xref: /openbmc/linux/drivers/scsi/sd.c (revision fa3354e4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS	16
103 #else
104 #define SD_MINORS	0
105 #endif
106 
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int  sd_probe(struct device *);
112 static int  sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125 
126 static DEFINE_IDA(sd_index_ida);
127 
128 /* This semaphore is used to mediate the 0->1 reference get in the
129  * face of object destruction (i.e. we can't allow a get on an
130  * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132 
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135 static mempool_t *sd_page_pool;
136 
137 static const char *sd_cache_types[] = {
138 	"write through", "none", "write back",
139 	"write back, no read (daft)"
140 };
141 
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 	bool wc = false, fua = false;
145 
146 	if (sdkp->WCE) {
147 		wc = true;
148 		if (sdkp->DPOFUA)
149 			fua = true;
150 	}
151 
152 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154 
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 		 const char *buf, size_t count)
158 {
159 	int ct, rcd, wce, sp;
160 	struct scsi_disk *sdkp = to_scsi_disk(dev);
161 	struct scsi_device *sdp = sdkp->device;
162 	char buffer[64];
163 	char *buffer_data;
164 	struct scsi_mode_data data;
165 	struct scsi_sense_hdr sshdr;
166 	static const char temp[] = "temporary ";
167 	int len;
168 
169 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 		/* no cache control on RBC devices; theoretically they
171 		 * can do it, but there's probably so many exceptions
172 		 * it's not worth the risk */
173 		return -EINVAL;
174 
175 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 		buf += sizeof(temp) - 1;
177 		sdkp->cache_override = 1;
178 	} else {
179 		sdkp->cache_override = 0;
180 	}
181 
182 	ct = sysfs_match_string(sd_cache_types, buf);
183 	if (ct < 0)
184 		return -EINVAL;
185 
186 	rcd = ct & 0x01 ? 1 : 0;
187 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188 
189 	if (sdkp->cache_override) {
190 		sdkp->WCE = wce;
191 		sdkp->RCD = rcd;
192 		sd_set_flush_flag(sdkp);
193 		return count;
194 	}
195 
196 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 			    SD_MAX_RETRIES, &data, NULL))
198 		return -EINVAL;
199 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 		  data.block_descriptor_length);
201 	buffer_data = buffer + data.header_length +
202 		data.block_descriptor_length;
203 	buffer_data[2] &= ~0x05;
204 	buffer_data[2] |= wce << 2 | rcd;
205 	sp = buffer_data[0] & 0x80 ? 1 : 0;
206 	buffer_data[0] &= ~0x80;
207 
208 	/*
209 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
210 	 * received mode parameter buffer before doing MODE SELECT.
211 	 */
212 	data.device_specific = 0;
213 
214 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
215 			     SD_MAX_RETRIES, &data, &sshdr)) {
216 		if (scsi_sense_valid(&sshdr))
217 			sd_print_sense_hdr(sdkp, &sshdr);
218 		return -EINVAL;
219 	}
220 	revalidate_disk(sdkp->disk);
221 	return count;
222 }
223 
224 static ssize_t
225 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
226 		       char *buf)
227 {
228 	struct scsi_disk *sdkp = to_scsi_disk(dev);
229 	struct scsi_device *sdp = sdkp->device;
230 
231 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
232 }
233 
234 static ssize_t
235 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
236 			const char *buf, size_t count)
237 {
238 	struct scsi_disk *sdkp = to_scsi_disk(dev);
239 	struct scsi_device *sdp = sdkp->device;
240 	bool v;
241 
242 	if (!capable(CAP_SYS_ADMIN))
243 		return -EACCES;
244 
245 	if (kstrtobool(buf, &v))
246 		return -EINVAL;
247 
248 	sdp->manage_start_stop = v;
249 
250 	return count;
251 }
252 static DEVICE_ATTR_RW(manage_start_stop);
253 
254 static ssize_t
255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
256 {
257 	struct scsi_disk *sdkp = to_scsi_disk(dev);
258 
259 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
260 }
261 
262 static ssize_t
263 allow_restart_store(struct device *dev, struct device_attribute *attr,
264 		    const char *buf, size_t count)
265 {
266 	bool v;
267 	struct scsi_disk *sdkp = to_scsi_disk(dev);
268 	struct scsi_device *sdp = sdkp->device;
269 
270 	if (!capable(CAP_SYS_ADMIN))
271 		return -EACCES;
272 
273 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
274 		return -EINVAL;
275 
276 	if (kstrtobool(buf, &v))
277 		return -EINVAL;
278 
279 	sdp->allow_restart = v;
280 
281 	return count;
282 }
283 static DEVICE_ATTR_RW(allow_restart);
284 
285 static ssize_t
286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 	struct scsi_disk *sdkp = to_scsi_disk(dev);
289 	int ct = sdkp->RCD + 2*sdkp->WCE;
290 
291 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
292 }
293 static DEVICE_ATTR_RW(cache_type);
294 
295 static ssize_t
296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
297 {
298 	struct scsi_disk *sdkp = to_scsi_disk(dev);
299 
300 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
301 }
302 static DEVICE_ATTR_RO(FUA);
303 
304 static ssize_t
305 protection_type_show(struct device *dev, struct device_attribute *attr,
306 		     char *buf)
307 {
308 	struct scsi_disk *sdkp = to_scsi_disk(dev);
309 
310 	return sprintf(buf, "%u\n", sdkp->protection_type);
311 }
312 
313 static ssize_t
314 protection_type_store(struct device *dev, struct device_attribute *attr,
315 		      const char *buf, size_t count)
316 {
317 	struct scsi_disk *sdkp = to_scsi_disk(dev);
318 	unsigned int val;
319 	int err;
320 
321 	if (!capable(CAP_SYS_ADMIN))
322 		return -EACCES;
323 
324 	err = kstrtouint(buf, 10, &val);
325 
326 	if (err)
327 		return err;
328 
329 	if (val <= T10_PI_TYPE3_PROTECTION)
330 		sdkp->protection_type = val;
331 
332 	return count;
333 }
334 static DEVICE_ATTR_RW(protection_type);
335 
336 static ssize_t
337 protection_mode_show(struct device *dev, struct device_attribute *attr,
338 		     char *buf)
339 {
340 	struct scsi_disk *sdkp = to_scsi_disk(dev);
341 	struct scsi_device *sdp = sdkp->device;
342 	unsigned int dif, dix;
343 
344 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
345 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
346 
347 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
348 		dif = 0;
349 		dix = 1;
350 	}
351 
352 	if (!dif && !dix)
353 		return sprintf(buf, "none\n");
354 
355 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
356 }
357 static DEVICE_ATTR_RO(protection_mode);
358 
359 static ssize_t
360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
361 {
362 	struct scsi_disk *sdkp = to_scsi_disk(dev);
363 
364 	return sprintf(buf, "%u\n", sdkp->ATO);
365 }
366 static DEVICE_ATTR_RO(app_tag_own);
367 
368 static ssize_t
369 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
370 		       char *buf)
371 {
372 	struct scsi_disk *sdkp = to_scsi_disk(dev);
373 
374 	return sprintf(buf, "%u\n", sdkp->lbpme);
375 }
376 static DEVICE_ATTR_RO(thin_provisioning);
377 
378 /* sysfs_match_string() requires dense arrays */
379 static const char *lbp_mode[] = {
380 	[SD_LBP_FULL]		= "full",
381 	[SD_LBP_UNMAP]		= "unmap",
382 	[SD_LBP_WS16]		= "writesame_16",
383 	[SD_LBP_WS10]		= "writesame_10",
384 	[SD_LBP_ZERO]		= "writesame_zero",
385 	[SD_LBP_DISABLE]	= "disabled",
386 };
387 
388 static ssize_t
389 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
390 		       char *buf)
391 {
392 	struct scsi_disk *sdkp = to_scsi_disk(dev);
393 
394 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
395 }
396 
397 static ssize_t
398 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
399 			const char *buf, size_t count)
400 {
401 	struct scsi_disk *sdkp = to_scsi_disk(dev);
402 	struct scsi_device *sdp = sdkp->device;
403 	int mode;
404 
405 	if (!capable(CAP_SYS_ADMIN))
406 		return -EACCES;
407 
408 	if (sd_is_zoned(sdkp)) {
409 		sd_config_discard(sdkp, SD_LBP_DISABLE);
410 		return count;
411 	}
412 
413 	if (sdp->type != TYPE_DISK)
414 		return -EINVAL;
415 
416 	mode = sysfs_match_string(lbp_mode, buf);
417 	if (mode < 0)
418 		return -EINVAL;
419 
420 	sd_config_discard(sdkp, mode);
421 
422 	return count;
423 }
424 static DEVICE_ATTR_RW(provisioning_mode);
425 
426 /* sysfs_match_string() requires dense arrays */
427 static const char *zeroing_mode[] = {
428 	[SD_ZERO_WRITE]		= "write",
429 	[SD_ZERO_WS]		= "writesame",
430 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
431 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
432 };
433 
434 static ssize_t
435 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
436 		  char *buf)
437 {
438 	struct scsi_disk *sdkp = to_scsi_disk(dev);
439 
440 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
441 }
442 
443 static ssize_t
444 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
445 		   const char *buf, size_t count)
446 {
447 	struct scsi_disk *sdkp = to_scsi_disk(dev);
448 	int mode;
449 
450 	if (!capable(CAP_SYS_ADMIN))
451 		return -EACCES;
452 
453 	mode = sysfs_match_string(zeroing_mode, buf);
454 	if (mode < 0)
455 		return -EINVAL;
456 
457 	sdkp->zeroing_mode = mode;
458 
459 	return count;
460 }
461 static DEVICE_ATTR_RW(zeroing_mode);
462 
463 static ssize_t
464 max_medium_access_timeouts_show(struct device *dev,
465 				struct device_attribute *attr, char *buf)
466 {
467 	struct scsi_disk *sdkp = to_scsi_disk(dev);
468 
469 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
470 }
471 
472 static ssize_t
473 max_medium_access_timeouts_store(struct device *dev,
474 				 struct device_attribute *attr, const char *buf,
475 				 size_t count)
476 {
477 	struct scsi_disk *sdkp = to_scsi_disk(dev);
478 	int err;
479 
480 	if (!capable(CAP_SYS_ADMIN))
481 		return -EACCES;
482 
483 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
484 
485 	return err ? err : count;
486 }
487 static DEVICE_ATTR_RW(max_medium_access_timeouts);
488 
489 static ssize_t
490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
491 			   char *buf)
492 {
493 	struct scsi_disk *sdkp = to_scsi_disk(dev);
494 
495 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
496 }
497 
498 static ssize_t
499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
500 			    const char *buf, size_t count)
501 {
502 	struct scsi_disk *sdkp = to_scsi_disk(dev);
503 	struct scsi_device *sdp = sdkp->device;
504 	unsigned long max;
505 	int err;
506 
507 	if (!capable(CAP_SYS_ADMIN))
508 		return -EACCES;
509 
510 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
511 		return -EINVAL;
512 
513 	err = kstrtoul(buf, 10, &max);
514 
515 	if (err)
516 		return err;
517 
518 	if (max == 0)
519 		sdp->no_write_same = 1;
520 	else if (max <= SD_MAX_WS16_BLOCKS) {
521 		sdp->no_write_same = 0;
522 		sdkp->max_ws_blocks = max;
523 	}
524 
525 	sd_config_write_same(sdkp);
526 
527 	return count;
528 }
529 static DEVICE_ATTR_RW(max_write_same_blocks);
530 
531 static struct attribute *sd_disk_attrs[] = {
532 	&dev_attr_cache_type.attr,
533 	&dev_attr_FUA.attr,
534 	&dev_attr_allow_restart.attr,
535 	&dev_attr_manage_start_stop.attr,
536 	&dev_attr_protection_type.attr,
537 	&dev_attr_protection_mode.attr,
538 	&dev_attr_app_tag_own.attr,
539 	&dev_attr_thin_provisioning.attr,
540 	&dev_attr_provisioning_mode.attr,
541 	&dev_attr_zeroing_mode.attr,
542 	&dev_attr_max_write_same_blocks.attr,
543 	&dev_attr_max_medium_access_timeouts.attr,
544 	NULL,
545 };
546 ATTRIBUTE_GROUPS(sd_disk);
547 
548 static struct class sd_disk_class = {
549 	.name		= "scsi_disk",
550 	.owner		= THIS_MODULE,
551 	.dev_release	= scsi_disk_release,
552 	.dev_groups	= sd_disk_groups,
553 };
554 
555 static const struct dev_pm_ops sd_pm_ops = {
556 	.suspend		= sd_suspend_system,
557 	.resume			= sd_resume,
558 	.poweroff		= sd_suspend_system,
559 	.restore		= sd_resume,
560 	.runtime_suspend	= sd_suspend_runtime,
561 	.runtime_resume		= sd_resume,
562 };
563 
564 static struct scsi_driver sd_template = {
565 	.gendrv = {
566 		.name		= "sd",
567 		.owner		= THIS_MODULE,
568 		.probe		= sd_probe,
569 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
570 		.remove		= sd_remove,
571 		.shutdown	= sd_shutdown,
572 		.pm		= &sd_pm_ops,
573 	},
574 	.rescan			= sd_rescan,
575 	.init_command		= sd_init_command,
576 	.uninit_command		= sd_uninit_command,
577 	.done			= sd_done,
578 	.eh_action		= sd_eh_action,
579 	.eh_reset		= sd_eh_reset,
580 };
581 
582 /*
583  * Dummy kobj_map->probe function.
584  * The default ->probe function will call modprobe, which is
585  * pointless as this module is already loaded.
586  */
587 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
588 {
589 	return NULL;
590 }
591 
592 /*
593  * Device no to disk mapping:
594  *
595  *       major         disc2     disc  p1
596  *   |............|.............|....|....| <- dev_t
597  *    31        20 19          8 7  4 3  0
598  *
599  * Inside a major, we have 16k disks, however mapped non-
600  * contiguously. The first 16 disks are for major0, the next
601  * ones with major1, ... Disk 256 is for major0 again, disk 272
602  * for major1, ...
