1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 102 #define SD_MINORS 16 103 #else 104 #define SD_MINORS 0 105 #endif 106 107 static void sd_config_discard(struct scsi_disk *, unsigned int); 108 static void sd_config_write_same(struct scsi_disk *); 109 static int sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static int sd_probe(struct device *); 112 static int sd_remove(struct device *); 113 static void sd_shutdown(struct device *); 114 static int sd_suspend_system(struct device *); 115 static int sd_suspend_runtime(struct device *); 116 static int sd_resume(struct device *); 117 static void sd_rescan(struct device *); 118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 119 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 120 static int sd_done(struct scsi_cmnd *); 121 static void sd_eh_reset(struct scsi_cmnd *); 122 static int sd_eh_action(struct scsi_cmnd *, int); 123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 124 static void scsi_disk_release(struct device *cdev); 125 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 126 static void sd_print_result(const struct scsi_disk *, const char *, int); 127 128 static DEFINE_IDA(sd_index_ida); 129 130 /* This semaphore is used to mediate the 0->1 reference get in the 131 * face of object destruction (i.e. we can't allow a get on an 132 * object after last put) */ 133 static DEFINE_MUTEX(sd_ref_mutex); 134 135 static struct kmem_cache *sd_cdb_cache; 136 static mempool_t *sd_cdb_pool; 137 static mempool_t *sd_page_pool; 138 139 static const char *sd_cache_types[] = { 140 "write through", "none", "write back", 141 "write back, no read (daft)" 142 }; 143 144 static void sd_set_flush_flag(struct scsi_disk *sdkp) 145 { 146 bool wc = false, fua = false; 147 148 if (sdkp->WCE) { 149 wc = true; 150 if (sdkp->DPOFUA) 151 fua = true; 152 } 153 154 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 155 } 156 157 static ssize_t 158 cache_type_store(struct device *dev, struct device_attribute *attr, 159 const char *buf, size_t count) 160 { 161 int ct, rcd, wce, sp; 162 struct scsi_disk *sdkp = to_scsi_disk(dev); 163 struct scsi_device *sdp = sdkp->device; 164 char buffer[64]; 165 char *buffer_data; 166 struct scsi_mode_data data; 167 struct scsi_sense_hdr sshdr; 168 static const char temp[] = "temporary "; 169 int len; 170 171 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 172 /* no cache control on RBC devices; theoretically they 173 * can do it, but there's probably so many exceptions 174 * it's not worth the risk */ 175 return -EINVAL; 176 177 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 178 buf += sizeof(temp) - 1; 179 sdkp->cache_override = 1; 180 } else { 181 sdkp->cache_override = 0; 182 } 183 184 ct = sysfs_match_string(sd_cache_types, buf); 185 if (ct < 0) 186 return -EINVAL; 187 188 rcd = ct & 0x01 ? 1 : 0; 189 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 190 191 if (sdkp->cache_override) { 192 sdkp->WCE = wce; 193 sdkp->RCD = rcd; 194 sd_set_flush_flag(sdkp); 195 return count; 196 } 197 198 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 199 SD_MAX_RETRIES, &data, NULL)) 200 return -EINVAL; 201 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 202 data.block_descriptor_length); 203 buffer_data = buffer + data.header_length + 204 data.block_descriptor_length; 205 buffer_data[2] &= ~0x05; 206 buffer_data[2] |= wce << 2 | rcd; 207 sp = buffer_data[0] & 0x80 ? 1 : 0; 208 buffer_data[0] &= ~0x80; 209 210 /* 211 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 212 * received mode parameter buffer before doing MODE SELECT. 213 */ 214 data.device_specific = 0; 215 216 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 217 SD_MAX_RETRIES, &data, &sshdr)) { 218 if (scsi_sense_valid(&sshdr)) 219 sd_print_sense_hdr(sdkp, &sshdr); 220 return -EINVAL; 221 } 222 revalidate_disk(sdkp->disk); 223 return count; 224 } 225 226 static ssize_t 227 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 228 char *buf) 229 { 230 struct scsi_disk *sdkp = to_scsi_disk(dev); 231 struct scsi_device *sdp = sdkp->device; 232 233 return sprintf(buf, "%u\n", sdp->manage_start_stop); 234 } 235 236 static ssize_t 237 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 238 const char *buf, size_t count) 239 { 240 struct scsi_disk *sdkp = to_scsi_disk(dev); 241 struct scsi_device *sdp = sdkp->device; 242 bool v; 243 244 if (!capable(CAP_SYS_ADMIN)) 245 return -EACCES; 246 247 if (kstrtobool(buf, &v)) 248 return -EINVAL; 249 250 sdp->manage_start_stop = v; 251 252 return count; 253 } 254 static DEVICE_ATTR_RW(manage_start_stop); 255 256 static ssize_t 257 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 258 { 259 struct scsi_disk *sdkp = to_scsi_disk(dev); 260 261 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 262 } 263 264 static ssize_t 265 allow_restart_store(struct device *dev, struct device_attribute *attr, 266 const char *buf, size_t count) 267 { 268 bool v; 269 struct scsi_disk *sdkp = to_scsi_disk(dev); 270 struct scsi_device *sdp = sdkp->device; 271 272 if (!capable(CAP_SYS_ADMIN)) 273 return -EACCES; 274 275 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 276 return -EINVAL; 277 278 if (kstrtobool(buf, &v)) 279 return -EINVAL; 280 281 sdp->allow_restart = v; 282 283 return count; 284 } 285 static DEVICE_ATTR_RW(allow_restart); 286 287 static ssize_t 288 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 289 { 290 struct scsi_disk *sdkp = to_scsi_disk(dev); 291 int ct = sdkp->RCD + 2*sdkp->WCE; 292 293 return sprintf(buf, "%s\n", sd_cache_types[ct]); 294 } 295 static DEVICE_ATTR_RW(cache_type); 296 297 static ssize_t 298 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 299 { 300 struct scsi_disk *sdkp = to_scsi_disk(dev); 301 302 return sprintf(buf, "%u\n", sdkp->DPOFUA); 303 } 304 static DEVICE_ATTR_RO(FUA); 305 306 static ssize_t 307 protection_type_show(struct device *dev, struct device_attribute *attr, 308 char *buf) 309 { 310 struct scsi_disk *sdkp = to_scsi_disk(dev); 311 312 return sprintf(buf, "%u\n", sdkp->protection_type); 313 } 314 315 static ssize_t 316 protection_type_store(struct device *dev, struct device_attribute *attr, 317 const char *buf, size_t count) 318 { 319 struct scsi_disk *sdkp = to_scsi_disk(dev); 320 unsigned int val; 321 int err; 322 323 if (!capable(CAP_SYS_ADMIN)) 324 return -EACCES; 325 326 err = kstrtouint(buf, 10, &val); 327 328 if (err) 329 return err; 330 331 if (val <= T10_PI_TYPE3_PROTECTION) 332 sdkp->protection_type = val; 333 334 return count; 335 } 336 static DEVICE_ATTR_RW(protection_type); 337 338 static ssize_t 339 protection_mode_show(struct device *dev, struct device_attribute *attr, 340 char *buf) 341 { 342 struct scsi_disk *sdkp = to_scsi_disk(dev); 343 struct scsi_device *sdp = sdkp->device; 344 unsigned int dif, dix; 345 346 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 347 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 348 349 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 350 dif = 0; 351 dix = 1; 352 } 353 354 if (!dif && !dix) 355 return sprintf(buf, "none\n"); 356 357 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 358 } 359 static DEVICE_ATTR_RO(protection_mode); 360 361 static ssize_t 362 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 363 { 364 struct scsi_disk *sdkp = to_scsi_disk(dev); 365 366 return sprintf(buf, "%u\n", sdkp->ATO); 367 } 368 static DEVICE_ATTR_RO(app_tag_own); 369 370 static ssize_t 371 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 372 char *buf) 373 { 374 struct scsi_disk *sdkp = to_scsi_disk(dev); 375 376 return sprintf(buf, "%u\n", sdkp->lbpme); 377 } 378 static DEVICE_ATTR_RO(thin_provisioning); 379 380 /* sysfs_match_string() requires dense arrays */ 381 static const char *lbp_mode[] = { 382 [SD_LBP_FULL] = "full", 383 [SD_LBP_UNMAP] = "unmap", 384 [SD_LBP_WS16] = "writesame_16", 385 [SD_LBP_WS10] = "writesame_10", 386 [SD_LBP_ZERO] = "writesame_zero", 387 [SD_LBP_DISABLE] = "disabled", 388 }; 389 390 static ssize_t 391 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 392 char *buf) 393 { 394 struct scsi_disk *sdkp = to_scsi_disk(dev); 395 396 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 397 } 398 399 static ssize_t 400 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 401 const char *buf, size_t count) 402 { 403 struct scsi_disk *sdkp = to_scsi_disk(dev); 404 struct scsi_device *sdp = sdkp->device; 405 int mode; 406 407 if (!capable(CAP_SYS_ADMIN)) 408 return -EACCES; 409 410 if (sd_is_zoned(sdkp)) { 411 sd_config_discard(sdkp, SD_LBP_DISABLE); 412 return count; 413 } 414 415 if (sdp->type != TYPE_DISK) 416 return -EINVAL; 417 418 mode = sysfs_match_string(lbp_mode, buf); 419 if (mode < 0) 420 return -EINVAL; 421 422 sd_config_discard(sdkp, mode); 423 424 return count; 425 } 426 static DEVICE_ATTR_RW(provisioning_mode); 427 428 /* sysfs_match_string() requires dense arrays */ 429 static const char *zeroing_mode[] = { 430 [SD_ZERO_WRITE] = "write", 431 [SD_ZERO_WS] = "writesame", 432 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 433 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 434 }; 435 436 static ssize_t 437 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 438 char *buf) 439 { 440 struct scsi_disk *sdkp = to_scsi_disk(dev); 441 442 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 443 } 444 445 static ssize_t 446 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 447 const char *buf, size_t count) 448 { 449 struct scsi_disk *sdkp = to_scsi_disk(dev); 450 int mode; 451 452 if (!capable(CAP_SYS_ADMIN)) 453 return -EACCES; 454 455 mode = sysfs_match_string(zeroing_mode, buf); 456 if (mode < 0) 457 return -EINVAL; 458 459 sdkp->zeroing_mode = mode; 460 461 return count; 462 } 463 static DEVICE_ATTR_RW(zeroing_mode); 464 465 static ssize_t 466 max_medium_access_timeouts_show(struct device *dev, 467 struct device_attribute *attr, char *buf) 468 { 469 struct scsi_disk *sdkp = to_scsi_disk(dev); 470 471 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 472 } 473 474 static ssize_t 475 max_medium_access_timeouts_store(struct device *dev, 476 struct device_attribute *attr, const char *buf, 477 size_t count) 478 { 479 struct scsi_disk *sdkp = to_scsi_disk(dev); 480 int err; 481 482 if (!capable(CAP_SYS_ADMIN)) 483 return -EACCES; 484 485 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 486 487 return err ? err : count; 488 } 489 static DEVICE_ATTR_RW(max_medium_access_timeouts); 490 491 static ssize_t 492 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 493 char *buf) 494 { 495 struct scsi_disk *sdkp = to_scsi_disk(dev); 496 497 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 498 } 499 500 static ssize_t 501 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 502 const char *buf, size_t count) 503 { 504 struct scsi_disk *sdkp = to_scsi_disk(dev); 505 struct scsi_device *sdp = sdkp->device; 506 unsigned long max; 507 int err; 508 509 if (!capable(CAP_SYS_ADMIN)) 510 return -EACCES; 511 512 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 513 return -EINVAL; 514 515 err = kstrtoul(buf, 10, &max); 516 517 if (err) 518 return err; 519 520 if (max == 0) 521 sdp->no_write_same = 1; 522 else if (max <= SD_MAX_WS16_BLOCKS) { 523 sdp->no_write_same = 0; 524 sdkp->max_ws_blocks = max; 525 } 526 527 sd_config_write_same(sdkp); 528 529 return count; 530 } 531 static DEVICE_ATTR_RW(max_write_same_blocks); 532 533 static struct attribute *sd_disk_attrs[] = { 534 &dev_attr_cache_type.attr, 535 &dev_attr_FUA.attr, 536 &dev_attr_allow_restart.attr, 537 &dev_attr_manage_start_stop.attr, 538 &dev_attr_protection_type.attr, 539 &dev_attr_protection_mode.attr, 540 &dev_attr_app_tag_own.attr, 541 &dev_attr_thin_provisioning.attr, 542 &dev_attr_provisioning_mode.attr, 543 &dev_attr_zeroing_mode.attr, 544 &dev_attr_max_write_same_blocks.attr, 545 &dev_attr_max_medium_access_timeouts.attr, 546 NULL, 547 }; 548 ATTRIBUTE_GROUPS(sd_disk); 549 550 static struct class sd_disk_class = { 551 .name = "scsi_disk", 552 .owner = THIS_MODULE, 553 .dev_release = scsi_disk_release, 554 .dev_groups = sd_disk_groups, 555 }; 556 557 static const struct dev_pm_ops sd_pm_ops = { 558 .suspend = sd_suspend_system, 559 .resume = sd_resume, 560 .poweroff = sd_suspend_system, 561 .restore = sd_resume, 562 .runtime_suspend = sd_suspend_runtime, 563 .runtime_resume = sd_resume, 564 }; 565 566 static struct scsi_driver sd_template = { 567 .gendrv = { 568 .name = "sd", 569 .owner = THIS_MODULE, 570 .probe = sd_probe, 571 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 572 .remove = sd_remove, 573 .shutdown = sd_shutdown, 574 .pm = &sd_pm_ops, 575 }, 576 .rescan = sd_rescan, 577 .init_command = sd_init_command, 578 .uninit_command = sd_uninit_command, 579 .done = sd_done, 580 .eh_action = sd_eh_action, 581 .eh_reset = sd_eh_reset, 582 }; 583 584 /* 585 * Dummy kobj_map->probe function. 586 * The default ->probe function will call modprobe, which is 587 * pointless as this module is already loaded. 588 */ 589 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 590 { 591 return NULL; 592 } 593 594 /* 595 * Device no to disk mapping: 596 * 597 * major disc2 disc p1 598 * |............|.............