xref: /openbmc/linux/drivers/scsi/sd.c (revision e481ff3f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/genhd.h>
42 #include <linux/hdreg.h>
43 #include <linux/errno.h>
44 #include <linux/idr.h>
45 #include <linux/interrupt.h>
46 #include <linux/init.h>
47 #include <linux/blkdev.h>
48 #include <linux/blkpg.h>
49 #include <linux/blk-pm.h>
50 #include <linux/delay.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/async.h>
54 #include <linux/slab.h>
55 #include <linux/sed-opal.h>
56 #include <linux/pm_runtime.h>
57 #include <linux/pr.h>
58 #include <linux/t10-pi.h>
59 #include <linux/uaccess.h>
60 #include <asm/unaligned.h>
61 
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_dbg.h>
65 #include <scsi/scsi_device.h>
66 #include <scsi/scsi_driver.h>
67 #include <scsi/scsi_eh.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_ioctl.h>
70 #include <scsi/scsicam.h>
71 
72 #include "sd.h"
73 #include "scsi_priv.h"
74 #include "scsi_logging.h"
75 
76 MODULE_AUTHOR("Eric Youngdale");
77 MODULE_DESCRIPTION("SCSI disk (sd) driver");
78 MODULE_LICENSE("GPL");
79 
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
100 
101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
102 #define SD_MINORS	16
103 #else
104 #define SD_MINORS	0
105 #endif
106 
107 static void sd_config_discard(struct scsi_disk *, unsigned int);
108 static void sd_config_write_same(struct scsi_disk *);
109 static int  sd_revalidate_disk(struct gendisk *);
110 static void sd_unlock_native_capacity(struct gendisk *disk);
111 static int  sd_probe(struct device *);
112 static int  sd_remove(struct device *);
113 static void sd_shutdown(struct device *);
114 static int sd_suspend_system(struct device *);
115 static int sd_suspend_runtime(struct device *);
116 static int sd_resume(struct device *);
117 static void sd_rescan(struct device *);
118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
119 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
120 static int sd_done(struct scsi_cmnd *);
121 static void sd_eh_reset(struct scsi_cmnd *);
122 static int sd_eh_action(struct scsi_cmnd *, int);
123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
124 static void scsi_disk_release(struct device *cdev);
125 
126 static DEFINE_IDA(sd_index_ida);
127 
128 /* This semaphore is used to mediate the 0->1 reference get in the
129  * face of object destruction (i.e. we can't allow a get on an
130  * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132 
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135 static mempool_t *sd_page_pool;
136 
137 static const char *sd_cache_types[] = {
138 	"write through", "none", "write back",
139 	"write back, no read (daft)"
140 };
141 
142 static void sd_set_flush_flag(struct scsi_disk *sdkp)
143 {
144 	bool wc = false, fua = false;
145 
146 	if (sdkp->WCE) {
147 		wc = true;
148 		if (sdkp->DPOFUA)
149 			fua = true;
150 	}
151 
152 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
153 }
154 
155 static ssize_t
156 cache_type_store(struct device *dev, struct device_attribute *attr,
157 		 const char *buf, size_t count)
158 {
159 	int ct, rcd, wce, sp;
160 	struct scsi_disk *sdkp = to_scsi_disk(dev);
161 	struct scsi_device *sdp = sdkp->device;
162 	char buffer[64];
163 	char *buffer_data;
164 	struct scsi_mode_data data;
165 	struct scsi_sense_hdr sshdr;
166 	static const char temp[] = "temporary ";
167 	int len;
168 
169 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
170 		/* no cache control on RBC devices; theoretically they
171 		 * can do it, but there's probably so many exceptions
172 		 * it's not worth the risk */
173 		return -EINVAL;
174 
175 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
176 		buf += sizeof(temp) - 1;
177 		sdkp->cache_override = 1;
178 	} else {
179 		sdkp->cache_override = 0;
180 	}
181 
182 	ct = sysfs_match_string(sd_cache_types, buf);
183 	if (ct < 0)
184 		return -EINVAL;
185 
186 	rcd = ct & 0x01 ? 1 : 0;
187 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
188 
189 	if (sdkp->cache_override) {
190 		sdkp->WCE = wce;
191 		sdkp->RCD = rcd;
192 		sd_set_flush_flag(sdkp);
193 		return count;
194 	}
195 
196 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
197 			    sdkp->max_retries, &data, NULL))
198 		return -EINVAL;
199 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
200 		  data.block_descriptor_length);
201 	buffer_data = buffer + data.header_length +
202 		data.block_descriptor_length;
203 	buffer_data[2] &= ~0x05;
204 	buffer_data[2] |= wce << 2 | rcd;
205 	sp = buffer_data[0] & 0x80 ? 1 : 0;
206 	buffer_data[0] &= ~0x80;
207 
208 	/*
209 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
210 	 * received mode parameter buffer before doing MODE SELECT.