603  * As we stay compatible with our numbering scheme, we can reuse
604  * the well-know SCSI majors 8, 65--71, 136--143.
605  */
606 static int sd_major(int major_idx)
607 {
608 	switch (major_idx) {
609 	case 0:
610 		return SCSI_DISK0_MAJOR;
611 	case 1 ... 7:
612 		return SCSI_DISK1_MAJOR + major_idx - 1;
613 	case 8 ... 15:
614 		return SCSI_DISK8_MAJOR + major_idx - 8;
615 	default:
616 		BUG();
617 		return 0;	/* shut up gcc */
618 	}
619 }
620 
621 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
622 {
623 	struct scsi_disk *sdkp = NULL;
624 
625 	mutex_lock(&sd_ref_mutex);
626 
627 	if (disk->private_data) {
628 		sdkp = scsi_disk(disk);
629 		if (scsi_device_get(sdkp->device) == 0)
630 			get_device(&sdkp->dev);
631 		else
632 			sdkp = NULL;
633 	}
634 	mutex_unlock(&sd_ref_mutex);
635 	return sdkp;
636 }
637 
638 static void scsi_disk_put(struct scsi_disk *sdkp)
639 {
640 	struct scsi_device *sdev = sdkp->device;
641 
642 	mutex_lock(&sd_ref_mutex);
643 	put_device(&sdkp->dev);
644 	scsi_device_put(sdev);
645 	mutex_unlock(&sd_ref_mutex);
646 }
647 
648 #ifdef CONFIG_BLK_SED_OPAL
649 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
650 		size_t len, bool send)
651 {
652 	struct scsi_device *sdev = data;
653 	u8 cdb[12] = { 0, };
654 	int ret;
655 
656 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
657 	cdb[1] = secp;
658 	put_unaligned_be16(spsp, &cdb[2]);
659 	put_unaligned_be32(len, &cdb[6]);
660 
661 	ret = scsi_execute_req(sdev, cdb,
662 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
663 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
664 	return ret <= 0 ? ret : -EIO;
665 }
666 #endif /* CONFIG_BLK_SED_OPAL */
667 
668 /*
669  * Look up the DIX operation based on whether the command is read or
670  * write and whether dix and dif are enabled.
671  */
672 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
673 {
674 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
675 	static const unsigned int ops[] = {	/* wrt dix dif */
676 		SCSI_PROT_NORMAL,		/*  0	0   0  */
677 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
678 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
679 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
680 		SCSI_PROT_NORMAL,		/*  1	0   0  */
681 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
682 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
683 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
684 	};
685 
686 	return ops[write << 2 | dix << 1 | dif];
687 }
688 
689 /*
690  * Returns a mask of the protection flags that are valid for a given DIX
691  * operation.
692  */
693 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
694 {
695 	static const unsigned int flag_mask[] = {
696 		[SCSI_PROT_NORMAL]		= 0,
697 
698 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
699 						  SCSI_PROT_GUARD_CHECK |
700 						  SCSI_PROT_REF_CHECK |
701 						  SCSI_PROT_REF_INCREMENT,
702 
703 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
704 						  SCSI_PROT_IP_CHECKSUM,
705 
706 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
707 						  SCSI_PROT_GUARD_CHECK |
708 						  SCSI_PROT_REF_CHECK |
709 						  SCSI_PROT_REF_INCREMENT |
710 						  SCSI_PROT_IP_CHECKSUM,
711 
712 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
713 						  SCSI_PROT_REF_INCREMENT,
714 
715 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
716 						  SCSI_PROT_REF_CHECK |
717 						  SCSI_PROT_REF_INCREMENT |
718 						  SCSI_PROT_IP_CHECKSUM,
719 
720 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
721 						  SCSI_PROT_GUARD_CHECK |
722 						  SCSI_PROT_REF_CHECK |
723 						  SCSI_PROT_REF_INCREMENT |
724 						  SCSI_PROT_IP_CHECKSUM,
725 	};
726 
727 	return flag_mask[prot_op];
728 }
729 
730 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
731 					   unsigned int dix, unsigned int dif)
732 {
733 	struct bio *bio = scmd->request->bio;
734 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
735 	unsigned int protect = 0;
736 
737 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
738 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
739 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
740 
741 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
742 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
743 	}
744 
745 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
746 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
747 
748 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
749 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
750 	}
751 
752 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
753 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
754 
755 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
756 			protect = 3 << 5;	/* Disable target PI checking */
757 		else
758 			protect = 1 << 5;	/* Enable target PI checking */
759 	}
760 
761 	scsi_set_prot_op(scmd, prot_op);
762 	scsi_set_prot_type(scmd, dif);
763 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
764 
765 	return protect;
766 }
767 
768 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
769 {
770 	struct request_queue *q = sdkp->disk->queue;
771 	unsigned int logical_block_size = sdkp->device->sector_size;
772 	unsigned int max_blocks = 0;
773 
774 	q->limits.discard_alignment =
775 		sdkp->unmap_alignment * logical_block_size;
776 	q->limits.discard_granularity =
777 		max(sdkp->physical_block_size,
778 		    sdkp->unmap_granularity * logical_block_size);
779 	sdkp->provisioning_mode = mode;
780 
781 	switch (mode) {
782 
783 	case SD_LBP_FULL:
784 	case SD_LBP_DISABLE:
785 		blk_queue_max_discard_sectors(q, 0);
786 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
787 		return;
788 
789 	case SD_LBP_UNMAP:
790 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
791 					  (u32)SD_MAX_WS16_BLOCKS);
792 		break;
793 
794 	case SD_LBP_WS16:
795 		if (sdkp->device->unmap_limit_for_ws)
796 			max_blocks = sdkp->max_unmap_blocks;
797 		else
798 			max_blocks = sdkp->max_ws_blocks;
799 
800 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
801 		break;
802 
803 	case SD_LBP_WS10:
804 		if (sdkp->device->unmap_limit_for_ws)
805 			max_blocks = sdkp->max_unmap_blocks;
806 		else
807 			max_blocks = sdkp->max_ws_blocks;
808 
809 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
810 		break;
811 
812 	case SD_LBP_ZERO:
813 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
814 					  (u32)SD_MAX_WS10_BLOCKS);
815 		break;
816 	}
817 
818 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
819 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
820 }
821 
822 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
823 {
824 	struct scsi_device *sdp = cmd->device;
825 	struct request *rq = cmd->request;
826 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
827 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
828 	unsigned int data_len = 24;
829 	char *buf;
830 
831 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
832 	if (!rq->special_vec.bv_page)
833 		return BLK_STS_RESOURCE;
834 	clear_highpage(rq->special_vec.bv_page);
835 	rq->special_vec.bv_offset = 0;
836 	rq->special_vec.bv_len = data_len;
837 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
838 
839 	cmd->cmd_len = 10;
840 	cmd->cmnd[0] = UNMAP;
841 	cmd->cmnd[8] = 24;
842 
843 	buf = page_address(rq->special_vec.bv_page);
844 	put_unaligned_be16(6 + 16, &buf[0]);
845 	put_unaligned_be16(16, &buf[2]);
846 	put_unaligned_be64(lba, &buf[8]);
847 	put_unaligned_be32(nr_blocks, &buf[16]);
848 
849 	cmd->allowed = SD_MAX_RETRIES;
850 	cmd->transfersize = data_len;
851 	rq->timeout = SD_TIMEOUT;
852 
853 	return scsi_init_io(cmd);
854 }
855 
856 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
857 		bool unmap)
858 {
859 	struct scsi_device *sdp = cmd->device;
860 	struct request *rq = cmd->request;
861 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
862 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
863 	u32 data_len = sdp->sector_size;
864 
865 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
866 	if (!rq->special_vec.bv_page)
867 		return BLK_STS_RESOURCE;
868 	clear_highpage(rq->special_vec.bv_page);
869 	rq->special_vec.bv_offset = 0;
870 	rq->special_vec.bv_len = data_len;
871 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
872 
873 	cmd->cmd_len = 16;
874 	cmd->cmnd[0] = WRITE_SAME_16;
875 	if (unmap)
876 		cmd->cmnd[1] = 0x8; /* UNMAP */
877 	put_unaligned_be64(lba, &cmd->cmnd[2]);
878 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
879 
880 	cmd->allowed = SD_MAX_RETRIES;
881 	cmd->transfersize = data_len;
882 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
883 
884 	return scsi_init_io(cmd);
885 }
886 
887 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
888 		bool unmap)
889 {
890 	struct scsi_device *sdp = cmd->device;
891 	struct request *rq = cmd->request;
892 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
893 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
894 	u32 data_len = sdp->sector_size;
895 
896 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
897 	if (!rq->special_vec.bv_page)
898 		return BLK_STS_RESOURCE;
899 	clear_highpage(rq->special_vec.bv_page);
900 	rq->special_vec.bv_offset = 0;
901 	rq->special_vec.bv_len = data_len;
902 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
903 
904 	cmd->cmd_len = 10;
905 	cmd->cmnd[0] = WRITE_SAME;
906 	if (unmap)
907 		cmd->cmnd[1] = 0x8; /* UNMAP */
908 	put_unaligned_be32(lba, &cmd->cmnd[2]);
909 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
910 
911 	cmd->allowed = SD_MAX_RETRIES;
912 	cmd->transfersize = data_len;
913 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
914 
915 	return scsi_init_io(cmd);
916 }
917 
918 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
919 {
920 	struct request *rq = cmd->request;
921 	struct scsi_device *sdp = cmd->device;
922 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
923 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
924 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
925 
926 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
927 		switch (sdkp->zeroing_mode) {
928 		case SD_ZERO_WS16_UNMAP:
929 			return sd_setup_write_same16_cmnd(cmd, true);
930 		case SD_ZERO_WS10_UNMAP:
931 			return sd_setup_write_same10_cmnd(cmd, true);
932 		}
933 	}
934 
935 	if (sdp->no_write_same)
936 		return BLK_STS_TARGET;
937 
938 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
939 		return sd_setup_write_same16_cmnd(cmd, false);
940 
941 	return sd_setup_write_same10_cmnd(cmd, false);
942 }
943 
944 static void sd_config_write_same(struct scsi_disk *sdkp)
945 {
946 	struct request_queue *q = sdkp->disk->queue;
947 	unsigned int logical_block_size = sdkp->device->sector_size;
948 
949 	if (sdkp->device->no_write_same) {
950 		sdkp->max_ws_blocks = 0;
951 		goto out;
952 	}
953 
954 	/* Some devices can not handle block counts above 0xffff despite
955 	 * supporting WRITE SAME(16). Consequently we default to 64k
956 	 * blocks per I/O unless the device explicitly advertises a
957 	 * bigger limit.
958 	 */
959 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
960 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
961 						   (u32)SD_MAX_WS16_BLOCKS);
962 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
963 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
964 						   (u32)SD_MAX_WS10_BLOCKS);
965 	else {
966 		sdkp->device->no_write_same = 1;
967 		sdkp->max_ws_blocks = 0;
968 	}
969 
970 	if (sdkp->lbprz && sdkp->lbpws)
971 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
972 	else if (sdkp->lbprz && sdkp->lbpws10)
973 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
974 	else if (sdkp->max_ws_blocks)
975 		sdkp->zeroing_mode = SD_ZERO_WS;
976 	else
977 		sdkp->zeroing_mode = SD_ZERO_WRITE;
978 
979 	if (sdkp->max_ws_blocks &&
980 	    sdkp->physical_block_size > logical_block_size) {
981 		/*
982 		 * Reporting a maximum number of blocks that is not aligned
983 		 * on the device physical size would cause a large write same
984 		 * request to be split into physically unaligned chunks by
985 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
986 		 * even if the caller of these functions took care to align the
987 		 * large request. So make sure the maximum reported is aligned
988 		 * to the device physical block size. This is only an optional
989 		 * optimization for regular disks, but this is mandatory to
990 		 * avoid failure of large write same requests directed at
991 		 * sequential write required zones of host-managed ZBC disks.
992 		 */
993 		sdkp->max_ws_blocks =
994 			round_down(sdkp->max_ws_blocks,
995 				   bytes_to_logical(sdkp->device,
996 						    sdkp->physical_block_size));
997 	}
998 
999 out:
1000 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1001 					 (logical_block_size >> 9));
1002 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1003 					 (logical_block_size >> 9));
1004 }
1005 
1006 /**
1007  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1008  * @cmd: command to prepare
1009  *
1010  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1011  * the preference indicated by the target device.
1012  **/
1013 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1014 {
1015 	struct request *rq = cmd->request;
1016 	struct scsi_device *sdp = cmd->device;
1017 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1018 	struct bio *bio = rq->bio;
1019 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1020 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1021 	blk_status_t ret;
1022 
1023 	if (sdkp->device->no_write_same)
1024 		return BLK_STS_TARGET;
1025 
1026 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1027 
1028 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1029 
1030 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1031 		cmd->cmd_len = 16;
1032 		cmd->cmnd[0] = WRITE_SAME_16;
1033 		put_unaligned_be64(lba, &cmd->cmnd[2]);
1034 		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1035 	} else {
1036 		cmd->cmd_len = 10;
1037 		cmd->cmnd[0] = WRITE_SAME;
1038 		put_unaligned_be32(lba, &cmd->cmnd[2]);
1039 		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1040 	}
1041 
1042 	cmd->transfersize = sdp->sector_size;
1043 	cmd->allowed = SD_MAX_RETRIES;
1044 
1045 	/*
1046 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1047 	 * different from the amount of data actually written to the target.
1048 	 *
1049 	 * We set up __data_len to the amount of data transferred via the
1050 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1051 	 * to transfer a single sector of data first, but then reset it to
1052 	 * the amount of data to be written right after so that the I/O path
1053 	 * knows how much to actually write.
