1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <linux/pr.h> 55 #include <linux/t10-pi.h> 56 #include <linux/uaccess.h> 57 #include <asm/unaligned.h> 58 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_dbg.h> 62 #include <scsi/scsi_device.h> 63 #include <scsi/scsi_driver.h> 64 #include <scsi/scsi_eh.h> 65 #include <scsi/scsi_host.h> 66 #include <scsi/scsi_ioctl.h> 67 #include <scsi/scsicam.h> 68 69 #include "sd.h" 70 #include "scsi_priv.h" 71 #include "scsi_logging.h" 72 73 MODULE_AUTHOR("Eric Youngdale"); 74 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 75 MODULE_LICENSE("GPL"); 76 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 97 98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 99 #define SD_MINORS 16 100 #else 101 #define SD_MINORS 0 102 #endif 103 104 static void sd_config_discard(struct scsi_disk *, unsigned int); 105 static void sd_config_write_same(struct scsi_disk *); 106 static int sd_revalidate_disk(struct gendisk *); 107 static void sd_unlock_native_capacity(struct gendisk *disk); 108 static int sd_probe(struct device *); 109 static int sd_remove(struct device *); 110 static void sd_shutdown(struct device *); 111 static int sd_suspend_system(struct device *); 112 static int sd_suspend_runtime(struct device *); 113 static int sd_resume(struct device *); 114 static void sd_rescan(struct device *); 115 static int sd_init_command(struct scsi_cmnd *SCpnt); 116 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 117 static int sd_done(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 122 static void sd_print_result(const struct scsi_disk *, const char *, int); 123 124 static DEFINE_SPINLOCK(sd_index_lock); 125 static DEFINE_IDA(sd_index_ida); 126 127 /* This semaphore is used to mediate the 0->1 reference get in the 128 * face of object destruction (i.e. we can't allow a get on an 129 * object after last put) */ 130 static DEFINE_MUTEX(sd_ref_mutex); 131 132 static struct kmem_cache *sd_cdb_cache; 133 static mempool_t *sd_cdb_pool; 134 135 static const char *sd_cache_types[] = { 136 "write through", "none", "write back", 137 "write back, no read (daft)" 138 }; 139 140 static void sd_set_flush_flag(struct scsi_disk *sdkp) 141 { 142 bool wc = false, fua = false; 143 144 if (sdkp->WCE) { 145 wc = true; 146 if (sdkp->DPOFUA) 147 fua = true; 148 } 149 150 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 151 } 152 153 static ssize_t 154 cache_type_store(struct device *dev, struct device_attribute *attr, 155 const char *buf, size_t count) 156 { 157 int i, ct = -1, rcd, wce, sp; 158 struct scsi_disk *sdkp = to_scsi_disk(dev); 159 struct scsi_device *sdp = sdkp->device; 160 char buffer[64]; 161 char *buffer_data; 162 struct scsi_mode_data data; 163 struct scsi_sense_hdr sshdr; 164 static const char temp[] = "temporary "; 165 int len; 166 167 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 168 /* no cache control on RBC devices; theoretically they 169 * can do it, but there's probably so many exceptions 170 * it's not worth the risk */ 171 return -EINVAL; 172 173 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 174 buf += sizeof(temp) - 1; 175 sdkp->cache_override = 1; 176 } else { 177 sdkp->cache_override = 0; 178 } 179 180 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 181 len = strlen(sd_cache_types[i]); 182 if (strncmp(sd_cache_types[i], buf, len) == 0 && 183 buf[len] == '\n') { 184 ct = i; 185 break; 186 } 187 } 188 if (ct < 0) 189 return -EINVAL; 190 rcd = ct & 0x01 ? 1 : 0; 191 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 192 193 if (sdkp->cache_override) { 194 sdkp->WCE = wce; 195 sdkp->RCD = rcd; 196 sd_set_flush_flag(sdkp); 197 return count; 198 } 199 200 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 201 SD_MAX_RETRIES, &data, NULL)) 202 return -EINVAL; 203 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 204 data.block_descriptor_length); 205 buffer_data = buffer + data.header_length + 206 data.block_descriptor_length; 207 buffer_data[2] &= ~0x05; 208 buffer_data[2] |= wce << 2 | rcd; 209 sp = buffer_data[0] & 0x80 ? 1 : 0; 210 buffer_data[0] &= ~0x80; 211 212 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 213 SD_MAX_RETRIES, &data, &sshdr)) { 214 if (scsi_sense_valid(&sshdr)) 215 sd_print_sense_hdr(sdkp, &sshdr); 216 return -EINVAL; 217 } 218 revalidate_disk(sdkp->disk); 219 return count; 220 } 221 222 static ssize_t 223 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 224 char *buf) 225 { 226 struct scsi_disk *sdkp = to_scsi_disk(dev); 227 struct scsi_device *sdp = sdkp->device; 228 229 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 230 } 231 232 static ssize_t 233 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 234 const char *buf, size_t count) 235 { 236 struct scsi_disk *sdkp = to_scsi_disk(dev); 237 struct scsi_device *sdp = sdkp->device; 238 239 if (!capable(CAP_SYS_ADMIN)) 240 return -EACCES; 241 242 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 243 244 return count; 245 } 246 static DEVICE_ATTR_RW(manage_start_stop); 247 248 static ssize_t 249 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 250 { 251 struct scsi_disk *sdkp = to_scsi_disk(dev); 252 253 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 254 } 255 256 static ssize_t 257 allow_restart_store(struct device *dev, struct device_attribute *attr, 258 const char *buf, size_t count) 259 { 260 struct scsi_disk *sdkp = to_scsi_disk(dev); 261 struct scsi_device *sdp = sdkp->device; 262 263 if (!capable(CAP_SYS_ADMIN)) 264 return -EACCES; 265 266 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 267 return -EINVAL; 268 269 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 270 271 return count; 272 } 273 static DEVICE_ATTR_RW(allow_restart); 274 275 static ssize_t 276 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 277 { 278 struct scsi_disk *sdkp = to_scsi_disk(dev); 279 int ct = sdkp->RCD + 2*sdkp->WCE; 280 281 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 282 } 283 static DEVICE_ATTR_RW(cache_type); 284 285 static ssize_t 286 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 290 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 291 } 292 static DEVICE_ATTR_RO(FUA); 293 294 static ssize_t 295 protection_type_show(struct device *dev, struct device_attribute *attr, 296 char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 301 } 302 303 static ssize_t 304 protection_type_store(struct device *dev, struct device_attribute *attr, 305 const char *buf, size_t count) 306 { 307 struct scsi_disk *sdkp = to_scsi_disk(dev); 308 unsigned int val; 309 int err; 310 311 if (!capable(CAP_SYS_ADMIN)) 312 return -EACCES; 313 314 err = kstrtouint(buf, 10, &val); 315 316 if (err) 317 return err; 318 319 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION) 320 sdkp->protection_type = val; 321 322 return count; 323 } 324 static DEVICE_ATTR_RW(protection_type); 325 326 static ssize_t 327 protection_mode_show(struct device *dev, struct device_attribute *attr, 328 char *buf) 329 { 330 struct scsi_disk *sdkp = to_scsi_disk(dev); 331 struct scsi_device *sdp = sdkp->device; 332 unsigned int dif, dix; 333 334 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 335 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 336 337 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 338 dif = 0; 339 dix = 1; 340 } 341 342 if (!dif && !dix) 343 return snprintf(buf, 20, "none\n"); 344 345 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 346 } 347 static DEVICE_ATTR_RO(protection_mode); 348 349 static ssize_t 350 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 351 { 352 struct scsi_disk *sdkp = to_scsi_disk(dev); 353 354 return snprintf(buf, 20, "%u\n", sdkp->ATO); 355 } 356 static DEVICE_ATTR_RO(app_tag_own); 357 358 static ssize_t 359 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 360 char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 365 } 366 static DEVICE_ATTR_RO(thin_provisioning); 367 368 static const char *lbp_mode[] = { 369 [SD_LBP_FULL] = "full", 370 [SD_LBP_UNMAP] = "unmap", 371 [SD_LBP_WS16] = "writesame_16", 372 [SD_LBP_WS10] = "writesame_10", 373 [SD_LBP_ZERO] = "writesame_zero", 374 [SD_LBP_DISABLE] = "disabled", 375 }; 376 377 static ssize_t 378 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 379 char *buf) 380 { 381 struct scsi_disk *sdkp = to_scsi_disk(dev); 382 383 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 384 } 385 386 static ssize_t 387 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 388 const char *buf, size_t count) 389 { 390 struct scsi_disk *sdkp = to_scsi_disk(dev); 391 struct scsi_device *sdp = sdkp->device; 392 393 if (!capable(CAP_SYS_ADMIN)) 394 return -EACCES; 395 396 if (sd_is_zoned(sdkp)) { 397 sd_config_discard(sdkp, SD_LBP_DISABLE); 398 return count; 399 } 400 401 if (sdp->type != TYPE_DISK) 402 return -EINVAL; 403 404 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 405 sd_config_discard(sdkp, SD_LBP_UNMAP); 406 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 407 sd_config_discard(sdkp, SD_LBP_WS16); 408 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 409 sd_config_discard(sdkp, SD_LBP_WS10); 410 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 411 sd_config_discard(sdkp, SD_LBP_ZERO); 412 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 413 sd_config_discard(sdkp, SD_LBP_DISABLE); 414 else 415 return -EINVAL; 416 417 return count; 418 } 419 static DEVICE_ATTR_RW(provisioning_mode); 420 421 static ssize_t 422 max_medium_access_timeouts_show(struct device *dev, 423 struct device_attribute *attr, char *buf) 424 { 425 struct scsi_disk *sdkp = to_scsi_disk(dev); 426 427 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 428 } 429 430 static ssize_t 431 max_medium_access_timeouts_store(struct device *dev, 432 struct device_attribute *attr, const char *buf, 433 size_t count) 434 { 435 struct scsi_disk *sdkp = to_scsi_disk(dev); 436 int err; 437 438 if (!capable(CAP_SYS_ADMIN)) 439 return -EACCES; 440 441 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 442 443 return err ? err : count; 444 } 445 static DEVICE_ATTR_RW(max_medium_access_timeouts); 446 447 static ssize_t 448 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 449 char *buf) 450 { 451 struct scsi_disk *sdkp = to_scsi_disk(dev); 452 453 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 454 } 455 456 static ssize_t 457 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 458 const char *buf, size_t count) 459 { 460 struct scsi_disk *sdkp = to_scsi_disk(dev); 461 struct scsi_device *sdp = sdkp->device; 462 unsigned long max; 463 int err; 464 465 if (!capable(CAP_SYS_ADMIN)) 466 return -EACCES; 467 468 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 469 return -EINVAL; 470 471 err = kstrtoul(buf, 10, &max); 472 473 if (err) 474 return err; 475 476 if (max == 0) 477 sdp->no_write_same = 1; 478 else if (max <= SD_MAX_WS16_BLOCKS) { 479 sdp->no_write_same = 0; 480 sdkp->max_ws_blocks = max; 481 } 482 483 sd_config_write_same(sdkp); 484 485 return count; 486 } 487 static DEVICE_ATTR_RW(max_write_same_blocks); 488 489 static struct attribute *sd_disk_attrs[] = { 490 &dev_attr_cache_type.attr, 491 &dev_attr_FUA.attr, 492 &dev_attr_allow_restart.attr, 493 &dev_attr_manage_start_stop.attr, 494 &dev_attr_protection_type.attr, 495 &dev_attr_protection_mode.attr, 496 &dev_attr_app_tag_own.attr, 497 &dev_attr_thin_provisioning.attr, 498 &dev_attr_provisioning_mode.attr, 499 &dev_attr_max_write_same_blocks.attr, 500 &dev_attr_max_medium_access_timeouts.attr, 501 NULL, 502 }; 503 ATTRIBUTE_GROUPS(sd_disk); 504 505 static struct class sd_disk_class = { 506 .name = "scsi_disk", 507 .owner = THIS_MODULE, 508 .dev_release = scsi_disk_release, 509 .dev_groups = sd_disk_groups, 510 }; 511 512 static const struct dev_pm_ops sd_pm_ops = { 513 .suspend = sd_suspend_system, 514 .resume = sd_resume, 515 .poweroff = sd_suspend_system, 516 .restore = sd_resume, 517 .runtime_suspend = sd_suspend_runtime, 518 .runtime_resume = sd_resume, 519 }; 520 521 static struct scsi_driver sd_template = { 522 .gendrv = { 523 .name = "sd", 524 .owner = THIS_MODULE, 525 .probe = sd_probe, 526 .remove = sd_remove, 527 .shutdown = sd_shutdown, 528 .pm = &sd_pm_ops, 529 }, 530 .rescan = sd_rescan, 531 .init_command = sd_init_command, 532 .uninit_command = sd_uninit_command, 533 .done = sd_done, 534 .eh_action = sd_eh_action, 535 }; 536 537 /* 538 * Dummy kobj_map->probe function. 