1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #define SD_MINORS 16 102 103 static void sd_config_discard(struct scsi_disk *, unsigned int); 104 static void sd_config_write_same(struct scsi_disk *); 105 static int sd_revalidate_disk(struct gendisk *); 106 static void sd_unlock_native_capacity(struct gendisk *disk); 107 static int sd_probe(struct device *); 108 static int sd_remove(struct device *); 109 static void sd_shutdown(struct device *); 110 static int sd_suspend_system(struct device *); 111 static int sd_suspend_runtime(struct device *); 112 static int sd_resume(struct device *); 113 static void sd_rescan(struct device *); 114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 115 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 116 static int sd_done(struct scsi_cmnd *); 117 static void sd_eh_reset(struct scsi_cmnd *); 118 static int sd_eh_action(struct scsi_cmnd *, int); 119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 120 static void scsi_disk_release(struct device *cdev); 121 122 static DEFINE_IDA(sd_index_ida); 123 124 /* This semaphore is used to mediate the 0->1 reference get in the 125 * face of object destruction (i.e. we can't allow a get on an 126 * object after last put) */ 127 static DEFINE_MUTEX(sd_ref_mutex); 128 129 static struct kmem_cache *sd_cdb_cache; 130 static mempool_t *sd_cdb_pool; 131 static mempool_t *sd_page_pool; 132 133 static const char *sd_cache_types[] = { 134 "write through", "none", "write back", 135 "write back, no read (daft)" 136 }; 137 138 static void sd_set_flush_flag(struct scsi_disk *sdkp) 139 { 140 bool wc = false, fua = false; 141 142 if (sdkp->WCE) { 143 wc = true; 144 if (sdkp->DPOFUA) 145 fua = true; 146 } 147 148 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 149 } 150 151 static ssize_t 152 cache_type_store(struct device *dev, struct device_attribute *attr, 153 const char *buf, size_t count) 154 { 155 int ct, rcd, wce, sp; 156 struct scsi_disk *sdkp = to_scsi_disk(dev); 157 struct scsi_device *sdp = sdkp->device; 158 char buffer[64]; 159 char *buffer_data; 160 struct scsi_mode_data data; 161 struct scsi_sense_hdr sshdr; 162 static const char temp[] = "temporary "; 163 int len; 164 165 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 166 /* no cache control on RBC devices; theoretically they 167 * can do it, but there's probably so many exceptions 168 * it's not worth the risk */ 169 return -EINVAL; 170 171 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 172 buf += sizeof(temp) - 1; 173 sdkp->cache_override = 1; 174 } else { 175 sdkp->cache_override = 0; 176 } 177 178 ct = sysfs_match_string(sd_cache_types, buf); 179 if (ct < 0) 180 return -EINVAL; 181 182 rcd = ct & 0x01 ? 1 : 0; 183 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 184 185 if (sdkp->cache_override) { 186 sdkp->WCE = wce; 187 sdkp->RCD = rcd; 188 sd_set_flush_flag(sdkp); 189 return count; 190 } 191 192 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 193 sdkp->max_retries, &data, NULL)) 194 return -EINVAL; 195 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 196 data.block_descriptor_length); 197 buffer_data = buffer + data.header_length + 198 data.block_descriptor_length; 199 buffer_data[2] &= ~0x05; 200 buffer_data[2] |= wce << 2 | rcd; 201 sp = buffer_data[0] & 0x80 ? 1 : 0; 202 buffer_data[0] &= ~0x80; 203 204 /* 205 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 206 * received mode parameter buffer before doing MODE SELECT. 207 */ 208 data.device_specific = 0; 209 210 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 211 sdkp->max_retries, &data, &sshdr)) { 212 if (scsi_sense_valid(&sshdr)) 213 sd_print_sense_hdr(sdkp, &sshdr); 214 return -EINVAL; 215 } 216 sd_revalidate_disk(sdkp->disk); 217 return count; 218 } 219 220 static ssize_t 221 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 222 char *buf) 223 { 224 struct scsi_disk *sdkp = to_scsi_disk(dev); 225 struct scsi_device *sdp = sdkp->device; 226 227 return sprintf(buf, "%u\n", sdp->manage_start_stop); 228 } 229 230 static ssize_t 231 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 232 const char *buf, size_t count) 233 { 234 struct scsi_disk *sdkp = to_scsi_disk(dev); 235 struct scsi_device *sdp = sdkp->device; 236 bool v; 237 238 if (!capable(CAP_SYS_ADMIN)) 239 return -EACCES; 240 241 if (kstrtobool(buf, &v)) 242 return -EINVAL; 243 244 sdp->manage_start_stop = v; 245 246 return count; 247 } 248 static DEVICE_ATTR_RW(manage_start_stop); 249 250 static ssize_t 251 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 252 { 253 struct scsi_disk *sdkp = to_scsi_disk(dev); 254 255 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 256 } 257 258 static ssize_t 259 allow_restart_store(struct device *dev, struct device_attribute *attr, 260 const char *buf, size_t count) 261 { 262 bool v; 263 struct scsi_disk *sdkp = to_scsi_disk(dev); 264 struct scsi_device *sdp = sdkp->device; 265 266 if (!capable(CAP_SYS_ADMIN)) 267 return -EACCES; 268 269 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 270 return -EINVAL; 271 272 if (kstrtobool(buf, &v)) 273 return -EINVAL; 274 275 sdp->allow_restart = v; 276 277 return count; 278 } 279 static DEVICE_ATTR_RW(allow_restart); 280 281 static ssize_t 282 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 283 { 284 struct scsi_disk *sdkp = to_scsi_disk(dev); 285 int ct = sdkp->RCD + 2*sdkp->WCE; 286 287 return sprintf(buf, "%s\n", sd_cache_types[ct]); 288 } 289 static DEVICE_ATTR_RW(cache_type); 290 291 static ssize_t 292 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 293 { 294 struct scsi_disk *sdkp = to_scsi_disk(dev); 295 296 return sprintf(buf, "%u\n", sdkp->DPOFUA); 297 } 298 static DEVICE_ATTR_RO(FUA); 299 300 static ssize_t 301 protection_type_show(struct device *dev, struct device_attribute *attr, 302 char *buf) 303 { 304 struct scsi_disk *sdkp = to_scsi_disk(dev); 305 306 return sprintf(buf, "%u\n", sdkp->protection_type); 307 } 308 309 static ssize_t 310 protection_type_store(struct device *dev, struct device_attribute *attr, 311 const char *buf, size_t count) 312 { 313 struct scsi_disk *sdkp = to_scsi_disk(dev); 314 unsigned int val; 315 int err; 316 317 if (!capable(CAP_SYS_ADMIN)) 318 return -EACCES; 319 320 err = kstrtouint(buf, 10, &val); 321 322 if (err) 323 return err; 324 325 if (val <= T10_PI_TYPE3_PROTECTION) 326 sdkp->protection_type = val; 327 328 return count; 329 } 330 static DEVICE_ATTR_RW(protection_type); 331 332 static ssize_t 333 protection_mode_show(struct device *dev, struct device_attribute *attr, 334 char *buf) 335 { 336 struct scsi_disk *sdkp = to_scsi_disk(dev); 337 struct scsi_device *sdp = sdkp->device; 338 unsigned int dif, dix; 339 340 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 341 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 342 343 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 344 dif = 0; 345 dix = 1; 346 } 347 348 if (!dif && !dix) 349 return sprintf(buf, "none\n"); 350 351 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 352 } 353 static DEVICE_ATTR_RO(protection_mode); 354 355 static ssize_t 356 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 357 { 358 struct scsi_disk *sdkp = to_scsi_disk(dev); 359 360 return sprintf(buf, "%u\n", sdkp->ATO); 361 } 362 static DEVICE_ATTR_RO(app_tag_own); 363 364 static ssize_t 365 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 366 char *buf) 367 { 368 struct scsi_disk *sdkp = to_scsi_disk(dev); 369 370 return sprintf(buf, "%u\n", sdkp->lbpme); 371 } 372 static DEVICE_ATTR_RO(thin_provisioning); 373 374 /* sysfs_match_string() requires dense arrays */ 375 static const char *lbp_mode[] = { 376 [SD_LBP_FULL] = "full", 377 [SD_LBP_UNMAP] = "unmap", 378 [SD_LBP_WS16] = "writesame_16", 379 [SD_LBP_WS10] = "writesame_10", 380 [SD_LBP_ZERO] = "writesame_zero", 381 [SD_LBP_DISABLE] = "disabled", 382 }; 383 384 static ssize_t 385 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 386 char *buf) 387 { 388 struct scsi_disk *sdkp = to_scsi_disk(dev); 389 390 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 391 } 392 393 static ssize_t 394 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 395 const char *buf, size_t count) 396 { 397 struct scsi_disk *sdkp = to_scsi_disk(dev); 398 struct scsi_device *sdp = sdkp->device; 399 int mode; 400 401 if (!capable(CAP_SYS_ADMIN)) 402 return -EACCES; 403 404 if (sd_is_zoned(sdkp)) { 405 sd_config_discard(sdkp, SD_LBP_DISABLE); 406 return count; 407 } 408 409 if (sdp->type != TYPE_DISK) 410 return -EINVAL; 411 412 mode = sysfs_match_string(lbp_mode, buf); 413 if (mode < 0) 414 return -EINVAL; 415 416 sd_config_discard(sdkp, mode); 417 418 return count; 419 } 420 static DEVICE_ATTR_RW(provisioning_mode); 421 422 /* sysfs_match_string() requires dense arrays */ 423 static const char *zeroing_mode[] = { 424 [SD_ZERO_WRITE] = "write", 425 [SD_ZERO_WS] = "writesame", 426 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 427 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 428 }; 429 430 static ssize_t 431 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 432 char *buf) 433 { 434 struct scsi_disk *sdkp = to_scsi_disk(dev); 435 436 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 437 } 438 439 static ssize_t 440 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 441 const char *buf, size_t count) 442 { 443 struct scsi_disk *sdkp = to_scsi_disk(dev); 444 int mode; 445 446 if (!capable(CAP_SYS_ADMIN)) 447 return -EACCES; 448 449 mode = sysfs_match_string(zeroing_mode, buf); 450 if (mode < 0) 451 return -EINVAL; 452 453 sdkp->zeroing_mode = mode; 454 455 return count; 456 } 457 static DEVICE_ATTR_RW(zeroing_mode); 458 459 static ssize_t 460 max_medium_access_timeouts_show(struct device *dev, 461 struct device_attribute *attr, char *buf) 462 { 463 struct scsi_disk *sdkp = to_scsi_disk(dev); 464 465 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 466 } 467 468 static ssize_t 469 max_medium_access_timeouts_store(struct device *dev, 470 struct device_attribute *attr, const char *buf, 471 size_t count) 472 { 473 struct scsi_disk *sdkp = to_scsi_disk(dev); 474 int err; 475 476 if (!capable(CAP_SYS_ADMIN)) 477 return -EACCES; 478 479 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 480 481 return err ? err : count; 482 } 483 static DEVICE_ATTR_RW(max_medium_access_timeouts); 484 485 static ssize_t 486 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 487 char *buf) 488 { 489 struct scsi_disk *sdkp = to_scsi_disk(dev); 490 491 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 492 } 493 494 static ssize_t 495 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 496 const char *buf, size_t count) 497 { 498 struct scsi_disk *sdkp = to_scsi_disk(dev); 499 struct scsi_device *sdp = sdkp->device; 500 unsigned long max; 501 int err; 502 503 if (!capable(CAP_SYS_ADMIN)) 504 return -EACCES; 505 506 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 507 return -EINVAL; 508 509 err = kstrtoul(buf, 10, &max); 510 511 if (err) 512 return err; 513 514 if (max == 0) 515 sdp->no_write_same = 1; 516 else if (max <= SD_MAX_WS16_BLOCKS) { 517 sdp->no_write_same = 0; 518 sdkp->max_ws_blocks = max; 519 } 520 521 sd_config_write_same(sdkp); 522 523 return count; 524 } 525 static DEVICE_ATTR_RW(max_write_same_blocks); 526 527 static ssize_t 528 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 529 { 530 struct scsi_disk *sdkp = to_scsi_disk(dev); 531 532 if (sdkp->device->type == TYPE_ZBC) 533 return sprintf(buf, "host-managed\n"); 534 if (sdkp->zoned == 1) 535 return sprintf(buf, "host-aware\n"); 536 if (sdkp->zoned == 2) 537 return sprintf(buf, "drive-managed\n"); 538 return sprintf(buf, "none\n"); 539 } 540 static DEVICE_ATTR_RO(zoned_cap); 541 542 static ssize_t 543 max_retries_store(struct device *dev, struct device_attribute *attr, 544 const char *buf, size_t count) 545 { 546 struct scsi_disk *sdkp = to_scsi_disk(dev); 547 struct scsi_device *sdev = sdkp->device; 548 int retries, err; 549 550 err = kstrtoint(buf, 10, &retries); 551 if (err) 552 return err; 553 554 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 555 sdkp->max_retries = retries; 556 return count; 557 } 558 559 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 560 SD_MAX_RETRIES); 561 return -EINVAL; 562 } 563 564 static ssize_t 565 max_retries_show(struct device *dev, struct device_attribute *attr, 566 char *buf) 567 { 568 struct scsi_disk *sdkp = to_scsi_disk(dev); 569 570 return sprintf(buf, "%d\n", sdkp->max_retries); 571 } 572 573 static DEVICE_ATTR_RW(max_retries); 574 575 static struct attribute *sd_disk_attrs[] = { 576 &dev_attr_cache_type.attr, 577 &dev_attr_FUA.attr, 578 &dev_attr_allow_restart.attr, 579 &dev_attr_manage_start_stop.attr, 580 &dev_attr_protection_type.attr, 581 &dev_attr_protection_mode.attr, 582 &dev_attr_app_tag_own.attr, 583 &dev_attr_thin_provisioning.attr, 584 &dev_attr_provisioning_mode.attr, 585 &dev_attr_zeroing_mode.attr, 586 &dev_attr_max_write_same_blocks.attr, 587 &dev_attr_max_medium_access_timeouts.attr, 588 &dev_attr_zoned_cap.attr, 589 &dev_attr_max_retries.attr, 590 NULL, 591 }; 592 ATTRIBUTE_GROUPS(sd_disk); 593 594 static struct class sd_disk_class = { 595 .name = "scsi_disk", 596 .owner = THIS_MODULE, 597 .dev_release = scsi_disk_release, 598 .dev_groups = sd_disk_groups, 599 }; 600 601 static const struct dev_pm_ops sd_pm_ops = { 602 .suspend = sd_suspend_system, 603 .resume = sd_resume, 604 .poweroff = sd_suspend_system, 605 .restore = sd_resume, 606 .runtime_suspend = sd_suspend_runtime, 607 .runtime_resume = sd_resume, 608 }; 609 610 static struct scsi_driver sd_template = { 611 .gendrv = { 612 .name = "sd", 613 .owner = THIS_MODULE, 614 .probe = sd_probe, 615 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 616 .remove = sd_remove, 617 .shutdown = sd_shutdown, 618 .pm = &sd_pm_ops, 619 }, 620 .rescan = sd_rescan, 621 .init_command = sd_init_command, 622 .uninit_command = sd_uninit_command, 623 .done = sd_done, 624 .eh_action = sd_eh_action, 625 .eh_reset = sd_eh_reset, 626 }; 627 628 /* 629 * Don't request a new module, as that could deadlock in multipath 630 * environment. 