xref: /openbmc/linux/drivers/scsi/sd.c (revision ecd25094)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS	16
103 #else
104 #define SD_MINORS	0
105 #endif
106 
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int  sd_probe(struct device *);
112 static int  sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
126 static void sd_print_result(const struct scsi_disk *, const char *, int);
127 
128 static DEFINE_IDA(sd_index_ida);
129 
130 /* This semaphore is used to mediate the 0->1 reference get in the
131  * face of object destruction (i.e. we can't allow a get on an
132  * object after last put) */
133 static DEFINE_MUTEX(sd_ref_mutex);
134 
135 static struct kmem_cache *sd_cdb_cache;
136 static mempool_t *sd_cdb_pool;
137 static mempool_t *sd_page_pool;
138 
139 static const char *sd_cache_types[] = {
140 	"write through", "none", "write back",
141 	"write back, no read (daft)"
142 };
143 
144 static void sd_set_flush_flag(struct scsi_disk *sdkp)
145 {
146 	bool wc = false, fua = false;
147 
148 	if (sdkp->WCE) {
149 		wc = true;
150 		if (sdkp->DPOFUA)
151 			fua = true;
152 	}
153 
154 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
155 }
156 
157 static ssize_t
158 cache_type_store(struct device *dev, struct device_attribute *attr,
159 		 const char *buf, size_t count)
160 {
161 	int ct, rcd, wce, sp;
162 	struct scsi_disk *sdkp = to_scsi_disk(dev);
163 	struct scsi_device *sdp = sdkp->device;
164 	char buffer[64];
165 	char *buffer_data;
166 	struct scsi_mode_data data;
167 	struct scsi_sense_hdr sshdr;
168 	static const char temp[] = "temporary ";
169 	int len;
170 
171 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
172 		/* no cache control on RBC devices; theoretically they
173 		 * can do it, but there's probably so many exceptions
174 		 * it's not worth the risk */
175 		return -EINVAL;
176 
177 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
178 		buf += sizeof(temp) - 1;
179 		sdkp->cache_override = 1;
180 	} else {
181 		sdkp->cache_override = 0;
182 	}
183 
184 	ct = sysfs_match_string(sd_cache_types, buf);
185 	if (ct < 0)
186 		return -EINVAL;
187 
188 	rcd = ct & 0x01 ? 1 : 0;
189 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
190 
191 	if (sdkp->cache_override) {
192 		sdkp->WCE = wce;
193 		sdkp->RCD = rcd;
194 		sd_set_flush_flag(sdkp);
195 		return count;
196 	}
197 
198 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
199 			    SD_MAX_RETRIES, &data, NULL))
200 		return -EINVAL;
201 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
202 		  data.block_descriptor_length);
203 	buffer_data = buffer + data.header_length +
204 		data.block_descriptor_length;
205 	buffer_data[2] &= ~0x05;
206 	buffer_data[2] |= wce << 2 | rcd;
207 	sp = buffer_data[0] & 0x80 ? 1 : 0;
208 	buffer_data[0] &= ~0x80;
209 
210 	/*
211 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
212 	 * received mode parameter buffer before doing MODE SELECT.
213 	 */
214 	data.device_specific = 0;
215 
216 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
217 			     SD_MAX_RETRIES, &data, &sshdr)) {
218 		if (scsi_sense_valid(&sshdr))
219 			sd_print_sense_hdr(sdkp, &sshdr);
220 		return -EINVAL;
221 	}
222 	revalidate_disk(sdkp->disk);
223 	return count;
224 }
225 
226 static ssize_t
227 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
228 		       char *buf)
229 {
230 	struct scsi_disk *sdkp = to_scsi_disk(dev);
231 	struct scsi_device *sdp = sdkp->device;
232 
233 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
234 }
235 
236 static ssize_t
237 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
238 			const char *buf, size_t count)
239 {
240 	struct scsi_disk *sdkp = to_scsi_disk(dev);
241 	struct scsi_device *sdp = sdkp->device;
242 	bool v;
243 
244 	if (!capable(CAP_SYS_ADMIN))
245 		return -EACCES;
246 
247 	if (kstrtobool(buf, &v))
248 		return -EINVAL;
249 
250 	sdp->manage_start_stop = v;
251 
252 	return count;
253 }
254 static DEVICE_ATTR_RW(manage_start_stop);
255 
256 static ssize_t
257 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
258 {
259 	struct scsi_disk *sdkp = to_scsi_disk(dev);
260 
261 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
262 }
263 
264 static ssize_t
265 allow_restart_store(struct device *dev, struct device_attribute *attr,
266 		    const char *buf, size_t count)
267 {
268 	bool v;
269 	struct scsi_disk *sdkp = to_scsi_disk(dev);
270 	struct scsi_device *sdp = sdkp->device;
271 
272 	if (!capable(CAP_SYS_ADMIN))
273 		return -EACCES;
274 
275 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
276 		return -EINVAL;
277 
278 	if (kstrtobool(buf, &v))
279 		return -EINVAL;
280 
281 	sdp->allow_restart = v;
282 
283 	return count;
284 }
285 static DEVICE_ATTR_RW(allow_restart);
286 
287 static ssize_t
288 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
289 {
290 	struct scsi_disk *sdkp = to_scsi_disk(dev);
291 	int ct = sdkp->RCD + 2*sdkp->WCE;
292 
293 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
294 }
295 static DEVICE_ATTR_RW(cache_type);
296 
297 static ssize_t
298 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
299 {
300 	struct scsi_disk *sdkp = to_scsi_disk(dev);
301 
302 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
303 }
304 static DEVICE_ATTR_RO(FUA);
305 
306 static ssize_t
307 protection_type_show(struct device *dev, struct device_attribute *attr,
308 		     char *buf)
309 {
310 	struct scsi_disk *sdkp = to_scsi_disk(dev);
311 
312 	return sprintf(buf, "%u\n", sdkp->protection_type);
313 }
314 
315 static ssize_t
316 protection_type_store(struct device *dev, struct device_attribute *attr,
317 		      const char *buf, size_t count)
318 {
319 	struct scsi_disk *sdkp = to_scsi_disk(dev);
320 	unsigned int val;
321 	int err;
322 
323 	if (!capable(CAP_SYS_ADMIN))
324 		return -EACCES;
325 
326 	err = kstrtouint(buf, 10, &val);
327 
328 	if (err)
329 		return err;
330 
331 	if (val <= T10_PI_TYPE3_PROTECTION)
332 		sdkp->protection_type = val;
333 
334 	return count;
335 }
336 static DEVICE_ATTR_RW(protection_type);
337 
338 static ssize_t
339 protection_mode_show(struct device *dev, struct device_attribute *attr,
340 		     char *buf)
341 {
342 	struct scsi_disk *sdkp = to_scsi_disk(dev);
343 	struct scsi_device *sdp = sdkp->device;
344 	unsigned int dif, dix;
345 
346 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
347 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
348 
349 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
350 		dif = 0;
351 		dix = 1;
352 	}
353 
354 	if (!dif && !dix)
355 		return sprintf(buf, "none\n");
356 
357 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
358 }
359 static DEVICE_ATTR_RO(protection_mode);
360 
361 static ssize_t
362 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
363 {
364 	struct scsi_disk *sdkp = to_scsi_disk(dev);
365 
366 	return sprintf(buf, "%u\n", sdkp->ATO);
367 }
368 static DEVICE_ATTR_RO(app_tag_own);
369 
370 static ssize_t
371 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
372 		       char *buf)
373 {
374 	struct scsi_disk *sdkp = to_scsi_disk(dev);
375 
376 	return sprintf(buf, "%u\n", sdkp->lbpme);
377 }
378 static DEVICE_ATTR_RO(thin_provisioning);
379 
380 /* sysfs_match_string() requires dense arrays */
381 static const char *lbp_mode[] = {
382 	[SD_LBP_FULL]		= "full",
383 	[SD_LBP_UNMAP]		= "unmap",
384 	[SD_LBP_WS16]		= "writesame_16",
385 	[SD_LBP_WS10]		= "writesame_10",
386 	[SD_LBP_ZERO]		= "writesame_zero",
387 	[SD_LBP_DISABLE]	= "disabled",
388 };
389 
390 static ssize_t
391 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
392 		       char *buf)
393 {
394 	struct scsi_disk *sdkp = to_scsi_disk(dev);
395 
396 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
397 }
398 
399 static ssize_t
400 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
401 			const char *buf, size_t count)
402 {
403 	struct scsi_disk *sdkp = to_scsi_disk(dev);
404 	struct scsi_device *sdp = sdkp->device;
405 	int mode;
406 
407 	if (!capable(CAP_SYS_ADMIN))
408 		return -EACCES;
409 
410 	if (sd_is_zoned(sdkp)) {
411 		sd_config_discard(sdkp, SD_LBP_DISABLE);
412 		return count;
413 	}
414 
415 	if (sdp->type != TYPE_DISK)
416 		return -EINVAL;
417 
418 	mode = sysfs_match_string(lbp_mode, buf);
419 	if (mode < 0)
420 		return -EINVAL;
421 
422 	sd_config_discard(sdkp, mode);
423 
424 	return count;
425 }
426 static DEVICE_ATTR_RW(provisioning_mode);
427 
428 /* sysfs_match_string() requires dense arrays */
429 static const char *zeroing_mode[] = {
430 	[SD_ZERO_WRITE]		= "write",
431 	[SD_ZERO_WS]		= "writesame",
432 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
433 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
434 };
435 
436 static ssize_t
437 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
438 		  char *buf)
439 {
440 	struct scsi_disk *sdkp = to_scsi_disk(dev);
441 
442 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
443 }
444 
445 static ssize_t
446 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
447 		   const char *buf, size_t count)
448 {
449 	struct scsi_disk *sdkp = to_scsi_disk(dev);
450 	int mode;
451 
452 	if (!capable(CAP_SYS_ADMIN))
453 		return -EACCES;
454 
455 	mode = sysfs_match_string(zeroing_mode, buf);
456 	if (mode < 0)
457 		return -EINVAL;
458 
459 	sdkp->zeroing_mode = mode;
460 
461 	return count;
462 }
463 static DEVICE_ATTR_RW(zeroing_mode);
464 
465 static ssize_t
466 max_medium_access_timeouts_show(struct device *dev,
467 				struct device_attribute *attr, char *buf)
468 {
469 	struct scsi_disk *sdkp = to_scsi_disk(dev);
470 
471 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
472 }
473 
474 static ssize_t
475 max_medium_access_timeouts_store(struct device *dev,
476 				 struct device_attribute *attr, const char *buf,
477 				 size_t count)
478 {
479 	struct scsi_disk *sdkp = to_scsi_disk(dev);
480 	int err;
481 
482 	if (!capable(CAP_SYS_ADMIN))
483 		return -EACCES;
484 
485 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
486 
487 	return err ? err : count;
488 }
489 static DEVICE_ATTR_RW(max_medium_access_timeouts);
490 
491 static ssize_t
492 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
493 			   char *buf)
494 {
495 	struct scsi_disk *sdkp = to_scsi_disk(dev);
496 
497 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
498 }
499 
500 static ssize_t
501 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
502 			    const char *buf, size_t count)
503 {
504 	struct scsi_disk *sdkp = to_scsi_disk(dev);
505 	struct scsi_device *sdp = sdkp->device;
506 	unsigned long max;
507 	int err;
508 
509 	if (!capable(CAP_SYS_ADMIN))
510 		return -EACCES;
511 
512 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
513 		return -EINVAL;
514 
515 	err = kstrtoul(buf, 10, &max);
516 
517 	if (err)
518 		return err;
519 
520 	if (max == 0)
521 		sdp->no_write_same = 1;
522 	else if (max <= SD_MAX_WS16_BLOCKS) {
523 		sdp->no_write_same = 0;
524 		sdkp->max_ws_blocks = max;
525 	}
526 
527 	sd_config_write_same(sdkp);
528 
529 	return count;
530 }
531 static DEVICE_ATTR_RW(max_write_same_blocks);
532 
533 static struct attribute *sd_disk_attrs[] = {
534 	&dev_attr_cache_type.attr,
535 	&dev_attr_FUA.attr,
536 	&dev_attr_allow_restart.attr,
537 	&dev_attr_manage_start_stop.attr,
538 	&dev_attr_protection_type.attr,
539 	&dev_attr_protection_mode.attr,
540 	&dev_attr_app_tag_own.attr,
541 	&dev_attr_thin_provisioning.attr,
542 	&dev_attr_provisioning_mode.attr,
543 	&dev_attr_zeroing_mode.attr,
544 	&dev_attr_max_write_same_blocks.attr,
545 	&dev_attr_max_medium_access_timeouts.attr,
546 	NULL,
547 };
548 ATTRIBUTE_GROUPS(sd_disk);
549 
550 static struct class sd_disk_class = {
551 	.name		= "scsi_disk",
552 	.owner		= THIS_MODULE,
553 	.dev_release	= scsi_disk_release,
554 	.dev_groups	= sd_disk_groups,
555 };
556 
557 static const struct dev_pm_ops sd_pm_ops = {
558 	.suspend		= sd_suspend_system,
559 	.resume			= sd_resume,
560 	.poweroff		= sd_suspend_system,
561 	.restore		= sd_resume,
562 	.runtime_suspend	= sd_suspend_runtime,
563 	.runtime_resume		= sd_resume,
564 };
565 
566 static struct scsi_driver sd_template = {
567 	.gendrv = {
568 		.name		= "sd",
569 		.owner		= THIS_MODULE,
570 		.probe		= sd_probe,
571 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
572 		.remove		= sd_remove,
573 		.shutdown	= sd_shutdown,
574 		.pm		= &sd_pm_ops,
575 	},
576 	.rescan			= sd_rescan,
577 	.init_command		= sd_init_command,
578 	.uninit_command		= sd_uninit_command,
579 	.done			= sd_done,
580 	.eh_action		= sd_eh_action,
581 	.eh_reset		= sd_eh_reset,
582 };
583 
584 /*
585  * Dummy kobj_map->probe function.