211 	 */
212 	data.device_specific = 0;
213 
214 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
215 			     sdkp->max_retries, &data, &sshdr)) {
216 		if (scsi_sense_valid(&sshdr))
217 			sd_print_sense_hdr(sdkp, &sshdr);
218 		return -EINVAL;
219 	}
220 	sd_revalidate_disk(sdkp->disk);
221 	return count;
222 }
223 
224 static ssize_t
225 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
226 		       char *buf)
227 {
228 	struct scsi_disk *sdkp = to_scsi_disk(dev);
229 	struct scsi_device *sdp = sdkp->device;
230 
231 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
232 }
233 
234 static ssize_t
235 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
236 			const char *buf, size_t count)
237 {
238 	struct scsi_disk *sdkp = to_scsi_disk(dev);
239 	struct scsi_device *sdp = sdkp->device;
240 	bool v;
241 
242 	if (!capable(CAP_SYS_ADMIN))
243 		return -EACCES;
244 
245 	if (kstrtobool(buf, &v))
246 		return -EINVAL;
247 
248 	sdp->manage_start_stop = v;
249 
250 	return count;
251 }
252 static DEVICE_ATTR_RW(manage_start_stop);
253 
254 static ssize_t
255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
256 {
257 	struct scsi_disk *sdkp = to_scsi_disk(dev);
258 
259 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
260 }
261 
262 static ssize_t
263 allow_restart_store(struct device *dev, struct device_attribute *attr,
264 		    const char *buf, size_t count)
265 {
266 	bool v;
267 	struct scsi_disk *sdkp = to_scsi_disk(dev);
268 	struct scsi_device *sdp = sdkp->device;
269 
270 	if (!capable(CAP_SYS_ADMIN))
271 		return -EACCES;
272 
273 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
274 		return -EINVAL;
275 
276 	if (kstrtobool(buf, &v))
277 		return -EINVAL;
278 
279 	sdp->allow_restart = v;
280 
281 	return count;
282 }
283 static DEVICE_ATTR_RW(allow_restart);
284 
285 static ssize_t
286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
287 {
288 	struct scsi_disk *sdkp = to_scsi_disk(dev);
289 	int ct = sdkp->RCD + 2*sdkp->WCE;
290 
291 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
292 }
293 static DEVICE_ATTR_RW(cache_type);
294 
295 static ssize_t
296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
297 {
298 	struct scsi_disk *sdkp = to_scsi_disk(dev);
299 
300 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
301 }
302 static DEVICE_ATTR_RO(FUA);
303 
304 static ssize_t
305 protection_type_show(struct device *dev, struct device_attribute *attr,
306 		     char *buf)
307 {
308 	struct scsi_disk *sdkp = to_scsi_disk(dev);
309 
310 	return sprintf(buf, "%u\n", sdkp->protection_type);
311 }
312 
313 static ssize_t
314 protection_type_store(struct device *dev, struct device_attribute *attr,
315 		      const char *buf, size_t count)
316 {
317 	struct scsi_disk *sdkp = to_scsi_disk(dev);
318 	unsigned int val;
319 	int err;
320 
321 	if (!capable(CAP_SYS_ADMIN))
322 		return -EACCES;
323 
324 	err = kstrtouint(buf, 10, &val);
325 
326 	if (err)
327 		return err;
328 
329 	if (val <= T10_PI_TYPE3_PROTECTION)
330 		sdkp->protection_type = val;
331 
332 	return count;
333 }
334 static DEVICE_ATTR_RW(protection_type);
335 
336 static ssize_t
337 protection_mode_show(struct device *dev, struct device_attribute *attr,
338 		     char *buf)
339 {
340 	struct scsi_disk *sdkp = to_scsi_disk(dev);
341 	struct scsi_device *sdp = sdkp->device;
342 	unsigned int dif, dix;
343 
344 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
345 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
346 
347 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
348 		dif = 0;
349 		dix = 1;
350 	}
351 
352 	if (!dif && !dix)
353 		return sprintf(buf, "none\n");
354 
355 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
356 }
357 static DEVICE_ATTR_RO(protection_mode);
358 
359 static ssize_t
360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
361 {
362 	struct scsi_disk *sdkp = to_scsi_disk(dev);
363 
364 	return sprintf(buf, "%u\n", sdkp->ATO);
365 }
366 static DEVICE_ATTR_RO(app_tag_own);
367 
368 static ssize_t
369 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
370 		       char *buf)
371 {
372 	struct scsi_disk *sdkp = to_scsi_disk(dev);
373 
374 	return sprintf(buf, "%u\n", sdkp->lbpme);
375 }
376 static DEVICE_ATTR_RO(thin_provisioning);
377 
378 /* sysfs_match_string() requires dense arrays */
379 static const char *lbp_mode[] = {
380 	[SD_LBP_FULL]		= "full",
381 	[SD_LBP_UNMAP]		= "unmap",
382 	[SD_LBP_WS16]		= "writesame_16",
383 	[SD_LBP_WS10]		= "writesame_10",
