1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/blk-pm.h> 49 #include <linux/delay.h> 50 #include <linux/major.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/slab.h> 54 #include <linux/sed-opal.h> 55 #include <linux/pm_runtime.h> 56 #include <linux/pr.h> 57 #include <linux/t10-pi.h> 58 #include <linux/uaccess.h> 59 #include <asm/unaligned.h> 60 61 #include <scsi/scsi.h> 62 #include <scsi/scsi_cmnd.h> 63 #include <scsi/scsi_dbg.h> 64 #include <scsi/scsi_device.h> 65 #include <scsi/scsi_driver.h> 66 #include <scsi/scsi_eh.h> 67 #include <scsi/scsi_host.h> 68 #include <scsi/scsi_ioctl.h> 69 #include <scsi/scsicam.h> 70 71 #include "sd.h" 72 #include "scsi_priv.h" 73 #include "scsi_logging.h" 74 75 MODULE_AUTHOR("Eric Youngdale"); 76 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 77 MODULE_LICENSE("GPL"); 78 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 99 100 #define SD_MINORS 16 101 102 static void sd_config_discard(struct scsi_disk *, unsigned int); 103 static void sd_config_write_same(struct scsi_disk *); 104 static int sd_revalidate_disk(struct gendisk *); 105 static void sd_unlock_native_capacity(struct gendisk *disk); 106 static void sd_start_done_work(struct work_struct *work); 107 static int sd_probe(struct device *); 108 static int sd_remove(struct device *); 109 static void sd_shutdown(struct device *); 110 static int sd_suspend_system(struct device *); 111 static int sd_suspend_runtime(struct device *); 112 static int sd_resume_system(struct device *); 113 static int sd_resume_runtime(struct device *); 114 static void sd_rescan(struct device *); 115 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 116 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 117 static int sd_done(struct scsi_cmnd *); 118 static void sd_eh_reset(struct scsi_cmnd *); 119 static int sd_eh_action(struct scsi_cmnd *, int); 120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 121 static void scsi_disk_release(struct device *cdev); 122 123 static DEFINE_IDA(sd_index_ida); 124 125 static struct kmem_cache *sd_cdb_cache; 126 static mempool_t *sd_page_pool; 127 static struct lock_class_key sd_bio_compl_lkclass; 128 129 static const char *sd_cache_types[] = { 130 "write through", "none", "write back", 131 "write back, no read (daft)" 132 }; 133 134 static void sd_set_flush_flag(struct scsi_disk *sdkp) 135 { 136 bool wc = false, fua = false; 137 138 if (sdkp->WCE) { 139 wc = true; 140 if (sdkp->DPOFUA) 141 fua = true; 142 } 143 144 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 145 } 146 147 static ssize_t 148 cache_type_store(struct device *dev, struct device_attribute *attr, 149 const char *buf, size_t count) 150 { 151 int ct, rcd, wce, sp; 152 struct scsi_disk *sdkp = to_scsi_disk(dev); 153 struct scsi_device *sdp = sdkp->device; 154 char buffer[64]; 155 char *buffer_data; 156 struct scsi_mode_data data; 157 struct scsi_sense_hdr sshdr; 158 static const char temp[] = "temporary "; 159 int len; 160 161 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 162 /* no cache control on RBC devices; theoretically they 163 * can do it, but there's probably so many exceptions 164 * it's not worth the risk */ 165 return -EINVAL; 166 167 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 168 buf += sizeof(temp) - 1; 169 sdkp->cache_override = 1; 170 } else { 171 sdkp->cache_override = 0; 172 } 173 174 ct = sysfs_match_string(sd_cache_types, buf); 175 if (ct < 0) 176 return -EINVAL; 177 178 rcd = ct & 0x01 ? 1 : 0; 179 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 180 181 if (sdkp->cache_override) { 182 sdkp->WCE = wce; 183 sdkp->RCD = rcd; 184 sd_set_flush_flag(sdkp); 185 return count; 186 } 187 188 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 189 sdkp->max_retries, &data, NULL)) 190 return -EINVAL; 191 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 192 data.block_descriptor_length); 193 buffer_data = buffer + data.header_length + 194 data.block_descriptor_length; 195 buffer_data[2] &= ~0x05; 196 buffer_data[2] |= wce << 2 | rcd; 197 sp = buffer_data[0] & 0x80 ? 1 : 0; 198 buffer_data[0] &= ~0x80; 199 200 /* 201 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 202 * received mode parameter buffer before doing MODE SELECT. 203 */ 204 data.device_specific = 0; 205 206 if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT, 207 sdkp->max_retries, &data, &sshdr)) { 208 if (scsi_sense_valid(&sshdr)) 209 sd_print_sense_hdr(sdkp, &sshdr); 210 return -EINVAL; 211 } 212 sd_revalidate_disk(sdkp->disk); 213 return count; 214 } 215 216 static ssize_t 217 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 218 char *buf) 219 { 220 struct scsi_disk *sdkp = to_scsi_disk(dev); 221 struct scsi_device *sdp = sdkp->device; 222 223 return sprintf(buf, "%u\n", sdp->manage_start_stop); 224 } 225 226 static ssize_t 227 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 228 const char *buf, size_t count) 229 { 230 struct scsi_disk *sdkp = to_scsi_disk(dev); 231 struct scsi_device *sdp = sdkp->device; 232 bool v; 233 234 if (!capable(CAP_SYS_ADMIN)) 235 return -EACCES; 236 237 if (kstrtobool(buf, &v)) 238 return -EINVAL; 239 240 sdp->manage_start_stop = v; 241 242 return count; 243 } 244 static DEVICE_ATTR_RW(manage_start_stop); 245 246 static ssize_t 247 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 248 { 249 struct scsi_disk *sdkp = to_scsi_disk(dev); 250 251 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 252 } 253 254 static ssize_t 255 allow_restart_store(struct device *dev, struct device_attribute *attr, 256 const char *buf, size_t count) 257 { 258 bool v; 259 struct scsi_disk *sdkp = to_scsi_disk(dev); 260 struct scsi_device *sdp = sdkp->device; 261 262 if (!capable(CAP_SYS_ADMIN)) 263 return -EACCES; 264 265 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 266 return -EINVAL; 267 268 if (kstrtobool(buf, &v)) 269 return -EINVAL; 270 271 sdp->allow_restart = v; 272 273 return count; 274 } 275 static DEVICE_ATTR_RW(allow_restart); 276 277 static ssize_t 278 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 279 { 280 struct scsi_disk *sdkp = to_scsi_disk(dev); 281 int ct = sdkp->RCD + 2*sdkp->WCE; 282 283 return sprintf(buf, "%s\n", sd_cache_types[ct]); 284 } 285 static DEVICE_ATTR_RW(cache_type); 286 287 static ssize_t 288 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 289 { 290 struct scsi_disk *sdkp = to_scsi_disk(dev); 291 292 return sprintf(buf, "%u\n", sdkp->DPOFUA); 293 } 294 static DEVICE_ATTR_RO(FUA); 295 296 static ssize_t 297 protection_type_show(struct device *dev, struct device_attribute *attr, 298 char *buf) 299 { 300 struct scsi_disk *sdkp = to_scsi_disk(dev); 301 302 return sprintf(buf, "%u\n", sdkp->protection_type); 303 } 304 305 static ssize_t 306 protection_type_store(struct device *dev, struct device_attribute *attr, 307 const char *buf, size_t count) 308 { 309 struct scsi_disk *sdkp = to_scsi_disk(dev); 310 unsigned int val; 311 int err; 312 313 if (!capable(CAP_SYS_ADMIN)) 314 return -EACCES; 315 316 err = kstrtouint(buf, 10, &val); 317 318 if (err) 319 return err; 320 321 if (val <= T10_PI_TYPE3_PROTECTION) 322 sdkp->protection_type = val; 323 324 return count; 325 } 326 static DEVICE_ATTR_RW(protection_type); 327 328 static ssize_t 329 protection_mode_show(struct device *dev, struct device_attribute *attr, 330 char *buf) 331 { 332 struct scsi_disk *sdkp = to_scsi_disk(dev); 333 struct scsi_device *sdp = sdkp->device; 334 unsigned int dif, dix; 335 336 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 337 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 338 339 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 340 dif = 0; 341 dix = 1; 342 } 343 344 if (!dif && !dix) 345 return sprintf(buf, "none\n"); 346 347 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 348 } 349 static DEVICE_ATTR_RO(protection_mode); 350 351 static ssize_t 352 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 353 { 354 struct scsi_disk *sdkp = to_scsi_disk(dev); 355 356 return sprintf(buf, "%u\n", sdkp->ATO); 357 } 358 static DEVICE_ATTR_RO(app_tag_own); 359 360 static ssize_t 361 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 362 char *buf) 363 { 364 struct scsi_disk *sdkp = to_scsi_disk(dev); 365 366 return sprintf(buf, "%u\n", sdkp->lbpme); 367 } 368 static DEVICE_ATTR_RO(thin_provisioning); 369 370 /* sysfs_match_string() requires dense arrays */ 371 static const char *lbp_mode[] = { 372 [SD_LBP_FULL] = "full", 373 [SD_LBP_UNMAP] = "unmap", 374 [SD_LBP_WS16] = "writesame_16", 375 [SD_LBP_WS10] = "writesame_10", 376 [SD_LBP_ZERO] = "writesame_zero", 377 [SD_LBP_DISABLE] = "disabled", 378 }; 379 380 static ssize_t 381 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 382 char *buf) 383 { 384 struct scsi_disk *sdkp = to_scsi_disk(dev); 385 386 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 387 } 388 389 static ssize_t 390 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 391 const char *buf, size_t count) 392 { 393 struct scsi_disk *sdkp = to_scsi_disk(dev); 394 struct scsi_device *sdp = sdkp->device; 395 int mode; 396 397 if (!capable(CAP_SYS_ADMIN)) 398 return -EACCES; 399 400 if (sd_is_zoned(sdkp)) { 401 sd_config_discard(sdkp, SD_LBP_DISABLE); 402 return count; 403 } 404 405 if (sdp->type != TYPE_DISK) 406 return -EINVAL; 407 408 mode = sysfs_match_string(lbp_mode, buf); 409 if (mode < 0) 410 return -EINVAL; 411 412 sd_config_discard(sdkp, mode); 413 414 return count; 415 } 416 static DEVICE_ATTR_RW(provisioning_mode); 417 418 /* sysfs_match_string() requires dense arrays */ 419 static const char *zeroing_mode[] = { 420 [SD_ZERO_WRITE] = "write", 421 [SD_ZERO_WS] = "writesame", 422 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 423 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 424 }; 425 426 static ssize_t 427 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 428 char *buf) 429 { 430 struct scsi_disk *sdkp = to_scsi_disk(dev); 431 432 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 433 } 434 435 static ssize_t 436 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 437 const char *buf, size_t count) 438 { 439 struct scsi_disk *sdkp = to_scsi_disk(dev); 440 int mode; 441 442 if (!capable(CAP_SYS_ADMIN)) 443 return -EACCES; 444 445 mode = sysfs_match_string(zeroing_mode, buf); 446 if (mode < 0) 447 return -EINVAL; 448 449 sdkp->zeroing_mode = mode; 450 451 return count; 452 } 453 static DEVICE_ATTR_RW(zeroing_mode); 454 455 static ssize_t 456 max_medium_access_timeouts_show(struct device *dev, 457 struct device_attribute *attr, char *buf) 458 { 459 struct scsi_disk *sdkp = to_scsi_disk(dev); 460 461 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 462 } 463 464 static ssize_t 465 max_medium_access_timeouts_store(struct device *dev, 466 struct device_attribute *attr, const char *buf, 467 size_t count) 468 { 469 struct scsi_disk *sdkp = to_scsi_disk(dev); 470 int err; 471 472 if (!capable(CAP_SYS_ADMIN)) 473 return -EACCES; 474 475 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 476 477 return err ? err : count; 478 } 479 static DEVICE_ATTR_RW(max_medium_access_timeouts); 480 481 static ssize_t 482 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 483 char *buf) 484 { 485 struct scsi_disk *sdkp = to_scsi_disk(dev); 486 487 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 488 } 489 490 static ssize_t 491 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 492 const char *buf, size_t count) 493 { 494 struct scsi_disk *sdkp = to_scsi_disk(dev); 495 struct scsi_device *sdp = sdkp->device; 496 unsigned long max; 497 int err; 498 499 if (!capable(CAP_SYS_ADMIN)) 500 return -EACCES; 501 502 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 503 return -EINVAL; 504 505 err = kstrtoul(buf, 10, &max); 506 507 if (err) 508 return err; 509 510 if (max == 0) 511 sdp->no_write_same = 1; 512 else if (max <= SD_MAX_WS16_BLOCKS) { 513 sdp->no_write_same = 0; 514 sdkp->max_ws_blocks = max; 515 } 516 517 sd_config_write_same(sdkp); 518 519 return count; 520 } 521 static DEVICE_ATTR_RW(max_write_same_blocks); 522 523 static ssize_t 524 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 525 { 526 struct scsi_disk *sdkp = to_scsi_disk(dev); 527 528 if (sdkp->device->type == TYPE_ZBC) 529 return sprintf(buf, "host-managed\n"); 530 if (sdkp->zoned == 1) 531 return sprintf(buf, "host-aware\n"); 532 if (sdkp->zoned == 2) 533 return sprintf(buf, "drive-managed\n"); 534 return sprintf(buf, "none\n"); 535 } 536 static DEVICE_ATTR_RO(zoned_cap); 537 538 static ssize_t 539 max_retries_store(struct device *dev, struct device_attribute *attr, 540 const char *buf, size_t count) 541 { 542 struct scsi_disk *sdkp = to_scsi_disk(dev); 543 struct scsi_device *sdev = sdkp->device; 544 int retries, err; 545 546 err = kstrtoint(buf, 10, &retries); 547 if (err) 548 return err; 549 550 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 551 sdkp->max_retries = retries; 552 return count; 553 } 554 555 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 556 SD_MAX_RETRIES); 557 return -EINVAL; 558 } 559 560 static ssize_t 561 max_retries_show(struct device *dev, struct device_attribute *attr, 562 char *buf) 563 { 564 struct scsi_disk *sdkp = to_scsi_disk(dev); 565 566 return sprintf(buf, "%d\n", sdkp->max_retries); 567 } 568 569 static DEVICE_ATTR_RW(max_retries); 570 571 static struct attribute *sd_disk_attrs[] = { 572 &dev_attr_cache_type.attr, 573 &dev_attr_FUA.attr, 574 &dev_attr_allow_restart.attr, 575 &dev_attr_manage_start_stop.attr, 576 &dev_attr_protection_type.attr, 577 &dev_attr_protection_mode.attr, 578 &dev_attr_app_tag_own.attr, 579 &dev_attr_thin_provisioning.attr, 580 &dev_attr_provisioning_mode.attr, 581 &dev_attr_zeroing_mode.attr, 582 &dev_attr_max_write_same_blocks.attr, 583 &dev_attr_max_medium_access_timeouts.attr, 584 &dev_attr_zoned_cap.attr, 585 &dev_attr_max_retries.attr, 586 NULL, 587 }; 588 ATTRIBUTE_GROUPS(sd_disk); 589 590 static struct class sd_disk_class = { 591 .name = "scsi_disk", 592 .owner = THIS_MODULE, 593 .dev_release = scsi_disk_release, 594 .dev_groups = sd_disk_groups, 595 }; 596 597 static const struct dev_pm_ops sd_pm_ops = { 598 .suspend = sd_suspend_system, 599 .resume = sd_resume_system, 600 .poweroff = sd_suspend_system, 601 .restore = sd_resume_system, 602 .runtime_suspend = sd_suspend_runtime, 603 .runtime_resume = sd_resume_runtime, 604 }; 605 606 static struct scsi_driver sd_template = { 607 .gendrv = { 608 .name = "sd", 609 .owner = THIS_MODULE, 610 .probe = sd_probe, 611 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 612 .remove = sd_remove, 613 .shutdown = sd_shutdown, 614 .pm = &sd_pm_ops, 615 }, 616 .rescan = sd_rescan, 617 .init_command = sd_init_command, 618 .uninit_command = sd_uninit_command, 619 .done = sd_done, 620 .eh_action = sd_eh_action, 621 .eh_reset = sd_eh_reset, 622 }; 623 624 /* 625 * Don't request a new module, as that could deadlock in multipath 626 * environment. 