1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/mutex.h> 51 #include <linux/string_helpers.h> 52 #include <linux/async.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 101 #define SD_MINORS 16 102 #else 103 #define SD_MINORS 0 104 #endif 105 106 static void sd_config_discard(struct scsi_disk *, unsigned int); 107 static void sd_config_write_same(struct scsi_disk *); 108 static int sd_revalidate_disk(struct gendisk *); 109 static void sd_unlock_native_capacity(struct gendisk *disk); 110 static int sd_probe(struct device *); 111 static int sd_remove(struct device *); 112 static void sd_shutdown(struct device *); 113 static int sd_suspend_system(struct device *); 114 static int sd_suspend_runtime(struct device *); 115 static int sd_resume(struct device *); 116 static void sd_rescan(struct device *); 117 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 118 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 119 static int sd_done(struct scsi_cmnd *); 120 static void sd_eh_reset(struct scsi_cmnd *); 121 static int sd_eh_action(struct scsi_cmnd *, int); 122 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 123 static void scsi_disk_release(struct device *cdev); 124 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 125 static void sd_print_result(const struct scsi_disk *, const char *, int); 126 127 static DEFINE_IDA(sd_index_ida); 128 129 /* This semaphore is used to mediate the 0->1 reference get in the 130 * face of object destruction (i.e. we can't allow a get on an 131 * object after last put) */ 132 static DEFINE_MUTEX(sd_ref_mutex); 133 134 static struct kmem_cache *sd_cdb_cache; 135 static mempool_t *sd_cdb_pool; 136 static mempool_t *sd_page_pool; 137 138 static const char *sd_cache_types[] = { 139 "write through", "none", "write back", 140 "write back, no read (daft)" 141 }; 142 143 static void sd_set_flush_flag(struct scsi_disk *sdkp) 144 { 145 bool wc = false, fua = false; 146 147 if (sdkp->WCE) { 148 wc = true; 149 if (sdkp->DPOFUA) 150 fua = true; 151 } 152 153 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 154 } 155 156 static ssize_t 157 cache_type_store(struct device *dev, struct device_attribute *attr, 158 const char *buf, size_t count) 159 { 160 int ct, rcd, wce, sp; 161 struct scsi_disk *sdkp = to_scsi_disk(dev); 162 struct scsi_device *sdp = sdkp->device; 163 char buffer[64]; 164 char *buffer_data; 165 struct scsi_mode_data data; 166 struct scsi_sense_hdr sshdr; 167 static const char temp[] = "temporary "; 168 int len; 169 170 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 171 /* no cache control on RBC devices; theoretically they 172 * can do it, but there's probably so many exceptions 173 * it's not worth the risk */ 174 return -EINVAL; 175 176 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 177 buf += sizeof(temp) - 1; 178 sdkp->cache_override = 1; 179 } else { 180 sdkp->cache_override = 0; 181 } 182 183 ct = sysfs_match_string(sd_cache_types, buf); 184 if (ct < 0) 185 return -EINVAL; 186 187 rcd = ct & 0x01 ? 1 : 0; 188 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 189 190 if (sdkp->cache_override) { 191 sdkp->WCE = wce; 192 sdkp->RCD = rcd; 193 sd_set_flush_flag(sdkp); 194 return count; 195 } 196 197 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 198 SD_MAX_RETRIES, &data, NULL)) 199 return -EINVAL; 200 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 201 data.block_descriptor_length); 202 buffer_data = buffer + data.header_length + 203 data.block_descriptor_length; 204 buffer_data[2] &= ~0x05; 205 buffer_data[2] |= wce << 2 | rcd; 206 sp = buffer_data[0] & 0x80 ? 1 : 0; 207 buffer_data[0] &= ~0x80; 208 209 /* 210 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 211 * received mode parameter buffer before doing MODE SELECT. 212 */ 213 data.device_specific = 0; 214 215 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 216 SD_MAX_RETRIES, &data, &sshdr)) { 217 if (scsi_sense_valid(&sshdr)) 218 sd_print_sense_hdr(sdkp, &sshdr); 219 return -EINVAL; 220 } 221 revalidate_disk(sdkp->disk); 222 return count; 223 } 224 225 static ssize_t 226 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 227 char *buf) 228 { 229 struct scsi_disk *sdkp = to_scsi_disk(dev); 230 struct scsi_device *sdp = sdkp->device; 231 232 return sprintf(buf, "%u\n", sdp->manage_start_stop); 233 } 234 235 static ssize_t 236 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 237 const char *buf, size_t count) 238 { 239 struct scsi_disk *sdkp = to_scsi_disk(dev); 240 struct scsi_device *sdp = sdkp->device; 241 bool v; 242 243 if (!capable(CAP_SYS_ADMIN)) 244 return -EACCES; 245 246 if (kstrtobool(buf, &v)) 247 return -EINVAL; 248 249 sdp->manage_start_stop = v; 250 251 return count; 252 } 253 static DEVICE_ATTR_RW(manage_start_stop); 254 255 static ssize_t 256 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 257 { 258 struct scsi_disk *sdkp = to_scsi_disk(dev); 259 260 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 261 } 262 263 static ssize_t 264 allow_restart_store(struct device *dev, struct device_attribute *attr, 265 const char *buf, size_t count) 266 { 267 bool v; 268 struct scsi_disk *sdkp = to_scsi_disk(dev); 269 struct scsi_device *sdp = sdkp->device; 270 271 if (!capable(CAP_SYS_ADMIN)) 272 return -EACCES; 273 274 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 275 return -EINVAL; 276 277 if (kstrtobool(buf, &v)) 278 return -EINVAL; 279 280 sdp->allow_restart = v; 281 282 return count; 283 } 284 static DEVICE_ATTR_RW(allow_restart); 285 286 static ssize_t 287 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 288 { 289 struct scsi_disk *sdkp = to_scsi_disk(dev); 290 int ct = sdkp->RCD + 2*sdkp->WCE; 291 292 return sprintf(buf, "%s\n", sd_cache_types[ct]); 293 } 294 static DEVICE_ATTR_RW(cache_type); 295 296 static ssize_t 297 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 298 { 299 struct scsi_disk *sdkp = to_scsi_disk(dev); 300 301 return sprintf(buf, "%u\n", sdkp->DPOFUA); 302 } 303 static DEVICE_ATTR_RO(FUA); 304 305 static ssize_t 306 protection_type_show(struct device *dev, struct device_attribute *attr, 307 char *buf) 308 { 309 struct scsi_disk *sdkp = to_scsi_disk(dev); 310 311 return sprintf(buf, "%u\n", sdkp->protection_type); 312 } 313 314 static ssize_t 315 protection_type_store(struct device *dev, struct device_attribute *attr, 316 const char *buf, size_t count) 317 { 318 struct scsi_disk *sdkp = to_scsi_disk(dev); 319 unsigned int val; 320 int err; 321 322 if (!capable(CAP_SYS_ADMIN)) 323 return -EACCES; 324 325 err = kstrtouint(buf, 10, &val); 326 327 if (err) 328 return err; 329 330 if (val <= T10_PI_TYPE3_PROTECTION) 331 sdkp->protection_type = val; 332 333 return count; 334 } 335 static DEVICE_ATTR_RW(protection_type); 336 337 static ssize_t 338 protection_mode_show(struct device *dev, struct device_attribute *attr, 339 char *buf) 340 { 341 struct scsi_disk *sdkp = to_scsi_disk(dev); 342 struct scsi_device *sdp = sdkp->device; 343 unsigned int dif, dix; 344 345 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 346 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 347 348 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 349 dif = 0; 350 dix = 1; 351 } 352 353 if (!dif && !dix) 354 return sprintf(buf, "none\n"); 355 356 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 357 } 358 static DEVICE_ATTR_RO(protection_mode); 359 360 static ssize_t 361 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return sprintf(buf, "%u\n", sdkp->ATO); 366 } 367 static DEVICE_ATTR_RO(app_tag_own); 368 369 static ssize_t 370 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 371 char *buf) 372 { 373 struct scsi_disk *sdkp = to_scsi_disk(dev); 374 375 return sprintf(buf, "%u\n", sdkp->lbpme); 376 } 377 static DEVICE_ATTR_RO(thin_provisioning); 378 379 /* sysfs_match_string() requires dense arrays */ 380 static const char *lbp_mode[] = { 381 [SD_LBP_FULL] = "full", 382 [SD_LBP_UNMAP] = "unmap", 383 [SD_LBP_WS16] = "writesame_16", 384 [SD_LBP_WS10] = "writesame_10", 385 [SD_LBP_ZERO] = "writesame_zero", 386 [SD_LBP_DISABLE] = "disabled", 387 }; 388 389 static ssize_t 390 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 391 char *buf) 392 { 393 struct scsi_disk *sdkp = to_scsi_disk(dev); 394 395 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 396 } 397 398 static ssize_t 399 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 400 const char *buf, size_t count) 401 { 402 struct scsi_disk *sdkp = to_scsi_disk(dev); 403 struct scsi_device *sdp = sdkp->device; 404 int mode; 405 406 if (!capable(CAP_SYS_ADMIN)) 407 return -EACCES; 408 409 if (sd_is_zoned(sdkp)) { 410 sd_config_discard(sdkp, SD_LBP_DISABLE); 411 return count; 412 } 413 414 if (sdp->type != TYPE_DISK) 415 return -EINVAL; 416 417 mode = sysfs_match_string(lbp_mode, buf); 418 if (mode < 0) 419 return -EINVAL; 420 421 sd_config_discard(sdkp, mode); 422 423 return count; 424 } 425 static DEVICE_ATTR_RW(provisioning_mode); 426 427 /* sysfs_match_string() requires dense arrays */ 428 static const char *zeroing_mode[] = { 429 [SD_ZERO_WRITE] = "write", 430 [SD_ZERO_WS] = "writesame", 431 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 432 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 433 }; 434 435 static ssize_t 436 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 437 char *buf) 438 { 439 struct scsi_disk *sdkp = to_scsi_disk(dev); 440 441 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 442 } 443 444 static ssize_t 445 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 446 const char *buf, size_t count) 447 { 448 struct scsi_disk *sdkp = to_scsi_disk(dev); 449 int mode; 450 451 if (!capable(CAP_SYS_ADMIN)) 452 return -EACCES; 453 454 mode = sysfs_match_string(zeroing_mode, buf); 455 if (mode < 0) 456 return -EINVAL; 457 458 sdkp->zeroing_mode = mode; 459 460 return count; 461 } 462 static DEVICE_ATTR_RW(zeroing_mode); 463 464 static ssize_t 465 max_medium_access_timeouts_show(struct device *dev, 466 struct device_attribute *attr, char *buf) 467 { 468 struct scsi_disk *sdkp = to_scsi_disk(dev); 469 470 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 471 } 472 473 static ssize_t 474 max_medium_access_timeouts_store(struct device *dev, 475 struct device_attribute *attr, const char *buf, 476 size_t count) 477 { 478 struct scsi_disk *sdkp = to_scsi_disk(dev); 479 int err; 480 481 if (!capable(CAP_SYS_ADMIN)) 482 return -EACCES; 483 484 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 485 486 return err ? err : count; 487 } 488 static DEVICE_ATTR_RW(max_medium_access_timeouts); 489 490 static ssize_t 491 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 492 char *buf) 493 { 494 struct scsi_disk *sdkp = to_scsi_disk(dev); 495 496 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 497 } 498 499 static ssize_t 500 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 501 const char *buf, size_t count) 502 { 503 struct scsi_disk *sdkp = to_scsi_disk(dev); 504 struct scsi_device *sdp = sdkp->device; 505 unsigned long max; 506 int err; 507 508 if (!capable(CAP_SYS_ADMIN)) 509 return -EACCES; 510 511 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 512 return -EINVAL; 513 514 err = kstrtoul(buf, 10, &max); 515 516 if (err) 517 return err; 518 519 if (max == 0) 520 sdp->no_write_same = 1; 521 else if (max <= SD_MAX_WS16_BLOCKS) { 522 sdp->no_write_same = 0; 523 sdkp->max_ws_blocks = max; 524 } 525 526 sd_config_write_same(sdkp); 527 528 return count; 529 } 530 static DEVICE_ATTR_RW(max_write_same_blocks); 531 532 static struct attribute *sd_disk_attrs[] = { 533 &dev_attr_cache_type.attr, 534 &dev_attr_FUA.attr, 535 &dev_attr_allow_restart.attr, 536 &dev_attr_manage_start_stop.attr, 537 &dev_attr_protection_type.attr, 538 &dev_attr_protection_mode.attr, 539 &dev_attr_app_tag_own.attr, 540 &dev_attr_thin_provisioning.attr, 541 &dev_attr_provisioning_mode.attr, 542 &dev_attr_zeroing_mode.attr, 543 &dev_attr_max_write_same_blocks.attr, 544 &dev_attr_max_medium_access_timeouts.attr, 545 NULL, 546 }; 547 ATTRIBUTE_GROUPS(sd_disk); 548 549 static struct class sd_disk_class = { 550 .name = "scsi_disk", 551 .owner = THIS_MODULE, 552 .dev_release = scsi_disk_release, 553 .dev_groups = sd_disk_groups, 554 }; 555 556 static const struct dev_pm_ops sd_pm_ops = { 557 .suspend = sd_suspend_system, 558 .resume = sd_resume, 559 .poweroff = sd_suspend_system, 560 .restore = sd_resume, 561 .runtime_suspend = sd_suspend_runtime, 562 .runtime_resume = sd_resume, 563 }; 564 565 static struct scsi_driver sd_template = { 566 .gendrv = { 567 .name = "sd", 568 .owner = THIS_MODULE, 569 .probe = sd_probe, 570 .remove = sd_remove, 571 .shutdown = sd_shutdown, 572 .pm = &sd_pm_ops, 573 }, 574 .rescan = sd_rescan, 575 .init_command = sd_init_command, 576 .uninit_command = sd_uninit_command, 577 .done = sd_done, 578 .eh_action = sd_eh_action, 579 .eh_reset = sd_eh_reset, 580 }; 581 582 /* 583 * Dummy kobj_map->probe function. 584 * The default ->probe function will call modprobe, which is 585 * pointless as this module is already loaded. 586 */ 587 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 588 { 589 return NULL; 590 } 591 592 /* 593 * Device no to disk mapping: 594 * 595 * major disc2 disc p1 596 * |............|.............|....|....| <- dev_t 597 * 31 20 19 8 7 4 3 0 598 * 599 * Inside a major, we have 16k disks, however mapped non- 600 * contiguously. The first 16 disks are for major0, the next 601 * ones with major1, ... Disk 256 is for major0 again, disk 272 602 * for major1, ... 