384 	[SD_LBP_ZERO]		= "writesame_zero",
385 	[SD_LBP_DISABLE]	= "disabled",
386 };
387 
388 static ssize_t
389 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
390 		       char *buf)
391 {
392 	struct scsi_disk *sdkp = to_scsi_disk(dev);
393 
394 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
395 }
396 
397 static ssize_t
398 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
399 			const char *buf, size_t count)
400 {
401 	struct scsi_disk *sdkp = to_scsi_disk(dev);
402 	struct scsi_device *sdp = sdkp->device;
403 	int mode;
404 
405 	if (!capable(CAP_SYS_ADMIN))
406 		return -EACCES;
407 
408 	if (sd_is_zoned(sdkp)) {
409 		sd_config_discard(sdkp, SD_LBP_DISABLE);
410 		return count;
411 	}
412 
413 	if (sdp->type != TYPE_DISK)
414 		return -EINVAL;
415 
416 	mode = sysfs_match_string(lbp_mode, buf);
417 	if (mode < 0)
418 		return -EINVAL;
419 
420 	sd_config_discard(sdkp, mode);
421 
422 	return count;
423 }
424 static DEVICE_ATTR_RW(provisioning_mode);
425 
426 /* sysfs_match_string() requires dense arrays */
427 static const char *zeroing_mode[] = {
428 	[SD_ZERO_WRITE]		= "write",
429 	[SD_ZERO_WS]		= "writesame",
430 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
431 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
432 };
433 
434 static ssize_t
435 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
436 		  char *buf)
437 {
438 	struct scsi_disk *sdkp = to_scsi_disk(dev);
439 
440 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
441 }
442 
443 static ssize_t
444 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
445 		   const char *buf, size_t count)
446 {
447 	struct scsi_disk *sdkp = to_scsi_disk(dev);
448 	int mode;
449 
450 	if (!capable(CAP_SYS_ADMIN))
451 		return -EACCES;
452 
453 	mode = sysfs_match_string(zeroing_mode, buf);
454 	if (mode < 0)
455 		return -EINVAL;
456 
457 	sdkp->zeroing_mode = mode;
458 
459 	return count;
460 }
461 static DEVICE_ATTR_RW(zeroing_mode);
462 
463 static ssize_t
464 max_medium_access_timeouts_show(struct device *dev,
465 				struct device_attribute *attr, char *buf)
466 {
467 	struct scsi_disk *sdkp = to_scsi_disk(dev);
468 
469 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
470 }
471 
472 static ssize_t
473 max_medium_access_timeouts_store(struct device *dev,
474 				 struct device_attribute *attr, const char *buf,
475 				 size_t count)
476 {
477 	struct scsi_disk *sdkp = to_scsi_disk(dev);
478 	int err;
479 
480 	if (!capable(CAP_SYS_ADMIN))
481 		return -EACCES;
482 
483 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
484 
485 	return err ? err : count;
486 }
487 static DEVICE_ATTR_RW(max_medium_access_timeouts);
488 
489 static ssize_t
490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
491 			   char *buf)
492 {
493 	struct scsi_disk *sdkp = to_scsi_disk(dev);
494 
495 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
496 }
497 
498 static ssize_t
499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
500 			    const char *buf, size_t count)
501 {
502 	struct scsi_disk *sdkp = to_scsi_disk(dev);
503 	struct scsi_device *sdp = sdkp->device;
504 	unsigned long max;
505 	int err;
506 
507 	if (!capable(CAP_SYS_ADMIN))
508 		return -EACCES;
509 
510 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
511 		return -EINVAL;
512 
513 	err = kstrtoul(buf, 10, &max);
514 
515 	if (err)
516 		return err;
517 
518 	if (max == 0)
519 		sdp->no_write_same = 1;
520 	else if (max <= SD_MAX_WS16_BLOCKS) {
521 		sdp->no_write_same = 0;
522 		sdkp->max_ws_blocks = max;
523 	}
524 
525 	sd_config_write_same(sdkp);
526 
527 	return count;
528 }
529 static DEVICE_ATTR_RW(max_write_same_blocks);
530 
531 static ssize_t
532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
533 {
534 	struct scsi_disk *sdkp = to_scsi_disk(dev);
535 
536 	if (sdkp->device->type == TYPE_ZBC)
537 		return sprintf(buf, "host-managed\n");
538 	if (sdkp->zoned == 1)
539 		return sprintf(buf, "host-aware\n");
540 	if (sdkp->zoned == 2)
541 		return sprintf(buf, "drive-managed\n");
542 	return sprintf(buf, "none\n");
543 }
544 static DEVICE_ATTR_RO(zoned_cap);
545 
546 static ssize_t
547 max_retries_store(struct device *dev, struct device_attribute *attr,
548 		  const char *buf, size_t count)
549 {
550 	struct scsi_disk *sdkp = to_scsi_disk(dev);
551 	struct scsi_device *sdev = sdkp->device;
552 	int retries, err;
553 
554 	err = kstrtoint(buf, 10, &retries);
555 	if (err)
556 		return err;
557 