|....|....| <- dev_t 599 * 31 20 19 8 7 4 3 0 600 * 601 * Inside a major, we have 16k disks, however mapped non- 602 * contiguously. The first 16 disks are for major0, the next 603 * ones with major1, ... Disk 256 is for major0 again, disk 272 604 * for major1, ... 605 * As we stay compatible with our numbering scheme, we can reuse 606 * the well-know SCSI majors 8, 65--71, 136--143. 607 */ 608 static int sd_major(int major_idx) 609 { 610 switch (major_idx) { 611 case 0: 612 return SCSI_DISK0_MAJOR; 613 case 1 ... 7: 614 return SCSI_DISK1_MAJOR + major_idx - 1; 615 case 8 ... 15: 616 return SCSI_DISK8_MAJOR + major_idx - 8; 617 default: 618 BUG(); 619 return 0; /* shut up gcc */ 620 } 621 } 622 623 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 624 { 625 struct scsi_disk *sdkp = NULL; 626 627 mutex_lock(&sd_ref_mutex); 628 629 if (disk->private_data) { 630 sdkp = scsi_disk(disk); 631 if (scsi_device_get(sdkp->device) == 0) 632 get_device(&sdkp->dev); 633 else 634 sdkp = NULL; 635 } 636 mutex_unlock(&sd_ref_mutex); 637 return sdkp; 638 } 639 640 static void scsi_disk_put(struct scsi_disk *sdkp) 641 { 642 struct scsi_device *sdev = sdkp->device; 643 644 mutex_lock(&sd_ref_mutex); 645 put_device(&sdkp->dev); 646 scsi_device_put(sdev); 647 mutex_unlock(&sd_ref_mutex); 648 } 649 650 #ifdef CONFIG_BLK_SED_OPAL 651 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 652 size_t len, bool send) 653 { 654 struct scsi_device *sdev = data; 655 u8 cdb[12] = { 0, }; 656 int ret; 657 658 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 659 cdb[1] = secp; 660 put_unaligned_be16(spsp, &cdb[2]); 661 put_unaligned_be32(len, &cdb[6]); 662 663 ret = scsi_execute_req(sdev, cdb, 664 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 665 buffer, len, NULL, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 666 return ret <= 0 ? ret : -EIO; 667 } 668 #endif /* CONFIG_BLK_SED_OPAL */ 669 670 /* 671 * Look up the DIX operation based on whether the command is read or 672 * write and whether dix and dif are enabled. 673 */ 674 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 675 { 676 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 677 static const unsigned int ops[] = { /* wrt dix dif */ 678 SCSI_PROT_NORMAL, /* 0 0 0 */ 679 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 680 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 681 SCSI_PROT_READ_PASS, /* 0 1 1 */ 682 SCSI_PROT_NORMAL, /* 1 0 0 */ 683 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 684 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 685 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 686 }; 687 688 return ops[write << 2 | dix << 1 | dif]; 689 } 690 691 /* 692 * Returns a mask of the protection flags that are valid for a given DIX 693 * operation. 694 */ 695 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 696 { 697 static const unsigned int flag_mask[] = { 698 [SCSI_PROT_NORMAL] = 0, 699 700 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 701 SCSI_PROT_GUARD_CHECK | 702 SCSI_PROT_REF_CHECK | 703 SCSI_PROT_REF_INCREMENT, 704 705 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 706 SCSI_PROT_IP_CHECKSUM, 707 708 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 709 SCSI_PROT_GUARD_CHECK | 710 SCSI_PROT_REF_CHECK | 711 SCSI_PROT_REF_INCREMENT | 712 SCSI_PROT_IP_CHECKSUM, 713 714 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 715 SCSI_PROT_REF_INCREMENT, 716 717 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 718 SCSI_PROT_REF_CHECK | 719 SCSI_PROT_REF_INCREMENT | 720 SCSI_PROT_IP_CHECKSUM, 721 722 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 723 SCSI_PROT_GUARD_CHECK | 724 SCSI_PROT_REF_CHECK | 725 SCSI_PROT_REF_INCREMENT | 726 SCSI_PROT_IP_CHECKSUM, 727 }; 728 729 return flag_mask[prot_op]; 730 } 731 732 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 733 unsigned int dix, unsigned int dif) 734 { 735 struct bio *bio = scmd->request->bio; 736 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 737 unsigned int protect = 0; 738 739 if (dix) { /* DIX Type 0, 1, 2, 3 */ 740 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 741 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 742 743 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 744 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 745 } 746 747 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 748 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 749 750 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 751 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 752 } 753 754 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 755 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 756 757 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 758 protect = 3 << 5; /* Disable target PI checking */ 759 else 760 protect = 1 << 5; /* Enable target PI checking */ 761 } 762 763 scsi_set_prot_op(scmd, prot_op); 764 scsi_set_prot_type(scmd, dif); 765 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 766 767 return protect; 768 } 769 770 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 771 { 772 struct request_queue *q = sdkp->disk->queue; 773 unsigned int logical_block_size = sdkp->device->sector_size; 774 unsigned int max_blocks = 0; 775 776 q->limits.discard_alignment = 777 sdkp->unmap_alignment * logical_block_size; 778 q->limits.discard_granularity = 779 max(sdkp->physical_block_size, 780 sdkp->unmap_granularity * logical_block_size); 781 sdkp->provisioning_mode = mode; 782 783 switch (mode) { 784 785 case SD_LBP_FULL: 786 case SD_LBP_DISABLE: 787 blk_queue_max_discard_sectors(q, 0); 788 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 789 return; 790 791 case SD_LBP_UNMAP: 792 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 793 (u32)SD_MAX_WS16_BLOCKS); 794 break; 795 796 case SD_LBP_WS16: 797 if (sdkp->device->unmap_limit_for_ws) 798 max_blocks = sdkp->max_unmap_blocks; 799 else 800 max_blocks = sdkp->max_ws_blocks; 801 802 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 803 break; 804 805 case SD_LBP_WS10: 806 if (sdkp->device->unmap_limit_for_ws) 807 max_blocks = sdkp->max_unmap_blocks; 808 else 809 max_blocks = sdkp->max_ws_blocks; 810 811 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 812 break; 813 814 case SD_LBP_ZERO: 815 max_blocks = min_not_zero(sdkp->max_ws_blocks, 816 (u32)SD_MAX_WS10_BLOCKS); 817 break; 818 } 819 820 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 821 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 822 } 823 824 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 825 { 826 struct scsi_device *sdp = cmd->device; 827 struct request *rq = cmd->request; 828 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 829 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 830 unsigned int data_len = 24; 831 char *buf; 832 833 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 834 if (!rq->special_vec.bv_page) 835 return BLK_STS_RESOURCE; 836 clear_highpage(rq->special_vec.bv_page); 837 rq->special_vec.bv_offset = 0; 838 rq->special_vec.bv_len = data_len; 839 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 840 841 cmd->cmd_len = 10; 842 cmd->cmnd[0] = UNMAP; 843 cmd->cmnd[8] = 24; 844 845 buf = page_address(rq->special_vec.bv_page); 846 put_unaligned_be16(6 + 16, &buf[0]); 847 put_unaligned_be16(16, &buf[2]); 848 put_unaligned_be64(lba, &buf[8]); 849 put_unaligned_be32(nr_blocks, &buf[16]); 850 851 cmd->allowed = SD_MAX_RETRIES; 852 cmd->transfersize = data_len; 853 rq->timeout = SD_TIMEOUT; 854 855 return scsi_init_io(cmd); 856 } 857 858 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 859 bool unmap) 860 { 861 struct scsi_device *sdp = cmd->device; 862 struct request *rq = cmd->request; 863 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 864 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 865 u32 data_len = sdp->sector_size; 866 867 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 868 if (!rq->special_vec.bv_page) 869 return BLK_STS_RESOURCE; 870 clear_highpage(rq->special_vec.bv_page); 871 rq->special_vec.bv_offset = 0; 872 rq->special_vec.bv_len = data_len; 873 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 874 875 cmd->cmd_len = 16; 876 cmd->cmnd[0] = WRITE_SAME_16; 877 if (unmap) 878 cmd->cmnd[1] = 0x8; /* UNMAP */ 879 put_unaligned_be64(lba, &cmd->cmnd[2]); 880 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 881 882 cmd->allowed = SD_MAX_RETRIES; 883 cmd->transfersize = data_len; 884 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 885 886 return scsi_init_io(cmd); 887 } 888 889 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 890 bool unmap) 891 { 892 struct scsi_device *sdp = cmd->device; 893 struct request *rq = cmd->request; 894 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 895 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 896 u32 data_len = sdp->sector_size; 897 898 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 899 if (!rq->special_vec.bv_page) 900 return BLK_STS_RESOURCE; 901 clear_highpage(rq->special_vec.bv_page); 902 rq->special_vec.bv_offset = 0; 903 rq->special_vec.bv_len = data_len; 904 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 905 906 cmd->cmd_len = 10; 907 cmd->cmnd[0] = WRITE_SAME; 908 if (unmap) 909 cmd->cmnd[1] = 0x8; /* UNMAP */ 910 put_unaligned_be32(lba, &cmd->cmnd[2]); 911 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 912 913 cmd->allowed = SD_MAX_RETRIES; 914 cmd->transfersize = data_len; 915 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 916 917 return scsi_init_io(cmd); 918 } 919 920 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 921 { 922 struct request *rq = cmd->request; 923 struct scsi_device *sdp = cmd->device; 924 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 925 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 926 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 927 928 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 929 switch (sdkp->zeroing_mode) { 930 case SD_ZERO_WS16_UNMAP: 931 return sd_setup_write_same16_cmnd(cmd, true); 932 case SD_ZERO_WS10_UNMAP: 933 return sd_setup_write_same10_cmnd(cmd, true); 934 } 935 } 936 937 if (sdp->no_write_same) 938 return BLK_STS_TARGET; 939 940 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 941 return sd_setup_write_same16_cmnd(cmd, false); 942 943 return sd_setup_write_same10_cmnd(cmd, false); 944 } 945 946 static void sd_config_write_same(struct scsi_disk *sdkp) 947 { 948 struct request_queue *q = sdkp->disk->queue; 949 unsigned int logical_block_size = sdkp->device->sector_size; 950 951 if (sdkp->device->no_write_same) { 952 sdkp->max_ws_blocks = 0; 953 goto out; 954 } 955 956 /* Some devices can not handle block counts above 0xffff despite 957 * supporting WRITE SAME(16). Consequently we default to 64k 958 * blocks per I/O unless the device explicitly advertises a 959 * bigger limit. 960 */ 961 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 962 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 963 (u32)SD_MAX_WS16_BLOCKS); 964 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 965 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 966 (u32)SD_MAX_WS10_BLOCKS); 967 else { 968 sdkp->device->no_write_same = 1; 969 sdkp->max_ws_blocks = 0; 970 } 971 972 if (sdkp->lbprz && sdkp->lbpws) 973 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 974 else if (sdkp->lbprz && sdkp->lbpws10) 975 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 976 else if (sdkp->max_ws_blocks) 977 sdkp->zeroing_mode = SD_ZERO_WS; 978 else 979 sdkp->zeroing_mode = SD_ZERO_WRITE; 980 981 if (sdkp->max_ws_blocks && 982 sdkp->physical_block_size > logical_block_size) { 983 /* 984 * Reporting a maximum number of blocks that is not aligned 985 * on the device physical size would cause a large write same 986 * request to be split into physically unaligned chunks by 987 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 988 * even if the caller of these functions took care to align the 989 * large request. So make sure the maximum reported is aligned 990 * to the device physical block size. This is only an optional 991 * optimization for regular disks, but this is mandatory to 992 * avoid failure of large write same requests directed at 993 * sequential write required zones of host-managed ZBC disks. 994 */ 995 sdkp->max_ws_blocks = 996 round_down(sdkp->max_ws_blocks, 997 bytes_to_logical(sdkp->device, 998 sdkp->physical_block_size)); 999 } 1000 1001 out: 1002 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1003 (logical_block_size >> 9)); 1004 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1005 (logical_block_size >> 9)); 1006 } 1007 1008 /** 1009 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1010 * @cmd: command to prepare 1011 * 1012 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1013 * the preference indicated by the target device. 