unhelpful noise. 1145 */ 1146 int loglevel = (stor_pkt->vm_srb.cdb[0] == TEST_UNIT_READY) ? 1147 STORVSC_LOGGING_WARN : STORVSC_LOGGING_ERROR; 1148 1149 storvsc_log(device, loglevel, 1150 "tag#%d cmd 0x%x status: scsi 0x%x srb 0x%x hv 0x%x\n", 1151 scsi_cmd_to_rq(request->cmd)->tag, 1152 stor_pkt->vm_srb.cdb[0], 1153 vstor_packet->vm_srb.scsi_status, 1154 vstor_packet->vm_srb.srb_status, 1155 vstor_packet->status); 1156 } 1157 1158 if (vstor_packet->vm_srb.scsi_status == SAM_STAT_CHECK_CONDITION && 1159 (vstor_packet->vm_srb.srb_status & SRB_STATUS_AUTOSENSE_VALID)) 1160 memcpy(request->cmd->sense_buffer, 1161 vstor_packet->vm_srb.sense_data, 1162 stor_pkt->vm_srb.sense_info_length); 1163 1164 stor_pkt->vm_srb.data_transfer_length = 1165 vstor_packet->vm_srb.data_transfer_length; 1166 1167 storvsc_command_completion(request, stor_device); 1168 1169 if (atomic_dec_and_test(&stor_device->num_outstanding_req) && 1170 stor_device->drain_notify) 1171 wake_up(&stor_device->waiting_to_drain); 1172 } 1173 1174 static void storvsc_on_receive(struct storvsc_device *stor_device, 1175 struct vstor_packet *vstor_packet, 1176 struct storvsc_cmd_request *request) 1177 { 1178 struct hv_host_device *host_dev; 1179 switch (vstor_packet->operation) { 1180 case VSTOR_OPERATION_COMPLETE_IO: 1181 storvsc_on_io_completion(stor_device, vstor_packet, request); 1182 break; 1183 1184 case VSTOR_OPERATION_REMOVE_DEVICE: 1185 case VSTOR_OPERATION_ENUMERATE_BUS: 1186 host_dev = shost_priv(stor_device->host); 1187 queue_work( 1188 host_dev->handle_error_wq, &host_dev->host_scan_work); 1189 break; 1190 1191 case VSTOR_OPERATION_FCHBA_DATA: 1192 cache_wwn(stor_device, vstor_packet); 1193 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1194 fc_host_node_name(stor_device->host) = stor_device->node_name; 1195 fc_host_port_name(stor_device->host) = stor_device->port_name; 1196 #endif 1197 break; 1198 default: 1199 break; 1200 } 1201 } 1202 1203 static void storvsc_on_channel_callback(void *context) 1204 { 1205 struct vmbus_channel *channel = (struct vmbus_channel *)context; 1206 const struct vmpacket_descriptor *desc; 1207 struct hv_device *device; 1208 struct storvsc_device *stor_device; 1209 struct Scsi_Host *shost; 1210 unsigned long time_limit = jiffies + msecs_to_jiffies(CALLBACK_TIMEOUT); 1211 1212 if (channel->primary_channel != NULL) 1213 device = channel->primary_channel->device_obj; 1214 else 1215 device = channel->device_obj; 1216 1217 stor_device = get_in_stor_device(device); 1218 if (!stor_device) 1219 return; 1220 1221 shost = stor_device->host; 1222 1223 foreach_vmbus_pkt(desc, channel) { 1224 struct vstor_packet *packet = hv_pkt_data(desc); 1225 struct storvsc_cmd_request *request = NULL; 1226 u32 pktlen = hv_pkt_datalen(desc); 1227 u64 rqst_id = desc->trans_id; 1228 u32 minlen = rqst_id ? sizeof(struct vstor_packet) : 1229 sizeof(enum vstor_packet_operation); 1230 1231 if (unlikely(time_after(jiffies, time_limit))) { 1232 hv_pkt_iter_close(channel); 1233 return; 1234 } 1235 1236 if (pktlen < minlen) { 1237 dev_err(&device->device, 1238 "Invalid pkt: id=%llu, len=%u, minlen=%u\n", 1239 rqst_id, pktlen, minlen); 1240 continue; 1241 } 1242 1243 if (rqst_id == VMBUS_RQST_INIT) { 1244 request = &stor_device->init_request; 1245 } else if (rqst_id == VMBUS_RQST_RESET) { 1246 request = &stor_device->reset_request; 1247 } else { 1248 /* Hyper-V can send an unsolicited message with ID of 0 */ 1249 if (rqst_id == 0) { 1250 /* 1251 * storvsc_on_receive() looks at the vstor_packet in the message 1252 * from the ring buffer. 1253 * 1254 * - If the operation in the vstor_packet is COMPLETE_IO, then 1255 * we call storvsc_on_io_completion(), and dereference the 1256 * guest memory address. Make sure we don't call 1257 * storvsc_on_io_completion() with a guest memory address 1258 * that is zero if Hyper-V were to construct and send such 1259 * a bogus packet. 