xref: /openbmc/linux/drivers/scsi/sd.c (revision ee7da21a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #define SD_MINORS	16
102 
103 static void sd_config_discard(struct scsi_disk *, unsigned int);
104 static void sd_config_write_same(struct scsi_disk *);
105 static int  sd_revalidate_disk(struct gendisk *);
106 static void sd_unlock_native_capacity(struct gendisk *disk);
107 static int  sd_probe(struct device *);
108 static int  sd_remove(struct device *);
109 static void sd_shutdown(struct device *);
110 static int sd_suspend_system(struct device *);
111 static int sd_suspend_runtime(struct device *);
112 static int sd_resume(struct device *);
113 static void sd_rescan(struct device *);
114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
115 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
116 static int sd_done(struct scsi_cmnd *);
117 static void sd_eh_reset(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121 
122 static DEFINE_IDA(sd_index_ida);
123 
124 /* This semaphore is used to mediate the 0->1 reference get in the
125  * face of object destruction (i.e. we can't allow a get on an
126  * object after last put) */
127 static DEFINE_MUTEX(sd_ref_mutex);
128 
129 static struct kmem_cache *sd_cdb_cache;
130 static mempool_t *sd_cdb_pool;
131 static mempool_t *sd_page_pool;
132 
133 static const char *sd_cache_types[] = {
134 	"write through", "none", "write back",
135 	"write back, no read (daft)"
136 };
137 
138 static void sd_set_flush_flag(struct scsi_disk *sdkp)
139 {
140 	bool wc = false, fua = false;
141 
142 	if (sdkp->WCE) {
143 		wc = true;
144 		if (sdkp->DPOFUA)
145 			fua = true;
146 	}
147 
148 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
149 }
150 
151 static ssize_t
152 cache_type_store(struct device *dev, struct device_attribute *attr,
153 		 const char *buf, size_t count)
154 {
155 	int ct, rcd, wce, sp;
156 	struct scsi_disk *sdkp = to_scsi_disk(dev);
157 	struct scsi_device *sdp = sdkp->device;
158 	char buffer[64];
159 	char *buffer_data;
160 	struct scsi_mode_data data;
161 	struct scsi_sense_hdr sshdr;
162 	static const char temp[] = "temporary ";
163 	int len;
164 
165 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
166 		/* no cache control on RBC devices; theoretically they
167 		 * can do it, but there's probably so many exceptions
168 		 * it's not worth the risk */
169 		return -EINVAL;
170 
171 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
172 		buf += sizeof(temp) - 1;
173 		sdkp->cache_override = 1;
174 	} else {
175 		sdkp->cache_override = 0;
176 	}
177 
178 	ct = sysfs_match_string(sd_cache_types, buf);
179 	if (ct < 0)
180 		return -EINVAL;
181 
182 	rcd = ct & 0x01 ? 1 : 0;
183 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
184 
185 	if (sdkp->cache_override) {
186 		sdkp->WCE = wce;
187 		sdkp->RCD = rcd;
188 		sd_set_flush_flag(sdkp);
189 		return count;
190 	}
191 
192 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
193 			    sdkp->max_retries, &data, NULL))
194 		return -EINVAL;
195 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
196 		  data.block_descriptor_length);
197 	buffer_data = buffer + data.header_length +
198 		data.block_descriptor_length;
199 	buffer_data[2] &= ~0x05;
200 	buffer_data[2] |= wce << 2 | rcd;
201 	sp = buffer_data[0] & 0x80 ? 1 : 0;
202 	buffer_data[0] &= ~0x80;
203 
204 	/*
205 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
206 	 * received mode parameter buffer before doing MODE SELECT.
207 	 */
208 	data.device_specific = 0;
209 
210 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
211 			     sdkp->max_retries, &data, &sshdr)) {
212 		if (scsi_sense_valid(&sshdr))
213 			sd_print_sense_hdr(sdkp, &sshdr);
214 		return -EINVAL;
215 	}
216 	sd_revalidate_disk(sdkp->disk);
217 	return count;
218 }
219 
220 static ssize_t
221 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
222 		       char *buf)
223 {
224 	struct scsi_disk *sdkp = to_scsi_disk(dev);
225 	struct scsi_device *sdp = sdkp->device;
226 
227 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
228 }
229 
230 static ssize_t
231 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
232 			const char *buf, size_t count)
233 {
234 	struct scsi_disk *sdkp = to_scsi_disk(dev);
235 	struct scsi_device *sdp = sdkp->device;
236 	bool v;
237 
238 	if (!capable(CAP_SYS_ADMIN))
239 		return -EACCES;
240 
241 	if (kstrtobool(buf, &v))
242 		return -EINVAL;
243 
244 	sdp->manage_start_stop = v;
245 
246 	return count;
247 }
248 static DEVICE_ATTR_RW(manage_start_stop);
249 
250 static ssize_t
251 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
252 {
253 	struct scsi_disk *sdkp = to_scsi_disk(dev);
254 
255 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
256 }
257 
258 static ssize_t
259 allow_restart_store(struct device *dev, struct device_attribute *attr,
260 		    const char *buf, size_t count)
261 {
262 	bool v;
263 	struct scsi_disk *sdkp = to_scsi_disk(dev);
264 	struct scsi_device *sdp = sdkp->device;
265 
266 	if (!capable(CAP_SYS_ADMIN))
267 		return -EACCES;
268 
269 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
270 		return -EINVAL;
271 
272 	if (kstrtobool(buf, &v))
273 		return -EINVAL;
274 
275 	sdp->allow_restart = v;
276 
277 	return count;
278 }
279 static DEVICE_ATTR_RW(allow_restart);
280 
281 static ssize_t
282 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
283 {
284 	struct scsi_disk *sdkp = to_scsi_disk(dev);
285 	int ct = sdkp->RCD + 2*sdkp->WCE;
286 
287 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
288 }
289 static DEVICE_ATTR_RW(cache_type);
290 
291 static ssize_t
292 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
293 {
294 	struct scsi_disk *sdkp = to_scsi_disk(dev);
295 
296 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
297 }
298 static DEVICE_ATTR_RO(FUA);
299 
300 static ssize_t
301 protection_type_show(struct device *dev, struct device_attribute *attr,
302 		     char *buf)
303 {
304 	struct scsi_disk *sdkp = to_scsi_disk(dev);
305 
306 	return sprintf(buf, "%u\n", sdkp->protection_type);
307 }
308 
309 static ssize_t
310 protection_type_store(struct device *dev, struct device_attribute *attr,
311 		      const char *buf, size_t count)
312 {
313 	struct scsi_disk *sdkp = to_scsi_disk(dev);
314 	unsigned int val;
315 	int err;
316 
317 	if (!capable(CAP_SYS_ADMIN))
318 		return -EACCES;
319 
320 	err = kstrtouint(buf, 10, &val);
321 
322 	if (err)
323 		return err;
324 
325 	if (val <= T10_PI_TYPE3_PROTECTION)
326 		sdkp->protection_type = val;
327 
328 	return count;
329 }
330 static DEVICE_ATTR_RW(protection_type);
331 
332 static ssize_t
333 protection_mode_show(struct device *dev, struct device_attribute *attr,
334 		     char *buf)
335 {
336 	struct scsi_disk *sdkp = to_scsi_disk(dev);
337 	struct scsi_device *sdp = sdkp->device;
338 	unsigned int dif, dix;
339 
340 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
341 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
342 
343 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
344 		dif = 0;
345 		dix = 1;
346 	}
347 
348 	if (!dif && !dix)
349 		return sprintf(buf, "none\n");
350 
351 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
352 }
353 static DEVICE_ATTR_RO(protection_mode);
354 
355 static ssize_t
356 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
357 {
358 	struct scsi_disk *sdkp = to_scsi_disk(dev);
359 
360 	return sprintf(buf, "%u\n", sdkp->ATO);
361 }
362 static DEVICE_ATTR_RO(app_tag_own);
363 
364 static ssize_t
365 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
366 		       char *buf)
367 {
368 	struct scsi_disk *sdkp = to_scsi_disk(dev);
369 
370 	return sprintf(buf, "%u\n", sdkp->lbpme);
371 }
372 static DEVICE_ATTR_RO(thin_provisioning);
373 
374 /* sysfs_match_string() requires dense arrays */
375 static const char *lbp_mode[] = {
376 	[SD_LBP_FULL]		= "full",
377 	[SD_LBP_UNMAP]		= "unmap",
378 	[SD_LBP_WS16]		= "writesame_16",
379 	[SD_LBP_WS10]		= "writesame_10",
380 	[SD_LBP_ZERO]		= "writesame_zero",
381 	[SD_LBP_DISABLE]	= "disabled",
382 };
383 
384 static ssize_t
385 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
386 		       char *buf)
387 {
388 	struct scsi_disk *sdkp = to_scsi_disk(dev);
389 
390 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
391 }
392 
393 static ssize_t
394 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
395 			const char *buf, size_t count)
396 {
397 	struct scsi_disk *sdkp = to_scsi_disk(dev);
398 	struct scsi_device *sdp = sdkp->device;
399 	int mode;
400 
401 	if (!capable(CAP_SYS_ADMIN))
402 		return -EACCES;
403 
404 	if (sd_is_zoned(sdkp)) {
405 		sd_config_discard(sdkp, SD_LBP_DISABLE);
406 		return count;
407 	}
408 
409 	if (sdp->type != TYPE_DISK)
410 		return -EINVAL;
411 
412 	mode = sysfs_match_string(lbp_mode, buf);
413 	if (mode < 0)
414 		return -EINVAL;
415 
416 	sd_config_discard(sdkp, mode);
417 
418 	return count;
419 }
420 static DEVICE_ATTR_RW(provisioning_mode);
421 
422 /* sysfs_match_string() requires dense arrays */
423 static const char *zeroing_mode[] = {
424 	[SD_ZERO_WRITE]		= "write",
425 	[SD_ZERO_WS]		= "writesame",
426 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
427 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
428 };
429 
430 static ssize_t
431 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
432 		  char *buf)
433 {
434 	struct scsi_disk *sdkp = to_scsi_disk(dev);
435 
436 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
437 }
438 
439 static ssize_t
440 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
441 		   const char *buf, size_t count)
442 {
443 	struct scsi_disk *sdkp = to_scsi_disk(dev);
444 	int mode;
445 
446 	if (!capable(CAP_SYS_ADMIN))
447 		return -EACCES;
448 
449 	mode = sysfs_match_string(zeroing_mode, buf);
450 	if (mode < 0)
451 		return -EINVAL;
452 
453 	sdkp->zeroing_mode = mode;
454 
455 	return count;
456 }
457 static DEVICE_ATTR_RW(zeroing_mode);
458 
459 static ssize_t
460 max_medium_access_timeouts_show(struct device *dev,
461 				struct device_attribute *attr, char *buf)
462 {
463 	struct scsi_disk *sdkp = to_scsi_disk(dev);
464 
465 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
466 }
467 
468 static ssize_t
469 max_medium_access_timeouts_store(struct device *dev,
470 				 struct device_attribute *attr, const char *buf,
471 				 size_t count)
472 {
473 	struct scsi_disk *sdkp = to_scsi_disk(dev);
474 	int err;
475 
476 	if (!capable(CAP_SYS_ADMIN))
477 		return -EACCES;
478 
479 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
480 
481 	return err ? err : count;
482 }
483 static DEVICE_ATTR_RW(max_medium_access_timeouts);
484 
485 static ssize_t
486 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
487 			   char *buf)
488 {
489 	struct scsi_disk *sdkp = to_scsi_disk(dev);
490 
491 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
492 }
493 
494 static ssize_t
495 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
496 			    const char *buf, size_t count)
497 {
498 	struct scsi_disk *sdkp = to_scsi_disk(dev);
499 	struct scsi_device *sdp = sdkp->device;
500 	unsigned long max;
501 	int err;
502 
503 	if (!capable(CAP_SYS_ADMIN))
504 		return -EACCES;
505 
506 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
507 		return -EINVAL;
508 
509 	err = kstrtoul(buf, 10, &max);
510 
511 	if (err)
512 		return err;
513 
514 	if (max == 0)
515 		sdp->no_write_same = 1;
516 	else if (max <= SD_MAX_WS16_BLOCKS) {
517 		sdp->no_write_same = 0;
518 		sdkp->max_ws_blocks = max;
519 	}
520 
521 	sd_config_write_same(sdkp);
522 
523 	return count;
524 }
525 static DEVICE_ATTR_RW(max_write_same_blocks);
526 
527 static ssize_t
528 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
529 {
530 	struct scsi_disk *sdkp = to_scsi_disk(dev);
531 
532 	if (sdkp->device->type == TYPE_ZBC)
533 		return sprintf(buf, "host-managed\n");
534 	if (sdkp->zoned == 1)
535 		return sprintf(buf, "host-aware\n");
536 	if (sdkp->zoned == 2)
537 		return sprintf(buf, "drive-managed\n");
538 	return sprintf(buf, "none\n");
539 }
540 static DEVICE_ATTR_RO(zoned_cap);
541 
542 static ssize_t
543 max_retries_store(struct device *dev, struct device_attribute *attr,
544 		  const char *buf, size_t count)
545 {
546 	struct scsi_disk *sdkp = to_scsi_disk(dev);
547 	struct scsi_device *sdev = sdkp->device;
548 	int retries, err;
549 
550 	err = kstrtoint(buf, 10, &retries);
551 	if (err)
552 		return err;
553 
554 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
555 		sdkp->max_retries = retries;
556 		return count;
557 	}
558 
559 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
560 		    SD_MAX_RETRIES);
561 	return -EINVAL;
562 }
563 
564 static ssize_t
565 max_retries_show(struct device *dev, struct device_attribute *attr,
566 		 char *buf)
567 {
568 	struct scsi_disk *sdkp = to_scsi_disk(dev);
569 
570 	return sprintf(buf, "%d\n", sdkp->max_retries);
571 }
572 
573 static DEVICE_ATTR_RW(max_retries);
574 
575 static struct attribute *sd_disk_attrs[] = {
576 	&dev_attr_cache_type.attr,
577 	&dev_attr_FUA.attr,
578 	&dev_attr_allow_restart.attr,
579 	&dev_attr_manage_start_stop.attr,
580 	&dev_attr_protection_type.attr,
581 	&dev_attr_protection_mode.attr,
582 	&dev_attr_app_tag_own.attr,
583 	&dev_attr_thin_provisioning.attr,
584 	&dev_attr_provisioning_mode.attr,
585 	&dev_attr_zeroing_mode.attr,
586 	&dev_attr_max_write_same_blocks.attr,
587 	&dev_attr_max_medium_access_timeouts.attr,
588 	&dev_attr_zoned_cap.attr,
589 	&dev_attr_max_retries.attr,
590 	NULL,
591 };
592 ATTRIBUTE_GROUPS(sd_disk);
593 
594 static struct class sd_disk_class = {
595 	.name		= "scsi_disk",
596 	.owner		= THIS_MODULE,
597 	.dev_release	= scsi_disk_release,
598 	.dev_groups	= sd_disk_groups,
599 };
600 
601 static const struct dev_pm_ops sd_pm_ops = {
602 	.suspend		= sd_suspend_system,
603 	.resume			= sd_resume,
604 	.poweroff		= sd_suspend_system,
605 	.restore		= sd_resume,
606 	.runtime_suspend	= sd_suspend_runtime,
607 	.runtime_resume		= sd_resume,
608 };
609 
610 static struct scsi_driver sd_template = {
611 	.gendrv = {
612 		.name		= "sd",
613 		.owner		= THIS_MODULE,
614 		.probe		= sd_probe,
615 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
616 		.remove		= sd_remove,
617 		.shutdown	= sd_shutdown,
618 		.pm		= &sd_pm_ops,
619 	},
620 	.rescan			= sd_rescan,
621 	.init_command		= sd_init_command,
622 	.uninit_command		= sd_uninit_command,
623 	.done			= sd_done,
624 	.eh_action		= sd_eh_action,
625 	.eh_reset		= sd_eh_reset,
626 };
627 
628 /*
629  * Don't request a new module, as that could deadlock in multipath
630  * environment.