539 * The default ->probe function will call modprobe, which is 540 * pointless as this module is already loaded. 541 */ 542 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 543 { 544 return NULL; 545 } 546 547 /* 548 * Device no to disk mapping: 549 * 550 * major disc2 disc p1 551 * |............|.............|....|....| <- dev_t 552 * 31 20 19 8 7 4 3 0 553 * 554 * Inside a major, we have 16k disks, however mapped non- 555 * contiguously. The first 16 disks are for major0, the next 556 * ones with major1, ... Disk 256 is for major0 again, disk 272 557 * for major1, ... 558 * As we stay compatible with our numbering scheme, we can reuse 559 * the well-know SCSI majors 8, 65--71, 136--143. 560 */ 561 static int sd_major(int major_idx) 562 { 563 switch (major_idx) { 564 case 0: 565 return SCSI_DISK0_MAJOR; 566 case 1 ... 7: 567 return SCSI_DISK1_MAJOR + major_idx - 1; 568 case 8 ... 15: 569 return SCSI_DISK8_MAJOR + major_idx - 8; 570 default: 571 BUG(); 572 return 0; /* shut up gcc */ 573 } 574 } 575 576 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 577 { 578 struct scsi_disk *sdkp = NULL; 579 580 mutex_lock(&sd_ref_mutex); 581 582 if (disk->private_data) { 583 sdkp = scsi_disk(disk); 584 if (scsi_device_get(sdkp->device) == 0) 585 get_device(&sdkp->dev); 586 else 587 sdkp = NULL; 588 } 589 mutex_unlock(&sd_ref_mutex); 590 return sdkp; 591 } 592 593 static void scsi_disk_put(struct scsi_disk *sdkp) 594 { 595 struct scsi_device *sdev = sdkp->device; 596 597 mutex_lock(&sd_ref_mutex); 598 put_device(&sdkp->dev); 599 scsi_device_put(sdev); 600 mutex_unlock(&sd_ref_mutex); 601 } 602 603 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 604 unsigned int dix, unsigned int dif) 605 { 606 struct bio *bio = scmd->request->bio; 607 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 608 unsigned int protect = 0; 609 610 if (dix) { /* DIX Type 0, 1, 2, 3 */ 611 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 612 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 613 614 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 615 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 616 } 617 618 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 619 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 620 621 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 622 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 623 } 624 625 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 626 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 627 628 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 629 protect = 3 << 5; /* Disable target PI checking */ 630 else 631 protect = 1 << 5; /* Enable target PI checking */ 632 } 633 634 scsi_set_prot_op(scmd, prot_op); 635 scsi_set_prot_type(scmd, dif); 636 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 637 638 return protect; 639 } 640 641 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 642 { 643 struct request_queue *q = sdkp->disk->queue; 644 unsigned int logical_block_size = sdkp->device->sector_size; 645 unsigned int max_blocks = 0; 646 647 q->limits.discard_zeroes_data = 0; 648 649 /* 650 * When LBPRZ is reported, discard alignment and granularity 651 * must be fixed to the logical block size. Otherwise the block 652 * layer will drop misaligned portions of the request which can 653 * lead to data corruption. If LBPRZ is not set, we honor the 654 * device preference. 655 */ 656 if (sdkp->lbprz) { 657 q->limits.discard_alignment = 0; 658 q->limits.discard_granularity = logical_block_size; 659 } else { 660 q->limits.discard_alignment = sdkp->unmap_alignment * 661 logical_block_size; 662 q->limits.discard_granularity = 663 max(sdkp->physical_block_size, 664 sdkp->unmap_granularity * logical_block_size); 665 } 666 667 sdkp->provisioning_mode = mode; 668 669 switch (mode) { 670 671 case SD_LBP_DISABLE: 672 blk_queue_max_discard_sectors(q, 0); 673 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 674 return; 675 676 case SD_LBP_UNMAP: 677 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 678 (u32)SD_MAX_WS16_BLOCKS); 679 break; 680 681 case SD_LBP_WS16: 682 max_blocks = min_not_zero(sdkp->max_ws_blocks, 683 (u32)SD_MAX_WS16_BLOCKS); 684 q->limits.discard_zeroes_data = sdkp->lbprz; 685 break; 686 687 case SD_LBP_WS10: 688 max_blocks = min_not_zero(sdkp->max_ws_blocks, 689 (u32)SD_MAX_WS10_BLOCKS); 690 q->limits.discard_zeroes_data = sdkp->lbprz; 691 break; 692 693 case SD_LBP_ZERO: 694 max_blocks = min_not_zero(sdkp->max_ws_blocks, 695 (u32)SD_MAX_WS10_BLOCKS); 696 q->limits.discard_zeroes_data = 1; 697 break; 698 } 699 700 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 701 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 702 } 703 704 /** 705 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device 706 * @sdp: scsi device to operate one 707 * @rq: Request to prepare 708 * 709 * Will issue either UNMAP or WRITE SAME(16) depending on preference 710 * indicated by target device. 711 **/ 712 static int sd_setup_discard_cmnd(struct scsi_cmnd *cmd) 713 { 714 struct request *rq = cmd->request; 715 struct scsi_device *sdp = cmd->device; 716 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 717 sector_t sector = blk_rq_pos(rq); 718 unsigned int nr_sectors = blk_rq_sectors(rq); 719 unsigned int len; 720 int ret; 721 char *buf; 722 struct page *page; 723 724 sector >>= ilog2(sdp->sector_size) - 9; 725 nr_sectors >>= ilog2(sdp->sector_size) - 9; 726 727 page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 728 if (!page) 729 return BLKPREP_DEFER; 730 731 switch (sdkp->provisioning_mode) { 732 case SD_LBP_UNMAP: 733 buf = page_address(page); 734 735 cmd->cmd_len = 10; 736 cmd->cmnd[0] = UNMAP; 737 cmd->cmnd[8] = 24; 738 739 put_unaligned_be16(6 + 16, &buf[0]); 740 put_unaligned_be16(16, &buf[2]); 741 put_unaligned_be64(sector, &buf[8]); 742 put_unaligned_be32(nr_sectors, &buf[16]); 743 744 len = 24; 745 break; 746 747 case SD_LBP_WS16: 748 cmd->cmd_len = 16; 749 cmd->cmnd[0] = WRITE_SAME_16; 750 cmd->cmnd[1] = 0x8; /* UNMAP */ 751 put_unaligned_be64(sector, &cmd->cmnd[2]); 752 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 753 754 len = sdkp->device->sector_size; 755 break; 756 757 case SD_LBP_WS10: 758 case SD_LBP_ZERO: 759 cmd->cmd_len = 10; 760 cmd->cmnd[0] = WRITE_SAME; 761 if (sdkp->provisioning_mode == SD_LBP_WS10) 762 cmd->cmnd[1] = 0x8; /* UNMAP */ 763 put_unaligned_be32(sector, &cmd->cmnd[2]); 764 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 765 766 len = sdkp->device->sector_size; 767 break; 768 769 default: 770 ret = BLKPREP_INVALID; 771 goto out; 772 } 773 774 rq->timeout = SD_TIMEOUT; 775 776 cmd->transfersize = len; 777 cmd->allowed = SD_MAX_RETRIES; 778 779 rq->special_vec.bv_page = page; 780 rq->special_vec.bv_offset = 0; 781 rq->special_vec.bv_len = len; 782 783 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 784 rq->resid_len = len; 785 786 ret = scsi_init_io(cmd); 787 out: 788 if (ret != BLKPREP_OK) 789 __free_page(page); 790 return ret; 791 } 792 793 static void sd_config_write_same(struct scsi_disk *sdkp) 794 { 795 struct request_queue *q = sdkp->disk->queue; 796 unsigned int logical_block_size = sdkp->device->sector_size; 797 798 if (sdkp->device->no_write_same) { 799 sdkp->max_ws_blocks = 0; 800 goto out; 801 } 802 803 /* Some devices can not handle block counts above 0xffff despite 804 * supporting WRITE SAME(16). Consequently we default to 64k 805 * blocks per I/O unless the device explicitly advertises a 806 * bigger limit. 807 */ 808 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 809 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 810 (u32)SD_MAX_WS16_BLOCKS); 811 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 812 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 813 (u32)SD_MAX_WS10_BLOCKS); 814 else { 815 sdkp->device->no_write_same = 1; 816 sdkp->max_ws_blocks = 0; 817 } 818 819 out: 820 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 821 (logical_block_size >> 9)); 822 } 823 824 /** 825 * sd_setup_write_same_cmnd - write the same data to multiple blocks 826 * @cmd: command to prepare 827 * 828 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on 829 * preference indicated by target device. 830 **/ 831 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 832 { 833 struct request *rq = cmd->request; 834 struct scsi_device *sdp = cmd->device; 835 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 836 struct bio *bio = rq->bio; 837 sector_t sector = blk_rq_pos(rq); 838 unsigned int nr_sectors = blk_rq_sectors(rq); 839 int ret; 840 841 if (sdkp->device->no_write_same) 842 return BLKPREP_INVALID; 843 844 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 845 846 if (sd_is_zoned(sdkp)) { 847 ret = sd_zbc_setup_write_cmnd(cmd); 848 if (ret != BLKPREP_OK) 849 return ret; 850 } 851 852 sector >>= ilog2(sdp->sector_size) - 9; 853 nr_sectors >>= ilog2(sdp->sector_size) - 9; 854 855 rq->timeout = SD_WRITE_SAME_TIMEOUT; 856 857 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 858 cmd->cmd_len = 16; 859 cmd->cmnd[0] = WRITE_SAME_16; 860 put_unaligned_be64(sector, &cmd->cmnd[2]); 861 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 862 } else { 863 cmd->cmd_len = 10; 864 cmd->cmnd[0] = WRITE_SAME; 865 put_unaligned_be32(sector, &cmd->cmnd[2]); 866 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 867 } 868 869 cmd->transfersize = sdp->sector_size; 870 cmd->allowed = SD_MAX_RETRIES; 871 return scsi_init_io(cmd); 872 } 873 874 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 875 { 876 struct request *rq = cmd->request; 877 878 /* flush requests don't perform I/O, zero the S/G table */ 879 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 880 881 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 882 cmd->cmd_len = 10; 883 cmd->transfersize = 0; 884 cmd->allowed = SD_MAX_RETRIES; 885 886 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 887 return BLKPREP_OK; 888 } 889 890 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 891 { 892 struct request *rq = SCpnt->request; 893 struct scsi_device *sdp = SCpnt->device; 894 struct gendisk *disk = rq->rq_disk; 895 struct scsi_disk *sdkp = scsi_disk(disk); 896 sector_t block = blk_rq_pos(rq); 897 sector_t threshold; 898 unsigned int this_count = blk_rq_sectors(rq); 899 unsigned int dif, dix; 900 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE; 901 int ret; 902 unsigned char protect; 903 904 if (zoned_write) { 905 ret = sd_zbc_setup_write_cmnd(SCpnt); 906 if (ret != BLKPREP_OK) 907 return ret; 908 } 909 910 ret = scsi_init_io(SCpnt); 911 if (ret != BLKPREP_OK) 912 goto out; 913 SCpnt = rq->special; 914 915 /* from here on until we're complete, any goto out 916 * is used for a killable error condition */ 917 ret = BLKPREP_KILL; 918 919 SCSI_LOG_HLQUEUE(1, 920 scmd_printk(KERN_INFO, SCpnt, 921 "%s: block=%llu, count=%d\n", 922 __func__, (unsigned long long)block, this_count)); 923 924 if (!sdp || !scsi_device_online(sdp) || 925 block + blk_rq_sectors(rq) > get_capacity(disk)) { 926 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 927 "Finishing %u sectors\n", 928 blk_rq_sectors(rq))); 929 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 930 "Retry with 0x%p\n", SCpnt)); 931 goto out; 932 } 933 934 if (sdp->changed) { 935 /* 936 * quietly refuse to do anything to a changed disc until 937 * the changed bit has been reset 938 */ 939 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 940 goto out; 941 } 942 943 /* 944 * Some SD card readers can't handle multi-sector accesses which touch 945 * the last one or two hardware sectors. Split accesses as needed. 