603 * As we stay compatible with our numbering scheme, we can reuse 604 * the well-know SCSI majors 8, 65--71, 136--143. 605 */ 606 static int sd_major(int major_idx) 607 { 608 switch (major_idx) { 609 case 0: 610 return SCSI_DISK0_MAJOR; 611 case 1 ... 7: 612 return SCSI_DISK1_MAJOR + major_idx - 1; 613 case 8 ... 15: 614 return SCSI_DISK8_MAJOR + major_idx - 8; 615 default: 616 BUG(); 617 return 0; /* shut up gcc */ 618 } 619 } 620 621 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 622 { 623 struct scsi_disk *sdkp = NULL; 624 625 mutex_lock(&sd_ref_mutex); 626 627 if (disk->private_data) { 628 sdkp = scsi_disk(disk); 629 if (scsi_device_get(sdkp->device) == 0) 630 get_device(&sdkp->dev); 631 else 632 sdkp = NULL; 633 } 634 mutex_unlock(&sd_ref_mutex); 635 return sdkp; 636 } 637 638 static void scsi_disk_put(struct scsi_disk *sdkp) 639 { 640 struct scsi_device *sdev = sdkp->device; 641 642 mutex_lock(&sd_ref_mutex); 643 put_device(&sdkp->dev); 644 scsi_device_put(sdev); 645 mutex_unlock(&sd_ref_mutex); 646 } 647 648 #ifdef CONFIG_BLK_SED_OPAL 649 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 650 size_t len, bool send) 651 { 652 struct scsi_device *sdev = data; 653 u8 cdb[12] = { 0, }; 654 int ret; 655 656 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 657 cdb[1] = secp; 658 put_unaligned_be16(spsp, &cdb[2]); 659 put_unaligned_be32(len, &cdb[6]); 660 661 ret = scsi_execute_req(sdev, cdb, 662 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 663 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 664 return ret <= 0 ? ret : -EIO; 665 } 666 #endif /* CONFIG_BLK_SED_OPAL */ 667 668 /* 669 * Look up the DIX operation based on whether the command is read or 670 * write and whether dix and dif are enabled. 671 */ 672 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 673 { 674 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 675 static const unsigned int ops[] = { /* wrt dix dif */ 676 SCSI_PROT_NORMAL, /* 0 0 0 */ 677 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 678 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 679 SCSI_PROT_READ_PASS, /* 0 1 1 */ 680 SCSI_PROT_NORMAL, /* 1 0 0 */ 681 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 682 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 683 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 684 }; 685 686 return ops[write << 2 | dix << 1 | dif]; 687 } 688 689 /* 690 * Returns a mask of the protection flags that are valid for a given DIX 691 * operation. 692 */ 693 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 694 { 695 static const unsigned int flag_mask[] = { 696 [SCSI_PROT_NORMAL] = 0, 697 698 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 699 SCSI_PROT_GUARD_CHECK | 700 SCSI_PROT_REF_CHECK | 701 SCSI_PROT_REF_INCREMENT, 702 703 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 704 SCSI_PROT_IP_CHECKSUM, 705 706 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 707 SCSI_PROT_GUARD_CHECK | 708 SCSI_PROT_REF_CHECK | 709 SCSI_PROT_REF_INCREMENT | 710 SCSI_PROT_IP_CHECKSUM, 711 712 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 713 SCSI_PROT_REF_INCREMENT, 714 715 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 716 SCSI_PROT_REF_CHECK | 717 SCSI_PROT_REF_INCREMENT | 718 SCSI_PROT_IP_CHECKSUM, 719 720 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 721 SCSI_PROT_GUARD_CHECK | 722 SCSI_PROT_REF_CHECK | 723 SCSI_PROT_REF_INCREMENT | 724 SCSI_PROT_IP_CHECKSUM, 725 }; 726 727 return flag_mask[prot_op]; 728 } 729 730 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 731 unsigned int dix, unsigned int dif) 732 { 733 struct bio *bio = scmd->request->bio; 734 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 735 unsigned int protect = 0; 736 737 if (dix) { /* DIX Type 0, 1, 2, 3 */ 738 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 739 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 740 741 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 742 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 743 } 744 745 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 746 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 747 748 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 749 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 750 } 751 752 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 753 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 754 755 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 756 protect = 3 << 5; /* Disable target PI checking */ 757 else 758 protect = 1 << 5; /* Enable target PI checking */ 759 } 760 761 scsi_set_prot_op(scmd, prot_op); 762 scsi_set_prot_type(scmd, dif); 763 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 764 765 return protect; 766 } 767 768 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 769 { 770 struct request_queue *q = sdkp->disk->queue; 771 unsigned int logical_block_size = sdkp->device->sector_size; 772 unsigned int max_blocks = 0; 773 774 q->limits.discard_alignment = 775 sdkp->unmap_alignment * logical_block_size; 776 q->limits.discard_granularity = 777 max(sdkp->physical_block_size, 778 sdkp->unmap_granularity * logical_block_size); 779 sdkp->provisioning_mode = mode; 780 781 switch (mode) { 782 783 case SD_LBP_FULL: 784 case SD_LBP_DISABLE: 785 blk_queue_max_discard_sectors(q, 0); 786 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 787 return; 788 789 case SD_LBP_UNMAP: 790 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 791 (u32)SD_MAX_WS16_BLOCKS); 792 break; 793 794 case SD_LBP_WS16: 795 if (sdkp->device->unmap_limit_for_ws) 796 max_blocks = sdkp->max_unmap_blocks; 797 else 798 max_blocks = sdkp->max_ws_blocks; 799 800 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 801 break; 802 803 case SD_LBP_WS10: 804 if (sdkp->device->unmap_limit_for_ws) 805 max_blocks = sdkp->max_unmap_blocks; 806 else 807 max_blocks = sdkp->max_ws_blocks; 808 809 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 810 break; 811 812 case SD_LBP_ZERO: 813 max_blocks = min_not_zero(sdkp->max_ws_blocks, 814 (u32)SD_MAX_WS10_BLOCKS); 815 break; 816 } 817 818 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 819 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 820 } 821 822 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 823 { 824 struct scsi_device *sdp = cmd->device; 825 struct request *rq = cmd->request; 826 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 827 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 828 unsigned int data_len = 24; 829 char *buf; 830 831 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 832 if (!rq->special_vec.bv_page) 833 return BLK_STS_RESOURCE; 834 clear_highpage(rq->special_vec.bv_page); 835 rq->special_vec.bv_offset = 0; 836 rq->special_vec.bv_len = data_len; 837 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 838 839 cmd->cmd_len = 10; 840 cmd->cmnd[0] = UNMAP; 841 cmd->cmnd[8] = 24; 842 843 buf = page_address(rq->special_vec.bv_page); 844 put_unaligned_be16(6 + 16, &buf[0]); 845 put_unaligned_be16(16, &buf[2]); 846 put_unaligned_be64(lba, &buf[8]); 847 put_unaligned_be32(nr_blocks, &buf[16]); 848 849 cmd->allowed = SD_MAX_RETRIES; 850 cmd->transfersize = data_len; 851 rq->timeout = SD_TIMEOUT; 852 853 return scsi_init_io(cmd); 854 } 855 856 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 857 bool unmap) 858 { 859 struct scsi_device *sdp = cmd->device; 860 struct request *rq = cmd->request; 861 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 862 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 863 u32 data_len = sdp->sector_size; 864 865 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 866 if (!rq->special_vec.bv_page) 867 return BLK_STS_RESOURCE; 868 clear_highpage(rq->special_vec.bv_page); 869 rq->special_vec.bv_offset = 0; 870 rq->special_vec.bv_len = data_len; 871 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 872 873 cmd->cmd_len = 16; 874 cmd->cmnd[0] = WRITE_SAME_16; 875 if (unmap) 876 cmd->cmnd[1] = 0x8; /* UNMAP */ 877 put_unaligned_be64(lba, &cmd->cmnd[2]); 878 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 879 880 cmd->allowed = SD_MAX_RETRIES; 881 cmd->transfersize = data_len; 882 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 883 884 return scsi_init_io(cmd); 885 } 886 887 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 888 bool unmap) 889 { 890 struct scsi_device *sdp = cmd->device; 891 struct request *rq = cmd->request; 892 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 893 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 894 u32 data_len = sdp->sector_size; 895 896 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 897 if (!rq->special_vec.bv_page) 898 return BLK_STS_RESOURCE; 899 clear_highpage(rq->special_vec.bv_page); 900 rq->special_vec.bv_offset = 0; 901 rq->special_vec.bv_len = data_len; 902 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 903 904 cmd->cmd_len = 10; 905 cmd->cmnd[0] = WRITE_SAME; 906 if (unmap) 907 cmd->cmnd[1] = 0x8; /* UNMAP */ 908 put_unaligned_be32(lba, &cmd->cmnd[2]); 909 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 910 911 cmd->allowed = SD_MAX_RETRIES; 912 cmd->transfersize = data_len; 913 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 914 915 return scsi_init_io(cmd); 916 } 917 918 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 919 { 920 struct request *rq = cmd->request; 921 struct scsi_device *sdp = cmd->device; 922 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 923 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 924 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 925 926 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 927 switch (sdkp->zeroing_mode) { 928 case SD_ZERO_WS16_UNMAP: 929 return sd_setup_write_same16_cmnd(cmd, true); 930 case SD_ZERO_WS10_UNMAP: 931 return sd_setup_write_same10_cmnd(cmd, true); 932 } 933 } 934 935 if (sdp->no_write_same) 936 return BLK_STS_TARGET; 937 938 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 939 return sd_setup_write_same16_cmnd(cmd, false); 940 941 return sd_setup_write_same10_cmnd(cmd, false); 942 } 943 944 static void sd_config_write_same(struct scsi_disk *sdkp) 945 { 946 struct request_queue *q = sdkp->disk->queue; 947 unsigned int logical_block_size = sdkp->device->sector_size; 948 949 if (sdkp->device->no_write_same) { 950 sdkp->max_ws_blocks = 0; 951 goto out; 952 } 953 954 /* Some devices can not handle block counts above 0xffff despite 955 * supporting WRITE SAME(16). Consequently we default to 64k 956 * blocks per I/O unless the device explicitly advertises a 957 * bigger limit. 958 */ 959 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 960 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 961 (u32)SD_MAX_WS16_BLOCKS); 962 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 963 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 964 (u32)SD_MAX_WS10_BLOCKS); 965 else { 966 sdkp->device->no_write_same = 1; 967 sdkp->max_ws_blocks = 0; 968 } 969 970 if (sdkp->lbprz && sdkp->lbpws) 971 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 972 else if (sdkp->lbprz && sdkp->lbpws10) 973 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 974 else if (sdkp->max_ws_blocks) 975 sdkp->zeroing_mode = SD_ZERO_WS; 976 else 977 sdkp->zeroing_mode = SD_ZERO_WRITE; 978 979 if (sdkp->max_ws_blocks && 980 sdkp->physical_block_size > logical_block_size) { 981 /* 982 * Reporting a maximum number of blocks that is not aligned 983 * on the device physical size would cause a large write same 984 * request to be split into physically unaligned chunks by 985 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 986 * even if the caller of these functions took care to align the 987 * large request. So make sure the maximum reported is aligned 988 * to the device physical block size. This is only an optional 989 * optimization for regular disks, but this is mandatory to 990 * avoid failure of large write same requests directed at 991 * sequential write required zones of host-managed ZBC disks. 992 */ 993 sdkp->max_ws_blocks = 994 round_down(sdkp->max_ws_blocks, 995 bytes_to_logical(sdkp->device, 996 sdkp->physical_block_size)); 997 } 998 999 out: 1000 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1001 (logical_block_size >> 9)); 1002 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1003 (logical_block_size >> 9)); 1004 } 1005 1006 /** 1007 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1008 * @cmd: command to prepare 1009 * 1010 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1011 * the preference indicated by the target device. 1012 **/ 1013 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1014 { 1015 struct request *rq = cmd->request; 1016 struct scsi_device *sdp = cmd->device; 1017 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1018 struct bio *bio = rq->bio; 1019 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1020 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1021 blk_status_t ret; 1022 1023 if (sdkp->device->no_write_same) 1024 return BLK_STS_TARGET; 1025 1026 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1027 1028 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1029 1030 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1031 cmd->cmd_len = 16; 1032 cmd->cmnd[0] = WRITE_SAME_16; 1033 put_unaligned_be64(lba, &cmd->cmnd[2]); 1034 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1035 } else { 1036 cmd->cmd_len = 10; 1037 cmd->cmnd[0] = WRITE_SAME; 1038 put_unaligned_be32(lba, &cmd->cmnd[2]); 1039 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1040 } 1041 1042 cmd->transfersize = sdp->sector_size; 1043 cmd->allowed = SD_MAX_RETRIES; 1044 1045 /* 1046 * For WRITE SAME the data transferred via the DATA OUT buffer is 1047 * different from the amount of data actually written to the target. 