631  */
632 static void sd_default_probe(dev_t devt)
633 {
634 }
635 
636 /*
637  * Device no to disk mapping:
638  *
639  *       major         disc2     disc  p1
640  *   |............|.............|....|....| <- dev_t
641  *    31        20 19          8 7  4 3  0
642  *
643  * Inside a major, we have 16k disks, however mapped non-
644  * contiguously. The first 16 disks are for major0, the next
645  * ones with major1, ... Disk 256 is for major0 again, disk 272
646  * for major1, ...
647  * As we stay compatible with our numbering scheme, we can reuse
648  * the well-know SCSI majors 8, 65--71, 136--143.
649  */
650 static int sd_major(int major_idx)
651 {
652 	switch (major_idx) {
653 	case 0:
654 		return SCSI_DISK0_MAJOR;
655 	case 1 ... 7:
656 		return SCSI_DISK1_MAJOR + major_idx - 1;
657 	case 8 ... 15:
658 		return SCSI_DISK8_MAJOR + major_idx - 8;
659 	default:
660 		BUG();
661 		return 0;	/* shut up gcc */
662 	}
663 }
664 
665 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
666 {
667 	struct scsi_disk *sdkp = NULL;
668 
669 	mutex_lock(&sd_ref_mutex);
670 
671 	if (disk->private_data) {
672 		sdkp = scsi_disk(disk);
673 		if (scsi_device_get(sdkp->device) == 0)
674 			get_device(&sdkp->dev);
675 		else
676 			sdkp = NULL;
677 	}
678 	mutex_unlock(&sd_ref_mutex);
679 	return sdkp;
680 }
681 
682 static void scsi_disk_put(struct scsi_disk *sdkp)
683 {
684 	struct scsi_device *sdev = sdkp->device;
685 
686 	mutex_lock(&sd_ref_mutex);
687 	put_device(&sdkp->dev);
688 	scsi_device_put(sdev);
689 	mutex_unlock(&sd_ref_mutex);
690 }
691 
692 #ifdef CONFIG_BLK_SED_OPAL
693 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
694 		size_t len, bool send)
695 {
696 	struct scsi_disk *sdkp = data;
697 	struct scsi_device *sdev = sdkp->device;
698 	u8 cdb[12] = { 0, };
699 	int ret;
700 
701 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
702 	cdb[1] = secp;
703 	put_unaligned_be16(spsp, &cdb[2]);
704 	put_unaligned_be32(len, &cdb[6]);
705 
706 	ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
707 		buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
708 		RQF_PM, NULL);
709 	return ret <= 0 ? ret : -EIO;
710 }
711 #endif /* CONFIG_BLK_SED_OPAL */
712 
713 /*
714  * Look up the DIX operation based on whether the command is read or
715  * write and whether dix and dif are enabled.
716  */
717 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
718 {
719 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
720 	static const unsigned int ops[] = {	/* wrt dix dif */
721 		SCSI_PROT_NORMAL,		/*  0	0   0  */
722 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
723 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
724 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
725 		SCSI_PROT_NORMAL,		/*  1	0   0  */
726 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
727 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
728 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
729 	};
730 
731 	return ops[write << 2 | dix << 1 | dif];
732 }
733 
734 /*
735  * Returns a mask of the protection flags that are valid for a given DIX
736  * operation.
737  */
738 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
739 {
740 	static const unsigned int flag_mask[] = {
741 		[SCSI_PROT_NORMAL]		= 0,
742 
743 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
744 						  SCSI_PROT_GUARD_CHECK |
745 						  SCSI_PROT_REF_CHECK |
746 						  SCSI_PROT_REF_INCREMENT,
747 
748 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
749 						  SCSI_PROT_IP_CHECKSUM,
750 
751 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
752 						  SCSI_PROT_GUARD_CHECK |
753 						  SCSI_PROT_REF_CHECK |
754 						  SCSI_PROT_REF_INCREMENT |
755 						  SCSI_PROT_IP_CHECKSUM,
756 
757 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
758 						  SCSI_PROT_REF_INCREMENT,
759 
760 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
761 						  SCSI_PROT_REF_CHECK |
762 						  SCSI_PROT_REF_INCREMENT |
763 						  SCSI_PROT_IP_CHECKSUM,
764 
765 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
766 						  SCSI_PROT_GUARD_CHECK |
767 						  SCSI_PROT_REF_CHECK |
768 						  SCSI_PROT_REF_INCREMENT |
769 						  SCSI_PROT_IP_CHECKSUM,
770 	};
771 
772 	return flag_mask[prot_op];
773 }
774 
775 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
776 					   unsigned int dix, unsigned int dif)
777 {
778 	struct bio *bio = scmd->request->bio;
779 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
780 	unsigned int protect = 0;
781 
782 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
783 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
784 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
785 
786 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
787 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
788 	}
789 
790 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
791 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
792 
793 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
794 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
795 	}
796 
797 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
798 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
799 
800 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
801 			protect = 3 << 5;	/* Disable target PI checking */
802 		else
803 			protect = 1 << 5;	/* Enable target PI checking */
804 	}
805 
806 	scsi_set_prot_op(scmd, prot_op);
807 	scsi_set_prot_type(scmd, dif);
808 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
809 
810 	return protect;
811 }
812 
813 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
814 {
815 	struct request_queue *q = sdkp->disk->queue;
816 	unsigned int logical_block_size = sdkp->device->sector_size;
817 	unsigned int max_blocks = 0;
818 
819 	q->limits.discard_alignment =
820 		sdkp->unmap_alignment * logical_block_size;
821 	q->limits.discard_granularity =
822 		max(sdkp->physical_block_size,
823 		    sdkp->unmap_granularity * logical_block_size);
824 	sdkp->provisioning_mode = mode;
825 
826 	switch (mode) {
827 
828 	case SD_LBP_FULL:
829 	case SD_LBP_DISABLE:
830 		blk_queue_max_discard_sectors(q, 0);
831 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
832 		return;
833 
834 	case SD_LBP_UNMAP:
835 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
836 					  (u32)SD_MAX_WS16_BLOCKS);
837 		break;
838 
839 	case SD_LBP_WS16:
840 		if (sdkp->device->unmap_limit_for_ws)
841 			max_blocks = sdkp->max_unmap_blocks;
842 		else
843 			max_blocks = sdkp->max_ws_blocks;
844 
845 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
846 		break;
847 
848 	case SD_LBP_WS10:
849 		if (sdkp->device->unmap_limit_for_ws)
850 			max_blocks = sdkp->max_unmap_blocks;
851 		else
852 			max_blocks = sdkp->max_ws_blocks;
853 
854 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
855 		break;
856 
857 	case SD_LBP_ZERO:
858 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
859 					  (u32)SD_MAX_WS10_BLOCKS);
860 		break;
861 	}
862 
863 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
864 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
865 }
866 
867 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
868 {
869 	struct scsi_device *sdp = cmd->device;
870 	struct request *rq = cmd->request;
871 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
872 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
873 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
874 	unsigned int data_len = 24;
875 	char *buf;
876 
877 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
878 	if (!rq->special_vec.bv_page)
879 		return BLK_STS_RESOURCE;
880 	clear_highpage(rq->special_vec.bv_page);
881 	rq->special_vec.bv_offset = 0;
882 	rq->special_vec.bv_len = data_len;
883 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
884 
885 	cmd->cmd_len = 10;
886 	cmd->cmnd[0] = UNMAP;
887 	cmd->cmnd[8] = 24;
888 
889 	buf = page_address(rq->special_vec.bv_page);
890 	put_unaligned_be16(6 + 16, &buf[0]);
891 	put_unaligned_be16(16, &buf[2]);
892 	put_unaligned_be64(lba, &buf[8]);
893 	put_unaligned_be32(nr_blocks, &buf[16]);
894 
895 	cmd->allowed = sdkp->max_retries;
896 	cmd->transfersize = data_len;
897 	rq->timeout = SD_TIMEOUT;
898 
899 	return scsi_alloc_sgtables(cmd);
900 }
901 
902 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
903 		bool unmap)
904 {
905 	struct scsi_device *sdp = cmd->device;
906 	struct request *rq = cmd->request;
907 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
908 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
909 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
910 	u32 data_len = sdp->sector_size;
911 
912 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
913 	if (!rq->special_vec.bv_page)
914 		return BLK_STS_RESOURCE;
915 	clear_highpage(rq->special_vec.bv_page);
916 	rq->special_vec.bv_offset = 0;
917 	rq->special_vec.bv_len = data_len;
918 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
919 
920 	cmd->cmd_len = 16;
921 	cmd->cmnd[0] = WRITE_SAME_16;
922 	if (unmap)
923 		cmd->cmnd[1] = 0x8; /* UNMAP */
924 	put_unaligned_be64(lba, &cmd->cmnd[2]);
925 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
926 
927 	cmd->allowed = sdkp->max_retries;
928 	cmd->transfersize = data_len;
929 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
930 
931 	return scsi_alloc_sgtables(cmd);
932 }
933 
934 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
935 		bool unmap)
936 {
937 	struct scsi_device *sdp = cmd->device;
938 	struct request *rq = cmd->request;
939 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
940 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
941 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
942 	u32 data_len = sdp->sector_size;
943 
944 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
945 	if (!rq->special_vec.bv_page)
946 		return BLK_STS_RESOURCE;
947 	clear_highpage(rq->special_vec.bv_page);
948 	rq->special_vec.bv_offset = 0;
949 	rq->special_vec.bv_len = data_len;
950 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
951 
952 	cmd->cmd_len = 10;
953 	cmd->cmnd[0] = WRITE_SAME;
954 	if (unmap)
955 		cmd->cmnd[1] = 0x8; /* UNMAP */
956 	put_unaligned_be32(lba, &cmd->cmnd[2]);
957 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
958 
959 	cmd->allowed = sdkp->max_retries;
960 	cmd->transfersize = data_len;
961 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
962 
963 	return scsi_alloc_sgtables(cmd);
964 }
965 
966 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
967 {
968 	struct request *rq = cmd->request;
969 	struct scsi_device *sdp = cmd->device;
970 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
971 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
972 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
973 
974 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
975 		switch (sdkp->zeroing_mode) {
976 		case SD_ZERO_WS16_UNMAP:
977 			return sd_setup_write_same16_cmnd(cmd, true);
978 		case SD_ZERO_WS10_UNMAP:
979 			return sd_setup_write_same10_cmnd(cmd, true);
980 		}
981 	}
982 
983 	if (sdp->no_write_same) {
984 		rq->rq_flags |= RQF_QUIET;
985 		return BLK_STS_TARGET;
986 	}
987 
988 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
989 		return sd_setup_write_same16_cmnd(cmd, false);
990 
991 	return sd_setup_write_same10_cmnd(cmd, false);
992 }
993 
994 static void sd_config_write_same(struct scsi_disk *sdkp)
995 {
996 	struct request_queue *q = sdkp->disk->queue;
997 	unsigned int logical_block_size = sdkp->device->sector_size;
998 
999 	if (sdkp->device->no_write_same) {
1000 		sdkp->max_ws_blocks = 0;
1001 		goto out;
1002 	}
1003 
1004 	/* Some devices can not handle block counts above 0xffff despite
1005 	 * supporting WRITE SAME(16). Consequently we default to 64k
1006 	 * blocks per I/O unless the device explicitly advertises a
1007 	 * bigger limit.
1008 	 */
1009 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1010 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1011 						   (u32)SD_MAX_WS16_BLOCKS);
1012 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1013 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1014 						   (u32)SD_MAX_WS10_BLOCKS);
1015 	else {
1016 		sdkp->device->no_write_same = 1;
1017 		sdkp->max_ws_blocks = 0;
1018 	}
1019 
1020 	if (sdkp->lbprz && sdkp->lbpws)
1021 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1022 	else if (sdkp->lbprz && sdkp->lbpws10)
1023 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1024 	else if (sdkp->max_ws_blocks)
1025 		sdkp->zeroing_mode = SD_ZERO_WS;
1026 	else
1027 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1028 
1029 	if (sdkp->max_ws_blocks &&
1030 	    sdkp->physical_block_size > logical_block_size) {
1031 		/*
1032 		 * Reporting a maximum number of blocks that is not aligned
1033 		 * on the device physical size would cause a large write same
1034 		 * request to be split into physically unaligned chunks by
1035 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1036 		 * even if the caller of these functions took care to align the
1037 		 * large request. So make sure the maximum reported is aligned
1038 		 * to the device physical block size. This is only an optional
1039 		 * optimization for regular disks, but this is mandatory to
1040 		 * avoid failure of large write same requests directed at
1041 		 * sequential write required zones of host-managed ZBC disks.