631 */ 632 static void sd_default_probe(dev_t devt) 633 { 634 } 635 636 /* 637 * Device no to disk mapping: 638 * 639 * major disc2 disc p1 640 * |............|.............|....|....| <- dev_t 641 * 31 20 19 8 7 4 3 0 642 * 643 * Inside a major, we have 16k disks, however mapped non- 644 * contiguously. The first 16 disks are for major0, the next 645 * ones with major1, ... Disk 256 is for major0 again, disk 272 646 * for major1, ... 647 * As we stay compatible with our numbering scheme, we can reuse 648 * the well-know SCSI majors 8, 65--71, 136--143. 649 */ 650 static int sd_major(int major_idx) 651 { 652 switch (major_idx) { 653 case 0: 654 return SCSI_DISK0_MAJOR; 655 case 1 ... 7: 656 return SCSI_DISK1_MAJOR + major_idx - 1; 657 case 8 ... 15: 658 return SCSI_DISK8_MAJOR + major_idx - 8; 659 default: 660 BUG(); 661 return 0; /* shut up gcc */ 662 } 663 } 664 665 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 666 { 667 struct scsi_disk *sdkp = NULL; 668 669 mutex_lock(&sd_ref_mutex); 670 671 if (disk->private_data) { 672 sdkp = scsi_disk(disk); 673 if (scsi_device_get(sdkp->device) == 0) 674 get_device(&sdkp->dev); 675 else 676 sdkp = NULL; 677 } 678 mutex_unlock(&sd_ref_mutex); 679 return sdkp; 680 } 681 682 static void scsi_disk_put(struct scsi_disk *sdkp) 683 { 684 struct scsi_device *sdev = sdkp->device; 685 686 mutex_lock(&sd_ref_mutex); 687 put_device(&sdkp->dev); 688 scsi_device_put(sdev); 689 mutex_unlock(&sd_ref_mutex); 690 } 691 692 #ifdef CONFIG_BLK_SED_OPAL 693 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 694 size_t len, bool send) 695 { 696 struct scsi_disk *sdkp = data; 697 struct scsi_device *sdev = sdkp->device; 698 u8 cdb[12] = { 0, }; 699 int ret; 700 701 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 702 cdb[1] = secp; 703 put_unaligned_be16(spsp, &cdb[2]); 704 put_unaligned_be32(len, &cdb[6]); 705 706 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 707 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 708 RQF_PM, NULL); 709 return ret <= 0 ? ret : -EIO; 710 } 711 #endif /* CONFIG_BLK_SED_OPAL */ 712 713 /* 714 * Look up the DIX operation based on whether the command is read or 715 * write and whether dix and dif are enabled. 716 */ 717 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 718 { 719 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 720 static const unsigned int ops[] = { /* wrt dix dif */ 721 SCSI_PROT_NORMAL, /* 0 0 0 */ 722 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 723 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 724 SCSI_PROT_READ_PASS, /* 0 1 1 */ 725 SCSI_PROT_NORMAL, /* 1 0 0 */ 726 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 727 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 728 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 729 }; 730 731 return ops[write << 2 | dix << 1 | dif]; 732 } 733 734 /* 735 * Returns a mask of the protection flags that are valid for a given DIX 736 * operation. 737 */ 738 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 739 { 740 static const unsigned int flag_mask[] = { 741 [SCSI_PROT_NORMAL] = 0, 742 743 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 744 SCSI_PROT_GUARD_CHECK | 745 SCSI_PROT_REF_CHECK | 746 SCSI_PROT_REF_INCREMENT, 747 748 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 749 SCSI_PROT_IP_CHECKSUM, 750 751 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 752 SCSI_PROT_GUARD_CHECK | 753 SCSI_PROT_REF_CHECK | 754 SCSI_PROT_REF_INCREMENT | 755 SCSI_PROT_IP_CHECKSUM, 756 757 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 758 SCSI_PROT_REF_INCREMENT, 759 760 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 761 SCSI_PROT_REF_CHECK | 762 SCSI_PROT_REF_INCREMENT | 763 SCSI_PROT_IP_CHECKSUM, 764 765 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 766 SCSI_PROT_GUARD_CHECK | 767 SCSI_PROT_REF_CHECK | 768 SCSI_PROT_REF_INCREMENT | 769 SCSI_PROT_IP_CHECKSUM, 770 }; 771 772 return flag_mask[prot_op]; 773 } 774 775 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 776 unsigned int dix, unsigned int dif) 777 { 778 struct bio *bio = scmd->request->bio; 779 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 780 unsigned int protect = 0; 781 782 if (dix) { /* DIX Type 0, 1, 2, 3 */ 783 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 784 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 785 786 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 787 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 788 } 789 790 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 791 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 792 793 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 794 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 795 } 796 797 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 798 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 799 800 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 801 protect = 3 << 5; /* Disable target PI checking */ 802 else 803 protect = 1 << 5; /* Enable target PI checking */ 804 } 805 806 scsi_set_prot_op(scmd, prot_op); 807 scsi_set_prot_type(scmd, dif); 808 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 809 810 return protect; 811 } 812 813 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 814 { 815 struct request_queue *q = sdkp->disk->queue; 816 unsigned int logical_block_size = sdkp->device->sector_size; 817 unsigned int max_blocks = 0; 818 819 q->limits.discard_alignment = 820 sdkp->unmap_alignment * logical_block_size; 821 q->limits.discard_granularity = 822 max(sdkp->physical_block_size, 823 sdkp->unmap_granularity * logical_block_size); 824 sdkp->provisioning_mode = mode; 825 826 switch (mode) { 827 828 case SD_LBP_FULL: 829 case SD_LBP_DISABLE: 830 blk_queue_max_discard_sectors(q, 0); 831 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 832 return; 833 834 case SD_LBP_UNMAP: 835 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 836 (u32)SD_MAX_WS16_BLOCKS); 837 break; 838 839 case SD_LBP_WS16: 840 if (sdkp->device->unmap_limit_for_ws) 841 max_blocks = sdkp->max_unmap_blocks; 842 else 843 max_blocks = sdkp->max_ws_blocks; 844 845 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 846 break; 847 848 case SD_LBP_WS10: 849 if (sdkp->device->unmap_limit_for_ws) 850 max_blocks = sdkp->max_unmap_blocks; 851 else 852 max_blocks = sdkp->max_ws_blocks; 853 854 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 855 break; 856 857 case SD_LBP_ZERO: 858 max_blocks = min_not_zero(sdkp->max_ws_blocks, 859 (u32)SD_MAX_WS10_BLOCKS); 860 break; 861 } 862 863 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 864 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 865 } 866 867 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 868 { 869 struct scsi_device *sdp = cmd->device; 870 struct request *rq = cmd->request; 871 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 872 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 873 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 874 unsigned int data_len = 24; 875 char *buf; 876 877 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 878 if (!rq->special_vec.bv_page) 879 return BLK_STS_RESOURCE; 880 clear_highpage(rq->special_vec.bv_page); 881 rq->special_vec.bv_offset = 0; 882 rq->special_vec.bv_len = data_len; 883 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 884 885 cmd->cmd_len = 10; 886 cmd->cmnd[0] = UNMAP; 887 cmd->cmnd[8] = 24; 888 889 buf = page_address(rq->special_vec.bv_page); 890 put_unaligned_be16(6 + 16, &buf[0]); 891 put_unaligned_be16(16, &buf[2]); 892 put_unaligned_be64(lba, &buf[8]); 893 put_unaligned_be32(nr_blocks, &buf[16]); 894 895 cmd->allowed = sdkp->max_retries; 896 cmd->transfersize = data_len; 897 rq->timeout = SD_TIMEOUT; 898 899 return scsi_alloc_sgtables(cmd); 900 } 901 902 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 903 bool unmap) 904 { 905 struct scsi_device *sdp = cmd->device; 906 struct request *rq = cmd->request; 907 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 908 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 909 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 910 u32 data_len = sdp->sector_size; 911 912 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 913 if (!rq->special_vec.bv_page) 914 return BLK_STS_RESOURCE; 915 clear_highpage(rq->special_vec.bv_page); 916 rq->special_vec.bv_offset = 0; 917 rq->special_vec.bv_len = data_len; 918 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 919 920 cmd->cmd_len = 16; 921 cmd->cmnd[0] = WRITE_SAME_16; 922 if (unmap) 923 cmd->cmnd[1] = 0x8; /* UNMAP */ 924 put_unaligned_be64(lba, &cmd->cmnd[2]); 925 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 926 927 cmd->allowed = sdkp->max_retries; 928 cmd->transfersize = data_len; 929 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 930 931 return scsi_alloc_sgtables(cmd); 932 } 933 934 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 935 bool unmap) 936 { 937 struct scsi_device *sdp = cmd->device; 938 struct request *rq = cmd->request; 939 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 940 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 941 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 942 u32 data_len = sdp->sector_size; 943 944 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 945 if (!rq->special_vec.bv_page) 946 return BLK_STS_RESOURCE; 947 clear_highpage(rq->special_vec.bv_page); 948 rq->special_vec.bv_offset = 0; 949 rq->special_vec.bv_len = data_len; 950 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 951 952 cmd->cmd_len = 10; 953 cmd->cmnd[0] = WRITE_SAME; 954 if (unmap) 955 cmd->cmnd[1] = 0x8; /* UNMAP */ 956 put_unaligned_be32(lba, &cmd->cmnd[2]); 957 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 958 959 cmd->allowed = sdkp->max_retries; 960 cmd->transfersize = data_len; 961 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 962 963 return scsi_alloc_sgtables(cmd); 964 } 965 966 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 967 { 968 struct request *rq = cmd->request; 969 struct scsi_device *sdp = cmd->device; 970 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 971 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 972 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 973 974 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 975 switch (sdkp->zeroing_mode) { 976 case SD_ZERO_WS16_UNMAP: 977 return sd_setup_write_same16_cmnd(cmd, true); 978 case SD_ZERO_WS10_UNMAP: 979 return sd_setup_write_same10_cmnd(cmd, true); 980 } 981 } 982 983 if (sdp->no_write_same) { 984 rq->rq_flags |= RQF_QUIET; 985 return BLK_STS_TARGET; 986 } 987 988 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 989 return sd_setup_write_same16_cmnd(cmd, false); 990 991 return sd_setup_write_same10_cmnd(cmd, false); 992 } 993 994 static void sd_config_write_same(struct scsi_disk *sdkp) 995 { 996 struct request_queue *q = sdkp->disk->queue; 997 unsigned int logical_block_size = sdkp->device->sector_size; 998 999 if (sdkp->device->no_write_same) { 1000 sdkp->max_ws_blocks = 0; 1001 goto out; 1002 } 1003 1004 /* Some devices can not handle block counts above 0xffff despite 1005 * supporting WRITE SAME(16). Consequently we default to 64k 1006 * blocks per I/O unless the device explicitly advertises a 1007 * bigger limit. 1008 */ 1009 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1010 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1011 (u32)SD_MAX_WS16_BLOCKS); 1012 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1013 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1014 (u32)SD_MAX_WS10_BLOCKS); 1015 else { 1016 sdkp->device->no_write_same = 1; 1017 sdkp->max_ws_blocks = 0; 1018 } 1019 1020 if (sdkp->lbprz && sdkp->lbpws) 1021 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1022 else if (sdkp->lbprz && sdkp->lbpws10) 1023 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1024 else if (sdkp->max_ws_blocks) 1025 sdkp->zeroing_mode = SD_ZERO_WS; 1026 else 1027 sdkp->zeroing_mode = SD_ZERO_WRITE; 1028 1029 if (sdkp->max_ws_blocks && 1030 sdkp->physical_block_size > logical_block_size) { 1031 /* 1032 * Reporting a maximum number of blocks that is not aligned 1033 * on the device physical size would cause a large write same 1034 * request to be split into physically unaligned chunks by 1035 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1036 * even if the caller of these functions took care to align the 1037 * large request. So make sure the maximum reported is aligned 1038 * to the device physical block size. This is only an optional 1039 * optimization for regular disks, but this is mandatory to 1040 * avoid failure of large write same requests directed at 1041 * sequential write required zones of host-managed ZBC disks. 