558 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
559 		sdkp->max_retries = retries;
560 		return count;
561 	}
562 
563 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
564 		    SD_MAX_RETRIES);
565 	return -EINVAL;
566 }
567 
568 static ssize_t
569 max_retries_show(struct device *dev, struct device_attribute *attr,
570 		 char *buf)
571 {
572 	struct scsi_disk *sdkp = to_scsi_disk(dev);
573 
574 	return sprintf(buf, "%d\n", sdkp->max_retries);
575 }
576 
577 static DEVICE_ATTR_RW(max_retries);
578 
579 static struct attribute *sd_disk_attrs[] = {
580 	&dev_attr_cache_type.attr,
581 	&dev_attr_FUA.attr,
582 	&dev_attr_allow_restart.attr,
583 	&dev_attr_manage_start_stop.attr,
584 	&dev_attr_protection_type.attr,
585 	&dev_attr_protection_mode.attr,
586 	&dev_attr_app_tag_own.attr,
587 	&dev_attr_thin_provisioning.attr,
588 	&dev_attr_provisioning_mode.attr,
589 	&dev_attr_zeroing_mode.attr,
590 	&dev_attr_max_write_same_blocks.attr,
591 	&dev_attr_max_medium_access_timeouts.attr,
592 	&dev_attr_zoned_cap.attr,
593 	&dev_attr_max_retries.attr,
594 	NULL,
595 };
596 ATTRIBUTE_GROUPS(sd_disk);
597 
598 static struct class sd_disk_class = {
599 	.name		= "scsi_disk",
600 	.owner		= THIS_MODULE,
601 	.dev_release	= scsi_disk_release,
602 	.dev_groups	= sd_disk_groups,
603 };
604 
605 static const struct dev_pm_ops sd_pm_ops = {
606 	.suspend		= sd_suspend_system,
607 	.resume			= sd_resume,
608 	.poweroff		= sd_suspend_system,
609 	.restore		= sd_resume,
610 	.runtime_suspend	= sd_suspend_runtime,
611 	.runtime_resume		= sd_resume,
612 };
613 
614 static struct scsi_driver sd_template = {
615 	.gendrv = {
616 		.name		= "sd",
617 		.owner		= THIS_MODULE,
618 		.probe		= sd_probe,
619 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
620 		.remove		= sd_remove,
621 		.shutdown	= sd_shutdown,
622 		.pm		= &sd_pm_ops,
623 	},
624 	.rescan			= sd_rescan,
625 	.init_command		= sd_init_command,
626 	.uninit_command		= sd_uninit_command,
627 	.done			= sd_done,
628 	.eh_action		= sd_eh_action,
629 	.eh_reset		= sd_eh_reset,
630 };
631 
632 /*
633  * Don't request a new module, as that could deadlock in multipath
634  * environment.
635  */
636 static void sd_default_probe(dev_t devt)
637 {
638 }
639 
640 /*
641  * Device no to disk mapping:
642  *
643  *       major         disc2     disc  p1
644  *   |............|.............|....|....| <- dev_t
645  *    31        20 19          8 7  4 3  0
646  *
647  * Inside a major, we have 16k disks, however mapped non-
648  * contiguously. The first 16 disks are for major0, the next
649  * ones with major1, ... Disk 256 is for major0 again, disk 272
650  * for major1, ...
651  * As we stay compatible with our numbering scheme, we can reuse
652  * the well-know SCSI majors 8, 65--71, 136--143.
653  */
654 static int sd_major(int major_idx)
655 {
656 	switch (major_idx) {
657 	case 0:
658 		return SCSI_DISK0_MAJOR;
659 	case 1 ... 7:
660 		return SCSI_DISK1_MAJOR + major_idx - 1;
661 	case 8 ... 15:
662 		return SCSI_DISK8_MAJOR + major_idx - 8;
663 	default:
664 		BUG();
665 		return 0;	/* shut up gcc */
666 	}
667 }
668 
669 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
670 {
671 	struct scsi_disk *sdkp = NULL;
672 
673 	mutex_lock(&sd_ref_mutex);
674 
675 	if (disk->private_data) {
676 		sdkp = scsi_disk(disk);
677 		if (scsi_device_get(sdkp->device) == 0)
678 			get_device(&sdkp->dev);
679 		else
680 			sdkp = NULL;
681 	}
682 	mutex_unlock(&sd_ref_mutex);
683 	return sdkp;
684 }
685 
686 static void scsi_disk_put(struct scsi_disk *sdkp)
687 {
688 	struct scsi_device *sdev = sdkp->device;
689 
690 	mutex_lock(&sd_ref_mutex);
691 	put_device(&sdkp->dev);
692 	scsi_device_put(sdev);
693 	mutex_unlock(&sd_ref_mutex);
694 }
695 
696 #ifdef CONFIG_BLK_SED_OPAL
697 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
698 		size_t len, bool send)
699 {
700 	struct scsi_disk *sdkp = data;
701 	struct scsi_device *sdev = sdkp->device;
702 	u8 cdb[12] = { 0, };
703 	int ret;
704 
705 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
706 	cdb[1] = secp;
707 	put_unaligned_be16(spsp, &cdb[2]);
708 	put_unaligned_be32(len, &cdb[6]);
709 
710 	ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
711 		buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
712 		RQF_PM, NULL);
713 	return ret <= 0 ? ret : -EIO;
714 }
715 #endif /* CONFIG_BLK_SED_OPAL */
716 
717 /*
718  * Look up the DIX operation based on whether the command is read or
719  * write and whether dix and dif are enabled.