946 */ 947 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 948 (sdp->sector_size / 512); 949 950 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 951 if (block < threshold) { 952 /* Access up to the threshold but not beyond */ 953 this_count = threshold - block; 954 } else { 955 /* Access only a single hardware sector */ 956 this_count = sdp->sector_size / 512; 957 } 958 } 959 960 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 961 (unsigned long long)block)); 962 963 /* 964 * If we have a 1K hardware sectorsize, prevent access to single 965 * 512 byte sectors. In theory we could handle this - in fact 966 * the scsi cdrom driver must be able to handle this because 967 * we typically use 1K blocksizes, and cdroms typically have 968 * 2K hardware sectorsizes. Of course, things are simpler 969 * with the cdrom, since it is read-only. For performance 970 * reasons, the filesystems should be able to handle this 971 * and not force the scsi disk driver to use bounce buffers 972 * for this. 973 */ 974 if (sdp->sector_size == 1024) { 975 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 976 scmd_printk(KERN_ERR, SCpnt, 977 "Bad block number requested\n"); 978 goto out; 979 } else { 980 block = block >> 1; 981 this_count = this_count >> 1; 982 } 983 } 984 if (sdp->sector_size == 2048) { 985 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 986 scmd_printk(KERN_ERR, SCpnt, 987 "Bad block number requested\n"); 988 goto out; 989 } else { 990 block = block >> 2; 991 this_count = this_count >> 2; 992 } 993 } 994 if (sdp->sector_size == 4096) { 995 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 996 scmd_printk(KERN_ERR, SCpnt, 997 "Bad block number requested\n"); 998 goto out; 999 } else { 1000 block = block >> 3; 1001 this_count = this_count >> 3; 1002 } 1003 } 1004 if (rq_data_dir(rq) == WRITE) { 1005 SCpnt->cmnd[0] = WRITE_6; 1006 1007 if (blk_integrity_rq(rq)) 1008 sd_dif_prepare(SCpnt); 1009 1010 } else if (rq_data_dir(rq) == READ) { 1011 SCpnt->cmnd[0] = READ_6; 1012 } else { 1013 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); 1014 goto out; 1015 } 1016 1017 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1018 "%s %d/%u 512 byte blocks.\n", 1019 (rq_data_dir(rq) == WRITE) ? 1020 "writing" : "reading", this_count, 1021 blk_rq_sectors(rq))); 1022 1023 dix = scsi_prot_sg_count(SCpnt); 1024 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1025 1026 if (dif || dix) 1027 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1028 else 1029 protect = 0; 1030 1031 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1032 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1033 1034 if (unlikely(SCpnt->cmnd == NULL)) { 1035 ret = BLKPREP_DEFER; 1036 goto out; 1037 } 1038 1039 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1040 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1041 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1042 SCpnt->cmnd[7] = 0x18; 1043 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1044 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1045 1046 /* LBA */ 1047 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1048 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1049 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1050 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1051 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1052 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1053 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1054 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1055 1056 /* Expected Indirect LBA */ 1057 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1058 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1059 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1060 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1061 1062 /* Transfer length */ 1063 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1064 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1065 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1066 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1067 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1068 SCpnt->cmnd[0] += READ_16 - READ_6; 1069 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1070 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1071 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1072 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1073 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1074 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1075 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1076 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1077 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1078 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1079 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1080 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1081 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1082 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1083 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1084 scsi_device_protection(SCpnt->device) || 1085 SCpnt->device->use_10_for_rw) { 1086 SCpnt->cmnd[0] += READ_10 - READ_6; 1087 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1088 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1089 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1090 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1091 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1092 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1093 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1094 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1095 } else { 1096 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1097 /* 1098 * This happens only if this drive failed 1099 * 10byte rw command with ILLEGAL_REQUEST 1100 * during operation and thus turned off 1101 * use_10_for_rw. 1102 */ 1103 scmd_printk(KERN_ERR, SCpnt, 1104 "FUA write on READ/WRITE(6) drive\n"); 1105 goto out; 1106 } 1107 1108 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1109 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1110 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1111 SCpnt->cmnd[4] = (unsigned char) this_count; 1112 SCpnt->cmnd[5] = 0; 1113 } 1114 SCpnt->sdb.length = this_count * sdp->sector_size; 1115 1116 /* 1117 * We shouldn't disconnect in the middle of a sector, so with a dumb 1118 * host adapter, it's safe to assume that we can at least transfer 1119 * this many bytes between each connect / disconnect. 1120 */ 1121 SCpnt->transfersize = sdp->sector_size; 1122 SCpnt->underflow = this_count << 9; 1123 SCpnt->allowed = SD_MAX_RETRIES; 1124 1125 /* 1126 * This indicates that the command is ready from our end to be 1127 * queued. 1128 */ 1129 ret = BLKPREP_OK; 1130 out: 1131 if (zoned_write && ret != BLKPREP_OK) 1132 sd_zbc_cancel_write_cmnd(SCpnt); 1133 1134 return ret; 1135 } 1136 1137 static int sd_init_command(struct scsi_cmnd *cmd) 1138 { 1139 struct request *rq = cmd->request; 1140 1141 switch (req_op(rq)) { 1142 case REQ_OP_DISCARD: 1143 return sd_setup_discard_cmnd(cmd); 1144 case REQ_OP_WRITE_SAME: 1145 return sd_setup_write_same_cmnd(cmd); 1146 case REQ_OP_FLUSH: 1147 return sd_setup_flush_cmnd(cmd); 1148 case REQ_OP_READ: 1149 case REQ_OP_WRITE: 1150 return sd_setup_read_write_cmnd(cmd); 1151 case REQ_OP_ZONE_REPORT: 1152 return sd_zbc_setup_report_cmnd(cmd); 1153 case REQ_OP_ZONE_RESET: 1154 return sd_zbc_setup_reset_cmnd(cmd); 1155 default: 1156 BUG(); 1157 } 1158 } 1159 1160 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1161 { 1162 struct request *rq = SCpnt->request; 1163 1164 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1165 __free_page(rq->special_vec.bv_page); 1166 1167 if (SCpnt->cmnd != rq->cmd) { 1168 mempool_free(SCpnt->cmnd, sd_cdb_pool); 1169 SCpnt->cmnd = NULL; 1170 SCpnt->cmd_len = 0; 1171 } 1172 } 1173 1174 /** 1175 * sd_open - open a scsi disk device 1176 * @inode: only i_rdev member may be used 1177 * @filp: only f_mode and f_flags may be used 1178 * 1179 * Returns 0 if successful. Returns a negated errno value in case 1180 * of error. 1181 * 1182 * Note: This can be called from a user context (e.g. fsck(1) ) 1183 * or from within the kernel (e.g. as a result of a mount(1) ). 1184 * In the latter case @inode and @filp carry an abridged amount 1185 * of information as noted above. 1186 * 1187 * Locking: called with bdev->bd_mutex held. 1188 **/ 1189 static int sd_open(struct block_device *bdev, fmode_t mode) 1190 { 1191 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1192 struct scsi_device *sdev; 1193 int retval; 1194 1195 if (!sdkp) 1196 return -ENXIO; 1197 1198 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1199 1200 sdev = sdkp->device; 1201 1202 /* 1203 * If the device is in error recovery, wait until it is done. 1204 * If the device is offline, then disallow any access to it. 1205 */ 1206 retval = -ENXIO; 1207 if (!scsi_block_when_processing_errors(sdev)) 1208 goto error_out; 1209 1210 if (sdev->removable || sdkp->write_prot) 1211 check_disk_change(bdev); 1212 1213 /* 1214 * If the drive is empty, just let the open fail. 1215 */ 1216 retval = -ENOMEDIUM; 1217 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1218 goto error_out; 1219 1220 /* 1221 * If the device has the write protect tab set, have the open fail 1222 * if the user expects to be able to write to the thing. 1223 */ 1224 retval = -EROFS; 1225 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1226 goto error_out; 1227 1228 /* 1229 * It is possible that the disk changing stuff resulted in 1230 * the device being taken offline. If this is the case, 1231 * report this to the user, and don't pretend that the 1232 * open actually succeeded. 1233 */ 1234 retval = -ENXIO; 1235 if (!scsi_device_online(sdev)) 1236 goto error_out; 1237 1238 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1239 if (scsi_block_when_processing_errors(sdev)) 1240 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1241 } 1242 1243 return 0; 1244 1245 error_out: 1246 scsi_disk_put(sdkp); 1247 return retval; 1248 } 1249 1250 /** 1251 * sd_release - invoked when the (last) close(2) is called on this 1252 * scsi disk. 1253 * @inode: only i_rdev member may be used 1254 * @filp: only f_mode and f_flags may be used 1255 * 1256 * Returns 0. 1257 * 1258 * Note: may block (uninterruptible) if error recovery is underway 1259 * on this disk. 1260 * 1261 * Locking: called with bdev->bd_mutex held. 1262 **/ 1263 static void sd_release(struct gendisk *disk, fmode_t mode) 1264 { 1265 struct scsi_disk *sdkp = scsi_disk(disk); 1266 struct scsi_device *sdev = sdkp->device; 1267 1268 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1269 1270 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1271 if (scsi_block_when_processing_errors(sdev)) 1272 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1273 } 1274 1275 /* 1276 * XXX and what if there are packets in flight and this close() 1277 * XXX is followed by a "rmmod sd_mod"? 1278 */ 1279 1280 scsi_disk_put(sdkp); 1281 } 1282 1283 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1284 { 1285 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1286 struct scsi_device *sdp = sdkp->device; 1287 struct Scsi_Host *host = sdp->host; 1288 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1289 int diskinfo[4]; 1290 1291 /* default to most commonly used values */ 1292 diskinfo[0] = 0x40; /* 1 << 6 */ 1293 diskinfo[1] = 0x20; /* 1 << 5 */ 1294 diskinfo[2] = capacity >> 11; 1295 1296 /* override with calculated, extended default, or driver values */ 1297 if (host->hostt->bios_param) 1298 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1299 else 1300 scsicam_bios_param(bdev, capacity, diskinfo); 1301 1302 geo->heads = diskinfo[0]; 1303 geo->sectors = diskinfo[1]; 1304 geo->cylinders = diskinfo[2]; 1305 return 0; 1306 } 1307 1308 /** 1309 * sd_ioctl - process an ioctl 1310 * @inode: only i_rdev/i_bdev members may be used 1311 * @filp: only f_mode and f_flags may be used 1312 * @cmd: ioctl command number 1313 * @arg: this is third argument given to ioctl(2) system call. 1314 * Often contains a pointer. 1315 * 1316 * Returns 0 if successful (some ioctls return positive numbers on 1317 * success as well). Returns a negated errno value in case of error. 1318 * 1319 * Note: most ioctls are forward onto the block subsystem or further 1320 * down in the scsi subsystem. 