1042 		 */
1043 		sdkp->max_ws_blocks =
1044 			round_down(sdkp->max_ws_blocks,
1045 				   bytes_to_logical(sdkp->device,
1046 						    sdkp->physical_block_size));
1047 	}
1048 
1049 out:
1050 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1051 					 (logical_block_size >> 9));
1052 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1053 					 (logical_block_size >> 9));
1054 }
1055 
1056 /**
1057  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1058  * @cmd: command to prepare
1059  *
1060  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1061  * the preference indicated by the target device.
1062  **/
1063 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1064 {
1065 	struct request *rq = cmd->request;
1066 	struct scsi_device *sdp = cmd->device;
1067 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1068 	struct bio *bio = rq->bio;
1069 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1070 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1071 	blk_status_t ret;
1072 
1073 	if (sdkp->device->no_write_same)
1074 		return BLK_STS_TARGET;
1075 
1076 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1077 
1078 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1079 
1080 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1081 		cmd->cmd_len = 16;
1082 		cmd->cmnd[0] = WRITE_SAME_16;
1083 		put_unaligned_be64(lba, &cmd->cmnd[2]);
1084 		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1085 	} else {
1086 		cmd->cmd_len = 10;
1087 		cmd->cmnd[0] = WRITE_SAME;
1088 		put_unaligned_be32(lba, &cmd->cmnd[2]);
1089 		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1090 	}
1091 
1092 	cmd->transfersize = sdp->sector_size;
1093 	cmd->allowed = sdkp->max_retries;
1094 
1095 	/*
1096 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1097 	 * different from the amount of data actually written to the target.
1098 	 *
1099 	 * We set up __data_len to the amount of data transferred via the
1100 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1101 	 * to transfer a single sector of data first, but then reset it to
1102 	 * the amount of data to be written right after so that the I/O path
1103 	 * knows how much to actually write.
1104 	 */
1105 	rq->__data_len = sdp->sector_size;
1106 	ret = scsi_alloc_sgtables(cmd);
1107 	rq->__data_len = blk_rq_bytes(rq);
1108 
1109 	return ret;
1110 }
1111 
1112 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1113 {
1114 	struct request *rq = cmd->request;
1115 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1116 
1117 	/* flush requests don't perform I/O, zero the S/G table */
1118 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1119 
1120 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1121 	cmd->cmd_len = 10;
1122 	cmd->transfersize = 0;
1123 	cmd->allowed = sdkp->max_retries;
1124 
1125 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1126 	return BLK_STS_OK;
1127 }
1128 
1129 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1130 				       sector_t lba, unsigned int nr_blocks,
1131 				       unsigned char flags)
1132 {
1133 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1134 	if (unlikely(cmd->cmnd == NULL))
1135 		return BLK_STS_RESOURCE;
1136 
1137 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1138 	memset(cmd->cmnd, 0, cmd->cmd_len);
1139 
1140 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1141 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1142 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1143 	cmd->cmnd[10] = flags;
1144 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1145 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1146 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1147 
1148 	return BLK_STS_OK;
1149 }
1150 
1151 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1152 				       sector_t lba, unsigned int nr_blocks,
1153 				       unsigned char flags)
1154 {
1155 	cmd->cmd_len  = 16;
1156 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1157 	cmd->cmnd[1]  = flags;
1158 	cmd->cmnd[14] = 0;
1159 	cmd->cmnd[15] = 0;
1160 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1161 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1162 
1163 	return BLK_STS_OK;
1164 }
1165 
1166 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1167 				       sector_t lba, unsigned int nr_blocks,
1168 				       unsigned char flags)
1169 {
1170 	cmd->cmd_len = 10;
1171 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1172 	cmd->cmnd[1] = flags;
1173 	cmd->cmnd[6] = 0;
1174 	cmd->cmnd[9] = 0;
1175 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1176 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1177 
1178 	return BLK_STS_OK;
1179 }
1180 
1181 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1182 				      sector_t lba, unsigned int nr_blocks,
1183 				      unsigned char flags)
1184 {
1185 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1186 	if (WARN_ON_ONCE(nr_blocks == 0))
1187 		return BLK_STS_IOERR;
1188 
1189 	if (unlikely(flags & 0x8)) {
1190 		/*
1191 		 * This happens only if this drive failed 10byte rw
1192 		 * command with ILLEGAL_REQUEST during operation and
1193 		 * thus turned off use_10_for_rw.
1194 		 */
1195 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1196 		return BLK_STS_IOERR;
1197 	}
1198 
1199 	cmd->cmd_len = 6;
1200 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1201 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1202 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1203 	cmd->cmnd[3] = lba & 0xff;
1204 	cmd->cmnd[4] = nr_blocks;
1205 	cmd->cmnd[5] = 0;
1206 
1207 	return BLK_STS_OK;
1208 }
1209 
1210 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1211 {
1212 	struct request *rq = cmd->request;
1213 	struct scsi_device *sdp = cmd->device;
1214 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1215 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1216 	sector_t threshold;
1217 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1218 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1219 	bool write = rq_data_dir(rq) == WRITE;
1220 	unsigned char protect, fua;
1221 	blk_status_t ret;
1222 	unsigned int dif;
1223 	bool dix;
1224 
1225 	ret = scsi_alloc_sgtables(cmd);
1226 	if (ret != BLK_STS_OK)
1227 		return ret;
1228 
1229 	ret = BLK_STS_IOERR;
1230 	if (!scsi_device_online(sdp) || sdp->changed) {
1231 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1232 		goto fail;
1233 	}
1234 
1235 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1236 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1237 		goto fail;
1238 	}
1239 
1240 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1241 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1242 		goto fail;
1243 	}
1244 
1245 	/*
1246 	 * Some SD card readers can't handle accesses which touch the
1247 	 * last one or two logical blocks. Split accesses as needed.
1248 	 */
1249 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1250 
1251 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1252 		if (lba < threshold) {
1253 			/* Access up to the threshold but not beyond */
1254 			nr_blocks = threshold - lba;
1255 		} else {
1256 			/* Access only a single logical block */
1257 			nr_blocks = 1;
1258 		}
1259 	}
1260 
1261 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1262 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1263 		if (ret)
1264 			goto fail;
1265 	}
1266 
1267 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1268 	dix = scsi_prot_sg_count(cmd);
1269 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1270 
1271 	if (dif || dix)
1272 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1273 	else
1274 		protect = 0;
1275 
1276 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1277 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1278 					 protect | fua);
1279 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1280 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1281 					 protect | fua);
1282 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1283 		   sdp->use_10_for_rw || protect) {
1284 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1285 					 protect | fua);
1286 	} else {
1287 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1288 					protect | fua);
1289 	}
1290 
1291 	if (unlikely(ret != BLK_STS_OK))
1292 		goto fail;
1293 
1294 	/*
1295 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1296 	 * host adapter, it's safe to assume that we can at least transfer
1297 	 * this many bytes between each connect / disconnect.
1298 	 */
1299 	cmd->transfersize = sdp->sector_size;
1300 	cmd->underflow = nr_blocks << 9;
1301 	cmd->allowed = sdkp->max_retries;
1302 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1303 
1304 	SCSI_LOG_HLQUEUE(1,
1305 			 scmd_printk(KERN_INFO, cmd,
1306 				     "%s: block=%llu, count=%d\n", __func__,
1307 				     (unsigned long long)blk_rq_pos(rq),
1308 				     blk_rq_sectors(rq)));
1309 	SCSI_LOG_HLQUEUE(2,
1310 			 scmd_printk(KERN_INFO, cmd,
1311 				     "%s %d/%u 512 byte blocks.\n",
1312 				     write ? "writing" : "reading", nr_blocks,
1313 				     blk_rq_sectors(rq)));
1314 
1315 	/*
1316 	 * This indicates that the command is ready from our end to be queued.
1317 	 */
1318 	return BLK_STS_OK;
1319 fail:
1320 	scsi_free_sgtables(cmd);
1321 	return ret;
1322 }
1323 
1324 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1325 {
1326 	struct request *rq = cmd->request;
1327 
1328 	switch (req_op(rq)) {
1329 	case REQ_OP_DISCARD:
1330 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1331 		case SD_LBP_UNMAP:
1332 			return sd_setup_unmap_cmnd(cmd);
1333 		case SD_LBP_WS16:
1334 			return sd_setup_write_same16_cmnd(cmd, true);
1335 		case SD_LBP_WS10:
1336 			return sd_setup_write_same10_cmnd(cmd, true);
1337 		case SD_LBP_ZERO:
1338 			return sd_setup_write_same10_cmnd(cmd, false);
1339 		default:
1340 			return BLK_STS_TARGET;
1341 		}
1342 	case REQ_OP_WRITE_ZEROES:
1343 		return sd_setup_write_zeroes_cmnd(cmd);
1344 	case REQ_OP_WRITE_SAME:
1345 		return sd_setup_write_same_cmnd(cmd);
1346 	case REQ_OP_FLUSH:
1347 		return sd_setup_flush_cmnd(cmd);
1348 	case REQ_OP_READ:
1349 	case REQ_OP_WRITE:
1350 	case REQ_OP_ZONE_APPEND:
1351 		return sd_setup_read_write_cmnd(cmd);
1352 	case REQ_OP_ZONE_RESET:
1353 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1354 						   false);
1355 	case REQ_OP_ZONE_RESET_ALL:
1356 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1357 						   true);
1358 	case REQ_OP_ZONE_OPEN:
1359 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1360 	case REQ_OP_ZONE_CLOSE:
1361 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1362 	case REQ_OP_ZONE_FINISH:
1363 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1364 	default:
1365 		WARN_ON_ONCE(1);
1366 		return BLK_STS_NOTSUPP;
1367 	}
1368 }
1369 
1370 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1371 {
1372 	struct request *rq = SCpnt->request;
1373 	u8 *cmnd;
1374 
1375 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1376 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1377 
1378 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1379 		cmnd = SCpnt->cmnd;
1380 		SCpnt->cmnd = NULL;
1381 		SCpnt->cmd_len = 0;
1382 		mempool_free(cmnd, sd_cdb_pool);
1383 	}
1384 }
1385 
1386 static bool sd_need_revalidate(struct block_device *bdev,
1387 		struct scsi_disk *sdkp)
1388 {
1389 	if (sdkp->device->removable || sdkp->write_prot) {
1390 		if (bdev_check_media_change(bdev))
1391 			return true;
1392 	}
1393 
1394 	/*
1395 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1396 	 * nothing to do with partitions, BLKRRPART is used to force a full
1397 	 * revalidate after things like a format for historical reasons.
1398 	 */
1399 	return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1400 }
1401 
1402 /**
1403  *	sd_open - open a scsi disk device
1404  *	@bdev: Block device of the scsi disk to open
1405  *	@mode: FMODE_* mask
1406  *
1407  *	Returns 0 if successful. Returns a negated errno value in case
1408  *	of error.
1409  *
1410  *	Note: This can be called from a user context (e.g. fsck(1) )
1411  *	or from within the kernel (e.g. as a result of a mount(1) ).
1412  *	In the latter case @inode and @filp carry an abridged amount
1413  *	of information as noted above.
1414  *
1415  *	Locking: called with bdev->bd_disk->open_mutex held.
1416  **/
1417 static int sd_open(struct block_device *bdev, fmode_t mode)
1418 {
1419 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1420 	struct scsi_device *sdev;
1421 	int retval;
1422 
1423 	if (!sdkp)
1424 		return -ENXIO;
1425 
1426 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1427 
1428 	sdev = sdkp->device;
1429 
1430 	/*
1431 	 * If the device is in error recovery, wait until it is done.
1432 	 * If the device is offline, then disallow any access to it.
1433 	 */
1434 	retval = -ENXIO;
1435 	if (!scsi_block_when_processing_errors(sdev))
1436 		goto error_out;
1437 
1438 	if (sd_need_revalidate(bdev, sdkp))
1439 		sd_revalidate_disk(bdev->bd_disk);
1440 
1441 	/*
1442 	 * If the drive is empty, just let the open fail.
1443 	 */
1444 	retval = -ENOMEDIUM;
1445 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1446 		goto error_out;
1447 
1448 	/*
1449 	 * If the device has the write protect tab set, have the open fail
1450 	 * if the user expects to be able to write to the thing.
1451 	 */
1452 	retval = -EROFS;
1453 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1454 		goto error_out;
1455 
1456 	/*
1457 	 * It is possible that the disk changing stuff resulted in
1458 	 * the device being taken offline.  If this is the case,
1459 	 * report this to the user, and don't pretend that the
1460 	 * open actually succeeded.
1461 	 */
1462 	retval = -ENXIO;
1463 	if (!scsi_device_online(sdev))
1464 		goto error_out;
1465 
1466 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1467 		if (scsi_block_when_processing_errors(sdev))
1468 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1469 	}
1470 
1471 	return 0;
1472 
1473 error_out:
1474 	scsi_disk_put(sdkp);
1475 	return retval;
1476 }
1477 
1478 /**
1479  *	sd_release - invoked when the (last) close(2) is called on this
1480  *	scsi disk.
1481  *	@disk: disk to release
1482  *	@mode: FMODE_* mask
1483  *
1484  *	Returns 0.
1485  *
1486  *	Note: may block (uninterruptible) if error recovery is underway
1487  *	on this disk.
1488  *
1489  *	Locking: called with bdev->bd_disk->open_mutex held.
1490  **/
1491 static void sd_release(struct gendisk *disk, fmode_t mode)
1492 {
1493 	struct scsi_disk *sdkp = scsi_disk(disk);
1494 	struct scsi_device *sdev = sdkp->device;
1495 
1496 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1497 
1498 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1499 		if (scsi_block_when_processing_errors(sdev))
1500 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1501 	}
1502 
1503 	scsi_disk_put(sdkp);
1504 }
1505 
1506 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1507 {
1508 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1509 	struct scsi_device *sdp = sdkp->device;
1510 	struct Scsi_Host *host = sdp->host;
1511 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1512 	int diskinfo[4];
1513 
1514 	/* default to most commonly used values */
1515 	diskinfo[0] = 0x40;	/* 1 << 6 */
1516 	diskinfo[1] = 0x20;	/* 1 << 5 */
1517 	diskinfo[2] = capacity >> 11;
1518 
1519 	/* override with calculated, extended default, or driver values */
1520 	if (host->hostt->bios_param)
1521 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1522 	else
1523 		scsicam_bios_param(bdev, capacity, diskinfo);
1524 
1525 	geo->heads = diskinfo[0];
1526 	geo->sectors = diskinfo[1];
1527 	geo->cylinders = diskinfo[2];
1528 	return 0;
1529 }
1530 
1531 /**
1532  *	sd_ioctl_common - process an ioctl
1533  *	@bdev: target block device
1534  *	@mode: FMODE_* mask
1535  *	@cmd: ioctl command number
1536  *	@p: this is third argument given to ioctl(2) system call.