720  */
721 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
722 {
723 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
724 	static const unsigned int ops[] = {	/* wrt dix dif */
725 		SCSI_PROT_NORMAL,		/*  0	0   0  */
726 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
727 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
728 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
729 		SCSI_PROT_NORMAL,		/*  1	0   0  */
730 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
731 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
732 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
733 	};
734 
735 	return ops[write << 2 | dix << 1 | dif];
736 }
737 
738 /*
739  * Returns a mask of the protection flags that are valid for a given DIX
740  * operation.
741  */
742 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
743 {
744 	static const unsigned int flag_mask[] = {
745 		[SCSI_PROT_NORMAL]		= 0,
746 
747 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
748 						  SCSI_PROT_GUARD_CHECK |
749 						  SCSI_PROT_REF_CHECK |
750 						  SCSI_PROT_REF_INCREMENT,
751 
752 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
753 						  SCSI_PROT_IP_CHECKSUM,
754 
755 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
756 						  SCSI_PROT_GUARD_CHECK |
757 						  SCSI_PROT_REF_CHECK |
758 						  SCSI_PROT_REF_INCREMENT |
759 						  SCSI_PROT_IP_CHECKSUM,
760 
761 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
762 						  SCSI_PROT_REF_INCREMENT,
763 
764 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
765 						  SCSI_PROT_REF_CHECK |
766 						  SCSI_PROT_REF_INCREMENT |
767 						  SCSI_PROT_IP_CHECKSUM,
768 
769 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
770 						  SCSI_PROT_GUARD_CHECK |
771 						  SCSI_PROT_REF_CHECK |
772 						  SCSI_PROT_REF_INCREMENT |
773 						  SCSI_PROT_IP_CHECKSUM,
774 	};
775 
776 	return flag_mask[prot_op];
777 }
778 
779 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
780 					   unsigned int dix, unsigned int dif)
781 {
782 	struct bio *bio = scmd->request->bio;
783 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
784 	unsigned int protect = 0;
785 
786 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
787 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
788 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
789 
790 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
791 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
792 	}
793 
794 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
795 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
796 
797 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
798 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
799 	}
800 
801 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
802 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
803 
804 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
805 			protect = 3 << 5;	/* Disable target PI checking */
806 		else
807 			protect = 1 << 5;	/* Enable target PI checking */
808 	}
809 
810 	scsi_set_prot_op(scmd, prot_op);
811 	scsi_set_prot_type(scmd, dif);
812 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
813 
814 	return protect;
815 }
816 
817 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
818 {
819 	struct request_queue *q = sdkp->disk->queue;
820 	unsigned int logical_block_size = sdkp->device->sector_size;
821 	unsigned int max_blocks = 0;
822 
823 	q->limits.discard_alignment =
824 		sdkp->unmap_alignment * logical_block_size;
825 	q->limits.discard_granularity =
826 		max(sdkp->physical_block_size,
827 		    sdkp->unmap_granularity * logical_block_size);
828 	sdkp->provisioning_mode = mode;
829 
830 	switch (mode) {
831 
832 	case SD_LBP_FULL:
833 	case SD_LBP_DISABLE:
834 		blk_queue_max_discard_sectors(q, 0);
835 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
836 		return;
837 
838 	case SD_LBP_UNMAP:
839 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
840 					  (u32)SD_MAX_WS16_BLOCKS);
841 		break;
842 
843 	case SD_LBP_WS16:
844 		if (sdkp->device->unmap_limit_for_ws)
845 			max_blocks = sdkp->max_unmap_blocks;
846 		else
847 			max_blocks = sdkp->max_ws_blocks;
848 
849 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
850 		break;
851 
852 	case SD_LBP_WS10:
853 		if (sdkp->device->unmap_limit_for_ws)
854 			max_blocks = sdkp->max_unmap_blocks;
855 		else
856 			max_blocks = sdkp->max_ws_blocks;
857 
858 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
859 		break;
860 
861 	case SD_LBP_ZERO:
862 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
863 					  (u32)SD_MAX_WS10_BLOCKS);
864 		break;
865 	}
866 
867 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
868 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
869 }
870 
871 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
872 {
873 	struct scsi_device *sdp = cmd->device;
874 	struct request *rq = cmd->request;
875 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
876 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
877 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
878 	unsigned int data_len = 24;
879 	char *buf;
880 
881 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
882 	if (!rq->special_vec.bv_page)
883 		return BLK_STS_RESOURCE;
884 	clear_highpage(rq->special_vec.bv_page);
885 	rq->special_vec.bv_offset = 0;
886 	rq->special_vec.bv_len = data_len;
887 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
888 
889 	cmd->cmd_len = 10;
890 	cmd->cmnd[0] = UNMAP;
891 	cmd->cmnd[8] = 24;