1260 * 1261 * - If the operation in the vstor_packet is FCHBA_DATA, then 1262 * we call cache_wwn(), and access the data payload area of 1263 * the packet (wwn_packet); however, there is no guarantee 1264 * that the packet is big enough to contain such area. 1265 * Future-proof the code by rejecting such a bogus packet. 1266 */ 1267 if (packet->operation == VSTOR_OPERATION_COMPLETE_IO || 1268 packet->operation == VSTOR_OPERATION_FCHBA_DATA) { 1269 dev_err(&device->device, "Invalid packet with ID of 0\n"); 1270 continue; 1271 } 1272 } else { 1273 struct scsi_cmnd *scmnd; 1274 1275 /* Transaction 'rqst_id' corresponds to tag 'rqst_id - 1' */ 1276 scmnd = scsi_host_find_tag(shost, rqst_id - 1); 1277 if (scmnd == NULL) { 1278 dev_err(&device->device, "Incorrect transaction ID\n"); 1279 continue; 1280 } 1281 request = (struct storvsc_cmd_request *)scsi_cmd_priv(scmnd); 1282 scsi_dma_unmap(scmnd); 1283 } 1284 1285 storvsc_on_receive(stor_device, packet, request); 1286 continue; 1287 } 1288 1289 memcpy(&request->vstor_packet, packet, 1290 sizeof(struct vstor_packet)); 1291 complete(&request->wait_event); 1292 } 1293 } 1294 1295 static int storvsc_connect_to_vsp(struct hv_device *device, u32 ring_size, 1296 bool is_fc) 1297 { 1298 struct vmstorage_channel_properties props; 1299 int ret; 1300 1301 memset(&props, 0, sizeof(struct vmstorage_channel_properties)); 1302 1303 device->channel->max_pkt_size = STORVSC_MAX_PKT_SIZE; 1304 device->channel->next_request_id_callback = storvsc_next_request_id; 1305 1306 ret = vmbus_open(device->channel, 1307 ring_size, 1308 ring_size, 1309 (void *)&props, 1310 sizeof(struct vmstorage_channel_properties), 1311 storvsc_on_channel_callback, device->channel); 1312 1313 if (ret != 0) 1314 return ret; 1315 1316 ret = storvsc_channel_init(device, is_fc); 1317 1318 return ret; 1319 } 1320 1321 static int storvsc_dev_remove(struct hv_device *device) 1322 { 1323 struct storvsc_device *stor_device; 1324 1325 stor_device = hv_get_drvdata(device); 1326 1327 stor_device->destroy = true; 1328 1329 /* Make sure flag is set before waiting */ 1330 wmb(); 1331 1332 /* 1333 * At this point, all outbound traffic should be disable. We 1334 * only allow inbound traffic (responses) to proceed so that 1335 * outstanding requests can be completed. 1336 */ 1337 1338 storvsc_wait_to_drain(stor_device); 1339 1340 /* 1341 * Since we have already drained, we don't need to busy wait 1342 * as was done in final_release_stor_device() 1343 * Note that we cannot set the ext pointer to NULL until 1344 * we have drained - to drain the outgoing packets, we need to 1345 * allow incoming packets. 1346 */ 1347 hv_set_drvdata(device, NULL); 1348 1349 /* Close the channel */ 1350 vmbus_close(device->channel); 1351 1352 kfree(stor_device->stor_chns); 1353 kfree(stor_device); 1354 return 0; 1355 } 1356 1357 static struct vmbus_channel *get_og_chn(struct storvsc_device *stor_device, 1358 u16 q_num) 1359 { 1360 u16 slot = 0; 1361 u16 hash_qnum; 1362 const struct cpumask *node_mask; 1363 int num_channels, tgt_cpu; 1364 1365 if (stor_device->num_sc == 0) { 1366 stor_device->stor_chns[q_num] = stor_device->device->channel; 1367 return stor_device->device->channel; 1368 } 1369 1370 /* 1371 * Our channel array is sparsley populated and we 1372 * initiated I/O on a processor/hw-q that does not 1373 * currently have a designated channel. Fix this. 1374 * The strategy is simple: 1375 * I. Ensure NUMA locality 1376 * II. Distribute evenly (best effort) 1377 */ 1378 1379 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1380 1381 num_channels = 0; 1382 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1383 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1384 num_channels++; 1385 } 1386 if (num_channels == 0) { 1387 stor_device->stor_chns[q_num] = stor_device->device->channel; 1388 return stor_device->device->channel; 1389 } 1390 1391 hash_qnum = q_num; 1392 while (hash_qnum >= num_channels) 1393 hash_qnum -= num_channels; 1394 1395 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1396 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1397 continue; 1398 if (slot == hash_qnum) 1399 