1321 **/ 1322 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1323 unsigned int cmd, unsigned long arg) 1324 { 1325 struct gendisk *disk = bdev->bd_disk; 1326 struct scsi_disk *sdkp = scsi_disk(disk); 1327 struct scsi_device *sdp = sdkp->device; 1328 void __user *p = (void __user *)arg; 1329 int error; 1330 1331 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1332 "cmd=0x%x\n", disk->disk_name, cmd)); 1333 1334 error = scsi_verify_blk_ioctl(bdev, cmd); 1335 if (error < 0) 1336 return error; 1337 1338 /* 1339 * If we are in the middle of error recovery, don't let anyone 1340 * else try and use this device. Also, if error recovery fails, it 1341 * may try and take the device offline, in which case all further 1342 * access to the device is prohibited. 1343 */ 1344 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1345 (mode & FMODE_NDELAY) != 0); 1346 if (error) 1347 goto out; 1348 1349 /* 1350 * Send SCSI addressing ioctls directly to mid level, send other 1351 * ioctls to block level and then onto mid level if they can't be 1352 * resolved. 1353 */ 1354 switch (cmd) { 1355 case SCSI_IOCTL_GET_IDLUN: 1356 case SCSI_IOCTL_GET_BUS_NUMBER: 1357 error = scsi_ioctl(sdp, cmd, p); 1358 break; 1359 default: 1360 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1361 if (error != -ENOTTY) 1362 break; 1363 error = scsi_ioctl(sdp, cmd, p); 1364 break; 1365 } 1366 out: 1367 return error; 1368 } 1369 1370 static void set_media_not_present(struct scsi_disk *sdkp) 1371 { 1372 if (sdkp->media_present) 1373 sdkp->device->changed = 1; 1374 1375 if (sdkp->device->removable) { 1376 sdkp->media_present = 0; 1377 sdkp->capacity = 0; 1378 } 1379 } 1380 1381 static int media_not_present(struct scsi_disk *sdkp, 1382 struct scsi_sense_hdr *sshdr) 1383 { 1384 if (!scsi_sense_valid(sshdr)) 1385 return 0; 1386 1387 /* not invoked for commands that could return deferred errors */ 1388 switch (sshdr->sense_key) { 1389 case UNIT_ATTENTION: 1390 case NOT_READY: 1391 /* medium not present */ 1392 if (sshdr->asc == 0x3A) { 1393 set_media_not_present(sdkp); 1394 return 1; 1395 } 1396 } 1397 return 0; 1398 } 1399 1400 /** 1401 * sd_check_events - check media events 1402 * @disk: kernel device descriptor 1403 * @clearing: disk events currently being cleared 1404 * 1405 * Returns mask of DISK_EVENT_*. 1406 * 1407 * Note: this function is invoked from the block subsystem. 1408 **/ 1409 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1410 { 1411 struct scsi_disk *sdkp = scsi_disk_get(disk); 1412 struct scsi_device *sdp; 1413 struct scsi_sense_hdr *sshdr = NULL; 1414 int retval; 1415 1416 if (!sdkp) 1417 return 0; 1418 1419 sdp = sdkp->device; 1420 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1421 1422 /* 1423 * If the device is offline, don't send any commands - just pretend as 1424 * if the command failed. If the device ever comes back online, we 1425 * can deal with it then. It is only because of unrecoverable errors 1426 * that we would ever take a device offline in the first place. 1427 */ 1428 if (!scsi_device_online(sdp)) { 1429 set_media_not_present(sdkp); 1430 goto out; 1431 } 1432 1433 /* 1434 * Using TEST_UNIT_READY enables differentiation between drive with 1435 * no cartridge loaded - NOT READY, drive with changed cartridge - 1436 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1437 * 1438 * Drives that auto spin down. eg iomega jaz 1G, will be started 1439 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1440 * sd_revalidate() is called. 1441 */ 1442 retval = -ENODEV; 1443 1444 if (scsi_block_when_processing_errors(sdp)) { 1445 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1446 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1447 sshdr); 1448 } 1449 1450 /* failed to execute TUR, assume media not present */ 1451 if (host_byte(retval)) { 1452 set_media_not_present(sdkp); 1453 goto out; 1454 } 1455 1456 if (media_not_present(sdkp, sshdr)) 1457 goto out; 1458 1459 /* 1460 * For removable scsi disk we have to recognise the presence 1461 * of a disk in the drive. 1462 */ 1463 if (!sdkp->media_present) 1464 sdp->changed = 1; 1465 sdkp->media_present = 1; 1466 out: 1467 /* 1468 * sdp->changed is set under the following conditions: 1469 * 1470 * Medium present state has changed in either direction. 1471 * Device has indicated UNIT_ATTENTION. 1472 */ 1473 kfree(sshdr); 1474 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1475 sdp->changed = 0; 1476 scsi_disk_put(sdkp); 1477 return retval; 1478 } 1479 1480 static int sd_sync_cache(struct scsi_disk *sdkp) 1481 { 1482 int retries, res; 1483 struct scsi_device *sdp = sdkp->device; 1484 const int timeout = sdp->request_queue->rq_timeout 1485 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1486 struct scsi_sense_hdr sshdr; 1487 1488 if (!scsi_device_online(sdp)) 1489 return -ENODEV; 1490 1491 for (retries = 3; retries > 0; --retries) { 1492 unsigned char cmd[10] = { 0 }; 1493 1494 cmd[0] = SYNCHRONIZE_CACHE; 1495 /* 1496 * Leave the rest of the command zero to indicate 1497 * flush everything. 1498 */ 1499 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, 1500 &sshdr, timeout, SD_MAX_RETRIES, 1501 NULL, 0, RQF_PM); 1502 if (res == 0) 1503 break; 1504 } 1505 1506 if (res) { 1507 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1508 1509 if (driver_byte(res) & DRIVER_SENSE) 1510 sd_print_sense_hdr(sdkp, &sshdr); 1511 /* we need to evaluate the error return */ 1512 if (scsi_sense_valid(&sshdr) && 1513 (sshdr.asc == 0x3a || /* medium not present */ 1514 sshdr.asc == 0x20)) /* invalid command */ 1515 /* this is no error here */ 1516 return 0; 1517 1518 switch (host_byte(res)) { 1519 /* ignore errors due to racing a disconnection */ 1520 case DID_BAD_TARGET: 1521 case DID_NO_CONNECT: 1522 return 0; 1523 /* signal the upper layer it might try again */ 1524 case DID_BUS_BUSY: 1525 case DID_IMM_RETRY: 1526 case DID_REQUEUE: 1527 case DID_SOFT_ERROR: 1528 return -EBUSY; 1529 default: 1530 return -EIO; 1531 } 1532 } 1533 return 0; 1534 } 1535 1536 static void sd_rescan(struct device *dev) 1537 { 1538 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1539 1540 revalidate_disk(sdkp->disk); 1541 } 1542 1543 1544 #ifdef CONFIG_COMPAT 1545 /* 1546 * This gets directly called from VFS. When the ioctl 1547 * is not recognized we go back to the other translation paths. 1548 */ 1549 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1550 unsigned int cmd, unsigned long arg) 1551 { 1552 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1553 int error; 1554 1555 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1556 (mode & FMODE_NDELAY) != 0); 1557 if (error) 1558 return error; 1559 1560 /* 1561 * Let the static ioctl translation table take care of it. 1562 */ 1563 if (!sdev->host->hostt->compat_ioctl) 1564 return -ENOIOCTLCMD; 1565 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1566 } 1567 #endif 1568 1569 static char sd_pr_type(enum pr_type type) 1570 { 1571 switch (type) { 1572 case PR_WRITE_EXCLUSIVE: 1573 return 0x01; 1574 case PR_EXCLUSIVE_ACCESS: 1575 return 0x03; 1576 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1577 return 0x05; 1578 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1579 return 0x06; 1580 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1581 return 0x07; 1582 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1583 return 0x08; 1584 default: 1585 return 0; 1586 } 1587 }; 1588 1589 static int sd_pr_command(struct block_device *bdev, u8 sa, 1590 u64 key, u64 sa_key, u8 type, u8 flags) 1591 { 1592 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1593 struct scsi_sense_hdr sshdr; 1594 int result; 1595 u8 cmd[16] = { 0, }; 1596 u8 data[24] = { 0, }; 1597 1598 cmd[0] = PERSISTENT_RESERVE_OUT; 1599 cmd[1] = sa; 1600 cmd[2] = type; 1601 put_unaligned_be32(sizeof(data), &cmd[5]); 1602 1603 put_unaligned_be64(key, &data[0]); 1604 put_unaligned_be64(sa_key, &data[8]); 1605 data[20] = flags; 1606 1607 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1608 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1609 1610 if ((driver_byte(result) & DRIVER_SENSE) && 1611 (scsi_sense_valid(&sshdr))) { 1612 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1613 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1614 } 1615 1616 return result; 1617 } 1618 1619 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1620 u32 flags) 1621 { 1622 if (flags & ~PR_FL_IGNORE_KEY) 1623 return -EOPNOTSUPP; 1624 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1625 old_key, new_key, 0, 1626 (1 << 0) /* APTPL */); 1627 } 1628 1629 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1630 u32 flags) 1631 { 1632 if (flags) 1633 return -EOPNOTSUPP; 1634 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1635 } 1636 1637 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1638 { 1639 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1640 } 1641 1642 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1643 enum pr_type type, bool abort) 1644 { 1645 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1646 sd_pr_type(type), 0); 1647 } 1648 1649 static int sd_pr_clear(struct block_device *bdev, u64 key) 1650 { 1651 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1652 } 1653 1654 static const struct pr_ops sd_pr_ops = { 1655 .pr_register = sd_pr_register, 1656 .pr_reserve = sd_pr_reserve, 1657 .pr_release = sd_pr_release, 1658 .pr_preempt = sd_pr_preempt, 1659 .pr_clear = sd_pr_clear, 1660 }; 1661 1662 static const struct block_device_operations sd_fops = { 1663 .owner = THIS_MODULE, 1664 .open = sd_open, 1665 .release = sd_release, 1666 .ioctl = sd_ioctl, 1667 .getgeo = sd_getgeo, 1668 #ifdef CONFIG_COMPAT 1669 .compat_ioctl = sd_compat_ioctl, 1670 #endif 1671 .check_events = sd_check_events, 1672 .revalidate_disk = sd_revalidate_disk, 1673 .unlock_native_capacity = sd_unlock_native_capacity, 1674 .pr_ops = &sd_pr_ops, 1675 }; 1676 1677 /** 1678 * sd_eh_action - error handling callback 1679 * @scmd: sd-issued command that has failed 1680 * @eh_disp: The recovery disposition suggested by the midlayer 1681 * 1682 * This function is called by the SCSI midlayer upon completion of an 1683 * error test command (currently TEST UNIT READY). The result of sending 1684 * the eh command is passed in eh_disp. We're looking for devices that 1685 * fail medium access commands but are OK with non access commands like 1686 * test unit ready (so wrongly see the device as having a successful 1687 * recovery) 1688 **/ 1689 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1690 { 1691 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1692 1693 if (!scsi_device_online(scmd->device) || 1694 !scsi_medium_access_command(scmd) || 1695 host_byte(scmd->result) != DID_TIME_OUT || 1696 eh_disp != SUCCESS) 1697 return eh_disp; 1698 1699 /* 1700 * The device has timed out executing a medium access command. 1701 * However, the TEST UNIT READY command sent during error 1702 * handling completed successfully. Either the device is in the 1703 * process of recovering or has it suffered an internal failure 1704 * that prevents access to the storage medium. 1705 */ 1706 sdkp->medium_access_timed_out++; 1707 1708 /* 1709 * If the device keeps failing read/write commands but TEST UNIT 1710 * READY always completes successfully we assume that medium 1711 * access is no longer possible and take the device offline. 1712 */ 1713 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1714 scmd_printk(KERN_ERR, scmd, 1715 "Medium access timeout failure. Offlining disk!\n"); 1716 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1717 1718 return FAILED; 1719 } 1720 1721 return eh_disp; 1722 } 1723 1724 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1725 { 1726 u64 start_lba = blk_rq_pos(scmd->request); 1727 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); 1728 u64 factor = scmd->device->sector_size / 512; 1729 u64 bad_lba; 1730 int info_valid; 1731 /* 1732 * resid is optional but mostly filled in. When it's unused, 1733 * its value is zero, so we assume the whole buffer transferred 1734 */ 1735 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1736 unsigned int good_bytes; 1737 1738 if (scmd->request->cmd_type != REQ_TYPE_FS) 1739 return 0; 1740 1741 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, 1742 SCSI_SENSE_BUFFERSIZE, 1743 &bad_lba); 1744 if (!info_valid) 1745 return 0; 1746 1747 if (scsi_bufflen(scmd) <= scmd->device->sector_size) 1748 return 0; 1749 1750 /* be careful ... don't want any overflows */ 1751 do_div(start_lba, factor); 1752 do_div(end_lba, factor); 1753 1754 /* The bad lba was reported incorrectly, we have no idea where 1755 * the error is. 1756 */ 1757 if (bad_lba < start_lba || bad_lba >= end_lba) 1758 return 0; 1759 1760 /* This computation should always be done in terms of 1761 * the resolution of the device's medium. 