1048 * 1049 * We set up __data_len to the amount of data transferred via the 1050 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1051 * to transfer a single sector of data first, but then reset it to 1052 * the amount of data to be written right after so that the I/O path 1053 * knows how much to actually write. 1054 */ 1055 rq->__data_len = sdp->sector_size; 1056 ret = scsi_init_io(cmd); 1057 rq->__data_len = blk_rq_bytes(rq); 1058 1059 return ret; 1060 } 1061 1062 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1063 { 1064 struct request *rq = cmd->request; 1065 1066 /* flush requests don't perform I/O, zero the S/G table */ 1067 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1068 1069 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1070 cmd->cmd_len = 10; 1071 cmd->transfersize = 0; 1072 cmd->allowed = SD_MAX_RETRIES; 1073 1074 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1075 return BLK_STS_OK; 1076 } 1077 1078 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1079 sector_t lba, unsigned int nr_blocks, 1080 unsigned char flags) 1081 { 1082 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1083 if (unlikely(cmd->cmnd == NULL)) 1084 return BLK_STS_RESOURCE; 1085 1086 cmd->cmd_len = SD_EXT_CDB_SIZE; 1087 memset(cmd->cmnd, 0, cmd->cmd_len); 1088 1089 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1090 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1091 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1092 cmd->cmnd[10] = flags; 1093 put_unaligned_be64(lba, &cmd->cmnd[12]); 1094 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1095 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1096 1097 return BLK_STS_OK; 1098 } 1099 1100 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1101 sector_t lba, unsigned int nr_blocks, 1102 unsigned char flags) 1103 { 1104 cmd->cmd_len = 16; 1105 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1106 cmd->cmnd[1] = flags; 1107 cmd->cmnd[14] = 0; 1108 cmd->cmnd[15] = 0; 1109 put_unaligned_be64(lba, &cmd->cmnd[2]); 1110 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1111 1112 return BLK_STS_OK; 1113 } 1114 1115 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1116 sector_t lba, unsigned int nr_blocks, 1117 unsigned char flags) 1118 { 1119 cmd->cmd_len = 10; 1120 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1121 cmd->cmnd[1] = flags; 1122 cmd->cmnd[6] = 0; 1123 cmd->cmnd[9] = 0; 1124 put_unaligned_be32(lba, &cmd->cmnd[2]); 1125 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1126 1127 return BLK_STS_OK; 1128 } 1129 1130 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1131 sector_t lba, unsigned int nr_blocks, 1132 unsigned char flags) 1133 { 1134 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1135 if (WARN_ON_ONCE(nr_blocks == 0)) 1136 return BLK_STS_IOERR; 1137 1138 if (unlikely(flags & 0x8)) { 1139 /* 1140 * This happens only if this drive failed 10byte rw 1141 * command with ILLEGAL_REQUEST during operation and 1142 * thus turned off use_10_for_rw. 1143 */ 1144 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1145 return BLK_STS_IOERR; 1146 } 1147 1148 cmd->cmd_len = 6; 1149 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1150 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1151 cmd->cmnd[2] = (lba >> 8) & 0xff; 1152 cmd->cmnd[3] = lba & 0xff; 1153 cmd->cmnd[4] = nr_blocks; 1154 cmd->cmnd[5] = 0; 1155 1156 return BLK_STS_OK; 1157 } 1158 1159 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1160 { 1161 struct request *rq = cmd->request; 1162 struct scsi_device *sdp = cmd->device; 1163 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1164 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1165 sector_t threshold; 1166 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1167 bool dif, dix; 1168 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1169 bool write = rq_data_dir(rq) == WRITE; 1170 unsigned char protect, fua; 1171 blk_status_t ret; 1172 1173 ret = scsi_init_io(cmd); 1174 if (ret != BLK_STS_OK) 1175 return ret; 1176 1177 if (!scsi_device_online(sdp) || sdp->changed) { 1178 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1179 return BLK_STS_IOERR; 1180 } 1181 1182 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1183 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1184 return BLK_STS_IOERR; 1185 } 1186 1187 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1188 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1189 return BLK_STS_IOERR; 1190 } 1191 1192 /* 1193 * Some SD card readers can't handle accesses which touch the 1194 * last one or two logical blocks. Split accesses as needed. 1195 */ 1196 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1197 1198 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1199 if (lba < threshold) { 1200 /* Access up to the threshold but not beyond */ 1201 nr_blocks = threshold - lba; 1202 } else { 1203 /* Access only a single logical block */ 1204 nr_blocks = 1; 1205 } 1206 } 1207 1208 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1209 dix = scsi_prot_sg_count(cmd); 1210 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1211 1212 if (write && dix) 1213 t10_pi_prepare(cmd->request, sdkp->protection_type); 1214 1215 if (dif || dix) 1216 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1217 else 1218 protect = 0; 1219 1220 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1221 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1222 protect | fua); 1223 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1224 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1225 protect | fua); 1226 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1227 sdp->use_10_for_rw || protect) { 1228 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1229 protect | fua); 1230 } else { 1231 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1232 protect | fua); 1233 } 1234 1235 if (unlikely(ret != BLK_STS_OK)) 1236 return ret; 1237 1238 /* 1239 * We shouldn't disconnect in the middle of a sector, so with a dumb 1240 * host adapter, it's safe to assume that we can at least transfer 1241 * this many bytes between each connect / disconnect. 1242 */ 1243 cmd->transfersize = sdp->sector_size; 1244 cmd->underflow = nr_blocks << 9; 1245 cmd->allowed = SD_MAX_RETRIES; 1246 cmd->sdb.length = nr_blocks * sdp->sector_size; 1247 1248 SCSI_LOG_HLQUEUE(1, 1249 scmd_printk(KERN_INFO, cmd, 1250 "%s: block=%llu, count=%d\n", __func__, 1251 (unsigned long long)blk_rq_pos(rq), 1252 blk_rq_sectors(rq))); 1253 SCSI_LOG_HLQUEUE(2, 1254 scmd_printk(KERN_INFO, cmd, 1255 "%s %d/%u 512 byte blocks.\n", 1256 write ? "writing" : "reading", nr_blocks, 1257 blk_rq_sectors(rq))); 1258 1259 /* 1260 * This indicates that the command is ready from our end to be 1261 * queued. 1262 */ 1263 return BLK_STS_OK; 1264 } 1265 1266 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1267 { 1268 struct request *rq = cmd->request; 1269 1270 switch (req_op(rq)) { 1271 case REQ_OP_DISCARD: 1272 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1273 case SD_LBP_UNMAP: 1274 return sd_setup_unmap_cmnd(cmd); 1275 case SD_LBP_WS16: 1276 return sd_setup_write_same16_cmnd(cmd, true); 1277 case SD_LBP_WS10: 1278 return sd_setup_write_same10_cmnd(cmd, true); 1279 case SD_LBP_ZERO: 1280 return sd_setup_write_same10_cmnd(cmd, false); 1281 default: 1282 return BLK_STS_TARGET; 1283 } 1284 case REQ_OP_WRITE_ZEROES: 1285 return sd_setup_write_zeroes_cmnd(cmd); 1286 case REQ_OP_WRITE_SAME: 1287 return sd_setup_write_same_cmnd(cmd); 1288 case REQ_OP_FLUSH: 1289 return sd_setup_flush_cmnd(cmd); 1290 case REQ_OP_READ: 1291 case REQ_OP_WRITE: 1292 return sd_setup_read_write_cmnd(cmd); 1293 case REQ_OP_ZONE_RESET: 1294 return sd_zbc_setup_reset_cmnd(cmd); 1295 default: 1296 WARN_ON_ONCE(1); 1297 return BLK_STS_NOTSUPP; 1298 } 1299 } 1300 1301 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1302 { 1303 struct request *rq = SCpnt->request; 1304 u8 *cmnd; 1305 1306 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1307 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1308 1309 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1310 cmnd = SCpnt->cmnd; 1311 SCpnt->cmnd = NULL; 1312 SCpnt->cmd_len = 0; 1313 mempool_free(cmnd, sd_cdb_pool); 1314 } 1315 } 1316 1317 /** 1318 * sd_open - open a scsi disk device 1319 * @bdev: Block device of the scsi disk to open 1320 * @mode: FMODE_* mask 1321 * 1322 * Returns 0 if successful. Returns a negated errno value in case 1323 * of error. 1324 * 1325 * Note: This can be called from a user context (e.g. fsck(1) ) 1326 * or from within the kernel (e.g. as a result of a mount(1) ). 1327 * In the latter case @inode and @filp carry an abridged amount 1328 * of information as noted above. 1329 * 1330 * Locking: called with bdev->bd_mutex held. 1331 **/ 1332 static int sd_open(struct block_device *bdev, fmode_t mode) 1333 { 1334 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1335 struct scsi_device *sdev; 1336 int retval; 1337 1338 if (!sdkp) 1339 return -ENXIO; 1340 1341 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1342 1343 sdev = sdkp->device; 1344 1345 /* 1346 * If the device is in error recovery, wait until it is done. 1347 * If the device is offline, then disallow any access to it. 1348 */ 1349 retval = -ENXIO; 1350 if (!scsi_block_when_processing_errors(sdev)) 1351 goto error_out; 1352 1353 if (sdev->removable || sdkp->write_prot) 1354 check_disk_change(bdev); 1355 1356 /* 1357 * If the drive is empty, just let the open fail. 1358 */ 1359 retval = -ENOMEDIUM; 1360 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1361 goto error_out; 1362 1363 /* 1364 * If the device has the write protect tab set, have the open fail 1365 * if the user expects to be able to write to the thing. 1366 */ 1367 retval = -EROFS; 1368 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1369 goto error_out; 1370 1371 /* 1372 * It is possible that the disk changing stuff resulted in 1373 * the device being taken offline. If this is the case, 1374 * report this to the user, and don't pretend that the 1375 * open actually succeeded. 1376 */ 1377 retval = -ENXIO; 1378 if (!scsi_device_online(sdev)) 1379 goto error_out; 1380 1381 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1382 if (scsi_block_when_processing_errors(sdev)) 1383 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1384 } 1385 1386 return 0; 1387 1388 error_out: 1389 scsi_disk_put(sdkp); 1390 return retval; 1391 } 1392 1393 /** 1394 * sd_release - invoked when the (last) close(2) is called on this 1395 * scsi disk. 1396 * @disk: disk to release 1397 * @mode: FMODE_* mask 1398 * 1399 * Returns 0. 1400 * 1401 * Note: may block (uninterruptible) if error recovery is underway 1402 * on this disk. 1403 * 1404 * Locking: called with bdev->bd_mutex held. 1405 **/ 1406 static void sd_release(struct gendisk *disk, fmode_t mode) 1407 { 1408 struct scsi_disk *sdkp = scsi_disk(disk); 1409 struct scsi_device *sdev = sdkp->device; 1410 1411 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1412 1413 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1414 if (scsi_block_when_processing_errors(sdev)) 1415 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1416 } 1417 1418 scsi_disk_put(sdkp); 1419 } 1420 1421 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1422 { 1423 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1424 struct scsi_device *sdp = sdkp->device; 1425 struct Scsi_Host *host = sdp->host; 1426 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1427 int diskinfo[4]; 1428 1429 /* default to most commonly used values */ 1430 diskinfo[0] = 0x40; /* 1 << 6 */ 1431 diskinfo[1] = 0x20; /* 1 << 5 */ 1432 diskinfo[2] = capacity >> 11; 1433 1434 /* override with calculated, extended default, or driver values */ 1435 if (host->hostt->bios_param) 1436 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1437 else 1438 scsicam_bios_param(bdev, capacity, diskinfo); 1439 1440 geo->heads = diskinfo[0]; 1441 geo->sectors = diskinfo[1]; 1442 geo->cylinders = diskinfo[2]; 1443 return 0; 1444 } 1445 1446 /** 1447 * sd_ioctl - process an ioctl 1448 * @bdev: target block device 1449 * @mode: FMODE_* mask 1450 * @cmd: ioctl command number 1451 * @arg: this is third argument given to ioctl(2) system call. 1452 * Often contains a pointer. 1453 * 1454 * Returns 0 if successful (some ioctls return positive numbers on 1455 * success as well). Returns a negated errno value in case of error. 1456 * 1457 * Note: most ioctls are forward onto the block subsystem or further 1458 * down in the scsi subsystem. 