break; 1400 slot++; 1401 } 1402 1403 stor_device->stor_chns[q_num] = stor_device->stor_chns[tgt_cpu]; 1404 1405 return stor_device->stor_chns[q_num]; 1406 } 1407 1408 1409 static int storvsc_do_io(struct hv_device *device, 1410 struct storvsc_cmd_request *request, u16 q_num) 1411 { 1412 struct storvsc_device *stor_device; 1413 struct vstor_packet *vstor_packet; 1414 struct vmbus_channel *outgoing_channel, *channel; 1415 unsigned long flags; 1416 int ret = 0; 1417 const struct cpumask *node_mask; 1418 int tgt_cpu; 1419 1420 vstor_packet = &request->vstor_packet; 1421 stor_device = get_out_stor_device(device); 1422 1423 if (!stor_device) 1424 return -ENODEV; 1425 1426 1427 request->device = device; 1428 /* 1429 * Select an appropriate channel to send the request out. 1430 */ 1431 /* See storvsc_change_target_cpu(). */ 1432 outgoing_channel = READ_ONCE(stor_device->stor_chns[q_num]); 1433 if (outgoing_channel != NULL) { 1434 if (outgoing_channel->target_cpu == q_num) { 1435 /* 1436 * Ideally, we want to pick a different channel if 1437 * available on the same NUMA node. 1438 */ 1439 node_mask = cpumask_of_node(cpu_to_node(q_num)); 1440 for_each_cpu_wrap(tgt_cpu, 1441 &stor_device->alloced_cpus, q_num + 1) { 1442 if (!cpumask_test_cpu(tgt_cpu, node_mask)) 1443 continue; 1444 if (tgt_cpu == q_num) 1445 continue; 1446 channel = READ_ONCE( 1447 stor_device->stor_chns[tgt_cpu]); 1448 if (channel == NULL) 1449 continue; 1450 if (hv_get_avail_to_write_percent( 1451 &channel->outbound) 1452 > ring_avail_percent_lowater) { 1453 outgoing_channel = channel; 1454 goto found_channel; 1455 } 1456 } 1457 1458 /* 1459 * All the other channels on the same NUMA node are 1460 * busy. Try to use the channel on the current CPU 1461 */ 1462 if (hv_get_avail_to_write_percent( 1463 &outgoing_channel->outbound) 1464 > ring_avail_percent_lowater) 1465 goto found_channel; 1466 1467 /* 1468 * If we reach here, all the channels on the current 1469 * NUMA node are busy. Try to find a channel in 1470 * other NUMA nodes 1471 */ 1472 for_each_cpu(tgt_cpu, &stor_device->alloced_cpus) { 1473 if (cpumask_test_cpu(tgt_cpu, node_mask)) 1474 continue; 1475 channel = READ_ONCE( 1476 stor_device->stor_chns[tgt_cpu]); 1477 if (channel == NULL) 1478 continue; 1479 if (hv_get_avail_to_write_percent( 1480 &channel->outbound) 1481 > ring_avail_percent_lowater) { 1482 outgoing_channel = channel; 1483 goto found_channel; 1484 } 1485 } 1486 } 1487 } else { 1488 spin_lock_irqsave(&stor_device->lock, flags); 1489 outgoing_channel = stor_device->stor_chns[q_num]; 1490 if (outgoing_channel != NULL) { 1491 spin_unlock_irqrestore(&stor_device->lock, flags); 1492 goto found_channel; 1493 } 1494 outgoing_channel = get_og_chn(stor_device, q_num); 1495 spin_unlock_irqrestore(&stor_device->lock, flags); 1496 } 1497 1498 found_channel: 1499 vstor_packet->flags |= REQUEST_COMPLETION_FLAG; 1500 1501 vstor_packet->vm_srb.length = sizeof(struct vmscsi_request); 1502 1503 1504 vstor_packet->vm_srb.sense_info_length = STORVSC_SENSE_BUFFER_SIZE; 1505 1506 1507 vstor_packet->vm_srb.data_transfer_length = 1508 request->payload->range.len; 1509 1510 vstor_packet->operation = VSTOR_OPERATION_EXECUTE_SRB; 1511 1512 if (request->payload->range.len) { 1513 1514 ret = vmbus_sendpacket_mpb_desc(outgoing_channel, 1515 request->payload, request->payload_sz, 1516 vstor_packet, 1517 sizeof(struct vstor_packet), 1518 (unsigned long)request); 1519 } else { 1520 ret = vmbus_sendpacket(outgoing_channel, vstor_packet, 1521 sizeof(struct vstor_packet), 1522 (unsigned long)request, 1523 VM_PKT_DATA_INBAND, 1524 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1525 } 1526 1527 if (ret != 0) 1528 return ret; 1529 1530 atomic_inc(&stor_device->num_outstanding_req); 1531 1532 return ret; 1533 } 1534 1535 static int storvsc_device_alloc(struct scsi_device *sdevice) 1536 { 1537 /* 1538 * Set blist flag to permit the reading of the VPD pages even when 1539 * the target may claim SPC-2 compliance. MSFT targets currently 1540 * claim SPC-2 compliance while they implement post SPC-2 features. 