1042 */ 1043 sdkp->max_ws_blocks = 1044 round_down(sdkp->max_ws_blocks, 1045 bytes_to_logical(sdkp->device, 1046 sdkp->physical_block_size)); 1047 } 1048 1049 out: 1050 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1051 (logical_block_size >> 9)); 1052 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1053 (logical_block_size >> 9)); 1054 } 1055 1056 /** 1057 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1058 * @cmd: command to prepare 1059 * 1060 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1061 * the preference indicated by the target device. 1062 **/ 1063 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1064 { 1065 struct request *rq = cmd->request; 1066 struct scsi_device *sdp = cmd->device; 1067 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1068 struct bio *bio = rq->bio; 1069 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1070 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1071 blk_status_t ret; 1072 1073 if (sdkp->device->no_write_same) 1074 return BLK_STS_TARGET; 1075 1076 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1077 1078 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1079 1080 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1081 cmd->cmd_len = 16; 1082 cmd->cmnd[0] = WRITE_SAME_16; 1083 put_unaligned_be64(lba, &cmd->cmnd[2]); 1084 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1085 } else { 1086 cmd->cmd_len = 10; 1087 cmd->cmnd[0] = WRITE_SAME; 1088 put_unaligned_be32(lba, &cmd->cmnd[2]); 1089 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1090 } 1091 1092 cmd->transfersize = sdp->sector_size; 1093 cmd->allowed = sdkp->max_retries; 1094 1095 /* 1096 * For WRITE SAME the data transferred via the DATA OUT buffer is 1097 * different from the amount of data actually written to the target. 1098 * 1099 * We set up __data_len to the amount of data transferred via the 1100 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1101 * to transfer a single sector of data first, but then reset it to 1102 * the amount of data to be written right after so that the I/O path 1103 * knows how much to actually write. 1104 */ 1105 rq->__data_len = sdp->sector_size; 1106 ret = scsi_alloc_sgtables(cmd); 1107 rq->__data_len = blk_rq_bytes(rq); 1108 1109 return ret; 1110 } 1111 1112 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1113 { 1114 struct request *rq = cmd->request; 1115 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1116 1117 /* flush requests don't perform I/O, zero the S/G table */ 1118 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1119 1120 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1121 cmd->cmd_len = 10; 1122 cmd->transfersize = 0; 1123 cmd->allowed = sdkp->max_retries; 1124 1125 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1126 return BLK_STS_OK; 1127 } 1128 1129 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1130 sector_t lba, unsigned int nr_blocks, 1131 unsigned char flags) 1132 { 1133 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1134 if (unlikely(cmd->cmnd == NULL)) 1135 return BLK_STS_RESOURCE; 1136 1137 cmd->cmd_len = SD_EXT_CDB_SIZE; 1138 memset(cmd->cmnd, 0, cmd->cmd_len); 1139 1140 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1141 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1142 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1143 cmd->cmnd[10] = flags; 1144 put_unaligned_be64(lba, &cmd->cmnd[12]); 1145 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1146 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1147 1148 return BLK_STS_OK; 1149 } 1150 1151 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1152 sector_t lba, unsigned int nr_blocks, 1153 unsigned char flags) 1154 { 1155 cmd->cmd_len = 16; 1156 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1157 cmd->cmnd[1] = flags; 1158 cmd->cmnd[14] = 0; 1159 cmd->cmnd[15] = 0; 1160 put_unaligned_be64(lba, &cmd->cmnd[2]); 1161 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1162 1163 return BLK_STS_OK; 1164 } 1165 1166 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1167 sector_t lba, unsigned int nr_blocks, 1168 unsigned char flags) 1169 { 1170 cmd->cmd_len = 10; 1171 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1172 cmd->cmnd[1] = flags; 1173 cmd->cmnd[6] = 0; 1174 cmd->cmnd[9] = 0; 1175 put_unaligned_be32(lba, &cmd->cmnd[2]); 1176 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1177 1178 return BLK_STS_OK; 1179 } 1180 1181 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1182 sector_t lba, unsigned int nr_blocks, 1183 unsigned char flags) 1184 { 1185 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1186 if (WARN_ON_ONCE(nr_blocks == 0)) 1187 return BLK_STS_IOERR; 1188 1189 if (unlikely(flags & 0x8)) { 1190 /* 1191 * This happens only if this drive failed 10byte rw 1192 * command with ILLEGAL_REQUEST during operation and 1193 * thus turned off use_10_for_rw. 1194 */ 1195 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1196 return BLK_STS_IOERR; 1197 } 1198 1199 cmd->cmd_len = 6; 1200 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1201 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1202 cmd->cmnd[2] = (lba >> 8) & 0xff; 1203 cmd->cmnd[3] = lba & 0xff; 1204 cmd->cmnd[4] = nr_blocks; 1205 cmd->cmnd[5] = 0; 1206 1207 return BLK_STS_OK; 1208 } 1209 1210 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1211 { 1212 struct request *rq = cmd->request; 1213 struct scsi_device *sdp = cmd->device; 1214 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1215 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1216 sector_t threshold; 1217 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1218 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1219 bool write = rq_data_dir(rq) == WRITE; 1220 unsigned char protect, fua; 1221 blk_status_t ret; 1222 unsigned int dif; 1223 bool dix; 1224 1225 ret = scsi_alloc_sgtables(cmd); 1226 if (ret != BLK_STS_OK) 1227 return ret; 1228 1229 ret = BLK_STS_IOERR; 1230 if (!scsi_device_online(sdp) || sdp->changed) { 1231 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1232 goto fail; 1233 } 1234 1235 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1236 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1237 goto fail; 1238 } 1239 1240 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1241 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1242 goto fail; 1243 } 1244 1245 /* 1246 * Some SD card readers can't handle accesses which touch the 1247 * last one or two logical blocks. Split accesses as needed. 1248 */ 1249 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1250 1251 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1252 if (lba < threshold) { 1253 /* Access up to the threshold but not beyond */ 1254 nr_blocks = threshold - lba; 1255 } else { 1256 /* Access only a single logical block */ 1257 nr_blocks = 1; 1258 } 1259 } 1260 1261 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1262 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1263 if (ret) 1264 goto fail; 1265 } 1266 1267 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1268 dix = scsi_prot_sg_count(cmd); 1269 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1270 1271 if (dif || dix) 1272 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1273 else 1274 protect = 0; 1275 1276 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1277 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1278 protect | fua); 1279 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1280 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1281 protect | fua); 1282 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1283 sdp->use_10_for_rw || protect) { 1284 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1285 protect | fua); 1286 } else { 1287 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1288 protect | fua); 1289 } 1290 1291 if (unlikely(ret != BLK_STS_OK)) 1292 goto fail; 1293 1294 /* 1295 * We shouldn't disconnect in the middle of a sector, so with a dumb 1296 * host adapter, it's safe to assume that we can at least transfer 1297 * this many bytes between each connect / disconnect. 1298 */ 1299 cmd->transfersize = sdp->sector_size; 1300 cmd->underflow = nr_blocks << 9; 1301 cmd->allowed = sdkp->max_retries; 1302 cmd->sdb.length = nr_blocks * sdp->sector_size; 1303 1304 SCSI_LOG_HLQUEUE(1, 1305 scmd_printk(KERN_INFO, cmd, 1306 "%s: block=%llu, count=%d\n", __func__, 1307 (unsigned long long)blk_rq_pos(rq), 1308 blk_rq_sectors(rq))); 1309 SCSI_LOG_HLQUEUE(2, 1310 scmd_printk(KERN_INFO, cmd, 1311 "%s %d/%u 512 byte blocks.\n", 1312 write ? "writing" : "reading", nr_blocks, 1313 blk_rq_sectors(rq))); 1314 1315 /* 1316 * This indicates that the command is ready from our end to be queued. 1317 */ 1318 return BLK_STS_OK; 1319 fail: 1320 scsi_free_sgtables(cmd); 1321 return ret; 1322 } 1323 1324 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1325 { 1326 struct request *rq = cmd->request; 1327 1328 switch (req_op(rq)) { 1329 case REQ_OP_DISCARD: 1330 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1331 case SD_LBP_UNMAP: 1332 return sd_setup_unmap_cmnd(cmd); 1333 case SD_LBP_WS16: 1334 return sd_setup_write_same16_cmnd(cmd, true); 1335 case SD_LBP_WS10: 1336 return sd_setup_write_same10_cmnd(cmd, true); 1337 case SD_LBP_ZERO: 1338 return sd_setup_write_same10_cmnd(cmd, false); 1339 default: 1340 return BLK_STS_TARGET; 1341 } 1342 case REQ_OP_WRITE_ZEROES: 1343 return sd_setup_write_zeroes_cmnd(cmd); 1344 case REQ_OP_WRITE_SAME: 1345 return sd_setup_write_same_cmnd(cmd); 1346 case REQ_OP_FLUSH: 1347 return sd_setup_flush_cmnd(cmd); 1348 case REQ_OP_READ: 1349 case REQ_OP_WRITE: 1350 case REQ_OP_ZONE_APPEND: 1351 return sd_setup_read_write_cmnd(cmd); 1352 case REQ_OP_ZONE_RESET: 1353 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1354 false); 1355 case REQ_OP_ZONE_RESET_ALL: 1356 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1357 true); 1358 case REQ_OP_ZONE_OPEN: 1359 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1360 case REQ_OP_ZONE_CLOSE: 1361 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1362 case REQ_OP_ZONE_FINISH: 1363 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1364 default: 1365 WARN_ON_ONCE(1); 1366 return BLK_STS_NOTSUPP; 1367 } 1368 } 1369 1370 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1371 { 1372 struct request *rq = SCpnt->request; 1373 u8 *cmnd; 1374 1375 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1376 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1377 1378 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1379 cmnd = SCpnt->cmnd; 1380 SCpnt->cmnd = NULL; 1381 SCpnt->cmd_len = 0; 1382 mempool_free(cmnd, sd_cdb_pool); 1383 } 1384 } 1385 1386 static bool sd_need_revalidate(struct block_device *bdev, 1387 struct scsi_disk *sdkp) 1388 { 1389 if (sdkp->device->removable || sdkp->write_prot) { 1390 if (bdev_check_media_change(bdev)) 1391 return true; 1392 } 1393 1394 /* 1395 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1396 * nothing to do with partitions, BLKRRPART is used to force a full 1397 * revalidate after things like a format for historical reasons. 1398 */ 1399 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1400 } 1401 1402 /** 1403 * sd_open - open a scsi disk device 1404 * @bdev: Block device of the scsi disk to open 1405 * @mode: FMODE_* mask 1406 * 1407 * Returns 0 if successful. Returns a negated errno value in case 1408 * of error. 1409 * 1410 * Note: This can be called from a user context (e.g. fsck(1) ) 1411 * or from within the kernel (e.g. as a result of a mount(1) ). 1412 * In the latter case @inode and @filp carry an abridged amount 1413 * of information as noted above. 1414 * 1415 * Locking: called with bdev->bd_disk->open_mutex held. 1416 **/ 1417 static int sd_open(struct block_device *bdev, fmode_t mode) 1418 { 1419 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1420 struct scsi_device *sdev; 1421 int retval; 1422 1423 if (!sdkp) 1424 return -ENXIO; 1425 1426 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1427 1428 sdev = sdkp->device; 1429 1430 /* 1431 * If the device is in error recovery, wait until it is done. 1432 * If the device is offline, then disallow any access to it. 1433 */ 1434 retval = -ENXIO; 1435 if (!scsi_block_when_processing_errors(sdev)) 1436 goto error_out; 1437 1438 if (sd_need_revalidate(bdev, sdkp)) 1439 sd_revalidate_disk(bdev->bd_disk); 1440 1441 /* 1442 * If the drive is empty, just let the open fail. 1443 */ 1444 retval = -ENOMEDIUM; 1445 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1446 goto error_out; 1447 1448 /* 1449 * If the device has the write protect tab set, have the open fail 1450 * if the user expects to be able to write to the thing. 1451 */ 1452 retval = -EROFS; 1453 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1454 goto error_out; 1455 1456 /* 1457 * It is possible that the disk changing stuff resulted in 1458 * the device being taken offline. If this is the case, 1459 * report this to the user, and don't pretend that the 1460 * open actually succeeded. 1461 */ 1462 retval = -ENXIO; 1463 if (!scsi_device_online(sdev)) 1464 goto error_out; 1465 1466 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1467 if (scsi_block_when_processing_errors(sdev)) 1468 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1469 } 1470 1471 return 0; 1472 1473 error_out: 1474 scsi_disk_put(sdkp); 1475 return retval; 1476 } 1477 1478 /** 1479 * sd_release - invoked when the (last) close(2) is called on this 1480 * scsi disk. 1481 * @disk: disk to release 1482 * @mode: FMODE_* mask 1483 * 1484 * Returns 0. 