586  * The default ->probe function will call modprobe, which is
587  * pointless as this module is already loaded.
588  */
589 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
590 {
591 	return NULL;
592 }
593 
594 /*
595  * Device no to disk mapping:
596  *
597  *       major         disc2     disc  p1
598  *   |............|.............|....|....| <- dev_t
599  *    31        20 19          8 7  4 3  0
600  *
601  * Inside a major, we have 16k disks, however mapped non-
602  * contiguously. The first 16 disks are for major0, the next
603  * ones with major1, ... Disk 256 is for major0 again, disk 272
604  * for major1, ...
605  * As we stay compatible with our numbering scheme, we can reuse
606  * the well-know SCSI majors 8, 65--71, 136--143.
607  */
608 static int sd_major(int major_idx)
609 {
610 	switch (major_idx) {
611 	case 0:
612 		return SCSI_DISK0_MAJOR;
613 	case 1 ... 7:
614 		return SCSI_DISK1_MAJOR + major_idx - 1;
615 	case 8 ... 15:
616 		return SCSI_DISK8_MAJOR + major_idx - 8;
617 	default:
618 		BUG();
619 		return 0;	/* shut up gcc */
620 	}
621 }
622 
623 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
624 {
625 	struct scsi_disk *sdkp = NULL;
626 
627 	mutex_lock(&sd_ref_mutex);
628 
629 	if (disk->private_data) {
630 		sdkp = scsi_disk(disk);
631 		if (scsi_device_get(sdkp->device) == 0)
632 			get_device(&sdkp->dev);
633 		else
634 			sdkp = NULL;
635 	}
636 	mutex_unlock(&sd_ref_mutex);
637 	return sdkp;
638 }
639 
640 static void scsi_disk_put(struct scsi_disk *sdkp)
641 {
642 	struct scsi_device *sdev = sdkp->device;
643 
644 	mutex_lock(&sd_ref_mutex);
645 	put_device(&sdkp->dev);
646 	scsi_device_put(sdev);
647 	mutex_unlock(&sd_ref_mutex);
648 }
649 
650 #ifdef CONFIG_BLK_SED_OPAL
651 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
652 		size_t len, bool send)
653 {
654 	struct scsi_device *sdev = data;
655 	u8 cdb[12] = { 0, };
656 	int ret;
657 
658 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
659 	cdb[1] = secp;
660 	put_unaligned_be16(spsp, &cdb[2]);
661 	put_unaligned_be32(len, &cdb[6]);
662 
663 	ret = scsi_execute_req(sdev, cdb,
664 			send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
665 			buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
666 	return ret <= 0 ? ret : -EIO;
667 }
668 #endif /* CONFIG_BLK_SED_OPAL */
669 
670 /*
671  * Look up the DIX operation based on whether the command is read or
672  * write and whether dix and dif are enabled.
673  */
674 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
675 {
676 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
677 	static const unsigned int ops[] = {	/* wrt dix dif */
678 		SCSI_PROT_NORMAL,		/*  0	0   0  */
679 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
680 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
681 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
682 		SCSI_PROT_NORMAL,		/*  1	0   0  */
683 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
684 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
685 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
686 	};
687 
688 	return ops[write << 2 | dix << 1 | dif];
689 }
690 
691 /*
692  * Returns a mask of the protection flags that are valid for a given DIX
693  * operation.
694  */
695 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
696 {
697 	static const unsigned int flag_mask[] = {
698 		[SCSI_PROT_NORMAL]		= 0,
699 
700 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
701 						  SCSI_PROT_GUARD_CHECK |
702 						  SCSI_PROT_REF_CHECK |
703 						  SCSI_PROT_REF_INCREMENT,
704 
705 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
706 						  SCSI_PROT_IP_CHECKSUM,
707 
708 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
709 						  SCSI_PROT_GUARD_CHECK |
710 						  SCSI_PROT_REF_CHECK |
711 						  SCSI_PROT_REF_INCREMENT |
712 						  SCSI_PROT_IP_CHECKSUM,
713 
714 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
715 						  SCSI_PROT_REF_INCREMENT,
716 
717 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
718 						  SCSI_PROT_REF_CHECK |
719 						  SCSI_PROT_REF_INCREMENT |
720 						  SCSI_PROT_IP_CHECKSUM,
721 
722 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
723 						  SCSI_PROT_GUARD_CHECK |
724 						  SCSI_PROT_REF_CHECK |
725 						  SCSI_PROT_REF_INCREMENT |
726 						  SCSI_PROT_IP_CHECKSUM,
727 	};
728 
729 	return flag_mask[prot_op];
730 }
731 
732 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
733 					   unsigned int dix, unsigned int dif)
734 {
735 	struct bio *bio = scmd->request->bio;
736 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
737 	unsigned int protect = 0;
738 
739 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
740 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
741 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
742 
743 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
744 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
745 	}
746 
747 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
748 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
749 
750 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
751 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
752 	}
753 
754 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
755 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
756 
757 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
758 			protect = 3 << 5;	/* Disable target PI checking */
759 		else
760 			protect = 1 << 5;	/* Enable target PI checking */
761 	}
762 
763 	scsi_set_prot_op(scmd, prot_op);
764 	scsi_set_prot_type(scmd, dif);
765 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
766 
767 	return protect;
768 }
769 
770 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
771 {
772 	struct request_queue *q = sdkp->disk->queue;
773 	unsigned int logical_block_size = sdkp->device->sector_size;
774 	unsigned int max_blocks = 0;
775 
776 	q->limits.discard_alignment =
777 		sdkp->unmap_alignment * logical_block_size;
778 	q->limits.discard_granularity =
779 		max(sdkp->physical_block_size,
780 		    sdkp->unmap_granularity * logical_block_size);
781 	sdkp->provisioning_mode = mode;
782 
783 	switch (mode) {
784 
785 	case SD_LBP_FULL:
786 	case SD_LBP_DISABLE:
787 		blk_queue_max_discard_sectors(q, 0);
788 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
789 		return;
790 
791 	case SD_LBP_UNMAP:
792 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
793 					  (u32)SD_MAX_WS16_BLOCKS);
794 		break;
795 
796 	case SD_LBP_WS16:
797 		if (sdkp->device->unmap_limit_for_ws)
798 			max_blocks = sdkp->max_unmap_blocks;
799 		else
800 			max_blocks = sdkp->max_ws_blocks;
801 
802 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
803 		break;
804 
805 	case SD_LBP_WS10:
806 		if (sdkp->device->unmap_limit_for_ws)
807 			max_blocks = sdkp->max_unmap_blocks;
808 		else
809 			max_blocks = sdkp->max_ws_blocks;
810 
811 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
812 		break;
813 
814 	case SD_LBP_ZERO:
815 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
816 					  (u32)SD_MAX_WS10_BLOCKS);
817 		break;
818 	}
819 
820 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
821 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
822 }
823 
824 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
825 {
826 	struct scsi_device *sdp = cmd->device;
827 	struct request *rq = cmd->request;
828 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
829 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
830 	unsigned int data_len = 24;
831 	char *buf;
832 
833 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
834 	if (!rq->special_vec.bv_page)
835 		return BLK_STS_RESOURCE;
836 	clear_highpage(rq->special_vec.bv_page);
837 	rq->special_vec.bv_offset = 0;
838 	rq->special_vec.bv_len = data_len;
839 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
840 
841 	cmd->cmd_len = 10;
842 	cmd->cmnd[0] = UNMAP;
843 	cmd->cmnd[8] = 24;
844 
845 	buf = page_address(rq->special_vec.bv_page);
846 	put_unaligned_be16(6 + 16, &buf[0]);
847 	put_unaligned_be16(16, &buf[2]);
848 	put_unaligned_be64(lba, &buf[8]);
849 	put_unaligned_be32(nr_blocks, &buf[16]);
850 
851 	cmd->allowed = SD_MAX_RETRIES;
852 	cmd->transfersize = data_len;
853 	rq->timeout = SD_TIMEOUT;
854 
855 	return scsi_init_io(cmd);
856 }
857 
858 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
859 		bool unmap)
860 {
861 	struct scsi_device *sdp = cmd->device;
862 	struct request *rq = cmd->request;
863 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
864 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
865 	u32 data_len = sdp->sector_size;
866 
867 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
868 	if (!rq->special_vec.bv_page)
869 		return BLK_STS_RESOURCE;
870 	clear_highpage(rq->special_vec.bv_page);
871 	rq->special_vec.bv_offset = 0;
872 	rq->special_vec.bv_len = data_len;
873 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
874 
875 	cmd->cmd_len = 16;
876 	cmd->cmnd[0] = WRITE_SAME_16;
877 	if (unmap)
878 		cmd->cmnd[1] = 0x8; /* UNMAP */
879 	put_unaligned_be64(lba, &cmd->cmnd[2]);
880 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
881 
882 	cmd->allowed = SD_MAX_RETRIES;
883 	cmd->transfersize = data_len;
884 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
885 
886 	return scsi_init_io(cmd);
887 }
888 
889 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
890 		bool unmap)
891 {
892 	struct scsi_device *sdp = cmd->device;
893 	struct request *rq = cmd->request;
894 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
895 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
896 	u32 data_len = sdp->sector_size;
897 
898 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
899 	if (!rq->special_vec.bv_page)
900 		return BLK_STS_RESOURCE;
901 	clear_highpage(rq->special_vec.bv_page);
902 	rq->special_vec.bv_offset = 0;
903 	rq->special_vec.bv_len = data_len;
904 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
905 
906 	cmd->cmd_len = 10;
907 	cmd->cmnd[0] = WRITE_SAME;
908 	if (unmap)
909 		cmd->cmnd[1] = 0x8; /* UNMAP */
910 	put_unaligned_be32(lba, &cmd->cmnd[2]);
911 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
912 
913 	cmd->allowed = SD_MAX_RETRIES;
914 	cmd->transfersize = data_len;
915 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
916 
917 	return scsi_init_io(cmd);
918 }
919 
920 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
921 {
922 	struct request *rq = cmd->request;
923 	struct scsi_device *sdp = cmd->device;
924 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
925 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
926 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
927 
928 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
929 		switch (sdkp->zeroing_mode) {
930 		case SD_ZERO_WS16_UNMAP:
931 			return sd_setup_write_same16_cmnd(cmd, true);
932 		case SD_ZERO_WS10_UNMAP:
933 			return sd_setup_write_same10_cmnd(cmd, true);
934 		}
935 	}
936 
937 	if (sdp->no_write_same)
938 		return BLK_STS_TARGET;
939 
940 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
941 		return sd_setup_write_same16_cmnd(cmd, false);
942 
943 	return sd_setup_write_same10_cmnd(cmd, false);
944 }
945 
946 static void sd_config_write_same(struct scsi_disk *sdkp)
947 {
948 	struct request_queue *q = sdkp->disk->queue;
949 	unsigned int logical_block_size = sdkp->device->sector_size;
950 
951 	if (sdkp->device->no_write_same) {
952 		sdkp->max_ws_blocks = 0;
953 		goto out;
954 	}
955 
956 	/* Some devices can not handle block counts above 0xffff despite
957 	 * supporting WRITE SAME(16). Consequently we default to 64k
958 	 * blocks per I/O unless the device explicitly advertises a
959 	 * bigger limit.
960 	 */
961 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
962 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
963 						   (u32)SD_MAX_WS16_BLOCKS);
964 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
965 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
966 						   (u32)SD_MAX_WS10_BLOCKS);
967 	else {
968 		sdkp->device->no_write_same = 1;
969 		sdkp->max_ws_blocks = 0;
970 	}
971 
972 	if (sdkp->lbprz && sdkp->lbpws)
973 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
974 	else if (sdkp->lbprz && sdkp->lbpws10)
975 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
976 	else if (sdkp->max_ws_blocks)
977 		sdkp->zeroing_mode = SD_ZERO_WS;
978 	else
979 		sdkp->zeroing_mode = SD_ZERO_WRITE;
980 
981 	if (sdkp->max_ws_blocks &&
982 	    sdkp->physical_block_size > logical_block_size) {
983 		/*
984 		 * Reporting a maximum number of blocks that is not aligned
985 		 * on the device physical size would cause a large write same
986 		 * request to be split into physically unaligned chunks by
987 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
988 		 * even if the caller of these functions took care to align the
989 		 * large request. So make sure the maximum reported is aligned
990 		 * to the device physical block size. This is only an optional
991 		 * optimization for regular disks, but this is mandatory to
992 		 * avoid failure of large write same requests directed at
993 		 * sequential write required zones of host-managed ZBC disks.
994 		 */
995 		sdkp->max_ws_blocks =
996 			round_down(sdkp->max_ws_blocks,
997 				   bytes_to_logical(sdkp->device,
998 						    sdkp->physical_block_size));
999 	}
1000 
1001 out:
1002 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1003 					 (logical_block_size >> 9));
1004 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1005 					 (logical_block_size >> 9));
1006 }
1007 
1008 /**
1009  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1010  * @cmd: command to prepare
1011  *
1012  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1013  * the preference indicated by the target device.
1014  **/
1015 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1016 {
1017 	struct request *rq = cmd->request;
1018 	struct scsi_device *sdp = cmd->device;
1019 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1020 	struct bio *bio = rq->bio;
1021 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1022 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1023 	blk_status_t ret;
1024 
1025 	if (sdkp->device->no_write_same)
1026 		return BLK_STS_TARGET;
1027 
1028 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1029 
1030 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1031 
1032 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1033 		cmd->cmd_len = 16;
1034 		cmd->cmnd[0] = WRITE_SAME_16;
1035 		put_unaligned_be64(lba, &cmd->cmnd[2]);
1036 		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1037 	} else {
1038 		cmd->cmd_len = 10;
1039 		cmd->cmnd[0] = WRITE_SAME;
1040 		put_unaligned_be32(lba, &cmd->cmnd[2]);
1041 		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1042 	}
1043 
1044 	cmd->transfersize = sdp->sector_size;
1045 	cmd->allowed = SD_MAX_RETRIES;
1046 
1047 	/*
1048 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1049 	 * different from the amount of data actually written to the target.