1541 * With this flag we can correctly handle WRITE_SAME_16 issues. 1542 * 1543 * Hypervisor reports SCSI_UNKNOWN type for DVD ROM device but 1544 * still supports REPORT LUN. 1545 */ 1546 sdevice->sdev_bflags = BLIST_REPORTLUN2 | BLIST_TRY_VPD_PAGES; 1547 1548 return 0; 1549 } 1550 1551 static int storvsc_device_configure(struct scsi_device *sdevice) 1552 { 1553 blk_queue_rq_timeout(sdevice->request_queue, (storvsc_timeout * HZ)); 1554 1555 sdevice->no_write_same = 1; 1556 1557 /* 1558 * If the host is WIN8 or WIN8 R2, claim conformance to SPC-3 1559 * if the device is a MSFT virtual device. If the host is 1560 * WIN10 or newer, allow write_same. 1561 */ 1562 if (!strncmp(sdevice->vendor, "Msft", 4)) { 1563 switch (vmstor_proto_version) { 1564 case VMSTOR_PROTO_VERSION_WIN8: 1565 case VMSTOR_PROTO_VERSION_WIN8_1: 1566 sdevice->scsi_level = SCSI_SPC_3; 1567 break; 1568 } 1569 1570 if (vmstor_proto_version >= VMSTOR_PROTO_VERSION_WIN10) 1571 sdevice->no_write_same = 0; 1572 } 1573 1574 return 0; 1575 } 1576 1577 static int storvsc_get_chs(struct scsi_device *sdev, struct block_device * bdev, 1578 sector_t capacity, int *info) 1579 { 1580 sector_t nsect = capacity; 1581 sector_t cylinders = nsect; 1582 int heads, sectors_pt; 1583 1584 /* 1585 * We are making up these values; let us keep it simple. 1586 */ 1587 heads = 0xff; 1588 sectors_pt = 0x3f; /* Sectors per track */ 1589 sector_div(cylinders, heads * sectors_pt); 1590 if ((sector_t)(cylinders + 1) * heads * sectors_pt < nsect) 1591 cylinders = 0xffff; 1592 1593 info[0] = heads; 1594 info[1] = sectors_pt; 1595 info[2] = (int)cylinders; 1596 1597 return 0; 1598 } 1599 1600 static int storvsc_host_reset_handler(struct scsi_cmnd *scmnd) 1601 { 1602 struct hv_host_device *host_dev = shost_priv(scmnd->device->host); 1603 struct hv_device *device = host_dev->dev; 1604 1605 struct storvsc_device *stor_device; 1606 struct storvsc_cmd_request *request; 1607 struct vstor_packet *vstor_packet; 1608 int ret, t; 1609 1610 stor_device = get_out_stor_device(device); 1611 if (!stor_device) 1612 return FAILED; 1613 1614 request = &stor_device->reset_request; 1615 vstor_packet = &request->vstor_packet; 1616 memset(vstor_packet, 0, sizeof(struct vstor_packet)); 1617 1618 init_completion(&request->wait_event); 1619 1620 vstor_packet->operation = VSTOR_OPERATION_RESET_BUS; 1621 vstor_packet->flags = REQUEST_COMPLETION_FLAG; 1622 vstor_packet->vm_srb.path_id = stor_device->path_id; 1623 1624 ret = vmbus_sendpacket(device->channel, vstor_packet, 1625 sizeof(struct vstor_packet), 1626 VMBUS_RQST_RESET, 1627 VM_PKT_DATA_INBAND, 1628 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1629 if (ret != 0) 1630 return FAILED; 1631 1632 t = wait_for_completion_timeout(&request->wait_event, 5*HZ); 1633 if (t == 0) 1634 return TIMEOUT_ERROR; 1635 1636 1637 /* 1638 * At this point, all outstanding requests in the adapter 1639 * should have been flushed out and return to us 1640 * There is a potential race here where the host may be in 1641 * the process of responding when we return from here. 1642 * Just wait for all in-transit packets to be accounted for 1643 * before we return from here. 1644 */ 1645 storvsc_wait_to_drain(stor_device); 1646 1647 return SUCCESS; 1648 } 1649 1650 /* 1651 * The host guarantees to respond to each command, although I/O latencies might 1652 * be unbounded on Azure. Reset the timer unconditionally to give the host a 1653 * chance to perform EH. 1654 */ 1655 static enum blk_eh_timer_return storvsc_eh_timed_out(struct scsi_cmnd *scmnd) 1656 { 1657 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1658 if (scmnd->device->host->transportt == fc_transport_template) 1659 return fc_eh_timed_out(scmnd); 1660 #endif 1661 return BLK_EH_RESET_TIMER; 1662 } 1663 1664 static bool storvsc_scsi_cmd_ok(struct scsi_cmnd *scmnd) 1665 { 1666 bool allowed = true; 1667 u8 scsi_op = scmnd->cmnd[0]; 1668 1669 switch (scsi_op) { 1670 /* the host does not handle WRITE_SAME, log