1537  *	Often contains a pointer.
1538  *
1539  *	Returns 0 if successful (some ioctls return positive numbers on
1540  *	success as well). Returns a negated errno value in case of error.
1541  *
1542  *	Note: most ioctls are forward onto the block subsystem or further
1543  *	down in the scsi subsystem.
1544  **/
1545 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1546 			   unsigned int cmd, void __user *p)
1547 {
1548 	struct gendisk *disk = bdev->bd_disk;
1549 	struct scsi_disk *sdkp = scsi_disk(disk);
1550 	struct scsi_device *sdp = sdkp->device;
1551 	int error;
1552 
1553 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1554 				    "cmd=0x%x\n", disk->disk_name, cmd));
1555 
1556 	error = scsi_verify_blk_ioctl(bdev, cmd);
1557 	if (error < 0)
1558 		return error;
1559 
1560 	/*
1561 	 * If we are in the middle of error recovery, don't let anyone
1562 	 * else try and use this device.  Also, if error recovery fails, it
1563 	 * may try and take the device offline, in which case all further
1564 	 * access to the device is prohibited.
1565 	 */
1566 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1567 			(mode & FMODE_NDELAY) != 0);
1568 	if (error)
1569 		goto out;
1570 
1571 	if (is_sed_ioctl(cmd))
1572 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1573 
1574 	/*
1575 	 * Send SCSI addressing ioctls directly to mid level, send other
1576 	 * ioctls to block level and then onto mid level if they can't be
1577 	 * resolved.
1578 	 */
1579 	switch (cmd) {
1580 		case SCSI_IOCTL_GET_IDLUN:
1581 		case SCSI_IOCTL_GET_BUS_NUMBER:
1582 			error = scsi_ioctl(sdp, cmd, p);
1583 			break;
1584 		default:
1585 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1586 			break;
1587 	}
1588 out:
1589 	return error;
1590 }
1591 
1592 static void set_media_not_present(struct scsi_disk *sdkp)
1593 {
1594 	if (sdkp->media_present)
1595 		sdkp->device->changed = 1;
1596 
1597 	if (sdkp->device->removable) {
1598 		sdkp->media_present = 0;
1599 		sdkp->capacity = 0;
1600 	}
1601 }
1602 
1603 static int media_not_present(struct scsi_disk *sdkp,
1604 			     struct scsi_sense_hdr *sshdr)
1605 {
1606 	if (!scsi_sense_valid(sshdr))
1607 		return 0;
1608 
1609 	/* not invoked for commands that could return deferred errors */
1610 	switch (sshdr->sense_key) {
1611 	case UNIT_ATTENTION:
1612 	case NOT_READY:
1613 		/* medium not present */
1614 		if (sshdr->asc == 0x3A) {
1615 			set_media_not_present(sdkp);
1616 			return 1;
1617 		}
1618 	}
1619 	return 0;
1620 }
1621 
1622 /**
1623  *	sd_check_events - check media events
1624  *	@disk: kernel device descriptor
1625  *	@clearing: disk events currently being cleared
1626  *
1627  *	Returns mask of DISK_EVENT_*.
1628  *
1629  *	Note: this function is invoked from the block subsystem.
1630  **/
1631 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1632 {
1633 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1634 	struct scsi_device *sdp;
1635 	int retval;
1636 	bool disk_changed;
1637 
1638 	if (!sdkp)
1639 		return 0;
1640 
1641 	sdp = sdkp->device;
1642 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1643 
1644 	/*
1645 	 * If the device is offline, don't send any commands - just pretend as
1646 	 * if the command failed.  If the device ever comes back online, we
1647 	 * can deal with it then.  It is only because of unrecoverable errors
1648 	 * that we would ever take a device offline in the first place.
1649 	 */
1650 	if (!scsi_device_online(sdp)) {
1651 		set_media_not_present(sdkp);
1652 		goto out;
1653 	}
1654 
1655 	/*
1656 	 * Using TEST_UNIT_READY enables differentiation between drive with
1657 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1658 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1659 	 *
1660 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1661 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1662 	 * sd_revalidate() is called.
1663 	 */
1664 	if (scsi_block_when_processing_errors(sdp)) {
1665 		struct scsi_sense_hdr sshdr = { 0, };
1666 
1667 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1668 					      &sshdr);
1669 
1670 		/* failed to execute TUR, assume media not present */
1671 		if (retval < 0 || host_byte(retval)) {
1672 			set_media_not_present(sdkp);
1673 			goto out;
1674 		}
1675 
1676 		if (media_not_present(sdkp, &sshdr))
1677 			goto out;
1678 	}
1679 
1680 	/*
1681 	 * For removable scsi disk we have to recognise the presence
1682 	 * of a disk in the drive.
1683 	 */
1684 	if (!sdkp->media_present)
1685 		sdp->changed = 1;
1686 	sdkp->media_present = 1;
1687 out:
1688 	/*
1689 	 * sdp->changed is set under the following conditions:
1690 	 *
1691 	 *	Medium present state has changed in either direction.
1692 	 *	Device has indicated UNIT_ATTENTION.
1693 	 */
1694 	disk_changed = sdp->changed;
1695 	sdp->changed = 0;
1696 	scsi_disk_put(sdkp);
1697 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1698 }
1699 
1700 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1701 {
1702 	int retries, res;
1703 	struct scsi_device *sdp = sdkp->device;
1704 	const int timeout = sdp->request_queue->rq_timeout
1705 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1706 	struct scsi_sense_hdr my_sshdr;
1707 
1708 	if (!scsi_device_online(sdp))
1709 		return -ENODEV;
1710 
1711 	/* caller might not be interested in sense, but we need it */
1712 	if (!sshdr)
1713 		sshdr = &my_sshdr;
1714 
1715 	for (retries = 3; retries > 0; --retries) {
1716 		unsigned char cmd[10] = { 0 };
1717 
1718 		cmd[0] = SYNCHRONIZE_CACHE;
1719 		/*
1720 		 * Leave the rest of the command zero to indicate
1721 		 * flush everything.
1722 		 */
1723 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1724 				timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1725 		if (res == 0)
1726 			break;
1727 	}
1728 
1729 	if (res) {
1730 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1731 
1732 		if (res < 0)
1733 			return res;
1734 
1735 		if (scsi_status_is_check_condition(res) &&
1736 		    scsi_sense_valid(sshdr)) {
1737 			sd_print_sense_hdr(sdkp, sshdr);
1738 
1739 			/* we need to evaluate the error return  */
1740 			if (sshdr->asc == 0x3a ||	/* medium not present */
1741 			    sshdr->asc == 0x20 ||	/* invalid command */
1742 			    (sshdr->asc == 0x74 && sshdr->ascq == 0x71))	/* drive is password locked */
1743 				/* this is no error here */
1744 				return 0;
1745 		}
1746 
1747 		switch (host_byte(res)) {
1748 		/* ignore errors due to racing a disconnection */
1749 		case DID_BAD_TARGET:
1750 		case DID_NO_CONNECT:
1751 			return 0;
1752 		/* signal the upper layer it might try again */
1753 		case DID_BUS_BUSY:
1754 		case DID_IMM_RETRY:
1755 		case DID_REQUEUE:
1756 		case DID_SOFT_ERROR:
1757 			return -EBUSY;
1758 		default:
1759 			return -EIO;
1760 		}
1761 	}
1762 	return 0;
1763 }
1764 
1765 static void sd_rescan(struct device *dev)
1766 {
1767 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1768 
1769 	sd_revalidate_disk(sdkp->disk);
1770 }
1771 
1772 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1773 		    unsigned int cmd, unsigned long arg)
1774 {
1775 	void __user *p = (void __user *)arg;
1776 	int ret;
1777 
1778 	ret = sd_ioctl_common(bdev, mode, cmd, p);
1779 	if (ret != -ENOTTY)
1780 		return ret;
1781 
1782 	return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1783 }
1784 
1785 #ifdef CONFIG_COMPAT
1786 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1787 			   unsigned int cmd, unsigned long arg)
1788 {
1789 	void __user *p = compat_ptr(arg);
1790 	int ret;
1791 
1792 	ret = sd_ioctl_common(bdev, mode, cmd, p);
1793 	if (ret != -ENOTTY)
1794 		return ret;
1795 
1796 	return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1797 }
1798 #endif
1799 
1800 static char sd_pr_type(enum pr_type type)
1801 {
1802 	switch (type) {
1803 	case PR_WRITE_EXCLUSIVE:
1804 		return 0x01;
1805 	case PR_EXCLUSIVE_ACCESS:
1806 		return 0x03;
1807 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1808 		return 0x05;
1809 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1810 		return 0x06;
1811 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1812 		return 0x07;
1813 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1814 		return 0x08;
1815 	default:
1816 		return 0;
1817 	}
1818 };
1819 
1820 static int sd_pr_command(struct block_device *bdev, u8 sa,
1821 		u64 key, u64 sa_key, u8 type, u8 flags)
1822 {
1823 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1824 	struct scsi_device *sdev = sdkp->device;
1825 	struct scsi_sense_hdr sshdr;
1826 	int result;
1827 	u8 cmd[16] = { 0, };
1828 	u8 data[24] = { 0, };
1829 
1830 	cmd[0] = PERSISTENT_RESERVE_OUT;
1831 	cmd[1] = sa;
1832 	cmd[2] = type;
1833 	put_unaligned_be32(sizeof(data), &cmd[5]);
1834 
1835 	put_unaligned_be64(key, &data[0]);
1836 	put_unaligned_be64(sa_key, &data[8]);
1837 	data[20] = flags;
1838 
1839 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1840 			&sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1841 
1842 	if (scsi_status_is_check_condition(result) &&
1843 	    scsi_sense_valid(&sshdr)) {
1844 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1845 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1846 	}
1847 
1848 	return result;
1849 }
1850 
1851 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1852 		u32 flags)
1853 {
1854 	if (flags & ~PR_FL_IGNORE_KEY)
1855 		return -EOPNOTSUPP;
1856 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1857 			old_key, new_key, 0,
1858 			(1 << 0) /* APTPL */);
1859 }
1860 
1861 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1862 		u32 flags)
1863 {
1864 	if (flags)
1865 		return -EOPNOTSUPP;
1866 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1867 }
1868 
1869 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1870 {
1871 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1872 }
1873 
1874 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1875 		enum pr_type type, bool abort)
1876 {
1877 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1878 			     sd_pr_type(type), 0);
1879 }
1880 
1881 static int sd_pr_clear(struct block_device *bdev, u64 key)
1882 {
1883 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1884 }
1885 
1886 static const struct pr_ops sd_pr_ops = {
1887 	.pr_register	= sd_pr_register,
1888 	.pr_reserve	= sd_pr_reserve,
1889 	.pr_release	= sd_pr_release,
1890 	.pr_preempt	= sd_pr_preempt,
1891 	.pr_clear	= sd_pr_clear,
1892 };
1893 
1894 static const struct block_device_operations sd_fops = {
1895 	.owner			= THIS_MODULE,
1896 	.open			= sd_open,
1897 	.release		= sd_release,
1898 	.ioctl			= sd_ioctl,
1899 	.getgeo			= sd_getgeo,
1900 #ifdef CONFIG_COMPAT
1901 	.compat_ioctl		= sd_compat_ioctl,
1902 #endif
1903 	.check_events		= sd_check_events,
1904 	.unlock_native_capacity	= sd_unlock_native_capacity,
1905 	.report_zones		= sd_zbc_report_zones,
1906 	.pr_ops			= &sd_pr_ops,
1907 };
1908 
1909 /**
1910  *	sd_eh_reset - reset error handling callback
1911  *	@scmd:		sd-issued command that has failed
1912  *
1913  *	This function is called by the SCSI midlayer before starting
1914  *	SCSI EH. When counting medium access failures we have to be
1915  *	careful to register it only only once per device and SCSI EH run;
1916  *	there might be several timed out commands which will cause the
1917  *	'max_medium_access_timeouts' counter to trigger after the first
1918  *	SCSI EH run already and set the device to offline.
1919  *	So this function resets the internal counter before starting SCSI EH.
1920  **/
1921 static void sd_eh_reset(struct scsi_cmnd *scmd)
1922 {
1923 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1924 
1925 	/* New SCSI EH run, reset gate variable */
1926 	sdkp->ignore_medium_access_errors = false;
1927 }
1928 
1929 /**
1930  *	sd_eh_action - error handling callback
1931  *	@scmd:		sd-issued command that has failed
1932  *	@eh_disp:	The recovery disposition suggested by the midlayer
1933  *
1934  *	This function is called by the SCSI midlayer upon completion of an
1935  *	error test command (currently TEST UNIT READY). The result of sending
1936  *	the eh command is passed in eh_disp.  We're looking for devices that
1937  *	fail medium access commands but are OK with non access commands like
1938  *	test unit ready (so wrongly see the device as having a successful
1939  *	recovery)
1940  **/
1941 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1942 {
1943 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1944 	struct scsi_device *sdev = scmd->device;
1945 
1946 	if (!scsi_device_online(sdev) ||
1947 	    !scsi_medium_access_command(scmd) ||
1948 	    host_byte(scmd->result) != DID_TIME_OUT ||
1949 	    eh_disp != SUCCESS)
1950 		return eh_disp;
1951 
1952 	/*
1953 	 * The device has timed out executing a medium access command.
1954 	 * However, the TEST UNIT READY command sent during error
1955 	 * handling completed successfully. Either the device is in the
1956 	 * process of recovering or has it suffered an internal failure
1957 	 * that prevents access to the storage medium.
1958 	 */
1959 	if (!sdkp->ignore_medium_access_errors) {
1960 		sdkp->medium_access_timed_out++;
1961 		sdkp->ignore_medium_access_errors = true;
1962 	}
1963 
1964 	/*
1965 	 * If the device keeps failing read/write commands but TEST UNIT
1966 	 * READY always completes successfully we assume that medium
1967 	 * access is no longer possible and take the device offline.