1054 	 */
1055 	rq->__data_len = sdp->sector_size;
1056 	ret = scsi_init_io(cmd);
1057 	rq->__data_len = blk_rq_bytes(rq);
1058 
1059 	return ret;
1060 }
1061 
1062 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1063 {
1064 	struct request *rq = cmd->request;
1065 
1066 	/* flush requests don't perform I/O, zero the S/G table */
1067 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1068 
1069 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1070 	cmd->cmd_len = 10;
1071 	cmd->transfersize = 0;
1072 	cmd->allowed = SD_MAX_RETRIES;
1073 
1074 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1075 	return BLK_STS_OK;
1076 }
1077 
1078 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1079 				       sector_t lba, unsigned int nr_blocks,
1080 				       unsigned char flags)
1081 {
1082 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1083 	if (unlikely(cmd->cmnd == NULL))
1084 		return BLK_STS_RESOURCE;
1085 
1086 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1087 	memset(cmd->cmnd, 0, cmd->cmd_len);
1088 
1089 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1090 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1091 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1092 	cmd->cmnd[10] = flags;
1093 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1094 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1095 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1096 
1097 	return BLK_STS_OK;
1098 }
1099 
1100 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1101 				       sector_t lba, unsigned int nr_blocks,
1102 				       unsigned char flags)
1103 {
1104 	cmd->cmd_len  = 16;
1105 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1106 	cmd->cmnd[1]  = flags;
1107 	cmd->cmnd[14] = 0;
1108 	cmd->cmnd[15] = 0;
1109 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1110 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1111 
1112 	return BLK_STS_OK;
1113 }
1114 
1115 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1116 				       sector_t lba, unsigned int nr_blocks,
1117 				       unsigned char flags)
1118 {
1119 	cmd->cmd_len = 10;
1120 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1121 	cmd->cmnd[1] = flags;
1122 	cmd->cmnd[6] = 0;
1123 	cmd->cmnd[9] = 0;
1124 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1125 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1126 
1127 	return BLK_STS_OK;
1128 }
1129 
1130 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1131 				      sector_t lba, unsigned int nr_blocks,
1132 				      unsigned char flags)
1133 {
1134 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1135 	if (WARN_ON_ONCE(nr_blocks == 0))
1136 		return BLK_STS_IOERR;
1137 
1138 	if (unlikely(flags & 0x8)) {
1139 		/*
1140 		 * This happens only if this drive failed 10byte rw
1141 		 * command with ILLEGAL_REQUEST during operation and
1142 		 * thus turned off use_10_for_rw.
1143 		 */
1144 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1145 		return BLK_STS_IOERR;
1146 	}
1147 
1148 	cmd->cmd_len = 6;
1149 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1150 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1151 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1152 	cmd->cmnd[3] = lba & 0xff;
1153 	cmd->cmnd[4] = nr_blocks;
1154 	cmd->cmnd[5] = 0;
1155 
1156 	return BLK_STS_OK;
1157 }
1158 
1159 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1160 {
1161 	struct request *rq = cmd->request;
1162 	struct scsi_device *sdp = cmd->device;
1163 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1164 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1165 	sector_t threshold;
1166 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1167 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1168 	bool write = rq_data_dir(rq) == WRITE;
1169 	unsigned char protect, fua;
1170 	blk_status_t ret;
1171 	unsigned int dif;
1172 	bool dix;
1173 
1174 	ret = scsi_init_io(cmd);
1175 	if (ret != BLK_STS_OK)
1176 		return ret;
1177 
1178 	if (!scsi_device_online(sdp) || sdp->changed) {
1179 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1180 		return BLK_STS_IOERR;
1181 	}
1182 
1183 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1184 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1185 		return BLK_STS_IOERR;
1186 	}
1187 
1188 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1189 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1190 		return BLK_STS_IOERR;
1191 	}
1192 
1193 	/*
1194 	 * Some SD card readers can't handle accesses which touch the
1195 	 * last one or two logical blocks. Split accesses as needed.
1196 	 */
1197 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1198 
1199 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1200 		if (lba < threshold) {
1201 			/* Access up to the threshold but not beyond */
1202 			nr_blocks = threshold - lba;
1203 		} else {
1204 			/* Access only a single logical block */
1205 			nr_blocks = 1;
1206 		}
1207 	}
1208 
1209 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1210 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1211 		if (ret)
1212 			return ret;
1213 	}
1214 
1215 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1216 	dix = scsi_prot_sg_count(cmd);
1217 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1218 
1219 	if (dif || dix)
1220 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1221 	else
1222 		protect = 0;
1223 
1224 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1225 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1226 					 protect | fua);
1227 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1228 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1229 					 protect | fua);
1230 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1231 		   sdp->use_10_for_rw || protect) {
1232 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1233 					 protect | fua);
1234 	} else {
1235 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1236 					protect | fua);
1237 	}
1238 
1239 	if (unlikely(ret != BLK_STS_OK))
1240 		return ret;
1241 
1242 	/*
1243 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1244 	 * host adapter, it's safe to assume that we can at least transfer
1245 	 * this many bytes between each connect / disconnect.
1246 	 */
1247 	cmd->transfersize = sdp->sector_size;
1248 	cmd->underflow = nr_blocks << 9;
1249 	cmd->allowed = SD_MAX_RETRIES;
1250 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1251 
1252 	SCSI_LOG_HLQUEUE(1,
1253 			 scmd_printk(KERN_INFO, cmd,
1254 				     "%s: block=%llu, count=%d\n", __func__,
1255 				     (unsigned long long)blk_rq_pos(rq),
1256 				     blk_rq_sectors(rq)));
1257 	SCSI_LOG_HLQUEUE(2,
1258 			 scmd_printk(KERN_INFO, cmd,
1259 				     "%s %d/%u 512 byte blocks.\n",
1260 				     write ? "writing" : "reading", nr_blocks,
1261 				     blk_rq_sectors(rq)));
1262 
1263 	/*
1264 	 * This indicates that the command is ready from our end to be
1265 	 * queued.
1266 	 */
1267 	return BLK_STS_OK;
1268 }
1269 
1270 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1271 {
1272 	struct request *rq = cmd->request;
1273 
1274 	switch (req_op(rq)) {
1275 	case REQ_OP_DISCARD:
1276 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1277 		case SD_LBP_UNMAP:
1278 			return sd_setup_unmap_cmnd(cmd);
1279 		case SD_LBP_WS16:
1280 			return sd_setup_write_same16_cmnd(cmd, true);
1281 		case SD_LBP_WS10:
1282 			return sd_setup_write_same10_cmnd(cmd, true);
1283 		case SD_LBP_ZERO:
1284 			return sd_setup_write_same10_cmnd(cmd, false);
1285 		default:
1286 			return BLK_STS_TARGET;
1287 		}
1288 	case REQ_OP_WRITE_ZEROES:
1289 		return sd_setup_write_zeroes_cmnd(cmd);
1290 	case REQ_OP_WRITE_SAME:
1291 		return sd_setup_write_same_cmnd(cmd);
1292 	case REQ_OP_FLUSH:
1293 		return sd_setup_flush_cmnd(cmd);
1294 	case REQ_OP_READ:
1295 	case REQ_OP_WRITE:
1296 	case REQ_OP_ZONE_APPEND:
1297 		return sd_setup_read_write_cmnd(cmd);
1298 	case REQ_OP_ZONE_RESET:
1299 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1300 						   false);
1301 	case REQ_OP_ZONE_RESET_ALL:
1302 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1303 						   true);
1304 	case REQ_OP_ZONE_OPEN:
1305 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1306 	case REQ_OP_ZONE_CLOSE:
1307 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1308 	case REQ_OP_ZONE_FINISH:
1309 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1310 	default:
1311 		WARN_ON_ONCE(1);
1312 		return BLK_STS_NOTSUPP;
1313 	}
1314 }
1315 
1316 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1317 {
1318 	struct request *rq = SCpnt->request;
1319 	u8 *cmnd;
1320 
1321 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1322 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1323 
1324 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1325 		cmnd = SCpnt->cmnd;
1326 		SCpnt->cmnd = NULL;
1327 		SCpnt->cmd_len = 0;
1328 		mempool_free(cmnd, sd_cdb_pool);
1329 	}
1330 }
1331 
1332 /**
1333  *	sd_open - open a scsi disk device
1334  *	@bdev: Block device of the scsi disk to open
1335  *	@mode: FMODE_* mask
1336  *
1337  *	Returns 0 if successful. Returns a negated errno value in case
1338  *	of error.
1339  *
1340  *	Note: This can be called from a user context (e.g. fsck(1) )
1341  *	or from within the kernel (e.g. as a result of a mount(1) ).
1342  *	In the latter case @inode and @filp carry an abridged amount
1343  *	of information as noted above.
1344  *
1345  *	Locking: called with bdev->bd_mutex held.
1346  **/
1347 static int sd_open(struct block_device *bdev, fmode_t mode)
1348 {
1349 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1350 	struct scsi_device *sdev;
1351 	int retval;
1352 
1353 	if (!sdkp)
1354 		return -ENXIO;
1355 
1356 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1357 
1358 	sdev = sdkp->device;
1359 
1360 	/*
1361 	 * If the device is in error recovery, wait until it is done.
1362 	 * If the device is offline, then disallow any access to it.
1363 	 */
1364 	retval = -ENXIO;
1365 	if (!scsi_block_when_processing_errors(sdev))
1366 		goto error_out;
1367 
1368 	if (sdev->removable || sdkp->write_prot)
1369 		check_disk_change(bdev);
1370 
1371 	/*
1372 	 * If the drive is empty, just let the open fail.
1373 	 */
1374 	retval = -ENOMEDIUM;
1375 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1376 		goto error_out;
1377 
1378 	/*
1379 	 * If the device has the write protect tab set, have the open fail
1380 	 * if the user expects to be able to write to the thing.
1381 	 */
1382 	retval = -EROFS;
1383 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1384 		goto error_out;
1385 
1386 	/*
1387 	 * It is possible that the disk changing stuff resulted in
1388 	 * the device being taken offline.  If this is the case,
1389 	 * report this to the user, and don't pretend that the
1390 	 * open actually succeeded.
1391 	 */
1392 	retval = -ENXIO;
1393 	if (!scsi_device_online(sdev))
1394 		goto error_out;
1395 
1396 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1397 		if (scsi_block_when_processing_errors(sdev))
1398 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1399 	}
1400 
1401 	return 0;
1402 
1403 error_out:
1404 	scsi_disk_put(sdkp);
1405 	return retval;
1406 }
1407 
1408 /**
1409  *	sd_release - invoked when the (last) close(2) is called on this
1410  *	scsi disk.
1411  *	@disk: disk to release
1412  *	@mode: FMODE_* mask
1413  *
1414  *	Returns 0.
1415  *
1416  *	Note: may block (uninterruptible) if error recovery is underway
1417  *	on this disk.
1418  *
1419  *	Locking: called with bdev->bd_mutex held.
1420  **/
1421 static void sd_release(struct gendisk *disk, fmode_t mode)
1422 {
1423 	struct scsi_disk *sdkp = scsi_disk(disk);
1424 	struct scsi_device *sdev = sdkp->device;
1425 
1426 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1427 
1428 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1429 		if (scsi_block_when_processing_errors(sdev))
1430 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1431 	}
1432 
1433 	scsi_disk_put(sdkp);
1434 }
1435 
1436 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1437 {
1438 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1439 	struct scsi_device *sdp = sdkp->device;
1440 	struct Scsi_Host *host = sdp->host;
1441 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1442 	int diskinfo[4];
1443 
1444 	/* default to most commonly used values */
1445 	diskinfo[0] = 0x40;	/* 1 << 6 */
1446 	diskinfo[1] = 0x20;	/* 1 << 5 */
1447 	diskinfo[2] = capacity >> 11;
1448 
1449 	/* override with calculated, extended default, or driver values */
1450 	if (host->hostt->bios_param)
1451 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1452 	else
1453 		scsicam_bios_param(bdev, capacity, diskinfo);
1454 
1455 	geo->heads = diskinfo[0];
1456 	geo->sectors = diskinfo[1];
1457 	geo->cylinders = diskinfo[2];
1458 	return 0;
1459 }
1460 
1461 /**
1462  *	sd_ioctl - process an ioctl
1463  *	@bdev: target block device
1464  *	@mode: FMODE_* mask
1465  *	@cmd: ioctl command number
1466  *	@arg: this is third argument given to ioctl(2) system call.
1467  *	Often contains a pointer.
1468  *
1469  *	Returns 0 if successful (some ioctls return positive numbers on
1470  *	success as well). Returns a negated errno value in case of error.
1471  *
1472  *	Note: most ioctls are forward onto the block subsystem or further
1473  *	down in the scsi subsystem.
1474  **/
1475 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1476 			   unsigned int cmd, void __user *p)
1477 {
1478 	struct gendisk *disk = bdev->bd_disk;
1479 	struct scsi_disk *sdkp = scsi_disk(disk);
1480 	struct scsi_device *sdp = sdkp->device;
1481 	int error;
1482 
1483 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1484 				    "cmd=0x%x\n", disk->disk_name, cmd));
1485 
1486 	error = scsi_verify_blk_ioctl(bdev, cmd);
1487 	if (error < 0)
1488 		return error;
1489 
1490 	/*
1491 	 * If we are in the middle of error recovery, don't let anyone
1492 	 * else try and use this device.  Also, if error recovery fails, it
1493 	 * may try and take the device offline, in which case all further
1494 	 * access to the device is prohibited.
1495 	 */
1496 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1497 			(mode & FMODE_NDELAY) != 0);
1498 	if (error)
1499 		goto out;
1500 
1501 	if (is_sed_ioctl(cmd))
1502 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1503 
1504 	/*
1505 	 * Send SCSI addressing ioctls directly to mid level, send other
1506 	 * ioctls to block level and then onto mid level if they can't be
1507 	 * resolved.