1050 	 *
1051 	 * We set up __data_len to the amount of data transferred via the
1052 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1053 	 * to transfer a single sector of data first, but then reset it to
1054 	 * the amount of data to be written right after so that the I/O path
1055 	 * knows how much to actually write.
1056 	 */
1057 	rq->__data_len = sdp->sector_size;
1058 	ret = scsi_init_io(cmd);
1059 	rq->__data_len = blk_rq_bytes(rq);
1060 
1061 	return ret;
1062 }
1063 
1064 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1065 {
1066 	struct request *rq = cmd->request;
1067 
1068 	/* flush requests don't perform I/O, zero the S/G table */
1069 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1070 
1071 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1072 	cmd->cmd_len = 10;
1073 	cmd->transfersize = 0;
1074 	cmd->allowed = SD_MAX_RETRIES;
1075 
1076 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1077 	return BLK_STS_OK;
1078 }
1079 
1080 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1081 				       sector_t lba, unsigned int nr_blocks,
1082 				       unsigned char flags)
1083 {
1084 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1085 	if (unlikely(cmd->cmnd == NULL))
1086 		return BLK_STS_RESOURCE;
1087 
1088 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1089 	memset(cmd->cmnd, 0, cmd->cmd_len);
1090 
1091 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1092 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1093 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1094 	cmd->cmnd[10] = flags;
1095 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1096 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1097 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1098 
1099 	return BLK_STS_OK;
1100 }
1101 
1102 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1103 				       sector_t lba, unsigned int nr_blocks,
1104 				       unsigned char flags)
1105 {
1106 	cmd->cmd_len  = 16;
1107 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1108 	cmd->cmnd[1]  = flags;
1109 	cmd->cmnd[14] = 0;
1110 	cmd->cmnd[15] = 0;
1111 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1112 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1113 
1114 	return BLK_STS_OK;
1115 }
1116 
1117 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1118 				       sector_t lba, unsigned int nr_blocks,
1119 				       unsigned char flags)
1120 {
1121 	cmd->cmd_len = 10;
1122 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1123 	cmd->cmnd[1] = flags;
1124 	cmd->cmnd[6] = 0;
1125 	cmd->cmnd[9] = 0;
1126 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1127 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1128 
1129 	return BLK_STS_OK;
1130 }
1131 
1132 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1133 				      sector_t lba, unsigned int nr_blocks,
1134 				      unsigned char flags)
1135 {
1136 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1137 	if (WARN_ON_ONCE(nr_blocks == 0))
1138 		return BLK_STS_IOERR;
1139 
1140 	if (unlikely(flags & 0x8)) {
1141 		/*
1142 		 * This happens only if this drive failed 10byte rw
1143 		 * command with ILLEGAL_REQUEST during operation and
1144 		 * thus turned off use_10_for_rw.
1145 		 */
1146 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1147 		return BLK_STS_IOERR;
1148 	}
1149 
1150 	cmd->cmd_len = 6;
1151 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1152 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1153 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1154 	cmd->cmnd[3] = lba & 0xff;
1155 	cmd->cmnd[4] = nr_blocks;
1156 	cmd->cmnd[5] = 0;
1157 
1158 	return BLK_STS_OK;
1159 }
1160 
1161 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1162 {
1163 	struct request *rq = cmd->request;
1164 	struct scsi_device *sdp = cmd->device;
1165 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1166 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1167 	sector_t threshold;
1168 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1169 	bool dif, dix;
1170 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1171 	bool write = rq_data_dir(rq) == WRITE;
1172 	unsigned char protect, fua;
1173 	blk_status_t ret;
1174 
1175 	ret = scsi_init_io(cmd);
1176 	if (ret != BLK_STS_OK)
1177 		return ret;
1178 
1179 	if (!scsi_device_online(sdp) || sdp->changed) {
1180 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1181 		return BLK_STS_IOERR;
1182 	}
1183 
1184 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1185 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1186 		return BLK_STS_IOERR;
1187 	}
1188 
1189 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1190 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1191 		return BLK_STS_IOERR;
1192 	}
1193 
1194 	/*
1195 	 * Some SD card readers can't handle accesses which touch the
1196 	 * last one or two logical blocks. Split accesses as needed.
1197 	 */
1198 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1199 
1200 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1201 		if (lba < threshold) {
1202 			/* Access up to the threshold but not beyond */
1203 			nr_blocks = threshold - lba;
1204 		} else {
1205 			/* Access only a single logical block */
1206 			nr_blocks = 1;
1207 		}
1208 	}
1209 
1210 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1211 	dix = scsi_prot_sg_count(cmd);
1212 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1213 
1214 	if (write && dix)
1215 		t10_pi_prepare(cmd->request, sdkp->protection_type);
1216 
1217 	if (dif || dix)
1218 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1219 	else
1220 		protect = 0;
1221 
1222 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1223 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1224 					 protect | fua);
1225 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1226 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1227 					 protect | fua);
1228 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1229 		   sdp->use_10_for_rw || protect) {
1230 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1231 					 protect | fua);
1232 	} else {
1233 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1234 					protect | fua);
1235 	}
1236 
1237 	if (unlikely(ret != BLK_STS_OK))
1238 		return ret;
1239 
1240 	/*
1241 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1242 	 * host adapter, it's safe to assume that we can at least transfer
1243 	 * this many bytes between each connect / disconnect.
1244 	 */
1245 	cmd->transfersize = sdp->sector_size;
1246 	cmd->underflow = nr_blocks << 9;
1247 	cmd->allowed = SD_MAX_RETRIES;
1248 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1249 
1250 	SCSI_LOG_HLQUEUE(1,
1251 			 scmd_printk(KERN_INFO, cmd,
1252 				     "%s: block=%llu, count=%d\n", __func__,
1253 				     (unsigned long long)blk_rq_pos(rq),
1254 				     blk_rq_sectors(rq)));
1255 	SCSI_LOG_HLQUEUE(2,
1256 			 scmd_printk(KERN_INFO, cmd,
1257 				     "%s %d/%u 512 byte blocks.\n",
1258 				     write ? "writing" : "reading", nr_blocks,
1259 				     blk_rq_sectors(rq)));
1260 
1261 	/*
1262 	 * This indicates that the command is ready from our end to be
1263 	 * queued.
1264 	 */
1265 	return BLK_STS_OK;
1266 }
1267 
1268 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1269 {
1270 	struct request *rq = cmd->request;
1271 
1272 	switch (req_op(rq)) {
1273 	case REQ_OP_DISCARD:
1274 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1275 		case SD_LBP_UNMAP:
1276 			return sd_setup_unmap_cmnd(cmd);
1277 		case SD_LBP_WS16:
1278 			return sd_setup_write_same16_cmnd(cmd, true);
1279 		case SD_LBP_WS10:
1280 			return sd_setup_write_same10_cmnd(cmd, true);
1281 		case SD_LBP_ZERO:
1282 			return sd_setup_write_same10_cmnd(cmd, false);
1283 		default:
1284 			return BLK_STS_TARGET;
1285 		}
1286 	case REQ_OP_WRITE_ZEROES:
1287 		return sd_setup_write_zeroes_cmnd(cmd);
1288 	case REQ_OP_WRITE_SAME:
1289 		return sd_setup_write_same_cmnd(cmd);
1290 	case REQ_OP_FLUSH:
1291 		return sd_setup_flush_cmnd(cmd);
1292 	case REQ_OP_READ:
1293 	case REQ_OP_WRITE:
1294 		return sd_setup_read_write_cmnd(cmd);
1295 	case REQ_OP_ZONE_RESET:
1296 		return sd_zbc_setup_reset_cmnd(cmd, false);
1297 	case REQ_OP_ZONE_RESET_ALL:
1298 		return sd_zbc_setup_reset_cmnd(cmd, true);
1299 	default:
1300 		WARN_ON_ONCE(1);
1301 		return BLK_STS_NOTSUPP;
1302 	}
1303 }
1304 
1305 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1306 {
1307 	struct request *rq = SCpnt->request;
1308 	u8 *cmnd;
1309 
1310 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1311 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1312 
1313 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1314 		cmnd = SCpnt->cmnd;
1315 		SCpnt->cmnd = NULL;
1316 		SCpnt->cmd_len = 0;
1317 		mempool_free(cmnd, sd_cdb_pool);
1318 	}
1319 }
1320 
1321 /**
1322  *	sd_open - open a scsi disk device
1323  *	@bdev: Block device of the scsi disk to open
1324  *	@mode: FMODE_* mask
1325  *
1326  *	Returns 0 if successful. Returns a negated errno value in case
1327  *	of error.
1328  *
1329  *	Note: This can be called from a user context (e.g. fsck(1) )
1330  *	or from within the kernel (e.g. as a result of a mount(1) ).
1331  *	In the latter case @inode and @filp carry an abridged amount
1332  *	of information as noted above.
1333  *
1334  *	Locking: called with bdev->bd_mutex held.
1335  **/
1336 static int sd_open(struct block_device *bdev, fmode_t mode)
1337 {
1338 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1339 	struct scsi_device *sdev;
1340 	int retval;
1341 
1342 	if (!sdkp)
1343 		return -ENXIO;
1344 
1345 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1346 
1347 	sdev = sdkp->device;
1348 
1349 	/*
1350 	 * If the device is in error recovery, wait until it is done.
1351 	 * If the device is offline, then disallow any access to it.
1352 	 */
1353 	retval = -ENXIO;
1354 	if (!scsi_block_when_processing_errors(sdev))
1355 		goto error_out;
1356 
1357 	if (sdev->removable || sdkp->write_prot)
1358 		check_disk_change(bdev);
1359 
1360 	/*
1361 	 * If the drive is empty, just let the open fail.
1362 	 */
1363 	retval = -ENOMEDIUM;
1364 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1365 		goto error_out;
1366 
1367 	/*
1368 	 * If the device has the write protect tab set, have the open fail
1369 	 * if the user expects to be able to write to the thing.
1370 	 */
1371 	retval = -EROFS;
1372 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1373 		goto error_out;
1374 
1375 	/*
1376 	 * It is possible that the disk changing stuff resulted in
1377 	 * the device being taken offline.  If this is the case,
1378 	 * report this to the user, and don't pretend that the
1379 	 * open actually succeeded.
1380 	 */
1381 	retval = -ENXIO;
1382 	if (!scsi_device_online(sdev))
1383 		goto error_out;
1384 
1385 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1386 		if (scsi_block_when_processing_errors(sdev))
1387 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1388 	}
1389 
1390 	return 0;
1391 
1392 error_out:
1393 	scsi_disk_put(sdkp);
1394 	return retval;
1395 }
1396 
1397 /**
1398  *	sd_release - invoked when the (last) close(2) is called on this
1399  *	scsi disk.
1400  *	@disk: disk to release
1401  *	@mode: FMODE_* mask
1402  *
1403  *	Returns 0.
1404  *
1405  *	Note: may block (uninterruptible) if error recovery is underway
1406  *	on this disk.
1407  *
1408  *	Locking: called with bdev->bd_mutex held.
1409  **/
1410 static void sd_release(struct gendisk *disk, fmode_t mode)
1411 {
1412 	struct scsi_disk *sdkp = scsi_disk(disk);
1413 	struct scsi_device *sdev = sdkp->device;
1414 
1415 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1416 
1417 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1418 		if (scsi_block_when_processing_errors(sdev))
1419 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1420 	}
1421 
1422 	scsi_disk_put(sdkp);
1423 }
1424 
1425 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1426 {
1427 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1428 	struct scsi_device *sdp = sdkp->device;
1429 	struct Scsi_Host *host = sdp->host;
1430 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1431 	int diskinfo[4];
1432 
1433 	/* default to most commonly used values */
1434 	diskinfo[0] = 0x40;	/* 1 << 6 */
1435 	diskinfo[1] = 0x20;	/* 1 << 5 */
1436 	diskinfo[2] = capacity >> 11;
1437 
1438 	/* override with calculated, extended default, or driver values */
1439 	if (host->hostt->bios_param)
1440 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1441 	else
1442 		scsicam_bios_param(bdev, capacity, diskinfo);
1443 
1444 	geo->heads = diskinfo[0];
1445 	geo->sectors = diskinfo[1];
1446 	geo->cylinders = diskinfo[2];
1447 	return 0;
1448 }
1449 
1450 /**
1451  *	sd_ioctl - process an ioctl
1452  *	@bdev: target block device
1453  *	@mode: FMODE_* mask
1454  *	@cmd: ioctl command number
1455  *	@arg: this is third argument given to ioctl(2) system call.
1456  *	Often contains a pointer.
1457  *
1458  *	Returns 0 if successful (some ioctls return positive numbers on
1459  *	success as well). Returns a negated errno value in case of error.
1460  *
1461  *	Note: most ioctls are forward onto the block subsystem or further
1462  *	down in the scsi subsystem.
1463  **/
1464 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1465 		    unsigned int cmd, unsigned long arg)
1466 {
1467 	struct gendisk *disk = bdev->bd_disk;
1468 	struct scsi_disk *sdkp = scsi_disk(disk);
1469 	struct scsi_device *sdp = sdkp->device;
1470 	void __user *p = (void __user *)arg;
1471 	int error;
1472 
1473 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1474 				    "cmd=0x%x\n", disk->disk_name, cmd));
1475 
1476 	error = scsi_verify_blk_ioctl(bdev, cmd);
1477 	if (error < 0)
1478 		return error;
1479 
1480 	/*
1481 	 * If we are in the middle of error recovery, don't let anyone
1482 	 * else try and use this device.  Also, if error recovery fails, it
1483 	 * may try and take the device offline, in which case all further
1484 	 * access to the device is prohibited.
1485 	 */
1486 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1487 			(mode & FMODE_NDELAY) != 0);
1488 	if (error)
1489 		goto out;
1490 
1491 	if (is_sed_ioctl(cmd))
1492 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1493 
1494 	/*
1495 	 * Send SCSI addressing ioctls directly to mid level, send other
1496 	 * ioctls to block level and then onto mid level if they can't be
1497 	 * resolved.