892 
893 	buf = page_address(rq->special_vec.bv_page);
894 	put_unaligned_be16(6 + 16, &buf[0]);
895 	put_unaligned_be16(16, &buf[2]);
896 	put_unaligned_be64(lba, &buf[8]);
897 	put_unaligned_be32(nr_blocks, &buf[16]);
898 
899 	cmd->allowed = sdkp->max_retries;
900 	cmd->transfersize = data_len;
901 	rq->timeout = SD_TIMEOUT;
902 
903 	return scsi_alloc_sgtables(cmd);
904 }
905 
906 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
907 		bool unmap)
908 {
909 	struct scsi_device *sdp = cmd->device;
910 	struct request *rq = cmd->request;
911 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
912 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
913 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
914 	u32 data_len = sdp->sector_size;
915 
916 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
917 	if (!rq->special_vec.bv_page)
918 		return BLK_STS_RESOURCE;
919 	clear_highpage(rq->special_vec.bv_page);
920 	rq->special_vec.bv_offset = 0;
921 	rq->special_vec.bv_len = data_len;
922 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
923 
924 	cmd->cmd_len = 16;
925 	cmd->cmnd[0] = WRITE_SAME_16;
926 	if (unmap)
927 		cmd->cmnd[1] = 0x8; /* UNMAP */
928 	put_unaligned_be64(lba, &cmd->cmnd[2]);
929 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
930 
931 	cmd->allowed = sdkp->max_retries;
932 	cmd->transfersize = data_len;
933 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
934 
935 	return scsi_alloc_sgtables(cmd);
936 }
937 
938 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
939 		bool unmap)
940 {
941 	struct scsi_device *sdp = cmd->device;
942 	struct request *rq = cmd->request;
943 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
944 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
945 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
946 	u32 data_len = sdp->sector_size;
947 
948 	rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
949 	if (!rq->special_vec.bv_page)
950 		return BLK_STS_RESOURCE;
951 	clear_highpage(rq->special_vec.bv_page);
952 	rq->special_vec.bv_offset = 0;
953 	rq->special_vec.bv_len = data_len;
954 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
955 
956 	cmd->cmd_len = 10;
957 	cmd->cmnd[0] = WRITE_SAME;
958 	if (unmap)
959 		cmd->cmnd[1] = 0x8; /* UNMAP */
960 	put_unaligned_be32(lba, &cmd->cmnd[2]);
961 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
962 
963 	cmd->allowed = sdkp->max_retries;
964 	cmd->transfersize = data_len;
965 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
966 
967 	return scsi_alloc_sgtables(cmd);
968 }
969 
970 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
971 {
972 	struct request *rq = cmd->request;
973 	struct scsi_device *sdp = cmd->device;
974 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
975 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
976 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
977 
978 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
979 		switch (sdkp->zeroing_mode) {
980 		case SD_ZERO_WS16_UNMAP:
981 			return sd_setup_write_same16_cmnd(cmd, true);
982 		case SD_ZERO_WS10_UNMAP:
983 			return sd_setup_write_same10_cmnd(cmd, true);
984 		}
985 	}
986 
987 	if (sdp->no_write_same) {
988 		rq->rq_flags |= RQF_QUIET;
989 		return BLK_STS_TARGET;
990 	}
991 
992 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
993 		return sd_setup_write_same16_cmnd(cmd, false);
994 
995 	return sd_setup_write_same10_cmnd(cmd, false);
996 }
997 
998 static void sd_config_write_same(struct scsi_disk *sdkp)
999 {
1000 	struct request_queue *q = sdkp->disk->queue;
1001 	unsigned int logical_block_size = sdkp->device->sector_size;
1002 
1003 	if (sdkp->device->no_write_same) {
1004 		sdkp->max_ws_blocks = 0;
1005 		goto out;
1006 	}
1007 
1008 	/* Some devices can not handle block counts above 0xffff despite
1009 	 * supporting WRITE SAME(16). Consequently we default to 64k
1010 	 * blocks per I/O unless the device explicitly advertises a
1011 	 * bigger limit.
1012 	 */
1013 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
1014 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1015 						   (u32)SD_MAX_WS16_BLOCKS);
1016 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
1017 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
1018 						   (u32)SD_MAX_WS10_BLOCKS);
1019 	else {
1020 		sdkp->device->no_write_same = 1;
1021 		sdkp->max_ws_blocks = 0;
1022 	}
1023 
1024 	if (sdkp->lbprz && sdkp->lbpws)
1025 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
1026 	else if (sdkp->lbprz && sdkp->lbpws10)
1027 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
1028 	else if (sdkp->max_ws_blocks)
1029 		sdkp->zeroing_mode = SD_ZERO_WS;
1030 	else
1031 		sdkp->zeroing_mode = SD_ZERO_WRITE;
1032 
1033 	if (sdkp->max_ws_blocks &&
1034 	    sdkp->physical_block_size > logical_block_size) {
1035 		/*
1036 		 * Reporting a maximum number of blocks that is not aligned
1037 		 * on the device physical size would cause a large write same
1038 		 * request to be split into physically unaligned chunks by
1039 		 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same()
1040 		 * even if the caller of these functions took care to align the
1041 		 * large request. So make sure the maximum reported is aligned
1042 		 * to the device physical block size. This is only an optional
1043 		 * optimization for regular disks, but this is mandatory to
1044 		 * avoid failure of large write same requests directed at
1045 		 * sequential write required zones of host-managed ZBC disks.