1485 * 1486 * Note: may block (uninterruptible) if error recovery is underway 1487 * on this disk. 1488 * 1489 * Locking: called with bdev->bd_disk->open_mutex held. 1490 **/ 1491 static void sd_release(struct gendisk *disk, fmode_t mode) 1492 { 1493 struct scsi_disk *sdkp = scsi_disk(disk); 1494 struct scsi_device *sdev = sdkp->device; 1495 1496 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1497 1498 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1499 if (scsi_block_when_processing_errors(sdev)) 1500 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1501 } 1502 1503 scsi_disk_put(sdkp); 1504 } 1505 1506 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1507 { 1508 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1509 struct scsi_device *sdp = sdkp->device; 1510 struct Scsi_Host *host = sdp->host; 1511 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1512 int diskinfo[4]; 1513 1514 /* default to most commonly used values */ 1515 diskinfo[0] = 0x40; /* 1 << 6 */ 1516 diskinfo[1] = 0x20; /* 1 << 5 */ 1517 diskinfo[2] = capacity >> 11; 1518 1519 /* override with calculated, extended default, or driver values */ 1520 if (host->hostt->bios_param) 1521 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1522 else 1523 scsicam_bios_param(bdev, capacity, diskinfo); 1524 1525 geo->heads = diskinfo[0]; 1526 geo->sectors = diskinfo[1]; 1527 geo->cylinders = diskinfo[2]; 1528 return 0; 1529 } 1530 1531 /** 1532 * sd_ioctl_common - process an ioctl 1533 * @bdev: target block device 1534 * @mode: FMODE_* mask 1535 * @cmd: ioctl command number 1536 * @p: this is third argument given to ioctl(2) system call. 1537 * Often contains a pointer. 1538 * 1539 * Returns 0 if successful (some ioctls return positive numbers on 1540 * success as well). Returns a negated errno value in case of error. 1541 * 1542 * Note: most ioctls are forward onto the block subsystem or further 1543 * down in the scsi subsystem. 1544 **/ 1545 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode, 1546 unsigned int cmd, void __user *p) 1547 { 1548 struct gendisk *disk = bdev->bd_disk; 1549 struct scsi_disk *sdkp = scsi_disk(disk); 1550 struct scsi_device *sdp = sdkp->device; 1551 int error; 1552 1553 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1554 "cmd=0x%x\n", disk->disk_name, cmd)); 1555 1556 error = scsi_verify_blk_ioctl(bdev, cmd); 1557 if (error < 0) 1558 return error; 1559 1560 /* 1561 * If we are in the middle of error recovery, don't let anyone 1562 * else try and use this device. Also, if error recovery fails, it 1563 * may try and take the device offline, in which case all further 1564 * access to the device is prohibited. 1565 */ 1566 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1567 (mode & FMODE_NDELAY) != 0); 1568 if (error) 1569 goto out; 1570 1571 if (is_sed_ioctl(cmd)) 1572 return sed_ioctl(sdkp->opal_dev, cmd, p); 1573 1574 /* 1575 * Send SCSI addressing ioctls directly to mid level, send other 1576 * ioctls to block level and then onto mid level if they can't be 1577 * resolved. 1578 */ 1579 switch (cmd) { 1580 case SCSI_IOCTL_GET_IDLUN: 1581 case SCSI_IOCTL_GET_BUS_NUMBER: 1582 error = scsi_ioctl(sdp, cmd, p); 1583 break; 1584 default: 1585 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1586 break; 1587 } 1588 out: 1589 return error; 1590 } 1591 1592 static void set_media_not_present(struct scsi_disk *sdkp) 1593 { 1594 if (sdkp->media_present) 1595 sdkp->device->changed = 1; 1596 1597 if (sdkp->device->removable) { 1598 sdkp->media_present = 0; 1599 sdkp->capacity = 0; 1600 } 1601 } 1602 1603 static int media_not_present(struct scsi_disk *sdkp, 1604 struct scsi_sense_hdr *sshdr) 1605 { 1606 if (!scsi_sense_valid(sshdr)) 1607 return 0; 1608 1609 /* not invoked for commands that could return deferred errors */ 1610 switch (sshdr->sense_key) { 1611 case UNIT_ATTENTION: 1612 case NOT_READY: 1613 /* medium not present */ 1614 if (sshdr->asc == 0x3A) { 1615 set_media_not_present(sdkp); 1616 return 1; 1617 } 1618 } 1619 return 0; 1620 } 1621 1622 /** 1623 * sd_check_events - check media events 1624 * @disk: kernel device descriptor 1625 * @clearing: disk events currently being cleared 1626 * 1627 * Returns mask of DISK_EVENT_*. 1628 * 1629 * Note: this function is invoked from the block subsystem. 1630 **/ 1631 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1632 { 1633 struct scsi_disk *sdkp = scsi_disk_get(disk); 1634 struct scsi_device *sdp; 1635 int retval; 1636 bool disk_changed; 1637 1638 if (!sdkp) 1639 return 0; 1640 1641 sdp = sdkp->device; 1642 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1643 1644 /* 1645 * If the device is offline, don't send any commands - just pretend as 1646 * if the command failed. If the device ever comes back online, we 1647 * can deal with it then. It is only because of unrecoverable errors 1648 * that we would ever take a device offline in the first place. 1649 */ 1650 if (!scsi_device_online(sdp)) { 1651 set_media_not_present(sdkp); 1652 goto out; 1653 } 1654 1655 /* 1656 * Using TEST_UNIT_READY enables differentiation between drive with 1657 * no cartridge loaded - NOT READY, drive with changed cartridge - 1658 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1659 * 1660 * Drives that auto spin down. eg iomega jaz 1G, will be started 1661 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1662 * sd_revalidate() is called. 1663 */ 1664 if (scsi_block_when_processing_errors(sdp)) { 1665 struct scsi_sense_hdr sshdr = { 0, }; 1666 1667 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1668 &sshdr); 1669 1670 /* failed to execute TUR, assume media not present */ 1671 if (retval < 0 || host_byte(retval)) { 1672 set_media_not_present(sdkp); 1673 goto out; 1674 } 1675 1676 if (media_not_present(sdkp, &sshdr)) 1677 goto out; 1678 } 1679 1680 /* 1681 * For removable scsi disk we have to recognise the presence 1682 * of a disk in the drive. 1683 */ 1684 if (!sdkp->media_present) 1685 sdp->changed = 1; 1686 sdkp->media_present = 1; 1687 out: 1688 /* 1689 * sdp->changed is set under the following conditions: 1690 * 1691 * Medium present state has changed in either direction. 1692 * Device has indicated UNIT_ATTENTION. 1693 */ 1694 disk_changed = sdp->changed; 1695 sdp->changed = 0; 1696 scsi_disk_put(sdkp); 1697 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1698 } 1699 1700 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1701 { 1702 int retries, res; 1703 struct scsi_device *sdp = sdkp->device; 1704 const int timeout = sdp->request_queue->rq_timeout 1705 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1706 struct scsi_sense_hdr my_sshdr; 1707 1708 if (!scsi_device_online(sdp)) 1709 return -ENODEV; 1710 1711 /* caller might not be interested in sense, but we need it */ 1712 if (!sshdr) 1713 sshdr = &my_sshdr; 1714 1715 for (retries = 3; retries > 0; --retries) { 1716 unsigned char cmd[10] = { 0 }; 1717 1718 cmd[0] = SYNCHRONIZE_CACHE; 1719 /* 1720 * Leave the rest of the command zero to indicate 1721 * flush everything. 1722 */ 1723 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1724 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1725 if (res == 0) 1726 break; 1727 } 1728 1729 if (res) { 1730 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1731 1732 if (res < 0) 1733 return res; 1734 1735 if (scsi_status_is_check_condition(res) && 1736 scsi_sense_valid(sshdr)) { 1737 sd_print_sense_hdr(sdkp, sshdr); 1738 1739 /* we need to evaluate the error return */ 1740 if (sshdr->asc == 0x3a || /* medium not present */ 1741 sshdr->asc == 0x20 || /* invalid command */ 1742 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1743 /* this is no error here */ 1744 return 0; 1745 } 1746 1747 switch (host_byte(res)) { 1748 /* ignore errors due to racing a disconnection */ 1749 case DID_BAD_TARGET: 1750 case DID_NO_CONNECT: 1751 return 0; 1752 /* signal the upper layer it might try again */ 1753 case DID_BUS_BUSY: 1754 case DID_IMM_RETRY: 1755 case DID_REQUEUE: 1756 case DID_SOFT_ERROR: 1757 return -EBUSY; 1758 default: 1759 return -EIO; 1760 } 1761 } 1762 return 0; 1763 } 1764 1765 static void sd_rescan(struct device *dev) 1766 { 1767 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1768 1769 sd_revalidate_disk(sdkp->disk); 1770 } 1771 1772 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1773 unsigned int cmd, unsigned long arg) 1774 { 1775 void __user *p = (void __user *)arg; 1776 int ret; 1777 1778 ret = sd_ioctl_common(bdev, mode, cmd, p); 1779 if (ret != -ENOTTY) 1780 return ret; 1781 1782 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1783 } 1784 1785 #ifdef CONFIG_COMPAT 1786 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1787 unsigned int cmd, unsigned long arg) 1788 { 1789 void __user *p = compat_ptr(arg); 1790 int ret; 1791 1792 ret = sd_ioctl_common(bdev, mode, cmd, p); 1793 if (ret != -ENOTTY) 1794 return ret; 1795 1796 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1797 } 1798 #endif 1799 1800 static char sd_pr_type(enum pr_type type) 1801 { 1802 switch (type) { 1803 case PR_WRITE_EXCLUSIVE: 1804 return 0x01; 1805 case PR_EXCLUSIVE_ACCESS: 1806 return 0x03; 1807 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1808 return 0x05; 1809 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1810 return 0x06; 1811 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1812 return 0x07; 1813 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1814 return 0x08; 1815 default: 1816 return 0; 1817 } 1818 }; 1819 1820 static int sd_pr_command(struct block_device *bdev, u8 sa, 1821 u64 key, u64 sa_key, u8 type, u8 flags) 1822 { 1823 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1824 struct scsi_device *sdev = sdkp->device; 1825 struct scsi_sense_hdr sshdr; 1826 int result; 1827 u8 cmd[16] = { 0, }; 1828 u8 data[24] = { 0, }; 1829 1830 cmd[0] = PERSISTENT_RESERVE_OUT; 1831 cmd[1] = sa; 1832 cmd[2] = type; 1833 put_unaligned_be32(sizeof(data), &cmd[5]); 1834 1835 put_unaligned_be64(key, &data[0]); 1836 put_unaligned_be64(sa_key, &data[8]); 1837 data[20] = flags; 1838 1839 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1840 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1841 1842 if (scsi_status_is_check_condition(result) && 1843 scsi_sense_valid(&sshdr)) { 1844 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1845 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1846 } 1847 1848 return result; 1849 } 1850 1851 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1852 u32 flags) 1853 { 1854 if (flags & ~PR_FL_IGNORE_KEY) 1855 return -EOPNOTSUPP; 1856 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1857 old_key, new_key, 0, 1858 (1 << 0) /* APTPL */); 1859 } 1860 1861 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1862 u32 flags) 1863 { 1864 if (flags) 1865 return -EOPNOTSUPP; 1866 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1867 } 1868 1869 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1870 { 1871 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1872 } 1873 1874 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1875 enum pr_type type, bool abort) 1876 { 1877 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1878 sd_pr_type(type), 0); 1879 } 1880 1881 static int sd_pr_clear(struct block_device *bdev, u64 key) 1882 { 1883 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1884 } 1885 1886 static const struct pr_ops sd_pr_ops = { 1887 .pr_register = sd_pr_register, 1888 .pr_reserve = sd_pr_reserve, 1889 .pr_release = sd_pr_release, 1890 .pr_preempt = sd_pr_preempt, 1891 .pr_clear = sd_pr_clear, 1892 }; 1893 1894 static const struct block_device_operations sd_fops = { 1895 .owner = THIS_MODULE, 1896 .open = sd_open, 1897 .release = sd_release, 1898 .ioctl = sd_ioctl, 1899 .getgeo = sd_getgeo, 1900 #ifdef CONFIG_COMPAT 1901 .compat_ioctl = sd_compat_ioctl, 1902 #endif 1903 .check_events = sd_check_events, 1904 .unlock_native_capacity = sd_unlock_native_capacity, 1905 .report_zones = sd_zbc_report_zones, 1906 .pr_ops = &sd_pr_ops, 1907 }; 1908 1909 /** 1910 * sd_eh_reset - reset error handling callback 1911 * @scmd: sd-issued command that has failed 1912 * 1913 * This function is called by the SCSI midlayer before starting 1914 * SCSI EH. When counting medium access failures we have to be 1915 * careful to register it only only once per device and SCSI EH run; 1916 * there might be several timed out commands which will cause the 1917 * 'max_medium_access_timeouts' counter to trigger after the first 1918 * SCSI EH run already and set the device to offline. 1919 * So this function resets the internal counter before starting SCSI EH. 1920 **/ 1921 static void sd_eh_reset(struct scsi_cmnd *scmd) 1922 { 1923 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1924 1925 /* New SCSI EH run, reset gate variable */ 1926 sdkp->ignore_medium_access_errors = false; 1927 } 1928 1929 /** 1930 * sd_eh_action - error handling callback 1931 * @scmd: sd-issued command that has failed 1932 * @eh_disp: The recovery disposition suggested by the midlayer 1933 * 1934 * This function is called by the SCSI midlayer upon completion of an 1935 * error test command (currently TEST UNIT READY). The result of sending 1936 * the eh command is passed in eh_disp. We're looking for devices that 1937 * fail medium access commands but are OK with non access commands like 1938 * test unit ready (so wrongly see the device as having a successful 1939 * recovery) 1940 **/ 1941 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1942 { 1943 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1944 struct scsi_device *sdev = scmd->device; 1945 1946 if (!scsi_device_online(sdev) || 1947 !scsi_medium_access_command(scmd) || 1948 host_byte(scmd->result) != DID_TIME_OUT || 1949 eh_disp != SUCCESS) 1950 return eh_disp; 1951 1952 /* 1953 * The device has timed out executing a medium access command. 