1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/sed-opal.h> 54 #include <linux/pm_runtime.h> 55 #include <linux/pr.h> 56 #include <linux/t10-pi.h> 57 #include <linux/uaccess.h> 58 #include <asm/unaligned.h> 59 60 #include <scsi/scsi.h> 61 #include <scsi/scsi_cmnd.h> 62 #include <scsi/scsi_dbg.h> 63 #include <scsi/scsi_device.h> 64 #include <scsi/scsi_driver.h> 65 #include <scsi/scsi_eh.h> 66 #include <scsi/scsi_host.h> 67 #include <scsi/scsi_ioctl.h> 68 #include <scsi/scsicam.h> 69 70 #include "sd.h" 71 #include "scsi_priv.h" 72 #include "scsi_logging.h" 73 74 MODULE_AUTHOR("Eric Youngdale"); 75 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 76 MODULE_LICENSE("GPL"); 77 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 98 99 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 100 #define SD_MINORS 16 101 #else 102 #define SD_MINORS 0 103 #endif 104 105 static void sd_config_discard(struct scsi_disk *, unsigned int); 106 static void sd_config_write_same(struct scsi_disk *); 107 static int sd_revalidate_disk(struct gendisk *); 108 static void sd_unlock_native_capacity(struct gendisk *disk); 109 static int sd_probe(struct device *); 110 static int sd_remove(struct device *); 111 static void sd_shutdown(struct device *); 112 static int sd_suspend_system(struct device *); 113 static int sd_suspend_runtime(struct device *); 114 static int sd_resume(struct device *); 115 static void sd_rescan(struct device *); 116 static int sd_init_command(struct scsi_cmnd *SCpnt); 117 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 118 static int sd_done(struct scsi_cmnd *); 119 static void sd_eh_reset(struct scsi_cmnd *); 120 static int sd_eh_action(struct scsi_cmnd *, int); 121 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 122 static void scsi_disk_release(struct device *cdev); 123 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 124 static void sd_print_result(const struct scsi_disk *, const char *, int); 125 126 static DEFINE_SPINLOCK(sd_index_lock); 127 static DEFINE_IDA(sd_index_ida); 128 129 /* This semaphore is used to mediate the 0->1 reference get in the 130 * face of object destruction (i.e. we can't allow a get on an 131 * object after last put) */ 132 static DEFINE_MUTEX(sd_ref_mutex); 133 134 static struct kmem_cache *sd_cdb_cache; 135 static mempool_t *sd_cdb_pool; 136 137 static const char *sd_cache_types[] = { 138 "write through", "none", "write back", 139 "write back, no read (daft)" 140 }; 141 142 static void sd_set_flush_flag(struct scsi_disk *sdkp) 143 { 144 bool wc = false, fua = false; 145 146 if (sdkp->WCE) { 147 wc = true; 148 if (sdkp->DPOFUA) 149 fua = true; 150 } 151 152 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 153 } 154 155 static ssize_t 156 cache_type_store(struct device *dev, struct device_attribute *attr, 157 const char *buf, size_t count) 158 { 159 int ct, rcd, wce, sp; 160 struct scsi_disk *sdkp = to_scsi_disk(dev); 161 struct scsi_device *sdp = sdkp->device; 162 char buffer[64]; 163 char *buffer_data; 164 struct scsi_mode_data data; 165 struct scsi_sense_hdr sshdr; 166 static const char temp[] = "temporary "; 167 int len; 168 169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 170 /* no cache control on RBC devices; theoretically they 171 * can do it, but there's probably so many exceptions 172 * it's not worth the risk */ 173 return -EINVAL; 174 175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 176 buf += sizeof(temp) - 1; 177 sdkp->cache_override = 1; 178 } else { 179 sdkp->cache_override = 0; 180 } 181 182 ct = sysfs_match_string(sd_cache_types, buf); 183 if (ct < 0) 184 return -EINVAL; 185 186 rcd = ct & 0x01 ? 1 : 0; 187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 188 189 if (sdkp->cache_override) { 190 sdkp->WCE = wce; 191 sdkp->RCD = rcd; 192 sd_set_flush_flag(sdkp); 193 return count; 194 } 195 196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 197 SD_MAX_RETRIES, &data, NULL)) 198 return -EINVAL; 199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 200 data.block_descriptor_length); 201 buffer_data = buffer + data.header_length + 202 data.block_descriptor_length; 203 buffer_data[2] &= ~0x05; 204 buffer_data[2] |= wce << 2 | rcd; 205 sp = buffer_data[0] & 0x80 ? 1 : 0; 206 buffer_data[0] &= ~0x80; 207 208 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 209 SD_MAX_RETRIES, &data, &sshdr)) { 210 if (scsi_sense_valid(&sshdr)) 211 sd_print_sense_hdr(sdkp, &sshdr); 212 return -EINVAL; 213 } 214 revalidate_disk(sdkp->disk); 215 return count; 216 } 217 218 static ssize_t 219 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 220 char *buf) 221 { 222 struct scsi_disk *sdkp = to_scsi_disk(dev); 223 struct scsi_device *sdp = sdkp->device; 224 225 return sprintf(buf, "%u\n", sdp->manage_start_stop); 226 } 227 228 static ssize_t 229 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 230 const char *buf, size_t count) 231 { 232 struct scsi_disk *sdkp = to_scsi_disk(dev); 233 struct scsi_device *sdp = sdkp->device; 234 bool v; 235 236 if (!capable(CAP_SYS_ADMIN)) 237 return -EACCES; 238 239 if (kstrtobool(buf, &v)) 240 return -EINVAL; 241 242 sdp->manage_start_stop = v; 243 244 return count; 245 } 246 static DEVICE_ATTR_RW(manage_start_stop); 247 248 static ssize_t 249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 250 { 251 struct scsi_disk *sdkp = to_scsi_disk(dev); 252 253 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 254 } 255 256 static ssize_t 257 allow_restart_store(struct device *dev, struct device_attribute *attr, 258 const char *buf, size_t count) 259 { 260 bool v; 261 struct scsi_disk *sdkp = to_scsi_disk(dev); 262 struct scsi_device *sdp = sdkp->device; 263 264 if (!capable(CAP_SYS_ADMIN)) 265 return -EACCES; 266 267 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 268 return -EINVAL; 269 270 if (kstrtobool(buf, &v)) 271 return -EINVAL; 272 273 sdp->allow_restart = v; 274 275 return count; 276 } 277 static DEVICE_ATTR_RW(allow_restart); 278 279 static ssize_t 280 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 281 { 282 struct scsi_disk *sdkp = to_scsi_disk(dev); 283 int ct = sdkp->RCD + 2*sdkp->WCE; 284 285 return sprintf(buf, "%s\n", sd_cache_types[ct]); 286 } 287 static DEVICE_ATTR_RW(cache_type); 288 289 static ssize_t 290 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 291 { 292 struct scsi_disk *sdkp = to_scsi_disk(dev); 293 294 return sprintf(buf, "%u\n", sdkp->DPOFUA); 295 } 296 static DEVICE_ATTR_RO(FUA); 297 298 static ssize_t 299 protection_type_show(struct device *dev, struct device_attribute *attr, 300 char *buf) 301 { 302 struct scsi_disk *sdkp = to_scsi_disk(dev); 303 304 return sprintf(buf, "%u\n", sdkp->protection_type); 305 } 306 307 static ssize_t 308 protection_type_store(struct device *dev, struct device_attribute *attr, 309 const char *buf, size_t count) 310 { 311 struct scsi_disk *sdkp = to_scsi_disk(dev); 312 unsigned int val; 313 int err; 314 315 if (!capable(CAP_SYS_ADMIN)) 316 return -EACCES; 317 318 err = kstrtouint(buf, 10, &val); 319 320 if (err) 321 return err; 322 323 if (val <= T10_PI_TYPE3_PROTECTION) 324 sdkp->protection_type = val; 325 326 return count; 327 } 328 static DEVICE_ATTR_RW(protection_type); 329 330 static ssize_t 331 protection_mode_show(struct device *dev, struct device_attribute *attr, 332 char *buf) 333 { 334 struct scsi_disk *sdkp = to_scsi_disk(dev); 335 struct scsi_device *sdp = sdkp->device; 336 unsigned int dif, dix; 337 338 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 339 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 340 341 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 342 dif = 0; 343 dix = 1; 344 } 345 346 if (!dif && !dix) 347 return sprintf(buf, "none\n"); 348 349 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 350 } 351 static DEVICE_ATTR_RO(protection_mode); 352 353 static ssize_t 354 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 355 { 356 struct scsi_disk *sdkp = to_scsi_disk(dev); 357 358 return sprintf(buf, "%u\n", sdkp->ATO); 359 } 360 static DEVICE_ATTR_RO(app_tag_own); 361 362 static ssize_t 363 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 364 char *buf) 365 { 366 struct scsi_disk *sdkp = to_scsi_disk(dev); 367 368 return sprintf(buf, "%u\n", sdkp->lbpme); 369 } 370 static DEVICE_ATTR_RO(thin_provisioning); 371 372 /* sysfs_match_string() requires dense arrays */ 373 static const char *lbp_mode[] = { 374 [SD_LBP_FULL] = "full", 375 [SD_LBP_UNMAP] = "unmap", 376 [SD_LBP_WS16] = "writesame_16", 377 [SD_LBP_WS10] = "writesame_10", 378 [SD_LBP_ZERO] = "writesame_zero", 379 [SD_LBP_DISABLE] = "disabled", 380 }; 381 382 static ssize_t 383 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 384 char *buf) 385 { 386 struct scsi_disk *sdkp = to_scsi_disk(dev); 387 388 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 389 } 390 391 static ssize_t 392 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 393 const char *buf, size_t count) 394 { 395 struct scsi_disk *sdkp = to_scsi_disk(dev); 396 struct scsi_device *sdp = sdkp->device; 397 int mode; 398 399 if (!capable(CAP_SYS_ADMIN)) 400 return -EACCES; 401 402 if (sd_is_zoned(sdkp)) { 403 sd_config_discard(sdkp, SD_LBP_DISABLE); 404 return count; 405 } 406 407 if (sdp->type != TYPE_DISK) 408 return -EINVAL; 409 410 mode = sysfs_match_string(lbp_mode, buf); 411 if (mode < 0) 412 return -EINVAL; 413 414 sd_config_discard(sdkp, mode); 415 416 return count; 417 } 418 static DEVICE_ATTR_RW(provisioning_mode); 419 420 /* sysfs_match_string() requires dense arrays */ 421 static const char *zeroing_mode[] = { 422 [SD_ZERO_WRITE] = "write", 423 [SD_ZERO_WS] = "writesame", 424 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 425 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 426 }; 427 428 static ssize_t 429 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 430 char *buf) 431 { 432 struct scsi_disk *sdkp = to_scsi_disk(dev); 433 434 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 435 } 436 437 static ssize_t 438 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 439 const char *buf, size_t count) 440 { 441 struct scsi_disk *sdkp = to_scsi_disk(dev); 442 int mode; 443 444 if (!capable(CAP_SYS_ADMIN)) 445 return -EACCES; 446 447 mode = sysfs_match_string(zeroing_mode, buf); 448 if (mode < 0) 449 return -EINVAL; 450 451 sdkp->zeroing_mode = mode; 452 453 return count; 454 } 455 static DEVICE_ATTR_RW(zeroing_mode); 456 457 static ssize_t 458 max_medium_access_timeouts_show(struct device *dev, 459 struct device_attribute *attr, char *buf) 460 { 461 struct scsi_disk *sdkp = to_scsi_disk(dev); 462 463 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 464 } 465 466 static ssize_t 467 max_medium_access_timeouts_store(struct device *dev, 468 struct device_attribute *attr, const char *buf, 469 size_t count) 470 { 471 struct scsi_disk *sdkp = to_scsi_disk(dev); 472 int err; 473 474 if (!capable(CAP_SYS_ADMIN)) 475 return -EACCES; 476 477 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 478 479 return err ? err : count; 480 } 481 static DEVICE_ATTR_RW(max_medium_access_timeouts); 482 483 static ssize_t 484 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 485 char *buf) 486 { 487 struct scsi_disk *sdkp = to_scsi_disk(dev); 488 489 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 490 } 491 492 static ssize_t 493 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 494 const char *buf, size_t count) 495 { 496 struct scsi_disk *sdkp = to_scsi_disk(dev); 497 struct scsi_device *sdp = sdkp->device; 498 unsigned long max; 499 int err; 500 501 if (!capable(CAP_SYS_ADMIN)) 502 return -EACCES; 503 504 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 505 return -EINVAL; 506 507 err = kstrtoul(buf, 10, &max); 508 509 if (err) 510 return err; 511 512 if (max == 0) 513 sdp->no_write_same = 1; 514 else if (max <= SD_MAX_WS16_BLOCKS) { 515 sdp->no_write_same = 0; 516 sdkp->max_ws_blocks = max; 517 } 518 519 sd_config_write_same(sdkp); 520 521 return count; 522 } 523 static DEVICE_ATTR_RW(max_write_same_blocks); 524 525 static struct attribute *sd_disk_attrs[] = { 526 &dev_attr_cache_type.attr, 527 &dev_attr_FUA.attr, 528 &dev_attr_allow_restart.attr, 529 &dev_attr_manage_start_stop.attr, 530 &dev_attr_protection_type.attr, 531 &dev_attr_protection_mode.attr, 532 &dev_attr_app_tag_own.attr, 533 &dev_attr_thin_provisioning.attr, 534 &dev_attr_provisioning_mode.attr, 535 &dev_attr_zeroing_mode.attr, 536 &dev_attr_max_write_same_blocks.attr, 537 &dev_attr_max_medium_access_timeouts.attr, 538 NULL, 539 }; 540 ATTRIBUTE_GROUPS(sd_disk); 541 542 static struct class sd_disk_class = { 543 .name = "scsi_disk", 544 .owner = THIS_MODULE, 545 .dev_release = scsi_disk_release, 546 .dev_groups = sd_disk_groups, 547 }; 548 549 static const struct dev_pm_ops sd_pm_ops = { 550 .suspend = sd_suspend_system, 551 .resume = sd_resume, 552 .poweroff = sd_suspend_system, 553 .restore = sd_resume, 554 .runtime_suspend = sd_suspend_runtime, 555 .runtime_resume = sd_resume, 556 }; 557 558 static struct scsi_driver sd_template = { 559 .gendrv = { 560 .name = "sd", 561 .owner = THIS_MODULE, 562 .probe = sd_probe, 563 .remove = sd_remove, 564 .shutdown = sd_shutdown, 565 .pm = &sd_pm_ops, 566 }, 567 .rescan = sd_rescan, 568 .init_command = sd_init_command, 569 .uninit_command = sd_uninit_command, 570 .done = sd_done, 571 .eh_action = sd_eh_action, 572 .eh_reset = sd_eh_reset, 573 }; 574 575 /* 576 * Dummy kobj_map->probe function. 