1046 		 */
1047 		sdkp->max_ws_blocks =
1048 			round_down(sdkp->max_ws_blocks,
1049 				   bytes_to_logical(sdkp->device,
1050 						    sdkp->physical_block_size));
1051 	}
1052 
1053 out:
1054 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
1055 					 (logical_block_size >> 9));
1056 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1057 					 (logical_block_size >> 9));
1058 }
1059 
1060 /**
1061  * sd_setup_write_same_cmnd - write the same data to multiple blocks
1062  * @cmd: command to prepare
1063  *
1064  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
1065  * the preference indicated by the target device.
1066  **/
1067 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
1068 {
1069 	struct request *rq = cmd->request;
1070 	struct scsi_device *sdp = cmd->device;
1071 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1072 	struct bio *bio = rq->bio;
1073 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1074 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1075 	blk_status_t ret;
1076 
1077 	if (sdkp->device->no_write_same)
1078 		return BLK_STS_TARGET;
1079 
1080 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
1081 
1082 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
1083 
1084 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) {
1085 		cmd->cmd_len = 16;
1086 		cmd->cmnd[0] = WRITE_SAME_16;
1087 		put_unaligned_be64(lba, &cmd->cmnd[2]);
1088 		put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1089 	} else {
1090 		cmd->cmd_len = 10;
1091 		cmd->cmnd[0] = WRITE_SAME;
1092 		put_unaligned_be32(lba, &cmd->cmnd[2]);
1093 		put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1094 	}
1095 
1096 	cmd->transfersize = sdp->sector_size;
1097 	cmd->allowed = sdkp->max_retries;
1098 
1099 	/*
1100 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
1101 	 * different from the amount of data actually written to the target.
1102 	 *
1103 	 * We set up __data_len to the amount of data transferred via the
1104 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
1105 	 * to transfer a single sector of data first, but then reset it to
1106 	 * the amount of data to be written right after so that the I/O path
1107 	 * knows how much to actually write.
1108 	 */
1109 	rq->__data_len = sdp->sector_size;
1110 	ret = scsi_alloc_sgtables(cmd);
1111 	rq->__data_len = blk_rq_bytes(rq);
1112 
1113 	return ret;
1114 }
1115 
1116 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1117 {
1118 	struct request *rq = cmd->request;
1119 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1120 
1121 	/* flush requests don't perform I/O, zero the S/G table */
1122 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1123 
1124 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1125 	cmd->cmd_len = 10;
1126 	cmd->transfersize = 0;
1127 	cmd->allowed = sdkp->max_retries;
1128 
1129 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1130 	return BLK_STS_OK;
1131 }
1132 
1133 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1134 				       sector_t lba, unsigned int nr_blocks,
1135 				       unsigned char flags)
1136 {
1137 	cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1138 	if (unlikely(cmd->cmnd == NULL))
1139 		return BLK_STS_RESOURCE;
1140 
1141 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1142 	memset(cmd->cmnd, 0, cmd->cmd_len);
1143 
1144 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1145 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1146 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1147 	cmd->cmnd[10] = flags;
1148 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1149 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1150 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1151 
1152 	return BLK_STS_OK;
1153 }
1154 
1155 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1156 				       sector_t lba, unsigned int nr_blocks,
1157 				       unsigned char flags)
1158 {
1159 	cmd->cmd_len  = 16;
1160 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1161 	cmd->cmnd[1]  = flags;
1162 	cmd->cmnd[14] = 0;
1163 	cmd->cmnd[15] = 0;
1164 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1165 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1166 
1167 	return BLK_STS_OK;
1168 }
1169 
1170 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1171 				       sector_t lba, unsigned int nr_blocks,
1172 				       unsigned char flags)
1173 {
1174 	cmd->cmd_len = 10;
1175 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1176 	cmd->cmnd[1] = flags;
1177 	cmd->cmnd[6] = 0;
1178 	cmd->cmnd[9] = 0;
1179 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1180 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1181 
1182 	return BLK_STS_OK;
1183 }
1184 
1185 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1186 				      sector_t lba, unsigned int nr_blocks,
1187 				      unsigned char flags)
1188 {
1189 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1190 	if (WARN_ON_ONCE(nr_blocks == 0))
1191 		return BLK_STS_IOERR;
1192 
1193 	if (unlikely(flags & 0x8)) {
1194 		/*
1195 		 * This happens only if this drive failed 10byte rw
1196 		 * command with ILLEGAL_REQUEST during operation and
1197 		 * thus turned off use_10_for_rw.