1498 	 */
1499 	switch (cmd) {
1500 		case SCSI_IOCTL_GET_IDLUN:
1501 		case SCSI_IOCTL_GET_BUS_NUMBER:
1502 			error = scsi_ioctl(sdp, cmd, p);
1503 			break;
1504 		default:
1505 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1506 			if (error != -ENOTTY)
1507 				break;
1508 			error = scsi_ioctl(sdp, cmd, p);
1509 			break;
1510 	}
1511 out:
1512 	return error;
1513 }
1514 
1515 static void set_media_not_present(struct scsi_disk *sdkp)
1516 {
1517 	if (sdkp->media_present)
1518 		sdkp->device->changed = 1;
1519 
1520 	if (sdkp->device->removable) {
1521 		sdkp->media_present = 0;
1522 		sdkp->capacity = 0;
1523 	}
1524 }
1525 
1526 static int media_not_present(struct scsi_disk *sdkp,
1527 			     struct scsi_sense_hdr *sshdr)
1528 {
1529 	if (!scsi_sense_valid(sshdr))
1530 		return 0;
1531 
1532 	/* not invoked for commands that could return deferred errors */
1533 	switch (sshdr->sense_key) {
1534 	case UNIT_ATTENTION:
1535 	case NOT_READY:
1536 		/* medium not present */
1537 		if (sshdr->asc == 0x3A) {
1538 			set_media_not_present(sdkp);
1539 			return 1;
1540 		}
1541 	}
1542 	return 0;
1543 }
1544 
1545 /**
1546  *	sd_check_events - check media events
1547  *	@disk: kernel device descriptor
1548  *	@clearing: disk events currently being cleared
1549  *
1550  *	Returns mask of DISK_EVENT_*.
1551  *
1552  *	Note: this function is invoked from the block subsystem.
1553  **/
1554 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1555 {
1556 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1557 	struct scsi_device *sdp;
1558 	int retval;
1559 
1560 	if (!sdkp)
1561 		return 0;
1562 
1563 	sdp = sdkp->device;
1564 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1565 
1566 	/*
1567 	 * If the device is offline, don't send any commands - just pretend as
1568 	 * if the command failed.  If the device ever comes back online, we
1569 	 * can deal with it then.  It is only because of unrecoverable errors
1570 	 * that we would ever take a device offline in the first place.
1571 	 */
1572 	if (!scsi_device_online(sdp)) {
1573 		set_media_not_present(sdkp);
1574 		goto out;
1575 	}
1576 
1577 	/*
1578 	 * Using TEST_UNIT_READY enables differentiation between drive with
1579 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1580 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1581 	 *
1582 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1583 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1584 	 * sd_revalidate() is called.
1585 	 */
1586 	if (scsi_block_when_processing_errors(sdp)) {
1587 		struct scsi_sense_hdr sshdr = { 0, };
1588 
1589 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1590 					      &sshdr);
1591 
1592 		/* failed to execute TUR, assume media not present */
1593 		if (host_byte(retval)) {
1594 			set_media_not_present(sdkp);
1595 			goto out;
1596 		}
1597 
1598 		if (media_not_present(sdkp, &sshdr))
1599 			goto out;
1600 	}
1601 
1602 	/*
1603 	 * For removable scsi disk we have to recognise the presence
1604 	 * of a disk in the drive.
1605 	 */
1606 	if (!sdkp->media_present)
1607 		sdp->changed = 1;
1608 	sdkp->media_present = 1;
1609 out:
1610 	/*
1611 	 * sdp->changed is set under the following conditions:
1612 	 *
1613 	 *	Medium present state has changed in either direction.
1614 	 *	Device has indicated UNIT_ATTENTION.
1615 	 */
1616 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1617 	sdp->changed = 0;
1618 	scsi_disk_put(sdkp);
1619 	return retval;
1620 }
1621 
1622 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1623 {
1624 	int retries, res;
1625 	struct scsi_device *sdp = sdkp->device;
1626 	const int timeout = sdp->request_queue->rq_timeout
1627 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1628 	struct scsi_sense_hdr my_sshdr;
1629 
1630 	if (!scsi_device_online(sdp))
1631 		return -ENODEV;
1632 
1633 	/* caller might not be interested in sense, but we need it */
1634 	if (!sshdr)
1635 		sshdr = &my_sshdr;
1636 
1637 	for (retries = 3; retries > 0; --retries) {
1638 		unsigned char cmd[10] = { 0 };
1639 
1640 		cmd[0] = SYNCHRONIZE_CACHE;
1641 		/*
1642 		 * Leave the rest of the command zero to indicate
1643 		 * flush everything.
1644 		 */
1645 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1646 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1647 		if (res == 0)
1648 			break;
1649 	}
1650 
1651 	if (res) {
1652 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1653 
1654 		if (driver_byte(res) == DRIVER_SENSE)
1655 			sd_print_sense_hdr(sdkp, sshdr);
1656 
1657 		/* we need to evaluate the error return  */
1658 		if (scsi_sense_valid(sshdr) &&
1659 			(sshdr->asc == 0x3a ||	/* medium not present */
1660 			 sshdr->asc == 0x20))	/* invalid command */
1661 				/* this is no error here */
1662 				return 0;
1663 
1664 		switch (host_byte(res)) {
1665 		/* ignore errors due to racing a disconnection */
1666 		case DID_BAD_TARGET:
1667 		case DID_NO_CONNECT:
1668 			return 0;
1669 		/* signal the upper layer it might try again */
1670 		case DID_BUS_BUSY:
1671 		case DID_IMM_RETRY:
1672 		case DID_REQUEUE:
1673 		case DID_SOFT_ERROR:
1674 			return -EBUSY;
1675 		default:
1676 			return -EIO;
1677 		}
1678 	}
1679 	return 0;
1680 }
1681 
1682 static void sd_rescan(struct device *dev)
1683 {
1684 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1685 
1686 	revalidate_disk(sdkp->disk);
1687 }
1688 
1689 
1690 #ifdef CONFIG_COMPAT
1691 /*
1692  * This gets directly called from VFS. When the ioctl
1693  * is not recognized we go back to the other translation paths.
1694  */
1695 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1696 			   unsigned int cmd, unsigned long arg)
1697 {
1698 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1699 	int error;
1700 
1701 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1702 			(mode & FMODE_NDELAY) != 0);
1703 	if (error)
1704 		return error;
1705 
1706 	/*
1707 	 * Let the static ioctl translation table take care of it.
1708 	 */
1709 	if (!sdev->host->hostt->compat_ioctl)
1710 		return -ENOIOCTLCMD;
1711 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1712 }
1713 #endif
1714 
1715 static char sd_pr_type(enum pr_type type)
1716 {
1717 	switch (type) {
1718 	case PR_WRITE_EXCLUSIVE:
1719 		return 0x01;
1720 	case PR_EXCLUSIVE_ACCESS:
1721 		return 0x03;
1722 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1723 		return 0x05;
1724 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1725 		return 0x06;
1726 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1727 		return 0x07;
1728 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1729 		return 0x08;
1730 	default:
1731 		return 0;
1732 	}
1733 };
1734 
1735 static int sd_pr_command(struct block_device *bdev, u8 sa,
1736 		u64 key, u64 sa_key, u8 type, u8 flags)
1737 {
1738 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1739 	struct scsi_sense_hdr sshdr;
1740 	int result;
1741 	u8 cmd[16] = { 0, };
1742 	u8 data[24] = { 0, };
1743 
1744 	cmd[0] = PERSISTENT_RESERVE_OUT;
1745 	cmd[1] = sa;
1746 	cmd[2] = type;
1747 	put_unaligned_be32(sizeof(data), &cmd[5]);
1748 
1749 	put_unaligned_be64(key, &data[0]);
1750 	put_unaligned_be64(sa_key, &data[8]);
1751 	data[20] = flags;
1752 
1753 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1754 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1755 
1756 	if (driver_byte(result) == DRIVER_SENSE &&
1757 	    scsi_sense_valid(&sshdr)) {
1758 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1759 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1760 	}
1761 
1762 	return result;
1763 }
1764 
1765 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1766 		u32 flags)
1767 {
1768 	if (flags & ~PR_FL_IGNORE_KEY)
1769 		return -EOPNOTSUPP;
1770 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1771 			old_key, new_key, 0,
1772 			(1 << 0) /* APTPL */);
1773 }
1774 
1775 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1776 		u32 flags)
1777 {
1778 	if (flags)
1779 		return -EOPNOTSUPP;
1780 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1781 }
1782 
1783 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1784 {
1785 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1786 }
1787 
1788 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1789 		enum pr_type type, bool abort)
1790 {
1791 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1792 			     sd_pr_type(type), 0);
1793 }
1794 
1795 static int sd_pr_clear(struct block_device *bdev, u64 key)
1796 {
1797 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1798 }
1799 
1800 static const struct pr_ops sd_pr_ops = {
1801 	.pr_register	= sd_pr_register,
1802 	.pr_reserve	= sd_pr_reserve,
1803 	.pr_release	= sd_pr_release,
1804 	.pr_preempt	= sd_pr_preempt,
1805 	.pr_clear	= sd_pr_clear,
1806 };
1807 
1808 static const struct block_device_operations sd_fops = {
1809 	.owner			= THIS_MODULE,
1810 	.open			= sd_open,
1811 	.release		= sd_release,
1812 	.ioctl			= sd_ioctl,
1813 	.getgeo			= sd_getgeo,
1814 #ifdef CONFIG_COMPAT
1815 	.compat_ioctl		= sd_compat_ioctl,
1816 #endif
1817 	.check_events		= sd_check_events,
1818 	.revalidate_disk	= sd_revalidate_disk,
1819 	.unlock_native_capacity	= sd_unlock_native_capacity,
1820 	.report_zones		= sd_zbc_report_zones,
1821 	.pr_ops			= &sd_pr_ops,
1822 };
1823 
1824 /**
1825  *	sd_eh_reset - reset error handling callback
1826  *	@scmd:		sd-issued command that has failed
1827  *
1828  *	This function is called by the SCSI midlayer before starting
1829  *	SCSI EH. When counting medium access failures we have to be
1830  *	careful to register it only only once per device and SCSI EH run;
1831  *	there might be several timed out commands which will cause the
1832  *	'max_medium_access_timeouts' counter to trigger after the first
1833  *	SCSI EH run already and set the device to offline.
1834  *	So this function resets the internal counter before starting SCSI EH.
1835  **/
1836 static void sd_eh_reset(struct scsi_cmnd *scmd)
1837 {
1838 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1839 
1840 	/* New SCSI EH run, reset gate variable */
1841 	sdkp->ignore_medium_access_errors = false;
1842 }
1843 
1844 /**
1845  *	sd_eh_action - error handling callback
1846  *	@scmd:		sd-issued command that has failed
1847  *	@eh_disp:	The recovery disposition suggested by the midlayer
1848  *
1849  *	This function is called by the SCSI midlayer upon completion of an
1850  *	error test command (currently TEST UNIT READY). The result of sending
1851  *	the eh command is passed in eh_disp.  We're looking for devices that
1852  *	fail medium access commands but are OK with non access commands like
1853  *	test unit ready (so wrongly see the device as having a successful
1854  *	recovery)
1855  **/
1856 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1857 {
1858 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1859 	struct scsi_device *sdev = scmd->device;
1860 
1861 	if (!scsi_device_online(sdev) ||
1862 	    !scsi_medium_access_command(scmd) ||
1863 	    host_byte(scmd->result) != DID_TIME_OUT ||
1864 	    eh_disp != SUCCESS)
1865 		return eh_disp;
1866 
1867 	/*
1868 	 * The device has timed out executing a medium access command.
1869 	 * However, the TEST UNIT READY command sent during error
1870 	 * handling completed successfully. Either the device is in the
1871 	 * process of recovering or has it suffered an internal failure
1872 	 * that prevents access to the storage medium.
1873 	 */
1874 	if (!sdkp->ignore_medium_access_errors) {
1875 		sdkp->medium_access_timed_out++;
1876 		sdkp->ignore_medium_access_errors = true;
1877 	}
1878 
1879 	/*
1880 	 * If the device keeps failing read/write commands but TEST UNIT
1881 	 * READY always completes successfully we assume that medium
1882 	 * access is no longer possible and take the device offline.
1883 	 */
1884 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1885 		scmd_printk(KERN_ERR, scmd,
1886 			    "Medium access timeout failure. Offlining disk!\n");
1887 		mutex_lock(&sdev->state_mutex);
1888 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1889 		mutex_unlock(&sdev->state_mutex);
1890 
1891 		return SUCCESS;
1892 	}
1893 
1894 	return eh_disp;
1895 }
1896 
1897 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1898 {
1899 	struct request *req = scmd->request;
1900 	struct scsi_device *sdev = scmd->device;
1901 	unsigned int transferred, good_bytes;
1902 	u64 start_lba, end_lba, bad_lba;
1903 
1904 	/*
1905 	 * Some commands have a payload smaller than the device logical
1906 	 * block size (e.g. INQUIRY on a 4K disk).
1907 	 */
1908 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1909 		return 0;
1910 
1911 	/* Check if we have a 'bad_lba' information */
1912 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1913 				     SCSI_SENSE_BUFFERSIZE,
1914 				     &bad_lba))
1915 		return 0;
1916 
1917 	/*
1918 	 * If the bad lba was reported incorrectly, we have no idea where
1919 	 * the error is.
1920 	 */
1921 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1922 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1923 	if (bad_lba < start_lba || bad_lba >= end_lba)
1924 		return 0;
1925 
1926 	/*
1927 	 * resid is optional but mostly filled in.  When it's unused,
1928 	 * its value is zero, so we assume the whole buffer transferred
1929 	 */
1930 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1931 
1932 	/* This computation should always be done in terms of the
1933 	 * resolution of the device's medium.
1934 	 */
1935 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1936 
1937 	return min(good_bytes, transferred);
1938 }
1939 
1940 /**
1941  *	sd_done - bottom half handler: called when the lower level
1942  *	driver has completed (successfully or otherwise) a scsi command.