577 * The default ->probe function will call modprobe, which is 578 * pointless as this module is already loaded. 579 */ 580 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 581 { 582 return NULL; 583 } 584 585 /* 586 * Device no to disk mapping: 587 * 588 * major disc2 disc p1 589 * |............|.............|....|....| <- dev_t 590 * 31 20 19 8 7 4 3 0 591 * 592 * Inside a major, we have 16k disks, however mapped non- 593 * contiguously. The first 16 disks are for major0, the next 594 * ones with major1, ... Disk 256 is for major0 again, disk 272 595 * for major1, ... 596 * As we stay compatible with our numbering scheme, we can reuse 597 * the well-know SCSI majors 8, 65--71, 136--143. 598 */ 599 static int sd_major(int major_idx) 600 { 601 switch (major_idx) { 602 case 0: 603 return SCSI_DISK0_MAJOR; 604 case 1 ... 7: 605 return SCSI_DISK1_MAJOR + major_idx - 1; 606 case 8 ... 15: 607 return SCSI_DISK8_MAJOR + major_idx - 8; 608 default: 609 BUG(); 610 return 0; /* shut up gcc */ 611 } 612 } 613 614 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 615 { 616 struct scsi_disk *sdkp = NULL; 617 618 mutex_lock(&sd_ref_mutex); 619 620 if (disk->private_data) { 621 sdkp = scsi_disk(disk); 622 if (scsi_device_get(sdkp->device) == 0) 623 get_device(&sdkp->dev); 624 else 625 sdkp = NULL; 626 } 627 mutex_unlock(&sd_ref_mutex); 628 return sdkp; 629 } 630 631 static void scsi_disk_put(struct scsi_disk *sdkp) 632 { 633 struct scsi_device *sdev = sdkp->device; 634 635 mutex_lock(&sd_ref_mutex); 636 put_device(&sdkp->dev); 637 scsi_device_put(sdev); 638 mutex_unlock(&sd_ref_mutex); 639 } 640 641 #ifdef CONFIG_BLK_SED_OPAL 642 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 643 size_t len, bool send) 644 { 645 struct scsi_device *sdev = data; 646 u8 cdb[12] = { 0, }; 647 int ret; 648 649 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 650 cdb[1] = secp; 651 put_unaligned_be16(spsp, &cdb[2]); 652 put_unaligned_be32(len, &cdb[6]); 653 654 ret = scsi_execute_req(sdev, cdb, 655 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 656 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 657 return ret <= 0 ? ret : -EIO; 658 } 659 #endif /* CONFIG_BLK_SED_OPAL */ 660 661 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 662 unsigned int dix, unsigned int dif) 663 { 664 struct bio *bio = scmd->request->bio; 665 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 666 unsigned int protect = 0; 667 668 if (dix) { /* DIX Type 0, 1, 2, 3 */ 669 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 670 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 671 672 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 673 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 674 } 675 676 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 677 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 678 679 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 680 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 681 } 682 683 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 684 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 685 686 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 687 protect = 3 << 5; /* Disable target PI checking */ 688 else 689 protect = 1 << 5; /* Enable target PI checking */ 690 } 691 692 scsi_set_prot_op(scmd, prot_op); 693 scsi_set_prot_type(scmd, dif); 694 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 695 696 return protect; 697 } 698 699 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 700 { 701 struct request_queue *q = sdkp->disk->queue; 702 unsigned int logical_block_size = sdkp->device->sector_size; 703 unsigned int max_blocks = 0; 704 705 q->limits.discard_alignment = 706 sdkp->unmap_alignment * logical_block_size; 707 q->limits.discard_granularity = 708 max(sdkp->physical_block_size, 709 sdkp->unmap_granularity * logical_block_size); 710 sdkp->provisioning_mode = mode; 711 712 switch (mode) { 713 714 case SD_LBP_FULL: 715 case SD_LBP_DISABLE: 716 blk_queue_max_discard_sectors(q, 0); 717 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 718 return; 719 720 case SD_LBP_UNMAP: 721 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 722 (u32)SD_MAX_WS16_BLOCKS); 723 break; 724 725 case SD_LBP_WS16: 726 if (sdkp->device->unmap_limit_for_ws) 727 max_blocks = sdkp->max_unmap_blocks; 728 else 729 max_blocks = sdkp->max_ws_blocks; 730 731 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 732 break; 733 734 case SD_LBP_WS10: 735 if (sdkp->device->unmap_limit_for_ws) 736 max_blocks = sdkp->max_unmap_blocks; 737 else 738 max_blocks = sdkp->max_ws_blocks; 739 740 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 741 break; 742 743 case SD_LBP_ZERO: 744 max_blocks = min_not_zero(sdkp->max_ws_blocks, 745 (u32)SD_MAX_WS10_BLOCKS); 746 break; 747 } 748 749 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 750 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 751 } 752 753 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 754 { 755 struct scsi_device *sdp = cmd->device; 756 struct request *rq = cmd->request; 757 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 758 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 759 unsigned int data_len = 24; 760 char *buf; 761 762 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 763 if (!rq->special_vec.bv_page) 764 return BLKPREP_DEFER; 765 rq->special_vec.bv_offset = 0; 766 rq->special_vec.bv_len = data_len; 767 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 768 769 cmd->cmd_len = 10; 770 cmd->cmnd[0] = UNMAP; 771 cmd->cmnd[8] = 24; 772 773 buf = page_address(rq->special_vec.bv_page); 774 put_unaligned_be16(6 + 16, &buf[0]); 775 put_unaligned_be16(16, &buf[2]); 776 put_unaligned_be64(sector, &buf[8]); 777 put_unaligned_be32(nr_sectors, &buf[16]); 778 779 cmd->allowed = SD_MAX_RETRIES; 780 cmd->transfersize = data_len; 781 rq->timeout = SD_TIMEOUT; 782 scsi_req(rq)->resid_len = data_len; 783 784 return scsi_init_io(cmd); 785 } 786 787 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap) 788 { 789 struct scsi_device *sdp = cmd->device; 790 struct request *rq = cmd->request; 791 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 792 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 793 u32 data_len = sdp->sector_size; 794 795 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 796 if (!rq->special_vec.bv_page) 797 return BLKPREP_DEFER; 798 rq->special_vec.bv_offset = 0; 799 rq->special_vec.bv_len = data_len; 800 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 801 802 cmd->cmd_len = 16; 803 cmd->cmnd[0] = WRITE_SAME_16; 804 if (unmap) 805 cmd->cmnd[1] = 0x8; /* UNMAP */ 806 put_unaligned_be64(sector, &cmd->cmnd[2]); 807 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 808 809 cmd->allowed = SD_MAX_RETRIES; 810 cmd->transfersize = data_len; 811 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 812 scsi_req(rq)->resid_len = data_len; 813 814 return scsi_init_io(cmd); 815 } 816 817 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap) 818 { 819 struct scsi_device *sdp = cmd->device; 820 struct request *rq = cmd->request; 821 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 822 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 823 u32 data_len = sdp->sector_size; 824 825 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 826 if (!rq->special_vec.bv_page) 827 return BLKPREP_DEFER; 828 rq->special_vec.bv_offset = 0; 829 rq->special_vec.bv_len = data_len; 830 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 831 832 cmd->cmd_len = 10; 833 cmd->cmnd[0] = WRITE_SAME; 834 if (unmap) 835 cmd->cmnd[1] = 0x8; /* UNMAP */ 836 put_unaligned_be32(sector, &cmd->cmnd[2]); 837 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 838 839 cmd->allowed = SD_MAX_RETRIES; 840 cmd->transfersize = data_len; 841 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 842 scsi_req(rq)->resid_len = data_len; 843 844 return scsi_init_io(cmd); 845 } 846 847 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 848 { 849 struct request *rq = cmd->request; 850 struct scsi_device *sdp = cmd->device; 851 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 852 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 853 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 854 855 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 856 switch (sdkp->zeroing_mode) { 857 case SD_ZERO_WS16_UNMAP: 858 return sd_setup_write_same16_cmnd(cmd, true); 859 case SD_ZERO_WS10_UNMAP: 860 return sd_setup_write_same10_cmnd(cmd, true); 861 } 862 } 863 864 if (sdp->no_write_same) 865 return BLKPREP_INVALID; 866 867 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) 868 return sd_setup_write_same16_cmnd(cmd, false); 869 870 return sd_setup_write_same10_cmnd(cmd, false); 871 } 872 873 static void sd_config_write_same(struct scsi_disk *sdkp) 874 { 875 struct request_queue *q = sdkp->disk->queue; 876 unsigned int logical_block_size = sdkp->device->sector_size; 877 878 if (sdkp->device->no_write_same) { 879 sdkp->max_ws_blocks = 0; 880 goto out; 881 } 882 883 /* Some devices can not handle block counts above 0xffff despite 884 * supporting WRITE SAME(16). Consequently we default to 64k 885 * blocks per I/O unless the device explicitly advertises a 886 * bigger limit. 887 */ 888 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 889 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 890 (u32)SD_MAX_WS16_BLOCKS); 891 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 892 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 893 (u32)SD_MAX_WS10_BLOCKS); 894 else { 895 sdkp->device->no_write_same = 1; 896 sdkp->max_ws_blocks = 0; 897 } 898 899 if (sdkp->lbprz && sdkp->lbpws) 900 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 901 else if (sdkp->lbprz && sdkp->lbpws10) 902 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 903 else if (sdkp->max_ws_blocks) 904 sdkp->zeroing_mode = SD_ZERO_WS; 905 else 906 sdkp->zeroing_mode = SD_ZERO_WRITE; 907 908 if (sdkp->max_ws_blocks && 909 sdkp->physical_block_size > logical_block_size) { 910 /* 911 * Reporting a maximum number of blocks that is not aligned 912 * on the device physical size would cause a large write same 913 * request to be split into physically unaligned chunks by 914 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 915 * even if the caller of these functions took care to align the 916 * large request. So make sure the maximum reported is aligned 917 * to the device physical block size. This is only an optional 918 * optimization for regular disks, but this is mandatory to 919 * avoid failure of large write same requests directed at 920 * sequential write required zones of host-managed ZBC disks. 921 */ 922 sdkp->max_ws_blocks = 923 round_down(sdkp->max_ws_blocks, 924 bytes_to_logical(sdkp->device, 925 sdkp->physical_block_size)); 926 } 927 928 out: 929 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 930 (logical_block_size >> 9)); 931 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 932 (logical_block_size >> 9)); 933 } 934 935 /** 936 * sd_setup_write_same_cmnd - write the same data to multiple blocks 937 * @cmd: command to prepare 938 * 939 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 940 * the preference indicated by the target device. 941 **/ 942 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 943 { 944 struct request *rq = cmd->request; 945 struct scsi_device *sdp = cmd->device; 946 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 947 struct bio *bio = rq->bio; 948 sector_t sector = blk_rq_pos(rq); 949 unsigned int nr_sectors = blk_rq_sectors(rq); 950 unsigned int nr_bytes = blk_rq_bytes(rq); 951 int ret; 952 953 if (sdkp->device->no_write_same) 954 return BLKPREP_INVALID; 955 956 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 957 958 sector >>= ilog2(sdp->sector_size) - 9; 959 nr_sectors >>= ilog2(sdp->sector_size) - 9; 960 961 rq->timeout = SD_WRITE_SAME_TIMEOUT; 962 963 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 964 cmd->cmd_len = 16; 965 cmd->cmnd[0] = WRITE_SAME_16; 966 put_unaligned_be64(sector, &cmd->cmnd[2]); 967 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 968 } else { 969 cmd->cmd_len = 10; 970 cmd->cmnd[0] = WRITE_SAME; 971 put_unaligned_be32(sector, &cmd->cmnd[2]); 972 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 973 } 974 975 cmd->transfersize = sdp->sector_size; 976 cmd->allowed = SD_MAX_RETRIES; 977 978 /* 979 * For WRITE SAME the data transferred via the DATA OUT buffer is 980 * different from the amount of data actually written to the target. 981 * 982 * We set up __data_len to the amount of data transferred via the 983 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 984 * to transfer a single sector of data first, but then reset it to 985 * the amount of data to be written right after so that the I/O path 986 * knows how much to actually write. 