1014 **/ 1015 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1016 { 1017 struct request *rq = cmd->request; 1018 struct scsi_device *sdp = cmd->device; 1019 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1020 struct bio *bio = rq->bio; 1021 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1022 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1023 blk_status_t ret; 1024 1025 if (sdkp->device->no_write_same) 1026 return BLK_STS_TARGET; 1027 1028 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1029 1030 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1031 1032 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1033 cmd->cmd_len = 16; 1034 cmd->cmnd[0] = WRITE_SAME_16; 1035 put_unaligned_be64(lba, &cmd->cmnd[2]); 1036 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1037 } else { 1038 cmd->cmd_len = 10; 1039 cmd->cmnd[0] = WRITE_SAME; 1040 put_unaligned_be32(lba, &cmd->cmnd[2]); 1041 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1042 } 1043 1044 cmd->transfersize = sdp->sector_size; 1045 cmd->allowed = SD_MAX_RETRIES; 1046 1047 /* 1048 * For WRITE SAME the data transferred via the DATA OUT buffer is 1049 * different from the amount of data actually written to the target. 1050 * 1051 * We set up __data_len to the amount of data transferred via the 1052 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1053 * to transfer a single sector of data first, but then reset it to 1054 * the amount of data to be written right after so that the I/O path 1055 * knows how much to actually write. 1056 */ 1057 rq->__data_len = sdp->sector_size; 1058 ret = scsi_init_io(cmd); 1059 rq->__data_len = blk_rq_bytes(rq); 1060 1061 return ret; 1062 } 1063 1064 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1065 { 1066 struct request *rq = cmd->request; 1067 1068 /* flush requests don't perform I/O, zero the S/G table */ 1069 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1070 1071 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1072 cmd->cmd_len = 10; 1073 cmd->transfersize = 0; 1074 cmd->allowed = SD_MAX_RETRIES; 1075 1076 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1077 return BLK_STS_OK; 1078 } 1079 1080 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1081 sector_t lba, unsigned int nr_blocks, 1082 unsigned char flags) 1083 { 1084 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1085 if (unlikely(cmd->cmnd == NULL)) 1086 return BLK_STS_RESOURCE; 1087 1088 cmd->cmd_len = SD_EXT_CDB_SIZE; 1089 memset(cmd->cmnd, 0, cmd->cmd_len); 1090 1091 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1092 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1093 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1094 cmd->cmnd[10] = flags; 1095 put_unaligned_be64(lba, &cmd->cmnd[12]); 1096 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1097 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1098 1099 return BLK_STS_OK; 1100 } 1101 1102 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1103 sector_t lba, unsigned int nr_blocks, 1104 unsigned char flags) 1105 { 1106 cmd->cmd_len = 16; 1107 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1108 cmd->cmnd[1] = flags; 1109 cmd->cmnd[14] = 0; 1110 cmd->cmnd[15] = 0; 1111 put_unaligned_be64(lba, &cmd->cmnd[2]); 1112 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1113 1114 return BLK_STS_OK; 1115 } 1116 1117 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1118 sector_t lba, unsigned int nr_blocks, 1119 unsigned char flags) 1120 { 1121 cmd->cmd_len = 10; 1122 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1123 cmd->cmnd[1] = flags; 1124 cmd->cmnd[6] = 0; 1125 cmd->cmnd[9] = 0; 1126 put_unaligned_be32(lba, &cmd->cmnd[2]); 1127 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1128 1129 return BLK_STS_OK; 1130 } 1131 1132 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1133 sector_t lba, unsigned int nr_blocks, 1134 unsigned char flags) 1135 { 1136 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1137 if (WARN_ON_ONCE(nr_blocks == 0)) 1138 return BLK_STS_IOERR; 1139 1140 if (unlikely(flags & 0x8)) { 1141 /* 1142 * This happens only if this drive failed 10byte rw 1143 * command with ILLEGAL_REQUEST during operation and 1144 * thus turned off use_10_for_rw. 1145 */ 1146 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1147 return BLK_STS_IOERR; 1148 } 1149 1150 cmd->cmd_len = 6; 1151 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1152 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1153 cmd->cmnd[2] = (lba >> 8) & 0xff; 1154 cmd->cmnd[3] = lba & 0xff; 1155 cmd->cmnd[4] = nr_blocks; 1156 cmd->cmnd[5] = 0; 1157 1158 return BLK_STS_OK; 1159 } 1160 1161 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1162 { 1163 struct request *rq = cmd->request; 1164 struct scsi_device *sdp = cmd->device; 1165 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1166 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1167 sector_t threshold; 1168 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1169 bool dif, dix; 1170 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1171 bool write = rq_data_dir(rq) == WRITE; 1172 unsigned char protect, fua; 1173 blk_status_t ret; 1174 1175 ret = scsi_init_io(cmd); 1176 if (ret != BLK_STS_OK) 1177 return ret; 1178 1179 if (!scsi_device_online(sdp) || sdp->changed) { 1180 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1181 return BLK_STS_IOERR; 1182 } 1183 1184 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1185 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1186 return BLK_STS_IOERR; 1187 } 1188 1189 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1190 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1191 return BLK_STS_IOERR; 1192 } 1193 1194 /* 1195 * Some SD card readers can't handle accesses which touch the 1196 * last one or two logical blocks. Split accesses as needed. 1197 */ 1198 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1199 1200 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1201 if (lba < threshold) { 1202 /* Access up to the threshold but not beyond */ 1203 nr_blocks = threshold - lba; 1204 } else { 1205 /* Access only a single logical block */ 1206 nr_blocks = 1; 1207 } 1208 } 1209 1210 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1211 dix = scsi_prot_sg_count(cmd); 1212 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1213 1214 if (dif || dix) 1215 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1216 else 1217 protect = 0; 1218 1219 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1220 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1221 protect | fua); 1222 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1223 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1224 protect | fua); 1225 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1226 sdp->use_10_for_rw || protect) { 1227 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1228 protect | fua); 1229 } else { 1230 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1231 protect | fua); 1232 } 1233 1234 if (unlikely(ret != BLK_STS_OK)) 1235 return ret; 1236 1237 /* 1238 * We shouldn't disconnect in the middle of a sector, so with a dumb 1239 * host adapter, it's safe to assume that we can at least transfer 1240 * this many bytes between each connect / disconnect. 1241 */ 1242 cmd->transfersize = sdp->sector_size; 1243 cmd->underflow = nr_blocks << 9; 1244 cmd->allowed = SD_MAX_RETRIES; 1245 cmd->sdb.length = nr_blocks * sdp->sector_size; 1246 1247 SCSI_LOG_HLQUEUE(1, 1248 scmd_printk(KERN_INFO, cmd, 1249 "%s: block=%llu, count=%d\n", __func__, 1250 (unsigned long long)blk_rq_pos(rq), 1251 blk_rq_sectors(rq))); 1252 SCSI_LOG_HLQUEUE(2, 1253 scmd_printk(KERN_INFO, cmd, 1254 "%s %d/%u 512 byte blocks.\n", 1255 write ? "writing" : "reading", nr_blocks, 1256 blk_rq_sectors(rq))); 1257 1258 /* 1259 * This indicates that the command is ready from our end to be 1260 * queued. 1261 */ 1262 return BLK_STS_OK; 1263 } 1264 1265 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1266 { 1267 struct request *rq = cmd->request; 1268 1269 switch (req_op(rq)) { 1270 case REQ_OP_DISCARD: 1271 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1272 case SD_LBP_UNMAP: 1273 return sd_setup_unmap_cmnd(cmd); 1274 case SD_LBP_WS16: 1275 return sd_setup_write_same16_cmnd(cmd, true); 1276 case SD_LBP_WS10: 1277 return sd_setup_write_same10_cmnd(cmd, true); 1278 case SD_LBP_ZERO: 1279 return sd_setup_write_same10_cmnd(cmd, false); 1280 default: 1281 return BLK_STS_TARGET; 1282 } 1283 case REQ_OP_WRITE_ZEROES: 1284 return sd_setup_write_zeroes_cmnd(cmd); 1285 case REQ_OP_WRITE_SAME: 1286 return sd_setup_write_same_cmnd(cmd); 1287 case REQ_OP_FLUSH: 1288 return sd_setup_flush_cmnd(cmd); 1289 case REQ_OP_READ: 1290 case REQ_OP_WRITE: 1291 return sd_setup_read_write_cmnd(cmd); 1292 case REQ_OP_ZONE_RESET: 1293 return sd_zbc_setup_reset_cmnd(cmd, false); 1294 case REQ_OP_ZONE_RESET_ALL: 1295 return sd_zbc_setup_reset_cmnd(cmd, true); 1296 default: 1297 WARN_ON_ONCE(1); 1298 return BLK_STS_NOTSUPP; 1299 } 1300 } 1301 1302 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1303 { 1304 struct request *rq = SCpnt->request; 1305 u8 *cmnd; 1306 1307 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1308 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1309 1310 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1311 cmnd = SCpnt->cmnd; 1312 SCpnt->cmnd = NULL; 1313 SCpnt->cmd_len = 0; 1314 mempool_free(cmnd, sd_cdb_pool); 1315 } 1316 } 1317 1318 /** 1319 * sd_open - open a scsi disk device 1320 * @bdev: Block device of the scsi disk to open 1321 * @mode: FMODE_* mask 1322 * 1323 * Returns 0 if successful. Returns a negated errno value in case 1324 * of error. 1325 * 1326 * Note: This can be called from a user context (e.g. fsck(1) ) 1327 * or from within the kernel (e.g. as a result of a mount(1) ). 1328 * In the latter case @inode and @filp carry an abridged amount 1329 * of information as noted above. 1330 * 1331 * Locking: called with bdev->bd_mutex held. 1332 **/ 1333 static int sd_open(struct block_device *bdev, fmode_t mode) 1334 { 1335 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1336 struct scsi_device *sdev; 1337 int retval; 1338 1339 if (!sdkp) 1340 return -ENXIO; 1341 1342 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1343 1344 sdev = sdkp->device; 1345 1346 /* 1347 * If the device is in error recovery, wait until it is done. 1348 * If the device is offline, then disallow any access to it. 1349 */ 1350 retval = -ENXIO; 1351 if (!scsi_block_when_processing_errors(sdev)) 1352 goto error_out; 1353 1354 if (sdev->removable || sdkp->write_prot) 1355 check_disk_change(bdev); 1356 1357 /* 1358 * If the drive is empty, just let the open fail. 1359 */ 1360 retval = -ENOMEDIUM; 1361 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1362 goto error_out; 1363 1364 /* 1365 * If the device has the write protect tab set, have the open fail 1366 * if the user expects to be able to write to the thing. 1367 */ 1368 retval = -EROFS; 1369 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1370 goto error_out; 1371 1372 /* 1373 * It is possible that the disk changing stuff resulted in 1374 * the device being taken offline. If this is the case, 1375 * report this to the user, and don't pretend that the 1376 * open actually succeeded. 1377 */ 1378 retval = -ENXIO; 1379 if (!scsi_device_online(sdev)) 1380 goto error_out; 1381 1382 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1383 if (scsi_block_when_processing_errors(sdev)) 1384 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1385 } 1386 1387 return 0; 1388 1389 error_out: 1390 scsi_disk_put(sdkp); 1391 return retval; 1392 } 1393 1394 /** 1395 * sd_release - invoked when the (last) close(2) is called on this 1396 * scsi disk. 1397 * @disk: disk to release 1398 * @mode: FMODE_* mask 1399 * 1400 * Returns 0. 1401 * 1402 * Note: may block (uninterruptible) if error recovery is underway 1403 * on this disk. 1404 * 1405 * Locking: called with bdev->bd_mutex held. 1406 **/ 1407 static void sd_release(struct gendisk *disk, fmode_t mode) 1408 { 1409 struct scsi_disk *sdkp = scsi_disk(disk); 1410 struct scsi_device *sdev = sdkp->device; 1411 1412 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1413 1414 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1415 if (scsi_block_when_processing_errors(sdev)) 1416 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1417 } 1418 1419 scsi_disk_put(sdkp); 1420 } 1421 1422 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1423 { 1424 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1425 struct scsi_device *sdp = sdkp->device; 1426 struct Scsi_Host *host = sdp->host; 1427 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1428 int diskinfo[4]; 1429 1430 /* default to most commonly used values */ 1431 diskinfo[0] = 0x40; /* 1 << 6 */ 1432 diskinfo[1] = 0x20; /* 1 << 5 */ 1433 diskinfo[2] = capacity >> 11; 1434 1435 /* override with calculated, extended default, or driver values */ 1436 if (host->hostt->bios_param) 1437 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1438 else 1439 scsicam_bios_param(bdev, capacity, diskinfo); 1440 1441 geo->heads = diskinfo[0]; 1442 geo->sectors = diskinfo[1]; 1443 geo->cylinders = diskinfo[2]; 1444 return 0; 1445 } 1446 1447 /** 1448 * sd_ioctl - process an ioctl 1449 * @bdev: target block device 1450 * @mode: FMODE_* mask 1451 * @cmd: ioctl command number 1452 * @arg: this is third argument given to ioctl(2) system call. 1453 * Often contains a pointer. 