1508 	 */
1509 	switch (cmd) {
1510 		case SCSI_IOCTL_GET_IDLUN:
1511 		case SCSI_IOCTL_GET_BUS_NUMBER:
1512 			error = scsi_ioctl(sdp, cmd, p);
1513 			break;
1514 		default:
1515 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1516 			break;
1517 	}
1518 out:
1519 	return error;
1520 }
1521 
1522 static void set_media_not_present(struct scsi_disk *sdkp)
1523 {
1524 	if (sdkp->media_present)
1525 		sdkp->device->changed = 1;
1526 
1527 	if (sdkp->device->removable) {
1528 		sdkp->media_present = 0;
1529 		sdkp->capacity = 0;
1530 	}
1531 }
1532 
1533 static int media_not_present(struct scsi_disk *sdkp,
1534 			     struct scsi_sense_hdr *sshdr)
1535 {
1536 	if (!scsi_sense_valid(sshdr))
1537 		return 0;
1538 
1539 	/* not invoked for commands that could return deferred errors */
1540 	switch (sshdr->sense_key) {
1541 	case UNIT_ATTENTION:
1542 	case NOT_READY:
1543 		/* medium not present */
1544 		if (sshdr->asc == 0x3A) {
1545 			set_media_not_present(sdkp);
1546 			return 1;
1547 		}
1548 	}
1549 	return 0;
1550 }
1551 
1552 /**
1553  *	sd_check_events - check media events
1554  *	@disk: kernel device descriptor
1555  *	@clearing: disk events currently being cleared
1556  *
1557  *	Returns mask of DISK_EVENT_*.
1558  *
1559  *	Note: this function is invoked from the block subsystem.
1560  **/
1561 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1562 {
1563 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1564 	struct scsi_device *sdp;
1565 	int retval;
1566 
1567 	if (!sdkp)
1568 		return 0;
1569 
1570 	sdp = sdkp->device;
1571 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1572 
1573 	/*
1574 	 * If the device is offline, don't send any commands - just pretend as
1575 	 * if the command failed.  If the device ever comes back online, we
1576 	 * can deal with it then.  It is only because of unrecoverable errors
1577 	 * that we would ever take a device offline in the first place.
1578 	 */
1579 	if (!scsi_device_online(sdp)) {
1580 		set_media_not_present(sdkp);
1581 		goto out;
1582 	}
1583 
1584 	/*
1585 	 * Using TEST_UNIT_READY enables differentiation between drive with
1586 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1587 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1588 	 *
1589 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1590 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1591 	 * sd_revalidate() is called.
1592 	 */
1593 	if (scsi_block_when_processing_errors(sdp)) {
1594 		struct scsi_sense_hdr sshdr = { 0, };
1595 
1596 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1597 					      &sshdr);
1598 
1599 		/* failed to execute TUR, assume media not present */
1600 		if (host_byte(retval)) {
1601 			set_media_not_present(sdkp);
1602 			goto out;
1603 		}
1604 
1605 		if (media_not_present(sdkp, &sshdr))
1606 			goto out;
1607 	}
1608 
1609 	/*
1610 	 * For removable scsi disk we have to recognise the presence
1611 	 * of a disk in the drive.
1612 	 */
1613 	if (!sdkp->media_present)
1614 		sdp->changed = 1;
1615 	sdkp->media_present = 1;
1616 out:
1617 	/*
1618 	 * sdp->changed is set under the following conditions:
1619 	 *
1620 	 *	Medium present state has changed in either direction.
1621 	 *	Device has indicated UNIT_ATTENTION.
1622 	 */
1623 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1624 	sdp->changed = 0;
1625 	scsi_disk_put(sdkp);
1626 	return retval;
1627 }
1628 
1629 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1630 {
1631 	int retries, res;
1632 	struct scsi_device *sdp = sdkp->device;
1633 	const int timeout = sdp->request_queue->rq_timeout
1634 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1635 	struct scsi_sense_hdr my_sshdr;
1636 
1637 	if (!scsi_device_online(sdp))
1638 		return -ENODEV;
1639 
1640 	/* caller might not be interested in sense, but we need it */
1641 	if (!sshdr)
1642 		sshdr = &my_sshdr;
1643 
1644 	for (retries = 3; retries > 0; --retries) {
1645 		unsigned char cmd[10] = { 0 };
1646 
1647 		cmd[0] = SYNCHRONIZE_CACHE;
1648 		/*
1649 		 * Leave the rest of the command zero to indicate
1650 		 * flush everything.
1651 		 */
1652 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1653 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1654 		if (res == 0)
1655 			break;
1656 	}
1657 
1658 	if (res) {
1659 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1660 
1661 		if (driver_byte(res) == DRIVER_SENSE)
1662 			sd_print_sense_hdr(sdkp, sshdr);
1663 
1664 		/* we need to evaluate the error return  */
1665 		if (scsi_sense_valid(sshdr) &&
1666 			(sshdr->asc == 0x3a ||	/* medium not present */
1667 			 sshdr->asc == 0x20 ||	/* invalid command */
1668 			 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)))	/* drive is password locked */
1669 				/* this is no error here */
1670 				return 0;
1671 
1672 		switch (host_byte(res)) {
1673 		/* ignore errors due to racing a disconnection */
1674 		case DID_BAD_TARGET:
1675 		case DID_NO_CONNECT:
1676 			return 0;
1677 		/* signal the upper layer it might try again */
1678 		case DID_BUS_BUSY:
1679 		case DID_IMM_RETRY:
1680 		case DID_REQUEUE:
1681 		case DID_SOFT_ERROR:
1682 			return -EBUSY;
1683 		default:
1684 			return -EIO;
1685 		}
1686 	}
1687 	return 0;
1688 }
1689 
1690 static void sd_rescan(struct device *dev)
1691 {
1692 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1693 
1694 	revalidate_disk(sdkp->disk);
1695 }
1696 
1697 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1698 		    unsigned int cmd, unsigned long arg)
1699 {
1700 	void __user *p = (void __user *)arg;
1701 	int ret;
1702 
1703 	ret = sd_ioctl_common(bdev, mode, cmd, p);
1704 	if (ret != -ENOTTY)
1705 		return ret;
1706 
1707 	return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1708 }
1709 
1710 #ifdef CONFIG_COMPAT
1711 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1712 			   unsigned int cmd, unsigned long arg)
1713 {
1714 	void __user *p = compat_ptr(arg);
1715 	int ret;
1716 
1717 	ret = sd_ioctl_common(bdev, mode, cmd, p);
1718 	if (ret != -ENOTTY)
1719 		return ret;
1720 
1721 	return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1722 }
1723 #endif
1724 
1725 static char sd_pr_type(enum pr_type type)
1726 {
1727 	switch (type) {
1728 	case PR_WRITE_EXCLUSIVE:
1729 		return 0x01;
1730 	case PR_EXCLUSIVE_ACCESS:
1731 		return 0x03;
1732 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1733 		return 0x05;
1734 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1735 		return 0x06;
1736 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1737 		return 0x07;
1738 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1739 		return 0x08;
1740 	default:
1741 		return 0;
1742 	}
1743 };
1744 
1745 static int sd_pr_command(struct block_device *bdev, u8 sa,
1746 		u64 key, u64 sa_key, u8 type, u8 flags)
1747 {
1748 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1749 	struct scsi_sense_hdr sshdr;
1750 	int result;
1751 	u8 cmd[16] = { 0, };
1752 	u8 data[24] = { 0, };
1753 
1754 	cmd[0] = PERSISTENT_RESERVE_OUT;
1755 	cmd[1] = sa;
1756 	cmd[2] = type;
1757 	put_unaligned_be32(sizeof(data), &cmd[5]);
1758 
1759 	put_unaligned_be64(key, &data[0]);
1760 	put_unaligned_be64(sa_key, &data[8]);
1761 	data[20] = flags;
1762 
1763 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1764 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1765 
1766 	if (driver_byte(result) == DRIVER_SENSE &&
1767 	    scsi_sense_valid(&sshdr)) {
1768 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1769 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1770 	}
1771 
1772 	return result;
1773 }
1774 
1775 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1776 		u32 flags)
1777 {
1778 	if (flags & ~PR_FL_IGNORE_KEY)
1779 		return -EOPNOTSUPP;
1780 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1781 			old_key, new_key, 0,
1782 			(1 << 0) /* APTPL */);
1783 }
1784 
1785 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1786 		u32 flags)
1787 {
1788 	if (flags)
1789 		return -EOPNOTSUPP;
1790 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1791 }
1792 
1793 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1794 {
1795 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1796 }
1797 
1798 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1799 		enum pr_type type, bool abort)
1800 {
1801 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1802 			     sd_pr_type(type), 0);
1803 }
1804 
1805 static int sd_pr_clear(struct block_device *bdev, u64 key)
1806 {
1807 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1808 }
1809 
1810 static const struct pr_ops sd_pr_ops = {
1811 	.pr_register	= sd_pr_register,
1812 	.pr_reserve	= sd_pr_reserve,
1813 	.pr_release	= sd_pr_release,
1814 	.pr_preempt	= sd_pr_preempt,
1815 	.pr_clear	= sd_pr_clear,
1816 };
1817 
1818 static const struct block_device_operations sd_fops = {
1819 	.owner			= THIS_MODULE,
1820 	.open			= sd_open,
1821 	.release		= sd_release,
1822 	.ioctl			= sd_ioctl,
1823 	.getgeo			= sd_getgeo,
1824 #ifdef CONFIG_COMPAT
1825 	.compat_ioctl		= sd_compat_ioctl,
1826 #endif
1827 	.check_events		= sd_check_events,
1828 	.revalidate_disk	= sd_revalidate_disk,
1829 	.unlock_native_capacity	= sd_unlock_native_capacity,
1830 	.report_zones		= sd_zbc_report_zones,
1831 	.pr_ops			= &sd_pr_ops,
1832 };
1833 
1834 /**
1835  *	sd_eh_reset - reset error handling callback
1836  *	@scmd:		sd-issued command that has failed
1837  *
1838  *	This function is called by the SCSI midlayer before starting
1839  *	SCSI EH. When counting medium access failures we have to be
1840  *	careful to register it only only once per device and SCSI EH run;
1841  *	there might be several timed out commands which will cause the
1842  *	'max_medium_access_timeouts' counter to trigger after the first
1843  *	SCSI EH run already and set the device to offline.
1844  *	So this function resets the internal counter before starting SCSI EH.
1845  **/
1846 static void sd_eh_reset(struct scsi_cmnd *scmd)
1847 {
1848 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1849 
1850 	/* New SCSI EH run, reset gate variable */
1851 	sdkp->ignore_medium_access_errors = false;
1852 }
1853 
1854 /**
1855  *	sd_eh_action - error handling callback
1856  *	@scmd:		sd-issued command that has failed
1857  *	@eh_disp:	The recovery disposition suggested by the midlayer
1858  *
1859  *	This function is called by the SCSI midlayer upon completion of an
1860  *	error test command (currently TEST UNIT READY). The result of sending
1861  *	the eh command is passed in eh_disp.  We're looking for devices that
1862  *	fail medium access commands but are OK with non access commands like
1863  *	test unit ready (so wrongly see the device as having a successful
1864  *	recovery)
1865  **/
1866 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1867 {
1868 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1869 	struct scsi_device *sdev = scmd->device;
1870 
1871 	if (!scsi_device_online(sdev) ||
1872 	    !scsi_medium_access_command(scmd) ||
1873 	    host_byte(scmd->result) != DID_TIME_OUT ||
1874 	    eh_disp != SUCCESS)
1875 		return eh_disp;
1876 
1877 	/*
1878 	 * The device has timed out executing a medium access command.
1879 	 * However, the TEST UNIT READY command sent during error
1880 	 * handling completed successfully. Either the device is in the
1881 	 * process of recovering or has it suffered an internal failure
1882 	 * that prevents access to the storage medium.
1883 	 */
1884 	if (!sdkp->ignore_medium_access_errors) {
1885 		sdkp->medium_access_timed_out++;
1886 		sdkp->ignore_medium_access_errors = true;
1887 	}
1888 
1889 	/*
1890 	 * If the device keeps failing read/write commands but TEST UNIT
1891 	 * READY always completes successfully we assume that medium
1892 	 * access is no longer possible and take the device offline.
1893 	 */
1894 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1895 		scmd_printk(KERN_ERR, scmd,
1896 			    "Medium access timeout failure. Offlining disk!\n");
1897 		mutex_lock(&sdev->state_mutex);
1898 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1899 		mutex_unlock(&sdev->state_mutex);
1900 
1901 		return SUCCESS;
1902 	}
1903 
1904 	return eh_disp;
1905 }
1906 
1907 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1908 {
1909 	struct request *req = scmd->request;
1910 	struct scsi_device *sdev = scmd->device;
1911 	unsigned int transferred, good_bytes;
1912 	u64 start_lba, end_lba, bad_lba;
1913 
1914 	/*
1915 	 * Some commands have a payload smaller than the device logical
1916 	 * block size (e.g. INQUIRY on a 4K disk).
1917 	 */
1918 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1919 		return 0;
1920 
1921 	/* Check if we have a 'bad_lba' information */
1922 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1923 				     SCSI_SENSE_BUFFERSIZE,
1924 				     &bad_lba))
1925 		return 0;
1926 
1927 	/*
1928 	 * If the bad lba was reported incorrectly, we have no idea where
1929 	 * the error is.
1930 	 */
1931 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1932 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1933 	if (bad_lba < start_lba || bad_lba >= end_lba)
1934 		return 0;
1935 
1936 	/*
1937 	 * resid is optional but mostly filled in.  When it's unused,
1938 	 * its value is zero, so we assume the whole buffer transferred
1939 	 */
1940 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1941 
1942 	/* This computation should always be done in terms of the
1943 	 * resolution of the device's medium.
1944 	 */
1945 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1946 
1947 	return min(good_bytes, transferred);
1948 }
1949 
1950 /**
1951  *	sd_done - bottom half handler: called when the lower level
1952  *	driver has completed (successfully or otherwise) a scsi command.
1953  *	@SCpnt: mid-level's per command structure.
1954  *
1955  *	Note: potentially run from within an ISR. Must not block.