1943  *	@SCpnt: mid-level's per command structure.
1944  *
1945  *	Note: potentially run from within an ISR. Must not block.
1946  **/
1947 static int sd_done(struct scsi_cmnd *SCpnt)
1948 {
1949 	int result = SCpnt->result;
1950 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1951 	unsigned int sector_size = SCpnt->device->sector_size;
1952 	unsigned int resid;
1953 	struct scsi_sense_hdr sshdr;
1954 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1955 	struct request *req = SCpnt->request;
1956 	int sense_valid = 0;
1957 	int sense_deferred = 0;
1958 
1959 	switch (req_op(req)) {
1960 	case REQ_OP_DISCARD:
1961 	case REQ_OP_WRITE_ZEROES:
1962 	case REQ_OP_WRITE_SAME:
1963 	case REQ_OP_ZONE_RESET:
1964 	case REQ_OP_ZONE_RESET_ALL:
1965 		if (!result) {
1966 			good_bytes = blk_rq_bytes(req);
1967 			scsi_set_resid(SCpnt, 0);
1968 		} else {
1969 			good_bytes = 0;
1970 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1971 		}
1972 		break;
1973 	default:
1974 		/*
1975 		 * In case of bogus fw or device, we could end up having
1976 		 * an unaligned partial completion. Check this here and force
1977 		 * alignment.
1978 		 */
1979 		resid = scsi_get_resid(SCpnt);
1980 		if (resid & (sector_size - 1)) {
1981 			sd_printk(KERN_INFO, sdkp,
1982 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1983 				resid, sector_size);
1984 			scsi_print_command(SCpnt);
1985 			resid = min(scsi_bufflen(SCpnt),
1986 				    round_up(resid, sector_size));
1987 			scsi_set_resid(SCpnt, resid);
1988 		}
1989 	}
1990 
1991 	if (result) {
1992 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1993 		if (sense_valid)
1994 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1995 	}
1996 	sdkp->medium_access_timed_out = 0;
1997 
1998 	if (driver_byte(result) != DRIVER_SENSE &&
1999 	    (!sense_valid || sense_deferred))
2000 		goto out;
2001 
2002 	switch (sshdr.sense_key) {
2003 	case HARDWARE_ERROR:
2004 	case MEDIUM_ERROR:
2005 		good_bytes = sd_completed_bytes(SCpnt);
2006 		break;
2007 	case RECOVERED_ERROR:
2008 		good_bytes = scsi_bufflen(SCpnt);
2009 		break;
2010 	case NO_SENSE:
2011 		/* This indicates a false check condition, so ignore it.  An
2012 		 * unknown amount of data was transferred so treat it as an
2013 		 * error.
2014 		 */
2015 		SCpnt->result = 0;
2016 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2017 		break;
2018 	case ABORTED_COMMAND:
2019 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2020 			good_bytes = sd_completed_bytes(SCpnt);
2021 		break;
2022 	case ILLEGAL_REQUEST:
2023 		switch (sshdr.asc) {
2024 		case 0x10:	/* DIX: Host detected corruption */
2025 			good_bytes = sd_completed_bytes(SCpnt);
2026 			break;
2027 		case 0x20:	/* INVALID COMMAND OPCODE */
2028 		case 0x24:	/* INVALID FIELD IN CDB */
2029 			switch (SCpnt->cmnd[0]) {
2030 			case UNMAP:
2031 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2032 				break;
2033 			case WRITE_SAME_16:
2034 			case WRITE_SAME:
2035 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2036 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2037 				} else {
2038 					sdkp->device->no_write_same = 1;
2039 					sd_config_write_same(sdkp);
2040 					req->rq_flags |= RQF_QUIET;
2041 				}
2042 				break;
2043 			}
2044 		}
2045 		break;
2046 	default:
2047 		break;
2048 	}
2049 
2050  out:
2051 	if (sd_is_zoned(sdkp))
2052 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2053 
2054 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2055 					   "sd_done: completed %d of %d bytes\n",
2056 					   good_bytes, scsi_bufflen(SCpnt)));
2057 
2058 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt) &&
2059 	    good_bytes)
2060 		t10_pi_complete(SCpnt->request, sdkp->protection_type,
2061 				good_bytes / scsi_prot_interval(SCpnt));
2062 
2063 	return good_bytes;
2064 }
2065 
2066 /*
2067  * spinup disk - called only in sd_revalidate_disk()
2068  */
2069 static void
2070 sd_spinup_disk(struct scsi_disk *sdkp)
2071 {
2072 	unsigned char cmd[10];
2073 	unsigned long spintime_expire = 0;
2074 	int retries, spintime;
2075 	unsigned int the_result;
2076 	struct scsi_sense_hdr sshdr;
2077 	int sense_valid = 0;
2078 
2079 	spintime = 0;
2080 
2081 	/* Spin up drives, as required.  Only do this at boot time */
2082 	/* Spinup needs to be done for module loads too. */
2083 	do {
2084 		retries = 0;
2085 
2086 		do {
2087 			cmd[0] = TEST_UNIT_READY;
2088 			memset((void *) &cmd[1], 0, 9);
2089 
2090 			the_result = scsi_execute_req(sdkp->device, cmd,
2091 						      DMA_NONE, NULL, 0,
2092 						      &sshdr, SD_TIMEOUT,
2093 						      SD_MAX_RETRIES, NULL);
2094 
2095 			/*
2096 			 * If the drive has indicated to us that it
2097 			 * doesn't have any media in it, don't bother
2098 			 * with any more polling.
2099 			 */
2100 			if (media_not_present(sdkp, &sshdr))
2101 				return;
2102 
2103 			if (the_result)
2104 				sense_valid = scsi_sense_valid(&sshdr);
2105 			retries++;
2106 		} while (retries < 3 &&
2107 			 (!scsi_status_is_good(the_result) ||
2108 			  ((driver_byte(the_result) == DRIVER_SENSE) &&
2109 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2110 
2111 		if (driver_byte(the_result) != DRIVER_SENSE) {
2112 			/* no sense, TUR either succeeded or failed
2113 			 * with a status error */
2114 			if(!spintime && !scsi_status_is_good(the_result)) {
2115 				sd_print_result(sdkp, "Test Unit Ready failed",
2116 						the_result);
2117 			}
2118 			break;
2119 		}
2120 
2121 		/*
2122 		 * The device does not want the automatic start to be issued.
2123 		 */
2124 		if (sdkp->device->no_start_on_add)
2125 			break;
2126 
2127 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2128 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2129 				break;	/* manual intervention required */
2130 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2131 				break;	/* standby */
2132 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2133 				break;	/* unavailable */
2134 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2135 				break;	/* sanitize in progress */
2136 			/*
2137 			 * Issue command to spin up drive when not ready
2138 			 */
2139 			if (!spintime) {
2140 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2141 				cmd[0] = START_STOP;
2142 				cmd[1] = 1;	/* Return immediately */
2143 				memset((void *) &cmd[2], 0, 8);
2144 				cmd[4] = 1;	/* Start spin cycle */
2145 				if (sdkp->device->start_stop_pwr_cond)
2146 					cmd[4] |= 1 << 4;
2147 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2148 						 NULL, 0, &sshdr,
2149 						 SD_TIMEOUT, SD_MAX_RETRIES,
2150 						 NULL);
2151 				spintime_expire = jiffies + 100 * HZ;
2152 				spintime = 1;
2153 			}
2154 			/* Wait 1 second for next try */
2155 			msleep(1000);
2156 			printk(KERN_CONT ".");
2157 
2158 		/*
2159 		 * Wait for USB flash devices with slow firmware.
2160 		 * Yes, this sense key/ASC combination shouldn't
2161 		 * occur here.  It's characteristic of these devices.
2162 		 */
2163 		} else if (sense_valid &&
2164 				sshdr.sense_key == UNIT_ATTENTION &&
2165 				sshdr.asc == 0x28) {
2166 			if (!spintime) {
2167 				spintime_expire = jiffies + 5 * HZ;
2168 				spintime = 1;
2169 			}
2170 			/* Wait 1 second for next try */
2171 			msleep(1000);
2172 		} else {
2173 			/* we don't understand the sense code, so it's
2174 			 * probably pointless to loop */
2175 			if(!spintime) {
2176 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2177 				sd_print_sense_hdr(sdkp, &sshdr);
2178 			}
2179 			break;
2180 		}
2181 
2182 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2183 
2184 	if (spintime) {
2185 		if (scsi_status_is_good(the_result))
2186 			printk(KERN_CONT "ready\n");
2187 		else
2188 			printk(KERN_CONT "not responding...\n");
2189 	}
2190 }
2191 
2192 /*
2193  * Determine whether disk supports Data Integrity Field.
2194  */
2195 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2196 {
2197 	struct scsi_device *sdp = sdkp->device;
2198 	u8 type;
2199 	int ret = 0;
2200 
2201 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2202 		return ret;
2203 
2204 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2205 
2206 	if (type > T10_PI_TYPE3_PROTECTION)
2207 		ret = -ENODEV;
2208 	else if (scsi_host_dif_capable(sdp->host, type))
2209 		ret = 1;
2210 
2211 	if (sdkp->first_scan || type != sdkp->protection_type)
2212 		switch (ret) {
2213 		case -ENODEV:
2214 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2215 				  " protection type %u. Disabling disk!\n",
2216 				  type);
2217 			break;
2218 		case 1:
2219 			sd_printk(KERN_NOTICE, sdkp,
2220 				  "Enabling DIF Type %u protection\n", type);
2221 			break;
2222 		case 0:
2223 			sd_printk(KERN_NOTICE, sdkp,
2224 				  "Disabling DIF Type %u protection\n", type);
2225 			break;
2226 		}
2227 
2228 	sdkp->protection_type = type;
2229 
2230 	return ret;
2231 }
2232 
2233 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2234 			struct scsi_sense_hdr *sshdr, int sense_valid,
2235 			int the_result)
2236 {
2237 	if (driver_byte(the_result) == DRIVER_SENSE)
2238 		sd_print_sense_hdr(sdkp, sshdr);
2239 	else
2240 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2241 
2242 	/*
2243 	 * Set dirty bit for removable devices if not ready -
2244 	 * sometimes drives will not report this properly.
2245 	 */
2246 	if (sdp->removable &&
2247 	    sense_valid && sshdr->sense_key == NOT_READY)
2248 		set_media_not_present(sdkp);
2249 
2250 	/*
2251 	 * We used to set media_present to 0 here to indicate no media
2252 	 * in the drive, but some drives fail read capacity even with
2253 	 * media present, so we can't do that.