1454 * 1455 * Returns 0 if successful (some ioctls return positive numbers on 1456 * success as well). Returns a negated errno value in case of error. 1457 * 1458 * Note: most ioctls are forward onto the block subsystem or further 1459 * down in the scsi subsystem. 1460 **/ 1461 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1462 unsigned int cmd, unsigned long arg) 1463 { 1464 struct gendisk *disk = bdev->bd_disk; 1465 struct scsi_disk *sdkp = scsi_disk(disk); 1466 struct scsi_device *sdp = sdkp->device; 1467 void __user *p = (void __user *)arg; 1468 int error; 1469 1470 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1471 "cmd=0x%x\n", disk->disk_name, cmd)); 1472 1473 error = scsi_verify_blk_ioctl(bdev, cmd); 1474 if (error < 0) 1475 return error; 1476 1477 /* 1478 * If we are in the middle of error recovery, don't let anyone 1479 * else try and use this device. Also, if error recovery fails, it 1480 * may try and take the device offline, in which case all further 1481 * access to the device is prohibited. 1482 */ 1483 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1484 (mode & FMODE_NDELAY) != 0); 1485 if (error) 1486 goto out; 1487 1488 if (is_sed_ioctl(cmd)) 1489 return sed_ioctl(sdkp->opal_dev, cmd, p); 1490 1491 /* 1492 * Send SCSI addressing ioctls directly to mid level, send other 1493 * ioctls to block level and then onto mid level if they can't be 1494 * resolved. 1495 */ 1496 switch (cmd) { 1497 case SCSI_IOCTL_GET_IDLUN: 1498 case SCSI_IOCTL_GET_BUS_NUMBER: 1499 error = scsi_ioctl(sdp, cmd, p); 1500 break; 1501 default: 1502 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1503 if (error != -ENOTTY) 1504 break; 1505 error = scsi_ioctl(sdp, cmd, p); 1506 break; 1507 } 1508 out: 1509 return error; 1510 } 1511 1512 static void set_media_not_present(struct scsi_disk *sdkp) 1513 { 1514 if (sdkp->media_present) 1515 sdkp->device->changed = 1; 1516 1517 if (sdkp->device->removable) { 1518 sdkp->media_present = 0; 1519 sdkp->capacity = 0; 1520 } 1521 } 1522 1523 static int media_not_present(struct scsi_disk *sdkp, 1524 struct scsi_sense_hdr *sshdr) 1525 { 1526 if (!scsi_sense_valid(sshdr)) 1527 return 0; 1528 1529 /* not invoked for commands that could return deferred errors */ 1530 switch (sshdr->sense_key) { 1531 case UNIT_ATTENTION: 1532 case NOT_READY: 1533 /* medium not present */ 1534 if (sshdr->asc == 0x3A) { 1535 set_media_not_present(sdkp); 1536 return 1; 1537 } 1538 } 1539 return 0; 1540 } 1541 1542 /** 1543 * sd_check_events - check media events 1544 * @disk: kernel device descriptor 1545 * @clearing: disk events currently being cleared 1546 * 1547 * Returns mask of DISK_EVENT_*. 1548 * 1549 * Note: this function is invoked from the block subsystem. 1550 **/ 1551 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1552 { 1553 struct scsi_disk *sdkp = scsi_disk_get(disk); 1554 struct scsi_device *sdp; 1555 int retval; 1556 1557 if (!sdkp) 1558 return 0; 1559 1560 sdp = sdkp->device; 1561 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1562 1563 /* 1564 * If the device is offline, don't send any commands - just pretend as 1565 * if the command failed. If the device ever comes back online, we 1566 * can deal with it then. It is only because of unrecoverable errors 1567 * that we would ever take a device offline in the first place. 1568 */ 1569 if (!scsi_device_online(sdp)) { 1570 set_media_not_present(sdkp); 1571 goto out; 1572 } 1573 1574 /* 1575 * Using TEST_UNIT_READY enables differentiation between drive with 1576 * no cartridge loaded - NOT READY, drive with changed cartridge - 1577 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1578 * 1579 * Drives that auto spin down. eg iomega jaz 1G, will be started 1580 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1581 * sd_revalidate() is called. 1582 */ 1583 if (scsi_block_when_processing_errors(sdp)) { 1584 struct scsi_sense_hdr sshdr = { 0, }; 1585 1586 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1587 &sshdr); 1588 1589 /* failed to execute TUR, assume media not present */ 1590 if (host_byte(retval)) { 1591 set_media_not_present(sdkp); 1592 goto out; 1593 } 1594 1595 if (media_not_present(sdkp, &sshdr)) 1596 goto out; 1597 } 1598 1599 /* 1600 * For removable scsi disk we have to recognise the presence 1601 * of a disk in the drive. 1602 */ 1603 if (!sdkp->media_present) 1604 sdp->changed = 1; 1605 sdkp->media_present = 1; 1606 out: 1607 /* 1608 * sdp->changed is set under the following conditions: 1609 * 1610 * Medium present state has changed in either direction. 1611 * Device has indicated UNIT_ATTENTION. 1612 */ 1613 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1614 sdp->changed = 0; 1615 scsi_disk_put(sdkp); 1616 return retval; 1617 } 1618 1619 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1620 { 1621 int retries, res; 1622 struct scsi_device *sdp = sdkp->device; 1623 const int timeout = sdp->request_queue->rq_timeout 1624 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1625 struct scsi_sense_hdr my_sshdr; 1626 1627 if (!scsi_device_online(sdp)) 1628 return -ENODEV; 1629 1630 /* caller might not be interested in sense, but we need it */ 1631 if (!sshdr) 1632 sshdr = &my_sshdr; 1633 1634 for (retries = 3; retries > 0; --retries) { 1635 unsigned char cmd[10] = { 0 }; 1636 1637 cmd[0] = SYNCHRONIZE_CACHE; 1638 /* 1639 * Leave the rest of the command zero to indicate 1640 * flush everything. 1641 */ 1642 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1643 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1644 if (res == 0) 1645 break; 1646 } 1647 1648 if (res) { 1649 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1650 1651 if (driver_byte(res) == DRIVER_SENSE) 1652 sd_print_sense_hdr(sdkp, sshdr); 1653 1654 /* we need to evaluate the error return */ 1655 if (scsi_sense_valid(sshdr) && 1656 (sshdr->asc == 0x3a || /* medium not present */ 1657 sshdr->asc == 0x20)) /* invalid command */ 1658 /* this is no error here */ 1659 return 0; 1660 1661 switch (host_byte(res)) { 1662 /* ignore errors due to racing a disconnection */ 1663 case DID_BAD_TARGET: 1664 case DID_NO_CONNECT: 1665 return 0; 1666 /* signal the upper layer it might try again */ 1667 case DID_BUS_BUSY: 1668 case DID_IMM_RETRY: 1669 case DID_REQUEUE: 1670 case DID_SOFT_ERROR: 1671 return -EBUSY; 1672 default: 1673 return -EIO; 1674 } 1675 } 1676 return 0; 1677 } 1678 1679 static void sd_rescan(struct device *dev) 1680 { 1681 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1682 1683 revalidate_disk(sdkp->disk); 1684 } 1685 1686 1687 #ifdef CONFIG_COMPAT 1688 /* 1689 * This gets directly called from VFS. When the ioctl 1690 * is not recognized we go back to the other translation paths. 1691 */ 1692 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1693 unsigned int cmd, unsigned long arg) 1694 { 1695 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1696 int error; 1697 1698 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1699 (mode & FMODE_NDELAY) != 0); 1700 if (error) 1701 return error; 1702 1703 /* 1704 * Let the static ioctl translation table take care of it. 1705 */ 1706 if (!sdev->host->hostt->compat_ioctl) 1707 return -ENOIOCTLCMD; 1708 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1709 } 1710 #endif 1711 1712 static char sd_pr_type(enum pr_type type) 1713 { 1714 switch (type) { 1715 case PR_WRITE_EXCLUSIVE: 1716 return 0x01; 1717 case PR_EXCLUSIVE_ACCESS: 1718 return 0x03; 1719 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1720 return 0x05; 1721 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1722 return 0x06; 1723 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1724 return 0x07; 1725 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1726 return 0x08; 1727 default: 1728 return 0; 1729 } 1730 }; 1731 1732 static int sd_pr_command(struct block_device *bdev, u8 sa, 1733 u64 key, u64 sa_key, u8 type, u8 flags) 1734 { 1735 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1736 struct scsi_sense_hdr sshdr; 1737 int result; 1738 u8 cmd[16] = { 0, }; 1739 u8 data[24] = { 0, }; 1740 1741 cmd[0] = PERSISTENT_RESERVE_OUT; 1742 cmd[1] = sa; 1743 cmd[2] = type; 1744 put_unaligned_be32(sizeof(data), &cmd[5]); 1745 1746 put_unaligned_be64(key, &data[0]); 1747 put_unaligned_be64(sa_key, &data[8]); 1748 data[20] = flags; 1749 1750 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1751 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1752 1753 if (driver_byte(result) == DRIVER_SENSE && 1754 scsi_sense_valid(&sshdr)) { 1755 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1756 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1757 } 1758 1759 return result; 1760 } 1761 1762 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1763 u32 flags) 1764 { 1765 if (flags & ~PR_FL_IGNORE_KEY) 1766 return -EOPNOTSUPP; 1767 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1768 old_key, new_key, 0, 1769 (1 << 0) /* APTPL */); 1770 } 1771 1772 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1773 u32 flags) 1774 { 1775 if (flags) 1776 return -EOPNOTSUPP; 1777 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1778 } 1779 1780 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1781 { 1782 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1783 } 1784 1785 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1786 enum pr_type type, bool abort) 1787 { 1788 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1789 sd_pr_type(type), 0); 1790 } 1791 1792 static int sd_pr_clear(struct block_device *bdev, u64 key) 1793 { 1794 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1795 } 1796 1797 static const struct pr_ops sd_pr_ops = { 1798 .pr_register = sd_pr_register, 1799 .pr_reserve = sd_pr_reserve, 1800 .pr_release = sd_pr_release, 1801 .pr_preempt = sd_pr_preempt, 1802 .pr_clear = sd_pr_clear, 1803 }; 1804 1805 static const struct block_device_operations sd_fops = { 1806 .owner = THIS_MODULE, 1807 .open = sd_open, 1808 .release = sd_release, 1809 .ioctl = sd_ioctl, 1810 .getgeo = sd_getgeo, 1811 #ifdef CONFIG_COMPAT 1812 .compat_ioctl = sd_compat_ioctl, 1813 #endif 1814 .check_events = sd_check_events, 1815 .revalidate_disk = sd_revalidate_disk, 1816 .unlock_native_capacity = sd_unlock_native_capacity, 1817 .report_zones = sd_zbc_report_zones, 1818 .pr_ops = &sd_pr_ops, 1819 }; 1820 1821 /** 1822 * sd_eh_reset - reset error handling callback 1823 * @scmd: sd-issued command that has failed 1824 * 1825 * This function is called by the SCSI midlayer before starting 1826 * SCSI EH. When counting medium access failures we have to be 1827 * careful to register it only only once per device and SCSI EH run; 1828 * there might be several timed out commands which will cause the 1829 * 'max_medium_access_timeouts' counter to trigger after the first 1830 * SCSI EH run already and set the device to offline. 1831 * So this function resets the internal counter before starting SCSI EH. 1832 **/ 1833 static void sd_eh_reset(struct scsi_cmnd *scmd) 1834 { 1835 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1836 1837 /* New SCSI EH run, reset gate variable */ 1838 sdkp->ignore_medium_access_errors = false; 1839 } 1840 1841 /** 1842 * sd_eh_action - error handling callback 1843 * @scmd: sd-issued command that has failed 1844 * @eh_disp: The recovery disposition suggested by the midlayer 1845 * 1846 * This function is called by the SCSI midlayer upon completion of an 1847 * error test command (currently TEST UNIT READY). The result of sending 1848 * the eh command is passed in eh_disp. We're looking for devices that 1849 * fail medium access commands but are OK with non access commands like 1850 * test unit ready (so wrongly see the device as having a successful 1851 * recovery) 1852 **/ 1853 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1854 { 1855 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1856 struct scsi_device *sdev = scmd->device; 1857 1858 if (!scsi_device_online(sdev) || 1859 !scsi_medium_access_command(scmd) || 1860 host_byte(scmd->result) != DID_TIME_OUT || 1861 eh_disp != SUCCESS) 1862 return eh_disp; 1863 1864 /* 1865 * The device has timed out executing a medium access command. 1866 * However, the TEST UNIT READY command sent during error 1867 * handling completed successfully. Either the device is in the 1868 * process of recovering or has it suffered an internal failure 1869 * that prevents access to the storage medium. 1870 */ 1871 if (!sdkp->ignore_medium_access_errors) { 1872 sdkp->medium_access_timed_out++; 1873 sdkp->ignore_medium_access_errors = true; 1874 } 1875 1876 /* 1877 * If the device keeps failing read/write commands but TEST UNIT 1878 * READY always completes successfully we assume that medium 1879 * access is no longer possible and take the device offline. 1880 */ 1881 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1882 scmd_printk(KERN_ERR, scmd, 1883 "Medium access timeout failure. Offlining disk!