987 */ 988 rq->__data_len = sdp->sector_size; 989 ret = scsi_init_io(cmd); 990 rq->__data_len = nr_bytes; 991 992 return ret; 993 } 994 995 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 996 { 997 struct request *rq = cmd->request; 998 999 /* flush requests don't perform I/O, zero the S/G table */ 1000 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1001 1002 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1003 cmd->cmd_len = 10; 1004 cmd->transfersize = 0; 1005 cmd->allowed = SD_MAX_RETRIES; 1006 1007 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1008 return BLKPREP_OK; 1009 } 1010 1011 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 1012 { 1013 struct request *rq = SCpnt->request; 1014 struct scsi_device *sdp = SCpnt->device; 1015 struct gendisk *disk = rq->rq_disk; 1016 struct scsi_disk *sdkp = scsi_disk(disk); 1017 sector_t block = blk_rq_pos(rq); 1018 sector_t threshold; 1019 unsigned int this_count = blk_rq_sectors(rq); 1020 unsigned int dif, dix; 1021 int ret; 1022 unsigned char protect; 1023 1024 ret = scsi_init_io(SCpnt); 1025 if (ret != BLKPREP_OK) 1026 return ret; 1027 WARN_ON_ONCE(SCpnt != rq->special); 1028 1029 /* from here on until we're complete, any goto out 1030 * is used for a killable error condition */ 1031 ret = BLKPREP_KILL; 1032 1033 SCSI_LOG_HLQUEUE(1, 1034 scmd_printk(KERN_INFO, SCpnt, 1035 "%s: block=%llu, count=%d\n", 1036 __func__, (unsigned long long)block, this_count)); 1037 1038 if (!sdp || !scsi_device_online(sdp) || 1039 block + blk_rq_sectors(rq) > get_capacity(disk)) { 1040 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1041 "Finishing %u sectors\n", 1042 blk_rq_sectors(rq))); 1043 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1044 "Retry with 0x%p\n", SCpnt)); 1045 goto out; 1046 } 1047 1048 if (sdp->changed) { 1049 /* 1050 * quietly refuse to do anything to a changed disc until 1051 * the changed bit has been reset 1052 */ 1053 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 1054 goto out; 1055 } 1056 1057 /* 1058 * Some SD card readers can't handle multi-sector accesses which touch 1059 * the last one or two hardware sectors. Split accesses as needed. 1060 */ 1061 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 1062 (sdp->sector_size / 512); 1063 1064 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 1065 if (block < threshold) { 1066 /* Access up to the threshold but not beyond */ 1067 this_count = threshold - block; 1068 } else { 1069 /* Access only a single hardware sector */ 1070 this_count = sdp->sector_size / 512; 1071 } 1072 } 1073 1074 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 1075 (unsigned long long)block)); 1076 1077 /* 1078 * If we have a 1K hardware sectorsize, prevent access to single 1079 * 512 byte sectors. In theory we could handle this - in fact 1080 * the scsi cdrom driver must be able to handle this because 1081 * we typically use 1K blocksizes, and cdroms typically have 1082 * 2K hardware sectorsizes. Of course, things are simpler 1083 * with the cdrom, since it is read-only. For performance 1084 * reasons, the filesystems should be able to handle this 1085 * and not force the scsi disk driver to use bounce buffers 1086 * for this. 1087 */ 1088 if (sdp->sector_size == 1024) { 1089 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 1090 scmd_printk(KERN_ERR, SCpnt, 1091 "Bad block number requested\n"); 1092 goto out; 1093 } else { 1094 block = block >> 1; 1095 this_count = this_count >> 1; 1096 } 1097 } 1098 if (sdp->sector_size == 2048) { 1099 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 1100 scmd_printk(KERN_ERR, SCpnt, 1101 "Bad block number requested\n"); 1102 goto out; 1103 } else { 1104 block = block >> 2; 1105 this_count = this_count >> 2; 1106 } 1107 } 1108 if (sdp->sector_size == 4096) { 1109 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 1110 scmd_printk(KERN_ERR, SCpnt, 1111 "Bad block number requested\n"); 1112 goto out; 1113 } else { 1114 block = block >> 3; 1115 this_count = this_count >> 3; 1116 } 1117 } 1118 if (rq_data_dir(rq) == WRITE) { 1119 SCpnt->cmnd[0] = WRITE_6; 1120 1121 if (blk_integrity_rq(rq)) 1122 sd_dif_prepare(SCpnt); 1123 1124 } else if (rq_data_dir(rq) == READ) { 1125 SCpnt->cmnd[0] = READ_6; 1126 } else { 1127 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); 1128 goto out; 1129 } 1130 1131 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1132 "%s %d/%u 512 byte blocks.\n", 1133 (rq_data_dir(rq) == WRITE) ? 1134 "writing" : "reading", this_count, 1135 blk_rq_sectors(rq))); 1136 1137 dix = scsi_prot_sg_count(SCpnt); 1138 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1139 1140 if (dif || dix) 1141 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1142 else 1143 protect = 0; 1144 1145 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1146 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1147 1148 if (unlikely(SCpnt->cmnd == NULL)) { 1149 ret = BLKPREP_DEFER; 1150 goto out; 1151 } 1152 1153 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1154 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1155 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1156 SCpnt->cmnd[7] = 0x18; 1157 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1158 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1159 1160 /* LBA */ 1161 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1162 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1163 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1164 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1165 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1166 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1167 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1168 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1169 1170 /* Expected Indirect LBA */ 1171 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1172 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1173 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1174 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1175 1176 /* Transfer length */ 1177 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1178 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1179 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1180 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1181 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1182 SCpnt->cmnd[0] += READ_16 - READ_6; 1183 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1184 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1185 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1186 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1187 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1188 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1189 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1190 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1191 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1192 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1193 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1194 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1195 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1196 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1197 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1198 scsi_device_protection(SCpnt->device) || 1199 SCpnt->device->use_10_for_rw) { 1200 SCpnt->cmnd[0] += READ_10 - READ_6; 1201 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1202 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1203 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1204 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1205 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1206 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1207 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1208 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1209 } else { 1210 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1211 /* 1212 * This happens only if this drive failed 1213 * 10byte rw command with ILLEGAL_REQUEST 1214 * during operation and thus turned off 1215 * use_10_for_rw. 1216 */ 1217 scmd_printk(KERN_ERR, SCpnt, 1218 "FUA write on READ/WRITE(6) drive\n"); 1219 goto out; 1220 } 1221 1222 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1223 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1224 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1225 SCpnt->cmnd[4] = (unsigned char) this_count; 1226 SCpnt->cmnd[5] = 0; 1227 } 1228 SCpnt->sdb.length = this_count * sdp->sector_size; 1229 1230 /* 1231 * We shouldn't disconnect in the middle of a sector, so with a dumb 1232 * host adapter, it's safe to assume that we can at least transfer 1233 * this many bytes between each connect / disconnect. 1234 */ 1235 SCpnt->transfersize = sdp->sector_size; 1236 SCpnt->underflow = this_count << 9; 1237 SCpnt->allowed = SD_MAX_RETRIES; 1238 1239 /* 1240 * This indicates that the command is ready from our end to be 1241 * queued. 1242 */ 1243 ret = BLKPREP_OK; 1244 out: 1245 return ret; 1246 } 1247 1248 static int sd_init_command(struct scsi_cmnd *cmd) 1249 { 1250 struct request *rq = cmd->request; 1251 1252 switch (req_op(rq)) { 1253 case REQ_OP_DISCARD: 1254 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1255 case SD_LBP_UNMAP: 1256 return sd_setup_unmap_cmnd(cmd); 1257 case SD_LBP_WS16: 1258 return sd_setup_write_same16_cmnd(cmd, true); 1259 case SD_LBP_WS10: 1260 return sd_setup_write_same10_cmnd(cmd, true); 1261 case SD_LBP_ZERO: 1262 return sd_setup_write_same10_cmnd(cmd, false); 1263 default: 1264 return BLKPREP_INVALID; 1265 } 1266 case REQ_OP_WRITE_ZEROES: 1267 return sd_setup_write_zeroes_cmnd(cmd); 1268 case REQ_OP_WRITE_SAME: 1269 return sd_setup_write_same_cmnd(cmd); 1270 case REQ_OP_FLUSH: 1271 return sd_setup_flush_cmnd(cmd); 1272 case REQ_OP_READ: 1273 case REQ_OP_WRITE: 1274 return sd_setup_read_write_cmnd(cmd); 1275 case REQ_OP_ZONE_REPORT: 1276 return sd_zbc_setup_report_cmnd(cmd); 1277 case REQ_OP_ZONE_RESET: 1278 return sd_zbc_setup_reset_cmnd(cmd); 1279 default: 1280 BUG(); 1281 } 1282 } 1283 1284 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1285 { 1286 struct request *rq = SCpnt->request; 1287 u8 *cmnd; 1288 1289 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1290 __free_page(rq->special_vec.bv_page); 1291 1292 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1293 cmnd = SCpnt->cmnd; 1294 SCpnt->cmnd = NULL; 1295 SCpnt->cmd_len = 0; 1296 mempool_free(cmnd, sd_cdb_pool); 1297 } 1298 } 1299 1300 /** 1301 * sd_open - open a scsi disk device 1302 * @bdev: Block device of the scsi disk to open 1303 * @mode: FMODE_* mask 1304 * 1305 * Returns 0 if successful. Returns a negated errno value in case 1306 * of error. 1307 * 1308 * Note: This can be called from a user context (e.g. fsck(1) ) 1309 * or from within the kernel (e.g. as a result of a mount(1) ). 1310 * In the latter case @inode and @filp carry an abridged amount 1311 * of information as noted above. 1312 * 1313 * Locking: called with bdev->bd_mutex held. 1314 **/ 1315 static int sd_open(struct block_device *bdev, fmode_t mode) 1316 { 1317 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1318 struct scsi_device *sdev; 1319 int retval; 1320 1321 if (!sdkp) 1322 return -ENXIO; 1323 1324 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1325 1326 sdev = sdkp->device; 1327 1328 /* 1329 * If the device is in error recovery, wait until it is done. 1330 * If the device is offline, then disallow any access to it. 1331 */ 1332 retval = -ENXIO; 1333 if (!scsi_block_when_processing_errors(sdev)) 1334 goto error_out; 1335 1336 if (sdev->removable || sdkp->write_prot) 1337 check_disk_change(bdev); 1338 1339 /* 1340 * If the drive is empty, just let the open fail. 1341 */ 1342 retval = -ENOMEDIUM; 1343 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1344 goto error_out; 1345 1346 /* 1347 * If the device has the write protect tab set, have the open fail 1348 * if the user expects to be able to write to the thing. 1349 */ 1350 retval = -EROFS; 1351 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1352 goto error_out; 1353 1354 /* 1355 * It is possible that the disk changing stuff resulted in 1356 * the device being taken offline. If this is the case, 1357 * report this to the user, and don't pretend that the 1358 * open actually succeeded. 1359 */ 1360 retval = -ENXIO; 1361 if (!scsi_device_online(sdev)) 1362 goto error_out; 1363 1364 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1365 if (scsi_block_when_processing_errors(sdev)) 1366 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1367 } 1368 1369 return 0; 1370 1371 error_out: 1372 scsi_disk_put(sdkp); 1373 return retval; 1374 } 1375 1376 /** 1377 * sd_release - invoked when the (last) close(2) is called on this 1378 * scsi disk. 1379 * @disk: disk to release 1380 * @mode: FMODE_* mask 1381 * 1382 * Returns 0. 1383 * 1384 * Note: may block (uninterruptible) if error recovery is underway 1385 * on this disk. 1386 * 1387 * Locking: called with bdev->bd_mutex held. 1388 **/ 1389 static void sd_release(struct gendisk *disk, fmode_t mode) 1390 { 1391 struct scsi_disk *sdkp = scsi_disk(disk); 1392 struct scsi_device *sdev = sdkp->device; 1393 1394 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1395 1396 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1397 if (scsi_block_when_processing_errors(sdev)) 1398 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1399 } 1400 1401 /* 1402 * XXX and what if there are packets in flight and this close() 1403 * XXX is followed by a "rmmod sd_mod"? 