1956  **/
1957 static int sd_done(struct scsi_cmnd *SCpnt)
1958 {
1959 	int result = SCpnt->result;
1960 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1961 	unsigned int sector_size = SCpnt->device->sector_size;
1962 	unsigned int resid;
1963 	struct scsi_sense_hdr sshdr;
1964 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1965 	struct request *req = SCpnt->request;
1966 	int sense_valid = 0;
1967 	int sense_deferred = 0;
1968 
1969 	switch (req_op(req)) {
1970 	case REQ_OP_DISCARD:
1971 	case REQ_OP_WRITE_ZEROES:
1972 	case REQ_OP_WRITE_SAME:
1973 	case REQ_OP_ZONE_RESET:
1974 	case REQ_OP_ZONE_RESET_ALL:
1975 	case REQ_OP_ZONE_OPEN:
1976 	case REQ_OP_ZONE_CLOSE:
1977 	case REQ_OP_ZONE_FINISH:
1978 		if (!result) {
1979 			good_bytes = blk_rq_bytes(req);
1980 			scsi_set_resid(SCpnt, 0);
1981 		} else {
1982 			good_bytes = 0;
1983 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1984 		}
1985 		break;
1986 	default:
1987 		/*
1988 		 * In case of bogus fw or device, we could end up having
1989 		 * an unaligned partial completion. Check this here and force
1990 		 * alignment.
1991 		 */
1992 		resid = scsi_get_resid(SCpnt);
1993 		if (resid & (sector_size - 1)) {
1994 			sd_printk(KERN_INFO, sdkp,
1995 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1996 				resid, sector_size);
1997 			scsi_print_command(SCpnt);
1998 			resid = min(scsi_bufflen(SCpnt),
1999 				    round_up(resid, sector_size));
2000 			scsi_set_resid(SCpnt, resid);
2001 		}
2002 	}
2003 
2004 	if (result) {
2005 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2006 		if (sense_valid)
2007 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2008 	}
2009 	sdkp->medium_access_timed_out = 0;
2010 
2011 	if (driver_byte(result) != DRIVER_SENSE &&
2012 	    (!sense_valid || sense_deferred))
2013 		goto out;
2014 
2015 	switch (sshdr.sense_key) {
2016 	case HARDWARE_ERROR:
2017 	case MEDIUM_ERROR:
2018 		good_bytes = sd_completed_bytes(SCpnt);
2019 		break;
2020 	case RECOVERED_ERROR:
2021 		good_bytes = scsi_bufflen(SCpnt);
2022 		break;
2023 	case NO_SENSE:
2024 		/* This indicates a false check condition, so ignore it.  An
2025 		 * unknown amount of data was transferred so treat it as an
2026 		 * error.
2027 		 */
2028 		SCpnt->result = 0;
2029 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2030 		break;
2031 	case ABORTED_COMMAND:
2032 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2033 			good_bytes = sd_completed_bytes(SCpnt);
2034 		break;
2035 	case ILLEGAL_REQUEST:
2036 		switch (sshdr.asc) {
2037 		case 0x10:	/* DIX: Host detected corruption */
2038 			good_bytes = sd_completed_bytes(SCpnt);
2039 			break;
2040 		case 0x20:	/* INVALID COMMAND OPCODE */
2041 		case 0x24:	/* INVALID FIELD IN CDB */
2042 			switch (SCpnt->cmnd[0]) {
2043 			case UNMAP:
2044 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2045 				break;
2046 			case WRITE_SAME_16:
2047 			case WRITE_SAME:
2048 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2049 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2050 				} else {
2051 					sdkp->device->no_write_same = 1;
2052 					sd_config_write_same(sdkp);
2053 					req->rq_flags |= RQF_QUIET;
2054 				}
2055 				break;
2056 			}
2057 		}
2058 		break;
2059 	default:
2060 		break;
2061 	}
2062 
2063  out:
2064 	if (sd_is_zoned(sdkp))
2065 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2066 
2067 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2068 					   "sd_done: completed %d of %d bytes\n",
2069 					   good_bytes, scsi_bufflen(SCpnt)));
2070 
2071 	return good_bytes;
2072 }
2073 
2074 /*
2075  * spinup disk - called only in sd_revalidate_disk()
2076  */
2077 static void
2078 sd_spinup_disk(struct scsi_disk *sdkp)
2079 {
2080 	unsigned char cmd[10];
2081 	unsigned long spintime_expire = 0;
2082 	int retries, spintime;
2083 	unsigned int the_result;
2084 	struct scsi_sense_hdr sshdr;
2085 	int sense_valid = 0;
2086 
2087 	spintime = 0;
2088 
2089 	/* Spin up drives, as required.  Only do this at boot time */
2090 	/* Spinup needs to be done for module loads too. */
2091 	do {
2092 		retries = 0;
2093 
2094 		do {
2095 			cmd[0] = TEST_UNIT_READY;
2096 			memset((void *) &cmd[1], 0, 9);
2097 
2098 			the_result = scsi_execute_req(sdkp->device, cmd,
2099 						      DMA_NONE, NULL, 0,
2100 						      &sshdr, SD_TIMEOUT,
2101 						      SD_MAX_RETRIES, NULL);
2102 
2103 			/*
2104 			 * If the drive has indicated to us that it
2105 			 * doesn't have any media in it, don't bother
2106 			 * with any more polling.
2107 			 */
2108 			if (media_not_present(sdkp, &sshdr))
2109 				return;
2110 
2111 			if (the_result)
2112 				sense_valid = scsi_sense_valid(&sshdr);
2113 			retries++;
2114 		} while (retries < 3 &&
2115 			 (!scsi_status_is_good(the_result) ||
2116 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2117 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2118 
2119 		if (driver_byte(the_result) != DRIVER_SENSE) {
2120 			/* no sense, TUR either succeeded or failed
2121 			 * with a status error */
2122 			if(!spintime && !scsi_status_is_good(the_result)) {
2123 				sd_print_result(sdkp, "Test Unit Ready failed",
2124 						the_result);
2125 			}
2126 			break;
2127 		}
2128 
2129 		/*
2130 		 * The device does not want the automatic start to be issued.
2131 		 */
2132 		if (sdkp->device->no_start_on_add)
2133 			break;
2134 
2135 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2136 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2137 				break;	/* manual intervention required */
2138 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2139 				break;	/* standby */
2140 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2141 				break;	/* unavailable */
2142 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2143 				break;	/* sanitize in progress */
2144 			/*
2145 			 * Issue command to spin up drive when not ready
2146 			 */
2147 			if (!spintime) {
2148 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2149 				cmd[0] = START_STOP;
2150 				cmd[1] = 1;	/* Return immediately */
2151 				memset((void *) &cmd[2], 0, 8);
2152 				cmd[4] = 1;	/* Start spin cycle */
2153 				if (sdkp->device->start_stop_pwr_cond)
2154 					cmd[4] |= 1 << 4;
2155 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2156 						 NULL, 0, &sshdr,
2157 						 SD_TIMEOUT, SD_MAX_RETRIES,
2158 						 NULL);
2159 				spintime_expire = jiffies + 100 * HZ;
2160 				spintime = 1;
2161 			}
2162 			/* Wait 1 second for next try */
2163 			msleep(1000);
2164 			printk(KERN_CONT ".");
2165 
2166 		/*
2167 		 * Wait for USB flash devices with slow firmware.
2168 		 * Yes, this sense key/ASC combination shouldn't
2169 		 * occur here.  It's characteristic of these devices.
2170 		 */
2171 		} else if (sense_valid &&
2172 				sshdr.sense_key == UNIT_ATTENTION &&
2173 				sshdr.asc == 0x28) {
2174 			if (!spintime) {
2175 				spintime_expire = jiffies + 5 * HZ;
2176 				spintime = 1;
2177 			}
2178 			/* Wait 1 second for next try */
2179 			msleep(1000);
2180 		} else {
2181 			/* we don't understand the sense code, so it's
2182 			 * probably pointless to loop */
2183 			if(!spintime) {
2184 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2185 				sd_print_sense_hdr(sdkp, &sshdr);
2186 			}
2187 			break;
2188 		}
2189 
2190 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2191 
2192 	if (spintime) {
2193 		if (scsi_status_is_good(the_result))
2194 			printk(KERN_CONT "ready\n");
2195 		else
2196 			printk(KERN_CONT "not responding...\n");
2197 	}
2198 }
2199 
2200 /*
2201  * Determine whether disk supports Data Integrity Field.
2202  */
2203 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2204 {
2205 	struct scsi_device *sdp = sdkp->device;
2206 	u8 type;
2207 	int ret = 0;
2208 
2209 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2210 		sdkp->protection_type = 0;
2211 		return ret;
2212 	}
2213 
2214 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2215 
2216 	if (type > T10_PI_TYPE3_PROTECTION)
2217 		ret = -ENODEV;
2218 	else if (scsi_host_dif_capable(sdp->host, type))
2219 		ret = 1;
2220 
2221 	if (sdkp->first_scan || type != sdkp->protection_type)
2222 		switch (ret) {
2223 		case -ENODEV:
2224 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2225 				  " protection type %u. Disabling disk!\n",
2226 				  type);
2227 			break;
2228 		case 1:
2229 			sd_printk(KERN_NOTICE, sdkp,
2230 				  "Enabling DIF Type %u protection\n", type);
2231 			break;
2232 		case 0:
2233 			sd_printk(KERN_NOTICE, sdkp,
2234 				  "Disabling DIF Type %u protection\n", type);
2235 			break;
2236 		}
2237 
2238 	sdkp->protection_type = type;
2239 
2240 	return ret;
2241 }
2242 
2243 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2244 			struct scsi_sense_hdr *sshdr, int sense_valid,
2245 			int the_result)
2246 {
2247 	if (driver_byte(the_result) == DRIVER_SENSE)
2248 		sd_print_sense_hdr(sdkp, sshdr);
2249 	else
2250 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2251 
2252 	/*
2253 	 * Set dirty bit for removable devices if not ready -
2254 	 * sometimes drives will not report this properly.
2255 	 */
2256 	if (sdp->removable &&
2257 	    sense_valid && sshdr->sense_key == NOT_READY)
2258 		set_media_not_present(sdkp);
2259 
2260 	/*
2261 	 * We used to set media_present to 0 here to indicate no media
2262 	 * in the drive, but some drives fail read capacity even with
2263 	 * media present, so we can't do that.
2264 	 */
2265 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2266 }
2267 
2268 #define RC16_LEN 32
2269 #if RC16_LEN > SD_BUF_SIZE
2270 #error RC16_LEN must not be more than SD_BUF_SIZE
2271 #endif
2272 
2273 #define READ_CAPACITY_RETRIES_ON_RESET	10
2274 
2275 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2276 						unsigned char *buffer)
2277 {
2278 	unsigned char cmd[16];
2279 	struct scsi_sense_hdr sshdr;
2280 	int sense_valid = 0;
2281 	int the_result;
2282 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2283 	unsigned int alignment;
2284 	unsigned long long lba;
2285 	unsigned sector_size;
2286 
2287 	if (sdp->no_read_capacity_16)
2288 		return -EINVAL;
2289 
2290 	do {
2291 		memset(cmd, 0, 16);
2292 		cmd[0] = SERVICE_ACTION_IN_16;
2293 		cmd[1] = SAI_READ_CAPACITY_16;
2294 		cmd[13] = RC16_LEN;
2295 		memset(buffer, 0, RC16_LEN);
2296 
2297 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2298 					buffer, RC16_LEN, &sshdr,
2299 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2300 
2301 		if (media_not_present(sdkp, &sshdr))
2302 			return -ENODEV;
2303 
2304 		if (the_result) {
2305 			sense_valid = scsi_sense_valid(&sshdr);
2306 			if (sense_valid &&
2307 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2308 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2309 			    sshdr.ascq == 0x00)
2310 				/* Invalid Command Operation Code or
2311 				 * Invalid Field in CDB, just retry
2312 				 * silently with RC10 */
2313 				return -EINVAL;
2314 			if (sense_valid &&
2315 			    sshdr.sense_key == UNIT_ATTENTION &&
2316 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2317 				/* Device reset might occur several times,
2318 				 * give it one more chance */
2319 				if (--reset_retries > 0)
2320 					continue;
2321 		}
2322 		retries--;
2323 
2324 	} while (the_result && retries);
2325 
2326 	if (the_result) {
2327 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2328 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2329 		return -EINVAL;
2330 	}
2331 
2332 	sector_size = get_unaligned_be32(&buffer[8]);
2333 	lba = get_unaligned_be64(&buffer[0]);
2334 
2335 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2336 		sdkp->capacity = 0;
2337 		return -ENODEV;
2338 	}
2339 
2340 	/* Logical blocks per physical block exponent */
2341 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2342 
2343 	/* RC basis */
2344 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2345 
2346 	/* Lowest aligned logical block */
2347 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2348 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2349 	if (alignment && sdkp->first_scan)
2350 		sd_printk(KERN_NOTICE, sdkp,
2351 			  "physical block alignment offset: %u\n", alignment);
2352 
2353 	if (buffer[14] & 0x80) { /* LBPME */
2354 		sdkp->lbpme = 1;
2355 
2356 		if (buffer[14] & 0x40) /* LBPRZ */
2357 			sdkp->lbprz = 1;
2358 
2359 		sd_config_discard(sdkp, SD_LBP_WS16);
2360 	}
2361 
2362 	sdkp->capacity = lba + 1;
2363 	return sector_size;
2364 }
2365 
2366 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2367 						unsigned char *buffer)
2368 {
2369 	unsigned char cmd[16];
2370 	struct scsi_sense_hdr sshdr;
2371 	int sense_valid = 0;
2372 	int the_result;
2373 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2374 	sector_t lba;
2375 	unsigned sector_size;
2376 
2377 	do {
2378 		cmd[0] = READ_CAPACITY;
2379 		memset(&cmd[1], 0, 9);
2380 		memset(buffer, 0, 8);
2381 
2382 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2383 					buffer, 8, &sshdr,
2384 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2385 
2386 		if (media_not_present(sdkp, &sshdr))
2387 			return -ENODEV;
2388 
2389 		if (the_result) {
2390 			sense_valid = scsi_sense_valid(&sshdr);
2391 			if (sense_valid &&
2392 			    sshdr.sense_key == UNIT_ATTENTION &&
2393 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2394 				/* Device reset might occur several times,
2395 				 * give it one more chance */
2396 				if (--reset_retries > 0)
2397 					continue;
2398 		}
2399 		retries--;
2400 
2401 	} while (the_result && retries);
2402 
2403 	if (the_result) {
2404 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2405 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2406 		return -EINVAL;
2407 	}
2408 
2409 	sector_size = get_unaligned_be32(&buffer[4]);
2410 	lba = get_unaligned_be32(&buffer[0]);
2411 
2412 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2413 		/* Some buggy (usb cardreader) devices return an lba of
2414 		   0xffffffff when the want to report a size of 0 (with
2415 		   which they really mean no media is present) */
2416 		sdkp->capacity = 0;
2417 		sdkp->physical_block_size = sector_size;
2418 		return sector_size;
2419 	}
2420 
2421 	sdkp->capacity = lba + 1;
2422 	sdkp->physical_block_size = sector_size;
2423 	return sector_size;
2424 }
2425 
2426 static int sd_try_rc16_first(struct scsi_device *sdp)
2427 {
2428 	if (sdp->host->max_cmd_len < 16)
2429 		return 0;
2430 	if (sdp->try_rc_10_first)
2431 		return 0;
2432 	if (sdp->scsi_level > SCSI_SPC_2)
2433 		return 1;
2434 	if (scsi_device_protection(sdp))
2435 		return 1;
2436 	return 0;
2437 }
2438 
2439 /*
2440  * read disk capacity
2441  */
2442 static void
2443 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2444 {
2445 	int sector_size;
2446 	struct scsi_device *sdp = sdkp->device;
2447 
2448 	if (sd_try_rc16_first(sdp)) {
2449 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2450 		if (sector_size == -EOVERFLOW)
2451 			goto got_data;
2452 		if (sector_size == -ENODEV)
2453 			return;
2454 		if (sector_size < 0)
2455 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2456 		if (sector_size < 0)
2457 			return;
2458 	} else {
2459 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2460 		if (sector_size == -EOVERFLOW)
2461 			goto got_data;
2462 		if (sector_size < 0)
2463 			return;
2464 		if ((sizeof(sdkp->capacity) > 4) &&
2465 		    (sdkp->capacity > 0xffffffffULL)) {
2466 			int old_sector_size = sector_size;
2467 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2468 					"Trying to use READ CAPACITY(16).\n");
2469 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2470 			if (sector_size < 0) {
2471 				sd_printk(KERN_NOTICE, sdkp,
2472 					"Using 0xffffffff as device size\n");
2473 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2474 				sector_size = old_sector_size;
2475 				goto got_data;
2476 			}
2477 			/* Remember that READ CAPACITY(16) succeeded */
2478 			sdp->try_rc_10_first = 0;
2479 		}
2480 	}
2481 
2482 	/* Some devices are known to return the total number of blocks,
2483 	 * not the highest block number.  Some devices have versions
2484 	 * which do this and others which do not.  Some devices we might
2485 	 * suspect of doing this but we don't know for certain.