1459 **/ 1460 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1461 unsigned int cmd, unsigned long arg) 1462 { 1463 struct gendisk *disk = bdev->bd_disk; 1464 struct scsi_disk *sdkp = scsi_disk(disk); 1465 struct scsi_device *sdp = sdkp->device; 1466 void __user *p = (void __user *)arg; 1467 int error; 1468 1469 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1470 "cmd=0x%x\n", disk->disk_name, cmd)); 1471 1472 error = scsi_verify_blk_ioctl(bdev, cmd); 1473 if (error < 0) 1474 return error; 1475 1476 /* 1477 * If we are in the middle of error recovery, don't let anyone 1478 * else try and use this device. Also, if error recovery fails, it 1479 * may try and take the device offline, in which case all further 1480 * access to the device is prohibited. 1481 */ 1482 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1483 (mode & FMODE_NDELAY) != 0); 1484 if (error) 1485 goto out; 1486 1487 if (is_sed_ioctl(cmd)) 1488 return sed_ioctl(sdkp->opal_dev, cmd, p); 1489 1490 /* 1491 * Send SCSI addressing ioctls directly to mid level, send other 1492 * ioctls to block level and then onto mid level if they can't be 1493 * resolved. 1494 */ 1495 switch (cmd) { 1496 case SCSI_IOCTL_GET_IDLUN: 1497 case SCSI_IOCTL_GET_BUS_NUMBER: 1498 error = scsi_ioctl(sdp, cmd, p); 1499 break; 1500 default: 1501 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1502 if (error != -ENOTTY) 1503 break; 1504 error = scsi_ioctl(sdp, cmd, p); 1505 break; 1506 } 1507 out: 1508 return error; 1509 } 1510 1511 static void set_media_not_present(struct scsi_disk *sdkp) 1512 { 1513 if (sdkp->media_present) 1514 sdkp->device->changed = 1; 1515 1516 if (sdkp->device->removable) { 1517 sdkp->media_present = 0; 1518 sdkp->capacity = 0; 1519 } 1520 } 1521 1522 static int media_not_present(struct scsi_disk *sdkp, 1523 struct scsi_sense_hdr *sshdr) 1524 { 1525 if (!scsi_sense_valid(sshdr)) 1526 return 0; 1527 1528 /* not invoked for commands that could return deferred errors */ 1529 switch (sshdr->sense_key) { 1530 case UNIT_ATTENTION: 1531 case NOT_READY: 1532 /* medium not present */ 1533 if (sshdr->asc == 0x3A) { 1534 set_media_not_present(sdkp); 1535 return 1; 1536 } 1537 } 1538 return 0; 1539 } 1540 1541 /** 1542 * sd_check_events - check media events 1543 * @disk: kernel device descriptor 1544 * @clearing: disk events currently being cleared 1545 * 1546 * Returns mask of DISK_EVENT_*. 1547 * 1548 * Note: this function is invoked from the block subsystem. 1549 **/ 1550 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1551 { 1552 struct scsi_disk *sdkp = scsi_disk_get(disk); 1553 struct scsi_device *sdp; 1554 int retval; 1555 1556 if (!sdkp) 1557 return 0; 1558 1559 sdp = sdkp->device; 1560 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1561 1562 /* 1563 * If the device is offline, don't send any commands - just pretend as 1564 * if the command failed. If the device ever comes back online, we 1565 * can deal with it then. It is only because of unrecoverable errors 1566 * that we would ever take a device offline in the first place. 1567 */ 1568 if (!scsi_device_online(sdp)) { 1569 set_media_not_present(sdkp); 1570 goto out; 1571 } 1572 1573 /* 1574 * Using TEST_UNIT_READY enables differentiation between drive with 1575 * no cartridge loaded - NOT READY, drive with changed cartridge - 1576 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1577 * 1578 * Drives that auto spin down. eg iomega jaz 1G, will be started 1579 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1580 * sd_revalidate() is called. 1581 */ 1582 if (scsi_block_when_processing_errors(sdp)) { 1583 struct scsi_sense_hdr sshdr = { 0, }; 1584 1585 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1586 &sshdr); 1587 1588 /* failed to execute TUR, assume media not present */ 1589 if (host_byte(retval)) { 1590 set_media_not_present(sdkp); 1591 goto out; 1592 } 1593 1594 if (media_not_present(sdkp, &sshdr)) 1595 goto out; 1596 } 1597 1598 /* 1599 * For removable scsi disk we have to recognise the presence 1600 * of a disk in the drive. 1601 */ 1602 if (!sdkp->media_present) 1603 sdp->changed = 1; 1604 sdkp->media_present = 1; 1605 out: 1606 /* 1607 * sdp->changed is set under the following conditions: 1608 * 1609 * Medium present state has changed in either direction. 1610 * Device has indicated UNIT_ATTENTION. 1611 */ 1612 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1613 sdp->changed = 0; 1614 scsi_disk_put(sdkp); 1615 return retval; 1616 } 1617 1618 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1619 { 1620 int retries, res; 1621 struct scsi_device *sdp = sdkp->device; 1622 const int timeout = sdp->request_queue->rq_timeout 1623 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1624 struct scsi_sense_hdr my_sshdr; 1625 1626 if (!scsi_device_online(sdp)) 1627 return -ENODEV; 1628 1629 /* caller might not be interested in sense, but we need it */ 1630 if (!sshdr) 1631 sshdr = &my_sshdr; 1632 1633 for (retries = 3; retries > 0; --retries) { 1634 unsigned char cmd[10] = { 0 }; 1635 1636 cmd[0] = SYNCHRONIZE_CACHE; 1637 /* 1638 * Leave the rest of the command zero to indicate 1639 * flush everything. 1640 */ 1641 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1642 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1643 if (res == 0) 1644 break; 1645 } 1646 1647 if (res) { 1648 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1649 1650 if (driver_byte(res) == DRIVER_SENSE) 1651 sd_print_sense_hdr(sdkp, sshdr); 1652 1653 /* we need to evaluate the error return */ 1654 if (scsi_sense_valid(sshdr) && 1655 (sshdr->asc == 0x3a || /* medium not present */ 1656 sshdr->asc == 0x20)) /* invalid command */ 1657 /* this is no error here */ 1658 return 0; 1659 1660 switch (host_byte(res)) { 1661 /* ignore errors due to racing a disconnection */ 1662 case DID_BAD_TARGET: 1663 case DID_NO_CONNECT: 1664 return 0; 1665 /* signal the upper layer it might try again */ 1666 case DID_BUS_BUSY: 1667 case DID_IMM_RETRY: 1668 case DID_REQUEUE: 1669 case DID_SOFT_ERROR: 1670 return -EBUSY; 1671 default: 1672 return -EIO; 1673 } 1674 } 1675 return 0; 1676 } 1677 1678 static void sd_rescan(struct device *dev) 1679 { 1680 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1681 1682 revalidate_disk(sdkp->disk); 1683 } 1684 1685 1686 #ifdef CONFIG_COMPAT 1687 /* 1688 * This gets directly called from VFS. When the ioctl 1689 * is not recognized we go back to the other translation paths. 1690 */ 1691 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1692 unsigned int cmd, unsigned long arg) 1693 { 1694 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1695 int error; 1696 1697 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1698 (mode & FMODE_NDELAY) != 0); 1699 if (error) 1700 return error; 1701 1702 /* 1703 * Let the static ioctl translation table take care of it. 1704 */ 1705 if (!sdev->host->hostt->compat_ioctl) 1706 return -ENOIOCTLCMD; 1707 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1708 } 1709 #endif 1710 1711 static char sd_pr_type(enum pr_type type) 1712 { 1713 switch (type) { 1714 case PR_WRITE_EXCLUSIVE: 1715 return 0x01; 1716 case PR_EXCLUSIVE_ACCESS: 1717 return 0x03; 1718 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1719 return 0x05; 1720 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1721 return 0x06; 1722 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1723 return 0x07; 1724 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1725 return 0x08; 1726 default: 1727 return 0; 1728 } 1729 }; 1730 1731 static int sd_pr_command(struct block_device *bdev, u8 sa, 1732 u64 key, u64 sa_key, u8 type, u8 flags) 1733 { 1734 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1735 struct scsi_sense_hdr sshdr; 1736 int result; 1737 u8 cmd[16] = { 0, }; 1738 u8 data[24] = { 0, }; 1739 1740 cmd[0] = PERSISTENT_RESERVE_OUT; 1741 cmd[1] = sa; 1742 cmd[2] = type; 1743 put_unaligned_be32(sizeof(data), &cmd[5]); 1744 1745 put_unaligned_be64(key, &data[0]); 1746 put_unaligned_be64(sa_key, &data[8]); 1747 data[20] = flags; 1748 1749 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1750 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1751 1752 if (driver_byte(result) == DRIVER_SENSE && 1753 scsi_sense_valid(&sshdr)) { 1754 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1755 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1756 } 1757 1758 return result; 1759 } 1760 1761 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1762 u32 flags) 1763 { 1764 if (flags & ~PR_FL_IGNORE_KEY) 1765 return -EOPNOTSUPP; 1766 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1767 old_key, new_key, 0, 1768 (1 << 0) /* APTPL */); 1769 } 1770 1771 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1772 u32 flags) 1773 { 1774 if (flags) 1775 return -EOPNOTSUPP; 1776 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1777 } 1778 1779 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1780 { 1781 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1782 } 1783 1784 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1785 enum pr_type type, bool abort) 1786 { 1787 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1788 sd_pr_type(type), 0); 1789 } 1790 1791 static int sd_pr_clear(struct block_device *bdev, u64 key) 1792 { 1793 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1794 } 1795 1796 static const struct pr_ops sd_pr_ops = { 1797 .pr_register = sd_pr_register, 1798 .pr_reserve = sd_pr_reserve, 1799 .pr_release = sd_pr_release, 1800 .pr_preempt = sd_pr_preempt, 1801 .pr_clear = sd_pr_clear, 1802 }; 1803 1804 static const struct block_device_operations sd_fops = { 1805 .owner = THIS_MODULE, 1806 .open = sd_open, 1807 .release = sd_release, 1808 .ioctl = sd_ioctl, 1809 .getgeo = sd_getgeo, 1810 #ifdef CONFIG_COMPAT 1811 .compat_ioctl = sd_compat_ioctl, 1812 #endif 1813 .check_events = sd_check_events, 1814 .revalidate_disk = sd_revalidate_disk, 1815 .unlock_native_capacity = sd_unlock_native_capacity, 1816 .report_zones = sd_zbc_report_zones, 1817 .pr_ops = &sd_pr_ops, 1818 }; 1819 1820 /** 1821 * sd_eh_reset - reset error handling callback 1822 * @scmd: sd-issued command that has failed 1823 * 1824 * This function is called by the SCSI midlayer before starting 1825 * SCSI EH. When counting medium access failures we have to be 1826 * careful to register it only only once per device and SCSI EH run; 1827 * there might be several timed out commands which will cause the 1828 * 'max_medium_access_timeouts' counter to trigger after the first 1829 * SCSI EH run already and set the device to offline. 1830 * So this function resets the internal counter before starting SCSI EH. 1831 **/ 1832 static void sd_eh_reset(struct scsi_cmnd *scmd) 1833 { 1834 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1835 1836 /* New SCSI EH run, reset gate variable */ 1837 sdkp->ignore_medium_access_errors = false; 1838 } 1839 1840 /** 1841 * sd_eh_action - error handling callback 1842 * @scmd: sd-issued command that has failed 1843 * @eh_disp: The recovery disposition suggested by the midlayer 1844 * 1845 * This function is called by the SCSI midlayer upon completion of an 1846 * error test command (currently TEST UNIT READY). The result of sending 1847 * the eh command is passed in eh_disp. We're looking for devices that 1848 * fail medium access commands but are OK with non access commands like 1849 * test unit ready (so wrongly see the device as having a successful 1850 * recovery) 1851 **/ 1852 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1853 { 1854 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1855 struct scsi_device *sdev = scmd->device; 1856 1857 if (!scsi_device_online(sdev) || 1858 !scsi_medium_access_command(scmd) || 1859 host_byte(scmd->result) != DID_TIME_OUT || 1860 eh_disp != SUCCESS) 1861 return eh_disp; 1862 1863 /* 1864 * The device has timed out executing a medium access command. 1865 * However, the TEST UNIT READY command sent during error 1866 * handling completed successfully. Either the device is in the 1867 * process of recovering or has it suffered an internal failure 1868 * that prevents access to the storage medium. 1869 */ 1870 if (!sdkp->ignore_medium_access_errors) { 1871 sdkp->medium_access_timed_out++; 1872 sdkp->ignore_medium_access_errors = true; 1873 } 1874 1875 /* 1876 * If the device keeps failing read/write commands but TEST UNIT 1877 * READY always completes successfully we assume that medium 1878 * access is no longer possible and take the device offline. 1879 */ 1880 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1881 scmd_printk(KERN_ERR, scmd, 1882 "Medium access timeout failure. Offlining disk!\n"); 1883 mutex_lock(&sdev->state_mutex); 1884 scsi_device_set_state(sdev, SDEV_OFFLINE); 1885 mutex_unlock(&sdev->state_mutex); 1886 1887 return SUCCESS; 1888 } 1889 1890 return eh_disp; 1891 } 1892 1893 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1894 { 1895 struct request *req = scmd->request; 1896 struct scsi_device *sdev = scmd->device; 1897 unsigned int transferred, good_bytes; 1898 u64 start_lba, end_lba, bad_lba; 1899 1900 /* 1901 * Some commands have a payload smaller than the device logical 1902 * block size (e.g. INQUIRY on a 4K disk). 1903 */ 1904 if (scsi_bufflen(scmd) <= sdev->sector_size) 1905 return 0; 1906 1907 /* Check if we have a 'bad_lba' information */ 1908 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1909 SCSI_SENSE_BUFFERSIZE, 1910 &bad_lba)) 1911 return 0; 1912 1913 /* 1914 * If the bad lba was reported incorrectly, we have no idea where 1915 * the error is. 1916 */ 1917 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1918 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1919 if (bad_lba < start_lba || bad_lba >= end_lba) 1920 return 0; 1921 1922 /* 1923 * resid is optional but mostly filled in. When it's unused, 1924 * its value is zero, so we assume the whole buffer transferred 1925 */ 1926 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1927 1928 /* This computation should always be done in terms of the 1929 * resolution of the device's medium. 