627 */ 628 static void sd_default_probe(dev_t devt) 629 { 630 } 631 632 /* 633 * Device no to disk mapping: 634 * 635 * major disc2 disc p1 636 * |............|.............|....|....| <- dev_t 637 * 31 20 19 8 7 4 3 0 638 * 639 * Inside a major, we have 16k disks, however mapped non- 640 * contiguously. The first 16 disks are for major0, the next 641 * ones with major1, ... Disk 256 is for major0 again, disk 272 642 * for major1, ... 643 * As we stay compatible with our numbering scheme, we can reuse 644 * the well-know SCSI majors 8, 65--71, 136--143. 645 */ 646 static int sd_major(int major_idx) 647 { 648 switch (major_idx) { 649 case 0: 650 return SCSI_DISK0_MAJOR; 651 case 1 ... 7: 652 return SCSI_DISK1_MAJOR + major_idx - 1; 653 case 8 ... 15: 654 return SCSI_DISK8_MAJOR + major_idx - 8; 655 default: 656 BUG(); 657 return 0; /* shut up gcc */ 658 } 659 } 660 661 #ifdef CONFIG_BLK_SED_OPAL 662 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 663 size_t len, bool send) 664 { 665 struct scsi_disk *sdkp = data; 666 struct scsi_device *sdev = sdkp->device; 667 u8 cdb[12] = { 0, }; 668 int ret; 669 670 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 671 cdb[1] = secp; 672 put_unaligned_be16(spsp, &cdb[2]); 673 put_unaligned_be32(len, &cdb[6]); 674 675 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 676 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 677 RQF_PM, NULL); 678 return ret <= 0 ? ret : -EIO; 679 } 680 #endif /* CONFIG_BLK_SED_OPAL */ 681 682 /* 683 * Look up the DIX operation based on whether the command is read or 684 * write and whether dix and dif are enabled. 685 */ 686 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 687 { 688 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 689 static const unsigned int ops[] = { /* wrt dix dif */ 690 SCSI_PROT_NORMAL, /* 0 0 0 */ 691 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 692 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 693 SCSI_PROT_READ_PASS, /* 0 1 1 */ 694 SCSI_PROT_NORMAL, /* 1 0 0 */ 695 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 696 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 697 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 698 }; 699 700 return ops[write << 2 | dix << 1 | dif]; 701 } 702 703 /* 704 * Returns a mask of the protection flags that are valid for a given DIX 705 * operation. 706 */ 707 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 708 { 709 static const unsigned int flag_mask[] = { 710 [SCSI_PROT_NORMAL] = 0, 711 712 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 713 SCSI_PROT_GUARD_CHECK | 714 SCSI_PROT_REF_CHECK | 715 SCSI_PROT_REF_INCREMENT, 716 717 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 718 SCSI_PROT_IP_CHECKSUM, 719 720 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 721 SCSI_PROT_GUARD_CHECK | 722 SCSI_PROT_REF_CHECK | 723 SCSI_PROT_REF_INCREMENT | 724 SCSI_PROT_IP_CHECKSUM, 725 726 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 727 SCSI_PROT_REF_INCREMENT, 728 729 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 730 SCSI_PROT_REF_CHECK | 731 SCSI_PROT_REF_INCREMENT | 732 SCSI_PROT_IP_CHECKSUM, 733 734 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 735 SCSI_PROT_GUARD_CHECK | 736 SCSI_PROT_REF_CHECK | 737 SCSI_PROT_REF_INCREMENT | 738 SCSI_PROT_IP_CHECKSUM, 739 }; 740 741 return flag_mask[prot_op]; 742 } 743 744 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 745 unsigned int dix, unsigned int dif) 746 { 747 struct request *rq = scsi_cmd_to_rq(scmd); 748 struct bio *bio = rq->bio; 749 unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif); 750 unsigned int protect = 0; 751 752 if (dix) { /* DIX Type 0, 1, 2, 3 */ 753 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 754 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 755 756 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 757 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 758 } 759 760 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 761 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 762 763 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 764 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 765 } 766 767 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 768 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 769 770 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 771 protect = 3 << 5; /* Disable target PI checking */ 772 else 773 protect = 1 << 5; /* Enable target PI checking */ 774 } 775 776 scsi_set_prot_op(scmd, prot_op); 777 scsi_set_prot_type(scmd, dif); 778 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 779 780 return protect; 781 } 782 783 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 784 { 785 struct request_queue *q = sdkp->disk->queue; 786 unsigned int logical_block_size = sdkp->device->sector_size; 787 unsigned int max_blocks = 0; 788 789 q->limits.discard_alignment = 790 sdkp->unmap_alignment * logical_block_size; 791 q->limits.discard_granularity = 792 max(sdkp->physical_block_size, 793 sdkp->unmap_granularity * logical_block_size); 794 sdkp->provisioning_mode = mode; 795 796 switch (mode) { 797 798 case SD_LBP_FULL: 799 case SD_LBP_DISABLE: 800 blk_queue_max_discard_sectors(q, 0); 801 return; 802 803 case SD_LBP_UNMAP: 804 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 805 (u32)SD_MAX_WS16_BLOCKS); 806 break; 807 808 case SD_LBP_WS16: 809 if (sdkp->device->unmap_limit_for_ws) 810 max_blocks = sdkp->max_unmap_blocks; 811 else 812 max_blocks = sdkp->max_ws_blocks; 813 814 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 815 break; 816 817 case SD_LBP_WS10: 818 if (sdkp->device->unmap_limit_for_ws) 819 max_blocks = sdkp->max_unmap_blocks; 820 else 821 max_blocks = sdkp->max_ws_blocks; 822 823 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 824 break; 825 826 case SD_LBP_ZERO: 827 max_blocks = min_not_zero(sdkp->max_ws_blocks, 828 (u32)SD_MAX_WS10_BLOCKS); 829 break; 830 } 831 832 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 833 } 834 835 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 836 { 837 struct scsi_device *sdp = cmd->device; 838 struct request *rq = scsi_cmd_to_rq(cmd); 839 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 840 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 841 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 842 unsigned int data_len = 24; 843 char *buf; 844 845 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 846 if (!rq->special_vec.bv_page) 847 return BLK_STS_RESOURCE; 848 clear_highpage(rq->special_vec.bv_page); 849 rq->special_vec.bv_offset = 0; 850 rq->special_vec.bv_len = data_len; 851 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 852 853 cmd->cmd_len = 10; 854 cmd->cmnd[0] = UNMAP; 855 cmd->cmnd[8] = 24; 856 857 buf = bvec_virt(&rq->special_vec); 858 put_unaligned_be16(6 + 16, &buf[0]); 859 put_unaligned_be16(16, &buf[2]); 860 put_unaligned_be64(lba, &buf[8]); 861 put_unaligned_be32(nr_blocks, &buf[16]); 862 863 cmd->allowed = sdkp->max_retries; 864 cmd->transfersize = data_len; 865 rq->timeout = SD_TIMEOUT; 866 867 return scsi_alloc_sgtables(cmd); 868 } 869 870 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 871 bool unmap) 872 { 873 struct scsi_device *sdp = cmd->device; 874 struct request *rq = scsi_cmd_to_rq(cmd); 875 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 876 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 877 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 878 u32 data_len = sdp->sector_size; 879 880 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 881 if (!rq->special_vec.bv_page) 882 return BLK_STS_RESOURCE; 883 clear_highpage(rq->special_vec.bv_page); 884 rq->special_vec.bv_offset = 0; 885 rq->special_vec.bv_len = data_len; 886 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 887 888 cmd->cmd_len = 16; 889 cmd->cmnd[0] = WRITE_SAME_16; 890 if (unmap) 891 cmd->cmnd[1] = 0x8; /* UNMAP */ 892 put_unaligned_be64(lba, &cmd->cmnd[2]); 893 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 894 895 cmd->allowed = sdkp->max_retries; 896 cmd->transfersize = data_len; 897 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 898 899 return scsi_alloc_sgtables(cmd); 900 } 901 902 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 903 bool unmap) 904 { 905 struct scsi_device *sdp = cmd->device; 906 struct request *rq = scsi_cmd_to_rq(cmd); 907 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 908 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 909 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 910 u32 data_len = sdp->sector_size; 911 912 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 913 if (!rq->special_vec.bv_page) 914 return BLK_STS_RESOURCE; 915 clear_highpage(rq->special_vec.bv_page); 916 rq->special_vec.bv_offset = 0; 917 rq->special_vec.bv_len = data_len; 918 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 919 920 cmd->cmd_len = 10; 921 cmd->cmnd[0] = WRITE_SAME; 922 if (unmap) 923 cmd->cmnd[1] = 0x8; /* UNMAP */ 924 put_unaligned_be32(lba, &cmd->cmnd[2]); 925 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 926 927 cmd->allowed = sdkp->max_retries; 928 cmd->transfersize = data_len; 929 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 930 931 return scsi_alloc_sgtables(cmd); 932 } 933 934 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 935 { 936 struct request *rq = scsi_cmd_to_rq(cmd); 937 struct scsi_device *sdp = cmd->device; 938 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 939 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 940 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 941 942 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 943 switch (sdkp->zeroing_mode) { 944 case SD_ZERO_WS16_UNMAP: 945 return sd_setup_write_same16_cmnd(cmd, true); 946 case SD_ZERO_WS10_UNMAP: 947 return sd_setup_write_same10_cmnd(cmd, true); 948 } 949 } 950 951 if (sdp->no_write_same) { 952 rq->rq_flags |= RQF_QUIET; 953 return BLK_STS_TARGET; 954 } 955 956 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 957 return sd_setup_write_same16_cmnd(cmd, false); 958 959 return sd_setup_write_same10_cmnd(cmd, false); 960 } 961 962 static void sd_config_write_same(struct scsi_disk *sdkp) 963 { 964 struct request_queue *q = sdkp->disk->queue; 965 unsigned int logical_block_size = sdkp->device->sector_size; 966 967 if (sdkp->device->no_write_same) { 968 sdkp->max_ws_blocks = 0; 969 goto out; 970 } 971 972 /* Some devices can not handle block counts above 0xffff despite 973 * supporting WRITE SAME(16). Consequently we default to 64k 974 * blocks per I/O unless the device explicitly advertises a 975 * bigger limit. 976 */ 977 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 978 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 979 (u32)SD_MAX_WS16_BLOCKS); 980 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 981 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 982 (u32)SD_MAX_WS10_BLOCKS); 983 else { 984 sdkp->device->no_write_same = 1; 985 sdkp->max_ws_blocks = 0; 986 } 987 988 if (sdkp->lbprz && sdkp->lbpws) 989 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 990 else if (sdkp->lbprz && sdkp->lbpws10) 991 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 992 else if (sdkp->max_ws_blocks) 993 sdkp->zeroing_mode = SD_ZERO_WS; 994 else 995 sdkp->zeroing_mode = SD_ZERO_WRITE; 996 997 if (sdkp->max_ws_blocks && 998 sdkp->physical_block_size > logical_block_size) { 999 /* 1000 * Reporting a maximum number of blocks that is not aligned 1001 * on the device physical size would cause a large write same 1002 * request to be split into physically unaligned chunks by 1003 * __blkdev_issue_write_zeroes() even if the caller of this 1004 * functions took care to align the large request. So make sure 1005 * the maximum reported is aligned to the device physical block 1006 * size. This is only an optional optimization for regular 1007 * disks, but this is mandatory to avoid failure of large write 1008 * same requests directed at sequential write required zones of 1009 * host-managed ZBC disks. 