2486 	 *
2487 	 * If we know the reported capacity is wrong, decrement it.  If
2488 	 * we can only guess, then assume the number of blocks is even
2489 	 * (usually true but not always) and err on the side of lowering
2490 	 * the capacity.
2491 	 */
2492 	if (sdp->fix_capacity ||
2493 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2494 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2495 				"from its reported value: %llu\n",
2496 				(unsigned long long) sdkp->capacity);
2497 		--sdkp->capacity;
2498 	}
2499 
2500 got_data:
2501 	if (sector_size == 0) {
2502 		sector_size = 512;
2503 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2504 			  "assuming 512.\n");
2505 	}
2506 
2507 	if (sector_size != 512 &&
2508 	    sector_size != 1024 &&
2509 	    sector_size != 2048 &&
2510 	    sector_size != 4096) {
2511 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2512 			  sector_size);
2513 		/*
2514 		 * The user might want to re-format the drive with
2515 		 * a supported sectorsize.  Once this happens, it
2516 		 * would be relatively trivial to set the thing up.
2517 		 * For this reason, we leave the thing in the table.
2518 		 */
2519 		sdkp->capacity = 0;
2520 		/*
2521 		 * set a bogus sector size so the normal read/write
2522 		 * logic in the block layer will eventually refuse any
2523 		 * request on this device without tripping over power
2524 		 * of two sector size assumptions
2525 		 */
2526 		sector_size = 512;
2527 	}
2528 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2529 	blk_queue_physical_block_size(sdp->request_queue,
2530 				      sdkp->physical_block_size);
2531 	sdkp->device->sector_size = sector_size;
2532 
2533 	if (sdkp->capacity > 0xffffffff)
2534 		sdp->use_16_for_rw = 1;
2535 
2536 }
2537 
2538 /*
2539  * Print disk capacity
2540  */
2541 static void
2542 sd_print_capacity(struct scsi_disk *sdkp,
2543 		  sector_t old_capacity)
2544 {
2545 	int sector_size = sdkp->device->sector_size;
2546 	char cap_str_2[10], cap_str_10[10];
2547 
2548 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2549 		return;
2550 
2551 	string_get_size(sdkp->capacity, sector_size,
2552 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2553 	string_get_size(sdkp->capacity, sector_size,
2554 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2555 
2556 	sd_printk(KERN_NOTICE, sdkp,
2557 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2558 		  (unsigned long long)sdkp->capacity,
2559 		  sector_size, cap_str_10, cap_str_2);
2560 
2561 	if (sdkp->physical_block_size != sector_size)
2562 		sd_printk(KERN_NOTICE, sdkp,
2563 			  "%u-byte physical blocks\n",
2564 			  sdkp->physical_block_size);
2565 
2566 	sd_zbc_print_zones(sdkp);
2567 }
2568 
2569 /* called with buffer of length 512 */
2570 static inline int
2571 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2572 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2573 		 struct scsi_sense_hdr *sshdr)
2574 {
2575 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2576 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2577 			       sshdr);
2578 }
2579 
2580 /*
2581  * read write protect setting, if possible - called only in sd_revalidate_disk()
2582  * called with buffer of length SD_BUF_SIZE
2583  */
2584 static void
2585 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2586 {
2587 	int res;
2588 	struct scsi_device *sdp = sdkp->device;
2589 	struct scsi_mode_data data;
2590 	int old_wp = sdkp->write_prot;
2591 
2592 	set_disk_ro(sdkp->disk, 0);
2593 	if (sdp->skip_ms_page_3f) {
2594 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2595 		return;
2596 	}
2597 
2598 	if (sdp->use_192_bytes_for_3f) {
2599 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2600 	} else {
2601 		/*
2602 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2603 		 * We have to start carefully: some devices hang if we ask
2604 		 * for more than is available.
2605 		 */
2606 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2607 
2608 		/*
2609 		 * Second attempt: ask for page 0 When only page 0 is
2610 		 * implemented, a request for page 3F may return Sense Key
2611 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2612 		 * CDB.
2613 		 */
2614 		if (!scsi_status_is_good(res))
2615 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2616 
2617 		/*
2618 		 * Third attempt: ask 255 bytes, as we did earlier.
2619 		 */
2620 		if (!scsi_status_is_good(res))
2621 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2622 					       &data, NULL);
2623 	}
2624 
2625 	if (!scsi_status_is_good(res)) {
2626 		sd_first_printk(KERN_WARNING, sdkp,
2627 			  "Test WP failed, assume Write Enabled\n");
2628 	} else {
2629 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2630 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2631 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2632 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2633 				  sdkp->write_prot ? "on" : "off");
2634 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2635 		}
2636 	}
2637 }
2638 
2639 /*
2640  * sd_read_cache_type - called only from sd_revalidate_disk()
2641  * called with buffer of length SD_BUF_SIZE
2642  */
2643 static void
2644 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2645 {
2646 	int len = 0, res;
2647 	struct scsi_device *sdp = sdkp->device;
2648 
2649 	int dbd;
2650 	int modepage;
2651 	int first_len;
2652 	struct scsi_mode_data data;
2653 	struct scsi_sense_hdr sshdr;
2654 	int old_wce = sdkp->WCE;
2655 	int old_rcd = sdkp->RCD;
2656 	int old_dpofua = sdkp->DPOFUA;
2657 
2658 
2659 	if (sdkp->cache_override)
2660 		return;
2661 
2662 	first_len = 4;
2663 	if (sdp->skip_ms_page_8) {
2664 		if (sdp->type == TYPE_RBC)
2665 			goto defaults;
2666 		else {
2667 			if (sdp->skip_ms_page_3f)
2668 				goto defaults;
2669 			modepage = 0x3F;
2670 			if (sdp->use_192_bytes_for_3f)
2671 				first_len = 192;
2672 			dbd = 0;
2673 		}
2674 	} else if (sdp->type == TYPE_RBC) {
2675 		modepage = 6;
2676 		dbd = 8;
2677 	} else {
2678 		modepage = 8;
2679 		dbd = 0;
2680 	}
2681 
2682 	/* cautiously ask */
2683 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2684 			&data, &sshdr);
2685 
2686 	if (!scsi_status_is_good(res))
2687 		goto bad_sense;
2688 
2689 	if (!data.header_length) {
2690 		modepage = 6;
2691 		first_len = 0;
2692 		sd_first_printk(KERN_ERR, sdkp,
2693 				"Missing header in MODE_SENSE response\n");
2694 	}
2695 
2696 	/* that went OK, now ask for the proper length */
2697 	len = data.length;
2698 
2699 	/*
2700 	 * We're only interested in the first three bytes, actually.
2701 	 * But the data cache page is defined for the first 20.
2702 	 */
2703 	if (len < 3)
2704 		goto bad_sense;
2705 	else if (len > SD_BUF_SIZE) {
2706 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2707 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2708 		len = SD_BUF_SIZE;
2709 	}
2710 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2711 		len = 192;
2712 
2713 	/* Get the data */
2714 	if (len > first_len)
2715 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2716 				&data, &sshdr);
2717 
2718 	if (scsi_status_is_good(res)) {
2719 		int offset = data.header_length + data.block_descriptor_length;
2720 
2721 		while (offset < len) {
2722 			u8 page_code = buffer[offset] & 0x3F;
2723 			u8 spf       = buffer[offset] & 0x40;
2724 
2725 			if (page_code == 8 || page_code == 6) {
2726 				/* We're interested only in the first 3 bytes.
2727 				 */
2728 				if (len - offset <= 2) {
2729 					sd_first_printk(KERN_ERR, sdkp,
2730 						"Incomplete mode parameter "
2731 							"data\n");
2732 					goto defaults;
2733 				} else {
2734 					modepage = page_code;
2735 					goto Page_found;
2736 				}
2737 			} else {
2738 				/* Go to the next page */
2739 				if (spf && len - offset > 3)
2740 					offset += 4 + (buffer[offset+2] << 8) +
2741 						buffer[offset+3];
2742 				else if (!spf && len - offset > 1)
2743 					offset += 2 + buffer[offset+1];
2744 				else {
2745 					sd_first_printk(KERN_ERR, sdkp,
2746 							"Incomplete mode "
2747 							"parameter data\n");
2748 					goto defaults;
2749 				}
2750 			}
2751 		}
2752 
2753 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2754 		goto defaults;
2755 
2756 	Page_found:
2757 		if (modepage == 8) {
2758 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2759 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2760 		} else {
2761 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2762 			sdkp->RCD = 0;
2763 		}
2764 
2765 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2766 		if (sdp->broken_fua) {
2767 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2768 			sdkp->DPOFUA = 0;
2769 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2770 			   !sdkp->device->use_16_for_rw) {
2771 			sd_first_printk(KERN_NOTICE, sdkp,
2772 				  "Uses READ/WRITE(6), disabling FUA\n");
2773 			sdkp->DPOFUA = 0;
2774 		}
2775 
2776 		/* No cache flush allowed for write protected devices */
2777 		if (sdkp->WCE && sdkp->write_prot)
2778 			sdkp->WCE = 0;
2779 
2780 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2781 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2782 			sd_printk(KERN_NOTICE, sdkp,
2783 				  "Write cache: %s, read cache: %s, %s\n",
2784 				  sdkp->WCE ? "enabled" : "disabled",
2785 				  sdkp->RCD ? "disabled" : "enabled",
2786 				  sdkp->DPOFUA ? "supports DPO and FUA"
2787 				  : "doesn't support DPO or FUA");
2788 
2789 		return;
2790 	}
2791 
2792 bad_sense:
2793 	if (scsi_sense_valid(&sshdr) &&
2794 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2795 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2796 		/* Invalid field in CDB */
2797 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2798 	else
2799 		sd_first_printk(KERN_ERR, sdkp,
2800 				"Asking for cache data failed\n");
2801 
2802 defaults:
2803 	if (sdp->wce_default_on) {
2804 		sd_first_printk(KERN_NOTICE, sdkp,
2805 				"Assuming drive cache: write back\n");
2806 		sdkp->WCE = 1;
2807 	} else {
2808 		sd_first_printk(KERN_ERR, sdkp,
2809 				"Assuming drive cache: write through\n");
2810 		sdkp->WCE = 0;
2811 	}
2812 	sdkp->RCD = 0;
2813 	sdkp->DPOFUA = 0;
2814 }
2815 
2816 /*
2817  * The ATO bit indicates whether the DIF application tag is available
2818  * for use by the operating system.