accident usage */ 1671 case WRITE_SAME: 1672 /* 1673 * smartd sends this command and the host does not handle 1674 * this. So, don't send it. 1675 */ 1676 case SET_WINDOW: 1677 set_host_byte(scmnd, DID_ERROR); 1678 allowed = false; 1679 break; 1680 default: 1681 break; 1682 } 1683 return allowed; 1684 } 1685 1686 static int storvsc_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scmnd) 1687 { 1688 int ret; 1689 struct hv_host_device *host_dev = shost_priv(host); 1690 struct hv_device *dev = host_dev->dev; 1691 struct storvsc_cmd_request *cmd_request = scsi_cmd_priv(scmnd); 1692 struct scatterlist *sgl; 1693 struct vmscsi_request *vm_srb; 1694 struct vmbus_packet_mpb_array *payload; 1695 u32 payload_sz; 1696 u32 length; 1697 1698 if (vmstor_proto_version <= VMSTOR_PROTO_VERSION_WIN8) { 1699 /* 1700 * On legacy hosts filter unimplemented commands. 1701 * Future hosts are expected to correctly handle 1702 * unsupported commands. Furthermore, it is 1703 * possible that some of the currently 1704 * unsupported commands maybe supported in 1705 * future versions of the host. 1706 */ 1707 if (!storvsc_scsi_cmd_ok(scmnd)) { 1708 scsi_done(scmnd); 1709 return 0; 1710 } 1711 } 1712 1713 /* Setup the cmd request */ 1714 cmd_request->cmd = scmnd; 1715 1716 memset(&cmd_request->vstor_packet, 0, sizeof(struct vstor_packet)); 1717 vm_srb = &cmd_request->vstor_packet.vm_srb; 1718 vm_srb->time_out_value = 60; 1719 1720 vm_srb->srb_flags |= 1721 SRB_FLAGS_DISABLE_SYNCH_TRANSFER; 1722 1723 if (scmnd->device->tagged_supported) { 1724 vm_srb->srb_flags |= 1725 (SRB_FLAGS_QUEUE_ACTION_ENABLE | SRB_FLAGS_NO_QUEUE_FREEZE); 1726 vm_srb->queue_tag = SP_UNTAGGED; 1727 vm_srb->queue_action = SRB_SIMPLE_TAG_REQUEST; 1728 } 1729 1730 /* Build the SRB */ 1731 switch (scmnd->sc_data_direction) { 1732 case DMA_TO_DEVICE: 1733 vm_srb->data_in = WRITE_TYPE; 1734 vm_srb->srb_flags |= SRB_FLAGS_DATA_OUT; 1735 break; 1736 case DMA_FROM_DEVICE: 1737 vm_srb->data_in = READ_TYPE; 1738 vm_srb->srb_flags |= SRB_FLAGS_DATA_IN; 1739 break; 1740 case DMA_NONE: 1741 vm_srb->data_in = UNKNOWN_TYPE; 1742 vm_srb->srb_flags |= SRB_FLAGS_NO_DATA_TRANSFER; 1743 break; 1744 default: 1745 /* 1746 * This is DMA_BIDIRECTIONAL or something else we are never 1747 * supposed to see here. 1748 */ 1749 WARN(1, "Unexpected data direction: %d\n", 1750 scmnd->sc_data_direction); 1751 return -EINVAL; 1752 } 1753 1754 1755 vm_srb->port_number = host_dev->port; 1756 vm_srb->path_id = scmnd->device->channel; 1757 vm_srb->target_id = scmnd->device->id; 1758 vm_srb->lun = scmnd->device->lun; 1759 1760 vm_srb->cdb_length = scmnd->cmd_len; 1761 1762 memcpy(vm_srb->cdb, scmnd->cmnd, vm_srb->cdb_length); 1763 1764 sgl = (struct scatterlist *)scsi_sglist(scmnd); 1765 1766 length = scsi_bufflen(scmnd); 1767 payload = (struct vmbus_packet_mpb_array *)&cmd_request->mpb; 1768 payload_sz = sizeof(cmd_request->mpb); 1769 1770 if (scsi_sg_count(scmnd)) { 1771 unsigned long offset_in_hvpg = offset_in_hvpage(sgl->offset); 1772 unsigned int hvpg_count = HVPFN_UP(offset_in_hvpg + length); 1773 struct scatterlist *sg; 1774 unsigned long hvpfn, hvpfns_to_add; 1775 int j, i = 0, sg_count; 1776 1777 if (hvpg_count > MAX_PAGE_BUFFER_COUNT) { 1778 1779 payload_sz = (hvpg_count * sizeof(u64) + 1780 sizeof(struct vmbus_packet_mpb_array)); 1781 payload = kzalloc(payload_sz, GFP_ATOMIC); 1782 if (!payload) 1783 return SCSI_MLQUEUE_DEVICE_BUSY; 1784 } 1785 1786 payload->range.len = length; 1787 payload->range.offset = offset_in_hvpg; 1788 1789 sg_count = scsi_dma_map(scmnd); 1790 if (sg_count < 0) { 1791 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1792 goto err_free_payload; 1793 } 1794 1795 for_each_sg(sgl, sg, sg_count, j) { 1796 /* 1797 * Init values for the current sgl entry. hvpfns_to_add 1798 * is in units of Hyper-V size pages. Handling the 1799 * PAGE_SIZE != HV_HYP_PAGE_SIZE case also handles 1800 * values of sgl->offset that are larger than PAGE_SIZE. 1801 * Such offsets are handled even on other than the first 1802 * sgl entry, provided they are a multiple of PAGE_SIZE. 1803 */ 1804 hvpfn = HVPFN_DOWN(sg_dma_address(sg)); 1805 hvpfns_to_add = HVPFN_UP(sg_dma_address(sg) + 1806 sg_dma_len(sg)) - hvpfn; 1807 1808 /* 1809 * Fill the next portion of the PFN array with 1810 * sequential Hyper-V PFNs for the continguous physical 1811 * memory described by the sgl entry. The end of the 1812 * last sgl should be reached at the same time that 1813 * the PFN array is filled. 