1404 */ 1405 1406 scsi_disk_put(sdkp); 1407 } 1408 1409 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1410 { 1411 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1412 struct scsi_device *sdp = sdkp->device; 1413 struct Scsi_Host *host = sdp->host; 1414 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1415 int diskinfo[4]; 1416 1417 /* default to most commonly used values */ 1418 diskinfo[0] = 0x40; /* 1 << 6 */ 1419 diskinfo[1] = 0x20; /* 1 << 5 */ 1420 diskinfo[2] = capacity >> 11; 1421 1422 /* override with calculated, extended default, or driver values */ 1423 if (host->hostt->bios_param) 1424 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1425 else 1426 scsicam_bios_param(bdev, capacity, diskinfo); 1427 1428 geo->heads = diskinfo[0]; 1429 geo->sectors = diskinfo[1]; 1430 geo->cylinders = diskinfo[2]; 1431 return 0; 1432 } 1433 1434 /** 1435 * sd_ioctl - process an ioctl 1436 * @bdev: target block device 1437 * @mode: FMODE_* mask 1438 * @cmd: ioctl command number 1439 * @arg: this is third argument given to ioctl(2) system call. 1440 * Often contains a pointer. 1441 * 1442 * Returns 0 if successful (some ioctls return positive numbers on 1443 * success as well). Returns a negated errno value in case of error. 1444 * 1445 * Note: most ioctls are forward onto the block subsystem or further 1446 * down in the scsi subsystem. 1447 **/ 1448 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1449 unsigned int cmd, unsigned long arg) 1450 { 1451 struct gendisk *disk = bdev->bd_disk; 1452 struct scsi_disk *sdkp = scsi_disk(disk); 1453 struct scsi_device *sdp = sdkp->device; 1454 void __user *p = (void __user *)arg; 1455 int error; 1456 1457 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1458 "cmd=0x%x\n", disk->disk_name, cmd)); 1459 1460 error = scsi_verify_blk_ioctl(bdev, cmd); 1461 if (error < 0) 1462 return error; 1463 1464 /* 1465 * If we are in the middle of error recovery, don't let anyone 1466 * else try and use this device. Also, if error recovery fails, it 1467 * may try and take the device offline, in which case all further 1468 * access to the device is prohibited. 1469 */ 1470 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1471 (mode & FMODE_NDELAY) != 0); 1472 if (error) 1473 goto out; 1474 1475 if (is_sed_ioctl(cmd)) 1476 return sed_ioctl(sdkp->opal_dev, cmd, p); 1477 1478 /* 1479 * Send SCSI addressing ioctls directly to mid level, send other 1480 * ioctls to block level and then onto mid level if they can't be 1481 * resolved. 1482 */ 1483 switch (cmd) { 1484 case SCSI_IOCTL_GET_IDLUN: 1485 case SCSI_IOCTL_GET_BUS_NUMBER: 1486 error = scsi_ioctl(sdp, cmd, p); 1487 break; 1488 default: 1489 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1490 if (error != -ENOTTY) 1491 break; 1492 error = scsi_ioctl(sdp, cmd, p); 1493 break; 1494 } 1495 out: 1496 return error; 1497 } 1498 1499 static void set_media_not_present(struct scsi_disk *sdkp) 1500 { 1501 if (sdkp->media_present) 1502 sdkp->device->changed = 1; 1503 1504 if (sdkp->device->removable) { 1505 sdkp->media_present = 0; 1506 sdkp->capacity = 0; 1507 } 1508 } 1509 1510 static int media_not_present(struct scsi_disk *sdkp, 1511 struct scsi_sense_hdr *sshdr) 1512 { 1513 if (!scsi_sense_valid(sshdr)) 1514 return 0; 1515 1516 /* not invoked for commands that could return deferred errors */ 1517 switch (sshdr->sense_key) { 1518 case UNIT_ATTENTION: 1519 case NOT_READY: 1520 /* medium not present */ 1521 if (sshdr->asc == 0x3A) { 1522 set_media_not_present(sdkp); 1523 return 1; 1524 } 1525 } 1526 return 0; 1527 } 1528 1529 /** 1530 * sd_check_events - check media events 1531 * @disk: kernel device descriptor 1532 * @clearing: disk events currently being cleared 1533 * 1534 * Returns mask of DISK_EVENT_*. 1535 * 1536 * Note: this function is invoked from the block subsystem. 1537 **/ 1538 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1539 { 1540 struct scsi_disk *sdkp = scsi_disk_get(disk); 1541 struct scsi_device *sdp; 1542 int retval; 1543 1544 if (!sdkp) 1545 return 0; 1546 1547 sdp = sdkp->device; 1548 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1549 1550 /* 1551 * If the device is offline, don't send any commands - just pretend as 1552 * if the command failed. If the device ever comes back online, we 1553 * can deal with it then. It is only because of unrecoverable errors 1554 * that we would ever take a device offline in the first place. 1555 */ 1556 if (!scsi_device_online(sdp)) { 1557 set_media_not_present(sdkp); 1558 goto out; 1559 } 1560 1561 /* 1562 * Using TEST_UNIT_READY enables differentiation between drive with 1563 * no cartridge loaded - NOT READY, drive with changed cartridge - 1564 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1565 * 1566 * Drives that auto spin down. eg iomega jaz 1G, will be started 1567 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1568 * sd_revalidate() is called. 1569 */ 1570 if (scsi_block_when_processing_errors(sdp)) { 1571 struct scsi_sense_hdr sshdr = { 0, }; 1572 1573 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1574 &sshdr); 1575 1576 /* failed to execute TUR, assume media not present */ 1577 if (host_byte(retval)) { 1578 set_media_not_present(sdkp); 1579 goto out; 1580 } 1581 1582 if (media_not_present(sdkp, &sshdr)) 1583 goto out; 1584 } 1585 1586 /* 1587 * For removable scsi disk we have to recognise the presence 1588 * of a disk in the drive. 1589 */ 1590 if (!sdkp->media_present) 1591 sdp->changed = 1; 1592 sdkp->media_present = 1; 1593 out: 1594 /* 1595 * sdp->changed is set under the following conditions: 1596 * 1597 * Medium present state has changed in either direction. 1598 * Device has indicated UNIT_ATTENTION. 1599 */ 1600 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1601 sdp->changed = 0; 1602 scsi_disk_put(sdkp); 1603 return retval; 1604 } 1605 1606 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1607 { 1608 int retries, res; 1609 struct scsi_device *sdp = sdkp->device; 1610 const int timeout = sdp->request_queue->rq_timeout 1611 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1612 struct scsi_sense_hdr my_sshdr; 1613 1614 if (!scsi_device_online(sdp)) 1615 return -ENODEV; 1616 1617 /* caller might not be interested in sense, but we need it */ 1618 if (!sshdr) 1619 sshdr = &my_sshdr; 1620 1621 for (retries = 3; retries > 0; --retries) { 1622 unsigned char cmd[10] = { 0 }; 1623 1624 cmd[0] = SYNCHRONIZE_CACHE; 1625 /* 1626 * Leave the rest of the command zero to indicate 1627 * flush everything. 1628 */ 1629 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1630 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1631 if (res == 0) 1632 break; 1633 } 1634 1635 if (res) { 1636 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1637 1638 if (driver_byte(res) & DRIVER_SENSE) 1639 sd_print_sense_hdr(sdkp, sshdr); 1640 1641 /* we need to evaluate the error return */ 1642 if (scsi_sense_valid(sshdr) && 1643 (sshdr->asc == 0x3a || /* medium not present */ 1644 sshdr->asc == 0x20)) /* invalid command */ 1645 /* this is no error here */ 1646 return 0; 1647 1648 switch (host_byte(res)) { 1649 /* ignore errors due to racing a disconnection */ 1650 case DID_BAD_TARGET: 1651 case DID_NO_CONNECT: 1652 return 0; 1653 /* signal the upper layer it might try again */ 1654 case DID_BUS_BUSY: 1655 case DID_IMM_RETRY: 1656 case DID_REQUEUE: 1657 case DID_SOFT_ERROR: 1658 return -EBUSY; 1659 default: 1660 return -EIO; 1661 } 1662 } 1663 return 0; 1664 } 1665 1666 static void sd_rescan(struct device *dev) 1667 { 1668 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1669 1670 revalidate_disk(sdkp->disk); 1671 } 1672 1673 1674 #ifdef CONFIG_COMPAT 1675 /* 1676 * This gets directly called from VFS. When the ioctl 1677 * is not recognized we go back to the other translation paths. 1678 */ 1679 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1680 unsigned int cmd, unsigned long arg) 1681 { 1682 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1683 int error; 1684 1685 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1686 (mode & FMODE_NDELAY) != 0); 1687 if (error) 1688 return error; 1689 1690 /* 1691 * Let the static ioctl translation table take care of it. 1692 */ 1693 if (!sdev->host->hostt->compat_ioctl) 1694 return -ENOIOCTLCMD; 1695 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1696 } 1697 #endif 1698 1699 static char sd_pr_type(enum pr_type type) 1700 { 1701 switch (type) { 1702 case PR_WRITE_EXCLUSIVE: 1703 return 0x01; 1704 case PR_EXCLUSIVE_ACCESS: 1705 return 0x03; 1706 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1707 return 0x05; 1708 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1709 return 0x06; 1710 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1711 return 0x07; 1712 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1713 return 0x08; 1714 default: 1715 return 0; 1716 } 1717 }; 1718 1719 static int sd_pr_command(struct block_device *bdev, u8 sa, 1720 u64 key, u64 sa_key, u8 type, u8 flags) 1721 { 1722 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1723 struct scsi_sense_hdr sshdr; 1724 int result; 1725 u8 cmd[16] = { 0, }; 1726 u8 data[24] = { 0, }; 1727 1728 cmd[0] = PERSISTENT_RESERVE_OUT; 1729 cmd[1] = sa; 1730 cmd[2] = type; 1731 put_unaligned_be32(sizeof(data), &cmd[5]); 1732 1733 put_unaligned_be64(key, &data[0]); 1734 put_unaligned_be64(sa_key, &data[8]); 1735 data[20] = flags; 1736 1737 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1738 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1739 1740 if ((driver_byte(result) & DRIVER_SENSE) && 1741 (scsi_sense_valid(&sshdr))) { 1742 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1743 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1744 } 1745 1746 return result; 1747 } 1748 1749 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1750 u32 flags) 1751 { 1752 if (flags & ~PR_FL_IGNORE_KEY) 1753 return -EOPNOTSUPP; 1754 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1755 old_key, new_key, 0, 1756 (1 << 0) /* APTPL */); 1757 } 1758 1759 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1760 u32 flags) 1761 { 1762 if (flags) 1763 return -EOPNOTSUPP; 1764 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1765 } 1766 1767 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1768 { 1769 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1770 } 1771 1772 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1773 enum pr_type type, bool abort) 1774 { 1775 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1776 sd_pr_type(type), 0); 1777 } 1778 1779 static int sd_pr_clear(struct block_device *bdev, u64 key) 1780 { 1781 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1782 } 1783 1784 static const struct pr_ops sd_pr_ops = { 1785 .pr_register = sd_pr_register, 1786 .pr_reserve = sd_pr_reserve, 1787 .pr_release = sd_pr_release, 1788 .pr_preempt = sd_pr_preempt, 1789 .pr_clear = sd_pr_clear, 1790 }; 1791 1792 static const struct block_device_operations sd_fops = { 1793 .owner = THIS_MODULE, 1794 .open = sd_open, 1795 .release = sd_release, 1796 .ioctl = sd_ioctl, 1797 .getgeo = sd_getgeo, 1798 #ifdef CONFIG_COMPAT 1799 .compat_ioctl = sd_compat_ioctl, 1800 #endif 1801 .check_events = sd_check_events, 1802 .revalidate_disk = sd_revalidate_disk, 1803 .unlock_native_capacity = sd_unlock_native_capacity, 1804 .pr_ops = &sd_pr_ops, 1805 }; 1806 1807 /** 1808 * sd_eh_reset - reset error handling callback 1809 * @scmd: sd-issued command that has failed 1810 * 1811 * This function is called by the SCSI midlayer before starting 1812 * SCSI EH. When counting medium access failures we have to be 1813 * careful to register it only only once per device and SCSI EH run; 1814 * there might be several timed out commands which will cause the 1815 * 'max_medium_access_timeouts' counter to trigger after the first 1816 * SCSI EH run already and set the device to offline. 1817 * So this function resets the internal counter before starting SCSI EH. 1818 **/ 1819 static void sd_eh_reset(struct scsi_cmnd *scmd) 1820 { 1821 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1822 1823 /* New SCSI EH run, reset gate variable */ 1824 sdkp->ignore_medium_access_errors = false; 1825 } 1826 1827 /** 1828 * sd_eh_action - error handling callback 1829 * @scmd: sd-issued command that has failed 1830 * @eh_disp: The recovery disposition suggested by the midlayer 1831 * 1832 * This function is called by the SCSI midlayer upon completion of an 1833 * error test command (currently TEST UNIT READY). The result of sending 1834 * the eh command is passed in eh_disp. We're looking for devices that 1835 * fail medium access commands but are OK with non access commands like 1836 * test unit ready (so wrongly see the device as having a successful 1837 * recovery) 1838 **/ 1839 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1840 { 1841 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1842 struct scsi_device *sdev = scmd->device; 1843 1844 if (!scsi_device_online(sdev) || 1845 !scsi_medium_access_command(scmd) || 1846 host_byte(scmd->result) != DID_TIME_OUT || 1847 eh_disp != SUCCESS) 1848 return eh_disp; 1849 1850 /* 1851 * The device has timed out executing a medium access command. 