1968 	 */
1969 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1970 		scmd_printk(KERN_ERR, scmd,
1971 			    "Medium access timeout failure. Offlining disk!\n");
1972 		mutex_lock(&sdev->state_mutex);
1973 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1974 		mutex_unlock(&sdev->state_mutex);
1975 
1976 		return SUCCESS;
1977 	}
1978 
1979 	return eh_disp;
1980 }
1981 
1982 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1983 {
1984 	struct request *req = scmd->request;
1985 	struct scsi_device *sdev = scmd->device;
1986 	unsigned int transferred, good_bytes;
1987 	u64 start_lba, end_lba, bad_lba;
1988 
1989 	/*
1990 	 * Some commands have a payload smaller than the device logical
1991 	 * block size (e.g. INQUIRY on a 4K disk).
1992 	 */
1993 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1994 		return 0;
1995 
1996 	/* Check if we have a 'bad_lba' information */
1997 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1998 				     SCSI_SENSE_BUFFERSIZE,
1999 				     &bad_lba))
2000 		return 0;
2001 
2002 	/*
2003 	 * If the bad lba was reported incorrectly, we have no idea where
2004 	 * the error is.
2005 	 */
2006 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2007 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2008 	if (bad_lba < start_lba || bad_lba >= end_lba)
2009 		return 0;
2010 
2011 	/*
2012 	 * resid is optional but mostly filled in.  When it's unused,
2013 	 * its value is zero, so we assume the whole buffer transferred
2014 	 */
2015 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2016 
2017 	/* This computation should always be done in terms of the
2018 	 * resolution of the device's medium.
2019 	 */
2020 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2021 
2022 	return min(good_bytes, transferred);
2023 }
2024 
2025 /**
2026  *	sd_done - bottom half handler: called when the lower level
2027  *	driver has completed (successfully or otherwise) a scsi command.
2028  *	@SCpnt: mid-level's per command structure.
2029  *
2030  *	Note: potentially run from within an ISR. Must not block.
2031  **/
2032 static int sd_done(struct scsi_cmnd *SCpnt)
2033 {
2034 	int result = SCpnt->result;
2035 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2036 	unsigned int sector_size = SCpnt->device->sector_size;
2037 	unsigned int resid;
2038 	struct scsi_sense_hdr sshdr;
2039 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
2040 	struct request *req = SCpnt->request;
2041 	int sense_valid = 0;
2042 	int sense_deferred = 0;
2043 
2044 	switch (req_op(req)) {
2045 	case REQ_OP_DISCARD:
2046 	case REQ_OP_WRITE_ZEROES:
2047 	case REQ_OP_WRITE_SAME:
2048 	case REQ_OP_ZONE_RESET:
2049 	case REQ_OP_ZONE_RESET_ALL:
2050 	case REQ_OP_ZONE_OPEN:
2051 	case REQ_OP_ZONE_CLOSE:
2052 	case REQ_OP_ZONE_FINISH:
2053 		if (!result) {
2054 			good_bytes = blk_rq_bytes(req);
2055 			scsi_set_resid(SCpnt, 0);
2056 		} else {
2057 			good_bytes = 0;
2058 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2059 		}
2060 		break;
2061 	default:
2062 		/*
2063 		 * In case of bogus fw or device, we could end up having
2064 		 * an unaligned partial completion. Check this here and force
2065 		 * alignment.
2066 		 */
2067 		resid = scsi_get_resid(SCpnt);
2068 		if (resid & (sector_size - 1)) {
2069 			sd_printk(KERN_INFO, sdkp,
2070 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2071 				resid, sector_size);
2072 			scsi_print_command(SCpnt);
2073 			resid = min(scsi_bufflen(SCpnt),
2074 				    round_up(resid, sector_size));
2075 			scsi_set_resid(SCpnt, resid);
2076 		}
2077 	}
2078 
2079 	if (result) {
2080 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2081 		if (sense_valid)
2082 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2083 	}
2084 	sdkp->medium_access_timed_out = 0;
2085 
2086 	if (!scsi_status_is_check_condition(result) &&
2087 	    (!sense_valid || sense_deferred))
2088 		goto out;
2089 
2090 	switch (sshdr.sense_key) {
2091 	case HARDWARE_ERROR:
2092 	case MEDIUM_ERROR:
2093 		good_bytes = sd_completed_bytes(SCpnt);
2094 		break;
2095 	case RECOVERED_ERROR:
2096 		good_bytes = scsi_bufflen(SCpnt);
2097 		break;
2098 	case NO_SENSE:
2099 		/* This indicates a false check condition, so ignore it.  An
2100 		 * unknown amount of data was transferred so treat it as an
2101 		 * error.
2102 		 */
2103 		SCpnt->result = 0;
2104 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2105 		break;
2106 	case ABORTED_COMMAND:
2107 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2108 			good_bytes = sd_completed_bytes(SCpnt);
2109 		break;
2110 	case ILLEGAL_REQUEST:
2111 		switch (sshdr.asc) {
2112 		case 0x10:	/* DIX: Host detected corruption */
2113 			good_bytes = sd_completed_bytes(SCpnt);
2114 			break;
2115 		case 0x20:	/* INVALID COMMAND OPCODE */
2116 		case 0x24:	/* INVALID FIELD IN CDB */
2117 			switch (SCpnt->cmnd[0]) {
2118 			case UNMAP:
2119 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2120 				break;
2121 			case WRITE_SAME_16:
2122 			case WRITE_SAME:
2123 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2124 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2125 				} else {
2126 					sdkp->device->no_write_same = 1;
2127 					sd_config_write_same(sdkp);
2128 					req->rq_flags |= RQF_QUIET;
2129 				}
2130 				break;
2131 			}
2132 		}
2133 		break;
2134 	default:
2135 		break;
2136 	}
2137 
2138  out:
2139 	if (sd_is_zoned(sdkp))
2140 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2141 
2142 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2143 					   "sd_done: completed %d of %d bytes\n",
2144 					   good_bytes, scsi_bufflen(SCpnt)));
2145 
2146 	return good_bytes;
2147 }
2148 
2149 /*
2150  * spinup disk - called only in sd_revalidate_disk()
2151  */
2152 static void
2153 sd_spinup_disk(struct scsi_disk *sdkp)
2154 {
2155 	unsigned char cmd[10];
2156 	unsigned long spintime_expire = 0;
2157 	int retries, spintime;
2158 	unsigned int the_result;
2159 	struct scsi_sense_hdr sshdr;
2160 	int sense_valid = 0;
2161 
2162 	spintime = 0;
2163 
2164 	/* Spin up drives, as required.  Only do this at boot time */
2165 	/* Spinup needs to be done for module loads too. */
2166 	do {
2167 		retries = 0;
2168 
2169 		do {
2170 			cmd[0] = TEST_UNIT_READY;
2171 			memset((void *) &cmd[1], 0, 9);
2172 
2173 			the_result = scsi_execute_req(sdkp->device, cmd,
2174 						      DMA_NONE, NULL, 0,
2175 						      &sshdr, SD_TIMEOUT,
2176 						      sdkp->max_retries, NULL);
2177 
2178 			/*
2179 			 * If the drive has indicated to us that it
2180 			 * doesn't have any media in it, don't bother
2181 			 * with any more polling.
2182 			 */
2183 			if (media_not_present(sdkp, &sshdr))
2184 				return;
2185 
2186 			if (the_result)
2187 				sense_valid = scsi_sense_valid(&sshdr);
2188 			retries++;
2189 		} while (retries < 3 &&
2190 			 (!scsi_status_is_good(the_result) ||
2191 			  (scsi_status_is_check_condition(the_result) &&
2192 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2193 
2194 		if (!scsi_status_is_check_condition(the_result)) {
2195 			/* no sense, TUR either succeeded or failed
2196 			 * with a status error */
2197 			if(!spintime && !scsi_status_is_good(the_result)) {
2198 				sd_print_result(sdkp, "Test Unit Ready failed",
2199 						the_result);
2200 			}
2201 			break;
2202 		}
2203 
2204 		/*
2205 		 * The device does not want the automatic start to be issued.
2206 		 */
2207 		if (sdkp->device->no_start_on_add)
2208 			break;
2209 
2210 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2211 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2212 				break;	/* manual intervention required */
2213 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2214 				break;	/* standby */
2215 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2216 				break;	/* unavailable */
2217 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2218 				break;	/* sanitize in progress */
2219 			/*
2220 			 * Issue command to spin up drive when not ready
2221 			 */
2222 			if (!spintime) {
2223 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2224 				cmd[0] = START_STOP;
2225 				cmd[1] = 1;	/* Return immediately */
2226 				memset((void *) &cmd[2], 0, 8);
2227 				cmd[4] = 1;	/* Start spin cycle */
2228 				if (sdkp->device->start_stop_pwr_cond)
2229 					cmd[4] |= 1 << 4;
2230 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2231 						 NULL, 0, &sshdr,
2232 						 SD_TIMEOUT, sdkp->max_retries,
2233 						 NULL);
2234 				spintime_expire = jiffies + 100 * HZ;
2235 				spintime = 1;
2236 			}
2237 			/* Wait 1 second for next try */
2238 			msleep(1000);
2239 			printk(KERN_CONT ".");
2240 
2241 		/*
2242 		 * Wait for USB flash devices with slow firmware.
2243 		 * Yes, this sense key/ASC combination shouldn't
2244 		 * occur here.  It's characteristic of these devices.
2245 		 */
2246 		} else if (sense_valid &&
2247 				sshdr.sense_key == UNIT_ATTENTION &&
2248 				sshdr.asc == 0x28) {
2249 			if (!spintime) {
2250 				spintime_expire = jiffies + 5 * HZ;
2251 				spintime = 1;
2252 			}
2253 			/* Wait 1 second for next try */
2254 			msleep(1000);
2255 		} else {
2256 			/* we don't understand the sense code, so it's
2257 			 * probably pointless to loop */
2258 			if(!spintime) {
2259 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2260 				sd_print_sense_hdr(sdkp, &sshdr);
2261 			}
2262 			break;
2263 		}
2264 
2265 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2266 
2267 	if (spintime) {
2268 		if (scsi_status_is_good(the_result))
2269 			printk(KERN_CONT "ready\n");
2270 		else
2271 			printk(KERN_CONT "not responding...\n");
2272 	}
2273 }
2274 
2275 /*
2276  * Determine whether disk supports Data Integrity Field.
2277  */
2278 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2279 {
2280 	struct scsi_device *sdp = sdkp->device;
2281 	u8 type;
2282 	int ret = 0;
2283 
2284 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2285 		sdkp->protection_type = 0;
2286 		return ret;
2287 	}
2288 
2289 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2290 
2291 	if (type > T10_PI_TYPE3_PROTECTION)
2292 		ret = -ENODEV;
2293 	else if (scsi_host_dif_capable(sdp->host, type))
2294 		ret = 1;
2295 
2296 	if (sdkp->first_scan || type != sdkp->protection_type)
2297 		switch (ret) {
2298 		case -ENODEV:
2299 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2300 				  " protection type %u. Disabling disk!\n",
2301 				  type);
2302 			break;
2303 		case 1:
2304 			sd_printk(KERN_NOTICE, sdkp,
2305 				  "Enabling DIF Type %u protection\n", type);
2306 			break;
2307 		case 0:
2308 			sd_printk(KERN_NOTICE, sdkp,
2309 				  "Disabling DIF Type %u protection\n", type);
2310 			break;
2311 		}
2312 
2313 	sdkp->protection_type = type;
2314 
2315 	return ret;
2316 }
2317 
2318 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2319 			struct scsi_sense_hdr *sshdr, int sense_valid,
2320 			int the_result)
2321 {
2322 	if (sense_valid)
2323 		sd_print_sense_hdr(sdkp, sshdr);
2324 	else
2325 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2326 
2327 	/*
2328 	 * Set dirty bit for removable devices if not ready -
2329 	 * sometimes drives will not report this properly.
2330 	 */
2331 	if (sdp->removable &&
2332 	    sense_valid && sshdr->sense_key == NOT_READY)
2333 		set_media_not_present(sdkp);
2334 
2335 	/*
2336 	 * We used to set media_present to 0 here to indicate no media
2337 	 * in the drive, but some drives fail read capacity even with
2338 	 * media present, so we can't do that.