1930 */ 1931 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1932 1933 return min(good_bytes, transferred); 1934 } 1935 1936 /** 1937 * sd_done - bottom half handler: called when the lower level 1938 * driver has completed (successfully or otherwise) a scsi command. 1939 * @SCpnt: mid-level's per command structure. 1940 * 1941 * Note: potentially run from within an ISR. Must not block. 1942 **/ 1943 static int sd_done(struct scsi_cmnd *SCpnt) 1944 { 1945 int result = SCpnt->result; 1946 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1947 unsigned int sector_size = SCpnt->device->sector_size; 1948 unsigned int resid; 1949 struct scsi_sense_hdr sshdr; 1950 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1951 struct request *req = SCpnt->request; 1952 int sense_valid = 0; 1953 int sense_deferred = 0; 1954 1955 switch (req_op(req)) { 1956 case REQ_OP_DISCARD: 1957 case REQ_OP_WRITE_ZEROES: 1958 case REQ_OP_WRITE_SAME: 1959 case REQ_OP_ZONE_RESET: 1960 if (!result) { 1961 good_bytes = blk_rq_bytes(req); 1962 scsi_set_resid(SCpnt, 0); 1963 } else { 1964 good_bytes = 0; 1965 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1966 } 1967 break; 1968 default: 1969 /* 1970 * In case of bogus fw or device, we could end up having 1971 * an unaligned partial completion. Check this here and force 1972 * alignment. 1973 */ 1974 resid = scsi_get_resid(SCpnt); 1975 if (resid & (sector_size - 1)) { 1976 sd_printk(KERN_INFO, sdkp, 1977 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1978 resid, sector_size); 1979 resid = min(scsi_bufflen(SCpnt), 1980 round_up(resid, sector_size)); 1981 scsi_set_resid(SCpnt, resid); 1982 } 1983 } 1984 1985 if (result) { 1986 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1987 if (sense_valid) 1988 sense_deferred = scsi_sense_is_deferred(&sshdr); 1989 } 1990 sdkp->medium_access_timed_out = 0; 1991 1992 if (driver_byte(result) != DRIVER_SENSE && 1993 (!sense_valid || sense_deferred)) 1994 goto out; 1995 1996 switch (sshdr.sense_key) { 1997 case HARDWARE_ERROR: 1998 case MEDIUM_ERROR: 1999 good_bytes = sd_completed_bytes(SCpnt); 2000 break; 2001 case RECOVERED_ERROR: 2002 good_bytes = scsi_bufflen(SCpnt); 2003 break; 2004 case NO_SENSE: 2005 /* This indicates a false check condition, so ignore it. An 2006 * unknown amount of data was transferred so treat it as an 2007 * error. 2008 */ 2009 SCpnt->result = 0; 2010 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2011 break; 2012 case ABORTED_COMMAND: 2013 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2014 good_bytes = sd_completed_bytes(SCpnt); 2015 break; 2016 case ILLEGAL_REQUEST: 2017 switch (sshdr.asc) { 2018 case 0x10: /* DIX: Host detected corruption */ 2019 good_bytes = sd_completed_bytes(SCpnt); 2020 break; 2021 case 0x20: /* INVALID COMMAND OPCODE */ 2022 case 0x24: /* INVALID FIELD IN CDB */ 2023 switch (SCpnt->cmnd[0]) { 2024 case UNMAP: 2025 sd_config_discard(sdkp, SD_LBP_DISABLE); 2026 break; 2027 case WRITE_SAME_16: 2028 case WRITE_SAME: 2029 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2030 sd_config_discard(sdkp, SD_LBP_DISABLE); 2031 } else { 2032 sdkp->device->no_write_same = 1; 2033 sd_config_write_same(sdkp); 2034 req->rq_flags |= RQF_QUIET; 2035 } 2036 break; 2037 } 2038 } 2039 break; 2040 default: 2041 break; 2042 } 2043 2044 out: 2045 if (sd_is_zoned(sdkp)) 2046 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2047 2048 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2049 "sd_done: completed %d of %d bytes\n", 2050 good_bytes, scsi_bufflen(SCpnt))); 2051 2052 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) && 2053 good_bytes) 2054 t10_pi_complete(SCpnt->request, sdkp->protection_type, 2055 good_bytes / scsi_prot_interval(SCpnt)); 2056 2057 return good_bytes; 2058 } 2059 2060 /* 2061 * spinup disk - called only in sd_revalidate_disk() 2062 */ 2063 static void 2064 sd_spinup_disk(struct scsi_disk *sdkp) 2065 { 2066 unsigned char cmd[10]; 2067 unsigned long spintime_expire = 0; 2068 int retries, spintime; 2069 unsigned int the_result; 2070 struct scsi_sense_hdr sshdr; 2071 int sense_valid = 0; 2072 2073 spintime = 0; 2074 2075 /* Spin up drives, as required. Only do this at boot time */ 2076 /* Spinup needs to be done for module loads too. */ 2077 do { 2078 retries = 0; 2079 2080 do { 2081 cmd[0] = TEST_UNIT_READY; 2082 memset((void *) &cmd[1], 0, 9); 2083 2084 the_result = scsi_execute_req(sdkp->device, cmd, 2085 DMA_NONE, NULL, 0, 2086 &sshdr, SD_TIMEOUT, 2087 SD_MAX_RETRIES, NULL); 2088 2089 /* 2090 * If the drive has indicated to us that it 2091 * doesn't have any media in it, don't bother 2092 * with any more polling. 2093 */ 2094 if (media_not_present(sdkp, &sshdr)) 2095 return; 2096 2097 if (the_result) 2098 sense_valid = scsi_sense_valid(&sshdr); 2099 retries++; 2100 } while (retries < 3 && 2101 (!scsi_status_is_good(the_result) || 2102 ((driver_byte(the_result) == DRIVER_SENSE) && 2103 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2104 2105 if (driver_byte(the_result) != DRIVER_SENSE) { 2106 /* no sense, TUR either succeeded or failed 2107 * with a status error */ 2108 if(!spintime && !scsi_status_is_good(the_result)) { 2109 sd_print_result(sdkp, "Test Unit Ready failed", 2110 the_result); 2111 } 2112 break; 2113 } 2114 2115 /* 2116 * The device does not want the automatic start to be issued. 2117 */ 2118 if (sdkp->device->no_start_on_add) 2119 break; 2120 2121 if (sense_valid && sshdr.sense_key == NOT_READY) { 2122 if (sshdr.asc == 4 && sshdr.ascq == 3) 2123 break; /* manual intervention required */ 2124 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2125 break; /* standby */ 2126 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2127 break; /* unavailable */ 2128 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2129 break; /* sanitize in progress */ 2130 /* 2131 * Issue command to spin up drive when not ready 2132 */ 2133 if (!spintime) { 2134 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2135 cmd[0] = START_STOP; 2136 cmd[1] = 1; /* Return immediately */ 2137 memset((void *) &cmd[2], 0, 8); 2138 cmd[4] = 1; /* Start spin cycle */ 2139 if (sdkp->device->start_stop_pwr_cond) 2140 cmd[4] |= 1 << 4; 2141 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2142 NULL, 0, &sshdr, 2143 SD_TIMEOUT, SD_MAX_RETRIES, 2144 NULL); 2145 spintime_expire = jiffies + 100 * HZ; 2146 spintime = 1; 2147 } 2148 /* Wait 1 second for next try */ 2149 msleep(1000); 2150 printk(KERN_CONT "."); 2151 2152 /* 2153 * Wait for USB flash devices with slow firmware. 2154 * Yes, this sense key/ASC combination shouldn't 2155 * occur here. It's characteristic of these devices. 2156 */ 2157 } else if (sense_valid && 2158 sshdr.sense_key == UNIT_ATTENTION && 2159 sshdr.asc == 0x28) { 2160 if (!spintime) { 2161 spintime_expire = jiffies + 5 * HZ; 2162 spintime = 1; 2163 } 2164 /* Wait 1 second for next try */ 2165 msleep(1000); 2166 } else { 2167 /* we don't understand the sense code, so it's 2168 * probably pointless to loop */ 2169 if(!spintime) { 2170 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2171 sd_print_sense_hdr(sdkp, &sshdr); 2172 } 2173 break; 2174 } 2175 2176 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2177 2178 if (spintime) { 2179 if (scsi_status_is_good(the_result)) 2180 printk(KERN_CONT "ready\n"); 2181 else 2182 printk(KERN_CONT "not responding...\n"); 2183 } 2184 } 2185 2186 /* 2187 * Determine whether disk supports Data Integrity Field. 2188 */ 2189 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2190 { 2191 struct scsi_device *sdp = sdkp->device; 2192 u8 type; 2193 int ret = 0; 2194 2195 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2196 return ret; 2197 2198 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2199 2200 if (type > T10_PI_TYPE3_PROTECTION) 2201 ret = -ENODEV; 2202 else if (scsi_host_dif_capable(sdp->host, type)) 2203 ret = 1; 2204 2205 if (sdkp->first_scan || type != sdkp->protection_type) 2206 switch (ret) { 2207 case -ENODEV: 2208 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2209 " protection type %u. Disabling disk!\n", 2210 type); 2211 break; 2212 case 1: 2213 sd_printk(KERN_NOTICE, sdkp, 2214 "Enabling DIF Type %u protection\n", type); 2215 break; 2216 case 0: 2217 sd_printk(KERN_NOTICE, sdkp, 2218 "Disabling DIF Type %u protection\n", type); 2219 break; 2220 } 2221 2222 sdkp->protection_type = type; 2223 2224 return ret; 2225 } 2226 2227 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2228 struct scsi_sense_hdr *sshdr, int sense_valid, 2229 int the_result) 2230 { 2231 if (driver_byte(the_result) == DRIVER_SENSE) 2232 sd_print_sense_hdr(sdkp, sshdr); 2233 else 2234 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2235 2236 /* 2237 * Set dirty bit for removable devices if not ready - 2238 * sometimes drives will not report this properly. 2239 */ 2240 if (sdp->removable && 2241 sense_valid && sshdr->sense_key == NOT_READY) 2242 set_media_not_present(sdkp); 2243 2244 /* 2245 * We used to set media_present to 0 here to indicate no media 2246 * in the drive, but some drives fail read capacity even with 2247 * media present, so we can't do that. 2248 */ 2249 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2250 } 2251 2252 #define RC16_LEN 32 2253 #if RC16_LEN > SD_BUF_SIZE 2254 #error RC16_LEN must not be more than SD_BUF_SIZE 2255 #endif 2256 2257 #define READ_CAPACITY_RETRIES_ON_RESET 10 2258 2259 /* 2260 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set 2261 * and the reported logical block size is bigger than 512 bytes. Note 2262 * that last_sector is a u64 and therefore logical_to_sectors() is not 2263 * applicable. 2264 */ 2265 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size) 2266 { 2267 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9); 2268 2269 if (sizeof(sector_t) == 4 && last_sector > U32_MAX) 2270 return false; 2271 2272 return true; 2273 } 2274 2275 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2276 unsigned char *buffer) 2277 { 2278 unsigned char cmd[16]; 2279 struct scsi_sense_hdr sshdr; 2280 int sense_valid = 0; 2281 int the_result; 2282 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2283 unsigned int alignment; 2284 unsigned long long lba; 2285 unsigned sector_size; 2286 2287 if (sdp->no_read_capacity_16) 2288 return -EINVAL; 2289 2290 do { 2291 memset(cmd, 0, 16); 2292 cmd[0] = SERVICE_ACTION_IN_16; 2293 cmd[1] = SAI_READ_CAPACITY_16; 2294 cmd[13] = RC16_LEN; 2295 memset(buffer, 0, RC16_LEN); 2296 2297 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2298 buffer, RC16_LEN, &sshdr, 2299 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2300 2301 if (media_not_present(sdkp, &sshdr)) 2302 return -ENODEV; 2303 2304 if (the_result) { 2305 sense_valid = scsi_sense_valid(&sshdr); 2306 if (sense_valid && 2307 sshdr.sense_key == ILLEGAL_REQUEST && 2308 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2309 sshdr.ascq == 0x00) 2310 /* Invalid Command Operation Code or 2311 * Invalid Field in CDB, just retry 2312 * silently with RC10 */ 2313 return -EINVAL; 2314 if (sense_valid && 2315 sshdr.sense_key == UNIT_ATTENTION && 2316 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2317 /* Device reset might occur several times, 2318 * give it one more chance */ 2319 if (--reset_retries > 0) 2320 continue; 2321 } 2322 retries--; 2323 2324 } while (the_result && retries); 2325 2326 if (the_result) { 2327 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2328 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2329 return -EINVAL; 2330 } 2331 2332 sector_size = get_unaligned_be32(&buffer[8]); 2333 lba = get_unaligned_be64(&buffer[0]); 2334 2335 if (sd_read_protection_type(sdkp, buffer) < 0) { 2336 sdkp->capacity = 0; 2337 return -ENODEV; 2338 } 2339 2340 if (!sd_addressable_capacity(lba, sector_size)) { 2341 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2342 "kernel compiled with support for large block " 2343 "devices.