1010 */ 1011 sdkp->max_ws_blocks = 1012 round_down(sdkp->max_ws_blocks, 1013 bytes_to_logical(sdkp->device, 1014 sdkp->physical_block_size)); 1015 } 1016 1017 out: 1018 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1019 (logical_block_size >> 9)); 1020 } 1021 1022 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1023 { 1024 struct request *rq = scsi_cmd_to_rq(cmd); 1025 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1026 1027 /* flush requests don't perform I/O, zero the S/G table */ 1028 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1029 1030 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1031 cmd->cmd_len = 10; 1032 cmd->transfersize = 0; 1033 cmd->allowed = sdkp->max_retries; 1034 1035 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1036 return BLK_STS_OK; 1037 } 1038 1039 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1040 sector_t lba, unsigned int nr_blocks, 1041 unsigned char flags) 1042 { 1043 cmd->cmd_len = SD_EXT_CDB_SIZE; 1044 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1045 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1046 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1047 cmd->cmnd[10] = flags; 1048 put_unaligned_be64(lba, &cmd->cmnd[12]); 1049 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1050 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1051 1052 return BLK_STS_OK; 1053 } 1054 1055 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1056 sector_t lba, unsigned int nr_blocks, 1057 unsigned char flags) 1058 { 1059 cmd->cmd_len = 16; 1060 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1061 cmd->cmnd[1] = flags; 1062 cmd->cmnd[14] = 0; 1063 cmd->cmnd[15] = 0; 1064 put_unaligned_be64(lba, &cmd->cmnd[2]); 1065 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1066 1067 return BLK_STS_OK; 1068 } 1069 1070 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1071 sector_t lba, unsigned int nr_blocks, 1072 unsigned char flags) 1073 { 1074 cmd->cmd_len = 10; 1075 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1076 cmd->cmnd[1] = flags; 1077 cmd->cmnd[6] = 0; 1078 cmd->cmnd[9] = 0; 1079 put_unaligned_be32(lba, &cmd->cmnd[2]); 1080 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1081 1082 return BLK_STS_OK; 1083 } 1084 1085 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1086 sector_t lba, unsigned int nr_blocks, 1087 unsigned char flags) 1088 { 1089 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1090 if (WARN_ON_ONCE(nr_blocks == 0)) 1091 return BLK_STS_IOERR; 1092 1093 if (unlikely(flags & 0x8)) { 1094 /* 1095 * This happens only if this drive failed 10byte rw 1096 * command with ILLEGAL_REQUEST during operation and 1097 * thus turned off use_10_for_rw. 1098 */ 1099 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1100 return BLK_STS_IOERR; 1101 } 1102 1103 cmd->cmd_len = 6; 1104 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1105 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1106 cmd->cmnd[2] = (lba >> 8) & 0xff; 1107 cmd->cmnd[3] = lba & 0xff; 1108 cmd->cmnd[4] = nr_blocks; 1109 cmd->cmnd[5] = 0; 1110 1111 return BLK_STS_OK; 1112 } 1113 1114 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1115 { 1116 struct request *rq = scsi_cmd_to_rq(cmd); 1117 struct scsi_device *sdp = cmd->device; 1118 struct scsi_disk *sdkp = scsi_disk(rq->q->disk); 1119 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1120 sector_t threshold; 1121 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1122 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1123 bool write = rq_data_dir(rq) == WRITE; 1124 unsigned char protect, fua; 1125 blk_status_t ret; 1126 unsigned int dif; 1127 bool dix; 1128 1129 ret = scsi_alloc_sgtables(cmd); 1130 if (ret != BLK_STS_OK) 1131 return ret; 1132 1133 ret = BLK_STS_IOERR; 1134 if (!scsi_device_online(sdp) || sdp->changed) { 1135 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1136 goto fail; 1137 } 1138 1139 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) { 1140 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1141 goto fail; 1142 } 1143 1144 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1145 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1146 goto fail; 1147 } 1148 1149 /* 1150 * Some SD card readers can't handle accesses which touch the 1151 * last one or two logical blocks. Split accesses as needed. 1152 */ 1153 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1154 1155 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1156 if (lba < threshold) { 1157 /* Access up to the threshold but not beyond */ 1158 nr_blocks = threshold - lba; 1159 } else { 1160 /* Access only a single logical block */ 1161 nr_blocks = 1; 1162 } 1163 } 1164 1165 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1166 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1167 if (ret) 1168 goto fail; 1169 } 1170 1171 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1172 dix = scsi_prot_sg_count(cmd); 1173 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1174 1175 if (dif || dix) 1176 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1177 else 1178 protect = 0; 1179 1180 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1181 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1182 protect | fua); 1183 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1184 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1185 protect | fua); 1186 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1187 sdp->use_10_for_rw || protect) { 1188 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1189 protect | fua); 1190 } else { 1191 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1192 protect | fua); 1193 } 1194 1195 if (unlikely(ret != BLK_STS_OK)) 1196 goto fail; 1197 1198 /* 1199 * We shouldn't disconnect in the middle of a sector, so with a dumb 1200 * host adapter, it's safe to assume that we can at least transfer 1201 * this many bytes between each connect / disconnect. 1202 */ 1203 cmd->transfersize = sdp->sector_size; 1204 cmd->underflow = nr_blocks << 9; 1205 cmd->allowed = sdkp->max_retries; 1206 cmd->sdb.length = nr_blocks * sdp->sector_size; 1207 1208 SCSI_LOG_HLQUEUE(1, 1209 scmd_printk(KERN_INFO, cmd, 1210 "%s: block=%llu, count=%d\n", __func__, 1211 (unsigned long long)blk_rq_pos(rq), 1212 blk_rq_sectors(rq))); 1213 SCSI_LOG_HLQUEUE(2, 1214 scmd_printk(KERN_INFO, cmd, 1215 "%s %d/%u 512 byte blocks.\n", 1216 write ? "writing" : "reading", nr_blocks, 1217 blk_rq_sectors(rq))); 1218 1219 /* 1220 * This indicates that the command is ready from our end to be queued. 1221 */ 1222 return BLK_STS_OK; 1223 fail: 1224 scsi_free_sgtables(cmd); 1225 return ret; 1226 } 1227 1228 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1229 { 1230 struct request *rq = scsi_cmd_to_rq(cmd); 1231 1232 switch (req_op(rq)) { 1233 case REQ_OP_DISCARD: 1234 switch (scsi_disk(rq->q->disk)->provisioning_mode) { 1235 case SD_LBP_UNMAP: 1236 return sd_setup_unmap_cmnd(cmd); 1237 case SD_LBP_WS16: 1238 return sd_setup_write_same16_cmnd(cmd, true); 1239 case SD_LBP_WS10: 1240 return sd_setup_write_same10_cmnd(cmd, true); 1241 case SD_LBP_ZERO: 1242 return sd_setup_write_same10_cmnd(cmd, false); 1243 default: 1244 return BLK_STS_TARGET; 1245 } 1246 case REQ_OP_WRITE_ZEROES: 1247 return sd_setup_write_zeroes_cmnd(cmd); 1248 case REQ_OP_FLUSH: 1249 return sd_setup_flush_cmnd(cmd); 1250 case REQ_OP_READ: 1251 case REQ_OP_WRITE: 1252 case REQ_OP_ZONE_APPEND: 1253 return sd_setup_read_write_cmnd(cmd); 1254 case REQ_OP_ZONE_RESET: 1255 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1256 false); 1257 case REQ_OP_ZONE_RESET_ALL: 1258 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1259 true); 1260 case REQ_OP_ZONE_OPEN: 1261 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1262 case REQ_OP_ZONE_CLOSE: 1263 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1264 case REQ_OP_ZONE_FINISH: 1265 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1266 default: 1267 WARN_ON_ONCE(1); 1268 return BLK_STS_NOTSUPP; 1269 } 1270 } 1271 1272 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1273 { 1274 struct request *rq = scsi_cmd_to_rq(SCpnt); 1275 1276 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1277 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1278 } 1279 1280 static bool sd_need_revalidate(struct block_device *bdev, 1281 struct scsi_disk *sdkp) 1282 { 1283 if (sdkp->device->removable || sdkp->write_prot) { 1284 if (bdev_check_media_change(bdev)) 1285 return true; 1286 } 1287 1288 /* 1289 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1290 * nothing to do with partitions, BLKRRPART is used to force a full 1291 * revalidate after things like a format for historical reasons. 1292 */ 1293 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1294 } 1295 1296 /** 1297 * sd_open - open a scsi disk device 1298 * @bdev: Block device of the scsi disk to open 1299 * @mode: FMODE_* mask 1300 * 1301 * Returns 0 if successful. Returns a negated errno value in case 1302 * of error. 1303 * 1304 * Note: This can be called from a user context (e.g. fsck(1) ) 1305 * or from within the kernel (e.g. as a result of a mount(1) ). 1306 * In the latter case @inode and @filp carry an abridged amount 1307 * of information as noted above. 1308 * 1309 * Locking: called with bdev->bd_disk->open_mutex held. 1310 **/ 1311 static int sd_open(struct block_device *bdev, fmode_t mode) 1312 { 1313 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1314 struct scsi_device *sdev = sdkp->device; 1315 int retval; 1316 1317 if (scsi_device_get(sdev)) 1318 return -ENXIO; 1319 1320 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1321 1322 /* 1323 * If the device is in error recovery, wait until it is done. 1324 * If the device is offline, then disallow any access to it. 1325 */ 1326 retval = -ENXIO; 1327 if (!scsi_block_when_processing_errors(sdev)) 1328 goto error_out; 1329 1330 if (sd_need_revalidate(bdev, sdkp)) 1331 sd_revalidate_disk(bdev->bd_disk); 1332 1333 /* 1334 * If the drive is empty, just let the open fail. 1335 */ 1336 retval = -ENOMEDIUM; 1337 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1338 goto error_out; 1339 1340 /* 1341 * If the device has the write protect tab set, have the open fail 1342 * if the user expects to be able to write to the thing. 1343 */ 1344 retval = -EROFS; 1345 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1346 goto error_out; 1347 1348 /* 1349 * It is possible that the disk changing stuff resulted in 1350 * the device being taken offline. If this is the case, 1351 * report this to the user, and don't pretend that the 1352 * open actually succeeded. 1353 */ 1354 retval = -ENXIO; 1355 if (!scsi_device_online(sdev)) 1356 goto error_out; 1357 1358 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1359 if (scsi_block_when_processing_errors(sdev)) 1360 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1361 } 1362 1363 return 0; 1364 1365 error_out: 1366 scsi_device_put(sdev); 1367 return retval; 1368 } 1369 1370 /** 1371 * sd_release - invoked when the (last) close(2) is called on this 1372 * scsi disk. 1373 * @disk: disk to release 1374 * @mode: FMODE_* mask 1375 * 1376 * Returns 0. 1377 * 1378 * Note: may block (uninterruptible) if error recovery is underway 1379 * on this disk. 1380 * 1381 * Locking: called with bdev->bd_disk->open_mutex held. 1382 **/ 1383 static void sd_release(struct gendisk *disk, fmode_t mode) 1384 { 1385 struct scsi_disk *sdkp = scsi_disk(disk); 1386 struct scsi_device *sdev = sdkp->device; 1387 1388 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1389 1390 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1391 if (scsi_block_when_processing_errors(sdev)) 1392 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1393 } 1394 1395 scsi_device_put(sdev); 1396 } 1397 1398 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1399 { 1400 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1401 struct scsi_device *sdp = sdkp->device; 1402 struct Scsi_Host *host = sdp->host; 1403 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1404 int diskinfo[4]; 1405 1406 /* default to most commonly used values */ 1407 diskinfo[0] = 0x40; /* 1 << 6 */ 1408 diskinfo[1] = 0x20; /* 1 << 5 */ 1409 diskinfo[2] = capacity >> 11; 1410 1411 /* override with calculated, extended default, or driver values */ 1412 if (host->hostt->bios_param) 1413 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1414 else 1415 scsicam_bios_param(bdev, capacity, diskinfo); 1416 1417 geo->heads = diskinfo[0]; 1418 geo->sectors = diskinfo[1]; 1419 geo->cylinders = diskinfo[2]; 1420 return 0; 1421 } 1422 1423 /** 1424 * sd_ioctl - process an ioctl 1425 * @bdev: target block device 1426 * @mode: FMODE_* mask 1427 * @cmd: ioctl command number 1428 * @arg: this is third argument given to ioctl(2) system call. 1429 * Often contains a pointer. 1430 * 1431 * Returns 0 if successful (some ioctls return positive numbers on 1432 * success as well). Returns a negated errno value in case of error. 1433 * 1434 * Note: most ioctls are forward onto the block subsystem or further 1435 * down in the scsi subsystem. 1436 **/ 1437 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1438 unsigned int cmd, unsigned long arg) 1439 { 1440 struct gendisk *disk = bdev->bd_disk; 1441 struct scsi_disk *sdkp = scsi_disk(disk); 1442 struct scsi_device *sdp = sdkp->device; 1443 void __user *p = (void __user *)arg; 1444 int error; 1445 1446 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1447 "cmd=0x%x\n", disk->disk_name, cmd)); 1448 1449 if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO)) 1450 return -ENOIOCTLCMD; 1451 1452 /* 1453 * If we are in the middle of error recovery, don't let anyone 1454 * else try and use this device. Also, if error recovery fails, it 1455 * may try and take the device offline, in which case all further 1456 * access to the device is prohibited. 1457 */ 1458 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1459 (mode & FMODE_NDELAY) != 0); 1460 if (error) 1461 return error; 1462 1463 if (is_sed_ioctl(cmd)) 1464 return sed_ioctl(sdkp->opal_dev, cmd, p); 1465 return scsi_ioctl(sdp, mode, cmd, p); 1466 } 1467 1468 static void set_media_not_present(struct scsi_disk *sdkp) 1469 { 1470 if (sdkp->media_present) 1471 sdkp->device->changed = 1; 1472 1473 if (sdkp->device->removable) { 1474 sdkp->media_present = 0; 1475 sdkp->capacity = 0; 1476 } 1477 } 1478 1479 static int media_not_present(struct scsi_disk *sdkp, 1480 struct scsi_sense_hdr *sshdr) 1481 { 1482 if (!scsi_sense_valid(sshdr)) 1483 return 0; 1484 1485 /* not invoked for commands that could return deferred errors */ 1486 switch (sshdr->sense_key) { 1487 case UNIT_ATTENTION: 1488 case NOT_READY: 1489 /* medium not present */ 1490 if (sshdr->asc == 0x3A) { 1491 set_media_not_present(sdkp); 1492 return 1; 1493 } 1494 } 1495 return 0; 1496 } 1497 1498 /** 1499 * sd_check_events - check media events 1500 * @disk: kernel device descriptor 1501 * @clearing: disk events currently being cleared 1502 * 1503 * Returns mask of DISK_EVENT_*. 