2819  */
2820 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2821 {
2822 	int res, offset;
2823 	struct scsi_device *sdp = sdkp->device;
2824 	struct scsi_mode_data data;
2825 	struct scsi_sense_hdr sshdr;
2826 
2827 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2828 		return;
2829 
2830 	if (sdkp->protection_type == 0)
2831 		return;
2832 
2833 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2834 			      SD_MAX_RETRIES, &data, &sshdr);
2835 
2836 	if (!scsi_status_is_good(res) || !data.header_length ||
2837 	    data.length < 6) {
2838 		sd_first_printk(KERN_WARNING, sdkp,
2839 			  "getting Control mode page failed, assume no ATO\n");
2840 
2841 		if (scsi_sense_valid(&sshdr))
2842 			sd_print_sense_hdr(sdkp, &sshdr);
2843 
2844 		return;
2845 	}
2846 
2847 	offset = data.header_length + data.block_descriptor_length;
2848 
2849 	if ((buffer[offset] & 0x3f) != 0x0a) {
2850 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2851 		return;
2852 	}
2853 
2854 	if ((buffer[offset + 5] & 0x80) == 0)
2855 		return;
2856 
2857 	sdkp->ATO = 1;
2858 
2859 	return;
2860 }
2861 
2862 /**
2863  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2864  * @sdkp: disk to query
2865  */
2866 static void sd_read_block_limits(struct scsi_disk *sdkp)
2867 {
2868 	unsigned int sector_sz = sdkp->device->sector_size;
2869 	const int vpd_len = 64;
2870 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2871 
2872 	if (!buffer ||
2873 	    /* Block Limits VPD */
2874 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2875 		goto out;
2876 
2877 	blk_queue_io_min(sdkp->disk->queue,
2878 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2879 
2880 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2881 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2882 
2883 	if (buffer[3] == 0x3c) {
2884 		unsigned int lba_count, desc_count;
2885 
2886 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2887 
2888 		if (!sdkp->lbpme)
2889 			goto out;
2890 
2891 		lba_count = get_unaligned_be32(&buffer[20]);
2892 		desc_count = get_unaligned_be32(&buffer[24]);
2893 
2894 		if (lba_count && desc_count)
2895 			sdkp->max_unmap_blocks = lba_count;
2896 
2897 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2898 
2899 		if (buffer[32] & 0x80)
2900 			sdkp->unmap_alignment =
2901 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2902 
2903 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2904 
2905 			if (sdkp->max_unmap_blocks)
2906 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2907 			else
2908 				sd_config_discard(sdkp, SD_LBP_WS16);
2909 
2910 		} else {	/* LBP VPD page tells us what to use */
2911 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2912 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2913 			else if (sdkp->lbpws)
2914 				sd_config_discard(sdkp, SD_LBP_WS16);
2915 			else if (sdkp->lbpws10)
2916 				sd_config_discard(sdkp, SD_LBP_WS10);
2917 			else
2918 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2919 		}
2920 	}
2921 
2922  out:
2923 	kfree(buffer);
2924 }
2925 
2926 /**
2927  * sd_read_block_characteristics - Query block dev. characteristics
2928  * @sdkp: disk to query
2929  */
2930 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2931 {
2932 	struct request_queue *q = sdkp->disk->queue;
2933 	unsigned char *buffer;
2934 	u16 rot;
2935 	const int vpd_len = 64;
2936 
2937 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2938 
2939 	if (!buffer ||
2940 	    /* Block Device Characteristics VPD */
2941 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2942 		goto out;
2943 
2944 	rot = get_unaligned_be16(&buffer[4]);
2945 
2946 	if (rot == 1) {
2947 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2948 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2949 	}
2950 
2951 	if (sdkp->device->type == TYPE_ZBC) {
2952 		/* Host-managed */
2953 		q->limits.zoned = BLK_ZONED_HM;
2954 	} else {
2955 		sdkp->zoned = (buffer[8] >> 4) & 3;
2956 		if (sdkp->zoned == 1 && !disk_has_partitions(sdkp->disk)) {
2957 			/* Host-aware */
2958 			q->limits.zoned = BLK_ZONED_HA;
2959 		} else {
2960 			/*
2961 			 * Treat drive-managed devices and host-aware devices
2962 			 * with partitions as regular block devices.
2963 			 */
2964 			q->limits.zoned = BLK_ZONED_NONE;
2965 		}
2966 	}
2967 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2968 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2969 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2970 
2971  out:
2972 	kfree(buffer);
2973 }
2974 
2975 /**
2976  * sd_read_block_provisioning - Query provisioning VPD page
2977  * @sdkp: disk to query
2978  */
2979 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2980 {
2981 	unsigned char *buffer;
2982 	const int vpd_len = 8;
2983 
2984 	if (sdkp->lbpme == 0)
2985 		return;
2986 
2987 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2988 
2989 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2990 		goto out;
2991 
2992 	sdkp->lbpvpd	= 1;
2993 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2994 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2995 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2996 
2997  out:
2998 	kfree(buffer);
2999 }
3000 
3001 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3002 {
3003 	struct scsi_device *sdev = sdkp->device;
3004 
3005 	if (sdev->host->no_write_same) {
3006 		sdev->no_write_same = 1;
3007 
3008 		return;
3009 	}
3010 
3011 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3012 		/* too large values might cause issues with arcmsr */
3013 		int vpd_buf_len = 64;
3014 
3015 		sdev->no_report_opcodes = 1;
3016 
3017 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3018 		 * CODES is unsupported and the device has an ATA
3019 		 * Information VPD page (SAT).
3020 		 */
3021 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3022 			sdev->no_write_same = 1;
3023 	}
3024 
3025 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3026 		sdkp->ws16 = 1;
3027 
3028 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3029 		sdkp->ws10 = 1;
3030 }
3031 
3032 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3033 {
3034 	struct scsi_device *sdev = sdkp->device;
3035 
3036 	if (!sdev->security_supported)
3037 		return;
3038 
3039 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3040 			SECURITY_PROTOCOL_IN) == 1 &&
3041 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3042 			SECURITY_PROTOCOL_OUT) == 1)
3043 		sdkp->security = 1;
3044 }
3045 
3046 /*
3047  * Determine the device's preferred I/O size for reads and writes
3048  * unless the reported value is unreasonably small, large, not a
3049  * multiple of the physical block size, or simply garbage.
3050  */
3051 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3052 				      unsigned int dev_max)
3053 {
3054 	struct scsi_device *sdp = sdkp->device;
3055 	unsigned int opt_xfer_bytes =
3056 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3057 
3058 	if (sdkp->opt_xfer_blocks == 0)
3059 		return false;
3060 
3061 	if (sdkp->opt_xfer_blocks > dev_max) {
3062 		sd_first_printk(KERN_WARNING, sdkp,
3063 				"Optimal transfer size %u logical blocks " \
3064 				"> dev_max (%u logical blocks)\n",
3065 				sdkp->opt_xfer_blocks, dev_max);
3066 		return false;
3067 	}
3068 
3069 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3070 		sd_first_printk(KERN_WARNING, sdkp,
3071 				"Optimal transfer size %u logical blocks " \
3072 				"> sd driver limit (%u logical blocks)\n",
3073 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3074 		return false;
3075 	}
3076 
3077 	if (opt_xfer_bytes < PAGE_SIZE) {
3078 		sd_first_printk(KERN_WARNING, sdkp,
3079 				"Optimal transfer size %u bytes < " \
3080 				"PAGE_SIZE (%u bytes)\n",
3081 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3082 		return false;
3083 	}
3084 
3085 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3086 		sd_first_printk(KERN_WARNING, sdkp,
3087 				"Optimal transfer size %u bytes not a " \
3088 				"multiple of physical block size (%u bytes)\n",
3089 				opt_xfer_bytes, sdkp->physical_block_size);
3090 		return false;
3091 	}
3092 
3093 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3094 			opt_xfer_bytes);
3095 	return true;
3096 }
3097 
3098 /**
3099  *	sd_revalidate_disk - called the first time a new disk is seen,
3100  *	performs disk spin up, read_capacity, etc.
3101  *	@disk: struct gendisk we care about
3102  **/
3103 static int sd_revalidate_disk(struct gendisk *disk)
3104 {
3105 	struct scsi_disk *sdkp = scsi_disk(disk);
3106 	struct scsi_device *sdp = sdkp->device;
3107 	struct request_queue *q = sdkp->disk->queue;
3108 	sector_t old_capacity = sdkp->capacity;
3109 	unsigned char *buffer;
3110 	unsigned int dev_max, rw_max;
3111 
3112 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3113 				      "sd_revalidate_disk\n"));
3114 
3115 	/*
3116 	 * If the device is offline, don't try and read capacity or any
3117 	 * of the other niceties.
3118 	 */
3119 	if (!scsi_device_online(sdp))
3120 		goto out;
3121 
3122 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3123 	if (!buffer) {
3124 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3125 			  "allocation failure.\n");
3126 		goto out;
3127 	}
3128 
3129 	sd_spinup_disk(sdkp);
3130 
3131 	/*
3132 	 * Without media there is no reason to ask; moreover, some devices
3133 	 * react badly if we do.
3134 	 */
3135 	if (sdkp->media_present) {
3136 		sd_read_capacity(sdkp, buffer);
3137 
3138 		/*
3139 		 * set the default to rotational.  All non-rotational devices
3140 		 * support the block characteristics VPD page, which will
3141 		 * cause this to be updated correctly and any device which
3142 		 * doesn't support it should be treated as rotational.
3143 		 */
3144 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3145 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3146 
3147 		if (scsi_device_supports_vpd(sdp)) {
3148 			sd_read_block_provisioning(sdkp);
3149 			sd_read_block_limits(sdkp);
3150 			sd_read_block_characteristics(sdkp);
3151 			sd_zbc_read_zones(sdkp, buffer);
3152 		}
3153 
3154 		sd_print_capacity(sdkp, old_capacity);
3155 
3156 		sd_read_write_protect_flag(sdkp, buffer);
3157 		sd_read_cache_type(sdkp, buffer);
3158 		sd_read_app_tag_own(sdkp, buffer);
3159 		sd_read_write_same(sdkp, buffer);
3160 		sd_read_security(sdkp, buffer);
3161 	}
3162 
3163 	/*
3164 	 * We now have all cache related info, determine how we deal
3165 	 * with flush requests.
3166 	 */
3167 	sd_set_flush_flag(sdkp);
3168 
3169 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3170 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3171 
3172 	/* Some devices report a maximum block count for READ/WRITE requests. */
3173 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3174 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3175 
3176 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3177 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3178 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3179 	} else {
3180 		q->limits.io_opt = 0;
3181 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3182 				      (sector_t)BLK_DEF_MAX_SECTORS);
3183 	}
3184 
3185 	/* Do not exceed controller limit */
3186 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3187 
3188 	/*
3189 	 * Only update max_sectors if previously unset or if the current value
3190 	 * exceeds the capabilities of the hardware.
3191 	 */
3192 	if (sdkp->first_scan ||
3193 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3194 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3195 		q->limits.max_sectors = rw_max;
3196 
3197 	sdkp->first_scan = 0;
3198 
3199 	set_capacity_revalidate_and_notify(disk,
3200 		logical_to_sectors(sdp, sdkp->capacity), false);
3201 	sd_config_write_same(sdkp);
3202 	kfree(buffer);
3203 
3204  out:
3205 	return 0;
3206 }
3207 
3208 /**
3209  *	sd_unlock_native_capacity - unlock native capacity
3210  *	@disk: struct gendisk to set capacity for
3211  *
3212  *	Block layer calls this function if it detects that partitions
3213  *	on @disk reach beyond the end of the device.  If the SCSI host
3214  *	implements ->unlock_native_capacity() method, it's invoked to
3215  *	give it a chance to adjust the device capacity.
3216  *
3217  *	CONTEXT:
3218  *	Defined by block layer.  Might sleep.
3219  */
3220 static void sd_unlock_native_capacity(struct gendisk *disk)
3221 {
3222 	struct scsi_device *sdev = scsi_disk(disk)->device;
3223 
3224 	if (sdev->host->hostt->unlock_native_capacity)
3225 		sdev->host->hostt->unlock_native_capacity(sdev);
3226 }
3227 
3228 /**
3229  *	sd_format_disk_name - format disk name
3230  *	@prefix: name prefix - ie. "sd" for SCSI disks
3231  *	@index: index of the disk to format name for
3232  *	@buf: output buffer
3233  *	@buflen: length of the output buffer
3234  *
3235  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3236  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3237  *	which is followed by sdaaa.
3238  *
3239  *	This is basically 26 base counting with one extra 'nil' entry
3240  *	at the beginning from the second digit on and can be
3241  *	determined using similar method as 26 base conversion with the
3242  *	index shifted -1 after each digit is computed.
3243  *
3244  *	CONTEXT:
3245  *	Don't care.
3246  *
3247  *	RETURNS:
3248  *	0 on success, -errno on failure.
3249  */
3250 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3251 {
3252 	const int base = 'z' - 'a' + 1;
3253 	char *begin = buf + strlen(prefix);
3254 	char *end = buf + buflen;
3255 	char *p;
3256 	int unit;
3257 
3258 	p = end - 1;
3259 	*p = '\0';
3260 	unit = base;
3261 	do {
3262 		if (p == begin)
3263 			return -EINVAL;
3264 		*--p = 'a' + (index % unit);
3265 		index = (index / unit) - 1;
3266 	} while (index >= 0);
3267 
3268 	memmove(begin, p, end - p);
3269 	memcpy(buf, prefix, strlen(prefix));
3270 
3271 	return 0;
3272 }
3273 
3274 /**
3275  *	sd_probe - called during driver initialization and whenever a
3276  *	new scsi device is attached to the system. It is called once
3277  *	for each scsi device (not just disks) present.
3278  *	@dev: pointer to device object
3279  *
3280  *	Returns 0 if successful (or not interested in this scsi device
3281  *	(e.g. scanner)); 1 when there is an error.
3282  *
3283  *	Note: this function is invoked from the scsi mid-level.
3284  *	This function sets up the mapping between a given
3285  *	<host,channel,id,lun> (found in sdp) and new device name
3286  *	(e.g. /dev/sda). More precisely it is the block device major
3287  *	and minor number that is chosen here.
3288  *
3289  *	Assume sd_probe is not re-entrant (for time being)
3290  *	Also think about sd_probe() and sd_remove() running coincidentally.