\n"); 2344 sdkp->capacity = 0; 2345 return -EOVERFLOW; 2346 } 2347 2348 /* Logical blocks per physical block exponent */ 2349 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2350 2351 /* RC basis */ 2352 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2353 2354 /* Lowest aligned logical block */ 2355 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2356 blk_queue_alignment_offset(sdp->request_queue, alignment); 2357 if (alignment && sdkp->first_scan) 2358 sd_printk(KERN_NOTICE, sdkp, 2359 "physical block alignment offset: %u\n", alignment); 2360 2361 if (buffer[14] & 0x80) { /* LBPME */ 2362 sdkp->lbpme = 1; 2363 2364 if (buffer[14] & 0x40) /* LBPRZ */ 2365 sdkp->lbprz = 1; 2366 2367 sd_config_discard(sdkp, SD_LBP_WS16); 2368 } 2369 2370 sdkp->capacity = lba + 1; 2371 return sector_size; 2372 } 2373 2374 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2375 unsigned char *buffer) 2376 { 2377 unsigned char cmd[16]; 2378 struct scsi_sense_hdr sshdr; 2379 int sense_valid = 0; 2380 int the_result; 2381 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2382 sector_t lba; 2383 unsigned sector_size; 2384 2385 do { 2386 cmd[0] = READ_CAPACITY; 2387 memset(&cmd[1], 0, 9); 2388 memset(buffer, 0, 8); 2389 2390 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2391 buffer, 8, &sshdr, 2392 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2393 2394 if (media_not_present(sdkp, &sshdr)) 2395 return -ENODEV; 2396 2397 if (the_result) { 2398 sense_valid = scsi_sense_valid(&sshdr); 2399 if (sense_valid && 2400 sshdr.sense_key == UNIT_ATTENTION && 2401 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2402 /* Device reset might occur several times, 2403 * give it one more chance */ 2404 if (--reset_retries > 0) 2405 continue; 2406 } 2407 retries--; 2408 2409 } while (the_result && retries); 2410 2411 if (the_result) { 2412 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2413 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2414 return -EINVAL; 2415 } 2416 2417 sector_size = get_unaligned_be32(&buffer[4]); 2418 lba = get_unaligned_be32(&buffer[0]); 2419 2420 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2421 /* Some buggy (usb cardreader) devices return an lba of 2422 0xffffffff when the want to report a size of 0 (with 2423 which they really mean no media is present) */ 2424 sdkp->capacity = 0; 2425 sdkp->physical_block_size = sector_size; 2426 return sector_size; 2427 } 2428 2429 if (!sd_addressable_capacity(lba, sector_size)) { 2430 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2431 "kernel compiled with support for large block " 2432 "devices.\n"); 2433 sdkp->capacity = 0; 2434 return -EOVERFLOW; 2435 } 2436 2437 sdkp->capacity = lba + 1; 2438 sdkp->physical_block_size = sector_size; 2439 return sector_size; 2440 } 2441 2442 static int sd_try_rc16_first(struct scsi_device *sdp) 2443 { 2444 if (sdp->host->max_cmd_len < 16) 2445 return 0; 2446 if (sdp->try_rc_10_first) 2447 return 0; 2448 if (sdp->scsi_level > SCSI_SPC_2) 2449 return 1; 2450 if (scsi_device_protection(sdp)) 2451 return 1; 2452 return 0; 2453 } 2454 2455 /* 2456 * read disk capacity 2457 */ 2458 static void 2459 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2460 { 2461 int sector_size; 2462 struct scsi_device *sdp = sdkp->device; 2463 2464 if (sd_try_rc16_first(sdp)) { 2465 sector_size = read_capacity_16(sdkp, sdp, buffer); 2466 if (sector_size == -EOVERFLOW) 2467 goto got_data; 2468 if (sector_size == -ENODEV) 2469 return; 2470 if (sector_size < 0) 2471 sector_size = read_capacity_10(sdkp, sdp, buffer); 2472 if (sector_size < 0) 2473 return; 2474 } else { 2475 sector_size = read_capacity_10(sdkp, sdp, buffer); 2476 if (sector_size == -EOVERFLOW) 2477 goto got_data; 2478 if (sector_size < 0) 2479 return; 2480 if ((sizeof(sdkp->capacity) > 4) && 2481 (sdkp->capacity > 0xffffffffULL)) { 2482 int old_sector_size = sector_size; 2483 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2484 "Trying to use READ CAPACITY(16).\n"); 2485 sector_size = read_capacity_16(sdkp, sdp, buffer); 2486 if (sector_size < 0) { 2487 sd_printk(KERN_NOTICE, sdkp, 2488 "Using 0xffffffff as device size\n"); 2489 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2490 sector_size = old_sector_size; 2491 goto got_data; 2492 } 2493 /* Remember that READ CAPACITY(16) succeeded */ 2494 sdp->try_rc_10_first = 0; 2495 } 2496 } 2497 2498 /* Some devices are known to return the total number of blocks, 2499 * not the highest block number. Some devices have versions 2500 * which do this and others which do not. Some devices we might 2501 * suspect of doing this but we don't know for certain. 2502 * 2503 * If we know the reported capacity is wrong, decrement it. If 2504 * we can only guess, then assume the number of blocks is even 2505 * (usually true but not always) and err on the side of lowering 2506 * the capacity. 2507 */ 2508 if (sdp->fix_capacity || 2509 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2510 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2511 "from its reported value: %llu\n", 2512 (unsigned long long) sdkp->capacity); 2513 --sdkp->capacity; 2514 } 2515 2516 got_data: 2517 if (sector_size == 0) { 2518 sector_size = 512; 2519 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2520 "assuming 512.\n"); 2521 } 2522 2523 if (sector_size != 512 && 2524 sector_size != 1024 && 2525 sector_size != 2048 && 2526 sector_size != 4096) { 2527 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2528 sector_size); 2529 /* 2530 * The user might want to re-format the drive with 2531 * a supported sectorsize. Once this happens, it 2532 * would be relatively trivial to set the thing up. 2533 * For this reason, we leave the thing in the table. 2534 */ 2535 sdkp->capacity = 0; 2536 /* 2537 * set a bogus sector size so the normal read/write 2538 * logic in the block layer will eventually refuse any 2539 * request on this device without tripping over power 2540 * of two sector size assumptions 2541 */ 2542 sector_size = 512; 2543 } 2544 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2545 blk_queue_physical_block_size(sdp->request_queue, 2546 sdkp->physical_block_size); 2547 sdkp->device->sector_size = sector_size; 2548 2549 if (sdkp->capacity > 0xffffffff) 2550 sdp->use_16_for_rw = 1; 2551 2552 } 2553 2554 /* 2555 * Print disk capacity 2556 */ 2557 static void 2558 sd_print_capacity(struct scsi_disk *sdkp, 2559 sector_t old_capacity) 2560 { 2561 int sector_size = sdkp->device->sector_size; 2562 char cap_str_2[10], cap_str_10[10]; 2563 2564 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2565 return; 2566 2567 string_get_size(sdkp->capacity, sector_size, 2568 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2569 string_get_size(sdkp->capacity, sector_size, 2570 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2571 2572 sd_printk(KERN_NOTICE, sdkp, 2573 "%llu %d-byte logical blocks: (%s/%s)\n", 2574 (unsigned long long)sdkp->capacity, 2575 sector_size, cap_str_10, cap_str_2); 2576 2577 if (sdkp->physical_block_size != sector_size) 2578 sd_printk(KERN_NOTICE, sdkp, 2579 "%u-byte physical blocks\n", 2580 sdkp->physical_block_size); 2581 2582 sd_zbc_print_zones(sdkp); 2583 } 2584 2585 /* called with buffer of length 512 */ 2586 static inline int 2587 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2588 unsigned char *buffer, int len, struct scsi_mode_data *data, 2589 struct scsi_sense_hdr *sshdr) 2590 { 2591 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2592 SD_TIMEOUT, SD_MAX_RETRIES, data, 2593 sshdr); 2594 } 2595 2596 /* 2597 * read write protect setting, if possible - called only in sd_revalidate_disk() 2598 * called with buffer of length SD_BUF_SIZE 2599 */ 2600 static void 2601 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2602 { 2603 int res; 2604 struct scsi_device *sdp = sdkp->device; 2605 struct scsi_mode_data data; 2606 int disk_ro = get_disk_ro(sdkp->disk); 2607 int old_wp = sdkp->write_prot; 2608 2609 set_disk_ro(sdkp->disk, 0); 2610 if (sdp->skip_ms_page_3f) { 2611 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2612 return; 2613 } 2614 2615 if (sdp->use_192_bytes_for_3f) { 2616 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2617 } else { 2618 /* 2619 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2620 * We have to start carefully: some devices hang if we ask 2621 * for more than is available. 2622 */ 2623 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2624 2625 /* 2626 * Second attempt: ask for page 0 When only page 0 is 2627 * implemented, a request for page 3F may return Sense Key 2628 * 5: Illegal Request, Sense Code 24: Invalid field in 2629 * CDB. 2630 */ 2631 if (!scsi_status_is_good(res)) 2632 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2633 2634 /* 2635 * Third attempt: ask 255 bytes, as we did earlier. 2636 */ 2637 if (!scsi_status_is_good(res)) 2638 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2639 &data, NULL); 2640 } 2641 2642 if (!scsi_status_is_good(res)) { 2643 sd_first_printk(KERN_WARNING, sdkp, 2644 "Test WP failed, assume Write Enabled\n"); 2645 } else { 2646 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2647 set_disk_ro(sdkp->disk, sdkp->write_prot || disk_ro); 2648 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2649 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2650 sdkp->write_prot ? "on" : "off"); 2651 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2652 } 2653 } 2654 } 2655 2656 /* 2657 * sd_read_cache_type - called only from sd_revalidate_disk() 2658 * called with buffer of length SD_BUF_SIZE 2659 */ 2660 static void 2661 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2662 { 2663 int len = 0, res; 2664 struct scsi_device *sdp = sdkp->device; 2665 2666 int dbd; 2667 int modepage; 2668 int first_len; 2669 struct scsi_mode_data data; 2670 struct scsi_sense_hdr sshdr; 2671 int old_wce = sdkp->WCE; 2672 int old_rcd = sdkp->RCD; 2673 int old_dpofua = sdkp->DPOFUA; 2674 2675 2676 if (sdkp->cache_override) 2677 return; 2678 2679 first_len = 4; 2680 if (sdp->skip_ms_page_8) { 2681 if (sdp->type == TYPE_RBC) 2682 goto defaults; 2683 else { 2684 if (sdp->skip_ms_page_3f) 2685 goto defaults; 2686 modepage = 0x3F; 2687 if (sdp->use_192_bytes_for_3f) 2688 first_len = 192; 2689 dbd = 0; 2690 } 2691 } else if (sdp->type == TYPE_RBC) { 2692 modepage = 6; 2693 dbd = 8; 2694 } else { 2695 modepage = 8; 2696 dbd = 0; 2697 } 2698 2699 /* cautiously ask */ 2700 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2701 &data, &sshdr); 2702 2703 if (!scsi_status_is_good(res)) 2704 goto bad_sense; 2705 2706 if (!data.header_length) { 2707 modepage = 6; 2708 first_len = 0; 2709 sd_first_printk(KERN_ERR, sdkp, 2710 "Missing header in MODE_SENSE response\n"); 2711 } 2712 2713 /* that went OK, now ask for the proper length */ 2714 len = data.length; 2715 2716 /* 2717 * We're only interested in the first three bytes, actually. 2718 * But the data cache page is defined for the first 20. 2719 */ 2720 if (len < 3) 2721 goto bad_sense; 2722 else if (len > SD_BUF_SIZE) { 2723 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2724 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2725 len = SD_BUF_SIZE; 2726 } 2727 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2728 len = 192; 2729 2730 /* Get the data */ 2731 if (len > first_len) 2732 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2733 &data, &sshdr); 2734 2735 if (scsi_status_is_good(res)) { 2736 int offset = data.header_length + data.block_descriptor_length; 2737 2738 while (offset < len) { 2739 u8 page_code = buffer[offset] & 0x3F; 2740 u8 spf = buffer[offset] & 0x40; 2741 2742 if (page_code == 8 || page_code == 6) { 2743 /* We're interested only in the first 3 bytes. 2744 */ 2745 if (len - offset <= 2) { 2746 sd_first_printk(KERN_ERR, sdkp, 2747 "Incomplete mode parameter " 2748 "data\n"); 2749 goto defaults; 2750 } else { 2751 modepage = page_code; 2752 goto Page_found; 2753 } 2754 } else { 2755 /* Go to the next page */ 2756 if (spf && len - offset > 3) 2757 offset += 4 + (buffer[offset+2] << 8) + 2758 buffer[offset+3]; 2759 else if (!spf && len - offset > 1) 2760 offset += 2 + buffer[offset+1]; 2761 else { 2762 sd_first_printk(KERN_ERR, sdkp, 2763 "Incomplete mode " 2764 "parameter data\n"); 2765 goto defaults; 2766 } 2767 } 2768 } 2769 2770 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2771 goto defaults; 2772 2773 Page_found: 2774 if (modepage == 8) { 2775 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2776 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2777 } else { 2778 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2779 sdkp->RCD = 0; 2780 } 2781 2782 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2783 if (sdp->broken_fua) { 2784 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2785 sdkp->DPOFUA = 0; 2786 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2787 !sdkp->device->use_16_for_rw) { 2788 sd_first_printk(KERN_NOTICE, sdkp, 2789 "Uses READ/WRITE(6), disabling FUA\n"); 2790 sdkp->DPOFUA = 0; 2791 } 2792 2793 /* No cache flush allowed for write protected devices */ 2794 if (sdkp->WCE && sdkp->write_prot) 2795 sdkp->WCE = 0; 2796 2797 if (sdkp->first_scan || old_wce != sdkp->WCE || 2798 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2799 sd_printk(KERN_NOTICE, sdkp, 2800 "Write cache: %s, read cache: %s, %s\n", 2801 sdkp->WCE ? "enabled" : "disabled", 2802 sdkp->RCD ? "disabled" : "enabled", 2803 sdkp->DPOFUA ? "supports DPO and FUA" 2804 : "doesn't support DPO or FUA"); 2805 2806 return; 2807 } 2808 2809 bad_sense: 2810 if (scsi_sense_valid(&sshdr) && 2811 sshdr.sense_key == ILLEGAL_REQUEST && 2812 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2813 /* Invalid field in CDB */ 2814 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2815 else 2816 sd_first_printk(KERN_ERR, sdkp, 2817 "Asking for cache data failed\n"); 2818 2819 defaults: 2820 if (sdp->wce_default_on) { 2821 sd_first_printk(KERN_NOTICE, sdkp, 2822 "Assuming drive cache: write back\n"); 2823 sdkp->WCE = 1; 2824 } else { 2825 sd_first_printk(KERN_ERR, sdkp, 2826 "Assuming drive cache: write through\n"); 2827 sdkp->WCE = 0; 2828 } 2829 sdkp->RCD = 0; 2830 sdkp->DPOFUA = 0; 2831 } 2832 2833 /* 2834 * The ATO bit indicates whether the DIF application tag is available 2835 * for use by the operating system. 