2254 	 */
2255 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2256 }
2257 
2258 #define RC16_LEN 32
2259 #if RC16_LEN > SD_BUF_SIZE
2260 #error RC16_LEN must not be more than SD_BUF_SIZE
2261 #endif
2262 
2263 #define READ_CAPACITY_RETRIES_ON_RESET	10
2264 
2265 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2266 						unsigned char *buffer)
2267 {
2268 	unsigned char cmd[16];
2269 	struct scsi_sense_hdr sshdr;
2270 	int sense_valid = 0;
2271 	int the_result;
2272 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2273 	unsigned int alignment;
2274 	unsigned long long lba;
2275 	unsigned sector_size;
2276 
2277 	if (sdp->no_read_capacity_16)
2278 		return -EINVAL;
2279 
2280 	do {
2281 		memset(cmd, 0, 16);
2282 		cmd[0] = SERVICE_ACTION_IN_16;
2283 		cmd[1] = SAI_READ_CAPACITY_16;
2284 		cmd[13] = RC16_LEN;
2285 		memset(buffer, 0, RC16_LEN);
2286 
2287 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2288 					buffer, RC16_LEN, &sshdr,
2289 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2290 
2291 		if (media_not_present(sdkp, &sshdr))
2292 			return -ENODEV;
2293 
2294 		if (the_result) {
2295 			sense_valid = scsi_sense_valid(&sshdr);
2296 			if (sense_valid &&
2297 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2298 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2299 			    sshdr.ascq == 0x00)
2300 				/* Invalid Command Operation Code or
2301 				 * Invalid Field in CDB, just retry
2302 				 * silently with RC10 */
2303 				return -EINVAL;
2304 			if (sense_valid &&
2305 			    sshdr.sense_key == UNIT_ATTENTION &&
2306 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2307 				/* Device reset might occur several times,
2308 				 * give it one more chance */
2309 				if (--reset_retries > 0)
2310 					continue;
2311 		}
2312 		retries--;
2313 
2314 	} while (the_result && retries);
2315 
2316 	if (the_result) {
2317 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2318 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2319 		return -EINVAL;
2320 	}
2321 
2322 	sector_size = get_unaligned_be32(&buffer[8]);
2323 	lba = get_unaligned_be64(&buffer[0]);
2324 
2325 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2326 		sdkp->capacity = 0;
2327 		return -ENODEV;
2328 	}
2329 
2330 	/* Logical blocks per physical block exponent */
2331 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2332 
2333 	/* RC basis */
2334 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2335 
2336 	/* Lowest aligned logical block */
2337 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2338 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2339 	if (alignment && sdkp->first_scan)
2340 		sd_printk(KERN_NOTICE, sdkp,
2341 			  "physical block alignment offset: %u\n", alignment);
2342 
2343 	if (buffer[14] & 0x80) { /* LBPME */
2344 		sdkp->lbpme = 1;
2345 
2346 		if (buffer[14] & 0x40) /* LBPRZ */
2347 			sdkp->lbprz = 1;
2348 
2349 		sd_config_discard(sdkp, SD_LBP_WS16);
2350 	}
2351 
2352 	sdkp->capacity = lba + 1;
2353 	return sector_size;
2354 }
2355 
2356 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2357 						unsigned char *buffer)
2358 {
2359 	unsigned char cmd[16];
2360 	struct scsi_sense_hdr sshdr;
2361 	int sense_valid = 0;
2362 	int the_result;
2363 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2364 	sector_t lba;
2365 	unsigned sector_size;
2366 
2367 	do {
2368 		cmd[0] = READ_CAPACITY;
2369 		memset(&cmd[1], 0, 9);
2370 		memset(buffer, 0, 8);
2371 
2372 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2373 					buffer, 8, &sshdr,
2374 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2375 
2376 		if (media_not_present(sdkp, &sshdr))
2377 			return -ENODEV;
2378 
2379 		if (the_result) {
2380 			sense_valid = scsi_sense_valid(&sshdr);
2381 			if (sense_valid &&
2382 			    sshdr.sense_key == UNIT_ATTENTION &&
2383 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2384 				/* Device reset might occur several times,
2385 				 * give it one more chance */
2386 				if (--reset_retries > 0)
2387 					continue;
2388 		}
2389 		retries--;
2390 
2391 	} while (the_result && retries);
2392 
2393 	if (the_result) {
2394 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2395 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2396 		return -EINVAL;
2397 	}
2398 
2399 	sector_size = get_unaligned_be32(&buffer[4]);
2400 	lba = get_unaligned_be32(&buffer[0]);
2401 
2402 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2403 		/* Some buggy (usb cardreader) devices return an lba of
2404 		   0xffffffff when the want to report a size of 0 (with
2405 		   which they really mean no media is present) */
2406 		sdkp->capacity = 0;
2407 		sdkp->physical_block_size = sector_size;
2408 		return sector_size;
2409 	}
2410 
2411 	sdkp->capacity = lba + 1;
2412 	sdkp->physical_block_size = sector_size;
2413 	return sector_size;
2414 }
2415 
2416 static int sd_try_rc16_first(struct scsi_device *sdp)
2417 {
2418 	if (sdp->host->max_cmd_len < 16)
2419 		return 0;
2420 	if (sdp->try_rc_10_first)
2421 		return 0;
2422 	if (sdp->scsi_level > SCSI_SPC_2)
2423 		return 1;
2424 	if (scsi_device_protection(sdp))
2425 		return 1;
2426 	return 0;
2427 }
2428 
2429 /*
2430  * read disk capacity
2431  */
2432 static void
2433 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2434 {
2435 	int sector_size;
2436 	struct scsi_device *sdp = sdkp->device;
2437 
2438 	if (sd_try_rc16_first(sdp)) {
2439 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2440 		if (sector_size == -EOVERFLOW)
2441 			goto got_data;
2442 		if (sector_size == -ENODEV)
2443 			return;
2444 		if (sector_size < 0)
2445 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2446 		if (sector_size < 0)
2447 			return;
2448 	} else {
2449 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2450 		if (sector_size == -EOVERFLOW)
2451 			goto got_data;
2452 		if (sector_size < 0)
2453 			return;
2454 		if ((sizeof(sdkp->capacity) > 4) &&
2455 		    (sdkp->capacity > 0xffffffffULL)) {
2456 			int old_sector_size = sector_size;
2457 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2458 					"Trying to use READ CAPACITY(16).\n");
2459 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2460 			if (sector_size < 0) {
2461 				sd_printk(KERN_NOTICE, sdkp,
2462 					"Using 0xffffffff as device size\n");
2463 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2464 				sector_size = old_sector_size;
2465 				goto got_data;
2466 			}
2467 			/* Remember that READ CAPACITY(16) succeeded */
2468 			sdp->try_rc_10_first = 0;
2469 		}
2470 	}
2471 
2472 	/* Some devices are known to return the total number of blocks,
2473 	 * not the highest block number.  Some devices have versions
2474 	 * which do this and others which do not.  Some devices we might
2475 	 * suspect of doing this but we don't know for certain.
2476 	 *
2477 	 * If we know the reported capacity is wrong, decrement it.  If
2478 	 * we can only guess, then assume the number of blocks is even
2479 	 * (usually true but not always) and err on the side of lowering
2480 	 * the capacity.
2481 	 */
2482 	if (sdp->fix_capacity ||
2483 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2484 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2485 				"from its reported value: %llu\n",
2486 				(unsigned long long) sdkp->capacity);
2487 		--sdkp->capacity;
2488 	}
2489 
2490 got_data:
2491 	if (sector_size == 0) {
2492 		sector_size = 512;
2493 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2494 			  "assuming 512.\n");
2495 	}
2496 
2497 	if (sector_size != 512 &&
2498 	    sector_size != 1024 &&
2499 	    sector_size != 2048 &&
2500 	    sector_size != 4096) {
2501 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2502 			  sector_size);
2503 		/*
2504 		 * The user might want to re-format the drive with
2505 		 * a supported sectorsize.  Once this happens, it
2506 		 * would be relatively trivial to set the thing up.
2507 		 * For this reason, we leave the thing in the table.
2508 		 */
2509 		sdkp->capacity = 0;
2510 		/*
2511 		 * set a bogus sector size so the normal read/write
2512 		 * logic in the block layer will eventually refuse any
2513 		 * request on this device without tripping over power
2514 		 * of two sector size assumptions
2515 		 */
2516 		sector_size = 512;
2517 	}
2518 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2519 	blk_queue_physical_block_size(sdp->request_queue,
2520 				      sdkp->physical_block_size);
2521 	sdkp->device->sector_size = sector_size;
2522 
2523 	if (sdkp->capacity > 0xffffffff)
2524 		sdp->use_16_for_rw = 1;
2525 
2526 }
2527 
2528 /*
2529  * Print disk capacity
2530  */
2531 static void
2532 sd_print_capacity(struct scsi_disk *sdkp,
2533 		  sector_t old_capacity)
2534 {
2535 	int sector_size = sdkp->device->sector_size;
2536 	char cap_str_2[10], cap_str_10[10];
2537 
2538 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2539 		return;
2540 
2541 	string_get_size(sdkp->capacity, sector_size,
2542 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2543 	string_get_size(sdkp->capacity, sector_size,
2544 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2545 
2546 	sd_printk(KERN_NOTICE, sdkp,
2547 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2548 		  (unsigned long long)sdkp->capacity,
2549 		  sector_size, cap_str_10, cap_str_2);
2550 
2551 	if (sdkp->physical_block_size != sector_size)
2552 		sd_printk(KERN_NOTICE, sdkp,
2553 			  "%u-byte physical blocks\n",
2554 			  sdkp->physical_block_size);
2555 
2556 	sd_zbc_print_zones(sdkp);
2557 }
2558 
2559 /* called with buffer of length 512 */
2560 static inline int
2561 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2562 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2563 		 struct scsi_sense_hdr *sshdr)
2564 {
2565 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2566 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2567 			       sshdr);
2568 }
2569 
2570 /*
2571  * read write protect setting, if possible - called only in sd_revalidate_disk()
2572  * called with buffer of length SD_BUF_SIZE
2573  */
2574 static void
2575 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2576 {
2577 	int res;
2578 	struct scsi_device *sdp = sdkp->device;
2579 	struct scsi_mode_data data;
2580 	int old_wp = sdkp->write_prot;
2581 
2582 	set_disk_ro(sdkp->disk, 0);
2583 	if (sdp->skip_ms_page_3f) {
2584 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2585 		return;
2586 	}
2587 
2588 	if (sdp->use_192_bytes_for_3f) {
2589 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2590 	} else {
2591 		/*
2592 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2593 		 * We have to start carefully: some devices hang if we ask
2594 		 * for more than is available.
2595 		 */
2596 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2597 
2598 		/*
2599 		 * Second attempt: ask for page 0 When only page 0 is
2600 		 * implemented, a request for page 3F may return Sense Key
2601 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2602 		 * CDB.
2603 		 */
2604 		if (!scsi_status_is_good(res))
2605 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2606 
2607 		/*
2608 		 * Third attempt: ask 255 bytes, as we did earlier.
2609 		 */
2610 		if (!scsi_status_is_good(res))
2611 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2612 					       &data, NULL);
2613 	}
2614 
2615 	if (!scsi_status_is_good(res)) {
2616 		sd_first_printk(KERN_WARNING, sdkp,
2617 			  "Test WP failed, assume Write Enabled\n");
2618 	} else {
2619 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2620 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2621 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2622 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2623 				  sdkp->write_prot ? "on" : "off");
2624 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2625 		}
2626 	}
2627 }
2628 
2629 /*
2630  * sd_read_cache_type - called only from sd_revalidate_disk()
2631  * called with buffer of length SD_BUF_SIZE
2632  */
2633 static void
2634 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2635 {
2636 	int len = 0, res;
2637 	struct scsi_device *sdp = sdkp->device;
2638 
2639 	int dbd;
2640 	int modepage;
2641 	int first_len;
2642 	struct scsi_mode_data data;
2643 	struct scsi_sense_hdr sshdr;
2644 	int old_wce = sdkp->WCE;
2645 	int old_rcd = sdkp->RCD;
2646 	int old_dpofua = sdkp->DPOFUA;
2647 
2648 
2649 	if (sdkp->cache_override)
2650 		return;
2651 
2652 	first_len = 4;
2653 	if (sdp->skip_ms_page_8) {
2654 		if (sdp->type == TYPE_RBC)
2655 			goto defaults;
2656 		else {
2657 			if (sdp->skip_ms_page_3f)
2658 				goto defaults;
2659 			modepage = 0x3F;
2660 			if (sdp->use_192_bytes_for_3f)
2661 				first_len = 192;
2662 			dbd = 0;
2663 		}
2664 	} else if (sdp->type == TYPE_RBC) {
2665 		modepage = 6;
2666 		dbd = 8;
2667 	} else {
2668 		modepage = 8;
2669 		dbd = 0;
2670 	}
2671 
2672 	/* cautiously ask */
2673 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2674 			&data, &sshdr);
2675 
2676 	if (!scsi_status_is_good(res))
2677 		goto bad_sense;
2678 
2679 	if (!data.header_length) {
2680 		modepage = 6;
2681 		first_len = 0;
2682 		sd_first_printk(KERN_ERR, sdkp,
2683 				"Missing header in MODE_SENSE response\n");
2684 	}
2685 
2686 	/* that went OK, now ask for the proper length */
2687 	len = data.length;
2688 
2689 	/*
2690 	 * We're only interested in the first three bytes, actually.
2691 	 * But the data cache page is defined for the first 20.
2692 	 */
2693 	if (len < 3)
2694 		goto bad_sense;
2695 	else if (len > SD_BUF_SIZE) {
2696 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2697 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2698 		len = SD_BUF_SIZE;
2699 	}
2700 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2701 		len = 192;
2702 
2703 	/* Get the data */
2704 	if (len > first_len)
2705 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2706 				&data, &sshdr);
2707 
2708 	if (scsi_status_is_good(res)) {
2709 		int offset = data.header_length + data.block_descriptor_length;
2710 
2711 		while (offset < len) {
2712 			u8 page_code = buffer[offset] & 0x3F;
2713 			u8 spf       = buffer[offset] & 0x40;
2714 
2715 			if (page_code == 8 || page_code == 6) {
2716 				/* We're interested only in the first 3 bytes.
2717 				 */
2718 				if (len - offset <= 2) {
2719 					sd_first_printk(KERN_ERR, sdkp,
2720 						"Incomplete mode parameter "
2721 							"data\n");
2722 					goto defaults;
2723 				} else {
2724 					modepage = page_code;
2725 					goto Page_found;
2726 				}
2727 			} else {
2728 				/* Go to the next page */
2729 				if (spf && len - offset > 3)
2730 					offset += 4 + (buffer[offset+2] << 8) +
2731 						buffer[offset+3];
2732 				else if (!spf && len - offset > 1)
2733 					offset += 2 + buffer[offset+1];
2734 				else {
2735 					sd_first_printk(KERN_ERR, sdkp,
2736 							"Incomplete mode "
2737 							"parameter data\n");
2738 					goto defaults;
2739 				}
2740 			}
2741 		}
2742 
2743 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2744 		goto defaults;
2745 
2746 	Page_found:
2747 		if (modepage == 8) {
2748 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2749 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2750 		} else {
2751 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2752 			sdkp->RCD = 0;
2753 		}
2754 
2755 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2756 		if (sdp->broken_fua) {
2757 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2758 			sdkp->DPOFUA = 0;
2759 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2760 			   !sdkp->device->use_16_for_rw) {
2761 			sd_first_printk(KERN_NOTICE, sdkp,
2762 				  "Uses READ/WRITE(6), disabling FUA\n");
2763 			sdkp->DPOFUA = 0;
2764 		}
2765 
2766 		/* No cache flush allowed for write protected devices */
2767 		if (sdkp->WCE && sdkp->write_prot)
2768 			sdkp->WCE = 0;
2769 
2770 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2771 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2772 			sd_printk(KERN_NOTICE, sdkp,
2773 				  "Write cache: %s, read cache: %s, %s\n",
2774 				  sdkp->WCE ? "enabled" : "disabled",
2775 				  sdkp->RCD ? "disabled" : "enabled",
2776 				  sdkp->DPOFUA ? "supports DPO and FUA"
2777 				  : "doesn't support DPO or FUA");
2778 
2779 		return;
2780 	}
2781 
2782 bad_sense:
2783 	if (scsi_sense_valid(&sshdr) &&
2784 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2785 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2786 		/* Invalid field in CDB */
2787 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2788 	else
2789 		sd_first_printk(KERN_ERR, sdkp,
2790 				"Asking for cache data failed\n");
2791 
2792 defaults:
2793 	if (sdp->wce_default_on) {
2794 		sd_first_printk(KERN_NOTICE, sdkp,
2795 				"Assuming drive cache: write back\n");
2796 		sdkp->WCE = 1;
2797 	} else {
2798 		sd_first_printk(KERN_ERR, sdkp,
2799 				"Assuming drive cache: write through\n");
2800 		sdkp->WCE = 0;
2801 	}
2802 	sdkp->RCD = 0;
2803 	sdkp->DPOFUA = 0;
2804 }
2805 
2806 /*
2807  * The ATO bit indicates whether the DIF application tag is available
2808  * for use by the operating system.