1762 */ 1763 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; 1764 return min(good_bytes, transferred); 1765 } 1766 1767 /** 1768 * sd_done - bottom half handler: called when the lower level 1769 * driver has completed (successfully or otherwise) a scsi command. 1770 * @SCpnt: mid-level's per command structure. 1771 * 1772 * Note: potentially run from within an ISR. Must not block. 1773 **/ 1774 static int sd_done(struct scsi_cmnd *SCpnt) 1775 { 1776 int result = SCpnt->result; 1777 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1778 struct scsi_sense_hdr sshdr; 1779 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1780 struct request *req = SCpnt->request; 1781 int sense_valid = 0; 1782 int sense_deferred = 0; 1783 unsigned char op = SCpnt->cmnd[0]; 1784 unsigned char unmap = SCpnt->cmnd[1] & 8; 1785 1786 switch (req_op(req)) { 1787 case REQ_OP_DISCARD: 1788 case REQ_OP_WRITE_SAME: 1789 case REQ_OP_ZONE_RESET: 1790 if (!result) { 1791 good_bytes = blk_rq_bytes(req); 1792 scsi_set_resid(SCpnt, 0); 1793 } else { 1794 good_bytes = 0; 1795 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1796 } 1797 break; 1798 case REQ_OP_ZONE_REPORT: 1799 if (!result) { 1800 good_bytes = scsi_bufflen(SCpnt) 1801 - scsi_get_resid(SCpnt); 1802 scsi_set_resid(SCpnt, 0); 1803 } else { 1804 good_bytes = 0; 1805 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1806 } 1807 break; 1808 } 1809 1810 if (result) { 1811 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1812 if (sense_valid) 1813 sense_deferred = scsi_sense_is_deferred(&sshdr); 1814 } 1815 sdkp->medium_access_timed_out = 0; 1816 1817 if (driver_byte(result) != DRIVER_SENSE && 1818 (!sense_valid || sense_deferred)) 1819 goto out; 1820 1821 switch (sshdr.sense_key) { 1822 case HARDWARE_ERROR: 1823 case MEDIUM_ERROR: 1824 good_bytes = sd_completed_bytes(SCpnt); 1825 break; 1826 case RECOVERED_ERROR: 1827 good_bytes = scsi_bufflen(SCpnt); 1828 break; 1829 case NO_SENSE: 1830 /* This indicates a false check condition, so ignore it. An 1831 * unknown amount of data was transferred so treat it as an 1832 * error. 1833 */ 1834 SCpnt->result = 0; 1835 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1836 break; 1837 case ABORTED_COMMAND: 1838 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1839 good_bytes = sd_completed_bytes(SCpnt); 1840 break; 1841 case ILLEGAL_REQUEST: 1842 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ 1843 good_bytes = sd_completed_bytes(SCpnt); 1844 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 1845 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 1846 switch (op) { 1847 case UNMAP: 1848 sd_config_discard(sdkp, SD_LBP_DISABLE); 1849 break; 1850 case WRITE_SAME_16: 1851 case WRITE_SAME: 1852 if (unmap) 1853 sd_config_discard(sdkp, SD_LBP_DISABLE); 1854 else { 1855 sdkp->device->no_write_same = 1; 1856 sd_config_write_same(sdkp); 1857 1858 good_bytes = 0; 1859 req->__data_len = blk_rq_bytes(req); 1860 req->rq_flags |= RQF_QUIET; 1861 } 1862 } 1863 } 1864 break; 1865 default: 1866 break; 1867 } 1868 1869 out: 1870 if (sd_is_zoned(sdkp)) 1871 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 1872 1873 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 1874 "sd_done: completed %d of %d bytes\n", 1875 good_bytes, scsi_bufflen(SCpnt))); 1876 1877 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 1878 sd_dif_complete(SCpnt, good_bytes); 1879 1880 return good_bytes; 1881 } 1882 1883 /* 1884 * spinup disk - called only in sd_revalidate_disk() 1885 */ 1886 static void 1887 sd_spinup_disk(struct scsi_disk *sdkp) 1888 { 1889 unsigned char cmd[10]; 1890 unsigned long spintime_expire = 0; 1891 int retries, spintime; 1892 unsigned int the_result; 1893 struct scsi_sense_hdr sshdr; 1894 int sense_valid = 0; 1895 1896 spintime = 0; 1897 1898 /* Spin up drives, as required. Only do this at boot time */ 1899 /* Spinup needs to be done for module loads too. */ 1900 do { 1901 retries = 0; 1902 1903 do { 1904 cmd[0] = TEST_UNIT_READY; 1905 memset((void *) &cmd[1], 0, 9); 1906 1907 the_result = scsi_execute_req(sdkp->device, cmd, 1908 DMA_NONE, NULL, 0, 1909 &sshdr, SD_TIMEOUT, 1910 SD_MAX_RETRIES, NULL); 1911 1912 /* 1913 * If the drive has indicated to us that it 1914 * doesn't have any media in it, don't bother 1915 * with any more polling. 1916 */ 1917 if (media_not_present(sdkp, &sshdr)) 1918 return; 1919 1920 if (the_result) 1921 sense_valid = scsi_sense_valid(&sshdr); 1922 retries++; 1923 } while (retries < 3 && 1924 (!scsi_status_is_good(the_result) || 1925 ((driver_byte(the_result) & DRIVER_SENSE) && 1926 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 1927 1928 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 1929 /* no sense, TUR either succeeded or failed 1930 * with a status error */ 1931 if(!spintime && !scsi_status_is_good(the_result)) { 1932 sd_print_result(sdkp, "Test Unit Ready failed", 1933 the_result); 1934 } 1935 break; 1936 } 1937 1938 /* 1939 * The device does not want the automatic start to be issued. 1940 */ 1941 if (sdkp->device->no_start_on_add) 1942 break; 1943 1944 if (sense_valid && sshdr.sense_key == NOT_READY) { 1945 if (sshdr.asc == 4 && sshdr.ascq == 3) 1946 break; /* manual intervention required */ 1947 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 1948 break; /* standby */ 1949 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 1950 break; /* unavailable */ 1951 /* 1952 * Issue command to spin up drive when not ready 1953 */ 1954 if (!spintime) { 1955 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 1956 cmd[0] = START_STOP; 1957 cmd[1] = 1; /* Return immediately */ 1958 memset((void *) &cmd[2], 0, 8); 1959 cmd[4] = 1; /* Start spin cycle */ 1960 if (sdkp->device->start_stop_pwr_cond) 1961 cmd[4] |= 1 << 4; 1962 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 1963 NULL, 0, &sshdr, 1964 SD_TIMEOUT, SD_MAX_RETRIES, 1965 NULL); 1966 spintime_expire = jiffies + 100 * HZ; 1967 spintime = 1; 1968 } 1969 /* Wait 1 second for next try */ 1970 msleep(1000); 1971 printk("."); 1972 1973 /* 1974 * Wait for USB flash devices with slow firmware. 1975 * Yes, this sense key/ASC combination shouldn't 1976 * occur here. It's characteristic of these devices. 1977 */ 1978 } else if (sense_valid && 1979 sshdr.sense_key == UNIT_ATTENTION && 1980 sshdr.asc == 0x28) { 1981 if (!spintime) { 1982 spintime_expire = jiffies + 5 * HZ; 1983 spintime = 1; 1984 } 1985 /* Wait 1 second for next try */ 1986 msleep(1000); 1987 } else { 1988 /* we don't understand the sense code, so it's 1989 * probably pointless to loop */ 1990 if(!spintime) { 1991 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 1992 sd_print_sense_hdr(sdkp, &sshdr); 1993 } 1994 break; 1995 } 1996 1997 } while (spintime && time_before_eq(jiffies, spintime_expire)); 1998 1999 if (spintime) { 2000 if (scsi_status_is_good(the_result)) 2001 printk("ready\n"); 2002 else 2003 printk("not responding...\n"); 2004 } 2005 } 2006 2007 /* 2008 * Determine whether disk supports Data Integrity Field. 2009 */ 2010 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2011 { 2012 struct scsi_device *sdp = sdkp->device; 2013 u8 type; 2014 int ret = 0; 2015 2016 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2017 return ret; 2018 2019 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2020 2021 if (type > T10_PI_TYPE3_PROTECTION) 2022 ret = -ENODEV; 2023 else if (scsi_host_dif_capable(sdp->host, type)) 2024 ret = 1; 2025 2026 if (sdkp->first_scan || type != sdkp->protection_type) 2027 switch (ret) { 2028 case -ENODEV: 2029 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2030 " protection type %u. Disabling disk!\n", 2031 type); 2032 break; 2033 case 1: 2034 sd_printk(KERN_NOTICE, sdkp, 2035 "Enabling DIF Type %u protection\n", type); 2036 break; 2037 case 0: 2038 sd_printk(KERN_NOTICE, sdkp, 2039 "Disabling DIF Type %u protection\n", type); 2040 break; 2041 } 2042 2043 sdkp->protection_type = type; 2044 2045 return ret; 2046 } 2047 2048 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2049 struct scsi_sense_hdr *sshdr, int sense_valid, 2050 int the_result) 2051 { 2052 if (driver_byte(the_result) & DRIVER_SENSE) 2053 sd_print_sense_hdr(sdkp, sshdr); 2054 else 2055 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2056 2057 /* 2058 * Set dirty bit for removable devices if not ready - 2059 * sometimes drives will not report this properly. 2060 */ 2061 if (sdp->removable && 2062 sense_valid && sshdr->sense_key == NOT_READY) 2063 set_media_not_present(sdkp); 2064 2065 /* 2066 * We used to set media_present to 0 here to indicate no media 2067 * in the drive, but some drives fail read capacity even with 2068 * media present, so we can't do that. 2069 */ 2070 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2071 } 2072 2073 #define RC16_LEN 32 2074 #if RC16_LEN > SD_BUF_SIZE 2075 #error RC16_LEN must not be more than SD_BUF_SIZE 2076 #endif 2077 2078 #define READ_CAPACITY_RETRIES_ON_RESET 10 2079 2080 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2081 unsigned char *buffer) 2082 { 2083 unsigned char cmd[16]; 2084 struct scsi_sense_hdr sshdr; 2085 int sense_valid = 0; 2086 int the_result; 2087 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2088 unsigned int alignment; 2089 unsigned long long lba; 2090 unsigned sector_size; 2091 2092 if (sdp->no_read_capacity_16) 2093 return -EINVAL; 2094 2095 do { 2096 memset(cmd, 0, 16); 2097 cmd[0] = SERVICE_ACTION_IN_16; 2098 cmd[1] = SAI_READ_CAPACITY_16; 2099 cmd[13] = RC16_LEN; 2100 memset(buffer, 0, RC16_LEN); 2101 2102 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2103 buffer, RC16_LEN, &sshdr, 2104 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2105 2106 if (media_not_present(sdkp, &sshdr)) 2107 return -ENODEV; 2108 2109 if (the_result) { 2110 sense_valid = scsi_sense_valid(&sshdr); 2111 if (sense_valid && 2112 sshdr.sense_key == ILLEGAL_REQUEST && 2113 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2114 sshdr.ascq == 0x00) 2115 /* Invalid Command Operation Code or 2116 * Invalid Field in CDB, just retry 2117 * silently with RC10 */ 2118 return -EINVAL; 2119 if (sense_valid && 2120 sshdr.sense_key == UNIT_ATTENTION && 2121 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2122 /* Device reset might occur several times, 2123 * give it one more chance */ 2124 if (--reset_retries > 0) 2125 continue; 2126 } 2127 retries--; 2128 2129 } while (the_result && retries); 2130 2131 if (the_result) { 2132 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2133 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2134 return -EINVAL; 2135 } 2136 2137 sector_size = get_unaligned_be32(&buffer[8]); 2138 lba = get_unaligned_be64(&buffer[0]); 2139 2140 if (sd_read_protection_type(sdkp, buffer) < 0) { 2141 sdkp->capacity = 0; 2142 return -ENODEV; 2143 } 2144 2145 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) { 2146 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2147 "kernel compiled with support for large block " 2148 "devices.