1814 */ 1815 while (hvpfns_to_add--) 1816 payload->range.pfn_array[i++] = hvpfn++; 1817 } 1818 } 1819 1820 cmd_request->payload = payload; 1821 cmd_request->payload_sz = payload_sz; 1822 1823 /* Invokes the vsc to start an IO */ 1824 ret = storvsc_do_io(dev, cmd_request, get_cpu()); 1825 put_cpu(); 1826 1827 if (ret == -EAGAIN) { 1828 /* no more space */ 1829 ret = SCSI_MLQUEUE_DEVICE_BUSY; 1830 goto err_free_payload; 1831 } 1832 1833 return 0; 1834 1835 err_free_payload: 1836 if (payload_sz > sizeof(cmd_request->mpb)) 1837 kfree(payload); 1838 1839 return ret; 1840 } 1841 1842 static struct scsi_host_template scsi_driver = { 1843 .module = THIS_MODULE, 1844 .name = "storvsc_host_t", 1845 .cmd_size = sizeof(struct storvsc_cmd_request), 1846 .bios_param = storvsc_get_chs, 1847 .queuecommand = storvsc_queuecommand, 1848 .eh_host_reset_handler = storvsc_host_reset_handler, 1849 .proc_name = "storvsc_host", 1850 .eh_timed_out = storvsc_eh_timed_out, 1851 .slave_alloc = storvsc_device_alloc, 1852 .slave_configure = storvsc_device_configure, 1853 .cmd_per_lun = 2048, 1854 .this_id = -1, 1855 /* Ensure there are no gaps in presented sgls */ 1856 .virt_boundary_mask = HV_HYP_PAGE_SIZE - 1, 1857 .no_write_same = 1, 1858 .track_queue_depth = 1, 1859 .change_queue_depth = storvsc_change_queue_depth, 1860 }; 1861 1862 enum { 1863 SCSI_GUID, 1864 IDE_GUID, 1865 SFC_GUID, 1866 }; 1867 1868 static const struct hv_vmbus_device_id id_table[] = { 1869 /* SCSI guid */ 1870 { HV_SCSI_GUID, 1871 .driver_data = SCSI_GUID 1872 }, 1873 /* IDE guid */ 1874 { HV_IDE_GUID, 1875 .driver_data = IDE_GUID 1876 }, 1877 /* Fibre Channel GUID */ 1878 { 1879 HV_SYNTHFC_GUID, 1880 .driver_data = SFC_GUID 1881 }, 1882 { }, 1883 }; 1884 1885 MODULE_DEVICE_TABLE(vmbus, id_table); 1886 1887 static const struct { guid_t guid; } fc_guid = { HV_SYNTHFC_GUID }; 1888 1889 static bool hv_dev_is_fc(struct hv_device *hv_dev) 1890 { 1891 return guid_equal(&fc_guid.guid, &hv_dev->dev_type); 1892 } 1893 1894 static int storvsc_probe(struct hv_device *device, 1895 const struct hv_vmbus_device_id *dev_id) 1896 { 1897 int ret; 1898 int num_cpus = num_online_cpus(); 1899 int num_present_cpus = num_present_cpus(); 1900 struct Scsi_Host *host; 1901 struct hv_host_device *host_dev; 1902 bool dev_is_ide = ((dev_id->driver_data == IDE_GUID) ? true : false); 1903 bool is_fc = ((dev_id->driver_data == SFC_GUID) ? true : false); 1904 int target = 0; 1905 struct storvsc_device *stor_device; 1906 int max_sub_channels = 0; 1907 u32 max_xfer_bytes; 1908 1909 /* 1910 * We support sub-channels for storage on SCSI and FC controllers. 1911 * The number of sub-channels offerred is based on the number of 1912 * VCPUs in the guest. 1913 */ 1914 if (!dev_is_ide) 1915 max_sub_channels = 1916 (num_cpus - 1) / storvsc_vcpus_per_sub_channel; 1917 1918 scsi_driver.can_queue = max_outstanding_req_per_channel * 1919 (max_sub_channels + 1) * 1920 (100 - ring_avail_percent_lowater) / 100; 1921 1922 host = scsi_host_alloc(&scsi_driver, 1923 sizeof(struct hv_host_device)); 1924 if (!host) 1925 return -ENOMEM; 1926 1927 host_dev = shost_priv(host); 1928 memset(host_dev, 0, sizeof(struct hv_host_device)); 1929 1930 host_dev->port = host->host_no; 1931 host_dev->dev = device; 1932 host_dev->host = host; 1933 1934 1935 stor_device = kzalloc(sizeof(struct storvsc_device), GFP_KERNEL); 1936 if (!stor_device) { 1937 ret = -ENOMEM; 1938 goto err_out0; 1939 } 1940 1941 stor_device->destroy = false; 1942 init_waitqueue_head(&stor_device->waiting_to_drain); 1943 stor_device->device = device; 1944 