1504 * 1505 * Note: this function is invoked from the block subsystem. 1506 **/ 1507 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1508 { 1509 struct scsi_disk *sdkp = disk->private_data; 1510 struct scsi_device *sdp; 1511 int retval; 1512 bool disk_changed; 1513 1514 if (!sdkp) 1515 return 0; 1516 1517 sdp = sdkp->device; 1518 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1519 1520 /* 1521 * If the device is offline, don't send any commands - just pretend as 1522 * if the command failed. If the device ever comes back online, we 1523 * can deal with it then. It is only because of unrecoverable errors 1524 * that we would ever take a device offline in the first place. 1525 */ 1526 if (!scsi_device_online(sdp)) { 1527 set_media_not_present(sdkp); 1528 goto out; 1529 } 1530 1531 /* 1532 * Using TEST_UNIT_READY enables differentiation between drive with 1533 * no cartridge loaded - NOT READY, drive with changed cartridge - 1534 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1535 * 1536 * Drives that auto spin down. eg iomega jaz 1G, will be started 1537 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1538 * sd_revalidate() is called. 1539 */ 1540 if (scsi_block_when_processing_errors(sdp)) { 1541 struct scsi_sense_hdr sshdr = { 0, }; 1542 1543 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1544 &sshdr); 1545 1546 /* failed to execute TUR, assume media not present */ 1547 if (retval < 0 || host_byte(retval)) { 1548 set_media_not_present(sdkp); 1549 goto out; 1550 } 1551 1552 if (media_not_present(sdkp, &sshdr)) 1553 goto out; 1554 } 1555 1556 /* 1557 * For removable scsi disk we have to recognise the presence 1558 * of a disk in the drive. 1559 */ 1560 if (!sdkp->media_present) 1561 sdp->changed = 1; 1562 sdkp->media_present = 1; 1563 out: 1564 /* 1565 * sdp->changed is set under the following conditions: 1566 * 1567 * Medium present state has changed in either direction. 1568 * Device has indicated UNIT_ATTENTION. 1569 */ 1570 disk_changed = sdp->changed; 1571 sdp->changed = 0; 1572 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1573 } 1574 1575 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1576 { 1577 int retries, res; 1578 struct scsi_device *sdp = sdkp->device; 1579 const int timeout = sdp->request_queue->rq_timeout 1580 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1581 struct scsi_sense_hdr my_sshdr; 1582 1583 if (!scsi_device_online(sdp)) 1584 return -ENODEV; 1585 1586 /* caller might not be interested in sense, but we need it */ 1587 if (!sshdr) 1588 sshdr = &my_sshdr; 1589 1590 for (retries = 3; retries > 0; --retries) { 1591 unsigned char cmd[10] = { 0 }; 1592 1593 cmd[0] = SYNCHRONIZE_CACHE; 1594 /* 1595 * Leave the rest of the command zero to indicate 1596 * flush everything. 1597 */ 1598 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1599 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1600 if (res == 0) 1601 break; 1602 } 1603 1604 if (res) { 1605 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1606 1607 if (res < 0) 1608 return res; 1609 1610 if (scsi_status_is_check_condition(res) && 1611 scsi_sense_valid(sshdr)) { 1612 sd_print_sense_hdr(sdkp, sshdr); 1613 1614 /* we need to evaluate the error return */ 1615 if (sshdr->asc == 0x3a || /* medium not present */ 1616 sshdr->asc == 0x20 || /* invalid command */ 1617 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1618 /* this is no error here */ 1619 return 0; 1620 } 1621 1622 switch (host_byte(res)) { 1623 /* ignore errors due to racing a disconnection */ 1624 case DID_BAD_TARGET: 1625 case DID_NO_CONNECT: 1626 return 0; 1627 /* signal the upper layer it might try again */ 1628 case DID_BUS_BUSY: 1629 case DID_IMM_RETRY: 1630 case DID_REQUEUE: 1631 case DID_SOFT_ERROR: 1632 return -EBUSY; 1633 default: 1634 return -EIO; 1635 } 1636 } 1637 return 0; 1638 } 1639 1640 static void sd_rescan(struct device *dev) 1641 { 1642 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1643 1644 sd_revalidate_disk(sdkp->disk); 1645 } 1646 1647 static int sd_get_unique_id(struct gendisk *disk, u8 id[16], 1648 enum blk_unique_id type) 1649 { 1650 struct scsi_device *sdev = scsi_disk(disk)->device; 1651 const struct scsi_vpd *vpd; 1652 const unsigned char *d; 1653 int ret = -ENXIO, len; 1654 1655 rcu_read_lock(); 1656 vpd = rcu_dereference(sdev->vpd_pg83); 1657 if (!vpd) 1658 goto out_unlock; 1659 1660 ret = -EINVAL; 1661 for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) { 1662 /* we only care about designators with LU association */ 1663 if (((d[1] >> 4) & 0x3) != 0x00) 1664 continue; 1665 if ((d[1] & 0xf) != type) 1666 continue; 1667 1668 /* 1669 * Only exit early if a 16-byte descriptor was found. Otherwise 1670 * keep looking as one with more entropy might still show up. 1671 */ 1672 len = d[3]; 1673 if (len != 8 && len != 12 && len != 16) 1674 continue; 1675 ret = len; 1676 memcpy(id, d + 4, len); 1677 if (len == 16) 1678 break; 1679 } 1680 out_unlock: 1681 rcu_read_unlock(); 1682 return ret; 1683 } 1684 1685 static char sd_pr_type(enum pr_type type) 1686 { 1687 switch (type) { 1688 case PR_WRITE_EXCLUSIVE: 1689 return 0x01; 1690 case PR_EXCLUSIVE_ACCESS: 1691 return 0x03; 1692 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1693 return 0x05; 1694 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1695 return 0x06; 1696 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1697 return 0x07; 1698 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1699 return 0x08; 1700 default: 1701 return 0; 1702 } 1703 }; 1704 1705 static int sd_pr_command(struct block_device *bdev, u8 sa, 1706 u64 key, u64 sa_key, u8 type, u8 flags) 1707 { 1708 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1709 struct scsi_device *sdev = sdkp->device; 1710 struct scsi_sense_hdr sshdr; 1711 int result; 1712 u8 cmd[16] = { 0, }; 1713 u8 data[24] = { 0, }; 1714 1715 cmd[0] = PERSISTENT_RESERVE_OUT; 1716 cmd[1] = sa; 1717 cmd[2] = type; 1718 put_unaligned_be32(sizeof(data), &cmd[5]); 1719 1720 put_unaligned_be64(key, &data[0]); 1721 put_unaligned_be64(sa_key, &data[8]); 1722 data[20] = flags; 1723 1724 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1725 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1726 1727 if (scsi_status_is_check_condition(result) && 1728 scsi_sense_valid(&sshdr)) { 1729 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1730 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1731 } 1732 1733 return result; 1734 } 1735 1736 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1737 u32 flags) 1738 { 1739 if (flags & ~PR_FL_IGNORE_KEY) 1740 return -EOPNOTSUPP; 1741 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1742 old_key, new_key, 0, 1743 (1 << 0) /* APTPL */); 1744 } 1745 1746 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1747 u32 flags) 1748 { 1749 if (flags) 1750 return -EOPNOTSUPP; 1751 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1752 } 1753 1754 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1755 { 1756 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1757 } 1758 1759 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1760 enum pr_type type, bool abort) 1761 { 1762 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1763 sd_pr_type(type), 0); 1764 } 1765 1766 static int sd_pr_clear(struct block_device *bdev, u64 key) 1767 { 1768 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1769 } 1770 1771 static const struct pr_ops sd_pr_ops = { 1772 .pr_register = sd_pr_register, 1773 .pr_reserve = sd_pr_reserve, 1774 .pr_release = sd_pr_release, 1775 .pr_preempt = sd_pr_preempt, 1776 .pr_clear = sd_pr_clear, 1777 }; 1778 1779 static void scsi_disk_free_disk(struct gendisk *disk) 1780 { 1781 struct scsi_disk *sdkp = scsi_disk(disk); 1782 1783 put_device(&sdkp->disk_dev); 1784 } 1785 1786 static const struct block_device_operations sd_fops = { 1787 .owner = THIS_MODULE, 1788 .open = sd_open, 1789 .release = sd_release, 1790 .ioctl = sd_ioctl, 1791 .getgeo = sd_getgeo, 1792 .compat_ioctl = blkdev_compat_ptr_ioctl, 1793 .check_events = sd_check_events, 1794 .unlock_native_capacity = sd_unlock_native_capacity, 1795 .report_zones = sd_zbc_report_zones, 1796 .get_unique_id = sd_get_unique_id, 1797 .free_disk = scsi_disk_free_disk, 1798 .pr_ops = &sd_pr_ops, 1799 }; 1800 1801 /** 1802 * sd_eh_reset - reset error handling callback 1803 * @scmd: sd-issued command that has failed 1804 * 1805 * This function is called by the SCSI midlayer before starting 1806 * SCSI EH. When counting medium access failures we have to be 1807 * careful to register it only only once per device and SCSI EH run; 1808 * there might be several timed out commands which will cause the 1809 * 'max_medium_access_timeouts' counter to trigger after the first 1810 * SCSI EH run already and set the device to offline. 1811 * So this function resets the internal counter before starting SCSI EH. 1812 **/ 1813 static void sd_eh_reset(struct scsi_cmnd *scmd) 1814 { 1815 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1816 1817 /* New SCSI EH run, reset gate variable */ 1818 sdkp->ignore_medium_access_errors = false; 1819 } 1820 1821 /** 1822 * sd_eh_action - error handling callback 1823 * @scmd: sd-issued command that has failed 1824 * @eh_disp: The recovery disposition suggested by the midlayer 1825 * 1826 * This function is called by the SCSI midlayer upon completion of an 1827 * error test command (currently TEST UNIT READY). The result of sending 1828 * the eh command is passed in eh_disp. We're looking for devices that 1829 * fail medium access commands but are OK with non access commands like 1830 * test unit ready (so wrongly see the device as having a successful 1831 * recovery) 1832 **/ 1833 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1834 { 1835 struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk); 1836 struct scsi_device *sdev = scmd->device; 1837 1838 if (!scsi_device_online(sdev) || 1839 !scsi_medium_access_command(scmd) || 1840 host_byte(scmd->result) != DID_TIME_OUT || 1841 eh_disp != SUCCESS) 1842 return eh_disp; 1843 1844 /* 1845 * The device has timed out executing a medium access command. 1846 * However, the TEST UNIT READY command sent during error 1847 * handling completed successfully. Either the device is in the 1848 * process of recovering or has it suffered an internal failure 1849 * that prevents access to the storage medium. 1850 */ 1851 if (!sdkp->ignore_medium_access_errors) { 1852 sdkp->medium_access_timed_out++; 1853 sdkp->ignore_medium_access_errors = true; 1854 } 1855 1856 /* 1857 * If the device keeps failing read/write commands but TEST UNIT 1858 * READY always completes successfully we assume that medium 1859 * access is no longer possible and take the device offline. 1860 */ 1861 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1862 scmd_printk(KERN_ERR, scmd, 1863 "Medium access timeout failure. Offlining disk!\n"); 1864 mutex_lock(&sdev->state_mutex); 1865 scsi_device_set_state(sdev, SDEV_OFFLINE); 1866 mutex_unlock(&sdev->state_mutex); 1867 1868 return SUCCESS; 1869 } 1870 1871 return eh_disp; 1872 } 1873 1874 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1875 { 1876 struct request *req = scsi_cmd_to_rq(scmd); 1877 struct scsi_device *sdev = scmd->device; 1878 unsigned int transferred, good_bytes; 1879 u64 start_lba, end_lba, bad_lba; 1880 1881 /* 1882 * Some commands have a payload smaller than the device logical 1883 * block size (e.g. INQUIRY on a 4K disk). 1884 */ 1885 if (scsi_bufflen(scmd) <= sdev->sector_size) 1886 return 0; 1887 1888 /* Check if we have a 'bad_lba' information */ 1889 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1890 SCSI_SENSE_BUFFERSIZE, 1891 &bad_lba)) 1892 return 0; 1893 1894 /* 1895 * If the bad lba was reported incorrectly, we have no idea where 1896 * the error is. 1897 */ 1898 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1899 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1900 if (bad_lba < start_lba || bad_lba >= end_lba) 1901 return 0; 1902 1903 /* 1904 * resid is optional but mostly filled in. When it's unused, 1905 * its value is zero, so we assume the whole buffer transferred 1906 */ 1907 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1908 1909 /* This computation should always be done in terms of the 1910 * resolution of the device's medium. 1911 */ 1912 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1913 1914 return min(good_bytes, transferred); 1915 } 1916 1917 /** 1918 * sd_done - bottom half handler: called when the lower level 1919 * driver has completed (successfully or otherwise) a scsi command. 1920 * @SCpnt: mid-level's per command structure. 1921 * 1922 * Note: potentially run from within an ISR. Must not block. 1923 **/ 1924 static int sd_done(struct scsi_cmnd *SCpnt) 1925 { 1926 int result = SCpnt->result; 1927 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1928 unsigned int sector_size = SCpnt->device->sector_size; 1929 unsigned int resid; 1930 struct scsi_sense_hdr sshdr; 1931 struct request *req = scsi_cmd_to_rq(SCpnt); 1932 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 1933 int sense_valid = 0; 1934 int sense_deferred = 0; 1935 1936 switch (req_op(req)) { 1937 case REQ_OP_DISCARD: 1938 case REQ_OP_WRITE_ZEROES: 1939 case REQ_OP_ZONE_RESET: 1940 case REQ_OP_ZONE_RESET_ALL: 1941 case REQ_OP_ZONE_OPEN: 1942 case REQ_OP_ZONE_CLOSE: 1943 case REQ_OP_ZONE_FINISH: 1944 if (!result) { 1945 good_bytes = blk_rq_bytes(req); 1946 scsi_set_resid(SCpnt, 0); 1947 } else { 1948 good_bytes = 0; 1949 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1950 } 1951 break; 1952 default: 1953 /* 1954 * In case of bogus fw or device, we could end up having 1955 * an unaligned partial completion. Check this here and force 1956 * alignment. 