\n"); 1884 mutex_lock(&sdev->state_mutex); 1885 scsi_device_set_state(sdev, SDEV_OFFLINE); 1886 mutex_unlock(&sdev->state_mutex); 1887 1888 return SUCCESS; 1889 } 1890 1891 return eh_disp; 1892 } 1893 1894 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1895 { 1896 struct request *req = scmd->request; 1897 struct scsi_device *sdev = scmd->device; 1898 unsigned int transferred, good_bytes; 1899 u64 start_lba, end_lba, bad_lba; 1900 1901 /* 1902 * Some commands have a payload smaller than the device logical 1903 * block size (e.g. INQUIRY on a 4K disk). 1904 */ 1905 if (scsi_bufflen(scmd) <= sdev->sector_size) 1906 return 0; 1907 1908 /* Check if we have a 'bad_lba' information */ 1909 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1910 SCSI_SENSE_BUFFERSIZE, 1911 &bad_lba)) 1912 return 0; 1913 1914 /* 1915 * If the bad lba was reported incorrectly, we have no idea where 1916 * the error is. 1917 */ 1918 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1919 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1920 if (bad_lba < start_lba || bad_lba >= end_lba) 1921 return 0; 1922 1923 /* 1924 * resid is optional but mostly filled in. When it's unused, 1925 * its value is zero, so we assume the whole buffer transferred 1926 */ 1927 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1928 1929 /* This computation should always be done in terms of the 1930 * resolution of the device's medium. 1931 */ 1932 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1933 1934 return min(good_bytes, transferred); 1935 } 1936 1937 /** 1938 * sd_done - bottom half handler: called when the lower level 1939 * driver has completed (successfully or otherwise) a scsi command. 1940 * @SCpnt: mid-level's per command structure. 1941 * 1942 * Note: potentially run from within an ISR. Must not block. 1943 **/ 1944 static int sd_done(struct scsi_cmnd *SCpnt) 1945 { 1946 int result = SCpnt->result; 1947 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1948 unsigned int sector_size = SCpnt->device->sector_size; 1949 unsigned int resid; 1950 struct scsi_sense_hdr sshdr; 1951 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1952 struct request *req = SCpnt->request; 1953 int sense_valid = 0; 1954 int sense_deferred = 0; 1955 1956 switch (req_op(req)) { 1957 case REQ_OP_DISCARD: 1958 case REQ_OP_WRITE_ZEROES: 1959 case REQ_OP_WRITE_SAME: 1960 case REQ_OP_ZONE_RESET: 1961 case REQ_OP_ZONE_RESET_ALL: 1962 if (!result) { 1963 good_bytes = blk_rq_bytes(req); 1964 scsi_set_resid(SCpnt, 0); 1965 } else { 1966 good_bytes = 0; 1967 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1968 } 1969 break; 1970 default: 1971 /* 1972 * In case of bogus fw or device, we could end up having 1973 * an unaligned partial completion. Check this here and force 1974 * alignment. 1975 */ 1976 resid = scsi_get_resid(SCpnt); 1977 if (resid & (sector_size - 1)) { 1978 sd_printk(KERN_INFO, sdkp, 1979 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1980 resid, sector_size); 1981 scsi_print_command(SCpnt); 1982 resid = min(scsi_bufflen(SCpnt), 1983 round_up(resid, sector_size)); 1984 scsi_set_resid(SCpnt, resid); 1985 } 1986 } 1987 1988 if (result) { 1989 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1990 if (sense_valid) 1991 sense_deferred = scsi_sense_is_deferred(&sshdr); 1992 } 1993 sdkp->medium_access_timed_out = 0; 1994 1995 if (driver_byte(result) != DRIVER_SENSE && 1996 (!sense_valid || sense_deferred)) 1997 goto out; 1998 1999 switch (sshdr.sense_key) { 2000 case HARDWARE_ERROR: 2001 case MEDIUM_ERROR: 2002 good_bytes = sd_completed_bytes(SCpnt); 2003 break; 2004 case RECOVERED_ERROR: 2005 good_bytes = scsi_bufflen(SCpnt); 2006 break; 2007 case NO_SENSE: 2008 /* This indicates a false check condition, so ignore it. An 2009 * unknown amount of data was transferred so treat it as an 2010 * error. 2011 */ 2012 SCpnt->result = 0; 2013 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2014 break; 2015 case ABORTED_COMMAND: 2016 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2017 good_bytes = sd_completed_bytes(SCpnt); 2018 break; 2019 case ILLEGAL_REQUEST: 2020 switch (sshdr.asc) { 2021 case 0x10: /* DIX: Host detected corruption */ 2022 good_bytes = sd_completed_bytes(SCpnt); 2023 break; 2024 case 0x20: /* INVALID COMMAND OPCODE */ 2025 case 0x24: /* INVALID FIELD IN CDB */ 2026 switch (SCpnt->cmnd[0]) { 2027 case UNMAP: 2028 sd_config_discard(sdkp, SD_LBP_DISABLE); 2029 break; 2030 case WRITE_SAME_16: 2031 case WRITE_SAME: 2032 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2033 sd_config_discard(sdkp, SD_LBP_DISABLE); 2034 } else { 2035 sdkp->device->no_write_same = 1; 2036 sd_config_write_same(sdkp); 2037 req->rq_flags |= RQF_QUIET; 2038 } 2039 break; 2040 } 2041 } 2042 break; 2043 default: 2044 break; 2045 } 2046 2047 out: 2048 if (sd_is_zoned(sdkp)) 2049 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2050 2051 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2052 "sd_done: completed %d of %d bytes\n", 2053 good_bytes, scsi_bufflen(SCpnt))); 2054 2055 return good_bytes; 2056 } 2057 2058 /* 2059 * spinup disk - called only in sd_revalidate_disk() 2060 */ 2061 static void 2062 sd_spinup_disk(struct scsi_disk *sdkp) 2063 { 2064 unsigned char cmd[10]; 2065 unsigned long spintime_expire = 0; 2066 int retries, spintime; 2067 unsigned int the_result; 2068 struct scsi_sense_hdr sshdr; 2069 int sense_valid = 0; 2070 2071 spintime = 0; 2072 2073 /* Spin up drives, as required. Only do this at boot time */ 2074 /* Spinup needs to be done for module loads too. */ 2075 do { 2076 retries = 0; 2077 2078 do { 2079 cmd[0] = TEST_UNIT_READY; 2080 memset((void *) &cmd[1], 0, 9); 2081 2082 the_result = scsi_execute_req(sdkp->device, cmd, 2083 DMA_NONE, NULL, 0, 2084 &sshdr, SD_TIMEOUT, 2085 SD_MAX_RETRIES, NULL); 2086 2087 /* 2088 * If the drive has indicated to us that it 2089 * doesn't have any media in it, don't bother 2090 * with any more polling. 2091 */ 2092 if (media_not_present(sdkp, &sshdr)) 2093 return; 2094 2095 if (the_result) 2096 sense_valid = scsi_sense_valid(&sshdr); 2097 retries++; 2098 } while (retries < 3 && 2099 (!scsi_status_is_good(the_result) || 2100 ((driver_byte(the_result) == DRIVER_SENSE) && 2101 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2102 2103 if (driver_byte(the_result) != DRIVER_SENSE) { 2104 /* no sense, TUR either succeeded or failed 2105 * with a status error */ 2106 if(!spintime && !scsi_status_is_good(the_result)) { 2107 sd_print_result(sdkp, "Test Unit Ready failed", 2108 the_result); 2109 } 2110 break; 2111 } 2112 2113 /* 2114 * The device does not want the automatic start to be issued. 2115 */ 2116 if (sdkp->device->no_start_on_add) 2117 break; 2118 2119 if (sense_valid && sshdr.sense_key == NOT_READY) { 2120 if (sshdr.asc == 4 && sshdr.ascq == 3) 2121 break; /* manual intervention required */ 2122 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2123 break; /* standby */ 2124 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2125 break; /* unavailable */ 2126 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2127 break; /* sanitize in progress */ 2128 /* 2129 * Issue command to spin up drive when not ready 2130 */ 2131 if (!spintime) { 2132 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2133 cmd[0] = START_STOP; 2134 cmd[1] = 1; /* Return immediately */ 2135 memset((void *) &cmd[2], 0, 8); 2136 cmd[4] = 1; /* Start spin cycle */ 2137 if (sdkp->device->start_stop_pwr_cond) 2138 cmd[4] |= 1 << 4; 2139 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2140 NULL, 0, &sshdr, 2141 SD_TIMEOUT, SD_MAX_RETRIES, 2142 NULL); 2143 spintime_expire = jiffies + 100 * HZ; 2144 spintime = 1; 2145 } 2146 /* Wait 1 second for next try */ 2147 msleep(1000); 2148 printk(KERN_CONT "."); 2149 2150 /* 2151 * Wait for USB flash devices with slow firmware. 2152 * Yes, this sense key/ASC combination shouldn't 2153 * occur here. It's characteristic of these devices. 2154 */ 2155 } else if (sense_valid && 2156 sshdr.sense_key == UNIT_ATTENTION && 2157 sshdr.asc == 0x28) { 2158 if (!spintime) { 2159 spintime_expire = jiffies + 5 * HZ; 2160 spintime = 1; 2161 } 2162 /* Wait 1 second for next try */ 2163 msleep(1000); 2164 } else { 2165 /* we don't understand the sense code, so it's 2166 * probably pointless to loop */ 2167 if(!spintime) { 2168 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2169 sd_print_sense_hdr(sdkp, &sshdr); 2170 } 2171 break; 2172 } 2173 2174 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2175 2176 if (spintime) { 2177 if (scsi_status_is_good(the_result)) 2178 printk(KERN_CONT "ready\n"); 2179 else 2180 printk(KERN_CONT "not responding...\n"); 2181 } 2182 } 2183 2184 /* 2185 * Determine whether disk supports Data Integrity Field. 2186 */ 2187 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2188 { 2189 struct scsi_device *sdp = sdkp->device; 2190 u8 type; 2191 int ret = 0; 2192 2193 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2194 return ret; 2195 2196 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2197 2198 if (type > T10_PI_TYPE3_PROTECTION) 2199 ret = -ENODEV; 2200 else if (scsi_host_dif_capable(sdp->host, type)) 2201 ret = 1; 2202 2203 if (sdkp->first_scan || type != sdkp->protection_type) 2204 switch (ret) { 2205 case -ENODEV: 2206 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2207 " protection type %u. Disabling disk!\n", 2208 type); 2209 break; 2210 case 1: 2211 sd_printk(KERN_NOTICE, sdkp, 2212 "Enabling DIF Type %u protection\n", type); 2213 break; 2214 case 0: 2215 sd_printk(KERN_NOTICE, sdkp, 2216 "Disabling DIF Type %u protection\n", type); 2217 break; 2218 } 2219 2220 sdkp->protection_type = type; 2221 2222 return ret; 2223 } 2224 2225 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2226 struct scsi_sense_hdr *sshdr, int sense_valid, 2227 int the_result) 2228 { 2229 if (driver_byte(the_result) == DRIVER_SENSE) 2230 sd_print_sense_hdr(sdkp, sshdr); 2231 else 2232 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2233 2234 /* 2235 * Set dirty bit for removable devices if not ready - 2236 * sometimes drives will not report this properly. 2237 */ 2238 if (sdp->removable && 2239 sense_valid && sshdr->sense_key == NOT_READY) 2240 set_media_not_present(sdkp); 2241 2242 /* 2243 * We used to set media_present to 0 here to indicate no media 2244 * in the drive, but some drives fail read capacity even with 2245 * media present, so we can't do that. 2246 */ 2247 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2248 } 2249 2250 #define RC16_LEN 32 2251 #if RC16_LEN > SD_BUF_SIZE 2252 #error RC16_LEN must not be more than SD_BUF_SIZE 2253 #endif 2254 2255 #define READ_CAPACITY_RETRIES_ON_RESET 10 2256 2257 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2258 unsigned char *buffer) 2259 { 2260 unsigned char cmd[16]; 2261 struct scsi_sense_hdr sshdr; 2262 int sense_valid = 0; 2263 int the_result; 2264 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2265 unsigned int alignment; 2266 unsigned long long lba; 2267 unsigned sector_size; 2268 2269 if (sdp->no_read_capacity_16) 2270 return -EINVAL; 2271 2272 do { 2273 memset(cmd, 0, 16); 2274 cmd[0] = SERVICE_ACTION_IN_16; 2275 cmd[1] = SAI_READ_CAPACITY_16; 2276 cmd[13] = RC16_LEN; 2277 memset(buffer, 0, RC16_LEN); 2278 2279 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2280 buffer, RC16_LEN, &sshdr, 2281 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2282 2283 if (media_not_present(sdkp, &sshdr)) 2284 return -ENODEV; 2285 2286 if (the_result) { 2287 sense_valid = scsi_sense_valid(&sshdr); 2288 if (sense_valid && 2289 sshdr.sense_key == ILLEGAL_REQUEST && 2290 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2291 sshdr.ascq == 0x00) 2292 /* Invalid Command Operation Code or 2293 * Invalid Field in CDB, just retry 2294 * silently with RC10 */ 2295 return -EINVAL; 2296 if (sense_valid && 2297 sshdr.sense_key == UNIT_ATTENTION && 2298 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2299 /* Device reset might occur several times, 2300 * give it one more chance */ 2301 if (--reset_retries > 0) 2302 continue; 2303 } 2304 retries--; 2305 2306 } while (the_result && retries); 2307 2308 if (the_result) { 2309 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2310 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2311 return -EINVAL; 2312 } 2313 2314 sector_size = get_unaligned_be32(&buffer[8]); 2315 lba = get_unaligned_be64(&buffer[0]); 2316 2317 if (sd_read_protection_type(sdkp, buffer) < 0) { 2318 sdkp->capacity = 0; 2319 return -ENODEV; 2320 } 2321 2322 /* Logical blocks per physical block exponent */ 2323 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2324 2325 /* RC basis */ 2326 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2327 2328 /* Lowest aligned logical block */ 2329 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2330 blk_queue_alignment_offset(sdp->request_queue, alignment); 2331 if (alignment && sdkp->first_scan) 2332 sd_printk(KERN_NOTICE, sdkp, 2333 "physical block alignment offset: %u\n", alignment); 2334 2335 if (buffer[14] & 0x80) { /* LBPME */ 2336 sdkp->lbpme = 1; 2337 2338 if (buffer[14] & 0x40) /* LBPRZ */ 2339 sdkp->lbprz = 1; 2340 2341 sd_config_discard(sdkp, SD_LBP_WS16); 2342 } 2343 2344 sdkp->capacity = lba + 1; 2345 return sector_size; 2346 } 2347 2348 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2349 unsigned char *buffer) 2350 { 2351 unsigned char cmd[16]; 2352 struct