2836 */ 2837 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2838 { 2839 int res, offset; 2840 struct scsi_device *sdp = sdkp->device; 2841 struct scsi_mode_data data; 2842 struct scsi_sense_hdr sshdr; 2843 2844 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2845 return; 2846 2847 if (sdkp->protection_type == 0) 2848 return; 2849 2850 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2851 SD_MAX_RETRIES, &data, &sshdr); 2852 2853 if (!scsi_status_is_good(res) || !data.header_length || 2854 data.length < 6) { 2855 sd_first_printk(KERN_WARNING, sdkp, 2856 "getting Control mode page failed, assume no ATO\n"); 2857 2858 if (scsi_sense_valid(&sshdr)) 2859 sd_print_sense_hdr(sdkp, &sshdr); 2860 2861 return; 2862 } 2863 2864 offset = data.header_length + data.block_descriptor_length; 2865 2866 if ((buffer[offset] & 0x3f) != 0x0a) { 2867 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2868 return; 2869 } 2870 2871 if ((buffer[offset + 5] & 0x80) == 0) 2872 return; 2873 2874 sdkp->ATO = 1; 2875 2876 return; 2877 } 2878 2879 /** 2880 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2881 * @sdkp: disk to query 2882 */ 2883 static void sd_read_block_limits(struct scsi_disk *sdkp) 2884 { 2885 unsigned int sector_sz = sdkp->device->sector_size; 2886 const int vpd_len = 64; 2887 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2888 2889 if (!buffer || 2890 /* Block Limits VPD */ 2891 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2892 goto out; 2893 2894 blk_queue_io_min(sdkp->disk->queue, 2895 get_unaligned_be16(&buffer[6]) * sector_sz); 2896 2897 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2898 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2899 2900 if (buffer[3] == 0x3c) { 2901 unsigned int lba_count, desc_count; 2902 2903 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2904 2905 if (!sdkp->lbpme) 2906 goto out; 2907 2908 lba_count = get_unaligned_be32(&buffer[20]); 2909 desc_count = get_unaligned_be32(&buffer[24]); 2910 2911 if (lba_count && desc_count) 2912 sdkp->max_unmap_blocks = lba_count; 2913 2914 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2915 2916 if (buffer[32] & 0x80) 2917 sdkp->unmap_alignment = 2918 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2919 2920 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2921 2922 if (sdkp->max_unmap_blocks) 2923 sd_config_discard(sdkp, SD_LBP_UNMAP); 2924 else 2925 sd_config_discard(sdkp, SD_LBP_WS16); 2926 2927 } else { /* LBP VPD page tells us what to use */ 2928 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2929 sd_config_discard(sdkp, SD_LBP_UNMAP); 2930 else if (sdkp->lbpws) 2931 sd_config_discard(sdkp, SD_LBP_WS16); 2932 else if (sdkp->lbpws10) 2933 sd_config_discard(sdkp, SD_LBP_WS10); 2934 else 2935 sd_config_discard(sdkp, SD_LBP_DISABLE); 2936 } 2937 } 2938 2939 out: 2940 kfree(buffer); 2941 } 2942 2943 /** 2944 * sd_read_block_characteristics - Query block dev. characteristics 2945 * @sdkp: disk to query 2946 */ 2947 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2948 { 2949 struct request_queue *q = sdkp->disk->queue; 2950 unsigned char *buffer; 2951 u16 rot; 2952 const int vpd_len = 64; 2953 2954 buffer = kmalloc(vpd_len, GFP_KERNEL); 2955 2956 if (!buffer || 2957 /* Block Device Characteristics VPD */ 2958 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2959 goto out; 2960 2961 rot = get_unaligned_be16(&buffer[4]); 2962 2963 if (rot == 1) { 2964 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2965 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2966 } 2967 2968 if (sdkp->device->type == TYPE_ZBC) { 2969 /* Host-managed */ 2970 q->limits.zoned = BLK_ZONED_HM; 2971 } else { 2972 sdkp->zoned = (buffer[8] >> 4) & 3; 2973 if (sdkp->zoned == 1) 2974 /* Host-aware */ 2975 q->limits.zoned = BLK_ZONED_HA; 2976 else 2977 /* 2978 * Treat drive-managed devices as 2979 * regular block devices. 2980 */ 2981 q->limits.zoned = BLK_ZONED_NONE; 2982 } 2983 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2984 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2985 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2986 2987 out: 2988 kfree(buffer); 2989 } 2990 2991 /** 2992 * sd_read_block_provisioning - Query provisioning VPD page 2993 * @sdkp: disk to query 2994 */ 2995 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2996 { 2997 unsigned char *buffer; 2998 const int vpd_len = 8; 2999 3000 if (sdkp->lbpme == 0) 3001 return; 3002 3003 buffer = kmalloc(vpd_len, GFP_KERNEL); 3004 3005 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3006 goto out; 3007 3008 sdkp->lbpvpd = 1; 3009 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3010 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3011 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3012 3013 out: 3014 kfree(buffer); 3015 } 3016 3017 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3018 { 3019 struct scsi_device *sdev = sdkp->device; 3020 3021 if (sdev->host->no_write_same) { 3022 sdev->no_write_same = 1; 3023 3024 return; 3025 } 3026 3027 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3028 /* too large values might cause issues with arcmsr */ 3029 int vpd_buf_len = 64; 3030 3031 sdev->no_report_opcodes = 1; 3032 3033 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3034 * CODES is unsupported and the device has an ATA 3035 * Information VPD page (SAT). 3036 */ 3037 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3038 sdev->no_write_same = 1; 3039 } 3040 3041 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3042 sdkp->ws16 = 1; 3043 3044 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3045 sdkp->ws10 = 1; 3046 } 3047 3048 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3049 { 3050 struct scsi_device *sdev = sdkp->device; 3051 3052 if (!sdev->security_supported) 3053 return; 3054 3055 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3056 SECURITY_PROTOCOL_IN) == 1 && 3057 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3058 SECURITY_PROTOCOL_OUT) == 1) 3059 sdkp->security = 1; 3060 } 3061 3062 /* 3063 * Determine the device's preferred I/O size for reads and writes 3064 * unless the reported value is unreasonably small, large, not a 3065 * multiple of the physical block size, or simply garbage. 3066 */ 3067 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3068 unsigned int dev_max) 3069 { 3070 struct scsi_device *sdp = sdkp->device; 3071 unsigned int opt_xfer_bytes = 3072 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3073 3074 if (sdkp->opt_xfer_blocks == 0) 3075 return false; 3076 3077 if (sdkp->opt_xfer_blocks > dev_max) { 3078 sd_first_printk(KERN_WARNING, sdkp, 3079 "Optimal transfer size %u logical blocks " \ 3080 "> dev_max (%u logical blocks)\n", 3081 sdkp->opt_xfer_blocks, dev_max); 3082 return false; 3083 } 3084 3085 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3086 sd_first_printk(KERN_WARNING, sdkp, 3087 "Optimal transfer size %u logical blocks " \ 3088 "> sd driver limit (%u logical blocks)\n", 3089 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3090 return false; 3091 } 3092 3093 if (opt_xfer_bytes < PAGE_SIZE) { 3094 sd_first_printk(KERN_WARNING, sdkp, 3095 "Optimal transfer size %u bytes < " \ 3096 "PAGE_SIZE (%u bytes)\n", 3097 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3098 return false; 3099 } 3100 3101 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3102 sd_first_printk(KERN_WARNING, sdkp, 3103 "Optimal transfer size %u bytes not a " \ 3104 "multiple of physical block size (%u bytes)\n", 3105 opt_xfer_bytes, sdkp->physical_block_size); 3106 return false; 3107 } 3108 3109 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3110 opt_xfer_bytes); 3111 return true; 3112 } 3113 3114 /** 3115 * sd_revalidate_disk - called the first time a new disk is seen, 3116 * performs disk spin up, read_capacity, etc. 3117 * @disk: struct gendisk we care about 3118 **/ 3119 static int sd_revalidate_disk(struct gendisk *disk) 3120 { 3121 struct scsi_disk *sdkp = scsi_disk(disk); 3122 struct scsi_device *sdp = sdkp->device; 3123 struct request_queue *q = sdkp->disk->queue; 3124 sector_t old_capacity = sdkp->capacity; 3125 unsigned char *buffer; 3126 unsigned int dev_max, rw_max; 3127 3128 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3129 "sd_revalidate_disk\n")); 3130 3131 /* 3132 * If the device is offline, don't try and read capacity or any 3133 * of the other niceties. 3134 */ 3135 if (!scsi_device_online(sdp)) 3136 goto out; 3137 3138 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3139 if (!buffer) { 3140 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3141 "allocation failure.\n"); 3142 goto out; 3143 } 3144 3145 sd_spinup_disk(sdkp); 3146 3147 /* 3148 * Without media there is no reason to ask; moreover, some devices 3149 * react badly if we do. 3150 */ 3151 if (sdkp->media_present) { 3152 sd_read_capacity(sdkp, buffer); 3153 3154 /* 3155 * set the default to rotational. All non-rotational devices 3156 * support the block characteristics VPD page, which will 3157 * cause this to be updated correctly and any device which 3158 * doesn't support it should be treated as rotational. 3159 */ 3160 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3161 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3162 3163 if (scsi_device_supports_vpd(sdp)) { 3164 sd_read_block_provisioning(sdkp); 3165 sd_read_block_limits(sdkp); 3166 sd_read_block_characteristics(sdkp); 3167 sd_zbc_read_zones(sdkp, buffer); 3168 } 3169 3170 sd_print_capacity(sdkp, old_capacity); 3171 3172 sd_read_write_protect_flag(sdkp, buffer); 3173 sd_read_cache_type(sdkp, buffer); 3174 sd_read_app_tag_own(sdkp, buffer); 3175 sd_read_write_same(sdkp, buffer); 3176 sd_read_security(sdkp, buffer); 3177 } 3178 3179 /* 3180 * We now have all cache related info, determine how we deal 3181 * with flush requests. 3182 */ 3183 sd_set_flush_flag(sdkp); 3184 3185 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3186 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3187 3188 /* Some devices report a maximum block count for READ/WRITE requests. */ 3189 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3190 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3191 3192 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3193 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3194 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3195 } else 3196 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3197 (sector_t)BLK_DEF_MAX_SECTORS); 3198 3199 /* Do not exceed controller limit */ 3200 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3201 3202 /* 3203 * Only update max_sectors if previously unset or if the current value 3204 * exceeds the capabilities of the hardware. 3205 */ 3206 if (sdkp->first_scan || 3207 q->limits.max_sectors > q->limits.max_dev_sectors || 3208 q->limits.max_sectors > q->limits.max_hw_sectors) 3209 q->limits.max_sectors = rw_max; 3210 3211 sdkp->first_scan = 0; 3212 3213 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3214 sd_config_write_same(sdkp); 3215 kfree(buffer); 3216 3217 out: 3218 return 0; 3219 } 3220 3221 /** 3222 * sd_unlock_native_capacity - unlock native capacity 3223 * @disk: struct gendisk to set capacity for 3224 * 3225 * Block layer calls this function if it detects that partitions 3226 * on @disk reach beyond the end of the device. If the SCSI host 3227 * implements ->unlock_native_capacity() method, it's invoked to 3228 * give it a chance to adjust the device capacity. 3229 * 3230 * CONTEXT: 3231 * Defined by block layer. Might sleep. 3232 */ 3233 static void sd_unlock_native_capacity(struct gendisk *disk) 3234 { 3235 struct scsi_device *sdev = scsi_disk(disk)->device; 3236 3237 if (sdev->host->hostt->unlock_native_capacity) 3238 sdev->host->hostt->unlock_native_capacity(sdev); 3239 } 3240 3241 /** 3242 * sd_format_disk_name - format disk name 3243 * @prefix: name prefix - ie. "sd" for SCSI disks 3244 * @index: index of the disk to format name for 3245 * @buf: output buffer 3246 * @buflen: length of the output buffer 3247 * 3248 * SCSI disk names starts at sda. The 26th device is sdz and the 3249 * 27th is sdaa. The last one for two lettered suffix is sdzz 3250 * which is followed by sdaaa. 3251 * 3252 * This is basically 26 base counting with one extra 'nil' entry 3253 * at the beginning from the second digit on and can be 3254 * determined using similar method as 26 base conversion with the 3255 * index shifted -1 after each digit is computed. 3256 * 3257 * CONTEXT: 3258 * Don't care. 3259 * 3260 * RETURNS: 3261 * 0 on success, -errno on failure. 