1852 * However, the TEST UNIT READY command sent during error 1853 * handling completed successfully. Either the device is in the 1854 * process of recovering or has it suffered an internal failure 1855 * that prevents access to the storage medium. 1856 */ 1857 if (!sdkp->ignore_medium_access_errors) { 1858 sdkp->medium_access_timed_out++; 1859 sdkp->ignore_medium_access_errors = true; 1860 } 1861 1862 /* 1863 * If the device keeps failing read/write commands but TEST UNIT 1864 * READY always completes successfully we assume that medium 1865 * access is no longer possible and take the device offline. 1866 */ 1867 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1868 scmd_printk(KERN_ERR, scmd, 1869 "Medium access timeout failure. Offlining disk!\n"); 1870 mutex_lock(&sdev->state_mutex); 1871 scsi_device_set_state(sdev, SDEV_OFFLINE); 1872 mutex_unlock(&sdev->state_mutex); 1873 1874 return SUCCESS; 1875 } 1876 1877 return eh_disp; 1878 } 1879 1880 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1881 { 1882 struct request *req = scmd->request; 1883 struct scsi_device *sdev = scmd->device; 1884 unsigned int transferred, good_bytes; 1885 u64 start_lba, end_lba, bad_lba; 1886 1887 /* 1888 * Some commands have a payload smaller than the device logical 1889 * block size (e.g. INQUIRY on a 4K disk). 1890 */ 1891 if (scsi_bufflen(scmd) <= sdev->sector_size) 1892 return 0; 1893 1894 /* Check if we have a 'bad_lba' information */ 1895 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1896 SCSI_SENSE_BUFFERSIZE, 1897 &bad_lba)) 1898 return 0; 1899 1900 /* 1901 * If the bad lba was reported incorrectly, we have no idea where 1902 * the error is. 1903 */ 1904 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1905 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1906 if (bad_lba < start_lba || bad_lba >= end_lba) 1907 return 0; 1908 1909 /* 1910 * resid is optional but mostly filled in. When it's unused, 1911 * its value is zero, so we assume the whole buffer transferred 1912 */ 1913 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1914 1915 /* This computation should always be done in terms of the 1916 * resolution of the device's medium. 1917 */ 1918 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1919 1920 return min(good_bytes, transferred); 1921 } 1922 1923 /** 1924 * sd_done - bottom half handler: called when the lower level 1925 * driver has completed (successfully or otherwise) a scsi command. 1926 * @SCpnt: mid-level's per command structure. 1927 * 1928 * Note: potentially run from within an ISR. Must not block. 1929 **/ 1930 static int sd_done(struct scsi_cmnd *SCpnt) 1931 { 1932 int result = SCpnt->result; 1933 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1934 unsigned int sector_size = SCpnt->device->sector_size; 1935 unsigned int resid; 1936 struct scsi_sense_hdr sshdr; 1937 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1938 struct request *req = SCpnt->request; 1939 int sense_valid = 0; 1940 int sense_deferred = 0; 1941 1942 switch (req_op(req)) { 1943 case REQ_OP_DISCARD: 1944 case REQ_OP_WRITE_ZEROES: 1945 case REQ_OP_WRITE_SAME: 1946 case REQ_OP_ZONE_RESET: 1947 if (!result) { 1948 good_bytes = blk_rq_bytes(req); 1949 scsi_set_resid(SCpnt, 0); 1950 } else { 1951 good_bytes = 0; 1952 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1953 } 1954 break; 1955 case REQ_OP_ZONE_REPORT: 1956 if (!result) { 1957 good_bytes = scsi_bufflen(SCpnt) 1958 - scsi_get_resid(SCpnt); 1959 scsi_set_resid(SCpnt, 0); 1960 } else { 1961 good_bytes = 0; 1962 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1963 } 1964 break; 1965 default: 1966 /* 1967 * In case of bogus fw or device, we could end up having 1968 * an unaligned partial completion. Check this here and force 1969 * alignment. 1970 */ 1971 resid = scsi_get_resid(SCpnt); 1972 if (resid & (sector_size - 1)) { 1973 sd_printk(KERN_INFO, sdkp, 1974 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1975 resid, sector_size); 1976 resid = min(scsi_bufflen(SCpnt), 1977 round_up(resid, sector_size)); 1978 scsi_set_resid(SCpnt, resid); 1979 } 1980 } 1981 1982 if (result) { 1983 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1984 if (sense_valid) 1985 sense_deferred = scsi_sense_is_deferred(&sshdr); 1986 } 1987 sdkp->medium_access_timed_out = 0; 1988 1989 if (driver_byte(result) != DRIVER_SENSE && 1990 (!sense_valid || sense_deferred)) 1991 goto out; 1992 1993 switch (sshdr.sense_key) { 1994 case HARDWARE_ERROR: 1995 case MEDIUM_ERROR: 1996 good_bytes = sd_completed_bytes(SCpnt); 1997 break; 1998 case RECOVERED_ERROR: 1999 good_bytes = scsi_bufflen(SCpnt); 2000 break; 2001 case NO_SENSE: 2002 /* This indicates a false check condition, so ignore it. An 2003 * unknown amount of data was transferred so treat it as an 2004 * error. 2005 */ 2006 SCpnt->result = 0; 2007 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2008 break; 2009 case ABORTED_COMMAND: 2010 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2011 good_bytes = sd_completed_bytes(SCpnt); 2012 break; 2013 case ILLEGAL_REQUEST: 2014 switch (sshdr.asc) { 2015 case 0x10: /* DIX: Host detected corruption */ 2016 good_bytes = sd_completed_bytes(SCpnt); 2017 break; 2018 case 0x20: /* INVALID COMMAND OPCODE */ 2019 case 0x24: /* INVALID FIELD IN CDB */ 2020 switch (SCpnt->cmnd[0]) { 2021 case UNMAP: 2022 sd_config_discard(sdkp, SD_LBP_DISABLE); 2023 break; 2024 case WRITE_SAME_16: 2025 case WRITE_SAME: 2026 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2027 sd_config_discard(sdkp, SD_LBP_DISABLE); 2028 } else { 2029 sdkp->device->no_write_same = 1; 2030 sd_config_write_same(sdkp); 2031 req->__data_len = blk_rq_bytes(req); 2032 req->rq_flags |= RQF_QUIET; 2033 } 2034 break; 2035 } 2036 } 2037 break; 2038 default: 2039 break; 2040 } 2041 2042 out: 2043 if (sd_is_zoned(sdkp)) 2044 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2045 2046 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2047 "sd_done: completed %d of %d bytes\n", 2048 good_bytes, scsi_bufflen(SCpnt))); 2049 2050 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 2051 sd_dif_complete(SCpnt, good_bytes); 2052 2053 return good_bytes; 2054 } 2055 2056 /* 2057 * spinup disk - called only in sd_revalidate_disk() 2058 */ 2059 static void 2060 sd_spinup_disk(struct scsi_disk *sdkp) 2061 { 2062 unsigned char cmd[10]; 2063 unsigned long spintime_expire = 0; 2064 int retries, spintime; 2065 unsigned int the_result; 2066 struct scsi_sense_hdr sshdr; 2067 int sense_valid = 0; 2068 2069 spintime = 0; 2070 2071 /* Spin up drives, as required. Only do this at boot time */ 2072 /* Spinup needs to be done for module loads too. */ 2073 do { 2074 retries = 0; 2075 2076 do { 2077 cmd[0] = TEST_UNIT_READY; 2078 memset((void *) &cmd[1], 0, 9); 2079 2080 the_result = scsi_execute_req(sdkp->device, cmd, 2081 DMA_NONE, NULL, 0, 2082 &sshdr, SD_TIMEOUT, 2083 SD_MAX_RETRIES, NULL); 2084 2085 /* 2086 * If the drive has indicated to us that it 2087 * doesn't have any media in it, don't bother 2088 * with any more polling. 2089 */ 2090 if (media_not_present(sdkp, &sshdr)) 2091 return; 2092 2093 if (the_result) 2094 sense_valid = scsi_sense_valid(&sshdr); 2095 retries++; 2096 } while (retries < 3 && 2097 (!scsi_status_is_good(the_result) || 2098 ((driver_byte(the_result) & DRIVER_SENSE) && 2099 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2100 2101 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 2102 /* no sense, TUR either succeeded or failed 2103 * with a status error */ 2104 if(!spintime && !scsi_status_is_good(the_result)) { 2105 sd_print_result(sdkp, "Test Unit Ready failed", 2106 the_result); 2107 } 2108 break; 2109 } 2110 2111 /* 2112 * The device does not want the automatic start to be issued. 2113 */ 2114 if (sdkp->device->no_start_on_add) 2115 break; 2116 2117 if (sense_valid && sshdr.sense_key == NOT_READY) { 2118 if (sshdr.asc == 4 && sshdr.ascq == 3) 2119 break; /* manual intervention required */ 2120 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2121 break; /* standby */ 2122 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2123 break; /* unavailable */ 2124 /* 2125 * Issue command to spin up drive when not ready 2126 */ 2127 if (!spintime) { 2128 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2129 cmd[0] = START_STOP; 2130 cmd[1] = 1; /* Return immediately */ 2131 memset((void *) &cmd[2], 0, 8); 2132 cmd[4] = 1; /* Start spin cycle */ 2133 if (sdkp->device->start_stop_pwr_cond) 2134 cmd[4] |= 1 << 4; 2135 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2136 NULL, 0, &sshdr, 2137 SD_TIMEOUT, SD_MAX_RETRIES, 2138 NULL); 2139 spintime_expire = jiffies + 100 * HZ; 2140 spintime = 1; 2141 } 2142 /* Wait 1 second for next try */ 2143 msleep(1000); 2144 printk(KERN_CONT "."); 2145 2146 /* 2147 * Wait for USB flash devices with slow firmware. 2148 * Yes, this sense key/ASC combination shouldn't 2149 * occur here. It's characteristic of these devices. 2150 */ 2151 } else if (sense_valid && 2152 sshdr.sense_key == UNIT_ATTENTION && 2153 sshdr.asc == 0x28) { 2154 if (!spintime) { 2155 spintime_expire = jiffies + 5 * HZ; 2156 spintime = 1; 2157 } 2158 /* Wait 1 second for next try */ 2159 msleep(1000); 2160 } else { 2161 /* we don't understand the sense code, so it's 2162 * probably pointless to loop */ 2163 if(!spintime) { 2164 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2165 sd_print_sense_hdr(sdkp, &sshdr); 2166 } 2167 break; 2168 } 2169 2170 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2171 2172 if (spintime) { 2173 if (scsi_status_is_good(the_result)) 2174 printk(KERN_CONT "ready\n"); 2175 else 2176 printk(KERN_CONT "not responding...\n"); 2177 } 2178 } 2179 2180 /* 2181 * Determine whether disk supports Data Integrity Field. 2182 */ 2183 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2184 { 2185 struct scsi_device *sdp = sdkp->device; 2186 u8 type; 2187 int ret = 0; 2188 2189 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2190 return ret; 2191 2192 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2193 2194 if (type > T10_PI_TYPE3_PROTECTION) 2195 ret = -ENODEV; 2196 else if (scsi_host_dif_capable(sdp->host, type)) 2197 ret = 1; 2198 2199 if (sdkp->first_scan || type != sdkp->protection_type) 2200 switch (ret) { 2201 case -ENODEV: 2202 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2203 " protection type %u. Disabling disk!\n", 2204 type); 2205 break; 2206 case 1: 2207 sd_printk(KERN_NOTICE, sdkp, 2208 "Enabling DIF Type %u protection\n", type); 2209 break; 2210 case 0: 2211 sd_printk(KERN_NOTICE, sdkp, 2212 "Disabling DIF Type %u protection\n", type); 2213 break; 2214 } 2215 2216 sdkp->protection_type = type; 2217 2218 return ret; 2219 } 2220 2221 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2222 struct scsi_sense_hdr *sshdr, int sense_valid, 2223 int the_result) 2224 { 2225 if (driver_byte(the_result) & DRIVER_SENSE) 2226 sd_print_sense_hdr(sdkp, sshdr); 2227 else 2228 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2229 2230 /* 2231 * Set dirty bit for removable devices if not ready - 2232 * sometimes drives will not report this properly. 2233 */ 2234 if (sdp->removable && 2235 sense_valid && sshdr->sense_key == NOT_READY) 2236 set_media_not_present(sdkp); 2237 2238 /* 2239 * We used to set media_present to 0 here to indicate no media 2240 * in the drive, but some drives fail read capacity even with 2241 * media present, so we can't do that. 2242 */ 2243 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2244 } 2245 2246 #define RC16_LEN 32 2247 #if RC16_LEN > SD_BUF_SIZE 2248 #error RC16_LEN must not be more than SD_BUF_SIZE 2249 #endif 2250 2251 #define READ_CAPACITY_RETRIES_ON_RESET 10 2252 2253 /* 2254 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set 2255 * and the reported logical block size is bigger than 512 bytes. Note 2256 * that last_sector is a u64 and therefore logical_to_sectors() is not 2257 * applicable. 2258 */ 2259 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size) 2260 { 2261 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9); 2262 2263 if (sizeof(sector_t) == 4 && last_sector > U32_MAX) 2264 return false; 2265 2266 return true; 2267 } 2268 2269 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2270 unsigned char *buffer) 2271 { 2272 unsigned char cmd[16]; 2273 struct scsi_sense_hdr sshdr; 2274 int sense_valid = 0; 2275 int the_result; 2276 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2277 unsigned int alignment; 2278 unsigned long long lba; 2279 unsigned sector_size; 2280 2281 if (sdp->no_read_capacity_16) 2282 return -EINVAL; 2283 2284 do { 2285 memset(cmd, 0, 16); 2286 cmd[0] = SERVICE_ACTION_IN_16; 2287 cmd[1] = SAI_READ_CAPACITY_16; 2288 cmd[13] = RC16_LEN; 2289 memset(buffer, 0, RC16_LEN); 2290 2291 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2292 buffer, RC16_LEN, &sshdr, 2293 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2294 2295 if (media_not_present(sdkp, &sshdr)) 2296 return -ENODEV; 2297 2298 if (the_result) { 2299 sense_valid = scsi_sense_valid(&sshdr); 2300 if (sense_valid && 2301 sshdr.sense_key == ILLEGAL_REQUEST && 2302 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2303 sshdr.ascq == 0x00) 2304 /* Invalid Command Operation Code or 2305 * Invalid Field in CDB, just retry 2306 * silently with RC10 */ 2307 return -EINVAL; 2308 if (sense_valid && 2309 sshdr.sense_key == UNIT_ATTENTION && 2310 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2311 /* Device reset might occur several times, 2312 * give it one more chance */ 2313 if (--reset_retries > 0) 2314 continue; 2315 } 2316 retries--; 2317 2318 } while (the_result && retries); 2319 2320 if (the_result) { 2321 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2322 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2323 return -EINVAL; 2324 } 2325 2326 sector_size = get_unaligned_be32(&buffer[8]); 2327 lba = get_unaligned_be64(&buffer[0]); 2328 2329 if (sd_read_protection_type(sdkp, buffer) < 0) { 2330 sdkp->capacity = 0; 2331 return -ENODEV; 2332 } 2333 2334 if (!sd_addressable_capacity(lba, sector_size)) { 2335 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2336 "kernel compiled with support for large block " 2337 "devices.