1957 */ 1958 resid = scsi_get_resid(SCpnt); 1959 if (resid & (sector_size - 1)) { 1960 sd_printk(KERN_INFO, sdkp, 1961 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1962 resid, sector_size); 1963 scsi_print_command(SCpnt); 1964 resid = min(scsi_bufflen(SCpnt), 1965 round_up(resid, sector_size)); 1966 scsi_set_resid(SCpnt, resid); 1967 } 1968 } 1969 1970 if (result) { 1971 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1972 if (sense_valid) 1973 sense_deferred = scsi_sense_is_deferred(&sshdr); 1974 } 1975 sdkp->medium_access_timed_out = 0; 1976 1977 if (!scsi_status_is_check_condition(result) && 1978 (!sense_valid || sense_deferred)) 1979 goto out; 1980 1981 switch (sshdr.sense_key) { 1982 case HARDWARE_ERROR: 1983 case MEDIUM_ERROR: 1984 good_bytes = sd_completed_bytes(SCpnt); 1985 break; 1986 case RECOVERED_ERROR: 1987 good_bytes = scsi_bufflen(SCpnt); 1988 break; 1989 case NO_SENSE: 1990 /* This indicates a false check condition, so ignore it. An 1991 * unknown amount of data was transferred so treat it as an 1992 * error. 1993 */ 1994 SCpnt->result = 0; 1995 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1996 break; 1997 case ABORTED_COMMAND: 1998 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1999 good_bytes = sd_completed_bytes(SCpnt); 2000 break; 2001 case ILLEGAL_REQUEST: 2002 switch (sshdr.asc) { 2003 case 0x10: /* DIX: Host detected corruption */ 2004 good_bytes = sd_completed_bytes(SCpnt); 2005 break; 2006 case 0x20: /* INVALID COMMAND OPCODE */ 2007 case 0x24: /* INVALID FIELD IN CDB */ 2008 switch (SCpnt->cmnd[0]) { 2009 case UNMAP: 2010 sd_config_discard(sdkp, SD_LBP_DISABLE); 2011 break; 2012 case WRITE_SAME_16: 2013 case WRITE_SAME: 2014 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2015 sd_config_discard(sdkp, SD_LBP_DISABLE); 2016 } else { 2017 sdkp->device->no_write_same = 1; 2018 sd_config_write_same(sdkp); 2019 req->rq_flags |= RQF_QUIET; 2020 } 2021 break; 2022 } 2023 } 2024 break; 2025 default: 2026 break; 2027 } 2028 2029 out: 2030 if (sd_is_zoned(sdkp)) 2031 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2032 2033 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2034 "sd_done: completed %d of %d bytes\n", 2035 good_bytes, scsi_bufflen(SCpnt))); 2036 2037 return good_bytes; 2038 } 2039 2040 /* 2041 * spinup disk - called only in sd_revalidate_disk() 2042 */ 2043 static void 2044 sd_spinup_disk(struct scsi_disk *sdkp) 2045 { 2046 unsigned char cmd[10]; 2047 unsigned long spintime_expire = 0; 2048 int retries, spintime; 2049 unsigned int the_result; 2050 struct scsi_sense_hdr sshdr; 2051 int sense_valid = 0; 2052 2053 spintime = 0; 2054 2055 /* Spin up drives, as required. Only do this at boot time */ 2056 /* Spinup needs to be done for module loads too. */ 2057 do { 2058 retries = 0; 2059 2060 do { 2061 bool media_was_present = sdkp->media_present; 2062 2063 cmd[0] = TEST_UNIT_READY; 2064 memset((void *) &cmd[1], 0, 9); 2065 2066 the_result = scsi_execute_req(sdkp->device, cmd, 2067 DMA_NONE, NULL, 0, 2068 &sshdr, SD_TIMEOUT, 2069 sdkp->max_retries, NULL); 2070 2071 /* 2072 * If the drive has indicated to us that it 2073 * doesn't have any media in it, don't bother 2074 * with any more polling. 2075 */ 2076 if (media_not_present(sdkp, &sshdr)) { 2077 if (media_was_present) 2078 sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n"); 2079 return; 2080 } 2081 2082 if (the_result) 2083 sense_valid = scsi_sense_valid(&sshdr); 2084 retries++; 2085 } while (retries < 3 && 2086 (!scsi_status_is_good(the_result) || 2087 (scsi_status_is_check_condition(the_result) && 2088 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2089 2090 if (!scsi_status_is_check_condition(the_result)) { 2091 /* no sense, TUR either succeeded or failed 2092 * with a status error */ 2093 if(!spintime && !scsi_status_is_good(the_result)) { 2094 sd_print_result(sdkp, "Test Unit Ready failed", 2095 the_result); 2096 } 2097 break; 2098 } 2099 2100 /* 2101 * The device does not want the automatic start to be issued. 2102 */ 2103 if (sdkp->device->no_start_on_add) 2104 break; 2105 2106 if (sense_valid && sshdr.sense_key == NOT_READY) { 2107 if (sshdr.asc == 4 && sshdr.ascq == 3) 2108 break; /* manual intervention required */ 2109 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2110 break; /* standby */ 2111 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2112 break; /* unavailable */ 2113 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2114 break; /* sanitize in progress */ 2115 /* 2116 * Issue command to spin up drive when not ready 2117 */ 2118 if (!spintime) { 2119 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2120 cmd[0] = START_STOP; 2121 cmd[1] = 1; /* Return immediately */ 2122 memset((void *) &cmd[2], 0, 8); 2123 cmd[4] = 1; /* Start spin cycle */ 2124 if (sdkp->device->start_stop_pwr_cond) 2125 cmd[4] |= 1 << 4; 2126 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2127 NULL, 0, &sshdr, 2128 SD_TIMEOUT, sdkp->max_retries, 2129 NULL); 2130 spintime_expire = jiffies + 100 * HZ; 2131 spintime = 1; 2132 } 2133 /* Wait 1 second for next try */ 2134 msleep(1000); 2135 printk(KERN_CONT "."); 2136 2137 /* 2138 * Wait for USB flash devices with slow firmware. 2139 * Yes, this sense key/ASC combination shouldn't 2140 * occur here. It's characteristic of these devices. 2141 */ 2142 } else if (sense_valid && 2143 sshdr.sense_key == UNIT_ATTENTION && 2144 sshdr.asc == 0x28) { 2145 if (!spintime) { 2146 spintime_expire = jiffies + 5 * HZ; 2147 spintime = 1; 2148 } 2149 /* Wait 1 second for next try */ 2150 msleep(1000); 2151 } else { 2152 /* we don't understand the sense code, so it's 2153 * probably pointless to loop */ 2154 if(!spintime) { 2155 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2156 sd_print_sense_hdr(sdkp, &sshdr); 2157 } 2158 break; 2159 } 2160 2161 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2162 2163 if (spintime) { 2164 if (scsi_status_is_good(the_result)) 2165 printk(KERN_CONT "ready\n"); 2166 else 2167 printk(KERN_CONT "not responding...\n"); 2168 } 2169 } 2170 2171 /* 2172 * Determine whether disk supports Data Integrity Field. 2173 */ 2174 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2175 { 2176 struct scsi_device *sdp = sdkp->device; 2177 u8 type; 2178 2179 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2180 sdkp->protection_type = 0; 2181 return 0; 2182 } 2183 2184 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2185 2186 if (type > T10_PI_TYPE3_PROTECTION) { 2187 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2188 " protection type %u. Disabling disk!\n", 2189 type); 2190 sdkp->protection_type = 0; 2191 return -ENODEV; 2192 } 2193 2194 sdkp->protection_type = type; 2195 2196 return 0; 2197 } 2198 2199 static void sd_config_protection(struct scsi_disk *sdkp) 2200 { 2201 struct scsi_device *sdp = sdkp->device; 2202 2203 if (!sdkp->first_scan) 2204 return; 2205 2206 sd_dif_config_host(sdkp); 2207 2208 if (!sdkp->protection_type) 2209 return; 2210 2211 if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) { 2212 sd_printk(KERN_NOTICE, sdkp, 2213 "Disabling DIF Type %u protection\n", 2214 sdkp->protection_type); 2215 sdkp->protection_type = 0; 2216 } 2217 2218 sd_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n", 2219 sdkp->protection_type); 2220 } 2221 2222 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2223 struct scsi_sense_hdr *sshdr, int sense_valid, 2224 int the_result) 2225 { 2226 if (sense_valid) 2227 sd_print_sense_hdr(sdkp, sshdr); 2228 else 2229 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2230 2231 /* 2232 * Set dirty bit for removable devices if not ready - 2233 * sometimes drives will not report this properly. 2234 */ 2235 if (sdp->removable && 2236 sense_valid && sshdr->sense_key == NOT_READY) 2237 set_media_not_present(sdkp); 2238 2239 /* 2240 * We used to set media_present to 0 here to indicate no media 2241 * in the drive, but some drives fail read capacity even with 2242 * media present, so we can't do that. 2243 */ 2244 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2245 } 2246 2247 #define RC16_LEN 32 2248 #if RC16_LEN > SD_BUF_SIZE 2249 #error RC16_LEN must not be more than SD_BUF_SIZE 2250 #endif 2251 2252 #define READ_CAPACITY_RETRIES_ON_RESET 10 2253 2254 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2255 unsigned char *buffer) 2256 { 2257 unsigned char cmd[16]; 2258 struct scsi_sense_hdr sshdr; 2259 int sense_valid = 0; 2260 int the_result; 2261 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2262 unsigned int alignment; 2263 unsigned long long lba; 2264 unsigned sector_size; 2265 2266 if (sdp->no_read_capacity_16) 2267 return -EINVAL; 2268 2269 do { 2270 memset(cmd, 0, 16); 2271 cmd[0] = SERVICE_ACTION_IN_16; 2272 cmd[1] = SAI_READ_CAPACITY_16; 2273 cmd[13] = RC16_LEN; 2274 memset(buffer, 0, RC16_LEN); 2275 2276 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2277 buffer, RC16_LEN, &sshdr, 2278 SD_TIMEOUT, sdkp->max_retries, NULL); 2279 2280 if (media_not_present(sdkp, &sshdr)) 2281 return -ENODEV; 2282 2283 if (the_result > 0) { 2284 sense_valid = scsi_sense_valid(&sshdr); 2285 if (sense_valid && 2286 sshdr.sense_key == ILLEGAL_REQUEST && 2287 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2288 sshdr.ascq == 0x00) 2289 /* Invalid Command Operation Code or 2290 * Invalid Field in CDB, just retry 2291 * silently with RC10 */ 2292 return -EINVAL; 2293 if (sense_valid && 2294 sshdr.sense_key == UNIT_ATTENTION && 2295 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2296 /* Device reset might occur several times, 2297 * give it one more chance */ 2298 if (--reset_retries > 0) 2299 continue; 2300 } 2301 retries--; 2302 2303 } while (the_result && retries); 2304 2305 if (the_result) { 2306 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2307 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2308 return -EINVAL; 2309 } 2310 2311 sector_size = get_unaligned_be32(&buffer[8]); 2312 lba = get_unaligned_be64(&buffer[0]); 2313 2314 if (sd_read_protection_type(sdkp, buffer) < 0) { 2315 sdkp->capacity = 0; 2316 return -ENODEV; 2317 } 2318 2319 /* Logical blocks per physical block exponent */ 2320 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2321 2322 /* RC basis */ 2323 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2324 2325 /* Lowest aligned logical block */ 2326 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2327 blk_queue_alignment_offset(sdp->request_queue, alignment); 2328 if (alignment && sdkp->first_scan) 2329 sd_printk(KERN_NOTICE, sdkp, 2330 "physical block alignment offset: %u\n", alignment); 2331 2332 if (buffer[14] & 0x80) { /* LBPME */ 2333 sdkp->lbpme = 1; 2334 2335 if (buffer[14] & 0x40) /* LBPRZ */ 2336 sdkp->lbprz = 1; 2337 2338 sd_config_discard(sdkp, SD_LBP_WS16); 2339 } 2340 2341 sdkp->capacity = lba + 1; 2342 return sector_size; 2343 } 2344 2345 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2346 unsigned char *buffer) 2347 { 2348 unsigned char cmd[16]; 2349 struct scsi_sense_hdr sshdr; 2350 int sense_valid = 0; 2351 int the_result; 2352 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2353 sector_t lba; 2354 unsigned sector_size; 2355 2356 do { 2357 cmd[0] = READ_CAPACITY; 2358 memset(&cmd[1], 0, 9); 2359 memset(buffer, 0, 8); 2360 2361 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2362 buffer, 8, &sshdr, 2363 SD_TIMEOUT, sdkp->max_retries, NULL); 2364 2365 if (media_not_present(sdkp, &sshdr)) 2366 return -ENODEV; 2367 2368 if (the_result > 0) { 2369 sense_valid = scsi_sense_valid(&sshdr); 2370 if (sense_valid && 2371 sshdr.sense_key == UNIT_ATTENTION && 2372 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2373 /* Device reset might occur several times, 2374 * give it one more chance */ 2375 if (--reset_retries > 0) 2376 continue; 2377 } 2378 retries--; 2379 2380 } while (the_result && retries); 2381 2382 if (the_result) { 2383 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2384 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2385 return -EINVAL; 2386 } 2387 2388 sector_size = get_unaligned_be32(&buffer[4]); 2389 lba = get_unaligned_be32(&buffer[0]); 2390 2391 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2392 /* Some buggy (usb cardreader) devices return an lba of 2393 0xffffffff when the want to report a size of 0 (with 2394 which they really mean no media is present) */ 2395 sdkp->capacity = 0; 2396 sdkp->physical_block_size = sector_size; 2397 return sector_size; 2398 } 2399 2400 sdkp->capacity = lba + 1; 2401 sdkp->physical_block_size = sector_size; 2402 return sector_size; 2403 } 2404 2405 static int sd_try_rc16_first(struct scsi_device *sdp) 2406 { 2407 if (sdp->host->max_cmd_len < 16) 2408 return 0; 2409 if (sdp->try_rc_10_first) 2410 return 0; 2411 if (sdp->scsi_level > SCSI_SPC_2) 2412 return 1; 2413 if (scsi_device_protection(sdp)) 2414 return 1; 2415 return 0; 2416 } 2417 2418 /* 2419 * read disk capacity 2420 */ 2421 static void 2422 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2423 { 2424 int sector_size; 2425 struct scsi_device *sdp = sdkp->device; 2426 2427 if (sd_try_rc16_first(sdp)) { 2428 sector_size = read_capacity_16(sdkp, sdp, buffer); 2429 if (sector_size == -EOVERFLOW) 2430 goto got_data; 2431 if (sector_size == -ENODEV) 2432 return; 2433 if (sector_size < 0) 2434 sector_size = read_capacity_10(sdkp, sdp, buffer); 2435 if (sector_size < 0) 2436 return; 2437 } else { 2438 sector_size = read_capacity_10(sdkp, sdp, buffer); 2439 if (sector_size == -EOVERFLOW) 2440 goto got_data; 2441 if (sector_size < 0) 2442 return; 2443 if ((sizeof(sdkp->capacity) > 4) && 2444 (sdkp->capacity > 0xffffffffULL)) { 2445 int old_sector_size = sector_size; 2446 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2447 "Trying to use READ CAPACITY(16).