3262 */ 3263 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3264 { 3265 const int base = 'z' - 'a' + 1; 3266 char *begin = buf + strlen(prefix); 3267 char *end = buf + buflen; 3268 char *p; 3269 int unit; 3270 3271 p = end - 1; 3272 *p = '\0'; 3273 unit = base; 3274 do { 3275 if (p == begin) 3276 return -EINVAL; 3277 *--p = 'a' + (index % unit); 3278 index = (index / unit) - 1; 3279 } while (index >= 0); 3280 3281 memmove(begin, p, end - p); 3282 memcpy(buf, prefix, strlen(prefix)); 3283 3284 return 0; 3285 } 3286 3287 /* 3288 * The asynchronous part of sd_probe 3289 */ 3290 static void sd_probe_async(void *data, async_cookie_t cookie) 3291 { 3292 struct scsi_disk *sdkp = data; 3293 struct scsi_device *sdp; 3294 struct gendisk *gd; 3295 u32 index; 3296 struct device *dev; 3297 3298 sdp = sdkp->device; 3299 gd = sdkp->disk; 3300 index = sdkp->index; 3301 dev = &sdp->sdev_gendev; 3302 3303 gd->major = sd_major((index & 0xf0) >> 4); 3304 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3305 3306 gd->fops = &sd_fops; 3307 gd->private_data = &sdkp->driver; 3308 gd->queue = sdkp->device->request_queue; 3309 3310 /* defaults, until the device tells us otherwise */ 3311 sdp->sector_size = 512; 3312 sdkp->capacity = 0; 3313 sdkp->media_present = 1; 3314 sdkp->write_prot = 0; 3315 sdkp->cache_override = 0; 3316 sdkp->WCE = 0; 3317 sdkp->RCD = 0; 3318 sdkp->ATO = 0; 3319 sdkp->first_scan = 1; 3320 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3321 3322 sd_revalidate_disk(gd); 3323 3324 gd->flags = GENHD_FL_EXT_DEVT; 3325 if (sdp->removable) { 3326 gd->flags |= GENHD_FL_REMOVABLE; 3327 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3328 } 3329 3330 blk_pm_runtime_init(sdp->request_queue, dev); 3331 device_add_disk(dev, gd, NULL); 3332 if (sdkp->capacity) 3333 sd_dif_config_host(sdkp); 3334 3335 sd_revalidate_disk(gd); 3336 3337 if (sdkp->security) { 3338 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3339 if (sdkp->opal_dev) 3340 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3341 } 3342 3343 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3344 sdp->removable ? "removable " : ""); 3345 scsi_autopm_put_device(sdp); 3346 put_device(&sdkp->dev); 3347 } 3348 3349 /** 3350 * sd_probe - called during driver initialization and whenever a 3351 * new scsi device is attached to the system. It is called once 3352 * for each scsi device (not just disks) present. 3353 * @dev: pointer to device object 3354 * 3355 * Returns 0 if successful (or not interested in this scsi device 3356 * (e.g. scanner)); 1 when there is an error. 3357 * 3358 * Note: this function is invoked from the scsi mid-level. 3359 * This function sets up the mapping between a given 3360 * <host,channel,id,lun> (found in sdp) and new device name 3361 * (e.g. /dev/sda). More precisely it is the block device major 3362 * and minor number that is chosen here. 3363 * 3364 * Assume sd_probe is not re-entrant (for time being) 3365 * Also think about sd_probe() and sd_remove() running coincidentally. 3366 **/ 3367 static int sd_probe(struct device *dev) 3368 { 3369 struct scsi_device *sdp = to_scsi_device(dev); 3370 struct scsi_disk *sdkp; 3371 struct gendisk *gd; 3372 int index; 3373 int error; 3374 3375 scsi_autopm_get_device(sdp); 3376 error = -ENODEV; 3377 if (sdp->type != TYPE_DISK && 3378 sdp->type != TYPE_ZBC && 3379 sdp->type != TYPE_MOD && 3380 sdp->type != TYPE_RBC) 3381 goto out; 3382 3383 #ifndef CONFIG_BLK_DEV_ZONED 3384 if (sdp->type == TYPE_ZBC) 3385 goto out; 3386 #endif 3387 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3388 "sd_probe\n")); 3389 3390 error = -ENOMEM; 3391 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3392 if (!sdkp) 3393 goto out; 3394 3395 gd = alloc_disk(SD_MINORS); 3396 if (!gd) 3397 goto out_free; 3398 3399 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3400 if (index < 0) { 3401 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3402 goto out_put; 3403 } 3404 3405 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3406 if (error) { 3407 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3408 goto out_free_index; 3409 } 3410 3411 sdkp->device = sdp; 3412 sdkp->driver = &sd_template; 3413 sdkp->disk = gd; 3414 sdkp->index = index; 3415 atomic_set(&sdkp->openers, 0); 3416 atomic_set(&sdkp->device->ioerr_cnt, 0); 3417 3418 if (!sdp->request_queue->rq_timeout) { 3419 if (sdp->type != TYPE_MOD) 3420 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3421 else 3422 blk_queue_rq_timeout(sdp->request_queue, 3423 SD_MOD_TIMEOUT); 3424 } 3425 3426 device_initialize(&sdkp->dev); 3427 sdkp->dev.parent = dev; 3428 sdkp->dev.class = &sd_disk_class; 3429 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3430 3431 error = device_add(&sdkp->dev); 3432 if (error) 3433 goto out_free_index; 3434 3435 get_device(dev); 3436 dev_set_drvdata(dev, sdkp); 3437 3438 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3439 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3440 3441 return 0; 3442 3443 out_free_index: 3444 ida_free(&sd_index_ida, index); 3445 out_put: 3446 put_disk(gd); 3447 out_free: 3448 kfree(sdkp); 3449 out: 3450 scsi_autopm_put_device(sdp); 3451 return error; 3452 } 3453 3454 /** 3455 * sd_remove - called whenever a scsi disk (previously recognized by 3456 * sd_probe) is detached from the system. It is called (potentially 3457 * multiple times) during sd module unload. 3458 * @dev: pointer to device object 3459 * 3460 * Note: this function is invoked from the scsi mid-level. 3461 * This function potentially frees up a device name (e.g. /dev/sdc) 3462 * that could be re-used by a subsequent sd_probe(). 3463 * This function is not called when the built-in sd driver is "exit-ed". 3464 **/ 3465 static int sd_remove(struct device *dev) 3466 { 3467 struct scsi_disk *sdkp; 3468 dev_t devt; 3469 3470 sdkp = dev_get_drvdata(dev); 3471 devt = disk_devt(sdkp->disk); 3472 scsi_autopm_get_device(sdkp->device); 3473 3474 async_synchronize_full_domain(&scsi_sd_pm_domain); 3475 async_synchronize_full_domain(&scsi_sd_probe_domain); 3476 device_del(&sdkp->dev); 3477 del_gendisk(sdkp->disk); 3478 sd_shutdown(dev); 3479 3480 free_opal_dev(sdkp->opal_dev); 3481 3482 blk_register_region(devt, SD_MINORS, NULL, 3483 sd_default_probe, NULL, NULL); 3484 3485 mutex_lock(&sd_ref_mutex); 3486 dev_set_drvdata(dev, NULL); 3487 put_device(&sdkp->dev); 3488 mutex_unlock(&sd_ref_mutex); 3489 3490 return 0; 3491 } 3492 3493 /** 3494 * scsi_disk_release - Called to free the scsi_disk structure 3495 * @dev: pointer to embedded class device 3496 * 3497 * sd_ref_mutex must be held entering this routine. Because it is 3498 * called on last put, you should always use the scsi_disk_get() 3499 * scsi_disk_put() helpers which manipulate the semaphore directly 3500 * and never do a direct put_device. 3501 **/ 3502 static void scsi_disk_release(struct device *dev) 3503 { 3504 struct scsi_disk *sdkp = to_scsi_disk(dev); 3505 struct gendisk *disk = sdkp->disk; 3506 struct request_queue *q = disk->queue; 3507 3508 ida_free(&sd_index_ida, sdkp->index); 3509 3510 /* 3511 * Wait until all requests that are in progress have completed. 3512 * This is necessary to avoid that e.g. scsi_end_request() crashes 3513 * due to clearing the disk->private_data pointer. Wait from inside 3514 * scsi_disk_release() instead of from sd_release() to avoid that 3515 * freezing and unfreezing the request queue affects user space I/O 3516 * in case multiple processes open a /dev/sd... node concurrently. 3517 */ 3518 blk_mq_freeze_queue(q); 3519 blk_mq_unfreeze_queue(q); 3520 3521 disk->private_data = NULL; 3522 put_disk(disk); 3523 put_device(&sdkp->device->sdev_gendev); 3524 3525 kfree(sdkp); 3526 } 3527 3528 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3529 { 3530 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3531 struct scsi_sense_hdr sshdr; 3532 struct scsi_device *sdp = sdkp->device; 3533 int res; 3534 3535 if (start) 3536 cmd[4] |= 1; /* START */ 3537 3538 if (sdp->start_stop_pwr_cond) 3539 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3540 3541 if (!scsi_device_online(sdp)) 3542 return -ENODEV; 3543 3544 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3545 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3546 if (res) { 3547 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3548 if (driver_byte(res) == DRIVER_SENSE) 3549 sd_print_sense_hdr(sdkp, &sshdr); 3550 if (scsi_sense_valid(&sshdr) && 3551 /* 0x3a is medium not present */ 3552 sshdr.asc == 0x3a) 3553 res = 0; 3554 } 3555 3556 /* SCSI error codes must not go to the generic layer */ 3557 if (res) 3558 return -EIO; 3559 3560 return 0; 3561 } 3562 3563 /* 3564 * Send a SYNCHRONIZE CACHE instruction down to the device through 3565 * the normal SCSI command structure. Wait for the command to 3566 * complete. 3567 */ 3568 static void sd_shutdown(struct device *dev) 3569 { 3570 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3571 3572 if (!sdkp) 3573 return; /* this can happen */ 3574 3575 if (pm_runtime_suspended(dev)) 3576 return; 3577 3578 if (sdkp->WCE && sdkp->media_present) { 3579 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3580 sd_sync_cache(sdkp, NULL); 3581 } 3582 3583 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3584 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3585 sd_start_stop_device(sdkp, 0); 3586 } 3587 } 3588 3589 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3590 { 3591 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3592 struct scsi_sense_hdr sshdr; 3593 int ret = 0; 3594 3595 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3596 return 0; 3597 3598 if (sdkp->WCE && sdkp->media_present) { 3599 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3600 ret = sd_sync_cache(sdkp, &sshdr); 3601 3602 if (ret) { 3603 /* ignore OFFLINE device */ 3604 if (ret == -ENODEV) 3605 return 0; 3606 3607 if (!scsi_sense_valid(&sshdr) || 3608 sshdr.sense_key != ILLEGAL_REQUEST) 3609 return ret; 3610 3611 /* 3612 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3613 * doesn't support sync. There's not much to do and 3614 * suspend shouldn't fail. 3615 */ 3616 ret = 0; 3617 } 3618 } 3619 3620 if (sdkp->device->manage_start_stop) { 3621 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3622 /* an error is not worth aborting a system sleep */ 3623 ret = sd_start_stop_device(sdkp, 0); 3624 if (ignore_stop_errors) 3625 ret = 0; 3626 } 3627 3628 return ret; 3629 } 3630 3631 static int sd_suspend_system(struct device *dev) 3632 { 3633 return sd_suspend_common(dev, true); 3634 } 3635 3636 static int sd_suspend_runtime(struct device *dev) 3637 { 3638 return sd_suspend_common(dev, false); 3639 } 3640 3641 static int sd_resume(struct device *dev) 3642 { 3643 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3644 int ret; 3645 3646 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3647 return 0; 3648 3649 if (!sdkp->device->manage_start_stop) 3650 return 0; 3651 3652 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3653 ret = sd_start_stop_device(sdkp, 1); 3654 if (!ret) 3655 opal_unlock_from_suspend(sdkp->opal_dev); 3656 return ret; 3657 } 3658 3659 /** 3660 * init_sd - entry point for this driver (both when built in or when 3661 * a module). 3662 * 3663 * Note: this function registers this driver with the scsi mid-level. 3664 **/ 3665 static int __init init_sd(void) 3666 { 3667 int majors = 0, i, err; 3668 3669 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3670 3671 for (i = 0; i < SD_MAJORS; i++) { 3672 if (register_blkdev(sd_major(i), "sd") != 0) 3673 continue; 3674 majors++; 3675 blk_register_region(sd_major(i), SD_MINORS, NULL, 3676 sd_default_probe, NULL, NULL); 3677 } 3678 3679 if (!majors) 3680 return -ENODEV; 3681 3682 err = class_register(&sd_disk_class); 3683 if (err) 3684 goto err_out; 3685 3686 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3687 0, 0, NULL); 3688 if (!sd_cdb_cache) { 3689 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3690 err = -ENOMEM; 3691 goto err_out_class; 3692 } 3693 3694 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3695 if (!sd_cdb_pool) { 3696 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3697 err = -ENOMEM; 3698 goto err_out_cache; 3699 } 3700 3701 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3702 if (!sd_page_pool) { 3703 printk(KERN_ERR "sd: can't init discard page pool\n"); 3704 err = -ENOMEM; 3705 goto err_out_ppool; 3706 } 3707 3708 err = scsi_register_driver(&sd_template.gendrv); 3709 if (err) 3710 goto err_out_driver; 3711 3712 return 0; 3713 3714 err_out_driver: 3715 mempool_destroy(sd_page_pool); 3716 3717 err_out_ppool: 3718 mempool_destroy(sd_cdb_pool); 3719 3720 err_out_cache: 3721 kmem_cache_destroy(sd_cdb_cache); 3722 3723 err_out_class: 3724 class_unregister(&sd_disk_class); 3725 err_out: 3726 for (i = 0; i < SD_MAJORS; i++) 3727 unregister_blkdev(sd_major(i), "sd"); 3728 return err; 3729 } 3730 3731 /** 3732 * exit_sd - exit point for this driver (when it is a module). 3733 * 3734 * Note: this function unregisters this driver from the scsi mid-level. 3735 **/ 3736 static void __exit exit_sd(void) 3737 { 3738 int i; 3739 3740 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3741 3742 scsi_unregister_driver(&sd_template.gendrv); 3743 mempool_destroy(sd_cdb_pool); 3744 mempool_destroy(sd_page_pool); 3745 kmem_cache_destroy(sd_cdb_cache); 3746 3747 class_unregister(&sd_disk_class); 3748 3749 for (i = 0; i < SD_MAJORS; i++) { 3750 blk_unregister_region(sd_major(i), SD_MINORS); 3751 unregister_blkdev(sd_major(i), "sd"); 3752 } 3753 } 3754 3755 module_init(init_sd); 3756 module_exit(exit_sd); 3757 3758 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3759 struct scsi_sense_hdr *sshdr) 3760 { 3761 scsi_print_sense_hdr(sdkp->device, 3762 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3763 } 3764 3765 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3766 int result) 3767 { 3768 const char *hb_string = scsi_hostbyte_string(result); 3769 const char *db_string = scsi_driverbyte_string(result); 3770 3771 if (hb_string || db_string) 3772 sd_printk(KERN_INFO, sdkp, 3773 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3774 hb_string ? hb_string : "invalid", 3775 db_string ? db_string : "invalid"); 3776 else 3777 sd_printk(KERN_INFO, sdkp, 3778 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3779 msg, host_byte(result), driver_byte(result)); 3780 } 3781 3782