2809  */
2810 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2811 {
2812 	int res, offset;
2813 	struct scsi_device *sdp = sdkp->device;
2814 	struct scsi_mode_data data;
2815 	struct scsi_sense_hdr sshdr;
2816 
2817 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2818 		return;
2819 
2820 	if (sdkp->protection_type == 0)
2821 		return;
2822 
2823 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2824 			      SD_MAX_RETRIES, &data, &sshdr);
2825 
2826 	if (!scsi_status_is_good(res) || !data.header_length ||
2827 	    data.length < 6) {
2828 		sd_first_printk(KERN_WARNING, sdkp,
2829 			  "getting Control mode page failed, assume no ATO\n");
2830 
2831 		if (scsi_sense_valid(&sshdr))
2832 			sd_print_sense_hdr(sdkp, &sshdr);
2833 
2834 		return;
2835 	}
2836 
2837 	offset = data.header_length + data.block_descriptor_length;
2838 
2839 	if ((buffer[offset] & 0x3f) != 0x0a) {
2840 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2841 		return;
2842 	}
2843 
2844 	if ((buffer[offset + 5] & 0x80) == 0)
2845 		return;
2846 
2847 	sdkp->ATO = 1;
2848 
2849 	return;
2850 }
2851 
2852 /**
2853  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2854  * @sdkp: disk to query
2855  */
2856 static void sd_read_block_limits(struct scsi_disk *sdkp)
2857 {
2858 	unsigned int sector_sz = sdkp->device->sector_size;
2859 	const int vpd_len = 64;
2860 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2861 
2862 	if (!buffer ||
2863 	    /* Block Limits VPD */
2864 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2865 		goto out;
2866 
2867 	blk_queue_io_min(sdkp->disk->queue,
2868 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2869 
2870 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2871 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2872 
2873 	if (buffer[3] == 0x3c) {
2874 		unsigned int lba_count, desc_count;
2875 
2876 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2877 
2878 		if (!sdkp->lbpme)
2879 			goto out;
2880 
2881 		lba_count = get_unaligned_be32(&buffer[20]);
2882 		desc_count = get_unaligned_be32(&buffer[24]);
2883 
2884 		if (lba_count && desc_count)
2885 			sdkp->max_unmap_blocks = lba_count;
2886 
2887 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2888 
2889 		if (buffer[32] & 0x80)
2890 			sdkp->unmap_alignment =
2891 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2892 
2893 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2894 
2895 			if (sdkp->max_unmap_blocks)
2896 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2897 			else
2898 				sd_config_discard(sdkp, SD_LBP_WS16);
2899 
2900 		} else {	/* LBP VPD page tells us what to use */
2901 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2902 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2903 			else if (sdkp->lbpws)
2904 				sd_config_discard(sdkp, SD_LBP_WS16);
2905 			else if (sdkp->lbpws10)
2906 				sd_config_discard(sdkp, SD_LBP_WS10);
2907 			else
2908 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2909 		}
2910 	}
2911 
2912  out:
2913 	kfree(buffer);
2914 }
2915 
2916 /**
2917  * sd_read_block_characteristics - Query block dev. characteristics
2918  * @sdkp: disk to query
2919  */
2920 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2921 {
2922 	struct request_queue *q = sdkp->disk->queue;
2923 	unsigned char *buffer;
2924 	u16 rot;
2925 	const int vpd_len = 64;
2926 
2927 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2928 
2929 	if (!buffer ||
2930 	    /* Block Device Characteristics VPD */
2931 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2932 		goto out;
2933 
2934 	rot = get_unaligned_be16(&buffer[4]);
2935 
2936 	if (rot == 1) {
2937 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2938 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2939 	}
2940 
2941 	if (sdkp->device->type == TYPE_ZBC) {
2942 		/* Host-managed */
2943 		q->limits.zoned = BLK_ZONED_HM;
2944 	} else {
2945 		sdkp->zoned = (buffer[8] >> 4) & 3;
2946 		if (sdkp->zoned == 1)
2947 			/* Host-aware */
2948 			q->limits.zoned = BLK_ZONED_HA;
2949 		else
2950 			/*
2951 			 * Treat drive-managed devices as
2952 			 * regular block devices.
2953 			 */
2954 			q->limits.zoned = BLK_ZONED_NONE;
2955 	}
2956 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2957 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2958 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2959 
2960  out:
2961 	kfree(buffer);
2962 }
2963 
2964 /**
2965  * sd_read_block_provisioning - Query provisioning VPD page
2966  * @sdkp: disk to query
2967  */
2968 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2969 {
2970 	unsigned char *buffer;
2971 	const int vpd_len = 8;
2972 
2973 	if (sdkp->lbpme == 0)
2974 		return;
2975 
2976 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2977 
2978 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2979 		goto out;
2980 
2981 	sdkp->lbpvpd	= 1;
2982 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2983 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2984 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2985 
2986  out:
2987 	kfree(buffer);
2988 }
2989 
2990 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2991 {
2992 	struct scsi_device *sdev = sdkp->device;
2993 
2994 	if (sdev->host->no_write_same) {
2995 		sdev->no_write_same = 1;
2996 
2997 		return;
2998 	}
2999 
3000 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3001 		/* too large values might cause issues with arcmsr */
3002 		int vpd_buf_len = 64;
3003 
3004 		sdev->no_report_opcodes = 1;
3005 
3006 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3007 		 * CODES is unsupported and the device has an ATA
3008 		 * Information VPD page (SAT).
3009 		 */
3010 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3011 			sdev->no_write_same = 1;
3012 	}
3013 
3014 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3015 		sdkp->ws16 = 1;
3016 
3017 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3018 		sdkp->ws10 = 1;
3019 }
3020 
3021 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3022 {
3023 	struct scsi_device *sdev = sdkp->device;
3024 
3025 	if (!sdev->security_supported)
3026 		return;
3027 
3028 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3029 			SECURITY_PROTOCOL_IN) == 1 &&
3030 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3031 			SECURITY_PROTOCOL_OUT) == 1)
3032 		sdkp->security = 1;
3033 }
3034 
3035 /*
3036  * Determine the device's preferred I/O size for reads and writes
3037  * unless the reported value is unreasonably small, large, not a
3038  * multiple of the physical block size, or simply garbage.
3039  */
3040 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3041 				      unsigned int dev_max)
3042 {
3043 	struct scsi_device *sdp = sdkp->device;
3044 	unsigned int opt_xfer_bytes =
3045 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3046 
3047 	if (sdkp->opt_xfer_blocks == 0)
3048 		return false;
3049 
3050 	if (sdkp->opt_xfer_blocks > dev_max) {
3051 		sd_first_printk(KERN_WARNING, sdkp,
3052 				"Optimal transfer size %u logical blocks " \
3053 				"> dev_max (%u logical blocks)\n",
3054 				sdkp->opt_xfer_blocks, dev_max);
3055 		return false;
3056 	}
3057 
3058 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3059 		sd_first_printk(KERN_WARNING, sdkp,
3060 				"Optimal transfer size %u logical blocks " \
3061 				"> sd driver limit (%u logical blocks)\n",
3062 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3063 		return false;
3064 	}
3065 
3066 	if (opt_xfer_bytes < PAGE_SIZE) {
3067 		sd_first_printk(KERN_WARNING, sdkp,
3068 				"Optimal transfer size %u bytes < " \
3069 				"PAGE_SIZE (%u bytes)\n",
3070 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3071 		return false;
3072 	}
3073 
3074 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3075 		sd_first_printk(KERN_WARNING, sdkp,
3076 				"Optimal transfer size %u bytes not a " \
3077 				"multiple of physical block size (%u bytes)\n",
3078 				opt_xfer_bytes, sdkp->physical_block_size);
3079 		return false;
3080 	}
3081 
3082 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3083 			opt_xfer_bytes);
3084 	return true;
3085 }
3086 
3087 /**
3088  *	sd_revalidate_disk - called the first time a new disk is seen,
3089  *	performs disk spin up, read_capacity, etc.
3090  *	@disk: struct gendisk we care about
3091  **/
3092 static int sd_revalidate_disk(struct gendisk *disk)
3093 {
3094 	struct scsi_disk *sdkp = scsi_disk(disk);
3095 	struct scsi_device *sdp = sdkp->device;
3096 	struct request_queue *q = sdkp->disk->queue;
3097 	sector_t old_capacity = sdkp->capacity;
3098 	unsigned char *buffer;
3099 	unsigned int dev_max, rw_max;
3100 
3101 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3102 				      "sd_revalidate_disk\n"));
3103 
3104 	/*
3105 	 * If the device is offline, don't try and read capacity or any
3106 	 * of the other niceties.
3107 	 */
3108 	if (!scsi_device_online(sdp))
3109 		goto out;
3110 
3111 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3112 	if (!buffer) {
3113 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3114 			  "allocation failure.\n");
3115 		goto out;
3116 	}
3117 
3118 	sd_spinup_disk(sdkp);
3119 
3120 	/*
3121 	 * Without media there is no reason to ask; moreover, some devices
3122 	 * react badly if we do.
3123 	 */
3124 	if (sdkp->media_present) {
3125 		sd_read_capacity(sdkp, buffer);
3126 
3127 		/*
3128 		 * set the default to rotational.  All non-rotational devices
3129 		 * support the block characteristics VPD page, which will
3130 		 * cause this to be updated correctly and any device which
3131 		 * doesn't support it should be treated as rotational.
3132 		 */
3133 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3134 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3135 
3136 		if (scsi_device_supports_vpd(sdp)) {
3137 			sd_read_block_provisioning(sdkp);
3138 			sd_read_block_limits(sdkp);
3139 			sd_read_block_characteristics(sdkp);
3140 			sd_zbc_read_zones(sdkp, buffer);
3141 		}
3142 
3143 		sd_print_capacity(sdkp, old_capacity);
3144 
3145 		sd_read_write_protect_flag(sdkp, buffer);
3146 		sd_read_cache_type(sdkp, buffer);
3147 		sd_read_app_tag_own(sdkp, buffer);
3148 		sd_read_write_same(sdkp, buffer);
3149 		sd_read_security(sdkp, buffer);
3150 	}
3151 
3152 	/*
3153 	 * We now have all cache related info, determine how we deal
3154 	 * with flush requests.
3155 	 */
3156 	sd_set_flush_flag(sdkp);
3157 
3158 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3159 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3160 
3161 	/* Some devices report a maximum block count for READ/WRITE requests. */
3162 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3163 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3164 
3165 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3166 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3167 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3168 	} else
3169 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3170 				      (sector_t)BLK_DEF_MAX_SECTORS);
3171 
3172 	/* Do not exceed controller limit */
3173 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3174 
3175 	/*
3176 	 * Only update max_sectors if previously unset or if the current value
3177 	 * exceeds the capabilities of the hardware.
3178 	 */
3179 	if (sdkp->first_scan ||
3180 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3181 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3182 		q->limits.max_sectors = rw_max;
3183 
3184 	sdkp->first_scan = 0;
3185 
3186 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3187 	sd_config_write_same(sdkp);
3188 	kfree(buffer);
3189 
3190  out:
3191 	return 0;
3192 }
3193 
3194 /**
3195  *	sd_unlock_native_capacity - unlock native capacity
3196  *	@disk: struct gendisk to set capacity for
3197  *
3198  *	Block layer calls this function if it detects that partitions
3199  *	on @disk reach beyond the end of the device.  If the SCSI host
3200  *	implements ->unlock_native_capacity() method, it's invoked to
3201  *	give it a chance to adjust the device capacity.
3202  *
3203  *	CONTEXT:
3204  *	Defined by block layer.  Might sleep.
3205  */
3206 static void sd_unlock_native_capacity(struct gendisk *disk)
3207 {
3208 	struct scsi_device *sdev = scsi_disk(disk)->device;
3209 
3210 	if (sdev->host->hostt->unlock_native_capacity)
3211 		sdev->host->hostt->unlock_native_capacity(sdev);
3212 }
3213 
3214 /**
3215  *	sd_format_disk_name - format disk name
3216  *	@prefix: name prefix - ie. "sd" for SCSI disks
3217  *	@index: index of the disk to format name for
3218  *	@buf: output buffer
3219  *	@buflen: length of the output buffer
3220  *
3221  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3222  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3223  *	which is followed by sdaaa.
3224  *
3225  *	This is basically 26 base counting with one extra 'nil' entry
3226  *	at the beginning from the second digit on and can be
3227  *	determined using similar method as 26 base conversion with the
3228  *	index shifted -1 after each digit is computed.
3229  *
3230  *	CONTEXT:
3231  *	Don't care.
3232  *
3233  *	RETURNS:
3234  *	0 on success, -errno on failure.
3235  */
3236 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3237 {
3238 	const int base = 'z' - 'a' + 1;
3239 	char *begin = buf + strlen(prefix);
3240 	char *end = buf + buflen;
3241 	char *p;
3242 	int unit;
3243 
3244 	p = end - 1;
3245 	*p = '\0';
3246 	unit = base;
3247 	do {
3248 		if (p == begin)
3249 			return -EINVAL;
3250 		*--p = 'a' + (index % unit);
3251 		index = (index / unit) - 1;
3252 	} while (index >= 0);
3253 
3254 	memmove(begin, p, end - p);
3255 	memcpy(buf, prefix, strlen(prefix));
3256 
3257 	return 0;
3258 }
3259 
3260 /**
3261  *	sd_probe - called during driver initialization and whenever a
3262  *	new scsi device is attached to the system. It is called once
3263  *	for each scsi device (not just disks) present.
3264  *	@dev: pointer to device object
3265  *
3266  *	Returns 0 if successful (or not interested in this scsi device
3267  *	(e.g. scanner)); 1 when there is an error.
3268  *
3269  *	Note: this function is invoked from the scsi mid-level.
3270  *	This function sets up the mapping between a given
3271  *	<host,channel,id,lun> (found in sdp) and new device name
3272  *	(e.g. /dev/sda). More precisely it is the block device major
3273  *	and minor number that is chosen here.
3274  *
3275  *	Assume sd_probe is not re-entrant (for time being)
3276  *	Also think about sd_probe() and sd_remove() running coincidentally.