1954 * However, the TEST UNIT READY command sent during error 1955 * handling completed successfully. Either the device is in the 1956 * process of recovering or has it suffered an internal failure 1957 * that prevents access to the storage medium. 1958 */ 1959 if (!sdkp->ignore_medium_access_errors) { 1960 sdkp->medium_access_timed_out++; 1961 sdkp->ignore_medium_access_errors = true; 1962 } 1963 1964 /* 1965 * If the device keeps failing read/write commands but TEST UNIT 1966 * READY always completes successfully we assume that medium 1967 * access is no longer possible and take the device offline. 1968 */ 1969 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1970 scmd_printk(KERN_ERR, scmd, 1971 "Medium access timeout failure. Offlining disk!\n"); 1972 mutex_lock(&sdev->state_mutex); 1973 scsi_device_set_state(sdev, SDEV_OFFLINE); 1974 mutex_unlock(&sdev->state_mutex); 1975 1976 return SUCCESS; 1977 } 1978 1979 return eh_disp; 1980 } 1981 1982 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1983 { 1984 struct request *req = scmd->request; 1985 struct scsi_device *sdev = scmd->device; 1986 unsigned int transferred, good_bytes; 1987 u64 start_lba, end_lba, bad_lba; 1988 1989 /* 1990 * Some commands have a payload smaller than the device logical 1991 * block size (e.g. INQUIRY on a 4K disk). 1992 */ 1993 if (scsi_bufflen(scmd) <= sdev->sector_size) 1994 return 0; 1995 1996 /* Check if we have a 'bad_lba' information */ 1997 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1998 SCSI_SENSE_BUFFERSIZE, 1999 &bad_lba)) 2000 return 0; 2001 2002 /* 2003 * If the bad lba was reported incorrectly, we have no idea where 2004 * the error is. 2005 */ 2006 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2007 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2008 if (bad_lba < start_lba || bad_lba >= end_lba) 2009 return 0; 2010 2011 /* 2012 * resid is optional but mostly filled in. When it's unused, 2013 * its value is zero, so we assume the whole buffer transferred 2014 */ 2015 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2016 2017 /* This computation should always be done in terms of the 2018 * resolution of the device's medium. 2019 */ 2020 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2021 2022 return min(good_bytes, transferred); 2023 } 2024 2025 /** 2026 * sd_done - bottom half handler: called when the lower level 2027 * driver has completed (successfully or otherwise) a scsi command. 2028 * @SCpnt: mid-level's per command structure. 2029 * 2030 * Note: potentially run from within an ISR. Must not block. 2031 **/ 2032 static int sd_done(struct scsi_cmnd *SCpnt) 2033 { 2034 int result = SCpnt->result; 2035 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2036 unsigned int sector_size = SCpnt->device->sector_size; 2037 unsigned int resid; 2038 struct scsi_sense_hdr sshdr; 2039 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 2040 struct request *req = SCpnt->request; 2041 int sense_valid = 0; 2042 int sense_deferred = 0; 2043 2044 switch (req_op(req)) { 2045 case REQ_OP_DISCARD: 2046 case REQ_OP_WRITE_ZEROES: 2047 case REQ_OP_WRITE_SAME: 2048 case REQ_OP_ZONE_RESET: 2049 case REQ_OP_ZONE_RESET_ALL: 2050 case REQ_OP_ZONE_OPEN: 2051 case REQ_OP_ZONE_CLOSE: 2052 case REQ_OP_ZONE_FINISH: 2053 if (!result) { 2054 good_bytes = blk_rq_bytes(req); 2055 scsi_set_resid(SCpnt, 0); 2056 } else { 2057 good_bytes = 0; 2058 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2059 } 2060 break; 2061 default: 2062 /* 2063 * In case of bogus fw or device, we could end up having 2064 * an unaligned partial completion. Check this here and force 2065 * alignment. 2066 */ 2067 resid = scsi_get_resid(SCpnt); 2068 if (resid & (sector_size - 1)) { 2069 sd_printk(KERN_INFO, sdkp, 2070 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2071 resid, sector_size); 2072 scsi_print_command(SCpnt); 2073 resid = min(scsi_bufflen(SCpnt), 2074 round_up(resid, sector_size)); 2075 scsi_set_resid(SCpnt, resid); 2076 } 2077 } 2078 2079 if (result) { 2080 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2081 if (sense_valid) 2082 sense_deferred = scsi_sense_is_deferred(&sshdr); 2083 } 2084 sdkp->medium_access_timed_out = 0; 2085 2086 if (!scsi_status_is_check_condition(result) && 2087 (!sense_valid || sense_deferred)) 2088 goto out; 2089 2090 switch (sshdr.sense_key) { 2091 case HARDWARE_ERROR: 2092 case MEDIUM_ERROR: 2093 good_bytes = sd_completed_bytes(SCpnt); 2094 break; 2095 case RECOVERED_ERROR: 2096 good_bytes = scsi_bufflen(SCpnt); 2097 break; 2098 case NO_SENSE: 2099 /* This indicates a false check condition, so ignore it. An 2100 * unknown amount of data was transferred so treat it as an 2101 * error. 2102 */ 2103 SCpnt->result = 0; 2104 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2105 break; 2106 case ABORTED_COMMAND: 2107 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2108 good_bytes = sd_completed_bytes(SCpnt); 2109 break; 2110 case ILLEGAL_REQUEST: 2111 switch (sshdr.asc) { 2112 case 0x10: /* DIX: Host detected corruption */ 2113 good_bytes = sd_completed_bytes(SCpnt); 2114 break; 2115 case 0x20: /* INVALID COMMAND OPCODE */ 2116 case 0x24: /* INVALID FIELD IN CDB */ 2117 switch (SCpnt->cmnd[0]) { 2118 case UNMAP: 2119 sd_config_discard(sdkp, SD_LBP_DISABLE); 2120 break; 2121 case WRITE_SAME_16: 2122 case WRITE_SAME: 2123 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2124 sd_config_discard(sdkp, SD_LBP_DISABLE); 2125 } else { 2126 sdkp->device->no_write_same = 1; 2127 sd_config_write_same(sdkp); 2128 req->rq_flags |= RQF_QUIET; 2129 } 2130 break; 2131 } 2132 } 2133 break; 2134 default: 2135 break; 2136 } 2137 2138 out: 2139 if (sd_is_zoned(sdkp)) 2140 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2141 2142 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2143 "sd_done: completed %d of %d bytes\n", 2144 good_bytes, scsi_bufflen(SCpnt))); 2145 2146 return good_bytes; 2147 } 2148 2149 /* 2150 * spinup disk - called only in sd_revalidate_disk() 2151 */ 2152 static void 2153 sd_spinup_disk(struct scsi_disk *sdkp) 2154 { 2155 unsigned char cmd[10]; 2156 unsigned long spintime_expire = 0; 2157 int retries, spintime; 2158 unsigned int the_result; 2159 struct scsi_sense_hdr sshdr; 2160 int sense_valid = 0; 2161 2162 spintime = 0; 2163 2164 /* Spin up drives, as required. Only do this at boot time */ 2165 /* Spinup needs to be done for module loads too. */ 2166 do { 2167 retries = 0; 2168 2169 do { 2170 cmd[0] = TEST_UNIT_READY; 2171 memset((void *) &cmd[1], 0, 9); 2172 2173 the_result = scsi_execute_req(sdkp->device, cmd, 2174 DMA_NONE, NULL, 0, 2175 &sshdr, SD_TIMEOUT, 2176 sdkp->max_retries, NULL); 2177 2178 /* 2179 * If the drive has indicated to us that it 2180 * doesn't have any media in it, don't bother 2181 * with any more polling. 2182 */ 2183 if (media_not_present(sdkp, &sshdr)) 2184 return; 2185 2186 if (the_result) 2187 sense_valid = scsi_sense_valid(&sshdr); 2188 retries++; 2189 } while (retries < 3 && 2190 (!scsi_status_is_good(the_result) || 2191 (scsi_status_is_check_condition(the_result) && 2192 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2193 2194 if (!scsi_status_is_check_condition(the_result)) { 2195 /* no sense, TUR either succeeded or failed 2196 * with a status error */ 2197 if(!spintime && !scsi_status_is_good(the_result)) { 2198 sd_print_result(sdkp, "Test Unit Ready failed", 2199 the_result); 2200 } 2201 break; 2202 } 2203 2204 /* 2205 * The device does not want the automatic start to be issued. 2206 */ 2207 if (sdkp->device->no_start_on_add) 2208 break; 2209 2210 if (sense_valid && sshdr.sense_key == NOT_READY) { 2211 if (sshdr.asc == 4 && sshdr.ascq == 3) 2212 break; /* manual intervention required */ 2213 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2214 break; /* standby */ 2215 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2216 break; /* unavailable */ 2217 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2218 break; /* sanitize in progress */ 2219 /* 2220 * Issue command to spin up drive when not ready 2221 */ 2222 if (!spintime) { 2223 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2224 cmd[0] = START_STOP; 2225 cmd[1] = 1; /* Return immediately */ 2226 memset((void *) &cmd[2], 0, 8); 2227 cmd[4] = 1; /* Start spin cycle */ 2228 if (sdkp->device->start_stop_pwr_cond) 2229 cmd[4] |= 1 << 4; 2230 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2231 NULL, 0, &sshdr, 2232 SD_TIMEOUT, sdkp->max_retries, 2233 NULL); 2234 spintime_expire = jiffies + 100 * HZ; 2235 spintime = 1; 2236 } 2237 /* Wait 1 second for next try */ 2238 msleep(1000); 2239 printk(KERN_CONT "."); 2240 2241 /* 2242 * Wait for USB flash devices with slow firmware. 2243 * Yes, this sense key/ASC combination shouldn't 2244 * occur here. It's characteristic of these devices. 2245 */ 2246 } else if (sense_valid && 2247 sshdr.sense_key == UNIT_ATTENTION && 2248 sshdr.asc == 0x28) { 2249 if (!spintime) { 2250 spintime_expire = jiffies + 5 * HZ; 2251 spintime = 1; 2252 } 2253 /* Wait 1 second for next try */ 2254 msleep(1000); 2255 } else { 2256 /* we don't understand the sense code, so it's 2257 * probably pointless to loop */ 2258 if(!spintime) { 2259 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2260 sd_print_sense_hdr(sdkp, &sshdr); 2261 } 2262 break; 2263 } 2264 2265 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2266 2267 if (spintime) { 2268 if (scsi_status_is_good(the_result)) 2269 printk(KERN_CONT "ready\n"); 2270 else 2271 printk(KERN_CONT "not responding...\n"); 2272 } 2273 } 2274 2275 /* 2276 * Determine whether disk supports Data Integrity Field. 2277 */ 2278 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2279 { 2280 struct scsi_device *sdp = sdkp->device; 2281 u8 type; 2282 int ret = 0; 2283 2284 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2285 sdkp->protection_type = 0; 2286 return ret; 2287 } 2288 2289 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2290 2291 if (type > T10_PI_TYPE3_PROTECTION) 2292 ret = -ENODEV; 2293 else if (scsi_host_dif_capable(sdp->host, type)) 2294 ret = 1; 2295 2296 if (sdkp->first_scan || type != sdkp->protection_type) 2297 switch (ret) { 2298 case -ENODEV: 2299 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2300 " protection type %u. Disabling disk!\n", 2301 type); 2302 break; 2303 case 1: 2304 sd_printk(KERN_NOTICE, sdkp, 2305 "Enabling DIF Type %u protection\n", type); 2306 break; 2307 case 0: 2308 sd_printk(KERN_NOTICE, sdkp, 2309 "Disabling DIF Type %u protection\n", type); 2310 break; 2311 } 2312 2313 sdkp->protection_type = type; 2314 2315 return ret; 2316 } 2317 2318 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2319 struct scsi_sense_hdr *sshdr, int sense_valid, 2320 int the_result) 2321 { 2322 if (sense_valid) 2323 sd_print_sense_hdr(sdkp, sshdr); 2324 else 2325 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2326 2327 /* 2328 * Set dirty bit for removable devices if not ready - 2329 * sometimes drives will not report this properly. 2330 */ 2331 if (sdp->removable && 2332 sense_valid && sshdr->sense_key == NOT_READY) 2333 set_media_not_present(sdkp); 2334 2335 /* 2336 * We used to set media_present to 0 here to indicate no media 2337 * in the drive, but some drives fail read capacity even with 2338 * media present, so we can't do that. 2339 */ 2340 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2341 } 2342 2343 #define RC16_LEN 32 2344 #if RC16_LEN > SD_BUF_SIZE 2345 #error RC16_LEN must not be more than SD_BUF_SIZE 2346 #endif 2347 2348 #define READ_CAPACITY_RETRIES_ON_RESET 10 2349 2350 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2351 unsigned char *buffer) 2352 { 2353 unsigned char cmd[16]; 2354 struct scsi_sense_hdr sshdr; 2355 int sense_valid = 0; 2356 int the_result; 2357 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2358 unsigned int alignment; 2359 unsigned long long lba; 2360 unsigned sector_size; 2361 2362 if (sdp->no_read_capacity_16) 2363 return -EINVAL; 2364 2365 do { 2366 memset(cmd, 0, 16); 2367 cmd[0] = SERVICE_ACTION_IN_16; 2368 cmd[1] = SAI_READ_CAPACITY_16; 2369 cmd[13] = RC16_LEN; 2370 memset(buffer, 0, RC16_LEN); 2371 2372 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2373 buffer, RC16_LEN, &sshdr, 2374 SD_TIMEOUT, sdkp->max_retries, NULL); 2375 2376 if (media_not_present(sdkp, &sshdr)) 2377 return -ENODEV; 2378 2379 if (the_result > 0) { 2380 sense_valid = scsi_sense_valid(&sshdr); 2381 if (sense_valid && 2382 sshdr.sense_key == ILLEGAL_REQUEST && 2383 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2384 sshdr.ascq == 0x00) 2385 /* Invalid Command Operation Code or 2386 * Invalid Field in CDB, just retry 2387 * silently with RC10 */ 2388 return -EINVAL; 2389 if (sense_valid && 2390 sshdr.sense_key == UNIT_ATTENTION && 2391 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2392 /* Device reset might occur several times, 2393 * give it one more chance */ 2394 if (--reset_retries > 0) 2395 continue; 2396 } 2397 retries--; 2398 2399 } while (the_result && retries); 2400 2401 if (the_result) { 2402 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2403 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2404 return -EINVAL; 2405 } 2406 2407 sector_size = get_unaligned_be32(&buffer[8]); 2408 lba = get_unaligned_be64(&buffer[0]); 2409 2410 if (sd_read_protection_type(sdkp, buffer) < 0) { 2411 sdkp->capacity = 0; 2412 return -ENODEV; 2413 } 2414 2415 /* Logical blocks per physical block exponent */ 2416 