stor_device->host = host; 1945 spin_lock_init(&stor_device->lock); 1946 hv_set_drvdata(device, stor_device); 1947 dma_set_min_align_mask(&device->device, HV_HYP_PAGE_SIZE - 1); 1948 1949 stor_device->port_number = host->host_no; 1950 ret = storvsc_connect_to_vsp(device, storvsc_ringbuffer_size, is_fc); 1951 if (ret) 1952 goto err_out1; 1953 1954 host_dev->path = stor_device->path_id; 1955 host_dev->target = stor_device->target_id; 1956 1957 switch (dev_id->driver_data) { 1958 case SFC_GUID: 1959 host->max_lun = STORVSC_FC_MAX_LUNS_PER_TARGET; 1960 host->max_id = STORVSC_FC_MAX_TARGETS; 1961 host->max_channel = STORVSC_FC_MAX_CHANNELS - 1; 1962 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 1963 host->transportt = fc_transport_template; 1964 #endif 1965 break; 1966 1967 case SCSI_GUID: 1968 host->max_lun = STORVSC_MAX_LUNS_PER_TARGET; 1969 host->max_id = STORVSC_MAX_TARGETS; 1970 host->max_channel = STORVSC_MAX_CHANNELS - 1; 1971 break; 1972 1973 default: 1974 host->max_lun = STORVSC_IDE_MAX_LUNS_PER_TARGET; 1975 host->max_id = STORVSC_IDE_MAX_TARGETS; 1976 host->max_channel = STORVSC_IDE_MAX_CHANNELS - 1; 1977 break; 1978 } 1979 /* max cmd length */ 1980 host->max_cmd_len = STORVSC_MAX_CMD_LEN; 1981 /* 1982 * Any reasonable Hyper-V configuration should provide 1983 * max_transfer_bytes value aligning to HV_HYP_PAGE_SIZE, 1984 * protecting it from any weird value. 1985 */ 1986 max_xfer_bytes = round_down(stor_device->max_transfer_bytes, HV_HYP_PAGE_SIZE); 1987 /* max_hw_sectors_kb */ 1988 host->max_sectors = max_xfer_bytes >> 9; 1989 /* 1990 * There are 2 requirements for Hyper-V storvsc sgl segments, 1991 * based on which the below calculation for max segments is 1992 * done: 1993 * 1994 * 1. Except for the first and last sgl segment, all sgl segments 1995 * should be align to HV_HYP_PAGE_SIZE, that also means the 1996 * maximum number of segments in a sgl can be calculated by 1997 * dividing the total max transfer length by HV_HYP_PAGE_SIZE. 1998 * 1999 * 2. Except for the first and last, each entry in the SGL must 2000 * have an offset that is a multiple of HV_HYP_PAGE_SIZE. 2001 */ 2002 host->sg_tablesize = (max_xfer_bytes >> HV_HYP_PAGE_SHIFT) + 1; 2003 /* 2004 * For non-IDE disks, the host supports multiple channels. 2005 * Set the number of HW queues we are supporting. 2006 */ 2007 if (!dev_is_ide) { 2008 if (storvsc_max_hw_queues > num_present_cpus) { 2009 storvsc_max_hw_queues = 0; 2010 storvsc_log(device, STORVSC_LOGGING_WARN, 2011 "Resetting invalid storvsc_max_hw_queues value to default.\n"); 2012 } 2013 if (storvsc_max_hw_queues) 2014 host->nr_hw_queues = storvsc_max_hw_queues; 2015 else 2016 host->nr_hw_queues = num_present_cpus; 2017 } 2018 2019 /* 2020 * Set the error handler work queue. 2021 */ 2022 host_dev->handle_error_wq = 2023 alloc_ordered_workqueue("storvsc_error_wq_%d", 2024 0, 2025 host->host_no); 2026 if (!host_dev->handle_error_wq) { 2027 ret = -ENOMEM; 2028 goto err_out2; 2029 } 2030 INIT_WORK(&host_dev->host_scan_work, storvsc_host_scan); 2031 /* Register the HBA and start the scsi bus scan */ 2032 ret = scsi_add_host(host, &device->device); 2033 if (ret != 0) 2034 goto err_out3; 2035 2036 if (!dev_is_ide) { 2037 scsi_scan_host(host); 2038 } else { 2039 target = (device->dev_instance.b[5] << 8 | 2040 device->dev_instance.b[4]); 2041 ret = scsi_add_device(host, 0, target, 0); 2042 if (ret) 2043 goto err_out4; 2044 } 2045 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2046 if (host->transportt == fc_transport_template) { 2047 struct fc_rport_identifiers ids = { 2048 .roles = FC_PORT_ROLE_FCP_DUMMY_INITIATOR, 2049 }; 2050 2051 fc_host_node_name(host) = stor_device->node_name; 2052 fc_host_port_name(host) = stor_device->port_name; 2053 stor_device->rport = fc_remote_port_add(host, 0, &ids); 2054 if (!stor_device->rport) { 2055 ret = -ENOMEM; 2056 goto err_out4; 2057 } 2058 } 2059 #endif 2060 return 0; 2061 2062 err_out4: 2063 scsi_remove_host(host); 2064 2065 err_out3: 2066 destroy_workqueue(host_dev->handle_error_wq); 2067 2068 err_out2: 2069 /* 2070 * Once we have connected with the host, we would need to 2071 * invoke storvsc_dev_remove() to rollback this state and 2072 * this call also frees up the stor_device; hence the jump around 2073 * err_out1 label. 