\n"); 2149 sdkp->capacity = 0; 2150 return -EOVERFLOW; 2151 } 2152 2153 /* Logical blocks per physical block exponent */ 2154 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2155 2156 /* RC basis */ 2157 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2158 2159 /* Lowest aligned logical block */ 2160 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2161 blk_queue_alignment_offset(sdp->request_queue, alignment); 2162 if (alignment && sdkp->first_scan) 2163 sd_printk(KERN_NOTICE, sdkp, 2164 "physical block alignment offset: %u\n", alignment); 2165 2166 if (buffer[14] & 0x80) { /* LBPME */ 2167 sdkp->lbpme = 1; 2168 2169 if (buffer[14] & 0x40) /* LBPRZ */ 2170 sdkp->lbprz = 1; 2171 2172 sd_config_discard(sdkp, SD_LBP_WS16); 2173 } 2174 2175 sdkp->capacity = lba + 1; 2176 return sector_size; 2177 } 2178 2179 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2180 unsigned char *buffer) 2181 { 2182 unsigned char cmd[16]; 2183 struct scsi_sense_hdr sshdr; 2184 int sense_valid = 0; 2185 int the_result; 2186 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2187 sector_t lba; 2188 unsigned sector_size; 2189 2190 do { 2191 cmd[0] = READ_CAPACITY; 2192 memset(&cmd[1], 0, 9); 2193 memset(buffer, 0, 8); 2194 2195 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2196 buffer, 8, &sshdr, 2197 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2198 2199 if (media_not_present(sdkp, &sshdr)) 2200 return -ENODEV; 2201 2202 if (the_result) { 2203 sense_valid = scsi_sense_valid(&sshdr); 2204 if (sense_valid && 2205 sshdr.sense_key == UNIT_ATTENTION && 2206 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2207 /* Device reset might occur several times, 2208 * give it one more chance */ 2209 if (--reset_retries > 0) 2210 continue; 2211 } 2212 retries--; 2213 2214 } while (the_result && retries); 2215 2216 if (the_result) { 2217 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2218 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2219 return -EINVAL; 2220 } 2221 2222 sector_size = get_unaligned_be32(&buffer[4]); 2223 lba = get_unaligned_be32(&buffer[0]); 2224 2225 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2226 /* Some buggy (usb cardreader) devices return an lba of 2227 0xffffffff when the want to report a size of 0 (with 2228 which they really mean no media is present) */ 2229 sdkp->capacity = 0; 2230 sdkp->physical_block_size = sector_size; 2231 return sector_size; 2232 } 2233 2234 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) { 2235 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2236 "kernel compiled with support for large block " 2237 "devices.\n"); 2238 sdkp->capacity = 0; 2239 return -EOVERFLOW; 2240 } 2241 2242 sdkp->capacity = lba + 1; 2243 sdkp->physical_block_size = sector_size; 2244 return sector_size; 2245 } 2246 2247 static int sd_try_rc16_first(struct scsi_device *sdp) 2248 { 2249 if (sdp->host->max_cmd_len < 16) 2250 return 0; 2251 if (sdp->try_rc_10_first) 2252 return 0; 2253 if (sdp->scsi_level > SCSI_SPC_2) 2254 return 1; 2255 if (scsi_device_protection(sdp)) 2256 return 1; 2257 return 0; 2258 } 2259 2260 /* 2261 * read disk capacity 2262 */ 2263 static void 2264 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2265 { 2266 int sector_size; 2267 struct scsi_device *sdp = sdkp->device; 2268 2269 if (sd_try_rc16_first(sdp)) { 2270 sector_size = read_capacity_16(sdkp, sdp, buffer); 2271 if (sector_size == -EOVERFLOW) 2272 goto got_data; 2273 if (sector_size == -ENODEV) 2274 return; 2275 if (sector_size < 0) 2276 sector_size = read_capacity_10(sdkp, sdp, buffer); 2277 if (sector_size < 0) 2278 return; 2279 } else { 2280 sector_size = read_capacity_10(sdkp, sdp, buffer); 2281 if (sector_size == -EOVERFLOW) 2282 goto got_data; 2283 if (sector_size < 0) 2284 return; 2285 if ((sizeof(sdkp->capacity) > 4) && 2286 (sdkp->capacity > 0xffffffffULL)) { 2287 int old_sector_size = sector_size; 2288 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2289 "Trying to use READ CAPACITY(16).\n"); 2290 sector_size = read_capacity_16(sdkp, sdp, buffer); 2291 if (sector_size < 0) { 2292 sd_printk(KERN_NOTICE, sdkp, 2293 "Using 0xffffffff as device size\n"); 2294 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2295 sector_size = old_sector_size; 2296 goto got_data; 2297 } 2298 } 2299 } 2300 2301 /* Some devices are known to return the total number of blocks, 2302 * not the highest block number. Some devices have versions 2303 * which do this and others which do not. Some devices we might 2304 * suspect of doing this but we don't know for certain. 2305 * 2306 * If we know the reported capacity is wrong, decrement it. If 2307 * we can only guess, then assume the number of blocks is even 2308 * (usually true but not always) and err on the side of lowering 2309 * the capacity. 2310 */ 2311 if (sdp->fix_capacity || 2312 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2313 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2314 "from its reported value: %llu\n", 2315 (unsigned long long) sdkp->capacity); 2316 --sdkp->capacity; 2317 } 2318 2319 got_data: 2320 if (sector_size == 0) { 2321 sector_size = 512; 2322 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2323 "assuming 512.\n"); 2324 } 2325 2326 if (sector_size != 512 && 2327 sector_size != 1024 && 2328 sector_size != 2048 && 2329 sector_size != 4096) { 2330 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2331 sector_size); 2332 /* 2333 * The user might want to re-format the drive with 2334 * a supported sectorsize. Once this happens, it 2335 * would be relatively trivial to set the thing up. 2336 * For this reason, we leave the thing in the table. 2337 */ 2338 sdkp->capacity = 0; 2339 /* 2340 * set a bogus sector size so the normal read/write 2341 * logic in the block layer will eventually refuse any 2342 * request on this device without tripping over power 2343 * of two sector size assumptions 2344 */ 2345 sector_size = 512; 2346 } 2347 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2348 blk_queue_physical_block_size(sdp->request_queue, 2349 sdkp->physical_block_size); 2350 sdkp->device->sector_size = sector_size; 2351 2352 if (sdkp->capacity > 0xffffffff) 2353 sdp->use_16_for_rw = 1; 2354 2355 } 2356 2357 /* 2358 * Print disk capacity 2359 */ 2360 static void 2361 sd_print_capacity(struct scsi_disk *sdkp, 2362 sector_t old_capacity) 2363 { 2364 int sector_size = sdkp->device->sector_size; 2365 char cap_str_2[10], cap_str_10[10]; 2366 2367 string_get_size(sdkp->capacity, sector_size, 2368 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2369 string_get_size(sdkp->capacity, sector_size, 2370 STRING_UNITS_10, cap_str_10, 2371 sizeof(cap_str_10)); 2372 2373 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2374 sd_printk(KERN_NOTICE, sdkp, 2375 "%llu %d-byte logical blocks: (%s/%s)\n", 2376 (unsigned long long)sdkp->capacity, 2377 sector_size, cap_str_10, cap_str_2); 2378 2379 if (sdkp->physical_block_size != sector_size) 2380 sd_printk(KERN_NOTICE, sdkp, 2381 "%u-byte physical blocks\n", 2382 sdkp->physical_block_size); 2383 2384 sd_zbc_print_zones(sdkp); 2385 } 2386 } 2387 2388 /* called with buffer of length 512 */ 2389 static inline int 2390 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2391 unsigned char *buffer, int len, struct scsi_mode_data *data, 2392 struct scsi_sense_hdr *sshdr) 2393 { 2394 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2395 SD_TIMEOUT, SD_MAX_RETRIES, data, 2396 sshdr); 2397 } 2398 2399 /* 2400 * read write protect setting, if possible - called only in sd_revalidate_disk() 2401 * called with buffer of length SD_BUF_SIZE 2402 */ 2403 static void 2404 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2405 { 2406 int res; 2407 struct scsi_device *sdp = sdkp->device; 2408 struct scsi_mode_data data; 2409 int old_wp = sdkp->write_prot; 2410 2411 set_disk_ro(sdkp->disk, 0); 2412 if (sdp->skip_ms_page_3f) { 2413 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2414 return; 2415 } 2416 2417 if (sdp->use_192_bytes_for_3f) { 2418 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2419 } else { 2420 /* 2421 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2422 * We have to start carefully: some devices hang if we ask 2423 * for more than is available. 2424 */ 2425 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2426 2427 /* 2428 * Second attempt: ask for page 0 When only page 0 is 2429 * implemented, a request for page 3F may return Sense Key 2430 * 5: Illegal Request, Sense Code 24: Invalid field in 2431 * CDB. 2432 */ 2433 if (!scsi_status_is_good(res)) 2434 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2435 2436 /* 2437 * Third attempt: ask 255 bytes, as we did earlier. 2438 */ 2439 if (!scsi_status_is_good(res)) 2440 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2441 &data, NULL); 2442 } 2443 2444 if (!scsi_status_is_good(res)) { 2445 sd_first_printk(KERN_WARNING, sdkp, 2446 "Test WP failed, assume Write Enabled\n"); 2447 } else { 2448 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2449 set_disk_ro(sdkp->disk, sdkp->write_prot); 2450 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2451 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2452 sdkp->write_prot ? "on" : "off"); 2453 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2454 } 2455 } 2456 } 2457 2458 /* 2459 * sd_read_cache_type - called only from sd_revalidate_disk() 2460 * called with buffer of length SD_BUF_SIZE 2461 */ 2462 static void 2463 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2464 { 2465 int len = 0, res; 2466 struct scsi_device *sdp = sdkp->device; 2467 2468 int dbd; 2469 int modepage; 2470 int first_len; 2471 struct scsi_mode_data data; 2472 struct scsi_sense_hdr sshdr; 2473 int old_wce = sdkp->WCE; 2474 int old_rcd = sdkp->RCD; 2475 int old_dpofua = sdkp->DPOFUA; 2476 2477 2478 if (sdkp->cache_override) 2479 return; 2480 2481 first_len = 4; 2482 if (sdp->skip_ms_page_8) { 2483 if (sdp->type == TYPE_RBC) 2484 goto defaults; 2485 else { 2486 if (sdp->skip_ms_page_3f) 2487 goto defaults; 2488 modepage = 0x3F; 2489 if (sdp->use_192_bytes_for_3f) 2490 first_len = 192; 2491 dbd = 0; 2492 } 2493 } else if (sdp->type == TYPE_RBC) { 2494 modepage = 6; 2495 dbd = 8; 2496 } else { 2497 modepage = 8; 2498 dbd = 0; 2499 } 2500 2501 /* cautiously ask */ 2502 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2503 &data, &sshdr); 2504 2505 if (!scsi_status_is_good(res)) 2506 goto bad_sense; 2507 2508 if (!data.header_length) { 2509 modepage = 6; 2510 first_len = 0; 2511 sd_first_printk(KERN_ERR, sdkp, 2512 "Missing header in MODE_SENSE response\n"); 2513 } 2514 2515 /* that went OK, now ask for the proper length */ 2516 len = data.length; 2517 2518 /* 2519 * We're only interested in the first three bytes, actually. 2520 * But the data cache page is defined for the first 20. 2521 */ 2522 if (len < 3) 2523 goto bad_sense; 2524 else if (len > SD_BUF_SIZE) { 2525 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2526 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2527 len = SD_BUF_SIZE; 2528 } 2529 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2530 len = 192; 2531 2532 /* Get the data */ 2533 if (len > first_len) 2534 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2535 &data, &sshdr); 2536 2537 if (scsi_status_is_good(res)) { 2538 int offset = data.header_length + data.block_descriptor_length; 2539 2540 while (offset < len) { 2541 u8 page_code = buffer[offset] & 0x3F; 2542 u8 spf = buffer[offset] & 0x40; 2543 2544 if (page_code == 8 || page_code == 6) { 2545 /* We're interested only in the first 3 bytes. 2546 */ 2547 if (len - offset <= 2) { 2548 sd_first_printk(KERN_ERR, sdkp, 2549 "Incomplete mode parameter " 2550 "data\n"); 2551 goto defaults; 2552 } else { 2553 modepage = page_code; 2554 goto Page_found; 2555 } 2556 } else { 2557 /* Go to the next page */ 2558 if (spf && len - offset > 3) 2559 offset += 4 + (buffer[offset+2] << 8) + 2560 buffer[offset+3]; 2561 else if (!spf && len - offset > 1) 2562 offset += 2 + buffer[offset+1]; 2563 else { 2564 sd_first_printk(KERN_ERR, sdkp, 2565 "Incomplete mode " 2566 "parameter data\n"); 2567 goto defaults; 2568 } 2569 } 2570 } 2571 2572 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2573 goto defaults; 2574 2575 Page_found: 2576 if (modepage == 8) { 2577 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2578 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2579 } else { 2580 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2581 sdkp->RCD = 0; 2582 } 2583 2584 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2585 if (sdp->broken_fua) { 2586 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2587 sdkp->DPOFUA = 0; 2588 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2589 !sdkp->device->use_16_for_rw) { 2590 sd_first_printk(KERN_NOTICE, sdkp, 2591 "Uses READ/WRITE(6), disabling FUA\n"); 2592 sdkp->DPOFUA = 0; 2593 } 2594 2595 /* No cache flush allowed for write protected devices */ 2596 if (sdkp->WCE && sdkp->write_prot) 2597 sdkp->WCE = 0; 2598 2599 if (sdkp->first_scan || old_wce != sdkp->WCE || 2600 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2601 sd_printk(KERN_NOTICE, sdkp, 2602 "Write cache: %s, read cache: %s, %s\n", 2603 sdkp->WCE ? "enabled" : "disabled", 2604 sdkp->RCD ? "disabled" : "enabled", 2605 sdkp->DPOFUA ? "supports DPO and FUA" 2606 : "doesn't support DPO or FUA"); 2607 2608 return; 2609 } 2610 2611 bad_sense: 2612 if (scsi_sense_valid(&sshdr) && 2613 sshdr.sense_key == ILLEGAL_REQUEST && 2614 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2615 /* Invalid field in CDB */ 2616 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2617 else 2618 sd_first_printk(KERN_ERR, sdkp, 2619 "Asking for cache data failed\n"); 2620 2621 defaults: 2622 if (sdp->wce_default_on) { 2623 sd_first_printk(KERN_NOTICE, sdkp, 2624 "Assuming drive cache: write back\n"); 2625 sdkp->WCE = 1; 2626 } else { 2627 sd_first_printk(KERN_ERR, sdkp, 2628 "Assuming drive cache: write through\n"); 2629 sdkp->WCE = 0; 2630 } 2631 sdkp->RCD = 0; 2632 sdkp->DPOFUA = 0; 2633 } 2634 2635 /* 2636 * The ATO bit indicates whether the DIF application tag is available 2637 * for use by the operating system. 