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2417 2418 /* RC basis */ 2419 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2420 2421 /* Lowest aligned logical block */ 2422 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2423 blk_queue_alignment_offset(sdp->request_queue, alignment); 2424 if (alignment && sdkp->first_scan) 2425 sd_printk(KERN_NOTICE, sdkp, 2426 "physical block alignment offset: %u\n", alignment); 2427 2428 if (buffer[14] & 0x80) { /* LBPME */ 2429 sdkp->lbpme = 1; 2430 2431 if (buffer[14] & 0x40) /* LBPRZ */ 2432 sdkp->lbprz = 1; 2433 2434 sd_config_discard(sdkp, SD_LBP_WS16); 2435 } 2436 2437 sdkp->capacity = lba + 1; 2438 return sector_size; 2439 } 2440 2441 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2442 unsigned char *buffer) 2443 { 2444 unsigned char cmd[16]; 2445 struct scsi_sense_hdr sshdr; 2446 int sense_valid = 0; 2447 int the_result; 2448 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2449 sector_t lba; 2450 unsigned sector_size; 2451 2452 do { 2453 cmd[0] = READ_CAPACITY; 2454 memset(&cmd[1], 0, 9); 2455 memset(buffer, 0, 8); 2456 2457 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2458 buffer, 8, &sshdr, 2459 SD_TIMEOUT, sdkp->max_retries, NULL); 2460 2461 if (media_not_present(sdkp, &sshdr)) 2462 return -ENODEV; 2463 2464 if (the_result > 0) { 2465 sense_valid = scsi_sense_valid(&sshdr); 2466 if (sense_valid && 2467 sshdr.sense_key == UNIT_ATTENTION && 2468 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2469 /* Device reset might occur several times, 2470 * give it one more chance */ 2471 if (--reset_retries > 0) 2472 continue; 2473 } 2474 retries--; 2475 2476 } while (the_result && retries); 2477 2478 if (the_result) { 2479 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2480 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2481 return -EINVAL; 2482 } 2483 2484 sector_size = get_unaligned_be32(&buffer[4]); 2485 lba = get_unaligned_be32(&buffer[0]); 2486 2487 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2488 /* Some buggy (usb cardreader) devices return an lba of 2489 0xffffffff when the want to report a size of 0 (with 2490 which they really mean no media is present) */ 2491 sdkp->capacity = 0; 2492 sdkp->physical_block_size = sector_size; 2493 return sector_size; 2494 } 2495 2496 sdkp->capacity = lba + 1; 2497 sdkp->physical_block_size = sector_size; 2498 return sector_size; 2499 } 2500 2501 static int sd_try_rc16_first(struct scsi_device *sdp) 2502 { 2503 if (sdp->host->max_cmd_len < 16) 2504 return 0; 2505 if (sdp->try_rc_10_first) 2506 return 0; 2507 if (sdp->scsi_level > SCSI_SPC_2) 2508 return 1; 2509 if (scsi_device_protection(sdp)) 2510 return 1; 2511 return 0; 2512 } 2513 2514 /* 2515 * read disk capacity 2516 */ 2517 static void 2518 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2519 { 2520 int sector_size; 2521 struct scsi_device *sdp = sdkp->device; 2522 2523 if (sd_try_rc16_first(sdp)) { 2524 sector_size = read_capacity_16(sdkp, sdp, buffer); 2525 if (sector_size == -EOVERFLOW) 2526 goto got_data; 2527 if (sector_size == -ENODEV) 2528 return; 2529 if (sector_size < 0) 2530 sector_size = read_capacity_10(sdkp, sdp, buffer); 2531 if (sector_size < 0) 2532 return; 2533 } else { 2534 sector_size = read_capacity_10(sdkp, sdp, buffer); 2535 if (sector_size == -EOVERFLOW) 2536 goto got_data; 2537 if (sector_size < 0) 2538 return; 2539 if ((sizeof(sdkp->capacity) > 4) && 2540 (sdkp->capacity > 0xffffffffULL)) { 2541 int old_sector_size = sector_size; 2542 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2543 "Trying to use READ CAPACITY(16).\n"); 2544 sector_size = read_capacity_16(sdkp, sdp, buffer); 2545 if (sector_size < 0) { 2546 sd_printk(KERN_NOTICE, sdkp, 2547 "Using 0xffffffff as device size\n"); 2548 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2549 sector_size = old_sector_size; 2550 goto got_data; 2551 } 2552 /* Remember that READ CAPACITY(16) succeeded */ 2553 sdp->try_rc_10_first = 0; 2554 } 2555 } 2556 2557 /* Some devices are known to return the total number of blocks, 2558 * not the highest block number. Some devices have versions 2559 * which do this and others which do not. Some devices we might 2560 * suspect of doing this but we don't know for certain. 2561 * 2562 * If we know the reported capacity is wrong, decrement it. If 2563 * we can only guess, then assume the number of blocks is even 2564 * (usually true but not always) and err on the side of lowering 2565 * the capacity. 2566 */ 2567 if (sdp->fix_capacity || 2568 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2569 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2570 "from its reported value: %llu\n", 2571 (unsigned long long) sdkp->capacity); 2572 --sdkp->capacity; 2573 } 2574 2575 got_data: 2576 if (sector_size == 0) { 2577 sector_size = 512; 2578 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2579 "assuming 512.\n"); 2580 } 2581 2582 if (sector_size != 512 && 2583 sector_size != 1024 && 2584 sector_size != 2048 && 2585 sector_size != 4096) { 2586 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2587 sector_size); 2588 /* 2589 * The user might want to re-format the drive with 2590 * a supported sectorsize. Once this happens, it 2591 * would be relatively trivial to set the thing up. 2592 * For this reason, we leave the thing in the table. 2593 */ 2594 sdkp->capacity = 0; 2595 /* 2596 * set a bogus sector size so the normal read/write 2597 * logic in the block layer will eventually refuse any 2598 * request on this device without tripping over power 2599 * of two sector size assumptions 2600 */ 2601 sector_size = 512; 2602 } 2603 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2604 blk_queue_physical_block_size(sdp->request_queue, 2605 sdkp->physical_block_size); 2606 sdkp->device->sector_size = sector_size; 2607 2608 if (sdkp->capacity > 0xffffffff) 2609 sdp->use_16_for_rw = 1; 2610 2611 } 2612 2613 /* 2614 * Print disk capacity 2615 */ 2616 static void 2617 sd_print_capacity(struct scsi_disk *sdkp, 2618 sector_t old_capacity) 2619 { 2620 int sector_size = sdkp->device->sector_size; 2621 char cap_str_2[10], cap_str_10[10]; 2622 2623 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2624 return; 2625 2626 string_get_size(sdkp->capacity, sector_size, 2627 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2628 string_get_size(sdkp->capacity, sector_size, 2629 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2630 2631 sd_printk(KERN_NOTICE, sdkp, 2632 "%llu %d-byte logical blocks: (%s/%s)\n", 2633 (unsigned long long)sdkp->capacity, 2634 sector_size, cap_str_10, cap_str_2); 2635 2636 if (sdkp->physical_block_size != sector_size) 2637 sd_printk(KERN_NOTICE, sdkp, 2638 "%u-byte physical blocks\n", 2639 sdkp->physical_block_size); 2640 } 2641 2642 /* called with buffer of length 512 */ 2643 static inline int 2644 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2645 unsigned char *buffer, int len, struct scsi_mode_data *data, 2646 struct scsi_sense_hdr *sshdr) 2647 { 2648 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2649 SD_TIMEOUT, sdkp->max_retries, data, 2650 sshdr); 2651 } 2652 2653 /* 2654 * read write protect setting, if possible - called only in sd_revalidate_disk() 2655 * called with buffer of length SD_BUF_SIZE 2656 */ 2657 static void 2658 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2659 { 2660 int res; 2661 struct scsi_device *sdp = sdkp->device; 2662 struct scsi_mode_data data; 2663 int old_wp = sdkp->write_prot; 2664 2665 set_disk_ro(sdkp->disk, 0); 2666 if (sdp->skip_ms_page_3f) { 2667 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2668 return; 2669 } 2670 2671 if (sdp->use_192_bytes_for_3f) { 2672 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2673 } else { 2674 /* 2675 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2676 * We have to start carefully: some devices hang if we ask 2677 * for more than is available. 2678 */ 2679 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2680 2681 /* 2682 * Second attempt: ask for page 0 When only page 0 is 2683 * implemented, a request for page 3F may return Sense Key 2684 * 5: Illegal Request, Sense Code 24: Invalid field in 2685 * CDB. 2686 */ 2687 if (res < 0) 2688 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2689 2690 /* 2691 * Third attempt: ask 255 bytes, as we did earlier. 2692 */ 2693 if (res < 0) 2694 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2695 &data, NULL); 2696 } 2697 2698 if (res < 0) { 2699 sd_first_printk(KERN_WARNING, sdkp, 2700 "Test WP failed, assume Write Enabled\n"); 2701 } else { 2702 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2703 set_disk_ro(sdkp->disk, sdkp->write_prot); 2704 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2705 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2706 sdkp->write_prot ? "on" : "off"); 2707 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2708 } 2709 } 2710 } 2711 2712 /* 2713 * sd_read_cache_type - called only from sd_revalidate_disk() 2714 * called with buffer of length SD_BUF_SIZE 2715 */ 2716 static void 2717 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2718 { 2719 int len = 0, res; 2720 struct scsi_device *sdp = sdkp->device; 2721 2722 int dbd; 2723 int modepage; 2724 int first_len; 2725 struct scsi_mode_data data; 2726 struct scsi_sense_hdr sshdr; 2727 int old_wce = sdkp->WCE; 2728 int old_rcd = sdkp->RCD; 2729 int old_dpofua = sdkp->DPOFUA; 2730 2731 2732 if (sdkp->cache_override) 2733 return; 2734 2735 first_len = 4; 2736 if (sdp->skip_ms_page_8) { 2737 if (sdp->type == TYPE_RBC) 2738 goto defaults; 2739 else { 2740 if (sdp->skip_ms_page_3f) 2741 goto defaults; 2742 modepage = 0x3F; 2743 if (sdp->use_192_bytes_for_3f) 2744 first_len = 192; 2745 dbd = 0; 2746 } 2747 } else if (sdp->type == TYPE_RBC) { 2748 modepage = 6; 2749 dbd = 8; 2750 } else { 2751 modepage = 8; 2752 dbd = 0; 2753 } 2754 2755 /* cautiously ask */ 2756 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2757 &data, &sshdr); 2758 2759 if (res < 0) 2760 goto bad_sense; 2761 2762 if (!data.header_length) { 2763 modepage = 6; 2764 first_len = 0; 2765 sd_first_printk(KERN_ERR, sdkp, 2766 "Missing header in MODE_SENSE response\n"); 2767 } 2768 2769 /* that went OK, now ask for the proper length */ 2770 len = data.length; 2771 2772 /* 2773 * We're only interested in the first three bytes, actually. 2774 * But the data cache page is defined for the first 20. 2775 */ 2776 if (len < 3) 2777 goto bad_sense; 2778 else if (len > SD_BUF_SIZE) { 2779 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2780 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2781 len = SD_BUF_SIZE; 2782 } 2783 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2784 len = 192; 2785 2786 /* Get the data */ 2787 if (len > first_len) 2788 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2789 &data, &sshdr); 2790 2791 if (!res) { 2792 int offset = data.header_length + data.block_descriptor_length; 2793 2794 while (offset < len) { 2795 u8 page_code = buffer[offset] & 0x3F; 2796 u8 spf = buffer[offset] & 0x40; 2797 2798 if (page_code == 8 || page_code == 6) { 2799 /* We're interested only in the first 3 bytes. 2800 */ 2801 if (len - offset <= 2) { 2802 sd_first_printk(KERN_ERR, sdkp, 2803 "Incomplete mode parameter " 2804 "data\n"); 2805 goto defaults; 2806 } else { 2807 modepage = page_code; 2808 goto Page_found; 2809 } 2810 } else { 2811 /* Go to the next page */ 2812 if (spf && len - offset > 3) 2813 offset += 4 + (buffer[offset+2] << 8) + 2814 buffer[offset+3]; 2815 else if (!spf && len - offset > 1) 2816 offset += 2 + buffer[offset+1]; 2817 else { 2818 sd_first_printk(KERN_ERR, sdkp, 2819 "Incomplete mode " 2820 "parameter data\n"); 2821 goto defaults; 2822 } 2823 } 2824 } 2825 2826 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2827 goto defaults; 2828 2829 Page_found: 2830 if (modepage == 8) { 2831 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2832 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2833 } else { 2834 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2835 sdkp->RCD = 0; 2836 } 2837 2838 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2839 if (sdp->broken_fua) { 2840 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2841 sdkp->DPOFUA = 0; 2842 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2843 !sdkp->device->use_16_for_rw) { 2844 sd_first_printk(KERN_NOTICE, sdkp, 2845 "Uses READ/WRITE(6), disabling FUA\n"); 2846 sdkp->DPOFUA = 0; 2847 } 2848 2849 /* No cache flush allowed for write protected devices */ 2850 if (sdkp->WCE && sdkp->write_prot) 2851 sdkp->WCE = 0; 2852 2853 if (sdkp->first_scan || old_wce != sdkp->WCE || 2854 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2855 sd_printk(KERN_NOTICE, sdkp, 2856 "Write cache: %s, read cache: %s, %s\n", 2857 sdkp->WCE ? "enabled" : "disabled", 2858 sdkp->RCD ? "disabled" : "enabled", 2859 sdkp->DPOFUA ? "supports DPO and FUA" 2860 : "doesn't support DPO or FUA"); 2861 2862 return; 2863 } 2864 2865 bad_sense: 2866 if (scsi_sense_valid(&sshdr) && 2867 sshdr.sense_key == ILLEGAL_REQUEST && 2868 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2869 /* Invalid field in CDB */ 2870 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2871 else 2872 sd_first_printk(KERN_ERR, sdkp, 2873 "Asking for cache data failed\n"); 2874 2875 defaults: 2876 if (sdp->wce_default_on) { 2877 sd_first_printk(KERN_NOTICE, sdkp, 2878 "Assuming drive cache: write back\n"); 2879 sdkp->WCE = 1; 2880 } else { 2881 sd_first_printk(KERN_ERR, sdkp, 2882 "Assuming drive cache: write through\n"); 2883 sdkp->WCE = 0; 2884 } 2885 sdkp->RCD = 0; 2886 sdkp->DPOFUA = 0; 2887 } 2888 2889 /* 2890 * The ATO bit indicates whether the DIF application tag is available 2891 * for use by the operating system. 