3291  **/
3292 static int sd_probe(struct device *dev)
3293 {
3294 	struct scsi_device *sdp = to_scsi_device(dev);
3295 	struct scsi_disk *sdkp;
3296 	struct gendisk *gd;
3297 	int index;
3298 	int error;
3299 
3300 	scsi_autopm_get_device(sdp);
3301 	error = -ENODEV;
3302 	if (sdp->type != TYPE_DISK &&
3303 	    sdp->type != TYPE_ZBC &&
3304 	    sdp->type != TYPE_MOD &&
3305 	    sdp->type != TYPE_RBC)
3306 		goto out;
3307 
3308 #ifndef CONFIG_BLK_DEV_ZONED
3309 	if (sdp->type == TYPE_ZBC)
3310 		goto out;
3311 #endif
3312 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3313 					"sd_probe\n"));
3314 
3315 	error = -ENOMEM;
3316 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3317 	if (!sdkp)
3318 		goto out;
3319 
3320 	gd = alloc_disk(SD_MINORS);
3321 	if (!gd)
3322 		goto out_free;
3323 
3324 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3325 	if (index < 0) {
3326 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3327 		goto out_put;
3328 	}
3329 
3330 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3331 	if (error) {
3332 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3333 		goto out_free_index;
3334 	}
3335 
3336 	sdkp->device = sdp;
3337 	sdkp->driver = &sd_template;
3338 	sdkp->disk = gd;
3339 	sdkp->index = index;
3340 	atomic_set(&sdkp->openers, 0);
3341 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3342 
3343 	if (!sdp->request_queue->rq_timeout) {
3344 		if (sdp->type != TYPE_MOD)
3345 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3346 		else
3347 			blk_queue_rq_timeout(sdp->request_queue,
3348 					     SD_MOD_TIMEOUT);
3349 	}
3350 
3351 	device_initialize(&sdkp->dev);
3352 	sdkp->dev.parent = dev;
3353 	sdkp->dev.class = &sd_disk_class;
3354 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3355 
3356 	error = device_add(&sdkp->dev);
3357 	if (error)
3358 		goto out_free_index;
3359 
3360 	get_device(dev);
3361 	dev_set_drvdata(dev, sdkp);
3362 
3363 	gd->major = sd_major((index & 0xf0) >> 4);
3364 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3365 
3366 	gd->fops = &sd_fops;
3367 	gd->private_data = &sdkp->driver;
3368 	gd->queue = sdkp->device->request_queue;
3369 
3370 	/* defaults, until the device tells us otherwise */
3371 	sdp->sector_size = 512;
3372 	sdkp->capacity = 0;
3373 	sdkp->media_present = 1;
3374 	sdkp->write_prot = 0;
3375 	sdkp->cache_override = 0;
3376 	sdkp->WCE = 0;
3377 	sdkp->RCD = 0;
3378 	sdkp->ATO = 0;
3379 	sdkp->first_scan = 1;
3380 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3381 
3382 	error = sd_zbc_init_disk(sdkp);
3383 	if (error)
3384 		goto out_free_index;
3385 
3386 	sd_revalidate_disk(gd);
3387 
3388 	gd->flags = GENHD_FL_EXT_DEVT;
3389 	if (sdp->removable) {
3390 		gd->flags |= GENHD_FL_REMOVABLE;
3391 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3392 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3393 	}
3394 
3395 	blk_pm_runtime_init(sdp->request_queue, dev);
3396 	if (sdp->rpm_autosuspend) {
3397 		pm_runtime_set_autosuspend_delay(dev,
3398 			sdp->host->hostt->rpm_autosuspend_delay);
3399 	}
3400 	device_add_disk(dev, gd, NULL);
3401 	if (sdkp->capacity)
3402 		sd_dif_config_host(sdkp);
3403 
3404 	sd_revalidate_disk(gd);
3405 
3406 	if (sdkp->security) {
3407 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3408 		if (sdkp->opal_dev)
3409 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3410 	}
3411 
3412 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3413 		  sdp->removable ? "removable " : "");
3414 	scsi_autopm_put_device(sdp);
3415 
3416 	return 0;
3417 
3418  out_free_index:
3419 	ida_free(&sd_index_ida, index);
3420  out_put:
3421 	put_disk(gd);
3422  out_free:
3423 	sd_zbc_release_disk(sdkp);
3424 	kfree(sdkp);
3425  out:
3426 	scsi_autopm_put_device(sdp);
3427 	return error;
3428 }
3429 
3430 /**
3431  *	sd_remove - called whenever a scsi disk (previously recognized by
3432  *	sd_probe) is detached from the system. It is called (potentially
3433  *	multiple times) during sd module unload.
3434  *	@dev: pointer to device object
3435  *
3436  *	Note: this function is invoked from the scsi mid-level.
3437  *	This function potentially frees up a device name (e.g. /dev/sdc)
3438  *	that could be re-used by a subsequent sd_probe().
3439  *	This function is not called when the built-in sd driver is "exit-ed".
3440  **/
3441 static int sd_remove(struct device *dev)
3442 {
3443 	struct scsi_disk *sdkp;
3444 	dev_t devt;
3445 
3446 	sdkp = dev_get_drvdata(dev);
3447 	devt = disk_devt(sdkp->disk);
3448 	scsi_autopm_get_device(sdkp->device);
3449 
3450 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3451 	device_del(&sdkp->dev);
3452 	del_gendisk(sdkp->disk);
3453 	sd_shutdown(dev);
3454 
3455 	free_opal_dev(sdkp->opal_dev);
3456 
3457 	blk_register_region(devt, SD_MINORS, NULL,
3458 			    sd_default_probe, NULL, NULL);
3459 
3460 	mutex_lock(&sd_ref_mutex);
3461 	dev_set_drvdata(dev, NULL);
3462 	put_device(&sdkp->dev);
3463 	mutex_unlock(&sd_ref_mutex);
3464 
3465 	return 0;
3466 }
3467 
3468 /**
3469  *	scsi_disk_release - Called to free the scsi_disk structure
3470  *	@dev: pointer to embedded class device
3471  *
3472  *	sd_ref_mutex must be held entering this routine.  Because it is
3473  *	called on last put, you should always use the scsi_disk_get()
3474  *	scsi_disk_put() helpers which manipulate the semaphore directly
3475  *	and never do a direct put_device.
3476  **/
3477 static void scsi_disk_release(struct device *dev)
3478 {
3479 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3480 	struct gendisk *disk = sdkp->disk;
3481 	struct request_queue *q = disk->queue;
3482 
3483 	ida_free(&sd_index_ida, sdkp->index);
3484 
3485 	/*
3486 	 * Wait until all requests that are in progress have completed.
3487 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3488 	 * due to clearing the disk->private_data pointer. Wait from inside
3489 	 * scsi_disk_release() instead of from sd_release() to avoid that
3490 	 * freezing and unfreezing the request queue affects user space I/O
3491 	 * in case multiple processes open a /dev/sd... node concurrently.
3492 	 */
3493 	blk_mq_freeze_queue(q);
3494 	blk_mq_unfreeze_queue(q);
3495 
3496 	disk->private_data = NULL;
3497 	put_disk(disk);
3498 	put_device(&sdkp->device->sdev_gendev);
3499 
3500 	sd_zbc_release_disk(sdkp);
3501 
3502 	kfree(sdkp);
3503 }
3504 
3505 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3506 {
3507 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3508 	struct scsi_sense_hdr sshdr;
3509 	struct scsi_device *sdp = sdkp->device;
3510 	int res;
3511 
3512 	if (start)
3513 		cmd[4] |= 1;	/* START */
3514 
3515 	if (sdp->start_stop_pwr_cond)
3516 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3517 
3518 	if (!scsi_device_online(sdp))
3519 		return -ENODEV;
3520 
3521 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3522 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3523 	if (res) {
3524 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3525 		if (driver_byte(res) == DRIVER_SENSE)
3526 			sd_print_sense_hdr(sdkp, &sshdr);
3527 		if (scsi_sense_valid(&sshdr) &&
3528 			/* 0x3a is medium not present */
3529 			sshdr.asc == 0x3a)
3530 			res = 0;
3531 	}
3532 
3533 	/* SCSI error codes must not go to the generic layer */
3534 	if (res)
3535 		return -EIO;
3536 
3537 	return 0;
3538 }
3539 
3540 /*
3541  * Send a SYNCHRONIZE CACHE instruction down to the device through
3542  * the normal SCSI command structure.  Wait for the command to
3543  * complete.
3544  */
3545 static void sd_shutdown(struct device *dev)
3546 {
3547 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3548 
3549 	if (!sdkp)
3550 		return;         /* this can happen */
3551 
3552 	if (pm_runtime_suspended(dev))
3553 		return;
3554 
3555 	if (sdkp->WCE && sdkp->media_present) {
3556 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3557 		sd_sync_cache(sdkp, NULL);
3558 	}
3559 
3560 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3561 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3562 		sd_start_stop_device(sdkp, 0);
3563 	}
3564 }
3565 
3566 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3567 {
3568 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3569 	struct scsi_sense_hdr sshdr;
3570 	int ret = 0;
3571 
3572 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3573 		return 0;
3574 
3575 	if (sdkp->WCE && sdkp->media_present) {
3576 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3577 		ret = sd_sync_cache(sdkp, &sshdr);
3578 
3579 		if (ret) {
3580 			/* ignore OFFLINE device */
3581 			if (ret == -ENODEV)
3582 				return 0;
3583 
3584 			if (!scsi_sense_valid(&sshdr) ||
3585 			    sshdr.sense_key != ILLEGAL_REQUEST)
3586 				return ret;
3587 
3588 			/*
3589 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3590 			 * doesn't support sync. There's not much to do and
3591 			 * suspend shouldn't fail.
3592 			 */
3593 			ret = 0;
3594 		}
3595 	}
3596 
3597 	if (sdkp->device->manage_start_stop) {
3598 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3599 		/* an error is not worth aborting a system sleep */
3600 		ret = sd_start_stop_device(sdkp, 0);
3601 		if (ignore_stop_errors)
3602 			ret = 0;
3603 	}
3604 
3605 	return ret;
3606 }
3607 
3608 static int sd_suspend_system(struct device *dev)
3609 {
3610 	return sd_suspend_common(dev, true);
3611 }
3612 
3613 static int sd_suspend_runtime(struct device *dev)
3614 {
3615 	return sd_suspend_common(dev, false);
3616 }
3617 
3618 static int sd_resume(struct device *dev)
3619 {
3620 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3621 	int ret;
3622 
3623 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3624 		return 0;
3625 
3626 	if (!sdkp->device->manage_start_stop)
3627 		return 0;
3628 
3629 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3630 	ret = sd_start_stop_device(sdkp, 1);
3631 	if (!ret)
3632 		opal_unlock_from_suspend(sdkp->opal_dev);
3633 	return ret;
3634 }
3635 
3636 /**
3637  *	init_sd - entry point for this driver (both when built in or when
3638  *	a module).
3639  *
3640  *	Note: this function registers this driver with the scsi mid-level.
3641  **/
3642 static int __init init_sd(void)
3643 {
3644 	int majors = 0, i, err;
3645 
3646 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3647 
3648 	for (i = 0; i < SD_MAJORS; i++) {
3649 		if (register_blkdev(sd_major(i), "sd") != 0)
3650 			continue;
3651 		majors++;
3652 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3653 				    sd_default_probe, NULL, NULL);
3654 	}
3655 
3656 	if (!majors)
3657 		return -ENODEV;
3658 
3659 	err = class_register(&sd_disk_class);
3660 	if (err)
3661 		goto err_out;
3662 
3663 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3664 					 0, 0, NULL);
3665 	if (!sd_cdb_cache) {
3666 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3667 		err = -ENOMEM;
3668 		goto err_out_class;
3669 	}
3670 
3671 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3672 	if (!sd_cdb_pool) {
3673 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3674 		err = -ENOMEM;
3675 		goto err_out_cache;
3676 	}
3677 
3678 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3679 	if (!sd_page_pool) {
3680 		printk(KERN_ERR "sd: can't init discard page pool\n");
3681 		err = -ENOMEM;
3682 		goto err_out_ppool;
3683 	}
3684 
3685 	err = scsi_register_driver(&sd_template.gendrv);
3686 	if (err)
3687 		goto err_out_driver;
3688 
3689 	return 0;
3690 
3691 err_out_driver:
3692 	mempool_destroy(sd_page_pool);
3693 
3694 err_out_ppool:
3695 	mempool_destroy(sd_cdb_pool);
3696 
3697 err_out_cache:
3698 	kmem_cache_destroy(sd_cdb_cache);
3699 
3700 err_out_class:
3701 	class_unregister(&sd_disk_class);
3702 err_out:
3703 	for (i = 0; i < SD_MAJORS; i++)
3704 		unregister_blkdev(sd_major(i), "sd");
3705 	return err;
3706 }
3707 
3708 /**
3709  *	exit_sd - exit point for this driver (when it is a module).
3710  *
3711  *	Note: this function unregisters this driver from the scsi mid-level.
3712  **/
3713 static void __exit exit_sd(void)
3714 {
3715 	int i;
3716 
3717 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3718 
3719 	scsi_unregister_driver(&sd_template.gendrv);
3720 	mempool_destroy(sd_cdb_pool);
3721 	mempool_destroy(sd_page_pool);
3722 	kmem_cache_destroy(sd_cdb_cache);
3723 
3724 	class_unregister(&sd_disk_class);
3725 
3726 	for (i = 0; i < SD_MAJORS; i++) {
3727 		blk_unregister_region(sd_major(i), SD_MINORS);
3728 		unregister_blkdev(sd_major(i), "sd");
3729 	}
3730 }
3731 
3732 module_init(init_sd);
3733 module_exit(exit_sd);
3734 
3735 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3736 {
3737 	scsi_print_sense_hdr(sdkp->device,
3738 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3739 }
3740 
3741 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3742 {
3743 	const char *hb_string = scsi_hostbyte_string(result);
3744 	const char *db_string = scsi_driverbyte_string(result);
3745 
3746 	if (hb_string || db_string)
3747 		sd_printk(KERN_INFO, sdkp,
3748 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3749 			  hb_string ? hb_string : "invalid",
3750 			  db_string ? db_string : "invalid");
3751 	else
3752 		sd_printk(KERN_INFO, sdkp,
3753 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3754 			  msg, host_byte(result), driver_byte(result));
3755 }
3756