\n"); 2448 sector_size = read_capacity_16(sdkp, sdp, buffer); 2449 if (sector_size < 0) { 2450 sd_printk(KERN_NOTICE, sdkp, 2451 "Using 0xffffffff as device size\n"); 2452 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2453 sector_size = old_sector_size; 2454 goto got_data; 2455 } 2456 /* Remember that READ CAPACITY(16) succeeded */ 2457 sdp->try_rc_10_first = 0; 2458 } 2459 } 2460 2461 /* Some devices are known to return the total number of blocks, 2462 * not the highest block number. Some devices have versions 2463 * which do this and others which do not. Some devices we might 2464 * suspect of doing this but we don't know for certain. 2465 * 2466 * If we know the reported capacity is wrong, decrement it. If 2467 * we can only guess, then assume the number of blocks is even 2468 * (usually true but not always) and err on the side of lowering 2469 * the capacity. 2470 */ 2471 if (sdp->fix_capacity || 2472 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2473 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2474 "from its reported value: %llu\n", 2475 (unsigned long long) sdkp->capacity); 2476 --sdkp->capacity; 2477 } 2478 2479 got_data: 2480 if (sector_size == 0) { 2481 sector_size = 512; 2482 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2483 "assuming 512.\n"); 2484 } 2485 2486 if (sector_size != 512 && 2487 sector_size != 1024 && 2488 sector_size != 2048 && 2489 sector_size != 4096) { 2490 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2491 sector_size); 2492 /* 2493 * The user might want to re-format the drive with 2494 * a supported sectorsize. Once this happens, it 2495 * would be relatively trivial to set the thing up. 2496 * For this reason, we leave the thing in the table. 2497 */ 2498 sdkp->capacity = 0; 2499 /* 2500 * set a bogus sector size so the normal read/write 2501 * logic in the block layer will eventually refuse any 2502 * request on this device without tripping over power 2503 * of two sector size assumptions 2504 */ 2505 sector_size = 512; 2506 } 2507 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2508 blk_queue_physical_block_size(sdp->request_queue, 2509 sdkp->physical_block_size); 2510 sdkp->device->sector_size = sector_size; 2511 2512 if (sdkp->capacity > 0xffffffff) 2513 sdp->use_16_for_rw = 1; 2514 2515 } 2516 2517 /* 2518 * Print disk capacity 2519 */ 2520 static void 2521 sd_print_capacity(struct scsi_disk *sdkp, 2522 sector_t old_capacity) 2523 { 2524 int sector_size = sdkp->device->sector_size; 2525 char cap_str_2[10], cap_str_10[10]; 2526 2527 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2528 return; 2529 2530 string_get_size(sdkp->capacity, sector_size, 2531 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2532 string_get_size(sdkp->capacity, sector_size, 2533 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2534 2535 sd_printk(KERN_NOTICE, sdkp, 2536 "%llu %d-byte logical blocks: (%s/%s)\n", 2537 (unsigned long long)sdkp->capacity, 2538 sector_size, cap_str_10, cap_str_2); 2539 2540 if (sdkp->physical_block_size != sector_size) 2541 sd_printk(KERN_NOTICE, sdkp, 2542 "%u-byte physical blocks\n", 2543 sdkp->physical_block_size); 2544 } 2545 2546 /* called with buffer of length 512 */ 2547 static inline int 2548 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2549 unsigned char *buffer, int len, struct scsi_mode_data *data, 2550 struct scsi_sense_hdr *sshdr) 2551 { 2552 /* 2553 * If we must use MODE SENSE(10), make sure that the buffer length 2554 * is at least 8 bytes so that the mode sense header fits. 2555 */ 2556 if (sdkp->device->use_10_for_ms && len < 8) 2557 len = 8; 2558 2559 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2560 SD_TIMEOUT, sdkp->max_retries, data, 2561 sshdr); 2562 } 2563 2564 /* 2565 * read write protect setting, if possible - called only in sd_revalidate_disk() 2566 * called with buffer of length SD_BUF_SIZE 2567 */ 2568 static void 2569 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2570 { 2571 int res; 2572 struct scsi_device *sdp = sdkp->device; 2573 struct scsi_mode_data data; 2574 int old_wp = sdkp->write_prot; 2575 2576 set_disk_ro(sdkp->disk, 0); 2577 if (sdp->skip_ms_page_3f) { 2578 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2579 return; 2580 } 2581 2582 if (sdp->use_192_bytes_for_3f) { 2583 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2584 } else { 2585 /* 2586 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2587 * We have to start carefully: some devices hang if we ask 2588 * for more than is available. 2589 */ 2590 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2591 2592 /* 2593 * Second attempt: ask for page 0 When only page 0 is 2594 * implemented, a request for page 3F may return Sense Key 2595 * 5: Illegal Request, Sense Code 24: Invalid field in 2596 * CDB. 2597 */ 2598 if (res < 0) 2599 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2600 2601 /* 2602 * Third attempt: ask 255 bytes, as we did earlier. 2603 */ 2604 if (res < 0) 2605 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2606 &data, NULL); 2607 } 2608 2609 if (res < 0) { 2610 sd_first_printk(KERN_WARNING, sdkp, 2611 "Test WP failed, assume Write Enabled\n"); 2612 } else { 2613 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2614 set_disk_ro(sdkp->disk, sdkp->write_prot); 2615 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2616 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2617 sdkp->write_prot ? "on" : "off"); 2618 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2619 } 2620 } 2621 } 2622 2623 /* 2624 * sd_read_cache_type - called only from sd_revalidate_disk() 2625 * called with buffer of length SD_BUF_SIZE 2626 */ 2627 static void 2628 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2629 { 2630 int len = 0, res; 2631 struct scsi_device *sdp = sdkp->device; 2632 2633 int dbd; 2634 int modepage; 2635 int first_len; 2636 struct scsi_mode_data data; 2637 struct scsi_sense_hdr sshdr; 2638 int old_wce = sdkp->WCE; 2639 int old_rcd = sdkp->RCD; 2640 int old_dpofua = sdkp->DPOFUA; 2641 2642 2643 if (sdkp->cache_override) 2644 return; 2645 2646 first_len = 4; 2647 if (sdp->skip_ms_page_8) { 2648 if (sdp->type == TYPE_RBC) 2649 goto defaults; 2650 else { 2651 if (sdp->skip_ms_page_3f) 2652 goto defaults; 2653 modepage = 0x3F; 2654 if (sdp->use_192_bytes_for_3f) 2655 first_len = 192; 2656 dbd = 0; 2657 } 2658 } else if (sdp->type == TYPE_RBC) { 2659 modepage = 6; 2660 dbd = 8; 2661 } else { 2662 modepage = 8; 2663 dbd = 0; 2664 } 2665 2666 /* cautiously ask */ 2667 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2668 &data, &sshdr); 2669 2670 if (res < 0) 2671 goto bad_sense; 2672 2673 if (!data.header_length) { 2674 modepage = 6; 2675 first_len = 0; 2676 sd_first_printk(KERN_ERR, sdkp, 2677 "Missing header in MODE_SENSE response\n"); 2678 } 2679 2680 /* that went OK, now ask for the proper length */ 2681 len = data.length; 2682 2683 /* 2684 * We're only interested in the first three bytes, actually. 2685 * But the data cache page is defined for the first 20. 2686 */ 2687 if (len < 3) 2688 goto bad_sense; 2689 else if (len > SD_BUF_SIZE) { 2690 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2691 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2692 len = SD_BUF_SIZE; 2693 } 2694 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2695 len = 192; 2696 2697 /* Get the data */ 2698 if (len > first_len) 2699 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2700 &data, &sshdr); 2701 2702 if (!res) { 2703 int offset = data.header_length + data.block_descriptor_length; 2704 2705 while (offset < len) { 2706 u8 page_code = buffer[offset] & 0x3F; 2707 u8 spf = buffer[offset] & 0x40; 2708 2709 if (page_code == 8 || page_code == 6) { 2710 /* We're interested only in the first 3 bytes. 2711 */ 2712 if (len - offset <= 2) { 2713 sd_first_printk(KERN_ERR, sdkp, 2714 "Incomplete mode parameter " 2715 "data\n"); 2716 goto defaults; 2717 } else { 2718 modepage = page_code; 2719 goto Page_found; 2720 } 2721 } else { 2722 /* Go to the next page */ 2723 if (spf && len - offset > 3) 2724 offset += 4 + (buffer[offset+2] << 8) + 2725 buffer[offset+3]; 2726 else if (!spf && len - offset > 1) 2727 offset += 2 + buffer[offset+1]; 2728 else { 2729 sd_first_printk(KERN_ERR, sdkp, 2730 "Incomplete mode " 2731 "parameter data\n"); 2732 goto defaults; 2733 } 2734 } 2735 } 2736 2737 sd_first_printk(KERN_WARNING, sdkp, 2738 "No Caching mode page found\n"); 2739 goto defaults; 2740 2741 Page_found: 2742 if (modepage == 8) { 2743 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2744 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2745 } else { 2746 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2747 sdkp->RCD = 0; 2748 } 2749 2750 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2751 if (sdp->broken_fua) { 2752 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2753 sdkp->DPOFUA = 0; 2754 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2755 !sdkp->device->use_16_for_rw) { 2756 sd_first_printk(KERN_NOTICE, sdkp, 2757 "Uses READ/WRITE(6), disabling FUA\n"); 2758 sdkp->DPOFUA = 0; 2759 } 2760 2761 /* No cache flush allowed for write protected devices */ 2762 if (sdkp->WCE && sdkp->write_prot) 2763 sdkp->WCE = 0; 2764 2765 if (sdkp->first_scan || old_wce != sdkp->WCE || 2766 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2767 sd_printk(KERN_NOTICE, sdkp, 2768 "Write cache: %s, read cache: %s, %s\n", 2769 sdkp->WCE ? "enabled" : "disabled", 2770 sdkp->RCD ? "disabled" : "enabled", 2771 sdkp->DPOFUA ? "supports DPO and FUA" 2772 : "doesn't support DPO or FUA"); 2773 2774 return; 2775 } 2776 2777 bad_sense: 2778 if (scsi_sense_valid(&sshdr) && 2779 sshdr.sense_key == ILLEGAL_REQUEST && 2780 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2781 /* Invalid field in CDB */ 2782 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2783 else 2784 sd_first_printk(KERN_ERR, sdkp, 2785 "Asking for cache data failed\n"); 2786 2787 defaults: 2788 if (sdp->wce_default_on) { 2789 sd_first_printk(KERN_NOTICE, sdkp, 2790 "Assuming drive cache: write back\n"); 2791 sdkp->WCE = 1; 2792 } else { 2793 sd_first_printk(KERN_WARNING, sdkp, 2794 "Assuming drive cache: write through\n"); 2795 sdkp->WCE = 0; 2796 } 2797 sdkp->RCD = 0; 2798 sdkp->DPOFUA = 0; 2799 } 2800 2801 /* 2802 * The ATO bit indicates whether the DIF application tag is available 2803 * for use by the operating system. 2804 */ 2805 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2806 { 2807 int res, offset; 2808 struct scsi_device *sdp = sdkp->device; 2809 struct scsi_mode_data data; 2810 struct scsi_sense_hdr sshdr; 2811 2812 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2813 return; 2814 2815 if (sdkp->protection_type == 0) 2816 return; 2817 2818 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2819 sdkp->max_retries, &data, &sshdr); 2820 2821 if (res < 0 || !data.header_length || 2822 data.length < 6) { 2823 sd_first_printk(KERN_WARNING, sdkp, 2824 "getting Control mode page failed, assume no ATO\n"); 2825 2826 if (scsi_sense_valid(&sshdr)) 2827 sd_print_sense_hdr(sdkp, &sshdr); 2828 2829 return; 2830 } 2831 2832 offset = data.header_length + data.block_descriptor_length; 2833 2834 if ((buffer[offset] & 0x3f) != 0x0a) { 2835 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2836 return; 2837 } 2838 2839 if ((buffer[offset + 5] & 0x80) == 0) 2840 return; 2841 2842 sdkp->ATO = 1; 2843 2844 return; 2845 } 2846 2847 /** 2848 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2849 * @sdkp: disk to query 2850 */ 2851 static void sd_read_block_limits(struct scsi_disk *sdkp) 2852 { 2853 struct scsi_vpd *vpd; 2854 2855 rcu_read_lock(); 2856 2857 vpd = rcu_dereference(sdkp->device->vpd_pgb0); 2858 if (!vpd || vpd->len < 16) 2859 goto out; 2860 2861 sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]); 2862 sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]); 2863 sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]); 2864 2865 if (vpd->len >= 64) { 2866 unsigned int lba_count, desc_count; 2867 2868 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]); 2869 2870 if (!sdkp->lbpme) 2871 goto out; 2872 2873 lba_count = get_unaligned_be32(&vpd->data[20]); 2874 desc_count = get_unaligned_be32(&vpd->data[24]); 2875 2876 if (lba_count && desc_count) 2877 sdkp->max_unmap_blocks = lba_count; 2878 2879 sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]); 2880 2881 if (vpd->data[32] & 0x80) 2882 sdkp->unmap_alignment = 2883 get_unaligned_be32(&vpd->data[32]) & ~(1 << 31); 2884 2885 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2886 2887 if (sdkp->max_unmap_blocks) 2888 sd_config_discard(sdkp, SD_LBP_UNMAP); 2889 else 2890 sd_config_discard(sdkp, SD_LBP_WS16); 2891 2892 } else { /* LBP VPD page tells us what to use */ 2893 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2894 sd_config_discard(sdkp, SD_LBP_UNMAP); 2895 else if (sdkp->lbpws) 2896 sd_config_discard(sdkp, SD_LBP_WS16); 2897 else if (sdkp->lbpws10) 2898 sd_config_discard(sdkp, SD_LBP_WS10); 2899 else 2900 sd_config_discard(sdkp, SD_LBP_DISABLE); 2901 } 2902 } 2903 2904 out: 2905 rcu_read_unlock(); 2906 } 2907 2908 /** 2909 * sd_read_block_characteristics - Query block dev. characteristics 2910 * @sdkp: disk to query 2911 */ 2912 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2913 { 2914 struct request_queue *q = sdkp->disk->queue; 2915 struct scsi_vpd *vpd; 2916 u16 rot; 2917 u8 zoned; 2918 2919 rcu_read_lock(); 2920 vpd = rcu_dereference(sdkp->device->vpd_pgb1); 2921 2922 if (!vpd || vpd->len < 8) { 2923 rcu_read_unlock(); 2924 return; 2925 } 2926 2927 rot = get_unaligned_be16(&vpd->data[4]); 2928 zoned = (vpd->data[8] >> 4) & 3; 2929 rcu_read_unlock(); 2930 2931 if (rot == 1) { 2932 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2933 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2934 } 2935 2936 if (sdkp->device->type == TYPE_ZBC) { 2937 /* Host-managed */ 2938 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 2939 } else { 2940 sdkp->zoned = zoned; 2941 if (sdkp->zoned == 1) { 2942 /* Host-aware */ 2943 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 2944 } else { 2945 /* Regular disk or drive managed disk */ 2946 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 2947 } 2948 } 2949 2950 if (!sdkp->first_scan) 2951 return; 2952 2953 if (blk_queue_is_zoned(q)) { 2954 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2955 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2956 } else { 2957 if (sdkp->zoned == 1) 2958 sd_printk(KERN_NOTICE, sdkp, 2959 "Host-aware SMR disk used as regular disk\n"); 2960 else if (sdkp->zoned == 2) 2961 sd_printk(KERN_NOTICE, sdkp, 2962 "Drive-managed SMR disk\n"); 2963 } 2964 } 2965 2966 /** 2967 * sd_read_block_provisioning - Query provisioning VPD page 2968 * @sdkp: disk to query 2969 */ 2970 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2971 { 2972 struct scsi_vpd *vpd; 2973 2974 if (sdkp->lbpme == 0) 2975 return; 2976 2977 rcu_read_lock(); 2978 vpd = rcu_dereference(sdkp->device->vpd_pgb2); 2979 2980 if (!vpd || vpd->len < 8) { 2981 rcu_read_unlock(); 2982 return; 2983 } 2984 2985 sdkp->lbpvpd = 1; 2986 sdkp->lbpu = (vpd->data[5] >> 7) & 1; /* UNMAP */ 2987 sdkp->lbpws = (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */ 2988 sdkp->lbpws10 = (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */ 2989 rcu_read_unlock(); 2990 } 2991 2992 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2993 { 2994 struct scsi_device *sdev = sdkp->device; 2995 2996 if (sdev->host->no_write_same) { 2997 sdev->no_write_same = 1; 2998 2999 return; 3000 } 3001 3002 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3003 struct scsi_vpd *vpd; 3004 3005 sdev->no_report_opcodes = 1; 3006 3007 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3008 * CODES is unsupported and the device has an ATA 3009 * Information VPD page (SAT). 