2892 */ 2893 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2894 { 2895 int res, offset; 2896 struct scsi_device *sdp = sdkp->device; 2897 struct scsi_mode_data data; 2898 struct scsi_sense_hdr sshdr; 2899 2900 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2901 return; 2902 2903 if (sdkp->protection_type == 0) 2904 return; 2905 2906 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2907 sdkp->max_retries, &data, &sshdr); 2908 2909 if (res < 0 || !data.header_length || 2910 data.length < 6) { 2911 sd_first_printk(KERN_WARNING, sdkp, 2912 "getting Control mode page failed, assume no ATO\n"); 2913 2914 if (scsi_sense_valid(&sshdr)) 2915 sd_print_sense_hdr(sdkp, &sshdr); 2916 2917 return; 2918 } 2919 2920 offset = data.header_length + data.block_descriptor_length; 2921 2922 if ((buffer[offset] & 0x3f) != 0x0a) { 2923 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2924 return; 2925 } 2926 2927 if ((buffer[offset + 5] & 0x80) == 0) 2928 return; 2929 2930 sdkp->ATO = 1; 2931 2932 return; 2933 } 2934 2935 /** 2936 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2937 * @sdkp: disk to query 2938 */ 2939 static void sd_read_block_limits(struct scsi_disk *sdkp) 2940 { 2941 unsigned int sector_sz = sdkp->device->sector_size; 2942 const int vpd_len = 64; 2943 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2944 2945 if (!buffer || 2946 /* Block Limits VPD */ 2947 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2948 goto out; 2949 2950 blk_queue_io_min(sdkp->disk->queue, 2951 get_unaligned_be16(&buffer[6]) * sector_sz); 2952 2953 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2954 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2955 2956 if (buffer[3] == 0x3c) { 2957 unsigned int lba_count, desc_count; 2958 2959 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2960 2961 if (!sdkp->lbpme) 2962 goto out; 2963 2964 lba_count = get_unaligned_be32(&buffer[20]); 2965 desc_count = get_unaligned_be32(&buffer[24]); 2966 2967 if (lba_count && desc_count) 2968 sdkp->max_unmap_blocks = lba_count; 2969 2970 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2971 2972 if (buffer[32] & 0x80) 2973 sdkp->unmap_alignment = 2974 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2975 2976 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2977 2978 if (sdkp->max_unmap_blocks) 2979 sd_config_discard(sdkp, SD_LBP_UNMAP); 2980 else 2981 sd_config_discard(sdkp, SD_LBP_WS16); 2982 2983 } else { /* LBP VPD page tells us what to use */ 2984 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2985 sd_config_discard(sdkp, SD_LBP_UNMAP); 2986 else if (sdkp->lbpws) 2987 sd_config_discard(sdkp, SD_LBP_WS16); 2988 else if (sdkp->lbpws10) 2989 sd_config_discard(sdkp, SD_LBP_WS10); 2990 else 2991 sd_config_discard(sdkp, SD_LBP_DISABLE); 2992 } 2993 } 2994 2995 out: 2996 kfree(buffer); 2997 } 2998 2999 /** 3000 * sd_read_block_characteristics - Query block dev. characteristics 3001 * @sdkp: disk to query 3002 */ 3003 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3004 { 3005 struct request_queue *q = sdkp->disk->queue; 3006 unsigned char *buffer; 3007 u16 rot; 3008 const int vpd_len = 64; 3009 3010 buffer = kmalloc(vpd_len, GFP_KERNEL); 3011 3012 if (!buffer || 3013 /* Block Device Characteristics VPD */ 3014 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 3015 goto out; 3016 3017 rot = get_unaligned_be16(&buffer[4]); 3018 3019 if (rot == 1) { 3020 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3021 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3022 } 3023 3024 if (sdkp->device->type == TYPE_ZBC) { 3025 /* Host-managed */ 3026 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 3027 } else { 3028 sdkp->zoned = (buffer[8] >> 4) & 3; 3029 if (sdkp->zoned == 1) { 3030 /* Host-aware */ 3031 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 3032 } else { 3033 /* Regular disk or drive managed disk */ 3034 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3035 } 3036 } 3037 3038 if (!sdkp->first_scan) 3039 goto out; 3040 3041 if (blk_queue_is_zoned(q)) { 3042 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3043 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3044 } else { 3045 if (sdkp->zoned == 1) 3046 sd_printk(KERN_NOTICE, sdkp, 3047 "Host-aware SMR disk used as regular disk\n"); 3048 else if (sdkp->zoned == 2) 3049 sd_printk(KERN_NOTICE, sdkp, 3050 "Drive-managed SMR disk\n"); 3051 } 3052 3053 out: 3054 kfree(buffer); 3055 } 3056 3057 /** 3058 * sd_read_block_provisioning - Query provisioning VPD page 3059 * @sdkp: disk to query 3060 */ 3061 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3062 { 3063 unsigned char *buffer; 3064 const int vpd_len = 8; 3065 3066 if (sdkp->lbpme == 0) 3067 return; 3068 3069 buffer = kmalloc(vpd_len, GFP_KERNEL); 3070 3071 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3072 goto out; 3073 3074 sdkp->lbpvpd = 1; 3075 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3076 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3077 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3078 3079 out: 3080 kfree(buffer); 3081 } 3082 3083 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3084 { 3085 struct scsi_device *sdev = sdkp->device; 3086 3087 if (sdev->host->no_write_same) { 3088 sdev->no_write_same = 1; 3089 3090 return; 3091 } 3092 3093 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3094 /* too large values might cause issues with arcmsr */ 3095 int vpd_buf_len = 64; 3096 3097 sdev->no_report_opcodes = 1; 3098 3099 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3100 * CODES is unsupported and the device has an ATA 3101 * Information VPD page (SAT). 3102 */ 3103 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3104 sdev->no_write_same = 1; 3105 } 3106 3107 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3108 sdkp->ws16 = 1; 3109 3110 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3111 sdkp->ws10 = 1; 3112 } 3113 3114 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3115 { 3116 struct scsi_device *sdev = sdkp->device; 3117 3118 if (!sdev->security_supported) 3119 return; 3120 3121 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3122 SECURITY_PROTOCOL_IN) == 1 && 3123 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3124 SECURITY_PROTOCOL_OUT) == 1) 3125 sdkp->security = 1; 3126 } 3127 3128 /* 3129 * Determine the device's preferred I/O size for reads and writes 3130 * unless the reported value is unreasonably small, large, not a 3131 * multiple of the physical block size, or simply garbage. 3132 */ 3133 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3134 unsigned int dev_max) 3135 { 3136 struct scsi_device *sdp = sdkp->device; 3137 unsigned int opt_xfer_bytes = 3138 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3139 3140 if (sdkp->opt_xfer_blocks == 0) 3141 return false; 3142 3143 if (sdkp->opt_xfer_blocks > dev_max) { 3144 sd_first_printk(KERN_WARNING, sdkp, 3145 "Optimal transfer size %u logical blocks " \ 3146 "> dev_max (%u logical blocks)\n", 3147 sdkp->opt_xfer_blocks, dev_max); 3148 return false; 3149 } 3150 3151 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3152 sd_first_printk(KERN_WARNING, sdkp, 3153 "Optimal transfer size %u logical blocks " \ 3154 "> sd driver limit (%u logical blocks)\n", 3155 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3156 return false; 3157 } 3158 3159 if (opt_xfer_bytes < PAGE_SIZE) { 3160 sd_first_printk(KERN_WARNING, sdkp, 3161 "Optimal transfer size %u bytes < " \ 3162 "PAGE_SIZE (%u bytes)\n", 3163 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3164 return false; 3165 } 3166 3167 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3168 sd_first_printk(KERN_WARNING, sdkp, 3169 "Optimal transfer size %u bytes not a " \ 3170 "multiple of physical block size (%u bytes)\n", 3171 opt_xfer_bytes, sdkp->physical_block_size); 3172 return false; 3173 } 3174 3175 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3176 opt_xfer_bytes); 3177 return true; 3178 } 3179 3180 /** 3181 * sd_revalidate_disk - called the first time a new disk is seen, 3182 * performs disk spin up, read_capacity, etc. 3183 * @disk: struct gendisk we care about 3184 **/ 3185 static int sd_revalidate_disk(struct gendisk *disk) 3186 { 3187 struct scsi_disk *sdkp = scsi_disk(disk); 3188 struct scsi_device *sdp = sdkp->device; 3189 struct request_queue *q = sdkp->disk->queue; 3190 sector_t old_capacity = sdkp->capacity; 3191 unsigned char *buffer; 3192 unsigned int dev_max, rw_max; 3193 3194 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3195 "sd_revalidate_disk\n")); 3196 3197 /* 3198 * If the device is offline, don't try and read capacity or any 3199 * of the other niceties. 3200 */ 3201 if (!scsi_device_online(sdp)) 3202 goto out; 3203 3204 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3205 if (!buffer) { 3206 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3207 "allocation failure.\n"); 3208 goto out; 3209 } 3210 3211 sd_spinup_disk(sdkp); 3212 3213 /* 3214 * Without media there is no reason to ask; moreover, some devices 3215 * react badly if we do. 3216 */ 3217 if (sdkp->media_present) { 3218 sd_read_capacity(sdkp, buffer); 3219 3220 /* 3221 * set the default to rotational. All non-rotational devices 3222 * support the block characteristics VPD page, which will 3223 * cause this to be updated correctly and any device which 3224 * doesn't support it should be treated as rotational. 3225 */ 3226 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3227 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3228 3229 if (scsi_device_supports_vpd(sdp)) { 3230 sd_read_block_provisioning(sdkp); 3231 sd_read_block_limits(sdkp); 3232 sd_read_block_characteristics(sdkp); 3233 sd_zbc_read_zones(sdkp, buffer); 3234 } 3235 3236 sd_print_capacity(sdkp, old_capacity); 3237 3238 sd_read_write_protect_flag(sdkp, buffer); 3239 sd_read_cache_type(sdkp, buffer); 3240 sd_read_app_tag_own(sdkp, buffer); 3241 sd_read_write_same(sdkp, buffer); 3242 sd_read_security(sdkp, buffer); 3243 } 3244 3245 /* 3246 * We now have all cache related info, determine how we deal 3247 * with flush requests. 3248 */ 3249 sd_set_flush_flag(sdkp); 3250 3251 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3252 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3253 3254 /* Some devices report a maximum block count for READ/WRITE requests. */ 3255 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3256 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3257 3258 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3259 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3260 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3261 } else { 3262 q->limits.io_opt = 0; 3263 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3264 (sector_t)BLK_DEF_MAX_SECTORS); 3265 } 3266 3267 /* Do not exceed controller limit */ 3268 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3269 3270 /* 3271 * Only update max_sectors if previously unset or if the current value 3272 * exceeds the capabilities of the hardware. 3273 */ 3274 if (sdkp->first_scan || 3275 q->limits.max_sectors > q->limits.max_dev_sectors || 3276 q->limits.max_sectors > q->limits.max_hw_sectors) 3277 q->limits.max_sectors = rw_max; 3278 3279 sdkp->first_scan = 0; 3280 3281 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3282 sd_config_write_same(sdkp); 3283 kfree(buffer); 3284 3285 /* 3286 * For a zoned drive, revalidating the zones can be done only once 3287 * the gendisk capacity is set. So if this fails, set back the gendisk 3288 * capacity to 0. 3289 */ 3290 if (sd_zbc_revalidate_zones(sdkp)) 3291 set_capacity_and_notify(disk, 0); 3292 3293 out: 3294 return 0; 3295 } 3296 3297 /** 3298 * sd_unlock_native_capacity - unlock native capacity 3299 * @disk: struct gendisk to set capacity for 3300 * 3301 * Block layer calls this function if it detects that partitions 3302 * on @disk reach beyond the end of the device. If the SCSI host 3303 * implements ->unlock_native_capacity() method, it's invoked to 3304 * give it a chance to adjust the device capacity. 3305 * 3306 * CONTEXT: 3307 * Defined by block layer. Might sleep. 3308 */ 3309 static void sd_unlock_native_capacity(struct gendisk *disk) 3310 { 3311 struct scsi_device *sdev = scsi_disk(disk)->device; 3312 3313 if (sdev->host->hostt->unlock_native_capacity) 3314 sdev->host->hostt->unlock_native_capacity(sdev); 3315 } 3316 3317 /** 3318 * sd_format_disk_name - format disk name 3319 * @prefix: name prefix - ie. "sd" for SCSI disks 3320 * @index: index of the disk to format name for 3321 * @buf: output buffer 3322 * @buflen: length of the output buffer 3323 * 3324 * SCSI disk names starts at sda. The 26th device is sdz and the 3325 * 27th is sdaa. The last one for two lettered suffix is sdzz 3326 * which is followed by sdaaa. 3327 * 3328 * This is basically 26 base counting with one extra 'nil' entry 3329 * at the beginning from the second digit on and can be 3330 * determined using similar method as 26 base conversion with the 3331 * index shifted -1 after each digit is computed. 3332 * 3333 * CONTEXT: 3334 * Don't care. 3335 * 3336 * RETURNS: 3337 * 0 on success, -errno on failure. 