\n"); 2338 sdkp->capacity = 0; 2339 return -EOVERFLOW; 2340 } 2341 2342 /* Logical blocks per physical block exponent */ 2343 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2344 2345 /* RC basis */ 2346 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2347 2348 /* Lowest aligned logical block */ 2349 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2350 blk_queue_alignment_offset(sdp->request_queue, alignment); 2351 if (alignment && sdkp->first_scan) 2352 sd_printk(KERN_NOTICE, sdkp, 2353 "physical block alignment offset: %u\n", alignment); 2354 2355 if (buffer[14] & 0x80) { /* LBPME */ 2356 sdkp->lbpme = 1; 2357 2358 if (buffer[14] & 0x40) /* LBPRZ */ 2359 sdkp->lbprz = 1; 2360 2361 sd_config_discard(sdkp, SD_LBP_WS16); 2362 } 2363 2364 sdkp->capacity = lba + 1; 2365 return sector_size; 2366 } 2367 2368 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2369 unsigned char *buffer) 2370 { 2371 unsigned char cmd[16]; 2372 struct scsi_sense_hdr sshdr; 2373 int sense_valid = 0; 2374 int the_result; 2375 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2376 sector_t lba; 2377 unsigned sector_size; 2378 2379 do { 2380 cmd[0] = READ_CAPACITY; 2381 memset(&cmd[1], 0, 9); 2382 memset(buffer, 0, 8); 2383 2384 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2385 buffer, 8, &sshdr, 2386 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2387 2388 if (media_not_present(sdkp, &sshdr)) 2389 return -ENODEV; 2390 2391 if (the_result) { 2392 sense_valid = scsi_sense_valid(&sshdr); 2393 if (sense_valid && 2394 sshdr.sense_key == UNIT_ATTENTION && 2395 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2396 /* Device reset might occur several times, 2397 * give it one more chance */ 2398 if (--reset_retries > 0) 2399 continue; 2400 } 2401 retries--; 2402 2403 } while (the_result && retries); 2404 2405 if (the_result) { 2406 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2407 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2408 return -EINVAL; 2409 } 2410 2411 sector_size = get_unaligned_be32(&buffer[4]); 2412 lba = get_unaligned_be32(&buffer[0]); 2413 2414 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2415 /* Some buggy (usb cardreader) devices return an lba of 2416 0xffffffff when the want to report a size of 0 (with 2417 which they really mean no media is present) */ 2418 sdkp->capacity = 0; 2419 sdkp->physical_block_size = sector_size; 2420 return sector_size; 2421 } 2422 2423 if (!sd_addressable_capacity(lba, sector_size)) { 2424 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2425 "kernel compiled with support for large block " 2426 "devices.\n"); 2427 sdkp->capacity = 0; 2428 return -EOVERFLOW; 2429 } 2430 2431 sdkp->capacity = lba + 1; 2432 sdkp->physical_block_size = sector_size; 2433 return sector_size; 2434 } 2435 2436 static int sd_try_rc16_first(struct scsi_device *sdp) 2437 { 2438 if (sdp->host->max_cmd_len < 16) 2439 return 0; 2440 if (sdp->try_rc_10_first) 2441 return 0; 2442 if (sdp->scsi_level > SCSI_SPC_2) 2443 return 1; 2444 if (scsi_device_protection(sdp)) 2445 return 1; 2446 return 0; 2447 } 2448 2449 /* 2450 * read disk capacity 2451 */ 2452 static void 2453 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2454 { 2455 int sector_size; 2456 struct scsi_device *sdp = sdkp->device; 2457 2458 if (sd_try_rc16_first(sdp)) { 2459 sector_size = read_capacity_16(sdkp, sdp, buffer); 2460 if (sector_size == -EOVERFLOW) 2461 goto got_data; 2462 if (sector_size == -ENODEV) 2463 return; 2464 if (sector_size < 0) 2465 sector_size = read_capacity_10(sdkp, sdp, buffer); 2466 if (sector_size < 0) 2467 return; 2468 } else { 2469 sector_size = read_capacity_10(sdkp, sdp, buffer); 2470 if (sector_size == -EOVERFLOW) 2471 goto got_data; 2472 if (sector_size < 0) 2473 return; 2474 if ((sizeof(sdkp->capacity) > 4) && 2475 (sdkp->capacity > 0xffffffffULL)) { 2476 int old_sector_size = sector_size; 2477 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2478 "Trying to use READ CAPACITY(16).\n"); 2479 sector_size = read_capacity_16(sdkp, sdp, buffer); 2480 if (sector_size < 0) { 2481 sd_printk(KERN_NOTICE, sdkp, 2482 "Using 0xffffffff as device size\n"); 2483 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2484 sector_size = old_sector_size; 2485 goto got_data; 2486 } 2487 } 2488 } 2489 2490 /* Some devices are known to return the total number of blocks, 2491 * not the highest block number. Some devices have versions 2492 * which do this and others which do not. Some devices we might 2493 * suspect of doing this but we don't know for certain. 2494 * 2495 * If we know the reported capacity is wrong, decrement it. If 2496 * we can only guess, then assume the number of blocks is even 2497 * (usually true but not always) and err on the side of lowering 2498 * the capacity. 2499 */ 2500 if (sdp->fix_capacity || 2501 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2502 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2503 "from its reported value: %llu\n", 2504 (unsigned long long) sdkp->capacity); 2505 --sdkp->capacity; 2506 } 2507 2508 got_data: 2509 if (sector_size == 0) { 2510 sector_size = 512; 2511 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2512 "assuming 512.\n"); 2513 } 2514 2515 if (sector_size != 512 && 2516 sector_size != 1024 && 2517 sector_size != 2048 && 2518 sector_size != 4096) { 2519 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2520 sector_size); 2521 /* 2522 * The user might want to re-format the drive with 2523 * a supported sectorsize. Once this happens, it 2524 * would be relatively trivial to set the thing up. 2525 * For this reason, we leave the thing in the table. 2526 */ 2527 sdkp->capacity = 0; 2528 /* 2529 * set a bogus sector size so the normal read/write 2530 * logic in the block layer will eventually refuse any 2531 * request on this device without tripping over power 2532 * of two sector size assumptions 2533 */ 2534 sector_size = 512; 2535 } 2536 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2537 blk_queue_physical_block_size(sdp->request_queue, 2538 sdkp->physical_block_size); 2539 sdkp->device->sector_size = sector_size; 2540 2541 if (sdkp->capacity > 0xffffffff) 2542 sdp->use_16_for_rw = 1; 2543 2544 } 2545 2546 /* 2547 * Print disk capacity 2548 */ 2549 static void 2550 sd_print_capacity(struct scsi_disk *sdkp, 2551 sector_t old_capacity) 2552 { 2553 int sector_size = sdkp->device->sector_size; 2554 char cap_str_2[10], cap_str_10[10]; 2555 2556 string_get_size(sdkp->capacity, sector_size, 2557 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2558 string_get_size(sdkp->capacity, sector_size, 2559 STRING_UNITS_10, cap_str_10, 2560 sizeof(cap_str_10)); 2561 2562 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2563 sd_printk(KERN_NOTICE, sdkp, 2564 "%llu %d-byte logical blocks: (%s/%s)\n", 2565 (unsigned long long)sdkp->capacity, 2566 sector_size, cap_str_10, cap_str_2); 2567 2568 if (sdkp->physical_block_size != sector_size) 2569 sd_printk(KERN_NOTICE, sdkp, 2570 "%u-byte physical blocks\n", 2571 sdkp->physical_block_size); 2572 2573 sd_zbc_print_zones(sdkp); 2574 } 2575 } 2576 2577 /* called with buffer of length 512 */ 2578 static inline int 2579 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2580 unsigned char *buffer, int len, struct scsi_mode_data *data, 2581 struct scsi_sense_hdr *sshdr) 2582 { 2583 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2584 SD_TIMEOUT, SD_MAX_RETRIES, data, 2585 sshdr); 2586 } 2587 2588 /* 2589 * read write protect setting, if possible - called only in sd_revalidate_disk() 2590 * called with buffer of length SD_BUF_SIZE 2591 */ 2592 static void 2593 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2594 { 2595 int res; 2596 struct scsi_device *sdp = sdkp->device; 2597 struct scsi_mode_data data; 2598 int old_wp = sdkp->write_prot; 2599 2600 set_disk_ro(sdkp->disk, 0); 2601 if (sdp->skip_ms_page_3f) { 2602 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2603 return; 2604 } 2605 2606 if (sdp->use_192_bytes_for_3f) { 2607 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2608 } else { 2609 /* 2610 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2611 * We have to start carefully: some devices hang if we ask 2612 * for more than is available. 2613 */ 2614 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2615 2616 /* 2617 * Second attempt: ask for page 0 When only page 0 is 2618 * implemented, a request for page 3F may return Sense Key 2619 * 5: Illegal Request, Sense Code 24: Invalid field in 2620 * CDB. 2621 */ 2622 if (!scsi_status_is_good(res)) 2623 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2624 2625 /* 2626 * Third attempt: ask 255 bytes, as we did earlier. 2627 */ 2628 if (!scsi_status_is_good(res)) 2629 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2630 &data, NULL); 2631 } 2632 2633 if (!scsi_status_is_good(res)) { 2634 sd_first_printk(KERN_WARNING, sdkp, 2635 "Test WP failed, assume Write Enabled\n"); 2636 } else { 2637 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2638 set_disk_ro(sdkp->disk, sdkp->write_prot); 2639 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2640 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2641 sdkp->write_prot ? "on" : "off"); 2642 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2643 } 2644 } 2645 } 2646 2647 /* 2648 * sd_read_cache_type - called only from sd_revalidate_disk() 2649 * called with buffer of length SD_BUF_SIZE 2650 */ 2651 static void 2652 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2653 { 2654 int len = 0, res; 2655 struct scsi_device *sdp = sdkp->device; 2656 2657 int dbd; 2658 int modepage; 2659 int first_len; 2660 struct scsi_mode_data data; 2661 struct scsi_sense_hdr sshdr; 2662 int old_wce = sdkp->WCE; 2663 int old_rcd = sdkp->RCD; 2664 int old_dpofua = sdkp->DPOFUA; 2665 2666 2667 if (sdkp->cache_override) 2668 return; 2669 2670 first_len = 4; 2671 if (sdp->skip_ms_page_8) { 2672 if (sdp->type == TYPE_RBC) 2673 goto defaults; 2674 else { 2675 if (sdp->skip_ms_page_3f) 2676 goto defaults; 2677 modepage = 0x3F; 2678 if (sdp->use_192_bytes_for_3f) 2679 first_len = 192; 2680 dbd = 0; 2681 } 2682 } else if (sdp->type == TYPE_RBC) { 2683 modepage = 6; 2684 dbd = 8; 2685 } else { 2686 modepage = 8; 2687 dbd = 0; 2688 } 2689 2690 /* cautiously ask */ 2691 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2692 &data, &sshdr); 2693 2694 if (!scsi_status_is_good(res)) 2695 goto bad_sense; 2696 2697 if (!data.header_length) { 2698 modepage = 6; 2699 first_len = 0; 2700 sd_first_printk(KERN_ERR, sdkp, 2701 "Missing header in MODE_SENSE response\n"); 2702 } 2703 2704 /* that went OK, now ask for the proper length */ 2705 len = data.length; 2706 2707 /* 2708 * We're only interested in the first three bytes, actually. 2709 * But the data cache page is defined for the first 20. 2710 */ 2711 if (len < 3) 2712 goto bad_sense; 2713 else if (len > SD_BUF_SIZE) { 2714 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2715 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2716 len = SD_BUF_SIZE; 2717 } 2718 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2719 len = 192; 2720 2721 /* Get the data */ 2722 if (len > first_len) 2723 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2724 &data, &sshdr); 2725 2726 if (scsi_status_is_good(res)) { 2727 int offset = data.header_length + data.block_descriptor_length; 2728 2729 while (offset < len) { 2730 u8 page_code = buffer[offset] & 0x3F; 2731 u8 spf = buffer[offset] & 0x40; 2732 2733 if (page_code == 8 || page_code == 6) { 2734 /* We're interested only in the first 3 bytes. 