3010 */ 3011 rcu_read_lock(); 3012 vpd = rcu_dereference(sdev->vpd_pg89); 3013 if (vpd) 3014 sdev->no_write_same = 1; 3015 rcu_read_unlock(); 3016 } 3017 3018 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3019 sdkp->ws16 = 1; 3020 3021 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3022 sdkp->ws10 = 1; 3023 } 3024 3025 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3026 { 3027 struct scsi_device *sdev = sdkp->device; 3028 3029 if (!sdev->security_supported) 3030 return; 3031 3032 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3033 SECURITY_PROTOCOL_IN) == 1 && 3034 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3035 SECURITY_PROTOCOL_OUT) == 1) 3036 sdkp->security = 1; 3037 } 3038 3039 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf) 3040 { 3041 return logical_to_sectors(sdkp->device, get_unaligned_be64(buf)); 3042 } 3043 3044 /** 3045 * sd_read_cpr - Query concurrent positioning ranges 3046 * @sdkp: disk to query 3047 */ 3048 static void sd_read_cpr(struct scsi_disk *sdkp) 3049 { 3050 struct blk_independent_access_ranges *iars = NULL; 3051 unsigned char *buffer = NULL; 3052 unsigned int nr_cpr = 0; 3053 int i, vpd_len, buf_len = SD_BUF_SIZE; 3054 u8 *desc; 3055 3056 /* 3057 * We need to have the capacity set first for the block layer to be 3058 * able to check the ranges. 3059 */ 3060 if (sdkp->first_scan) 3061 return; 3062 3063 if (!sdkp->capacity) 3064 goto out; 3065 3066 /* 3067 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges, 3068 * leading to a maximum page size of 64 + 256*32 bytes. 3069 */ 3070 buf_len = 64 + 256*32; 3071 buffer = kmalloc(buf_len, GFP_KERNEL); 3072 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len)) 3073 goto out; 3074 3075 /* We must have at least a 64B header and one 32B range descriptor */ 3076 vpd_len = get_unaligned_be16(&buffer[2]) + 4; 3077 if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) { 3078 sd_printk(KERN_ERR, sdkp, 3079 "Invalid Concurrent Positioning Ranges VPD page\n"); 3080 goto out; 3081 } 3082 3083 nr_cpr = (vpd_len - 64) / 32; 3084 if (nr_cpr == 1) { 3085 nr_cpr = 0; 3086 goto out; 3087 } 3088 3089 iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr); 3090 if (!iars) { 3091 nr_cpr = 0; 3092 goto out; 3093 } 3094 3095 desc = &buffer[64]; 3096 for (i = 0; i < nr_cpr; i++, desc += 32) { 3097 if (desc[0] != i) { 3098 sd_printk(KERN_ERR, sdkp, 3099 "Invalid Concurrent Positioning Range number\n"); 3100 nr_cpr = 0; 3101 break; 3102 } 3103 3104 iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8); 3105 iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16); 3106 } 3107 3108 out: 3109 disk_set_independent_access_ranges(sdkp->disk, iars); 3110 if (nr_cpr && sdkp->nr_actuators != nr_cpr) { 3111 sd_printk(KERN_NOTICE, sdkp, 3112 "%u concurrent positioning ranges\n", nr_cpr); 3113 sdkp->nr_actuators = nr_cpr; 3114 } 3115 3116 kfree(buffer); 3117 } 3118 3119 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp) 3120 { 3121 struct scsi_device *sdp = sdkp->device; 3122 unsigned int min_xfer_bytes = 3123 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3124 3125 if (sdkp->min_xfer_blocks == 0) 3126 return false; 3127 3128 if (min_xfer_bytes & (sdkp->physical_block_size - 1)) { 3129 sd_first_printk(KERN_WARNING, sdkp, 3130 "Preferred minimum I/O size %u bytes not a " \ 3131 "multiple of physical block size (%u bytes)\n", 3132 min_xfer_bytes, sdkp->physical_block_size); 3133 sdkp->min_xfer_blocks = 0; 3134 return false; 3135 } 3136 3137 sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n", 3138 min_xfer_bytes); 3139 return true; 3140 } 3141 3142 /* 3143 * Determine the device's preferred I/O size for reads and writes 3144 * unless the reported value is unreasonably small, large, not a 3145 * multiple of the physical block size, or simply garbage. 3146 */ 3147 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3148 unsigned int dev_max) 3149 { 3150 struct scsi_device *sdp = sdkp->device; 3151 unsigned int opt_xfer_bytes = 3152 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3153 unsigned int min_xfer_bytes = 3154 logical_to_bytes(sdp, sdkp->min_xfer_blocks); 3155 3156 if (sdkp->opt_xfer_blocks == 0) 3157 return false; 3158 3159 if (sdkp->opt_xfer_blocks > dev_max) { 3160 sd_first_printk(KERN_WARNING, sdkp, 3161 "Optimal transfer size %u logical blocks " \ 3162 "> dev_max (%u logical blocks)\n", 3163 sdkp->opt_xfer_blocks, dev_max); 3164 return false; 3165 } 3166 3167 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3168 sd_first_printk(KERN_WARNING, sdkp, 3169 "Optimal transfer size %u logical blocks " \ 3170 "> sd driver limit (%u logical blocks)\n", 3171 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3172 return false; 3173 } 3174 3175 if (opt_xfer_bytes < PAGE_SIZE) { 3176 sd_first_printk(KERN_WARNING, sdkp, 3177 "Optimal transfer size %u bytes < " \ 3178 "PAGE_SIZE (%u bytes)\n", 3179 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3180 return false; 3181 } 3182 3183 if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) { 3184 sd_first_printk(KERN_WARNING, sdkp, 3185 "Optimal transfer size %u bytes not a " \ 3186 "multiple of preferred minimum block " \ 3187 "size (%u bytes)\n", 3188 opt_xfer_bytes, min_xfer_bytes); 3189 return false; 3190 } 3191 3192 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3193 sd_first_printk(KERN_WARNING, sdkp, 3194 "Optimal transfer size %u bytes not a " \ 3195 "multiple of physical block size (%u bytes)\n", 3196 opt_xfer_bytes, sdkp->physical_block_size); 3197 return false; 3198 } 3199 3200 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3201 opt_xfer_bytes); 3202 return true; 3203 } 3204 3205 /** 3206 * sd_revalidate_disk - called the first time a new disk is seen, 3207 * performs disk spin up, read_capacity, etc. 3208 * @disk: struct gendisk we care about 3209 **/ 3210 static int sd_revalidate_disk(struct gendisk *disk) 3211 { 3212 struct scsi_disk *sdkp = scsi_disk(disk); 3213 struct scsi_device *sdp = sdkp->device; 3214 struct request_queue *q = sdkp->disk->queue; 3215 sector_t old_capacity = sdkp->capacity; 3216 unsigned char *buffer; 3217 unsigned int dev_max, rw_max; 3218 3219 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3220 "sd_revalidate_disk\n")); 3221 3222 /* 3223 * If the device is offline, don't try and read capacity or any 3224 * of the other niceties. 3225 */ 3226 if (!scsi_device_online(sdp)) 3227 goto out; 3228 3229 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3230 if (!buffer) { 3231 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3232 "allocation failure.\n"); 3233 goto out; 3234 } 3235 3236 sd_spinup_disk(sdkp); 3237 3238 /* 3239 * Without media there is no reason to ask; moreover, some devices 3240 * react badly if we do. 3241 */ 3242 if (sdkp->media_present) { 3243 sd_read_capacity(sdkp, buffer); 3244 3245 /* 3246 * set the default to rotational. All non-rotational devices 3247 * support the block characteristics VPD page, which will 3248 * cause this to be updated correctly and any device which 3249 * doesn't support it should be treated as rotational. 3250 */ 3251 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3252 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3253 3254 if (scsi_device_supports_vpd(sdp)) { 3255 sd_read_block_provisioning(sdkp); 3256 sd_read_block_limits(sdkp); 3257 sd_read_block_characteristics(sdkp); 3258 sd_zbc_read_zones(sdkp, buffer); 3259 sd_read_cpr(sdkp); 3260 } 3261 3262 sd_print_capacity(sdkp, old_capacity); 3263 3264 sd_read_write_protect_flag(sdkp, buffer); 3265 sd_read_cache_type(sdkp, buffer); 3266 sd_read_app_tag_own(sdkp, buffer); 3267 sd_read_write_same(sdkp, buffer); 3268 sd_read_security(sdkp, buffer); 3269 sd_config_protection(sdkp); 3270 } 3271 3272 /* 3273 * We now have all cache related info, determine how we deal 3274 * with flush requests. 3275 */ 3276 sd_set_flush_flag(sdkp); 3277 3278 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3279 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3280 3281 /* Some devices report a maximum block count for READ/WRITE requests. */ 3282 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3283 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3284 3285 if (sd_validate_min_xfer_size(sdkp)) 3286 blk_queue_io_min(sdkp->disk->queue, 3287 logical_to_bytes(sdp, sdkp->min_xfer_blocks)); 3288 else 3289 blk_queue_io_min(sdkp->disk->queue, 0); 3290 3291 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3292 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3293 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3294 } else { 3295 q->limits.io_opt = 0; 3296 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3297 (sector_t)BLK_DEF_MAX_SECTORS); 3298 } 3299 3300 /* Do not exceed controller limit */ 3301 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3302 3303 /* 3304 * Only update max_sectors if previously unset or if the current value 3305 * exceeds the capabilities of the hardware. 3306 */ 3307 if (sdkp->first_scan || 3308 q->limits.max_sectors > q->limits.max_dev_sectors || 3309 q->limits.max_sectors > q->limits.max_hw_sectors) 3310 q->limits.max_sectors = rw_max; 3311 3312 sdkp->first_scan = 0; 3313 3314 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3315 sd_config_write_same(sdkp); 3316 kfree(buffer); 3317 3318 /* 3319 * For a zoned drive, revalidating the zones can be done only once 3320 * the gendisk capacity is set. So if this fails, set back the gendisk 3321 * capacity to 0. 3322 */ 3323 if (sd_zbc_revalidate_zones(sdkp)) 3324 set_capacity_and_notify(disk, 0); 3325 3326 out: 3327 return 0; 3328 } 3329 3330 /** 3331 * sd_unlock_native_capacity - unlock native capacity 3332 * @disk: struct gendisk to set capacity for 3333 * 3334 * Block layer calls this function if it detects that partitions 3335 * on @disk reach beyond the end of the device. If the SCSI host 3336 * implements ->unlock_native_capacity() method, it's invoked to 3337 * give it a chance to adjust the device capacity. 3338 * 3339 * CONTEXT: 3340 * Defined by block layer. Might sleep. 3341 */ 3342 static void sd_unlock_native_capacity(struct gendisk *disk) 3343 { 3344 struct scsi_device *sdev = scsi_disk(disk)->device; 3345 3346 if (sdev->host->hostt->unlock_native_capacity) 3347 sdev->host->hostt->unlock_native_capacity(sdev); 3348 } 3349 3350 /** 3351 * sd_format_disk_name - format disk name 3352 * @prefix: name prefix - ie. "sd" for SCSI disks 3353 * @index: index of the disk to format name for 3354 * @buf: output buffer 3355 * @buflen: length of the output buffer 3356 * 3357 * SCSI disk names starts at sda. The 26th device is sdz and the 3358 * 27th is sdaa. The last one for two lettered suffix is sdzz 3359 * which is followed by sdaaa. 3360 * 3361 * This is basically 26 base counting with one extra 'nil' entry 3362 * at the beginning from the second digit on and can be 3363 * determined using similar method as 26 base conversion with the 3364 * index shifted -1 after each digit is computed. 3365 * 3366 * CONTEXT: 3367 * Don't care. 3368 * 3369 * RETURNS: 3370 * 0 on success, -errno on failure. 3371 */ 3372 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3373 { 3374 const int base = 'z' - 'a' + 1; 3375 char *begin = buf + strlen(prefix); 3376 char *end = buf + buflen; 3377 char *p; 3378 int unit; 3379 3380 p = end - 1; 3381 *p = '\0'; 3382 unit = base; 3383 do { 3384 if (p == begin) 3385 return -EINVAL; 3386 *--p = 'a' + (index % unit); 3387 index = (index / unit) - 1; 3388 } while (index >= 0); 3389 3390 memmove(begin, p, end - p); 3391 memcpy(buf, prefix, strlen(prefix)); 3392 3393 return 0; 3394 } 3395 3396 /** 3397 * sd_probe - called during driver initialization and whenever a 3398 * new scsi device is attached to the system. It is called once 3399 * for each scsi device (not just disks) present. 3400 * @dev: pointer to device object 3401 * 3402 * Returns 0 if successful (or not interested in this scsi device 3403 * (e.g. scanner)); 1 when there is an error. 