3277  **/
3278 static int sd_probe(struct device *dev)
3279 {
3280 	struct scsi_device *sdp = to_scsi_device(dev);
3281 	struct scsi_disk *sdkp;
3282 	struct gendisk *gd;
3283 	int index;
3284 	int error;
3285 
3286 	scsi_autopm_get_device(sdp);
3287 	error = -ENODEV;
3288 	if (sdp->type != TYPE_DISK &&
3289 	    sdp->type != TYPE_ZBC &&
3290 	    sdp->type != TYPE_MOD &&
3291 	    sdp->type != TYPE_RBC)
3292 		goto out;
3293 
3294 #ifndef CONFIG_BLK_DEV_ZONED
3295 	if (sdp->type == TYPE_ZBC)
3296 		goto out;
3297 #endif
3298 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3299 					"sd_probe\n"));
3300 
3301 	error = -ENOMEM;
3302 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3303 	if (!sdkp)
3304 		goto out;
3305 
3306 	gd = alloc_disk(SD_MINORS);
3307 	if (!gd)
3308 		goto out_free;
3309 
3310 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3311 	if (index < 0) {
3312 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3313 		goto out_put;
3314 	}
3315 
3316 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3317 	if (error) {
3318 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3319 		goto out_free_index;
3320 	}
3321 
3322 	sdkp->device = sdp;
3323 	sdkp->driver = &sd_template;
3324 	sdkp->disk = gd;
3325 	sdkp->index = index;
3326 	atomic_set(&sdkp->openers, 0);
3327 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3328 
3329 	if (!sdp->request_queue->rq_timeout) {
3330 		if (sdp->type != TYPE_MOD)
3331 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3332 		else
3333 			blk_queue_rq_timeout(sdp->request_queue,
3334 					     SD_MOD_TIMEOUT);
3335 	}
3336 
3337 	device_initialize(&sdkp->dev);
3338 	sdkp->dev.parent = dev;
3339 	sdkp->dev.class = &sd_disk_class;
3340 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3341 
3342 	error = device_add(&sdkp->dev);
3343 	if (error)
3344 		goto out_free_index;
3345 
3346 	get_device(dev);
3347 	dev_set_drvdata(dev, sdkp);
3348 
3349 	gd->major = sd_major((index & 0xf0) >> 4);
3350 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3351 
3352 	gd->fops = &sd_fops;
3353 	gd->private_data = &sdkp->driver;
3354 	gd->queue = sdkp->device->request_queue;
3355 
3356 	/* defaults, until the device tells us otherwise */
3357 	sdp->sector_size = 512;
3358 	sdkp->capacity = 0;
3359 	sdkp->media_present = 1;
3360 	sdkp->write_prot = 0;
3361 	sdkp->cache_override = 0;
3362 	sdkp->WCE = 0;
3363 	sdkp->RCD = 0;
3364 	sdkp->ATO = 0;
3365 	sdkp->first_scan = 1;
3366 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3367 
3368 	sd_revalidate_disk(gd);
3369 
3370 	gd->flags = GENHD_FL_EXT_DEVT;
3371 	if (sdp->removable) {
3372 		gd->flags |= GENHD_FL_REMOVABLE;
3373 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3374 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3375 	}
3376 
3377 	blk_pm_runtime_init(sdp->request_queue, dev);
3378 	device_add_disk(dev, gd, NULL);
3379 	if (sdkp->capacity)
3380 		sd_dif_config_host(sdkp);
3381 
3382 	sd_revalidate_disk(gd);
3383 
3384 	if (sdkp->security) {
3385 		sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit);
3386 		if (sdkp->opal_dev)
3387 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3388 	}
3389 
3390 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3391 		  sdp->removable ? "removable " : "");
3392 	scsi_autopm_put_device(sdp);
3393 
3394 	return 0;
3395 
3396  out_free_index:
3397 	ida_free(&sd_index_ida, index);
3398  out_put:
3399 	put_disk(gd);
3400  out_free:
3401 	kfree(sdkp);
3402  out:
3403 	scsi_autopm_put_device(sdp);
3404 	return error;
3405 }
3406 
3407 /**
3408  *	sd_remove - called whenever a scsi disk (previously recognized by
3409  *	sd_probe) is detached from the system. It is called (potentially
3410  *	multiple times) during sd module unload.
3411  *	@dev: pointer to device object
3412  *
3413  *	Note: this function is invoked from the scsi mid-level.
3414  *	This function potentially frees up a device name (e.g. /dev/sdc)
3415  *	that could be re-used by a subsequent sd_probe().
3416  *	This function is not called when the built-in sd driver is "exit-ed".
3417  **/
3418 static int sd_remove(struct device *dev)
3419 {
3420 	struct scsi_disk *sdkp;
3421 	dev_t devt;
3422 
3423 	sdkp = dev_get_drvdata(dev);
3424 	devt = disk_devt(sdkp->disk);
3425 	scsi_autopm_get_device(sdkp->device);
3426 
3427 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3428 	device_del(&sdkp->dev);
3429 	del_gendisk(sdkp->disk);
3430 	sd_shutdown(dev);
3431 
3432 	free_opal_dev(sdkp->opal_dev);
3433 
3434 	blk_register_region(devt, SD_MINORS, NULL,
3435 			    sd_default_probe, NULL, NULL);
3436 
3437 	mutex_lock(&sd_ref_mutex);
3438 	dev_set_drvdata(dev, NULL);
3439 	put_device(&sdkp->dev);
3440 	mutex_unlock(&sd_ref_mutex);
3441 
3442 	return 0;
3443 }
3444 
3445 /**
3446  *	scsi_disk_release - Called to free the scsi_disk structure
3447  *	@dev: pointer to embedded class device
3448  *
3449  *	sd_ref_mutex must be held entering this routine.  Because it is
3450  *	called on last put, you should always use the scsi_disk_get()
3451  *	scsi_disk_put() helpers which manipulate the semaphore directly
3452  *	and never do a direct put_device.
3453  **/
3454 static void scsi_disk_release(struct device *dev)
3455 {
3456 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3457 	struct gendisk *disk = sdkp->disk;
3458 	struct request_queue *q = disk->queue;
3459 
3460 	ida_free(&sd_index_ida, sdkp->index);
3461 
3462 	/*
3463 	 * Wait until all requests that are in progress have completed.
3464 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3465 	 * due to clearing the disk->private_data pointer. Wait from inside
3466 	 * scsi_disk_release() instead of from sd_release() to avoid that
3467 	 * freezing and unfreezing the request queue affects user space I/O
3468 	 * in case multiple processes open a /dev/sd... node concurrently.
3469 	 */
3470 	blk_mq_freeze_queue(q);
3471 	blk_mq_unfreeze_queue(q);
3472 
3473 	disk->private_data = NULL;
3474 	put_disk(disk);
3475 	put_device(&sdkp->device->sdev_gendev);
3476 
3477 	kfree(sdkp);
3478 }
3479 
3480 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3481 {
3482 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3483 	struct scsi_sense_hdr sshdr;
3484 	struct scsi_device *sdp = sdkp->device;
3485 	int res;
3486 
3487 	if (start)
3488 		cmd[4] |= 1;	/* START */
3489 
3490 	if (sdp->start_stop_pwr_cond)
3491 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3492 
3493 	if (!scsi_device_online(sdp))
3494 		return -ENODEV;
3495 
3496 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3497 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3498 	if (res) {
3499 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3500 		if (driver_byte(res) == DRIVER_SENSE)
3501 			sd_print_sense_hdr(sdkp, &sshdr);
3502 		if (scsi_sense_valid(&sshdr) &&
3503 			/* 0x3a is medium not present */
3504 			sshdr.asc == 0x3a)
3505 			res = 0;
3506 	}
3507 
3508 	/* SCSI error codes must not go to the generic layer */
3509 	if (res)
3510 		return -EIO;
3511 
3512 	return 0;
3513 }
3514 
3515 /*
3516  * Send a SYNCHRONIZE CACHE instruction down to the device through
3517  * the normal SCSI command structure.  Wait for the command to
3518  * complete.
3519  */
3520 static void sd_shutdown(struct device *dev)
3521 {
3522 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3523 
3524 	if (!sdkp)
3525 		return;         /* this can happen */
3526 
3527 	if (pm_runtime_suspended(dev))
3528 		return;
3529 
3530 	if (sdkp->WCE && sdkp->media_present) {
3531 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3532 		sd_sync_cache(sdkp, NULL);
3533 	}
3534 
3535 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3536 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3537 		sd_start_stop_device(sdkp, 0);
3538 	}
3539 }
3540 
3541 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3542 {
3543 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3544 	struct scsi_sense_hdr sshdr;
3545 	int ret = 0;
3546 
3547 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3548 		return 0;
3549 
3550 	if (sdkp->WCE && sdkp->media_present) {
3551 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3552 		ret = sd_sync_cache(sdkp, &sshdr);
3553 
3554 		if (ret) {
3555 			/* ignore OFFLINE device */
3556 			if (ret == -ENODEV)
3557 				return 0;
3558 
3559 			if (!scsi_sense_valid(&sshdr) ||
3560 			    sshdr.sense_key != ILLEGAL_REQUEST)
3561 				return ret;
3562 
3563 			/*
3564 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3565 			 * doesn't support sync. There's not much to do and
3566 			 * suspend shouldn't fail.
3567 			 */
3568 			ret = 0;
3569 		}
3570 	}
3571 
3572 	if (sdkp->device->manage_start_stop) {
3573 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3574 		/* an error is not worth aborting a system sleep */
3575 		ret = sd_start_stop_device(sdkp, 0);
3576 		if (ignore_stop_errors)
3577 			ret = 0;
3578 	}
3579 
3580 	return ret;
3581 }
3582 
3583 static int sd_suspend_system(struct device *dev)
3584 {
3585 	return sd_suspend_common(dev, true);
3586 }
3587 
3588 static int sd_suspend_runtime(struct device *dev)
3589 {
3590 	return sd_suspend_common(dev, false);
3591 }
3592 
3593 static int sd_resume(struct device *dev)
3594 {
3595 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3596 	int ret;
3597 
3598 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3599 		return 0;
3600 
3601 	if (!sdkp->device->manage_start_stop)
3602 		return 0;
3603 
3604 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3605 	ret = sd_start_stop_device(sdkp, 1);
3606 	if (!ret)
3607 		opal_unlock_from_suspend(sdkp->opal_dev);
3608 	return ret;
3609 }
3610 
3611 /**
3612  *	init_sd - entry point for this driver (both when built in or when
3613  *	a module).
3614  *
3615  *	Note: this function registers this driver with the scsi mid-level.
3616  **/
3617 static int __init init_sd(void)
3618 {
3619 	int majors = 0, i, err;
3620 
3621 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3622 
3623 	for (i = 0; i < SD_MAJORS; i++) {
3624 		if (register_blkdev(sd_major(i), "sd") != 0)
3625 			continue;
3626 		majors++;
3627 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3628 				    sd_default_probe, NULL, NULL);
3629 	}
3630 
3631 	if (!majors)
3632 		return -ENODEV;
3633 
3634 	err = class_register(&sd_disk_class);
3635 	if (err)
3636 		goto err_out;
3637 
3638 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3639 					 0, 0, NULL);
3640 	if (!sd_cdb_cache) {
3641 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3642 		err = -ENOMEM;
3643 		goto err_out_class;
3644 	}
3645 
3646 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3647 	if (!sd_cdb_pool) {
3648 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3649 		err = -ENOMEM;
3650 		goto err_out_cache;
3651 	}
3652 
3653 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3654 	if (!sd_page_pool) {
3655 		printk(KERN_ERR "sd: can't init discard page pool\n");
3656 		err = -ENOMEM;
3657 		goto err_out_ppool;
3658 	}
3659 
3660 	err = scsi_register_driver(&sd_template.gendrv);
3661 	if (err)
3662 		goto err_out_driver;
3663 
3664 	return 0;
3665 
3666 err_out_driver:
3667 	mempool_destroy(sd_page_pool);
3668 
3669 err_out_ppool:
3670 	mempool_destroy(sd_cdb_pool);
3671 
3672 err_out_cache:
3673 	kmem_cache_destroy(sd_cdb_cache);
3674 
3675 err_out_class:
3676 	class_unregister(&sd_disk_class);
3677 err_out:
3678 	for (i = 0; i < SD_MAJORS; i++)
3679 		unregister_blkdev(sd_major(i), "sd");
3680 	return err;
3681 }
3682 
3683 /**
3684  *	exit_sd - exit point for this driver (when it is a module).
3685  *
3686  *	Note: this function unregisters this driver from the scsi mid-level.
3687  **/
3688 static void __exit exit_sd(void)
3689 {
3690 	int i;
3691 
3692 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3693 
3694 	scsi_unregister_driver(&sd_template.gendrv);
3695 	mempool_destroy(sd_cdb_pool);
3696 	mempool_destroy(sd_page_pool);
3697 	kmem_cache_destroy(sd_cdb_cache);
3698 
3699 	class_unregister(&sd_disk_class);
3700 
3701 	for (i = 0; i < SD_MAJORS; i++) {
3702 		blk_unregister_region(sd_major(i), SD_MINORS);
3703 		unregister_blkdev(sd_major(i), "sd");
3704 	}
3705 }
3706 
3707 module_init(init_sd);
3708 module_exit(exit_sd);
3709 
3710 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3711 			       struct scsi_sense_hdr *sshdr)
3712 {
3713 	scsi_print_sense_hdr(sdkp->device,
3714 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3715 }
3716 
3717 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3718 			    int result)
3719 {
3720 	const char *hb_string = scsi_hostbyte_string(result);
3721 	const char *db_string = scsi_driverbyte_string(result);
3722 
3723 	if (hb_string || db_string)
3724 		sd_printk(KERN_INFO, sdkp,
3725 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3726 			  hb_string ? hb_string : "invalid",
3727 			  db_string ? db_string : "invalid");
3728 	else
3729 		sd_printk(KERN_INFO, sdkp,
3730 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3731 			  msg, host_byte(result), driver_byte(result));
3732 }
3733 
3734