2074 */ 2075 storvsc_dev_remove(device); 2076 goto err_out0; 2077 2078 err_out1: 2079 kfree(stor_device->stor_chns); 2080 kfree(stor_device); 2081 2082 err_out0: 2083 scsi_host_put(host); 2084 return ret; 2085 } 2086 2087 /* Change a scsi target's queue depth */ 2088 static int storvsc_change_queue_depth(struct scsi_device *sdev, int queue_depth) 2089 { 2090 if (queue_depth > scsi_driver.can_queue) 2091 queue_depth = scsi_driver.can_queue; 2092 2093 return scsi_change_queue_depth(sdev, queue_depth); 2094 } 2095 2096 static int storvsc_remove(struct hv_device *dev) 2097 { 2098 struct storvsc_device *stor_device = hv_get_drvdata(dev); 2099 struct Scsi_Host *host = stor_device->host; 2100 struct hv_host_device *host_dev = shost_priv(host); 2101 2102 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2103 if (host->transportt == fc_transport_template) { 2104 fc_remote_port_delete(stor_device->rport); 2105 fc_remove_host(host); 2106 } 2107 #endif 2108 destroy_workqueue(host_dev->handle_error_wq); 2109 scsi_remove_host(host); 2110 storvsc_dev_remove(dev); 2111 scsi_host_put(host); 2112 2113 return 0; 2114 } 2115 2116 static int storvsc_suspend(struct hv_device *hv_dev) 2117 { 2118 struct storvsc_device *stor_device = hv_get_drvdata(hv_dev); 2119 struct Scsi_Host *host = stor_device->host; 2120 struct hv_host_device *host_dev = shost_priv(host); 2121 2122 storvsc_wait_to_drain(stor_device); 2123 2124 drain_workqueue(host_dev->handle_error_wq); 2125 2126 vmbus_close(hv_dev->channel); 2127 2128 kfree(stor_device->stor_chns); 2129 stor_device->stor_chns = NULL; 2130 2131 cpumask_clear(&stor_device->alloced_cpus); 2132 2133 return 0; 2134 } 2135 2136 static int storvsc_resume(struct hv_device *hv_dev) 2137 { 2138 int ret; 2139 2140 ret = storvsc_connect_to_vsp(hv_dev, storvsc_ringbuffer_size, 2141 hv_dev_is_fc(hv_dev)); 2142 return ret; 2143 } 2144 2145 static struct hv_driver storvsc_drv = { 2146 .name = KBUILD_MODNAME, 2147 .id_table = id_table, 2148 .probe = storvsc_probe, 2149 .remove = storvsc_remove, 2150 .suspend = storvsc_suspend, 2151 .resume = storvsc_resume, 2152 .driver = { 2153 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 2154 }, 2155 }; 2156 2157 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2158 static struct fc_function_template fc_transport_functions = { 2159 .show_host_node_name = 1, 2160 .show_host_port_name = 1, 2161 }; 2162 #endif 2163 2164 static int __init storvsc_drv_init(void) 2165 { 2166 int ret; 2167 2168 /* 2169 * Divide the ring buffer data size (which is 1 page less 2170 * than the ring buffer size since that page is reserved for 2171 * the ring buffer indices) by the max request size (which is 2172 * vmbus_channel_packet_multipage_buffer + struct vstor_packet + u64) 2173 */ 2174 max_outstanding_req_per_channel = 2175 ((storvsc_ringbuffer_size - PAGE_SIZE) / 2176 ALIGN(MAX_MULTIPAGE_BUFFER_PACKET + 2177 sizeof(struct vstor_packet) + sizeof(u64), 2178 sizeof(u64))); 2179 2180 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2181 fc_transport_template = fc_attach_transport(&fc_transport_functions); 2182 if (!fc_transport_template) 2183 return -ENODEV; 2184 #endif 2185 2186 ret = vmbus_driver_register(&storvsc_drv); 2187 2188 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2189 if (ret) 2190 fc_release_transport(fc_transport_template); 2191 #endif 2192 2193 return ret; 2194 } 2195 2196 static void __exit storvsc_drv_exit(void) 2197 { 2198 vmbus_driver_unregister(&storvsc_drv); 2199 #if IS_ENABLED(CONFIG_SCSI_FC_ATTRS) 2200 fc_release_transport(fc_transport_template); 2201 #endif 2202 } 2203 2204 MODULE_LICENSE("GPL"); 2205 MODULE_DESCRIPTION("Microsoft Hyper-V virtual storage driver"); 2206 module_init(storvsc_drv_init); 2207 module_exit(storvsc_drv_exit); 2208