3404 * 3405 * Note: this function is invoked from the scsi mid-level. 3406 * This function sets up the mapping between a given 3407 * <host,channel,id,lun> (found in sdp) and new device name 3408 * (e.g. /dev/sda). More precisely it is the block device major 3409 * and minor number that is chosen here. 3410 * 3411 * Assume sd_probe is not re-entrant (for time being) 3412 * Also think about sd_probe() and sd_remove() running coincidentally. 3413 **/ 3414 static int sd_probe(struct device *dev) 3415 { 3416 struct scsi_device *sdp = to_scsi_device(dev); 3417 struct scsi_disk *sdkp; 3418 struct gendisk *gd; 3419 int index; 3420 int error; 3421 3422 scsi_autopm_get_device(sdp); 3423 error = -ENODEV; 3424 if (sdp->type != TYPE_DISK && 3425 sdp->type != TYPE_ZBC && 3426 sdp->type != TYPE_MOD && 3427 sdp->type != TYPE_RBC) 3428 goto out; 3429 3430 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3431 sdev_printk(KERN_WARNING, sdp, 3432 "Unsupported ZBC host-managed device.\n"); 3433 goto out; 3434 } 3435 3436 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3437 "sd_probe\n")); 3438 3439 error = -ENOMEM; 3440 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3441 if (!sdkp) 3442 goto out; 3443 3444 gd = __alloc_disk_node(sdp->request_queue, NUMA_NO_NODE, 3445 &sd_bio_compl_lkclass); 3446 if (!gd) 3447 goto out_free; 3448 3449 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3450 if (index < 0) { 3451 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3452 goto out_put; 3453 } 3454 3455 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3456 if (error) { 3457 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3458 goto out_free_index; 3459 } 3460 3461 sdkp->device = sdp; 3462 sdkp->disk = gd; 3463 sdkp->index = index; 3464 sdkp->max_retries = SD_MAX_RETRIES; 3465 atomic_set(&sdkp->openers, 0); 3466 atomic_set(&sdkp->device->ioerr_cnt, 0); 3467 INIT_WORK(&sdkp->start_done_work, sd_start_done_work); 3468 3469 if (!sdp->request_queue->rq_timeout) { 3470 if (sdp->type != TYPE_MOD) 3471 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3472 else 3473 blk_queue_rq_timeout(sdp->request_queue, 3474 SD_MOD_TIMEOUT); 3475 } 3476 3477 device_initialize(&sdkp->disk_dev); 3478 sdkp->disk_dev.parent = get_device(dev); 3479 sdkp->disk_dev.class = &sd_disk_class; 3480 dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev)); 3481 3482 error = device_add(&sdkp->disk_dev); 3483 if (error) { 3484 put_device(&sdkp->disk_dev); 3485 goto out; 3486 } 3487 3488 dev_set_drvdata(dev, sdkp); 3489 3490 gd->major = sd_major((index & 0xf0) >> 4); 3491 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3492 gd->minors = SD_MINORS; 3493 3494 gd->fops = &sd_fops; 3495 gd->private_data = sdkp; 3496 3497 /* defaults, until the device tells us otherwise */ 3498 sdp->sector_size = 512; 3499 sdkp->capacity = 0; 3500 sdkp->media_present = 1; 3501 sdkp->write_prot = 0; 3502 sdkp->cache_override = 0; 3503 sdkp->WCE = 0; 3504 sdkp->RCD = 0; 3505 sdkp->ATO = 0; 3506 sdkp->first_scan = 1; 3507 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3508 3509 sd_revalidate_disk(gd); 3510 3511 if (sdp->removable) { 3512 gd->flags |= GENHD_FL_REMOVABLE; 3513 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3514 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3515 } 3516 3517 blk_pm_runtime_init(sdp->request_queue, dev); 3518 if (sdp->rpm_autosuspend) { 3519 pm_runtime_set_autosuspend_delay(dev, 3520 sdp->host->hostt->rpm_autosuspend_delay); 3521 } 3522 3523 error = device_add_disk(dev, gd, NULL); 3524 if (error) { 3525 put_device(&sdkp->disk_dev); 3526 put_disk(gd); 3527 goto out; 3528 } 3529 3530 if (sdkp->security) { 3531 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3532 if (sdkp->opal_dev) 3533 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3534 } 3535 3536 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3537 sdp->removable ? "removable " : ""); 3538 scsi_autopm_put_device(sdp); 3539 3540 return 0; 3541 3542 out_free_index: 3543 ida_free(&sd_index_ida, index); 3544 out_put: 3545 put_disk(gd); 3546 out_free: 3547 kfree(sdkp); 3548 out: 3549 scsi_autopm_put_device(sdp); 3550 return error; 3551 } 3552 3553 /** 3554 * sd_remove - called whenever a scsi disk (previously recognized by 3555 * sd_probe) is detached from the system. It is called (potentially 3556 * multiple times) during sd module unload. 3557 * @dev: pointer to device object 3558 * 3559 * Note: this function is invoked from the scsi mid-level. 3560 * This function potentially frees up a device name (e.g. /dev/sdc) 3561 * that could be re-used by a subsequent sd_probe(). 3562 * This function is not called when the built-in sd driver is "exit-ed". 3563 **/ 3564 static int sd_remove(struct device *dev) 3565 { 3566 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3567 3568 scsi_autopm_get_device(sdkp->device); 3569 3570 device_del(&sdkp->disk_dev); 3571 del_gendisk(sdkp->disk); 3572 sd_shutdown(dev); 3573 3574 put_disk(sdkp->disk); 3575 return 0; 3576 } 3577 3578 static void scsi_disk_release(struct device *dev) 3579 { 3580 struct scsi_disk *sdkp = to_scsi_disk(dev); 3581 3582 ida_free(&sd_index_ida, sdkp->index); 3583 sd_zbc_free_zone_info(sdkp); 3584 put_device(&sdkp->device->sdev_gendev); 3585 free_opal_dev(sdkp->opal_dev); 3586 3587 kfree(sdkp); 3588 } 3589 3590 /* Process sense data after a START command finished. */ 3591 static void sd_start_done_work(struct work_struct *work) 3592 { 3593 struct scsi_disk *sdkp = container_of(work, typeof(*sdkp), 3594 start_done_work); 3595 struct scsi_sense_hdr sshdr; 3596 int res = sdkp->start_result; 3597 3598 if (res == 0) 3599 return; 3600 3601 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3602 3603 if (res < 0) 3604 return; 3605 3606 if (scsi_normalize_sense(sdkp->start_sense_buffer, 3607 sdkp->start_sense_len, &sshdr)) 3608 sd_print_sense_hdr(sdkp, &sshdr); 3609 } 3610 3611 /* A START command finished. May be called from interrupt context. */ 3612 static void sd_start_done(struct request *req, blk_status_t status) 3613 { 3614 const struct scsi_cmnd *scmd = blk_mq_rq_to_pdu(req); 3615 struct scsi_disk *sdkp = scsi_disk(req->q->disk); 3616 3617 sdkp->start_result = scmd->result; 3618 WARN_ON_ONCE(scmd->sense_len > SCSI_SENSE_BUFFERSIZE); 3619 sdkp->start_sense_len = scmd->sense_len; 3620 memcpy(sdkp->start_sense_buffer, scmd->sense_buffer, 3621 ARRAY_SIZE(sdkp->start_sense_buffer)); 3622 WARN_ON_ONCE(!schedule_work(&sdkp->start_done_work)); 3623 } 3624 3625 /* Submit a START command asynchronously. */ 3626 static int sd_submit_start(struct scsi_disk *sdkp, u8 cmd[], u8 cmd_len) 3627 { 3628 struct scsi_device *sdev = sdkp->device; 3629 struct request_queue *q = sdev->request_queue; 3630 struct request *req; 3631 struct scsi_cmnd *scmd; 3632 3633 req = scsi_alloc_request(q, REQ_OP_DRV_IN, BLK_MQ_REQ_PM); 3634 if (IS_ERR(req)) 3635 return PTR_ERR(req); 3636 3637 scmd = blk_mq_rq_to_pdu(req); 3638 scmd->cmd_len = cmd_len; 3639 memcpy(scmd->cmnd, cmd, cmd_len); 3640 scmd->allowed = sdkp->max_retries; 3641 req->timeout = SD_TIMEOUT; 3642 req->rq_flags |= RQF_PM | RQF_QUIET; 3643 req->end_io = sd_start_done; 3644 blk_execute_rq_nowait(req, /*at_head=*/true); 3645 3646 return 0; 3647 } 3648 3649 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3650 { 3651 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3652 struct scsi_device *sdp = sdkp->device; 3653 3654 if (start) 3655 cmd[4] |= 1; /* START */ 3656 3657 if (sdp->start_stop_pwr_cond) 3658 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3659 3660 if (!scsi_device_online(sdp)) 3661 return -ENODEV; 3662 3663 /* Wait until processing of sense data has finished. */ 3664 flush_work(&sdkp->start_done_work); 3665 3666 return sd_submit_start(sdkp, cmd, sizeof(cmd)); 3667 } 3668 3669 /* 3670 * Send a SYNCHRONIZE CACHE instruction down to the device through 3671 * the normal SCSI command structure. Wait for the command to 3672 * complete. 3673 */ 3674 static void sd_shutdown(struct device *dev) 3675 { 3676 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3677 3678 if (!sdkp) 3679 return; /* this can happen */ 3680 3681 if (pm_runtime_suspended(dev)) 3682 return; 3683 3684 if (sdkp->WCE && sdkp->media_present) { 3685 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3686 sd_sync_cache(sdkp, NULL); 3687 } 3688 3689 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3690 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3691 sd_start_stop_device(sdkp, 0); 3692 } 3693 3694 flush_work(&sdkp->start_done_work); 3695 } 3696 3697 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3698 { 3699 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3700 struct scsi_sense_hdr sshdr; 3701 int ret = 0; 3702 3703 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3704 return 0; 3705 3706 if (sdkp->WCE && sdkp->media_present) { 3707 if (!sdkp->device->silence_suspend) 3708 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3709 ret = sd_sync_cache(sdkp, &sshdr); 3710 3711 if (ret) { 3712 /* ignore OFFLINE device */ 3713 if (ret == -ENODEV) 3714 return 0; 3715 3716 if (!scsi_sense_valid(&sshdr) || 3717 sshdr.sense_key != ILLEGAL_REQUEST) 3718 return ret; 3719 3720 /* 3721 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3722 * doesn't support sync. There's not much to do and 3723 * suspend shouldn't fail. 3724 */ 3725 ret = 0; 3726 } 3727 } 3728 3729 if (sdkp->device->manage_start_stop) { 3730 if (!sdkp->device->silence_suspend) 3731 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3732 /* an error is not worth aborting a system sleep */ 3733 ret = sd_start_stop_device(sdkp, 0); 3734 if (ignore_stop_errors) 3735 ret = 0; 3736 } 3737 3738 return ret; 3739 } 3740 3741 static int sd_suspend_system(struct device *dev) 3742 { 3743 if (pm_runtime_suspended(dev)) 3744 return 0; 3745 3746 return sd_suspend_common(dev, true); 3747 } 3748 3749 static int sd_suspend_runtime(struct device *dev) 3750 { 3751 return sd_suspend_common(dev, false); 3752 } 3753 3754 static int sd_resume(struct device *dev) 3755 { 3756 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3757 int ret; 3758 3759 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3760 return 0; 3761 3762 if (!sdkp->device->manage_start_stop) 3763 return 0; 3764 3765 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3766 ret = sd_start_stop_device(sdkp, 1); 3767 if (!ret) 3768 opal_unlock_from_suspend(sdkp->opal_dev); 3769 return ret; 3770 } 3771 3772 static int sd_resume_system(struct device *dev) 3773 { 3774 if (pm_runtime_suspended(dev)) 3775 return 0; 3776 3777 return sd_resume(dev); 3778 } 3779 3780 static int sd_resume_runtime(struct device *dev) 3781 { 3782 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3783 struct scsi_device *sdp; 3784 3785 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3786 return 0; 3787 3788 sdp = sdkp->device; 3789 3790 if (sdp->ignore_media_change) { 3791 /* clear the device's sense data */ 3792 static const u8 cmd[10] = { REQUEST_SENSE }; 3793 3794 if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, 3795 NULL, sdp->request_queue->rq_timeout, 1, 0, 3796 RQF_PM, NULL)) 3797 sd_printk(KERN_NOTICE, sdkp, 3798 "Failed to clear sense data\n"); 3799 } 3800 3801 return sd_resume(dev); 3802 } 3803 3804 /** 3805 * init_sd - entry point for this driver (both when built in or when 3806 * a module). 3807 * 3808 * Note: this function registers this driver with the scsi mid-level. 3809 **/ 3810 static int __init init_sd(void) 3811 { 3812 int majors = 0, i, err; 3813 3814 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3815 3816 for (i = 0; i < SD_MAJORS; i++) { 3817 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3818 continue; 3819 majors++; 3820 } 3821 3822 if (!majors) 3823 return -ENODEV; 3824 3825 err = class_register(&sd_disk_class); 3826 if (err) 3827 goto err_out; 3828 3829 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3830 0, 0, NULL); 3831 if (!sd_cdb_cache) { 3832 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3833 err = -ENOMEM; 3834 goto err_out_class; 3835 } 3836 3837 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3838 if (!sd_page_pool) { 3839 printk(KERN_ERR "sd: can't init discard page pool\n"); 3840 err = -ENOMEM; 3841 goto err_out_cache; 3842 } 3843 3844 err = scsi_register_driver(&sd_template.gendrv); 3845 if (err) 3846 goto err_out_driver; 3847 3848 return 0; 3849 3850 err_out_driver: 3851 mempool_destroy(sd_page_pool); 3852 3853 err_out_cache: 3854 kmem_cache_destroy(sd_cdb_cache); 3855 3856 err_out_class: 3857 class_unregister(&sd_disk_class); 3858 err_out: 3859 for (i = 0; i < SD_MAJORS; i++) 3860 unregister_blkdev(sd_major(i), "sd"); 3861 return err; 3862 } 3863 3864 /** 3865 * exit_sd - exit point for this driver (when it is a module). 3866 * 3867 * Note: this function unregisters this driver from the scsi mid-level. 3868 **/ 3869 static void __exit exit_sd(void) 3870 { 3871 int i; 3872 3873 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3874 3875 scsi_unregister_driver(&sd_template.gendrv); 3876 mempool_destroy(sd_page_pool); 3877 kmem_cache_destroy(sd_cdb_cache); 3878 3879 class_unregister(&sd_disk_class); 3880 3881 for (i = 0; i < SD_MAJORS; i++) 3882 unregister_blkdev(sd_major(i), "sd"); 3883 } 3884 3885 module_init(init_sd); 3886 module_exit(exit_sd); 3887 3888 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3889 { 3890 scsi_print_sense_hdr(sdkp->device, 3891 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3892 } 3893 3894 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3895 { 3896 const char *hb_string = scsi_hostbyte_string(result); 3897 3898 if (hb_string) 3899 sd_printk(KERN_INFO, sdkp, 3900 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3901 hb_string ? hb_string : "invalid", 3902 "DRIVER_OK"); 3903 else 3904 sd_printk(KERN_INFO, sdkp, 3905 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3906 msg, host_byte(result), "DRIVER_OK"); 3907 } 3908