2638 */ 2639 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2640 { 2641 int res, offset; 2642 struct scsi_device *sdp = sdkp->device; 2643 struct scsi_mode_data data; 2644 struct scsi_sense_hdr sshdr; 2645 2646 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2647 return; 2648 2649 if (sdkp->protection_type == 0) 2650 return; 2651 2652 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2653 SD_MAX_RETRIES, &data, &sshdr); 2654 2655 if (!scsi_status_is_good(res) || !data.header_length || 2656 data.length < 6) { 2657 sd_first_printk(KERN_WARNING, sdkp, 2658 "getting Control mode page failed, assume no ATO\n"); 2659 2660 if (scsi_sense_valid(&sshdr)) 2661 sd_print_sense_hdr(sdkp, &sshdr); 2662 2663 return; 2664 } 2665 2666 offset = data.header_length + data.block_descriptor_length; 2667 2668 if ((buffer[offset] & 0x3f) != 0x0a) { 2669 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2670 return; 2671 } 2672 2673 if ((buffer[offset + 5] & 0x80) == 0) 2674 return; 2675 2676 sdkp->ATO = 1; 2677 2678 return; 2679 } 2680 2681 /** 2682 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2683 * @disk: disk to query 2684 */ 2685 static void sd_read_block_limits(struct scsi_disk *sdkp) 2686 { 2687 unsigned int sector_sz = sdkp->device->sector_size; 2688 const int vpd_len = 64; 2689 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2690 2691 if (!buffer || 2692 /* Block Limits VPD */ 2693 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2694 goto out; 2695 2696 blk_queue_io_min(sdkp->disk->queue, 2697 get_unaligned_be16(&buffer[6]) * sector_sz); 2698 2699 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2700 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2701 2702 if (buffer[3] == 0x3c) { 2703 unsigned int lba_count, desc_count; 2704 2705 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2706 2707 if (!sdkp->lbpme) 2708 goto out; 2709 2710 lba_count = get_unaligned_be32(&buffer[20]); 2711 desc_count = get_unaligned_be32(&buffer[24]); 2712 2713 if (lba_count && desc_count) 2714 sdkp->max_unmap_blocks = lba_count; 2715 2716 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2717 2718 if (buffer[32] & 0x80) 2719 sdkp->unmap_alignment = 2720 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2721 2722 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2723 2724 if (sdkp->max_unmap_blocks) 2725 sd_config_discard(sdkp, SD_LBP_UNMAP); 2726 else 2727 sd_config_discard(sdkp, SD_LBP_WS16); 2728 2729 } else { /* LBP VPD page tells us what to use */ 2730 if (sdkp->lbpu && sdkp->max_unmap_blocks && !sdkp->lbprz) 2731 sd_config_discard(sdkp, SD_LBP_UNMAP); 2732 else if (sdkp->lbpws) 2733 sd_config_discard(sdkp, SD_LBP_WS16); 2734 else if (sdkp->lbpws10) 2735 sd_config_discard(sdkp, SD_LBP_WS10); 2736 else if (sdkp->lbpu && sdkp->max_unmap_blocks) 2737 sd_config_discard(sdkp, SD_LBP_UNMAP); 2738 else 2739 sd_config_discard(sdkp, SD_LBP_DISABLE); 2740 } 2741 } 2742 2743 out: 2744 kfree(buffer); 2745 } 2746 2747 /** 2748 * sd_read_block_characteristics - Query block dev. characteristics 2749 * @disk: disk to query 2750 */ 2751 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2752 { 2753 struct request_queue *q = sdkp->disk->queue; 2754 unsigned char *buffer; 2755 u16 rot; 2756 const int vpd_len = 64; 2757 2758 buffer = kmalloc(vpd_len, GFP_KERNEL); 2759 2760 if (!buffer || 2761 /* Block Device Characteristics VPD */ 2762 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2763 goto out; 2764 2765 rot = get_unaligned_be16(&buffer[4]); 2766 2767 if (rot == 1) { 2768 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 2769 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 2770 } 2771 2772 if (sdkp->device->type == TYPE_ZBC) { 2773 /* Host-managed */ 2774 q->limits.zoned = BLK_ZONED_HM; 2775 } else { 2776 sdkp->zoned = (buffer[8] >> 4) & 3; 2777 if (sdkp->zoned == 1) 2778 /* Host-aware */ 2779 q->limits.zoned = BLK_ZONED_HA; 2780 else 2781 /* 2782 * Treat drive-managed devices as 2783 * regular block devices. 2784 */ 2785 q->limits.zoned = BLK_ZONED_NONE; 2786 } 2787 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2788 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2789 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2790 2791 out: 2792 kfree(buffer); 2793 } 2794 2795 /** 2796 * sd_read_block_provisioning - Query provisioning VPD page 2797 * @disk: disk to query 2798 */ 2799 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2800 { 2801 unsigned char *buffer; 2802 const int vpd_len = 8; 2803 2804 if (sdkp->lbpme == 0) 2805 return; 2806 2807 buffer = kmalloc(vpd_len, GFP_KERNEL); 2808 2809 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2810 goto out; 2811 2812 sdkp->lbpvpd = 1; 2813 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2814 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2815 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2816 2817 out: 2818 kfree(buffer); 2819 } 2820 2821 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2822 { 2823 struct scsi_device *sdev = sdkp->device; 2824 2825 if (sdev->host->no_write_same) { 2826 sdev->no_write_same = 1; 2827 2828 return; 2829 } 2830 2831 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2832 /* too large values might cause issues with arcmsr */ 2833 int vpd_buf_len = 64; 2834 2835 sdev->no_report_opcodes = 1; 2836 2837 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2838 * CODES is unsupported and the device has an ATA 2839 * Information VPD page (SAT). 2840 */ 2841 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 2842 sdev->no_write_same = 1; 2843 } 2844 2845 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2846 sdkp->ws16 = 1; 2847 2848 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2849 sdkp->ws10 = 1; 2850 } 2851 2852 /** 2853 * sd_revalidate_disk - called the first time a new disk is seen, 2854 * performs disk spin up, read_capacity, etc. 2855 * @disk: struct gendisk we care about 2856 **/ 2857 static int sd_revalidate_disk(struct gendisk *disk) 2858 { 2859 struct scsi_disk *sdkp = scsi_disk(disk); 2860 struct scsi_device *sdp = sdkp->device; 2861 struct request_queue *q = sdkp->disk->queue; 2862 sector_t old_capacity = sdkp->capacity; 2863 unsigned char *buffer; 2864 unsigned int dev_max, rw_max; 2865 2866 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 2867 "sd_revalidate_disk\n")); 2868 2869 /* 2870 * If the device is offline, don't try and read capacity or any 2871 * of the other niceties. 2872 */ 2873 if (!scsi_device_online(sdp)) 2874 goto out; 2875 2876 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 2877 if (!buffer) { 2878 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 2879 "allocation failure.\n"); 2880 goto out; 2881 } 2882 2883 sd_spinup_disk(sdkp); 2884 2885 /* 2886 * Without media there is no reason to ask; moreover, some devices 2887 * react badly if we do. 2888 */ 2889 if (sdkp->media_present) { 2890 sd_read_capacity(sdkp, buffer); 2891 2892 if (scsi_device_supports_vpd(sdp)) { 2893 sd_read_block_provisioning(sdkp); 2894 sd_read_block_limits(sdkp); 2895 sd_read_block_characteristics(sdkp); 2896 sd_zbc_read_zones(sdkp, buffer); 2897 } 2898 2899 sd_print_capacity(sdkp, old_capacity); 2900 2901 sd_read_write_protect_flag(sdkp, buffer); 2902 sd_read_cache_type(sdkp, buffer); 2903 sd_read_app_tag_own(sdkp, buffer); 2904 sd_read_write_same(sdkp, buffer); 2905 } 2906 2907 sdkp->first_scan = 0; 2908 2909 /* 2910 * We now have all cache related info, determine how we deal 2911 * with flush requests. 2912 */ 2913 sd_set_flush_flag(sdkp); 2914 2915 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 2916 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 2917 2918 /* Some devices report a maximum block count for READ/WRITE requests. */ 2919 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 2920 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 2921 2922 /* 2923 * Use the device's preferred I/O size for reads and writes 2924 * unless the reported value is unreasonably small, large, or 2925 * garbage. 2926 */ 2927 if (sdkp->opt_xfer_blocks && 2928 sdkp->opt_xfer_blocks <= dev_max && 2929 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 2930 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 2931 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 2932 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 2933 } else 2934 rw_max = BLK_DEF_MAX_SECTORS; 2935 2936 /* Combine with controller limits */ 2937 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q)); 2938 2939 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 2940 sd_config_write_same(sdkp); 2941 kfree(buffer); 2942 2943 out: 2944 return 0; 2945 } 2946 2947 /** 2948 * sd_unlock_native_capacity - unlock native capacity 2949 * @disk: struct gendisk to set capacity for 2950 * 2951 * Block layer calls this function if it detects that partitions 2952 * on @disk reach beyond the end of the device. If the SCSI host 2953 * implements ->unlock_native_capacity() method, it's invoked to 2954 * give it a chance to adjust the device capacity. 2955 * 2956 * CONTEXT: 2957 * Defined by block layer. Might sleep. 2958 */ 2959 static void sd_unlock_native_capacity(struct gendisk *disk) 2960 { 2961 struct scsi_device *sdev = scsi_disk(disk)->device; 2962 2963 if (sdev->host->hostt->unlock_native_capacity) 2964 sdev->host->hostt->unlock_native_capacity(sdev); 2965 } 2966 2967 /** 2968 * sd_format_disk_name - format disk name 2969 * @prefix: name prefix - ie. "sd" for SCSI disks 2970 * @index: index of the disk to format name for 2971 * @buf: output buffer 2972 * @buflen: length of the output buffer 2973 * 2974 * SCSI disk names starts at sda. The 26th device is sdz and the 2975 * 27th is sdaa. The last one for two lettered suffix is sdzz 2976 * which is followed by sdaaa. 2977 * 2978 * This is basically 26 base counting with one extra 'nil' entry 2979 * at the beginning from the second digit on and can be 2980 * determined using similar method as 26 base conversion with the 2981 * index shifted -1 after each digit is computed. 2982 * 2983 * CONTEXT: 2984 * Don't care. 2985 * 2986 * RETURNS: 2987 * 0 on success, -errno on failure. 