scsi_sense_hdr sshdr; 2353 int sense_valid = 0; 2354 int the_result; 2355 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2356 sector_t lba; 2357 unsigned sector_size; 2358 2359 do { 2360 cmd[0] = READ_CAPACITY; 2361 memset(&cmd[1], 0, 9); 2362 memset(buffer, 0, 8); 2363 2364 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2365 buffer, 8, &sshdr, 2366 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2367 2368 if (media_not_present(sdkp, &sshdr)) 2369 return -ENODEV; 2370 2371 if (the_result) { 2372 sense_valid = scsi_sense_valid(&sshdr); 2373 if (sense_valid && 2374 sshdr.sense_key == UNIT_ATTENTION && 2375 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2376 /* Device reset might occur several times, 2377 * give it one more chance */ 2378 if (--reset_retries > 0) 2379 continue; 2380 } 2381 retries--; 2382 2383 } while (the_result && retries); 2384 2385 if (the_result) { 2386 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2387 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2388 return -EINVAL; 2389 } 2390 2391 sector_size = get_unaligned_be32(&buffer[4]); 2392 lba = get_unaligned_be32(&buffer[0]); 2393 2394 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2395 /* Some buggy (usb cardreader) devices return an lba of 2396 0xffffffff when the want to report a size of 0 (with 2397 which they really mean no media is present) */ 2398 sdkp->capacity = 0; 2399 sdkp->physical_block_size = sector_size; 2400 return sector_size; 2401 } 2402 2403 sdkp->capacity = lba + 1; 2404 sdkp->physical_block_size = sector_size; 2405 return sector_size; 2406 } 2407 2408 static int sd_try_rc16_first(struct scsi_device *sdp) 2409 { 2410 if (sdp->host->max_cmd_len < 16) 2411 return 0; 2412 if (sdp->try_rc_10_first) 2413 return 0; 2414 if (sdp->scsi_level > SCSI_SPC_2) 2415 return 1; 2416 if (scsi_device_protection(sdp)) 2417 return 1; 2418 return 0; 2419 } 2420 2421 /* 2422 * read disk capacity 2423 */ 2424 static void 2425 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2426 { 2427 int sector_size; 2428 struct scsi_device *sdp = sdkp->device; 2429 2430 if (sd_try_rc16_first(sdp)) { 2431 sector_size = read_capacity_16(sdkp, sdp, buffer); 2432 if (sector_size == -EOVERFLOW) 2433 goto got_data; 2434 if (sector_size == -ENODEV) 2435 return; 2436 if (sector_size < 0) 2437 sector_size = read_capacity_10(sdkp, sdp, buffer); 2438 if (sector_size < 0) 2439 return; 2440 } else { 2441 sector_size = read_capacity_10(sdkp, sdp, buffer); 2442 if (sector_size == -EOVERFLOW) 2443 goto got_data; 2444 if (sector_size < 0) 2445 return; 2446 if ((sizeof(sdkp->capacity) > 4) && 2447 (sdkp->capacity > 0xffffffffULL)) { 2448 int old_sector_size = sector_size; 2449 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2450 "Trying to use READ CAPACITY(16).\n"); 2451 sector_size = read_capacity_16(sdkp, sdp, buffer); 2452 if (sector_size < 0) { 2453 sd_printk(KERN_NOTICE, sdkp, 2454 "Using 0xffffffff as device size\n"); 2455 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2456 sector_size = old_sector_size; 2457 goto got_data; 2458 } 2459 /* Remember that READ CAPACITY(16) succeeded */ 2460 sdp->try_rc_10_first = 0; 2461 } 2462 } 2463 2464 /* Some devices are known to return the total number of blocks, 2465 * not the highest block number. Some devices have versions 2466 * which do this and others which do not. Some devices we might 2467 * suspect of doing this but we don't know for certain. 2468 * 2469 * If we know the reported capacity is wrong, decrement it. If 2470 * we can only guess, then assume the number of blocks is even 2471 * (usually true but not always) and err on the side of lowering 2472 * the capacity. 2473 */ 2474 if (sdp->fix_capacity || 2475 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2476 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2477 "from its reported value: %llu\n", 2478 (unsigned long long) sdkp->capacity); 2479 --sdkp->capacity; 2480 } 2481 2482 got_data: 2483 if (sector_size == 0) { 2484 sector_size = 512; 2485 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2486 "assuming 512.\n"); 2487 } 2488 2489 if (sector_size != 512 && 2490 sector_size != 1024 && 2491 sector_size != 2048 && 2492 sector_size != 4096) { 2493 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2494 sector_size); 2495 /* 2496 * The user might want to re-format the drive with 2497 * a supported sectorsize. Once this happens, it 2498 * would be relatively trivial to set the thing up. 2499 * For this reason, we leave the thing in the table. 2500 */ 2501 sdkp->capacity = 0; 2502 /* 2503 * set a bogus sector size so the normal read/write 2504 * logic in the block layer will eventually refuse any 2505 * request on this device without tripping over power 2506 * of two sector size assumptions 2507 */ 2508 sector_size = 512; 2509 } 2510 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2511 blk_queue_physical_block_size(sdp->request_queue, 2512 sdkp->physical_block_size); 2513 sdkp->device->sector_size = sector_size; 2514 2515 if (sdkp->capacity > 0xffffffff) 2516 sdp->use_16_for_rw = 1; 2517 2518 } 2519 2520 /* 2521 * Print disk capacity 2522 */ 2523 static void 2524 sd_print_capacity(struct scsi_disk *sdkp, 2525 sector_t old_capacity) 2526 { 2527 int sector_size = sdkp->device->sector_size; 2528 char cap_str_2[10], cap_str_10[10]; 2529 2530 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2531 return; 2532 2533 string_get_size(sdkp->capacity, sector_size, 2534 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2535 string_get_size(sdkp->capacity, sector_size, 2536 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2537 2538 sd_printk(KERN_NOTICE, sdkp, 2539 "%llu %d-byte logical blocks: (%s/%s)\n", 2540 (unsigned long long)sdkp->capacity, 2541 sector_size, cap_str_10, cap_str_2); 2542 2543 if (sdkp->physical_block_size != sector_size) 2544 sd_printk(KERN_NOTICE, sdkp, 2545 "%u-byte physical blocks\n", 2546 sdkp->physical_block_size); 2547 2548 sd_zbc_print_zones(sdkp); 2549 } 2550 2551 /* called with buffer of length 512 */ 2552 static inline int 2553 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2554 unsigned char *buffer, int len, struct scsi_mode_data *data, 2555 struct scsi_sense_hdr *sshdr) 2556 { 2557 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2558 SD_TIMEOUT, SD_MAX_RETRIES, data, 2559 sshdr); 2560 } 2561 2562 /* 2563 * read write protect setting, if possible - called only in sd_revalidate_disk() 2564 * called with buffer of length SD_BUF_SIZE 2565 */ 2566 static void 2567 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2568 { 2569 int res; 2570 struct scsi_device *sdp = sdkp->device; 2571 struct scsi_mode_data data; 2572 int old_wp = sdkp->write_prot; 2573 2574 set_disk_ro(sdkp->disk, 0); 2575 if (sdp->skip_ms_page_3f) { 2576 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2577 return; 2578 } 2579 2580 if (sdp->use_192_bytes_for_3f) { 2581 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2582 } else { 2583 /* 2584 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2585 * We have to start carefully: some devices hang if we ask 2586 * for more than is available. 2587 */ 2588 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2589 2590 /* 2591 * Second attempt: ask for page 0 When only page 0 is 2592 * implemented, a request for page 3F may return Sense Key 2593 * 5: Illegal Request, Sense Code 24: Invalid field in 2594 * CDB. 2595 */ 2596 if (!scsi_status_is_good(res)) 2597 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2598 2599 /* 2600 * Third attempt: ask 255 bytes, as we did earlier. 2601 */ 2602 if (!scsi_status_is_good(res)) 2603 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2604 &data, NULL); 2605 } 2606 2607 if (!scsi_status_is_good(res)) { 2608 sd_first_printk(KERN_WARNING, sdkp, 2609 "Test WP failed, assume Write Enabled\n"); 2610 } else { 2611 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2612 set_disk_ro(sdkp->disk, sdkp->write_prot); 2613 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2614 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2615 sdkp->write_prot ? "on" : "off"); 2616 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2617 } 2618 } 2619 } 2620 2621 /* 2622 * sd_read_cache_type - called only from sd_revalidate_disk() 2623 * called with buffer of length SD_BUF_SIZE 2624 */ 2625 static void 2626 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2627 { 2628 int len = 0, res; 2629 struct scsi_device *sdp = sdkp->device; 2630 2631 int dbd; 2632 int modepage; 2633 int first_len; 2634 struct scsi_mode_data data; 2635 struct scsi_sense_hdr sshdr; 2636 int old_wce = sdkp->WCE; 2637 int old_rcd = sdkp->RCD; 2638 int old_dpofua = sdkp->DPOFUA; 2639 2640 2641 if (sdkp->cache_override) 2642 return; 2643 2644 first_len = 4; 2645 if (sdp->skip_ms_page_8) { 2646 if (sdp->type == TYPE_RBC) 2647 goto defaults; 2648 else { 2649 if (sdp->skip_ms_page_3f) 2650 goto defaults; 2651 modepage = 0x3F; 2652 if (sdp->use_192_bytes_for_3f) 2653 first_len = 192; 2654 dbd = 0; 2655 } 2656 } else if (sdp->type == TYPE_RBC) { 2657 modepage = 6; 2658 dbd = 8; 2659 } else { 2660 modepage = 8; 2661 dbd = 0; 2662 } 2663 2664 /* cautiously ask */ 2665 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2666 &data, &sshdr); 2667 2668 if (!scsi_status_is_good(res)) 2669 goto bad_sense; 2670 2671 if (!data.header_length) { 2672 modepage = 6; 2673 first_len = 0; 2674 sd_first_printk(KERN_ERR, sdkp, 2675 "Missing header in MODE_SENSE response\n"); 2676 } 2677 2678 /* that went OK, now ask for the proper length */ 2679 len = data.length; 2680 2681 /* 2682 * We're only interested in the first three bytes, actually. 2683 * But the data cache page is defined for the first 20. 2684 */ 2685 if (len < 3) 2686 goto bad_sense; 2687 else if (len > SD_BUF_SIZE) { 2688 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2689 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2690 len = SD_BUF_SIZE; 2691 } 2692 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2693 len = 192; 2694 2695 /* Get the data */ 2696 if (len > first_len) 2697 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2698 &data, &sshdr); 2699 2700 if (scsi_status_is_good(res)) { 2701 int offset = data.header_length + data.block_descriptor_length; 2702 2703 while (offset < len) { 2704 u8 page_code = buffer[offset] & 0x3F; 2705 u8 spf = buffer[offset] & 0x40; 2706 2707 if (page_code == 8 || page_code == 6) { 2708 /* We're interested only in the first 3 bytes. 2709 */ 2710 if (len - offset <= 2) { 2711 sd_first_printk(KERN_ERR, sdkp, 2712 "Incomplete mode parameter " 2713 "data\n"); 2714 goto defaults; 2715 } else { 2716 modepage = page_code; 2717 goto Page_found; 2718 } 2719 } else { 2720 /* Go to the next page */ 2721 if (spf && len - offset > 3) 2722 offset += 4 + (buffer[offset+2] << 8) + 2723 buffer[offset+3]; 2724 else if (!spf && len - offset > 1) 2725 offset += 2 + buffer[offset+1]; 2726 else { 2727 sd_first_printk(KERN_ERR, sdkp, 2728 "Incomplete mode " 2729 "parameter data\n"); 2730 goto defaults; 2731 } 2732 } 2733 } 2734 2735 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2736 goto defaults; 2737 2738 Page_found: 2739 if (modepage == 8) { 2740 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2741 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2742 } else { 2743 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2744 sdkp->RCD = 0; 2745 } 2746 2747 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2748 if (sdp->broken_fua) { 2749 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2750 sdkp->DPOFUA = 0; 2751 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2752 !sdkp->device->use_16_for_rw) { 2753 sd_first_printk(KERN_NOTICE, sdkp, 2754 "Uses READ/WRITE(6), disabling FUA\n"); 2755 sdkp->DPOFUA = 0; 2756 } 2757 2758 /* No cache flush allowed for write protected devices */ 2759 if (sdkp->WCE && sdkp->write_prot) 2760 sdkp->WCE = 0; 2761 2762 if (sdkp->first_scan || old_wce != sdkp->WCE || 2763 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2764 sd_printk(KERN_NOTICE, sdkp, 2765 "Write cache: %s, read cache: %s, %s\n", 2766 sdkp->WCE ? "enabled" : "disabled", 2767 sdkp->RCD ? "disabled" : "enabled", 2768 sdkp->DPOFUA ? "supports DPO and FUA" 2769 : "doesn't support DPO or FUA"); 2770 2771 return; 2772 } 2773 2774 bad_sense: 2775 if (scsi_sense_valid(&sshdr) && 2776 sshdr.sense_key == ILLEGAL_REQUEST && 2777 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2778 /* Invalid field in CDB */ 2779 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2780 else 2781 sd_first_printk(KERN_ERR, sdkp, 2782 "Asking for cache data failed\n"); 2783 2784 defaults: 2785 if (sdp->wce_default_on) { 2786 sd_first_printk(KERN_NOTICE, sdkp, 2787 "Assuming drive cache: write back\n"); 2788 sdkp->WCE = 1; 2789 } else { 2790 sd_first_printk(KERN_ERR, sdkp, 2791 "Assuming drive cache: write through\n"); 2792 sdkp->WCE = 0; 2793 } 2794 sdkp->RCD = 0; 2795 sdkp->DPOFUA = 0; 2796 } 2797 2798 /* 2799 * The ATO bit indicates whether the DIF application tag is available 2800 * for use by the operating system. 