2339 	 */
2340 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2341 }
2342 
2343 #define RC16_LEN 32
2344 #if RC16_LEN > SD_BUF_SIZE
2345 #error RC16_LEN must not be more than SD_BUF_SIZE
2346 #endif
2347 
2348 #define READ_CAPACITY_RETRIES_ON_RESET	10
2349 
2350 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2351 						unsigned char *buffer)
2352 {
2353 	unsigned char cmd[16];
2354 	struct scsi_sense_hdr sshdr;
2355 	int sense_valid = 0;
2356 	int the_result;
2357 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2358 	unsigned int alignment;
2359 	unsigned long long lba;
2360 	unsigned sector_size;
2361 
2362 	if (sdp->no_read_capacity_16)
2363 		return -EINVAL;
2364 
2365 	do {
2366 		memset(cmd, 0, 16);
2367 		cmd[0] = SERVICE_ACTION_IN_16;
2368 		cmd[1] = SAI_READ_CAPACITY_16;
2369 		cmd[13] = RC16_LEN;
2370 		memset(buffer, 0, RC16_LEN);
2371 
2372 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2373 					buffer, RC16_LEN, &sshdr,
2374 					SD_TIMEOUT, sdkp->max_retries, NULL);
2375 
2376 		if (media_not_present(sdkp, &sshdr))
2377 			return -ENODEV;
2378 
2379 		if (the_result > 0) {
2380 			sense_valid = scsi_sense_valid(&sshdr);
2381 			if (sense_valid &&
2382 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2383 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2384 			    sshdr.ascq == 0x00)
2385 				/* Invalid Command Operation Code or
2386 				 * Invalid Field in CDB, just retry
2387 				 * silently with RC10 */
2388 				return -EINVAL;
2389 			if (sense_valid &&
2390 			    sshdr.sense_key == UNIT_ATTENTION &&
2391 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2392 				/* Device reset might occur several times,
2393 				 * give it one more chance */
2394 				if (--reset_retries > 0)
2395 					continue;
2396 		}
2397 		retries--;
2398 
2399 	} while (the_result && retries);
2400 
2401 	if (the_result) {
2402 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2403 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2404 		return -EINVAL;
2405 	}
2406 
2407 	sector_size = get_unaligned_be32(&buffer[8]);
2408 	lba = get_unaligned_be64(&buffer[0]);
2409 
2410 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2411 		sdkp->capacity = 0;
2412 		return -ENODEV;
2413 	}
2414 
2415 	/* Logical blocks per physical block exponent */
2416 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2417 
2418 	/* RC basis */
2419 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2420 
2421 	/* Lowest aligned logical block */
2422 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2423 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2424 	if (alignment && sdkp->first_scan)
2425 		sd_printk(KERN_NOTICE, sdkp,
2426 			  "physical block alignment offset: %u\n", alignment);
2427 
2428 	if (buffer[14] & 0x80) { /* LBPME */
2429 		sdkp->lbpme = 1;
2430 
2431 		if (buffer[14] & 0x40) /* LBPRZ */
2432 			sdkp->lbprz = 1;
2433 
2434 		sd_config_discard(sdkp, SD_LBP_WS16);
2435 	}
2436 
2437 	sdkp->capacity = lba + 1;
2438 	return sector_size;
2439 }
2440 
2441 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2442 						unsigned char *buffer)
2443 {
2444 	unsigned char cmd[16];
2445 	struct scsi_sense_hdr sshdr;
2446 	int sense_valid = 0;
2447 	int the_result;
2448 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2449 	sector_t lba;
2450 	unsigned sector_size;
2451 
2452 	do {
2453 		cmd[0] = READ_CAPACITY;
2454 		memset(&cmd[1], 0, 9);
2455 		memset(buffer, 0, 8);
2456 
2457 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2458 					buffer, 8, &sshdr,
2459 					SD_TIMEOUT, sdkp->max_retries, NULL);
2460 
2461 		if (media_not_present(sdkp, &sshdr))
2462 			return -ENODEV;
2463 
2464 		if (the_result > 0) {
2465 			sense_valid = scsi_sense_valid(&sshdr);
2466 			if (sense_valid &&
2467 			    sshdr.sense_key == UNIT_ATTENTION &&
2468 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2469 				/* Device reset might occur several times,
2470 				 * give it one more chance */
2471 				if (--reset_retries > 0)
2472 					continue;
2473 		}
2474 		retries--;
2475 
2476 	} while (the_result && retries);
2477 
2478 	if (the_result) {
2479 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2480 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2481 		return -EINVAL;
2482 	}
2483 
2484 	sector_size = get_unaligned_be32(&buffer[4]);
2485 	lba = get_unaligned_be32(&buffer[0]);
2486 
2487 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2488 		/* Some buggy (usb cardreader) devices return an lba of
2489 		   0xffffffff when the want to report a size of 0 (with
2490 		   which they really mean no media is present) */
2491 		sdkp->capacity = 0;
2492 		sdkp->physical_block_size = sector_size;
2493 		return sector_size;
2494 	}
2495 
2496 	sdkp->capacity = lba + 1;
2497 	sdkp->physical_block_size = sector_size;
2498 	return sector_size;
2499 }
2500 
2501 static int sd_try_rc16_first(struct scsi_device *sdp)
2502 {
2503 	if (sdp->host->max_cmd_len < 16)
2504 		return 0;
2505 	if (sdp->try_rc_10_first)
2506 		return 0;
2507 	if (sdp->scsi_level > SCSI_SPC_2)
2508 		return 1;
2509 	if (scsi_device_protection(sdp))
2510 		return 1;
2511 	return 0;
2512 }
2513 
2514 /*
2515  * read disk capacity
2516  */
2517 static void
2518 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2519 {
2520 	int sector_size;
2521 	struct scsi_device *sdp = sdkp->device;
2522 
2523 	if (sd_try_rc16_first(sdp)) {
2524 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2525 		if (sector_size == -EOVERFLOW)
2526 			goto got_data;
2527 		if (sector_size == -ENODEV)
2528 			return;
2529 		if (sector_size < 0)
2530 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2531 		if (sector_size < 0)
2532 			return;
2533 	} else {
2534 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2535 		if (sector_size == -EOVERFLOW)
2536 			goto got_data;
2537 		if (sector_size < 0)
2538 			return;
2539 		if ((sizeof(sdkp->capacity) > 4) &&
2540 		    (sdkp->capacity > 0xffffffffULL)) {
2541 			int old_sector_size = sector_size;
2542 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2543 					"Trying to use READ CAPACITY(16).\n");
2544 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2545 			if (sector_size < 0) {
2546 				sd_printk(KERN_NOTICE, sdkp,
2547 					"Using 0xffffffff as device size\n");
2548 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2549 				sector_size = old_sector_size;
2550 				goto got_data;
2551 			}
2552 			/* Remember that READ CAPACITY(16) succeeded */
2553 			sdp->try_rc_10_first = 0;
2554 		}
2555 	}
2556 
2557 	/* Some devices are known to return the total number of blocks,
2558 	 * not the highest block number.  Some devices have versions
2559 	 * which do this and others which do not.  Some devices we might
2560 	 * suspect of doing this but we don't know for certain.
2561 	 *
2562 	 * If we know the reported capacity is wrong, decrement it.  If
2563 	 * we can only guess, then assume the number of blocks is even
2564 	 * (usually true but not always) and err on the side of lowering
2565 	 * the capacity.
2566 	 */
2567 	if (sdp->fix_capacity ||
2568 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2569 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2570 				"from its reported value: %llu\n",
2571 				(unsigned long long) sdkp->capacity);
2572 		--sdkp->capacity;
2573 	}
2574 
2575 got_data:
2576 	if (sector_size == 0) {
2577 		sector_size = 512;
2578 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2579 			  "assuming 512.\n");
2580 	}
2581 
2582 	if (sector_size != 512 &&
2583 	    sector_size != 1024 &&
2584 	    sector_size != 2048 &&
2585 	    sector_size != 4096) {
2586 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2587 			  sector_size);
2588 		/*
2589 		 * The user might want to re-format the drive with
2590 		 * a supported sectorsize.  Once this happens, it
2591 		 * would be relatively trivial to set the thing up.
2592 		 * For this reason, we leave the thing in the table.
2593 		 */
2594 		sdkp->capacity = 0;
2595 		/*
2596 		 * set a bogus sector size so the normal read/write
2597 		 * logic in the block layer will eventually refuse any
2598 		 * request on this device without tripping over power
2599 		 * of two sector size assumptions
2600 		 */
2601 		sector_size = 512;
2602 	}
2603 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2604 	blk_queue_physical_block_size(sdp->request_queue,
2605 				      sdkp->physical_block_size);
2606 	sdkp->device->sector_size = sector_size;
2607 
2608 	if (sdkp->capacity > 0xffffffff)
2609 		sdp->use_16_for_rw = 1;
2610 
2611 }
2612 
2613 /*
2614  * Print disk capacity
2615  */
2616 static void
2617 sd_print_capacity(struct scsi_disk *sdkp,
2618 		  sector_t old_capacity)
2619 {
2620 	int sector_size = sdkp->device->sector_size;
2621 	char cap_str_2[10], cap_str_10[10];
2622 
2623 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2624 		return;
2625 
2626 	string_get_size(sdkp->capacity, sector_size,
2627 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2628 	string_get_size(sdkp->capacity, sector_size,
2629 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2630 
2631 	sd_printk(KERN_NOTICE, sdkp,
2632 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2633 		  (unsigned long long)sdkp->capacity,
2634 		  sector_size, cap_str_10, cap_str_2);
2635 
2636 	if (sdkp->physical_block_size != sector_size)
2637 		sd_printk(KERN_NOTICE, sdkp,
2638 			  "%u-byte physical blocks\n",
2639 			  sdkp->physical_block_size);
2640 }
2641 
2642 /* called with buffer of length 512 */
2643 static inline int
2644 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2645 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2646 		 struct scsi_sense_hdr *sshdr)
2647 {
2648 	return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2649 			       SD_TIMEOUT, sdkp->max_retries, data,
2650 			       sshdr);
2651 }
2652 
2653 /*
2654  * read write protect setting, if possible - called only in sd_revalidate_disk()
2655  * called with buffer of length SD_BUF_SIZE
2656  */
2657 static void
2658 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2659 {
2660 	int res;
2661 	struct scsi_device *sdp = sdkp->device;
2662 	struct scsi_mode_data data;
2663 	int old_wp = sdkp->write_prot;
2664 
2665 	set_disk_ro(sdkp->disk, 0);
2666 	if (sdp->skip_ms_page_3f) {
2667 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2668 		return;
2669 	}
2670 
2671 	if (sdp->use_192_bytes_for_3f) {
2672 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2673 	} else {
2674 		/*
2675 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2676 		 * We have to start carefully: some devices hang if we ask
2677 		 * for more than is available.
2678 		 */
2679 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2680 
2681 		/*
2682 		 * Second attempt: ask for page 0 When only page 0 is
2683 		 * implemented, a request for page 3F may return Sense Key
2684 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2685 		 * CDB.
2686 		 */
2687 		if (res < 0)
2688 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2689 
2690 		/*
2691 		 * Third attempt: ask 255 bytes, as we did earlier.
2692 		 */
2693 		if (res < 0)
2694 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2695 					       &data, NULL);
2696 	}
2697 
2698 	if (res < 0) {
2699 		sd_first_printk(KERN_WARNING, sdkp,
2700 			  "Test WP failed, assume Write Enabled\n");
2701 	} else {
2702 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2703 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2704 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2705 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2706 				  sdkp->write_prot ? "on" : "off");
2707 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2708 		}
2709 	}
2710 }
2711 
2712 /*
2713  * sd_read_cache_type - called only from sd_revalidate_disk()
2714  * called with buffer of length SD_BUF_SIZE
2715  */
2716 static void
2717 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2718 {
2719 	int len = 0, res;
2720 	struct scsi_device *sdp = sdkp->device;
2721 
2722 	int dbd;
2723 	int modepage;
2724 	int first_len;
2725 	struct scsi_mode_data data;
2726 	struct scsi_sense_hdr sshdr;
2727 	int old_wce = sdkp->WCE;
2728 	int old_rcd = sdkp->RCD;
2729 	int old_dpofua = sdkp->DPOFUA;
2730 
2731 
2732 	if (sdkp->cache_override)
2733 		return;
2734 
2735 	first_len = 4;
2736 	if (sdp->skip_ms_page_8) {
2737 		if (sdp->type == TYPE_RBC)
2738 			goto defaults;
2739 		else {
2740 			if (sdp->skip_ms_page_3f)
2741 				goto defaults;
2742 			modepage = 0x3F;
2743 			if (sdp->use_192_bytes_for_3f)
2744 				first_len = 192;
2745 			dbd = 0;
2746 		}
2747 	} else if (sdp->type == TYPE_RBC) {
2748 		modepage = 6;
2749 		dbd = 8;
2750 	} else {
2751 		modepage = 8;
2752 		dbd = 0;
2753 	}
2754 
2755 	/* cautiously ask */
2756 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2757 			&data, &sshdr);
2758 
2759 	if (res < 0)
2760 		goto bad_sense;
2761 
2762 	if (!data.header_length) {
2763 		modepage = 6;
2764 		first_len = 0;
2765 		sd_first_printk(KERN_ERR, sdkp,
2766 				"Missing header in MODE_SENSE response\n");
2767 	}
2768 
2769 	/* that went OK, now ask for the proper length */
2770 	len = data.length;
2771 
2772 	/*
2773 	 * We're only interested in the first three bytes, actually.
2774 	 * But the data cache page is defined for the first 20.
2775 	 */
2776 	if (len < 3)
2777 		goto bad_sense;
2778 	else if (len > SD_BUF_SIZE) {
2779 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2780 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2781 		len = SD_BUF_SIZE;
2782 	}
2783 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2784 		len = 192;
2785 
2786 	/* Get the data */
2787 	if (len > first_len)
2788 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2789 				&data, &sshdr);
2790 
2791 	if (!res) {
2792 		int offset = data.header_length + data.block_descriptor_length;
2793 
2794 		while (offset < len) {
2795 			u8 page_code = buffer[offset] & 0x3F;
2796 			u8 spf       = buffer[offset] & 0x40;
2797 
2798 			if (page_code == 8 || page_code == 6) {
2799 				/* We're interested only in the first 3 bytes.
2800 				 */
2801 				if (len - offset <= 2) {
2802 					sd_first_printk(KERN_ERR, sdkp,
2803 						"Incomplete mode parameter "
2804 							"data\n");
2805 					goto defaults;
2806 				} else {
2807 					modepage = page_code;
2808 					goto Page_found;
2809 				}
2810 			} else {
2811 				/* Go to the next page */
2812 				if (spf && len - offset > 3)
2813 					offset += 4 + (buffer[offset+2] << 8) +
2814 						buffer[offset+3];
2815 				else if (!spf && len - offset > 1)
2816 					offset += 2 + buffer[offset+1];
2817 				else {
2818 					sd_first_printk(KERN_ERR, sdkp,
2819 							"Incomplete mode "
2820 							"parameter data\n");
2821 					goto defaults;
2822 				}
2823 			}
2824 		}
2825 
2826 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2827 		goto defaults;
2828 
2829 	Page_found:
2830 		if (modepage == 8) {
2831 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2832 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2833 		} else {
2834 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2835 			sdkp->RCD = 0;
2836 		}
2837 
2838 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2839 		if (sdp->broken_fua) {
2840 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2841 			sdkp->DPOFUA = 0;
2842 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2843 			   !sdkp->device->use_16_for_rw) {
2844 			sd_first_printk(KERN_NOTICE, sdkp,
2845 				  "Uses READ/WRITE(6), disabling FUA\n");
2846 			sdkp->DPOFUA = 0;
2847 		}
2848 
2849 		/* No cache flush allowed for write protected devices */
2850 		if (sdkp->WCE && sdkp->write_prot)
2851 			sdkp->WCE = 0;
2852 
2853 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2854 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2855 			sd_printk(KERN_NOTICE, sdkp,
2856 				  "Write cache: %s, read cache: %s, %s\n",
2857 				  sdkp->WCE ? "enabled" : "disabled",
2858 				  sdkp->RCD ? "disabled" : "enabled",
2859 				  sdkp->DPOFUA ? "supports DPO and FUA"
2860 				  : "doesn't support DPO or FUA");
2861 
2862 		return;
2863 	}
2864 
2865 bad_sense:
2866 	if (scsi_sense_valid(&sshdr) &&
2867 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2868 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2869 		/* Invalid field in CDB */
2870 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2871 	else
2872 		sd_first_printk(KERN_ERR, sdkp,
2873 				"Asking for cache data failed\n");
2874 
2875 defaults:
2876 	if (sdp->wce_default_on) {
2877 		sd_first_printk(KERN_NOTICE, sdkp,
2878 				"Assuming drive cache: write back\n");
2879 		sdkp->WCE = 1;
2880 	} else {
2881 		sd_first_printk(KERN_ERR, sdkp,
2882 				"Assuming drive cache: write through\n");
2883 		sdkp->WCE = 0;
2884 	}
2885 	sdkp->RCD = 0;
2886 	sdkp->DPOFUA = 0;
2887 }
2888 
2889 /*
2890  * The ATO bit indicates whether the DIF application tag is available
2891  * for use by the operating system.