2988 */ 2989 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 2990 { 2991 const int base = 'z' - 'a' + 1; 2992 char *begin = buf + strlen(prefix); 2993 char *end = buf + buflen; 2994 char *p; 2995 int unit; 2996 2997 p = end - 1; 2998 *p = '\0'; 2999 unit = base; 3000 do { 3001 if (p == begin) 3002 return -EINVAL; 3003 *--p = 'a' + (index % unit); 3004 index = (index / unit) - 1; 3005 } while (index >= 0); 3006 3007 memmove(begin, p, end - p); 3008 memcpy(buf, prefix, strlen(prefix)); 3009 3010 return 0; 3011 } 3012 3013 /* 3014 * The asynchronous part of sd_probe 3015 */ 3016 static void sd_probe_async(void *data, async_cookie_t cookie) 3017 { 3018 struct scsi_disk *sdkp = data; 3019 struct scsi_device *sdp; 3020 struct gendisk *gd; 3021 u32 index; 3022 struct device *dev; 3023 3024 sdp = sdkp->device; 3025 gd = sdkp->disk; 3026 index = sdkp->index; 3027 dev = &sdp->sdev_gendev; 3028 3029 gd->major = sd_major((index & 0xf0) >> 4); 3030 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3031 gd->minors = SD_MINORS; 3032 3033 gd->fops = &sd_fops; 3034 gd->private_data = &sdkp->driver; 3035 gd->queue = sdkp->device->request_queue; 3036 3037 /* defaults, until the device tells us otherwise */ 3038 sdp->sector_size = 512; 3039 sdkp->capacity = 0; 3040 sdkp->media_present = 1; 3041 sdkp->write_prot = 0; 3042 sdkp->cache_override = 0; 3043 sdkp->WCE = 0; 3044 sdkp->RCD = 0; 3045 sdkp->ATO = 0; 3046 sdkp->first_scan = 1; 3047 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3048 3049 sd_revalidate_disk(gd); 3050 3051 gd->flags = GENHD_FL_EXT_DEVT; 3052 if (sdp->removable) { 3053 gd->flags |= GENHD_FL_REMOVABLE; 3054 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3055 } 3056 3057 blk_pm_runtime_init(sdp->request_queue, dev); 3058 device_add_disk(dev, gd); 3059 if (sdkp->capacity) 3060 sd_dif_config_host(sdkp); 3061 3062 sd_revalidate_disk(gd); 3063 3064 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3065 sdp->removable ? "removable " : ""); 3066 scsi_autopm_put_device(sdp); 3067 put_device(&sdkp->dev); 3068 } 3069 3070 /** 3071 * sd_probe - called during driver initialization and whenever a 3072 * new scsi device is attached to the system. It is called once 3073 * for each scsi device (not just disks) present. 3074 * @dev: pointer to device object 3075 * 3076 * Returns 0 if successful (or not interested in this scsi device 3077 * (e.g. scanner)); 1 when there is an error. 3078 * 3079 * Note: this function is invoked from the scsi mid-level. 3080 * This function sets up the mapping between a given 3081 * <host,channel,id,lun> (found in sdp) and new device name 3082 * (e.g. /dev/sda). More precisely it is the block device major 3083 * and minor number that is chosen here. 3084 * 3085 * Assume sd_probe is not re-entrant (for time being) 3086 * Also think about sd_probe() and sd_remove() running coincidentally. 3087 **/ 3088 static int sd_probe(struct device *dev) 3089 { 3090 struct scsi_device *sdp = to_scsi_device(dev); 3091 struct scsi_disk *sdkp; 3092 struct gendisk *gd; 3093 int index; 3094 int error; 3095 3096 scsi_autopm_get_device(sdp); 3097 error = -ENODEV; 3098 if (sdp->type != TYPE_DISK && 3099 sdp->type != TYPE_ZBC && 3100 sdp->type != TYPE_MOD && 3101 sdp->type != TYPE_RBC) 3102 goto out; 3103 3104 #ifndef CONFIG_BLK_DEV_ZONED 3105 if (sdp->type == TYPE_ZBC) 3106 goto out; 3107 #endif 3108 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3109 "sd_probe\n")); 3110 3111 error = -ENOMEM; 3112 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3113 if (!sdkp) 3114 goto out; 3115 3116 gd = alloc_disk(SD_MINORS); 3117 if (!gd) 3118 goto out_free; 3119 3120 do { 3121 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3122 goto out_put; 3123 3124 spin_lock(&sd_index_lock); 3125 error = ida_get_new(&sd_index_ida, &index); 3126 spin_unlock(&sd_index_lock); 3127 } while (error == -EAGAIN); 3128 3129 if (error) { 3130 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3131 goto out_put; 3132 } 3133 3134 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3135 if (error) { 3136 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3137 goto out_free_index; 3138 } 3139 3140 sdkp->device = sdp; 3141 sdkp->driver = &sd_template; 3142 sdkp->disk = gd; 3143 sdkp->index = index; 3144 atomic_set(&sdkp->openers, 0); 3145 atomic_set(&sdkp->device->ioerr_cnt, 0); 3146 3147 if (!sdp->request_queue->rq_timeout) { 3148 if (sdp->type != TYPE_MOD) 3149 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3150 else 3151 blk_queue_rq_timeout(sdp->request_queue, 3152 SD_MOD_TIMEOUT); 3153 } 3154 3155 device_initialize(&sdkp->dev); 3156 sdkp->dev.parent = dev; 3157 sdkp->dev.class = &sd_disk_class; 3158 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3159 3160 error = device_add(&sdkp->dev); 3161 if (error) 3162 goto out_free_index; 3163 3164 get_device(dev); 3165 dev_set_drvdata(dev, sdkp); 3166 3167 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3168 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3169 3170 return 0; 3171 3172 out_free_index: 3173 spin_lock(&sd_index_lock); 3174 ida_remove(&sd_index_ida, index); 3175 spin_unlock(&sd_index_lock); 3176 out_put: 3177 put_disk(gd); 3178 out_free: 3179 kfree(sdkp); 3180 out: 3181 scsi_autopm_put_device(sdp); 3182 return error; 3183 } 3184 3185 /** 3186 * sd_remove - called whenever a scsi disk (previously recognized by 3187 * sd_probe) is detached from the system. It is called (potentially 3188 * multiple times) during sd module unload. 3189 * @sdp: pointer to mid level scsi device object 3190 * 3191 * Note: this function is invoked from the scsi mid-level. 3192 * This function potentially frees up a device name (e.g. /dev/sdc) 3193 * that could be re-used by a subsequent sd_probe(). 3194 * This function is not called when the built-in sd driver is "exit-ed". 3195 **/ 3196 static int sd_remove(struct device *dev) 3197 { 3198 struct scsi_disk *sdkp; 3199 dev_t devt; 3200 3201 sdkp = dev_get_drvdata(dev); 3202 devt = disk_devt(sdkp->disk); 3203 scsi_autopm_get_device(sdkp->device); 3204 3205 async_synchronize_full_domain(&scsi_sd_pm_domain); 3206 async_synchronize_full_domain(&scsi_sd_probe_domain); 3207 device_del(&sdkp->dev); 3208 del_gendisk(sdkp->disk); 3209 sd_shutdown(dev); 3210 3211 sd_zbc_remove(sdkp); 3212 3213 blk_register_region(devt, SD_MINORS, NULL, 3214 sd_default_probe, NULL, NULL); 3215 3216 mutex_lock(&sd_ref_mutex); 3217 dev_set_drvdata(dev, NULL); 3218 put_device(&sdkp->dev); 3219 mutex_unlock(&sd_ref_mutex); 3220 3221 return 0; 3222 } 3223 3224 /** 3225 * scsi_disk_release - Called to free the scsi_disk structure 3226 * @dev: pointer to embedded class device 3227 * 3228 * sd_ref_mutex must be held entering this routine. Because it is 3229 * called on last put, you should always use the scsi_disk_get() 3230 * scsi_disk_put() helpers which manipulate the semaphore directly 3231 * and never do a direct put_device. 3232 **/ 3233 static void scsi_disk_release(struct device *dev) 3234 { 3235 struct scsi_disk *sdkp = to_scsi_disk(dev); 3236 struct gendisk *disk = sdkp->disk; 3237 3238 spin_lock(&sd_index_lock); 3239 ida_remove(&sd_index_ida, sdkp->index); 3240 spin_unlock(&sd_index_lock); 3241 3242 disk->private_data = NULL; 3243 put_disk(disk); 3244 put_device(&sdkp->device->sdev_gendev); 3245 3246 kfree(sdkp); 3247 } 3248 3249 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3250 { 3251 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3252 struct scsi_sense_hdr sshdr; 3253 struct scsi_device *sdp = sdkp->device; 3254 int res; 3255 3256 if (start) 3257 cmd[4] |= 1; /* START */ 3258 3259 if (sdp->start_stop_pwr_cond) 3260 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3261 3262 if (!scsi_device_online(sdp)) 3263 return -ENODEV; 3264 3265 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, 3266 SD_TIMEOUT, SD_MAX_RETRIES, NULL, 0, RQF_PM); 3267 if (res) { 3268 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3269 if (driver_byte(res) & DRIVER_SENSE) 3270 sd_print_sense_hdr(sdkp, &sshdr); 3271 if (scsi_sense_valid(&sshdr) && 3272 /* 0x3a is medium not present */ 3273 sshdr.asc == 0x3a) 3274 res = 0; 3275 } 3276 3277 /* SCSI error codes must not go to the generic layer */ 3278 if (res) 3279 return -EIO; 3280 3281 return 0; 3282 } 3283 3284 /* 3285 * Send a SYNCHRONIZE CACHE instruction down to the device through 3286 * the normal SCSI command structure. Wait for the command to 3287 * complete. 3288 */ 3289 static void sd_shutdown(struct device *dev) 3290 { 3291 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3292 3293 if (!sdkp) 3294 return; /* this can happen */ 3295 3296 if (pm_runtime_suspended(dev)) 3297 return; 3298 3299 if (sdkp->WCE && sdkp->media_present) { 3300 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3301 sd_sync_cache(sdkp); 3302 } 3303 3304 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3305 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3306 sd_start_stop_device(sdkp, 0); 3307 } 3308 } 3309 3310 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3311 { 3312 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3313 int ret = 0; 3314 3315 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3316 return 0; 3317 3318 if (sdkp->WCE && sdkp->media_present) { 3319 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3320 ret = sd_sync_cache(sdkp); 3321 if (ret) { 3322 /* ignore OFFLINE device */ 3323 if (ret == -ENODEV) 3324 ret = 0; 3325 goto done; 3326 } 3327 } 3328 3329 if (sdkp->device->manage_start_stop) { 3330 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3331 /* an error is not worth aborting a system sleep */ 3332 ret = sd_start_stop_device(sdkp, 0); 3333 if (ignore_stop_errors) 3334 ret = 0; 3335 } 3336 3337 done: 3338 return ret; 3339 } 3340 3341 static int sd_suspend_system(struct device *dev) 3342 { 3343 return sd_suspend_common(dev, true); 3344 } 3345 3346 static int sd_suspend_runtime(struct device *dev) 3347 { 3348 return sd_suspend_common(dev, false); 3349 } 3350 3351 static int sd_resume(struct device *dev) 3352 { 3353 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3354 3355 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3356 return 0; 3357 3358 if (!sdkp->device->manage_start_stop) 3359 return 0; 3360 3361 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3362 return sd_start_stop_device(sdkp, 1); 3363 } 3364 3365 /** 3366 * init_sd - entry point for this driver (both when built in or when 3367 * a module). 3368 * 3369 * Note: this function registers this driver with the scsi mid-level. 3370 **/ 3371 static int __init init_sd(void) 3372 { 3373 int majors = 0, i, err; 3374 3375 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3376 3377 for (i = 0; i < SD_MAJORS; i++) { 3378 if (register_blkdev(sd_major(i), "sd") != 0) 3379 continue; 3380 majors++; 3381 blk_register_region(sd_major(i), SD_MINORS, NULL, 3382 sd_default_probe, NULL, NULL); 3383 } 3384 3385 if (!majors) 3386 return -ENODEV; 3387 3388 err = class_register(&sd_disk_class); 3389 if (err) 3390 goto err_out; 3391 3392 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3393 0, 0, NULL); 3394 if (!sd_cdb_cache) { 3395 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3396 err = -ENOMEM; 3397 goto err_out_class; 3398 } 3399 3400 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3401 if (!sd_cdb_pool) { 3402 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3403 err = -ENOMEM; 3404 goto err_out_cache; 3405 } 3406 3407 err = scsi_register_driver(&sd_template.gendrv); 3408 if (err) 3409 goto err_out_driver; 3410 3411 return 0; 3412 3413 err_out_driver: 3414 mempool_destroy(sd_cdb_pool); 3415 3416 err_out_cache: 3417 kmem_cache_destroy(sd_cdb_cache); 3418 3419 err_out_class: 3420 class_unregister(&sd_disk_class); 3421 err_out: 3422 for (i = 0; i < SD_MAJORS; i++) 3423 unregister_blkdev(sd_major(i), "sd"); 3424 return err; 3425 } 3426 3427 /** 3428 * exit_sd - exit point for this driver (when it is a module). 3429 * 3430 * Note: this function unregisters this driver from the scsi mid-level. 3431 **/ 3432 static void __exit exit_sd(void) 3433 { 3434 int i; 3435 3436 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3437 3438 scsi_unregister_driver(&sd_template.gendrv); 3439 mempool_destroy(sd_cdb_pool); 3440 kmem_cache_destroy(sd_cdb_cache); 3441 3442 class_unregister(&sd_disk_class); 3443 3444 for (i = 0; i < SD_MAJORS; i++) { 3445 blk_unregister_region(sd_major(i), SD_MINORS); 3446 unregister_blkdev(sd_major(i), "sd"); 3447 } 3448 } 3449 3450 module_init(init_sd); 3451 module_exit(exit_sd); 3452 3453 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3454 struct scsi_sense_hdr *sshdr) 3455 { 3456 scsi_print_sense_hdr(sdkp->device, 3457 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3458 } 3459 3460 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3461 int result) 3462 { 3463 const char *hb_string = scsi_hostbyte_string(result); 3464 const char *db_string = scsi_driverbyte_string(result); 3465 3466 if (hb_string || db_string) 3467 sd_printk(KERN_INFO, sdkp, 3468 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3469 hb_string ? hb_string : "invalid", 3470 db_string ? db_string : "invalid"); 3471 else 3472 sd_printk(KERN_INFO, sdkp, 3473 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3474 msg, host_byte(result), driver_byte(result)); 3475 } 3476 3477