2735 */ 2736 if (len - offset <= 2) { 2737 sd_first_printk(KERN_ERR, sdkp, 2738 "Incomplete mode parameter " 2739 "data\n"); 2740 goto defaults; 2741 } else { 2742 modepage = page_code; 2743 goto Page_found; 2744 } 2745 } else { 2746 /* Go to the next page */ 2747 if (spf && len - offset > 3) 2748 offset += 4 + (buffer[offset+2] << 8) + 2749 buffer[offset+3]; 2750 else if (!spf && len - offset > 1) 2751 offset += 2 + buffer[offset+1]; 2752 else { 2753 sd_first_printk(KERN_ERR, sdkp, 2754 "Incomplete mode " 2755 "parameter data\n"); 2756 goto defaults; 2757 } 2758 } 2759 } 2760 2761 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2762 goto defaults; 2763 2764 Page_found: 2765 if (modepage == 8) { 2766 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2767 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2768 } else { 2769 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2770 sdkp->RCD = 0; 2771 } 2772 2773 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2774 if (sdp->broken_fua) { 2775 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2776 sdkp->DPOFUA = 0; 2777 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2778 !sdkp->device->use_16_for_rw) { 2779 sd_first_printk(KERN_NOTICE, sdkp, 2780 "Uses READ/WRITE(6), disabling FUA\n"); 2781 sdkp->DPOFUA = 0; 2782 } 2783 2784 /* No cache flush allowed for write protected devices */ 2785 if (sdkp->WCE && sdkp->write_prot) 2786 sdkp->WCE = 0; 2787 2788 if (sdkp->first_scan || old_wce != sdkp->WCE || 2789 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2790 sd_printk(KERN_NOTICE, sdkp, 2791 "Write cache: %s, read cache: %s, %s\n", 2792 sdkp->WCE ? "enabled" : "disabled", 2793 sdkp->RCD ? "disabled" : "enabled", 2794 sdkp->DPOFUA ? "supports DPO and FUA" 2795 : "doesn't support DPO or FUA"); 2796 2797 return; 2798 } 2799 2800 bad_sense: 2801 if (scsi_sense_valid(&sshdr) && 2802 sshdr.sense_key == ILLEGAL_REQUEST && 2803 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2804 /* Invalid field in CDB */ 2805 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2806 else 2807 sd_first_printk(KERN_ERR, sdkp, 2808 "Asking for cache data failed\n"); 2809 2810 defaults: 2811 if (sdp->wce_default_on) { 2812 sd_first_printk(KERN_NOTICE, sdkp, 2813 "Assuming drive cache: write back\n"); 2814 sdkp->WCE = 1; 2815 } else { 2816 sd_first_printk(KERN_ERR, sdkp, 2817 "Assuming drive cache: write through\n"); 2818 sdkp->WCE = 0; 2819 } 2820 sdkp->RCD = 0; 2821 sdkp->DPOFUA = 0; 2822 } 2823 2824 /* 2825 * The ATO bit indicates whether the DIF application tag is available 2826 * for use by the operating system. 2827 */ 2828 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2829 { 2830 int res, offset; 2831 struct scsi_device *sdp = sdkp->device; 2832 struct scsi_mode_data data; 2833 struct scsi_sense_hdr sshdr; 2834 2835 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2836 return; 2837 2838 if (sdkp->protection_type == 0) 2839 return; 2840 2841 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2842 SD_MAX_RETRIES, &data, &sshdr); 2843 2844 if (!scsi_status_is_good(res) || !data.header_length || 2845 data.length < 6) { 2846 sd_first_printk(KERN_WARNING, sdkp, 2847 "getting Control mode page failed, assume no ATO\n"); 2848 2849 if (scsi_sense_valid(&sshdr)) 2850 sd_print_sense_hdr(sdkp, &sshdr); 2851 2852 return; 2853 } 2854 2855 offset = data.header_length + data.block_descriptor_length; 2856 2857 if ((buffer[offset] & 0x3f) != 0x0a) { 2858 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2859 return; 2860 } 2861 2862 if ((buffer[offset + 5] & 0x80) == 0) 2863 return; 2864 2865 sdkp->ATO = 1; 2866 2867 return; 2868 } 2869 2870 /** 2871 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2872 * @sdkp: disk to query 2873 */ 2874 static void sd_read_block_limits(struct scsi_disk *sdkp) 2875 { 2876 unsigned int sector_sz = sdkp->device->sector_size; 2877 const int vpd_len = 64; 2878 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2879 2880 if (!buffer || 2881 /* Block Limits VPD */ 2882 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2883 goto out; 2884 2885 blk_queue_io_min(sdkp->disk->queue, 2886 get_unaligned_be16(&buffer[6]) * sector_sz); 2887 2888 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2889 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2890 2891 if (buffer[3] == 0x3c) { 2892 unsigned int lba_count, desc_count; 2893 2894 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2895 2896 if (!sdkp->lbpme) 2897 goto out; 2898 2899 lba_count = get_unaligned_be32(&buffer[20]); 2900 desc_count = get_unaligned_be32(&buffer[24]); 2901 2902 if (lba_count && desc_count) 2903 sdkp->max_unmap_blocks = lba_count; 2904 2905 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2906 2907 if (buffer[32] & 0x80) 2908 sdkp->unmap_alignment = 2909 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2910 2911 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2912 2913 if (sdkp->max_unmap_blocks) 2914 sd_config_discard(sdkp, SD_LBP_UNMAP); 2915 else 2916 sd_config_discard(sdkp, SD_LBP_WS16); 2917 2918 } else { /* LBP VPD page tells us what to use */ 2919 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2920 sd_config_discard(sdkp, SD_LBP_UNMAP); 2921 else if (sdkp->lbpws) 2922 sd_config_discard(sdkp, SD_LBP_WS16); 2923 else if (sdkp->lbpws10) 2924 sd_config_discard(sdkp, SD_LBP_WS10); 2925 else 2926 sd_config_discard(sdkp, SD_LBP_DISABLE); 2927 } 2928 } 2929 2930 out: 2931 kfree(buffer); 2932 } 2933 2934 /** 2935 * sd_read_block_characteristics - Query block dev. characteristics 2936 * @sdkp: disk to query 2937 */ 2938 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2939 { 2940 struct request_queue *q = sdkp->disk->queue; 2941 unsigned char *buffer; 2942 u16 rot; 2943 const int vpd_len = 64; 2944 2945 buffer = kmalloc(vpd_len, GFP_KERNEL); 2946 2947 if (!buffer || 2948 /* Block Device Characteristics VPD */ 2949 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2950 goto out; 2951 2952 rot = get_unaligned_be16(&buffer[4]); 2953 2954 if (rot == 1) { 2955 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 2956 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 2957 } 2958 2959 if (sdkp->device->type == TYPE_ZBC) { 2960 /* Host-managed */ 2961 q->limits.zoned = BLK_ZONED_HM; 2962 } else { 2963 sdkp->zoned = (buffer[8] >> 4) & 3; 2964 if (sdkp->zoned == 1) 2965 /* Host-aware */ 2966 q->limits.zoned = BLK_ZONED_HA; 2967 else 2968 /* 2969 * Treat drive-managed devices as 2970 * regular block devices. 2971 */ 2972 q->limits.zoned = BLK_ZONED_NONE; 2973 } 2974 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2975 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2976 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2977 2978 out: 2979 kfree(buffer); 2980 } 2981 2982 /** 2983 * sd_read_block_provisioning - Query provisioning VPD page 2984 * @sdkp: disk to query 2985 */ 2986 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2987 { 2988 unsigned char *buffer; 2989 const int vpd_len = 8; 2990 2991 if (sdkp->lbpme == 0) 2992 return; 2993 2994 buffer = kmalloc(vpd_len, GFP_KERNEL); 2995 2996 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2997 goto out; 2998 2999 sdkp->lbpvpd = 1; 3000 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3001 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3002 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3003 3004 out: 3005 kfree(buffer); 3006 } 3007 3008 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3009 { 3010 struct scsi_device *sdev = sdkp->device; 3011 3012 if (sdev->host->no_write_same) { 3013 sdev->no_write_same = 1; 3014 3015 return; 3016 } 3017 3018 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3019 /* too large values might cause issues with arcmsr */ 3020 int vpd_buf_len = 64; 3021 3022 sdev->no_report_opcodes = 1; 3023 3024 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3025 * CODES is unsupported and the device has an ATA 3026 * Information VPD page (SAT). 3027 */ 3028 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3029 sdev->no_write_same = 1; 3030 } 3031 3032 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3033 sdkp->ws16 = 1; 3034 3035 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3036 sdkp->ws10 = 1; 3037 } 3038 3039 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3040 { 3041 struct scsi_device *sdev = sdkp->device; 3042 3043 if (!sdev->security_supported) 3044 return; 3045 3046 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3047 SECURITY_PROTOCOL_IN) == 1 && 3048 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3049 SECURITY_PROTOCOL_OUT) == 1) 3050 sdkp->security = 1; 3051 } 3052 3053 /** 3054 * sd_revalidate_disk - called the first time a new disk is seen, 3055 * performs disk spin up, read_capacity, etc. 3056 * @disk: struct gendisk we care about 3057 **/ 3058 static int sd_revalidate_disk(struct gendisk *disk) 3059 { 3060 struct scsi_disk *sdkp = scsi_disk(disk); 3061 struct scsi_device *sdp = sdkp->device; 3062 struct request_queue *q = sdkp->disk->queue; 3063 sector_t old_capacity = sdkp->capacity; 3064 unsigned char *buffer; 3065 unsigned int dev_max, rw_max; 3066 3067 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3068 "sd_revalidate_disk\n")); 3069 3070 /* 3071 * If the device is offline, don't try and read capacity or any 3072 * of the other niceties. 3073 */ 3074 if (!scsi_device_online(sdp)) 3075 goto out; 3076 3077 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3078 if (!buffer) { 3079 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3080 "allocation failure.\n"); 3081 goto out; 3082 } 3083 3084 sd_spinup_disk(sdkp); 3085 3086 /* 3087 * Without media there is no reason to ask; moreover, some devices 3088 * react badly if we do. 3089 */ 3090 if (sdkp->media_present) { 3091 sd_read_capacity(sdkp, buffer); 3092 3093 if (scsi_device_supports_vpd(sdp)) { 3094 sd_read_block_provisioning(sdkp); 3095 sd_read_block_limits(sdkp); 3096 sd_read_block_characteristics(sdkp); 3097 sd_zbc_read_zones(sdkp, buffer); 3098 } 3099 3100 sd_print_capacity(sdkp, old_capacity); 3101 3102 sd_read_write_protect_flag(sdkp, buffer); 3103 sd_read_cache_type(sdkp, buffer); 3104 sd_read_app_tag_own(sdkp, buffer); 3105 sd_read_write_same(sdkp, buffer); 3106 sd_read_security(sdkp, buffer); 3107 } 3108 3109 /* 3110 * We now have all cache related info, determine how we deal 3111 * with flush requests. 3112 */ 3113 sd_set_flush_flag(sdkp); 3114 3115 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3116 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3117 3118 /* Some devices report a maximum block count for READ/WRITE requests. */ 3119 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3120 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3121 3122 /* 3123 * Determine the device's preferred I/O size for reads and writes 3124 * unless the reported value is unreasonably small, large, or 3125 * garbage. 3126 */ 3127 if (sdkp->opt_xfer_blocks && 3128 sdkp->opt_xfer_blocks <= dev_max && 3129 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 3130 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 3131 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3132 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3133 } else 3134 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3135 (sector_t)BLK_DEF_MAX_SECTORS); 3136 3137 /* Do not exceed controller limit */ 3138 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3139 3140 /* 3141 * Only update max_sectors if previously unset or if the current value 3142 * exceeds the capabilities of the hardware. 3143 */ 3144 if (sdkp->first_scan || 3145 q->limits.max_sectors > q->limits.max_dev_sectors || 3146 q->limits.max_sectors > q->limits.max_hw_sectors) 3147 q->limits.max_sectors = rw_max; 3148 3149 sdkp->first_scan = 0; 3150 3151 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3152 sd_config_write_same(sdkp); 3153 kfree(buffer); 3154 3155 out: 3156 return 0; 3157 } 3158 3159 /** 3160 * sd_unlock_native_capacity - unlock native capacity 3161 * @disk: struct gendisk to set capacity for 3162 * 3163 * Block layer calls this function if it detects that partitions 3164 * on @disk reach beyond the end of the device. If the SCSI host 3165 * implements ->unlock_native_capacity() method, it's invoked to 3166 * give it a chance to adjust the device capacity. 3167 * 3168 * CONTEXT: 3169 * Defined by block layer. Might sleep. 3170 */ 3171 static void sd_unlock_native_capacity(struct gendisk *disk) 3172 { 3173 struct scsi_device *sdev = scsi_disk(disk)->device; 3174 3175 if (sdev->host->hostt->unlock_native_capacity) 3176 sdev->host->hostt->unlock_native_capacity(sdev); 3177 } 3178 3179 /** 3180 * sd_format_disk_name - format disk name 3181 * @prefix: name prefix - ie. "sd" for SCSI disks 3182 * @index: index of the disk to format name for 3183 * @buf: output buffer 3184 * @buflen: length of the output buffer 3185 * 3186 * SCSI disk names starts at sda. The 26th device is sdz and the 3187 * 27th is sdaa. The last one for two lettered suffix is sdzz 3188 * which is followed by sdaaa. 3189 * 3190 * This is basically 26 base counting with one extra 'nil' entry 3191 * at the beginning from the second digit on and can be 3192 * determined using similar method as 26 base conversion with the 3193 * index shifted -1 after each digit is computed. 3194 * 3195 * CONTEXT: 3196 * Don't care. 3197 * 3198 * RETURNS: 3199 * 0 on success, -errno on failure. 