2892  */
2893 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2894 {
2895 	int res, offset;
2896 	struct scsi_device *sdp = sdkp->device;
2897 	struct scsi_mode_data data;
2898 	struct scsi_sense_hdr sshdr;
2899 
2900 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2901 		return;
2902 
2903 	if (sdkp->protection_type == 0)
2904 		return;
2905 
2906 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2907 			      sdkp->max_retries, &data, &sshdr);
2908 
2909 	if (res < 0 || !data.header_length ||
2910 	    data.length < 6) {
2911 		sd_first_printk(KERN_WARNING, sdkp,
2912 			  "getting Control mode page failed, assume no ATO\n");
2913 
2914 		if (scsi_sense_valid(&sshdr))
2915 			sd_print_sense_hdr(sdkp, &sshdr);
2916 
2917 		return;
2918 	}
2919 
2920 	offset = data.header_length + data.block_descriptor_length;
2921 
2922 	if ((buffer[offset] & 0x3f) != 0x0a) {
2923 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2924 		return;
2925 	}
2926 
2927 	if ((buffer[offset + 5] & 0x80) == 0)
2928 		return;
2929 
2930 	sdkp->ATO = 1;
2931 
2932 	return;
2933 }
2934 
2935 /**
2936  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2937  * @sdkp: disk to query
2938  */
2939 static void sd_read_block_limits(struct scsi_disk *sdkp)
2940 {
2941 	unsigned int sector_sz = sdkp->device->sector_size;
2942 	const int vpd_len = 64;
2943 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2944 
2945 	if (!buffer ||
2946 	    /* Block Limits VPD */
2947 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2948 		goto out;
2949 
2950 	blk_queue_io_min(sdkp->disk->queue,
2951 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2952 
2953 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2954 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2955 
2956 	if (buffer[3] == 0x3c) {
2957 		unsigned int lba_count, desc_count;
2958 
2959 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2960 
2961 		if (!sdkp->lbpme)
2962 			goto out;
2963 
2964 		lba_count = get_unaligned_be32(&buffer[20]);
2965 		desc_count = get_unaligned_be32(&buffer[24]);
2966 
2967 		if (lba_count && desc_count)
2968 			sdkp->max_unmap_blocks = lba_count;
2969 
2970 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2971 
2972 		if (buffer[32] & 0x80)
2973 			sdkp->unmap_alignment =
2974 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2975 
2976 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2977 
2978 			if (sdkp->max_unmap_blocks)
2979 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2980 			else
2981 				sd_config_discard(sdkp, SD_LBP_WS16);
2982 
2983 		} else {	/* LBP VPD page tells us what to use */
2984 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2985 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2986 			else if (sdkp->lbpws)
2987 				sd_config_discard(sdkp, SD_LBP_WS16);
2988 			else if (sdkp->lbpws10)
2989 				sd_config_discard(sdkp, SD_LBP_WS10);
2990 			else
2991 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2992 		}
2993 	}
2994 
2995  out:
2996 	kfree(buffer);
2997 }
2998 
2999 /**
3000  * sd_read_block_characteristics - Query block dev. characteristics
3001  * @sdkp: disk to query
3002  */
3003 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3004 {
3005 	struct request_queue *q = sdkp->disk->queue;
3006 	unsigned char *buffer;
3007 	u16 rot;
3008 	const int vpd_len = 64;
3009 
3010 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3011 
3012 	if (!buffer ||
3013 	    /* Block Device Characteristics VPD */
3014 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
3015 		goto out;
3016 
3017 	rot = get_unaligned_be16(&buffer[4]);
3018 
3019 	if (rot == 1) {
3020 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3021 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3022 	}
3023 
3024 	if (sdkp->device->type == TYPE_ZBC) {
3025 		/* Host-managed */
3026 		blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
3027 	} else {
3028 		sdkp->zoned = (buffer[8] >> 4) & 3;
3029 		if (sdkp->zoned == 1) {
3030 			/* Host-aware */
3031 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3032 		} else {
3033 			/* Regular disk or drive managed disk */
3034 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3035 		}
3036 	}
3037 
3038 	if (!sdkp->first_scan)
3039 		goto out;
3040 
3041 	if (blk_queue_is_zoned(q)) {
3042 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3043 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3044 	} else {
3045 		if (sdkp->zoned == 1)
3046 			sd_printk(KERN_NOTICE, sdkp,
3047 				  "Host-aware SMR disk used as regular disk\n");
3048 		else if (sdkp->zoned == 2)
3049 			sd_printk(KERN_NOTICE, sdkp,
3050 				  "Drive-managed SMR disk\n");
3051 	}
3052 
3053  out:
3054 	kfree(buffer);
3055 }
3056 
3057 /**
3058  * sd_read_block_provisioning - Query provisioning VPD page
3059  * @sdkp: disk to query
3060  */
3061 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3062 {
3063 	unsigned char *buffer;
3064 	const int vpd_len = 8;
3065 
3066 	if (sdkp->lbpme == 0)
3067 		return;
3068 
3069 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3070 
3071 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3072 		goto out;
3073 
3074 	sdkp->lbpvpd	= 1;
3075 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3076 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3077 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3078 
3079  out:
3080 	kfree(buffer);
3081 }
3082 
3083 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3084 {
3085 	struct scsi_device *sdev = sdkp->device;
3086 
3087 	if (sdev->host->no_write_same) {
3088 		sdev->no_write_same = 1;
3089 
3090 		return;
3091 	}
3092 
3093 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3094 		/* too large values might cause issues with arcmsr */
3095 		int vpd_buf_len = 64;
3096 
3097 		sdev->no_report_opcodes = 1;
3098 
3099 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3100 		 * CODES is unsupported and the device has an ATA
3101 		 * Information VPD page (SAT).
3102 		 */
3103 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3104 			sdev->no_write_same = 1;
3105 	}
3106 
3107 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3108 		sdkp->ws16 = 1;
3109 
3110 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3111 		sdkp->ws10 = 1;
3112 }
3113 
3114 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3115 {
3116 	struct scsi_device *sdev = sdkp->device;
3117 
3118 	if (!sdev->security_supported)
3119 		return;
3120 
3121 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3122 			SECURITY_PROTOCOL_IN) == 1 &&
3123 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3124 			SECURITY_PROTOCOL_OUT) == 1)
3125 		sdkp->security = 1;
3126 }
3127 
3128 /*
3129  * Determine the device's preferred I/O size for reads and writes
3130  * unless the reported value is unreasonably small, large, not a
3131  * multiple of the physical block size, or simply garbage.
3132  */
3133 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3134 				      unsigned int dev_max)
3135 {
3136 	struct scsi_device *sdp = sdkp->device;
3137 	unsigned int opt_xfer_bytes =
3138 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3139 
3140 	if (sdkp->opt_xfer_blocks == 0)
3141 		return false;
3142 
3143 	if (sdkp->opt_xfer_blocks > dev_max) {
3144 		sd_first_printk(KERN_WARNING, sdkp,
3145 				"Optimal transfer size %u logical blocks " \
3146 				"> dev_max (%u logical blocks)\n",
3147 				sdkp->opt_xfer_blocks, dev_max);
3148 		return false;
3149 	}
3150 
3151 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3152 		sd_first_printk(KERN_WARNING, sdkp,
3153 				"Optimal transfer size %u logical blocks " \
3154 				"> sd driver limit (%u logical blocks)\n",
3155 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3156 		return false;
3157 	}
3158 
3159 	if (opt_xfer_bytes < PAGE_SIZE) {
3160 		sd_first_printk(KERN_WARNING, sdkp,
3161 				"Optimal transfer size %u bytes < " \
3162 				"PAGE_SIZE (%u bytes)\n",
3163 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3164 		return false;
3165 	}
3166 
3167 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3168 		sd_first_printk(KERN_WARNING, sdkp,
3169 				"Optimal transfer size %u bytes not a " \
3170 				"multiple of physical block size (%u bytes)\n",
3171 				opt_xfer_bytes, sdkp->physical_block_size);
3172 		return false;
3173 	}
3174 
3175 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3176 			opt_xfer_bytes);
3177 	return true;
3178 }
3179 
3180 /**
3181  *	sd_revalidate_disk - called the first time a new disk is seen,
3182  *	performs disk spin up, read_capacity, etc.
3183  *	@disk: struct gendisk we care about
3184  **/
3185 static int sd_revalidate_disk(struct gendisk *disk)
3186 {
3187 	struct scsi_disk *sdkp = scsi_disk(disk);
3188 	struct scsi_device *sdp = sdkp->device;
3189 	struct request_queue *q = sdkp->disk->queue;
3190 	sector_t old_capacity = sdkp->capacity;
3191 	unsigned char *buffer;
3192 	unsigned int dev_max, rw_max;
3193 
3194 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3195 				      "sd_revalidate_disk\n"));
3196 
3197 	/*
3198 	 * If the device is offline, don't try and read capacity or any
3199 	 * of the other niceties.
3200 	 */
3201 	if (!scsi_device_online(sdp))
3202 		goto out;
3203 
3204 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3205 	if (!buffer) {
3206 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3207 			  "allocation failure.\n");
3208 		goto out;
3209 	}
3210 
3211 	sd_spinup_disk(sdkp);
3212 
3213 	/*
3214 	 * Without media there is no reason to ask; moreover, some devices
3215 	 * react badly if we do.
3216 	 */
3217 	if (sdkp->media_present) {
3218 		sd_read_capacity(sdkp, buffer);
3219 
3220 		/*
3221 		 * set the default to rotational.  All non-rotational devices
3222 		 * support the block characteristics VPD page, which will
3223 		 * cause this to be updated correctly and any device which
3224 		 * doesn't support it should be treated as rotational.
3225 		 */
3226 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3227 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3228 
3229 		if (scsi_device_supports_vpd(sdp)) {
3230 			sd_read_block_provisioning(sdkp);
3231 			sd_read_block_limits(sdkp);
3232 			sd_read_block_characteristics(sdkp);
3233 			sd_zbc_read_zones(sdkp, buffer);
3234 		}
3235 
3236 		sd_print_capacity(sdkp, old_capacity);
3237 
3238 		sd_read_write_protect_flag(sdkp, buffer);
3239 		sd_read_cache_type(sdkp, buffer);
3240 		sd_read_app_tag_own(sdkp, buffer);
3241 		sd_read_write_same(sdkp, buffer);
3242 		sd_read_security(sdkp, buffer);
3243 	}
3244 
3245 	/*
3246 	 * We now have all cache related info, determine how we deal
3247 	 * with flush requests.
3248 	 */
3249 	sd_set_flush_flag(sdkp);
3250 
3251 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3252 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3253 
3254 	/* Some devices report a maximum block count for READ/WRITE requests. */
3255 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3256 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3257 
3258 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3259 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3260 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3261 	} else {
3262 		q->limits.io_opt = 0;
3263 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3264 				      (sector_t)BLK_DEF_MAX_SECTORS);
3265 	}
3266 
3267 	/* Do not exceed controller limit */
3268 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3269 
3270 	/*
3271 	 * Only update max_sectors if previously unset or if the current value
3272 	 * exceeds the capabilities of the hardware.
3273 	 */
3274 	if (sdkp->first_scan ||
3275 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3276 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3277 		q->limits.max_sectors = rw_max;
3278 
3279 	sdkp->first_scan = 0;
3280 
3281 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3282 	sd_config_write_same(sdkp);
3283 	kfree(buffer);
3284 
3285 	/*
3286 	 * For a zoned drive, revalidating the zones can be done only once
3287 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3288 	 * capacity to 0.
3289 	 */
3290 	if (sd_zbc_revalidate_zones(sdkp))
3291 		set_capacity_and_notify(disk, 0);
3292 
3293  out:
3294 	return 0;
3295 }
3296 
3297 /**
3298  *	sd_unlock_native_capacity - unlock native capacity
3299  *	@disk: struct gendisk to set capacity for
3300  *
3301  *	Block layer calls this function if it detects that partitions
3302  *	on @disk reach beyond the end of the device.  If the SCSI host
3303  *	implements ->unlock_native_capacity() method, it's invoked to
3304  *	give it a chance to adjust the device capacity.
3305  *
3306  *	CONTEXT:
3307  *	Defined by block layer.  Might sleep.
3308  */
3309 static void sd_unlock_native_capacity(struct gendisk *disk)
3310 {
3311 	struct scsi_device *sdev = scsi_disk(disk)->device;
3312 
3313 	if (sdev->host->hostt->unlock_native_capacity)
3314 		sdev->host->hostt->unlock_native_capacity(sdev);
3315 }
3316 
3317 /**
3318  *	sd_format_disk_name - format disk name
3319  *	@prefix: name prefix - ie. "sd" for SCSI disks
3320  *	@index: index of the disk to format name for
3321  *	@buf: output buffer
3322  *	@buflen: length of the output buffer
3323  *
3324  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3325  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3326  *	which is followed by sdaaa.
3327  *
3328  *	This is basically 26 base counting with one extra 'nil' entry
3329  *	at the beginning from the second digit on and can be
3330  *	determined using similar method as 26 base conversion with the
3331  *	index shifted -1 after each digit is computed.
3332  *
3333  *	CONTEXT:
3334  *	Don't care.
3335  *
3336  *	RETURNS:
3337  *	0 on success, -errno on failure.
3338  */
3339 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3340 {
3341 	const int base = 'z' - 'a' + 1;
3342 	char *begin = buf + strlen(prefix);
3343 	char *end = buf + buflen;
3344 	char *p;
3345 	int unit;
3346 
3347 	p = end - 1;
3348 	*p = '\0';
3349 	unit = base;
3350 	do {
3351 		if (p == begin)
3352 			return -EINVAL;
3353 		*--p = 'a' + (index % unit);
3354 		index = (index / unit) - 1;
3355 	} while (index >= 0);
3356 
3357 	memmove(begin, p, end - p);
3358 	memcpy(buf, prefix, strlen(prefix));
3359 
3360 	return 0;
3361 }
3362 
3363 /**
3364  *	sd_probe - called during driver initialization and whenever a
3365  *	new scsi device is attached to the system. It is called once
3366  *	for each scsi device (not just disks) present.