3338 */ 3339 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3340 { 3341 const int base = 'z' - 'a' + 1; 3342 char *begin = buf + strlen(prefix); 3343 char *end = buf + buflen; 3344 char *p; 3345 int unit; 3346 3347 p = end - 1; 3348 *p = '\0'; 3349 unit = base; 3350 do { 3351 if (p == begin) 3352 return -EINVAL; 3353 *--p = 'a' + (index % unit); 3354 index = (index / unit) - 1; 3355 } while (index >= 0); 3356 3357 memmove(begin, p, end - p); 3358 memcpy(buf, prefix, strlen(prefix)); 3359 3360 return 0; 3361 } 3362 3363 /** 3364 * sd_probe - called during driver initialization and whenever a 3365 * new scsi device is attached to the system. It is called once 3366 * for each scsi device (not just disks) present. 3367 * @dev: pointer to device object 3368 * 3369 * Returns 0 if successful (or not interested in this scsi device 3370 * (e.g. scanner)); 1 when there is an error. 3371 * 3372 * Note: this function is invoked from the scsi mid-level. 3373 * This function sets up the mapping between a given 3374 * <host,channel,id,lun> (found in sdp) and new device name 3375 * (e.g. /dev/sda). More precisely it is the block device major 3376 * and minor number that is chosen here. 3377 * 3378 * Assume sd_probe is not re-entrant (for time being) 3379 * Also think about sd_probe() and sd_remove() running coincidentally. 3380 **/ 3381 static int sd_probe(struct device *dev) 3382 { 3383 struct scsi_device *sdp = to_scsi_device(dev); 3384 struct scsi_disk *sdkp; 3385 struct gendisk *gd; 3386 int index; 3387 int error; 3388 3389 scsi_autopm_get_device(sdp); 3390 error = -ENODEV; 3391 if (sdp->type != TYPE_DISK && 3392 sdp->type != TYPE_ZBC && 3393 sdp->type != TYPE_MOD && 3394 sdp->type != TYPE_RBC) 3395 goto out; 3396 3397 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3398 sdev_printk(KERN_WARNING, sdp, 3399 "Unsupported ZBC host-managed device.\n"); 3400 goto out; 3401 } 3402 3403 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3404 "sd_probe\n")); 3405 3406 error = -ENOMEM; 3407 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3408 if (!sdkp) 3409 goto out; 3410 3411 gd = alloc_disk(SD_MINORS); 3412 if (!gd) 3413 goto out_free; 3414 3415 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3416 if (index < 0) { 3417 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3418 goto out_put; 3419 } 3420 3421 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3422 if (error) { 3423 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3424 goto out_free_index; 3425 } 3426 3427 sdkp->device = sdp; 3428 sdkp->driver = &sd_template; 3429 sdkp->disk = gd; 3430 sdkp->index = index; 3431 sdkp->max_retries = SD_MAX_RETRIES; 3432 atomic_set(&sdkp->openers, 0); 3433 atomic_set(&sdkp->device->ioerr_cnt, 0); 3434 3435 if (!sdp->request_queue->rq_timeout) { 3436 if (sdp->type != TYPE_MOD) 3437 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3438 else 3439 blk_queue_rq_timeout(sdp->request_queue, 3440 SD_MOD_TIMEOUT); 3441 } 3442 3443 device_initialize(&sdkp->dev); 3444 sdkp->dev.parent = dev; 3445 sdkp->dev.class = &sd_disk_class; 3446 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3447 3448 error = device_add(&sdkp->dev); 3449 if (error) 3450 goto out_free_index; 3451 3452 get_device(dev); 3453 dev_set_drvdata(dev, sdkp); 3454 3455 gd->major = sd_major((index & 0xf0) >> 4); 3456 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3457 3458 gd->fops = &sd_fops; 3459 gd->private_data = &sdkp->driver; 3460 gd->queue = sdkp->device->request_queue; 3461 3462 /* defaults, until the device tells us otherwise */ 3463 sdp->sector_size = 512; 3464 sdkp->capacity = 0; 3465 sdkp->media_present = 1; 3466 sdkp->write_prot = 0; 3467 sdkp->cache_override = 0; 3468 sdkp->WCE = 0; 3469 sdkp->RCD = 0; 3470 sdkp->ATO = 0; 3471 sdkp->first_scan = 1; 3472 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3473 3474 sd_revalidate_disk(gd); 3475 3476 gd->flags = GENHD_FL_EXT_DEVT; 3477 if (sdp->removable) { 3478 gd->flags |= GENHD_FL_REMOVABLE; 3479 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3480 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3481 } 3482 3483 blk_pm_runtime_init(sdp->request_queue, dev); 3484 if (sdp->rpm_autosuspend) { 3485 pm_runtime_set_autosuspend_delay(dev, 3486 sdp->host->hostt->rpm_autosuspend_delay); 3487 } 3488 device_add_disk(dev, gd, NULL); 3489 if (sdkp->capacity) 3490 sd_dif_config_host(sdkp); 3491 3492 sd_revalidate_disk(gd); 3493 3494 if (sdkp->security) { 3495 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3496 if (sdkp->opal_dev) 3497 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3498 } 3499 3500 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3501 sdp->removable ? "removable " : ""); 3502 scsi_autopm_put_device(sdp); 3503 3504 return 0; 3505 3506 out_free_index: 3507 ida_free(&sd_index_ida, index); 3508 out_put: 3509 put_disk(gd); 3510 out_free: 3511 sd_zbc_release_disk(sdkp); 3512 kfree(sdkp); 3513 out: 3514 scsi_autopm_put_device(sdp); 3515 return error; 3516 } 3517 3518 /** 3519 * sd_remove - called whenever a scsi disk (previously recognized by 3520 * sd_probe) is detached from the system. It is called (potentially 3521 * multiple times) during sd module unload. 3522 * @dev: pointer to device object 3523 * 3524 * Note: this function is invoked from the scsi mid-level. 3525 * This function potentially frees up a device name (e.g. /dev/sdc) 3526 * that could be re-used by a subsequent sd_probe(). 3527 * This function is not called when the built-in sd driver is "exit-ed". 3528 **/ 3529 static int sd_remove(struct device *dev) 3530 { 3531 struct scsi_disk *sdkp; 3532 3533 sdkp = dev_get_drvdata(dev); 3534 scsi_autopm_get_device(sdkp->device); 3535 3536 async_synchronize_full_domain(&scsi_sd_pm_domain); 3537 device_del(&sdkp->dev); 3538 del_gendisk(sdkp->disk); 3539 sd_shutdown(dev); 3540 3541 free_opal_dev(sdkp->opal_dev); 3542 3543 mutex_lock(&sd_ref_mutex); 3544 dev_set_drvdata(dev, NULL); 3545 put_device(&sdkp->dev); 3546 mutex_unlock(&sd_ref_mutex); 3547 3548 return 0; 3549 } 3550 3551 /** 3552 * scsi_disk_release - Called to free the scsi_disk structure 3553 * @dev: pointer to embedded class device 3554 * 3555 * sd_ref_mutex must be held entering this routine. Because it is 3556 * called on last put, you should always use the scsi_disk_get() 3557 * scsi_disk_put() helpers which manipulate the semaphore directly 3558 * and never do a direct put_device. 3559 **/ 3560 static void scsi_disk_release(struct device *dev) 3561 { 3562 struct scsi_disk *sdkp = to_scsi_disk(dev); 3563 struct gendisk *disk = sdkp->disk; 3564 struct request_queue *q = disk->queue; 3565 3566 ida_free(&sd_index_ida, sdkp->index); 3567 3568 /* 3569 * Wait until all requests that are in progress have completed. 3570 * This is necessary to avoid that e.g. scsi_end_request() crashes 3571 * due to clearing the disk->private_data pointer. Wait from inside 3572 * scsi_disk_release() instead of from sd_release() to avoid that 3573 * freezing and unfreezing the request queue affects user space I/O 3574 * in case multiple processes open a /dev/sd... node concurrently. 3575 */ 3576 blk_mq_freeze_queue(q); 3577 blk_mq_unfreeze_queue(q); 3578 3579 disk->private_data = NULL; 3580 put_disk(disk); 3581 put_device(&sdkp->device->sdev_gendev); 3582 3583 sd_zbc_release_disk(sdkp); 3584 3585 kfree(sdkp); 3586 } 3587 3588 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3589 { 3590 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3591 struct scsi_sense_hdr sshdr; 3592 struct scsi_device *sdp = sdkp->device; 3593 int res; 3594 3595 if (start) 3596 cmd[4] |= 1; /* START */ 3597 3598 if (sdp->start_stop_pwr_cond) 3599 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3600 3601 if (!scsi_device_online(sdp)) 3602 return -ENODEV; 3603 3604 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3605 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3606 if (res) { 3607 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3608 if (res > 0 && scsi_sense_valid(&sshdr)) { 3609 sd_print_sense_hdr(sdkp, &sshdr); 3610 /* 0x3a is medium not present */ 3611 if (sshdr.asc == 0x3a) 3612 res = 0; 3613 } 3614 } 3615 3616 /* SCSI error codes must not go to the generic layer */ 3617 if (res) 3618 return -EIO; 3619 3620 return 0; 3621 } 3622 3623 /* 3624 * Send a SYNCHRONIZE CACHE instruction down to the device through 3625 * the normal SCSI command structure. Wait for the command to 3626 * complete. 3627 */ 3628 static void sd_shutdown(struct device *dev) 3629 { 3630 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3631 3632 if (!sdkp) 3633 return; /* this can happen */ 3634 3635 if (pm_runtime_suspended(dev)) 3636 return; 3637 3638 if (sdkp->WCE && sdkp->media_present) { 3639 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3640 sd_sync_cache(sdkp, NULL); 3641 } 3642 3643 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3644 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3645 sd_start_stop_device(sdkp, 0); 3646 } 3647 } 3648 3649 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3650 { 3651 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3652 struct scsi_sense_hdr sshdr; 3653 int ret = 0; 3654 3655 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3656 return 0; 3657 3658 if (sdkp->WCE && sdkp->media_present) { 3659 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3660 ret = sd_sync_cache(sdkp, &sshdr); 3661 3662 if (ret) { 3663 /* ignore OFFLINE device */ 3664 if (ret == -ENODEV) 3665 return 0; 3666 3667 if (!scsi_sense_valid(&sshdr) || 3668 sshdr.sense_key != ILLEGAL_REQUEST) 3669 return ret; 3670 3671 /* 3672 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3673 * doesn't support sync. There's not much to do and 3674 * suspend shouldn't fail. 3675 */ 3676 ret = 0; 3677 } 3678 } 3679 3680 if (sdkp->device->manage_start_stop) { 3681 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3682 /* an error is not worth aborting a system sleep */ 3683 ret = sd_start_stop_device(sdkp, 0); 3684 if (ignore_stop_errors) 3685 ret = 0; 3686 } 3687 3688 return ret; 3689 } 3690 3691 static int sd_suspend_system(struct device *dev) 3692 { 3693 return sd_suspend_common(dev, true); 3694 } 3695 3696 static int sd_suspend_runtime(struct device *dev) 3697 { 3698 return sd_suspend_common(dev, false); 3699 } 3700 3701 static int sd_resume(struct device *dev) 3702 { 3703 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3704 int ret; 3705 3706 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3707 return 0; 3708 3709 if (!sdkp->device->manage_start_stop) 3710 return 0; 3711 3712 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3713 ret = sd_start_stop_device(sdkp, 1); 3714 if (!ret) 3715 opal_unlock_from_suspend(sdkp->opal_dev); 3716 return ret; 3717 } 3718 3719 /** 3720 * init_sd - entry point for this driver (both when built in or when 3721 * a module). 3722 * 3723 * Note: this function registers this driver with the scsi mid-level. 3724 **/ 3725 static int __init init_sd(void) 3726 { 3727 int majors = 0, i, err; 3728 3729 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3730 3731 for (i = 0; i < SD_MAJORS; i++) { 3732 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3733 continue; 3734 majors++; 3735 } 3736 3737 if (!majors) 3738 return -ENODEV; 3739 3740 err = class_register(&sd_disk_class); 3741 if (err) 3742 goto err_out; 3743 3744 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3745 0, 0, NULL); 3746 if (!sd_cdb_cache) { 3747 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3748 err = -ENOMEM; 3749 goto err_out_class; 3750 } 3751 3752 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3753 if (!sd_cdb_pool) { 3754 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3755 err = -ENOMEM; 3756 goto err_out_cache; 3757 } 3758 3759 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3760 if (!sd_page_pool) { 3761 printk(KERN_ERR "sd: can't init discard page pool\n"); 3762 err = -ENOMEM; 3763 goto err_out_ppool; 3764 } 3765 3766 err = scsi_register_driver(&sd_template.gendrv); 3767 if (err) 3768 goto err_out_driver; 3769 3770 return 0; 3771 3772 err_out_driver: 3773 mempool_destroy(sd_page_pool); 3774 3775 err_out_ppool: 3776 mempool_destroy(sd_cdb_pool); 3777 3778 err_out_cache: 3779 kmem_cache_destroy(sd_cdb_cache); 3780 3781 err_out_class: 3782 class_unregister(&sd_disk_class); 3783 err_out: 3784 for (i = 0; i < SD_MAJORS; i++) 3785 unregister_blkdev(sd_major(i), "sd"); 3786 return err; 3787 } 3788 3789 /** 3790 * exit_sd - exit point for this driver (when it is a module). 3791 * 3792 * Note: this function unregisters this driver from the scsi mid-level. 3793 **/ 3794 static void __exit exit_sd(void) 3795 { 3796 int i; 3797 3798 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3799 3800 scsi_unregister_driver(&sd_template.gendrv); 3801 mempool_destroy(sd_cdb_pool); 3802 mempool_destroy(sd_page_pool); 3803 kmem_cache_destroy(sd_cdb_cache); 3804 3805 class_unregister(&sd_disk_class); 3806 3807 for (i = 0; i < SD_MAJORS; i++) 3808 unregister_blkdev(sd_major(i), "sd"); 3809 } 3810 3811 module_init(init_sd); 3812 module_exit(exit_sd); 3813 3814 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3815 { 3816 scsi_print_sense_hdr(sdkp->device, 3817 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3818 } 3819 3820 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3821 { 3822 const char *hb_string = scsi_hostbyte_string(result); 3823 3824 if (hb_string) 3825 sd_printk(KERN_INFO, sdkp, 3826 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3827 hb_string ? hb_string : "invalid", 3828 "DRIVER_OK"); 3829 else 3830 sd_printk(KERN_INFO, sdkp, 3831 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3832 msg, host_byte(result), "DRIVER_OK"); 3833 } 3834