2801 */ 2802 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2803 { 2804 int res, offset; 2805 struct scsi_device *sdp = sdkp->device; 2806 struct scsi_mode_data data; 2807 struct scsi_sense_hdr sshdr; 2808 2809 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2810 return; 2811 2812 if (sdkp->protection_type == 0) 2813 return; 2814 2815 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2816 SD_MAX_RETRIES, &data, &sshdr); 2817 2818 if (!scsi_status_is_good(res) || !data.header_length || 2819 data.length < 6) { 2820 sd_first_printk(KERN_WARNING, sdkp, 2821 "getting Control mode page failed, assume no ATO\n"); 2822 2823 if (scsi_sense_valid(&sshdr)) 2824 sd_print_sense_hdr(sdkp, &sshdr); 2825 2826 return; 2827 } 2828 2829 offset = data.header_length + data.block_descriptor_length; 2830 2831 if ((buffer[offset] & 0x3f) != 0x0a) { 2832 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2833 return; 2834 } 2835 2836 if ((buffer[offset + 5] & 0x80) == 0) 2837 return; 2838 2839 sdkp->ATO = 1; 2840 2841 return; 2842 } 2843 2844 /** 2845 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2846 * @sdkp: disk to query 2847 */ 2848 static void sd_read_block_limits(struct scsi_disk *sdkp) 2849 { 2850 unsigned int sector_sz = sdkp->device->sector_size; 2851 const int vpd_len = 64; 2852 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2853 2854 if (!buffer || 2855 /* Block Limits VPD */ 2856 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2857 goto out; 2858 2859 blk_queue_io_min(sdkp->disk->queue, 2860 get_unaligned_be16(&buffer[6]) * sector_sz); 2861 2862 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2863 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2864 2865 if (buffer[3] == 0x3c) { 2866 unsigned int lba_count, desc_count; 2867 2868 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2869 2870 if (!sdkp->lbpme) 2871 goto out; 2872 2873 lba_count = get_unaligned_be32(&buffer[20]); 2874 desc_count = get_unaligned_be32(&buffer[24]); 2875 2876 if (lba_count && desc_count) 2877 sdkp->max_unmap_blocks = lba_count; 2878 2879 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2880 2881 if (buffer[32] & 0x80) 2882 sdkp->unmap_alignment = 2883 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2884 2885 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2886 2887 if (sdkp->max_unmap_blocks) 2888 sd_config_discard(sdkp, SD_LBP_UNMAP); 2889 else 2890 sd_config_discard(sdkp, SD_LBP_WS16); 2891 2892 } else { /* LBP VPD page tells us what to use */ 2893 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2894 sd_config_discard(sdkp, SD_LBP_UNMAP); 2895 else if (sdkp->lbpws) 2896 sd_config_discard(sdkp, SD_LBP_WS16); 2897 else if (sdkp->lbpws10) 2898 sd_config_discard(sdkp, SD_LBP_WS10); 2899 else 2900 sd_config_discard(sdkp, SD_LBP_DISABLE); 2901 } 2902 } 2903 2904 out: 2905 kfree(buffer); 2906 } 2907 2908 /** 2909 * sd_read_block_characteristics - Query block dev. characteristics 2910 * @sdkp: disk to query 2911 */ 2912 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2913 { 2914 struct request_queue *q = sdkp->disk->queue; 2915 unsigned char *buffer; 2916 u16 rot; 2917 const int vpd_len = 64; 2918 2919 buffer = kmalloc(vpd_len, GFP_KERNEL); 2920 2921 if (!buffer || 2922 /* Block Device Characteristics VPD */ 2923 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2924 goto out; 2925 2926 rot = get_unaligned_be16(&buffer[4]); 2927 2928 if (rot == 1) { 2929 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 2930 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 2931 } 2932 2933 if (sdkp->device->type == TYPE_ZBC) { 2934 /* Host-managed */ 2935 q->limits.zoned = BLK_ZONED_HM; 2936 } else { 2937 sdkp->zoned = (buffer[8] >> 4) & 3; 2938 if (sdkp->zoned == 1) 2939 /* Host-aware */ 2940 q->limits.zoned = BLK_ZONED_HA; 2941 else 2942 /* 2943 * Treat drive-managed devices as 2944 * regular block devices. 2945 */ 2946 q->limits.zoned = BLK_ZONED_NONE; 2947 } 2948 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2949 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2950 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2951 2952 out: 2953 kfree(buffer); 2954 } 2955 2956 /** 2957 * sd_read_block_provisioning - Query provisioning VPD page 2958 * @sdkp: disk to query 2959 */ 2960 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2961 { 2962 unsigned char *buffer; 2963 const int vpd_len = 8; 2964 2965 if (sdkp->lbpme == 0) 2966 return; 2967 2968 buffer = kmalloc(vpd_len, GFP_KERNEL); 2969 2970 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2971 goto out; 2972 2973 sdkp->lbpvpd = 1; 2974 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2975 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2976 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2977 2978 out: 2979 kfree(buffer); 2980 } 2981 2982 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2983 { 2984 struct scsi_device *sdev = sdkp->device; 2985 2986 if (sdev->host->no_write_same) { 2987 sdev->no_write_same = 1; 2988 2989 return; 2990 } 2991 2992 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2993 /* too large values might cause issues with arcmsr */ 2994 int vpd_buf_len = 64; 2995 2996 sdev->no_report_opcodes = 1; 2997 2998 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2999 * CODES is unsupported and the device has an ATA 3000 * Information VPD page (SAT). 3001 */ 3002 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3003 sdev->no_write_same = 1; 3004 } 3005 3006 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3007 sdkp->ws16 = 1; 3008 3009 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3010 sdkp->ws10 = 1; 3011 } 3012 3013 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3014 { 3015 struct scsi_device *sdev = sdkp->device; 3016 3017 if (!sdev->security_supported) 3018 return; 3019 3020 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3021 SECURITY_PROTOCOL_IN) == 1 && 3022 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3023 SECURITY_PROTOCOL_OUT) == 1) 3024 sdkp->security = 1; 3025 } 3026 3027 /* 3028 * Determine the device's preferred I/O size for reads and writes 3029 * unless the reported value is unreasonably small, large, not a 3030 * multiple of the physical block size, or simply garbage. 3031 */ 3032 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3033 unsigned int dev_max) 3034 { 3035 struct scsi_device *sdp = sdkp->device; 3036 unsigned int opt_xfer_bytes = 3037 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3038 3039 if (sdkp->opt_xfer_blocks == 0) 3040 return false; 3041 3042 if (sdkp->opt_xfer_blocks > dev_max) { 3043 sd_first_printk(KERN_WARNING, sdkp, 3044 "Optimal transfer size %u logical blocks " \ 3045 "> dev_max (%u logical blocks)\n", 3046 sdkp->opt_xfer_blocks, dev_max); 3047 return false; 3048 } 3049 3050 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3051 sd_first_printk(KERN_WARNING, sdkp, 3052 "Optimal transfer size %u logical blocks " \ 3053 "> sd driver limit (%u logical blocks)\n", 3054 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3055 return false; 3056 } 3057 3058 if (opt_xfer_bytes < PAGE_SIZE) { 3059 sd_first_printk(KERN_WARNING, sdkp, 3060 "Optimal transfer size %u bytes < " \ 3061 "PAGE_SIZE (%u bytes)\n", 3062 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3063 return false; 3064 } 3065 3066 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3067 sd_first_printk(KERN_WARNING, sdkp, 3068 "Optimal transfer size %u bytes not a " \ 3069 "multiple of physical block size (%u bytes)\n", 3070 opt_xfer_bytes, sdkp->physical_block_size); 3071 return false; 3072 } 3073 3074 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3075 opt_xfer_bytes); 3076 return true; 3077 } 3078 3079 /** 3080 * sd_revalidate_disk - called the first time a new disk is seen, 3081 * performs disk spin up, read_capacity, etc. 3082 * @disk: struct gendisk we care about 3083 **/ 3084 static int sd_revalidate_disk(struct gendisk *disk) 3085 { 3086 struct scsi_disk *sdkp = scsi_disk(disk); 3087 struct scsi_device *sdp = sdkp->device; 3088 struct request_queue *q = sdkp->disk->queue; 3089 sector_t old_capacity = sdkp->capacity; 3090 unsigned char *buffer; 3091 unsigned int dev_max, rw_max; 3092 3093 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3094 "sd_revalidate_disk\n")); 3095 3096 /* 3097 * If the device is offline, don't try and read capacity or any 3098 * of the other niceties. 3099 */ 3100 if (!scsi_device_online(sdp)) 3101 goto out; 3102 3103 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3104 if (!buffer) { 3105 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3106 "allocation failure.\n"); 3107 goto out; 3108 } 3109 3110 sd_spinup_disk(sdkp); 3111 3112 /* 3113 * Without media there is no reason to ask; moreover, some devices 3114 * react badly if we do. 3115 */ 3116 if (sdkp->media_present) { 3117 sd_read_capacity(sdkp, buffer); 3118 3119 /* 3120 * set the default to rotational. All non-rotational devices 3121 * support the block characteristics VPD page, which will 3122 * cause this to be updated correctly and any device which 3123 * doesn't support it should be treated as rotational. 3124 */ 3125 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3126 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3127 3128 if (scsi_device_supports_vpd(sdp)) { 3129 sd_read_block_provisioning(sdkp); 3130 sd_read_block_limits(sdkp); 3131 sd_read_block_characteristics(sdkp); 3132 sd_zbc_read_zones(sdkp, buffer); 3133 } 3134 3135 sd_print_capacity(sdkp, old_capacity); 3136 3137 sd_read_write_protect_flag(sdkp, buffer); 3138 sd_read_cache_type(sdkp, buffer); 3139 sd_read_app_tag_own(sdkp, buffer); 3140 sd_read_write_same(sdkp, buffer); 3141 sd_read_security(sdkp, buffer); 3142 } 3143 3144 /* 3145 * We now have all cache related info, determine how we deal 3146 * with flush requests. 3147 */ 3148 sd_set_flush_flag(sdkp); 3149 3150 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3151 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3152 3153 /* Some devices report a maximum block count for READ/WRITE requests. */ 3154 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3155 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3156 3157 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3158 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3159 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3160 } else 3161 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3162 (sector_t)BLK_DEF_MAX_SECTORS); 3163 3164 /* Do not exceed controller limit */ 3165 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3166 3167 /* 3168 * Only update max_sectors if previously unset or if the current value 3169 * exceeds the capabilities of the hardware. 3170 */ 3171 if (sdkp->first_scan || 3172 q->limits.max_sectors > q->limits.max_dev_sectors || 3173 q->limits.max_sectors > q->limits.max_hw_sectors) 3174 q->limits.max_sectors = rw_max; 3175 3176 sdkp->first_scan = 0; 3177 3178 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3179 sd_config_write_same(sdkp); 3180 kfree(buffer); 3181 3182 out: 3183 return 0; 3184 } 3185 3186 /** 3187 * sd_unlock_native_capacity - unlock native capacity 3188 * @disk: struct gendisk to set capacity for 3189 * 3190 * Block layer calls this function if it detects that partitions 3191 * on @disk reach beyond the end of the device. If the SCSI host 3192 * implements ->unlock_native_capacity() method, it's invoked to 3193 * give it a chance to adjust the device capacity. 3194 * 3195 * CONTEXT: 3196 * Defined by block layer. Might sleep. 3197 */ 3198 static void sd_unlock_native_capacity(struct gendisk *disk) 3199 { 3200 struct scsi_device *sdev = scsi_disk(disk)->device; 3201 3202 if (sdev->host->hostt->unlock_native_capacity) 3203 sdev->host->hostt->unlock_native_capacity(sdev); 3204 } 3205 3206 /** 3207 * sd_format_disk_name - format disk name 3208 * @prefix: name prefix - ie. "sd" for SCSI disks 3209 * @index: index of the disk to format name for 3210 * @buf: output buffer 3211 * @buflen: length of the output buffer 3212 * 3213 * SCSI disk names starts at sda. The 26th device is sdz and the 3214 * 27th is sdaa. The last one for two lettered suffix is sdzz 3215 * which is followed by sdaaa. 3216 * 3217 * This is basically 26 base counting with one extra 'nil' entry 3218 * at the beginning from the second digit on and can be 3219 * determined using similar method as 26 base conversion with the 3220 * index shifted -1 after each digit is computed. 3221 * 3222 * CONTEXT: 3223 * Don't care. 3224 * 3225 * RETURNS: 3226 * 0 on success, -errno on failure. 3227 */ 3228 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3229 { 3230 const int base = 'z' - 'a' + 1; 3231 char *begin = buf + strlen(prefix); 3232 char *end = buf + buflen; 3233 char *p; 3234 int unit; 3235 3236 p = end - 1; 3237 *p = '\0'; 3238 unit = base; 3239 do { 3240 if (p == begin) 3241 return -EINVAL; 3242 *--p = 'a' + (index % unit); 3243 index = (index / unit) - 1; 3244 } while (index >= 0); 3245 3246 memmove(begin, p, end - p); 3247 memcpy(buf, prefix, strlen(prefix)); 3248 3249 return 0; 3250 } 3251 3252 /** 3253 * sd_probe - called during driver initialization and whenever a 3254 * new scsi device is attached to the system. It is called once 3255 * for each scsi device (not just disks) present. 