3200 */ 3201 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3202 { 3203 const int base = 'z' - 'a' + 1; 3204 char *begin = buf + strlen(prefix); 3205 char *end = buf + buflen; 3206 char *p; 3207 int unit; 3208 3209 p = end - 1; 3210 *p = '\0'; 3211 unit = base; 3212 do { 3213 if (p == begin) 3214 return -EINVAL; 3215 *--p = 'a' + (index % unit); 3216 index = (index / unit) - 1; 3217 } while (index >= 0); 3218 3219 memmove(begin, p, end - p); 3220 memcpy(buf, prefix, strlen(prefix)); 3221 3222 return 0; 3223 } 3224 3225 /* 3226 * The asynchronous part of sd_probe 3227 */ 3228 static void sd_probe_async(void *data, async_cookie_t cookie) 3229 { 3230 struct scsi_disk *sdkp = data; 3231 struct scsi_device *sdp; 3232 struct gendisk *gd; 3233 u32 index; 3234 struct device *dev; 3235 3236 sdp = sdkp->device; 3237 gd = sdkp->disk; 3238 index = sdkp->index; 3239 dev = &sdp->sdev_gendev; 3240 3241 gd->major = sd_major((index & 0xf0) >> 4); 3242 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3243 3244 gd->fops = &sd_fops; 3245 gd->private_data = &sdkp->driver; 3246 gd->queue = sdkp->device->request_queue; 3247 3248 /* defaults, until the device tells us otherwise */ 3249 sdp->sector_size = 512; 3250 sdkp->capacity = 0; 3251 sdkp->media_present = 1; 3252 sdkp->write_prot = 0; 3253 sdkp->cache_override = 0; 3254 sdkp->WCE = 0; 3255 sdkp->RCD = 0; 3256 sdkp->ATO = 0; 3257 sdkp->first_scan = 1; 3258 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3259 3260 sd_revalidate_disk(gd); 3261 3262 gd->flags = GENHD_FL_EXT_DEVT; 3263 if (sdp->removable) { 3264 gd->flags |= GENHD_FL_REMOVABLE; 3265 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3266 } 3267 3268 blk_pm_runtime_init(sdp->request_queue, dev); 3269 device_add_disk(dev, gd); 3270 if (sdkp->capacity) 3271 sd_dif_config_host(sdkp); 3272 3273 sd_revalidate_disk(gd); 3274 3275 if (sdkp->security) { 3276 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3277 if (sdkp->opal_dev) 3278 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3279 } 3280 3281 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3282 sdp->removable ? "removable " : ""); 3283 scsi_autopm_put_device(sdp); 3284 put_device(&sdkp->dev); 3285 } 3286 3287 /** 3288 * sd_probe - called during driver initialization and whenever a 3289 * new scsi device is attached to the system. It is called once 3290 * for each scsi device (not just disks) present. 3291 * @dev: pointer to device object 3292 * 3293 * Returns 0 if successful (or not interested in this scsi device 3294 * (e.g. scanner)); 1 when there is an error. 3295 * 3296 * Note: this function is invoked from the scsi mid-level. 3297 * This function sets up the mapping between a given 3298 * <host,channel,id,lun> (found in sdp) and new device name 3299 * (e.g. /dev/sda). More precisely it is the block device major 3300 * and minor number that is chosen here. 3301 * 3302 * Assume sd_probe is not re-entrant (for time being) 3303 * Also think about sd_probe() and sd_remove() running coincidentally. 3304 **/ 3305 static int sd_probe(struct device *dev) 3306 { 3307 struct scsi_device *sdp = to_scsi_device(dev); 3308 struct scsi_disk *sdkp; 3309 struct gendisk *gd; 3310 int index; 3311 int error; 3312 3313 scsi_autopm_get_device(sdp); 3314 error = -ENODEV; 3315 if (sdp->type != TYPE_DISK && 3316 sdp->type != TYPE_ZBC && 3317 sdp->type != TYPE_MOD && 3318 sdp->type != TYPE_RBC) 3319 goto out; 3320 3321 #ifndef CONFIG_BLK_DEV_ZONED 3322 if (sdp->type == TYPE_ZBC) 3323 goto out; 3324 #endif 3325 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3326 "sd_probe\n")); 3327 3328 error = -ENOMEM; 3329 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3330 if (!sdkp) 3331 goto out; 3332 3333 gd = alloc_disk(SD_MINORS); 3334 if (!gd) 3335 goto out_free; 3336 3337 do { 3338 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3339 goto out_put; 3340 3341 spin_lock(&sd_index_lock); 3342 error = ida_get_new(&sd_index_ida, &index); 3343 spin_unlock(&sd_index_lock); 3344 } while (error == -EAGAIN); 3345 3346 if (error) { 3347 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3348 goto out_put; 3349 } 3350 3351 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3352 if (error) { 3353 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3354 goto out_free_index; 3355 } 3356 3357 sdkp->device = sdp; 3358 sdkp->driver = &sd_template; 3359 sdkp->disk = gd; 3360 sdkp->index = index; 3361 atomic_set(&sdkp->openers, 0); 3362 atomic_set(&sdkp->device->ioerr_cnt, 0); 3363 3364 if (!sdp->request_queue->rq_timeout) { 3365 if (sdp->type != TYPE_MOD) 3366 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3367 else 3368 blk_queue_rq_timeout(sdp->request_queue, 3369 SD_MOD_TIMEOUT); 3370 } 3371 3372 device_initialize(&sdkp->dev); 3373 sdkp->dev.parent = dev; 3374 sdkp->dev.class = &sd_disk_class; 3375 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3376 3377 error = device_add(&sdkp->dev); 3378 if (error) 3379 goto out_free_index; 3380 3381 get_device(dev); 3382 dev_set_drvdata(dev, sdkp); 3383 3384 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3385 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3386 3387 return 0; 3388 3389 out_free_index: 3390 spin_lock(&sd_index_lock); 3391 ida_remove(&sd_index_ida, index); 3392 spin_unlock(&sd_index_lock); 3393 out_put: 3394 put_disk(gd); 3395 out_free: 3396 kfree(sdkp); 3397 out: 3398 scsi_autopm_put_device(sdp); 3399 return error; 3400 } 3401 3402 /** 3403 * sd_remove - called whenever a scsi disk (previously recognized by 3404 * sd_probe) is detached from the system. It is called (potentially 3405 * multiple times) during sd module unload. 3406 * @dev: pointer to device object 3407 * 3408 * Note: this function is invoked from the scsi mid-level. 3409 * This function potentially frees up a device name (e.g. /dev/sdc) 3410 * that could be re-used by a subsequent sd_probe(). 3411 * This function is not called when the built-in sd driver is "exit-ed". 3412 **/ 3413 static int sd_remove(struct device *dev) 3414 { 3415 struct scsi_disk *sdkp; 3416 dev_t devt; 3417 3418 sdkp = dev_get_drvdata(dev); 3419 devt = disk_devt(sdkp->disk); 3420 scsi_autopm_get_device(sdkp->device); 3421 3422 async_synchronize_full_domain(&scsi_sd_pm_domain); 3423 async_synchronize_full_domain(&scsi_sd_probe_domain); 3424 device_del(&sdkp->dev); 3425 del_gendisk(sdkp->disk); 3426 sd_shutdown(dev); 3427 3428 sd_zbc_remove(sdkp); 3429 3430 free_opal_dev(sdkp->opal_dev); 3431 3432 blk_register_region(devt, SD_MINORS, NULL, 3433 sd_default_probe, NULL, NULL); 3434 3435 mutex_lock(&sd_ref_mutex); 3436 dev_set_drvdata(dev, NULL); 3437 put_device(&sdkp->dev); 3438 mutex_unlock(&sd_ref_mutex); 3439 3440 return 0; 3441 } 3442 3443 /** 3444 * scsi_disk_release - Called to free the scsi_disk structure 3445 * @dev: pointer to embedded class device 3446 * 3447 * sd_ref_mutex must be held entering this routine. Because it is 3448 * called on last put, you should always use the scsi_disk_get() 3449 * scsi_disk_put() helpers which manipulate the semaphore directly 3450 * and never do a direct put_device. 3451 **/ 3452 static void scsi_disk_release(struct device *dev) 3453 { 3454 struct scsi_disk *sdkp = to_scsi_disk(dev); 3455 struct gendisk *disk = sdkp->disk; 3456 3457 spin_lock(&sd_index_lock); 3458 ida_remove(&sd_index_ida, sdkp->index); 3459 spin_unlock(&sd_index_lock); 3460 3461 disk->private_data = NULL; 3462 put_disk(disk); 3463 put_device(&sdkp->device->sdev_gendev); 3464 3465 kfree(sdkp); 3466 } 3467 3468 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3469 { 3470 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3471 struct scsi_sense_hdr sshdr; 3472 struct scsi_device *sdp = sdkp->device; 3473 int res; 3474 3475 if (start) 3476 cmd[4] |= 1; /* START */ 3477 3478 if (sdp->start_stop_pwr_cond) 3479 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3480 3481 if (!scsi_device_online(sdp)) 3482 return -ENODEV; 3483 3484 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3485 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3486 if (res) { 3487 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3488 if (driver_byte(res) & DRIVER_SENSE) 3489 sd_print_sense_hdr(sdkp, &sshdr); 3490 if (scsi_sense_valid(&sshdr) && 3491 /* 0x3a is medium not present */ 3492 sshdr.asc == 0x3a) 3493 res = 0; 3494 } 3495 3496 /* SCSI error codes must not go to the generic layer */ 3497 if (res) 3498 return -EIO; 3499 3500 return 0; 3501 } 3502 3503 /* 3504 * Send a SYNCHRONIZE CACHE instruction down to the device through 3505 * the normal SCSI command structure. Wait for the command to 3506 * complete. 3507 */ 3508 static void sd_shutdown(struct device *dev) 3509 { 3510 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3511 3512 if (!sdkp) 3513 return; /* this can happen */ 3514 3515 if (pm_runtime_suspended(dev)) 3516 return; 3517 3518 if (sdkp->WCE && sdkp->media_present) { 3519 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3520 sd_sync_cache(sdkp, NULL); 3521 } 3522 3523 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3524 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3525 sd_start_stop_device(sdkp, 0); 3526 } 3527 } 3528 3529 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3530 { 3531 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3532 struct scsi_sense_hdr sshdr; 3533 int ret = 0; 3534 3535 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3536 return 0; 3537 3538 if (sdkp->WCE && sdkp->media_present) { 3539 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3540 ret = sd_sync_cache(sdkp, &sshdr); 3541 3542 if (ret) { 3543 /* ignore OFFLINE device */ 3544 if (ret == -ENODEV) 3545 return 0; 3546 3547 if (!scsi_sense_valid(&sshdr) || 3548 sshdr.sense_key != ILLEGAL_REQUEST) 3549 return ret; 3550 3551 /* 3552 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3553 * doesn't support sync. There's not much to do and 3554 * suspend shouldn't fail. 3555 */ 3556 ret = 0; 3557 } 3558 } 3559 3560 if (sdkp->device->manage_start_stop) { 3561 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3562 /* an error is not worth aborting a system sleep */ 3563 ret = sd_start_stop_device(sdkp, 0); 3564 if (ignore_stop_errors) 3565 ret = 0; 3566 } 3567 3568 return ret; 3569 } 3570 3571 static int sd_suspend_system(struct device *dev) 3572 { 3573 return sd_suspend_common(dev, true); 3574 } 3575 3576 static int sd_suspend_runtime(struct device *dev) 3577 { 3578 return sd_suspend_common(dev, false); 3579 } 3580 3581 static int sd_resume(struct device *dev) 3582 { 3583 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3584 int ret; 3585 3586 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3587 return 0; 3588 3589 if (!sdkp->device->manage_start_stop) 3590 return 0; 3591 3592 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3593 ret = sd_start_stop_device(sdkp, 1); 3594 if (!ret) 3595 opal_unlock_from_suspend(sdkp->opal_dev); 3596 return ret; 3597 } 3598 3599 /** 3600 * init_sd - entry point for this driver (both when built in or when 3601 * a module). 3602 * 3603 * Note: this function registers this driver with the scsi mid-level. 3604 **/ 3605 static int __init init_sd(void) 3606 { 3607 int majors = 0, i, err; 3608 3609 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3610 3611 for (i = 0; i < SD_MAJORS; i++) { 3612 if (register_blkdev(sd_major(i), "sd") != 0) 3613 continue; 3614 majors++; 3615 blk_register_region(sd_major(i), SD_MINORS, NULL, 3616 sd_default_probe, NULL, NULL); 3617 } 3618 3619 if (!majors) 3620 return -ENODEV; 3621 3622 err = class_register(&sd_disk_class); 3623 if (err) 3624 goto err_out; 3625 3626 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3627 0, 0, NULL); 3628 if (!sd_cdb_cache) { 3629 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3630 err = -ENOMEM; 3631 goto err_out_class; 3632 } 3633 3634 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3635 if (!sd_cdb_pool) { 3636 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3637 err = -ENOMEM; 3638 goto err_out_cache; 3639 } 3640 3641 err = scsi_register_driver(&sd_template.gendrv); 3642 if (err) 3643 goto err_out_driver; 3644 3645 return 0; 3646 3647 err_out_driver: 3648 mempool_destroy(sd_cdb_pool); 3649 3650 err_out_cache: 3651 kmem_cache_destroy(sd_cdb_cache); 3652 3653 err_out_class: 3654 class_unregister(&sd_disk_class); 3655 err_out: 3656 for (i = 0; i < SD_MAJORS; i++) 3657 unregister_blkdev(sd_major(i), "sd"); 3658 return err; 3659 } 3660 3661 /** 3662 * exit_sd - exit point for this driver (when it is a module). 3663 * 3664 * Note: this function unregisters this driver from the scsi mid-level. 3665 **/ 3666 static void __exit exit_sd(void) 3667 { 3668 int i; 3669 3670 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3671 3672 scsi_unregister_driver(&sd_template.gendrv); 3673 mempool_destroy(sd_cdb_pool); 3674 kmem_cache_destroy(sd_cdb_cache); 3675 3676 class_unregister(&sd_disk_class); 3677 3678 for (i = 0; i < SD_MAJORS; i++) { 3679 blk_unregister_region(sd_major(i), SD_MINORS); 3680 unregister_blkdev(sd_major(i), "sd"); 3681 } 3682 } 3683 3684 module_init(init_sd); 3685 module_exit(exit_sd); 3686 3687 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3688 struct scsi_sense_hdr *sshdr) 3689 { 3690 scsi_print_sense_hdr(sdkp->device, 3691 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3692 } 3693 3694 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3695 int result) 3696 { 3697 const char *hb_string = scsi_hostbyte_string(result); 3698 const char *db_string = scsi_driverbyte_string(result); 3699 3700 if (hb_string || db_string) 3701 sd_printk(KERN_INFO, sdkp, 3702 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3703 hb_string ? hb_string : "invalid", 3704 db_string ? db_string : "invalid"); 3705 else 3706 sd_printk(KERN_INFO, sdkp, 3707 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3708 msg, host_byte(result), driver_byte(result)); 3709 } 3710 3711