3367  *	@dev: pointer to device object
3368  *
3369  *	Returns 0 if successful (or not interested in this scsi device
3370  *	(e.g. scanner)); 1 when there is an error.
3371  *
3372  *	Note: this function is invoked from the scsi mid-level.
3373  *	This function sets up the mapping between a given
3374  *	<host,channel,id,lun> (found in sdp) and new device name
3375  *	(e.g. /dev/sda). More precisely it is the block device major
3376  *	and minor number that is chosen here.
3377  *
3378  *	Assume sd_probe is not re-entrant (for time being)
3379  *	Also think about sd_probe() and sd_remove() running coincidentally.
3380  **/
3381 static int sd_probe(struct device *dev)
3382 {
3383 	struct scsi_device *sdp = to_scsi_device(dev);
3384 	struct scsi_disk *sdkp;
3385 	struct gendisk *gd;
3386 	int index;
3387 	int error;
3388 
3389 	scsi_autopm_get_device(sdp);
3390 	error = -ENODEV;
3391 	if (sdp->type != TYPE_DISK &&
3392 	    sdp->type != TYPE_ZBC &&
3393 	    sdp->type != TYPE_MOD &&
3394 	    sdp->type != TYPE_RBC)
3395 		goto out;
3396 
3397 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3398 		sdev_printk(KERN_WARNING, sdp,
3399 			    "Unsupported ZBC host-managed device.\n");
3400 		goto out;
3401 	}
3402 
3403 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3404 					"sd_probe\n"));
3405 
3406 	error = -ENOMEM;
3407 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3408 	if (!sdkp)
3409 		goto out;
3410 
3411 	gd = alloc_disk(SD_MINORS);
3412 	if (!gd)
3413 		goto out_free;
3414 
3415 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3416 	if (index < 0) {
3417 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3418 		goto out_put;
3419 	}
3420 
3421 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3422 	if (error) {
3423 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3424 		goto out_free_index;
3425 	}
3426 
3427 	sdkp->device = sdp;
3428 	sdkp->driver = &sd_template;
3429 	sdkp->disk = gd;
3430 	sdkp->index = index;
3431 	sdkp->max_retries = SD_MAX_RETRIES;
3432 	atomic_set(&sdkp->openers, 0);
3433 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3434 
3435 	if (!sdp->request_queue->rq_timeout) {
3436 		if (sdp->type != TYPE_MOD)
3437 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3438 		else
3439 			blk_queue_rq_timeout(sdp->request_queue,
3440 					     SD_MOD_TIMEOUT);
3441 	}
3442 
3443 	device_initialize(&sdkp->dev);
3444 	sdkp->dev.parent = dev;
3445 	sdkp->dev.class = &sd_disk_class;
3446 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3447 
3448 	error = device_add(&sdkp->dev);
3449 	if (error)
3450 		goto out_free_index;
3451 
3452 	get_device(dev);
3453 	dev_set_drvdata(dev, sdkp);
3454 
3455 	gd->major = sd_major((index & 0xf0) >> 4);
3456 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3457 
3458 	gd->fops = &sd_fops;
3459 	gd->private_data = &sdkp->driver;
3460 	gd->queue = sdkp->device->request_queue;
3461 
3462 	/* defaults, until the device tells us otherwise */
3463 	sdp->sector_size = 512;
3464 	sdkp->capacity = 0;
3465 	sdkp->media_present = 1;
3466 	sdkp->write_prot = 0;
3467 	sdkp->cache_override = 0;
3468 	sdkp->WCE = 0;
3469 	sdkp->RCD = 0;
3470 	sdkp->ATO = 0;
3471 	sdkp->first_scan = 1;
3472 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3473 
3474 	sd_revalidate_disk(gd);
3475 
3476 	gd->flags = GENHD_FL_EXT_DEVT;
3477 	if (sdp->removable) {
3478 		gd->flags |= GENHD_FL_REMOVABLE;
3479 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3480 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3481 	}
3482 
3483 	blk_pm_runtime_init(sdp->request_queue, dev);
3484 	if (sdp->rpm_autosuspend) {
3485 		pm_runtime_set_autosuspend_delay(dev,
3486 			sdp->host->hostt->rpm_autosuspend_delay);
3487 	}
3488 	device_add_disk(dev, gd, NULL);
3489 	if (sdkp->capacity)
3490 		sd_dif_config_host(sdkp);
3491 
3492 	sd_revalidate_disk(gd);
3493 
3494 	if (sdkp->security) {
3495 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3496 		if (sdkp->opal_dev)
3497 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3498 	}
3499 
3500 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3501 		  sdp->removable ? "removable " : "");
3502 	scsi_autopm_put_device(sdp);
3503 
3504 	return 0;
3505 
3506  out_free_index:
3507 	ida_free(&sd_index_ida, index);
3508  out_put:
3509 	put_disk(gd);
3510  out_free:
3511 	sd_zbc_release_disk(sdkp);
3512 	kfree(sdkp);
3513  out:
3514 	scsi_autopm_put_device(sdp);
3515 	return error;
3516 }
3517 
3518 /**
3519  *	sd_remove - called whenever a scsi disk (previously recognized by
3520  *	sd_probe) is detached from the system. It is called (potentially
3521  *	multiple times) during sd module unload.
3522  *	@dev: pointer to device object
3523  *
3524  *	Note: this function is invoked from the scsi mid-level.
3525  *	This function potentially frees up a device name (e.g. /dev/sdc)
3526  *	that could be re-used by a subsequent sd_probe().
3527  *	This function is not called when the built-in sd driver is "exit-ed".
3528  **/
3529 static int sd_remove(struct device *dev)
3530 {
3531 	struct scsi_disk *sdkp;
3532 
3533 	sdkp = dev_get_drvdata(dev);
3534 	scsi_autopm_get_device(sdkp->device);
3535 
3536 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3537 	device_del(&sdkp->dev);
3538 	del_gendisk(sdkp->disk);
3539 	sd_shutdown(dev);
3540 
3541 	free_opal_dev(sdkp->opal_dev);
3542 
3543 	mutex_lock(&sd_ref_mutex);
3544 	dev_set_drvdata(dev, NULL);
3545 	put_device(&sdkp->dev);
3546 	mutex_unlock(&sd_ref_mutex);
3547 
3548 	return 0;
3549 }
3550 
3551 /**
3552  *	scsi_disk_release - Called to free the scsi_disk structure
3553  *	@dev: pointer to embedded class device
3554  *
3555  *	sd_ref_mutex must be held entering this routine.  Because it is
3556  *	called on last put, you should always use the scsi_disk_get()
3557  *	scsi_disk_put() helpers which manipulate the semaphore directly
3558  *	and never do a direct put_device.
3559  **/
3560 static void scsi_disk_release(struct device *dev)
3561 {
3562 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3563 	struct gendisk *disk = sdkp->disk;
3564 	struct request_queue *q = disk->queue;
3565 
3566 	ida_free(&sd_index_ida, sdkp->index);
3567 
3568 	/*
3569 	 * Wait until all requests that are in progress have completed.
3570 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3571 	 * due to clearing the disk->private_data pointer. Wait from inside
3572 	 * scsi_disk_release() instead of from sd_release() to avoid that
3573 	 * freezing and unfreezing the request queue affects user space I/O
3574 	 * in case multiple processes open a /dev/sd... node concurrently.
3575 	 */
3576 	blk_mq_freeze_queue(q);
3577 	blk_mq_unfreeze_queue(q);
3578 
3579 	disk->private_data = NULL;
3580 	put_disk(disk);
3581 	put_device(&sdkp->device->sdev_gendev);
3582 
3583 	sd_zbc_release_disk(sdkp);
3584 
3585 	kfree(sdkp);
3586 }
3587 
3588 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3589 {
3590 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3591 	struct scsi_sense_hdr sshdr;
3592 	struct scsi_device *sdp = sdkp->device;
3593 	int res;
3594 
3595 	if (start)
3596 		cmd[4] |= 1;	/* START */
3597 
3598 	if (sdp->start_stop_pwr_cond)
3599 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3600 
3601 	if (!scsi_device_online(sdp))
3602 		return -ENODEV;
3603 
3604 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3605 			SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3606 	if (res) {
3607 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3608 		if (res > 0 && scsi_sense_valid(&sshdr)) {
3609 			sd_print_sense_hdr(sdkp, &sshdr);
3610 			/* 0x3a is medium not present */
3611 			if (sshdr.asc == 0x3a)
3612 				res = 0;
3613 		}
3614 	}
3615 
3616 	/* SCSI error codes must not go to the generic layer */
3617 	if (res)
3618 		return -EIO;
3619 
3620 	return 0;
3621 }
3622 
3623 /*
3624  * Send a SYNCHRONIZE CACHE instruction down to the device through
3625  * the normal SCSI command structure.  Wait for the command to
3626  * complete.
3627  */
3628 static void sd_shutdown(struct device *dev)
3629 {
3630 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3631 
3632 	if (!sdkp)
3633 		return;         /* this can happen */
3634 
3635 	if (pm_runtime_suspended(dev))
3636 		return;
3637 
3638 	if (sdkp->WCE && sdkp->media_present) {
3639 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3640 		sd_sync_cache(sdkp, NULL);
3641 	}
3642 
3643 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3644 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3645 		sd_start_stop_device(sdkp, 0);
3646 	}
3647 }
3648 
3649 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3650 {
3651 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3652 	struct scsi_sense_hdr sshdr;
3653 	int ret = 0;
3654 
3655 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3656 		return 0;
3657 
3658 	if (sdkp->WCE && sdkp->media_present) {
3659 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3660 		ret = sd_sync_cache(sdkp, &sshdr);
3661 
3662 		if (ret) {
3663 			/* ignore OFFLINE device */
3664 			if (ret == -ENODEV)
3665 				return 0;
3666 
3667 			if (!scsi_sense_valid(&sshdr) ||
3668 			    sshdr.sense_key != ILLEGAL_REQUEST)
3669 				return ret;
3670 
3671 			/*
3672 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3673 			 * doesn't support sync. There's not much to do and
3674 			 * suspend shouldn't fail.
3675 			 */
3676 			ret = 0;
3677 		}
3678 	}
3679 
3680 	if (sdkp->device->manage_start_stop) {
3681 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3682 		/* an error is not worth aborting a system sleep */
3683 		ret = sd_start_stop_device(sdkp, 0);
3684 		if (ignore_stop_errors)
3685 			ret = 0;
3686 	}
3687 
3688 	return ret;
3689 }
3690 
3691 static int sd_suspend_system(struct device *dev)
3692 {
3693 	return sd_suspend_common(dev, true);
3694 }
3695 
3696 static int sd_suspend_runtime(struct device *dev)
3697 {
3698 	return sd_suspend_common(dev, false);
3699 }
3700 
3701 static int sd_resume(struct device *dev)
3702 {
3703 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3704 	int ret;
3705 
3706 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3707 		return 0;
3708 
3709 	if (!sdkp->device->manage_start_stop)
3710 		return 0;
3711 
3712 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3713 	ret = sd_start_stop_device(sdkp, 1);
3714 	if (!ret)
3715 		opal_unlock_from_suspend(sdkp->opal_dev);
3716 	return ret;
3717 }
3718 
3719 /**
3720  *	init_sd - entry point for this driver (both when built in or when
3721  *	a module).
3722  *
3723  *	Note: this function registers this driver with the scsi mid-level.
3724  **/
3725 static int __init init_sd(void)
3726 {
3727 	int majors = 0, i, err;
3728 
3729 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3730 
3731 	for (i = 0; i < SD_MAJORS; i++) {
3732 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3733 			continue;
3734 		majors++;
3735 	}
3736 
3737 	if (!majors)
3738 		return -ENODEV;
3739 
3740 	err = class_register(&sd_disk_class);
3741 	if (err)
3742 		goto err_out;
3743 
3744 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3745 					 0, 0, NULL);
3746 	if (!sd_cdb_cache) {
3747 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3748 		err = -ENOMEM;
3749 		goto err_out_class;
3750 	}
3751 
3752 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3753 	if (!sd_cdb_pool) {
3754 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3755 		err = -ENOMEM;
3756 		goto err_out_cache;
3757 	}
3758 
3759 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3760 	if (!sd_page_pool) {
3761 		printk(KERN_ERR "sd: can't init discard page pool\n");
3762 		err = -ENOMEM;
3763 		goto err_out_ppool;
3764 	}
3765 
3766 	err = scsi_register_driver(&sd_template.gendrv);
3767 	if (err)
3768 		goto err_out_driver;
3769 
3770 	return 0;
3771 
3772 err_out_driver:
3773 	mempool_destroy(sd_page_pool);
3774 
3775 err_out_ppool:
3776 	mempool_destroy(sd_cdb_pool);
3777 
3778 err_out_cache:
3779 	kmem_cache_destroy(sd_cdb_cache);
3780 
3781 err_out_class:
3782 	class_unregister(&sd_disk_class);
3783 err_out:
3784 	for (i = 0; i < SD_MAJORS; i++)
3785 		unregister_blkdev(sd_major(i), "sd");
3786 	return err;
3787 }
3788 
3789 /**
3790  *	exit_sd - exit point for this driver (when it is a module).
3791  *
3792  *	Note: this function unregisters this driver from the scsi mid-level.
3793  **/
3794 static void __exit exit_sd(void)
3795 {
3796 	int i;
3797 
3798 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3799 
3800 	scsi_unregister_driver(&sd_template.gendrv);
3801 	mempool_destroy(sd_cdb_pool);
3802 	mempool_destroy(sd_page_pool);
3803 	kmem_cache_destroy(sd_cdb_cache);
3804 
3805 	class_unregister(&sd_disk_class);
3806 
3807 	for (i = 0; i < SD_MAJORS; i++)
3808 		unregister_blkdev(sd_major(i), "sd");
3809 }
3810 
3811 module_init(init_sd);
3812 module_exit(exit_sd);
3813 
3814 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3815 {
3816 	scsi_print_sense_hdr(sdkp->device,
3817 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3818 }
3819 
3820 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3821 {
3822 	const char *hb_string = scsi_hostbyte_string(result);
3823 
3824 	if (hb_string)
3825 		sd_printk(KERN_INFO, sdkp,
3826 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3827 			  hb_string ? hb_string : "invalid",
3828 			  "DRIVER_OK");
3829 	else
3830 		sd_printk(KERN_INFO, sdkp,
3831 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3832 			  msg, host_byte(result), "DRIVER_OK");
3833 }
3834