3256 * @dev: pointer to device object 3257 * 3258 * Returns 0 if successful (or not interested in this scsi device 3259 * (e.g. scanner)); 1 when there is an error. 3260 * 3261 * Note: this function is invoked from the scsi mid-level. 3262 * This function sets up the mapping between a given 3263 * <host,channel,id,lun> (found in sdp) and new device name 3264 * (e.g. /dev/sda). More precisely it is the block device major 3265 * and minor number that is chosen here. 3266 * 3267 * Assume sd_probe is not re-entrant (for time being) 3268 * Also think about sd_probe() and sd_remove() running coincidentally. 3269 **/ 3270 static int sd_probe(struct device *dev) 3271 { 3272 struct scsi_device *sdp = to_scsi_device(dev); 3273 struct scsi_disk *sdkp; 3274 struct gendisk *gd; 3275 int index; 3276 int error; 3277 3278 scsi_autopm_get_device(sdp); 3279 error = -ENODEV; 3280 if (sdp->type != TYPE_DISK && 3281 sdp->type != TYPE_ZBC && 3282 sdp->type != TYPE_MOD && 3283 sdp->type != TYPE_RBC) 3284 goto out; 3285 3286 #ifndef CONFIG_BLK_DEV_ZONED 3287 if (sdp->type == TYPE_ZBC) 3288 goto out; 3289 #endif 3290 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3291 "sd_probe\n")); 3292 3293 error = -ENOMEM; 3294 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3295 if (!sdkp) 3296 goto out; 3297 3298 gd = alloc_disk(SD_MINORS); 3299 if (!gd) 3300 goto out_free; 3301 3302 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3303 if (index < 0) { 3304 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3305 goto out_put; 3306 } 3307 3308 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3309 if (error) { 3310 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3311 goto out_free_index; 3312 } 3313 3314 sdkp->device = sdp; 3315 sdkp->driver = &sd_template; 3316 sdkp->disk = gd; 3317 sdkp->index = index; 3318 atomic_set(&sdkp->openers, 0); 3319 atomic_set(&sdkp->device->ioerr_cnt, 0); 3320 3321 if (!sdp->request_queue->rq_timeout) { 3322 if (sdp->type != TYPE_MOD) 3323 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3324 else 3325 blk_queue_rq_timeout(sdp->request_queue, 3326 SD_MOD_TIMEOUT); 3327 } 3328 3329 device_initialize(&sdkp->dev); 3330 sdkp->dev.parent = dev; 3331 sdkp->dev.class = &sd_disk_class; 3332 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3333 3334 error = device_add(&sdkp->dev); 3335 if (error) 3336 goto out_free_index; 3337 3338 get_device(dev); 3339 dev_set_drvdata(dev, sdkp); 3340 3341 gd->major = sd_major((index & 0xf0) >> 4); 3342 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3343 3344 gd->fops = &sd_fops; 3345 gd->private_data = &sdkp->driver; 3346 gd->queue = sdkp->device->request_queue; 3347 3348 /* defaults, until the device tells us otherwise */ 3349 sdp->sector_size = 512; 3350 sdkp->capacity = 0; 3351 sdkp->media_present = 1; 3352 sdkp->write_prot = 0; 3353 sdkp->cache_override = 0; 3354 sdkp->WCE = 0; 3355 sdkp->RCD = 0; 3356 sdkp->ATO = 0; 3357 sdkp->first_scan = 1; 3358 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3359 3360 sd_revalidate_disk(gd); 3361 3362 gd->flags = GENHD_FL_EXT_DEVT; 3363 if (sdp->removable) { 3364 gd->flags |= GENHD_FL_REMOVABLE; 3365 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3366 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3367 } 3368 3369 blk_pm_runtime_init(sdp->request_queue, dev); 3370 device_add_disk(dev, gd, NULL); 3371 if (sdkp->capacity) 3372 sd_dif_config_host(sdkp); 3373 3374 sd_revalidate_disk(gd); 3375 3376 if (sdkp->security) { 3377 sdkp->opal_dev = init_opal_dev(sdp, &sd_sec_submit); 3378 if (sdkp->opal_dev) 3379 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3380 } 3381 3382 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3383 sdp->removable ? "removable " : ""); 3384 scsi_autopm_put_device(sdp); 3385 3386 return 0; 3387 3388 out_free_index: 3389 ida_free(&sd_index_ida, index); 3390 out_put: 3391 put_disk(gd); 3392 out_free: 3393 kfree(sdkp); 3394 out: 3395 scsi_autopm_put_device(sdp); 3396 return error; 3397 } 3398 3399 /** 3400 * sd_remove - called whenever a scsi disk (previously recognized by 3401 * sd_probe) is detached from the system. It is called (potentially 3402 * multiple times) during sd module unload. 3403 * @dev: pointer to device object 3404 * 3405 * Note: this function is invoked from the scsi mid-level. 3406 * This function potentially frees up a device name (e.g. /dev/sdc) 3407 * that could be re-used by a subsequent sd_probe(). 3408 * This function is not called when the built-in sd driver is "exit-ed". 3409 **/ 3410 static int sd_remove(struct device *dev) 3411 { 3412 struct scsi_disk *sdkp; 3413 dev_t devt; 3414 3415 sdkp = dev_get_drvdata(dev); 3416 devt = disk_devt(sdkp->disk); 3417 scsi_autopm_get_device(sdkp->device); 3418 3419 async_synchronize_full_domain(&scsi_sd_pm_domain); 3420 device_del(&sdkp->dev); 3421 del_gendisk(sdkp->disk); 3422 sd_shutdown(dev); 3423 3424 free_opal_dev(sdkp->opal_dev); 3425 3426 blk_register_region(devt, SD_MINORS, NULL, 3427 sd_default_probe, NULL, NULL); 3428 3429 mutex_lock(&sd_ref_mutex); 3430 dev_set_drvdata(dev, NULL); 3431 put_device(&sdkp->dev); 3432 mutex_unlock(&sd_ref_mutex); 3433 3434 return 0; 3435 } 3436 3437 /** 3438 * scsi_disk_release - Called to free the scsi_disk structure 3439 * @dev: pointer to embedded class device 3440 * 3441 * sd_ref_mutex must be held entering this routine. Because it is 3442 * called on last put, you should always use the scsi_disk_get() 3443 * scsi_disk_put() helpers which manipulate the semaphore directly 3444 * and never do a direct put_device. 3445 **/ 3446 static void scsi_disk_release(struct device *dev) 3447 { 3448 struct scsi_disk *sdkp = to_scsi_disk(dev); 3449 struct gendisk *disk = sdkp->disk; 3450 struct request_queue *q = disk->queue; 3451 3452 ida_free(&sd_index_ida, sdkp->index); 3453 3454 /* 3455 * Wait until all requests that are in progress have completed. 3456 * This is necessary to avoid that e.g. scsi_end_request() crashes 3457 * due to clearing the disk->private_data pointer. Wait from inside 3458 * scsi_disk_release() instead of from sd_release() to avoid that 3459 * freezing and unfreezing the request queue affects user space I/O 3460 * in case multiple processes open a /dev/sd... node concurrently. 3461 */ 3462 blk_mq_freeze_queue(q); 3463 blk_mq_unfreeze_queue(q); 3464 3465 disk->private_data = NULL; 3466 put_disk(disk); 3467 put_device(&sdkp->device->sdev_gendev); 3468 3469 kfree(sdkp); 3470 } 3471 3472 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3473 { 3474 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3475 struct scsi_sense_hdr sshdr; 3476 struct scsi_device *sdp = sdkp->device; 3477 int res; 3478 3479 if (start) 3480 cmd[4] |= 1; /* START */ 3481 3482 if (sdp->start_stop_pwr_cond) 3483 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3484 3485 if (!scsi_device_online(sdp)) 3486 return -ENODEV; 3487 3488 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3489 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3490 if (res) { 3491 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3492 if (driver_byte(res) == DRIVER_SENSE) 3493 sd_print_sense_hdr(sdkp, &sshdr); 3494 if (scsi_sense_valid(&sshdr) && 3495 /* 0x3a is medium not present */ 3496 sshdr.asc == 0x3a) 3497 res = 0; 3498 } 3499 3500 /* SCSI error codes must not go to the generic layer */ 3501 if (res) 3502 return -EIO; 3503 3504 return 0; 3505 } 3506 3507 /* 3508 * Send a SYNCHRONIZE CACHE instruction down to the device through 3509 * the normal SCSI command structure. Wait for the command to 3510 * complete. 3511 */ 3512 static void sd_shutdown(struct device *dev) 3513 { 3514 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3515 3516 if (!sdkp) 3517 return; /* this can happen */ 3518 3519 if (pm_runtime_suspended(dev)) 3520 return; 3521 3522 if (sdkp->WCE && sdkp->media_present) { 3523 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3524 sd_sync_cache(sdkp, NULL); 3525 } 3526 3527 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3528 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3529 sd_start_stop_device(sdkp, 0); 3530 } 3531 } 3532 3533 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3534 { 3535 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3536 struct scsi_sense_hdr sshdr; 3537 int ret = 0; 3538 3539 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3540 return 0; 3541 3542 if (sdkp->WCE && sdkp->media_present) { 3543 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3544 ret = sd_sync_cache(sdkp, &sshdr); 3545 3546 if (ret) { 3547 /* ignore OFFLINE device */ 3548 if (ret == -ENODEV) 3549 return 0; 3550 3551 if (!scsi_sense_valid(&sshdr) || 3552 sshdr.sense_key != ILLEGAL_REQUEST) 3553 return ret; 3554 3555 /* 3556 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3557 * doesn't support sync. There's not much to do and 3558 * suspend shouldn't fail. 3559 */ 3560 ret = 0; 3561 } 3562 } 3563 3564 if (sdkp->device->manage_start_stop) { 3565 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3566 /* an error is not worth aborting a system sleep */ 3567 ret = sd_start_stop_device(sdkp, 0); 3568 if (ignore_stop_errors) 3569 ret = 0; 3570 } 3571 3572 return ret; 3573 } 3574 3575 static int sd_suspend_system(struct device *dev) 3576 { 3577 return sd_suspend_common(dev, true); 3578 } 3579 3580 static int sd_suspend_runtime(struct device *dev) 3581 { 3582 return sd_suspend_common(dev, false); 3583 } 3584 3585 static int sd_resume(struct device *dev) 3586 { 3587 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3588 int ret; 3589 3590 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3591 return 0; 3592 3593 if (!sdkp->device->manage_start_stop) 3594 return 0; 3595 3596 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3597 ret = sd_start_stop_device(sdkp, 1); 3598 if (!ret) 3599 opal_unlock_from_suspend(sdkp->opal_dev); 3600 return ret; 3601 } 3602 3603 /** 3604 * init_sd - entry point for this driver (both when built in or when 3605 * a module). 3606 * 3607 * Note: this function registers this driver with the scsi mid-level. 3608 **/ 3609 static int __init init_sd(void) 3610 { 3611 int majors = 0, i, err; 3612 3613 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3614 3615 for (i = 0; i < SD_MAJORS; i++) { 3616 if (register_blkdev(sd_major(i), "sd") != 0) 3617 continue; 3618 majors++; 3619 blk_register_region(sd_major(i), SD_MINORS, NULL, 3620 sd_default_probe, NULL, NULL); 3621 } 3622 3623 if (!majors) 3624 return -ENODEV; 3625 3626 err = class_register(&sd_disk_class); 3627 if (err) 3628 goto err_out; 3629 3630 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3631 0, 0, NULL); 3632 if (!sd_cdb_cache) { 3633 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3634 err = -ENOMEM; 3635 goto err_out_class; 3636 } 3637 3638 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3639 if (!sd_cdb_pool) { 3640 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3641 err = -ENOMEM; 3642 goto err_out_cache; 3643 } 3644 3645 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3646 if (!sd_page_pool) { 3647 printk(KERN_ERR "sd: can't init discard page pool\n"); 3648 err = -ENOMEM; 3649 goto err_out_ppool; 3650 } 3651 3652 err = scsi_register_driver(&sd_template.gendrv); 3653 if (err) 3654 goto err_out_driver; 3655 3656 return 0; 3657 3658 err_out_driver: 3659 mempool_destroy(sd_page_pool); 3660 3661 err_out_ppool: 3662 mempool_destroy(sd_cdb_pool); 3663 3664 err_out_cache: 3665 kmem_cache_destroy(sd_cdb_cache); 3666 3667 err_out_class: 3668 class_unregister(&sd_disk_class); 3669 err_out: 3670 for (i = 0; i < SD_MAJORS; i++) 3671 unregister_blkdev(sd_major(i), "sd"); 3672 return err; 3673 } 3674 3675 /** 3676 * exit_sd - exit point for this driver (when it is a module). 3677 * 3678 * Note: this function unregisters this driver from the scsi mid-level. 3679 **/ 3680 static void __exit exit_sd(void) 3681 { 3682 int i; 3683 3684 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3685 3686 scsi_unregister_driver(&sd_template.gendrv); 3687 mempool_destroy(sd_cdb_pool); 3688 mempool_destroy(sd_page_pool); 3689 kmem_cache_destroy(sd_cdb_cache); 3690 3691 class_unregister(&sd_disk_class); 3692 3693 for (i = 0; i < SD_MAJORS; i++) { 3694 blk_unregister_region(sd_major(i), SD_MINORS); 3695 unregister_blkdev(sd_major(i), "sd"); 3696 } 3697 } 3698 3699 module_init(init_sd); 3700 module_exit(exit_sd); 3701 3702 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3703 struct scsi_sense_hdr *sshdr) 3704 { 3705 scsi_print_sense_hdr(sdkp->device, 3706 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3707 } 3708 3709 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3710 int result) 3711 { 3712 const char *hb_string = scsi_hostbyte_string(result); 3713 const char *db_string = scsi_driverbyte_string(result); 3714 3715 if (hb_string || db_string) 3716 sd_printk(KERN_INFO, sdkp, 3717 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3718 hb_string ? hb_string : "invalid", 3719 db_string ? db_string : "invalid"); 3720 else 3721 sd_printk(KERN_INFO, sdkp, 3722 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3723 msg, host_byte(result), driver_byte(result)); 3724 } 3725 3726