1198 		 */
1199 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1200 		return BLK_STS_IOERR;
1201 	}
1202 
1203 	cmd->cmd_len = 6;
1204 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1205 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1206 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1207 	cmd->cmnd[3] = lba & 0xff;
1208 	cmd->cmnd[4] = nr_blocks;
1209 	cmd->cmnd[5] = 0;
1210 
1211 	return BLK_STS_OK;
1212 }
1213 
1214 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1215 {
1216 	struct request *rq = cmd->request;
1217 	struct scsi_device *sdp = cmd->device;
1218 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
1219 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1220 	sector_t threshold;
1221 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1222 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1223 	bool write = rq_data_dir(rq) == WRITE;
1224 	unsigned char protect, fua;
1225 	blk_status_t ret;
1226 	unsigned int dif;
1227 	bool dix;
1228 
1229 	ret = scsi_alloc_sgtables(cmd);
1230 	if (ret != BLK_STS_OK)
1231 		return ret;
1232 
1233 	ret = BLK_STS_IOERR;
1234 	if (!scsi_device_online(sdp) || sdp->changed) {
1235 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1236 		goto fail;
1237 	}
1238 
1239 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) {
1240 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1241 		goto fail;
1242 	}
1243 
1244 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1245 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1246 		goto fail;
1247 	}
1248 
1249 	/*
1250 	 * Some SD card readers can't handle accesses which touch the
1251 	 * last one or two logical blocks. Split accesses as needed.
1252 	 */
1253 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1254 
1255 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1256 		if (lba < threshold) {
1257 			/* Access up to the threshold but not beyond */
1258 			nr_blocks = threshold - lba;
1259 		} else {
1260 			/* Access only a single logical block */
1261 			nr_blocks = 1;
1262 		}
1263 	}
1264 
1265 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1266 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1267 		if (ret)
1268 			goto fail;
1269 	}
1270 
1271 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1272 	dix = scsi_prot_sg_count(cmd);
1273 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1274 
1275 	if (dif || dix)
1276 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1277 	else
1278 		protect = 0;
1279 
1280 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1281 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1282 					 protect | fua);
1283 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1284 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1285 					 protect | fua);
1286 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1287 		   sdp->use_10_for_rw || protect) {
1288 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1289 					 protect | fua);
1290 	} else {
1291 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1292 					protect | fua);
1293 	}
1294 
1295 	if (unlikely(ret != BLK_STS_OK))
1296 		goto fail;
1297 
1298 	/*
1299 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1300 	 * host adapter, it's safe to assume that we can at least transfer
1301 	 * this many bytes between each connect / disconnect.
1302 	 */
1303 	cmd->transfersize = sdp->sector_size;
1304 	cmd->underflow = nr_blocks << 9;
1305 	cmd->allowed = sdkp->max_retries;
1306 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1307 
1308 	SCSI_LOG_HLQUEUE(1,
1309 			 scmd_printk(KERN_INFO, cmd,
1310 				     "%s: block=%llu, count=%d\n", __func__,
1311 				     (unsigned long long)blk_rq_pos(rq),
1312 				     blk_rq_sectors(rq)));
1313 	SCSI_LOG_HLQUEUE(2,
1314 			 scmd_printk(KERN_INFO, cmd,
1315 				     "%s %d/%u 512 byte blocks.\n",
1316 				     write ? "writing" : "reading", nr_blocks,
1317 				     blk_rq_sectors(rq)));
1318 
1319 	/*
1320 	 * This indicates that the command is ready from our end to be queued.
1321 	 */
1322 	return BLK_STS_OK;
1323 fail:
1324 	scsi_free_sgtables(cmd);
1325 	return ret;
1326 }
1327 
1328 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1329 {
1330 	struct request *rq = cmd->request;
1331 
1332 	switch (req_op(rq)) {
1333 	case REQ_OP_DISCARD:
1334 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1335 		case SD_LBP_UNMAP:
1336 			return sd_setup_unmap_cmnd(cmd);
1337 		case SD_LBP_WS16:
1338 			return sd_setup_write_same16_cmnd(cmd, true);
1339 		case SD_LBP_WS10:
1340 			return sd_setup_write_same10_cmnd(cmd, true);
1341 		case SD_LBP_ZERO:
1342 			return sd_setup_write_same10_cmnd(cmd, false);
1343 		default:
1344 			return BLK_STS_TARGET;
1345 		}
1346 	case REQ_OP_WRITE_ZEROES:
1347 		return sd_setup_write_zeroes_cmnd(cmd);
1348 	case REQ_OP_WRITE_SAME:
1349 		return sd_setup_write_same_cmnd(cmd);
1350 	case REQ_OP_FLUSH:
1351 		return sd_setup_flush_cmnd(cmd);
1352 	case REQ_OP_READ:
1353 	case REQ_OP_WRITE:
1354 	case REQ_OP_ZONE_APPEND:
1355 		return sd_setup_read_write_cmnd(cmd);
1356 	case REQ_OP_ZONE_RESET:
1357 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1358 						   false);
1359 	case REQ_OP_ZONE_RESET_ALL:
1360 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1361 						   true);
1362 	case REQ_OP_ZONE_OPEN:
1363 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1364 	case REQ_OP_ZONE_CLOSE:
1365 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1366 	case REQ_OP_ZONE_FINISH:
1367 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1368 	default:
1369 		WARN_ON_ONCE(1);
1370 		return BLK_STS_NOTSUPP;
1371 	}
1372 }
1373 
1374 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1375 {
1376 	struct request *rq = SCpnt->request;
1377 	u8 *cmnd;
1378 
1379 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1380 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1381 
1382 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1383 		cmnd = SCpnt->cmnd;
1384 		SCpnt->cmnd = NULL;
1385 		SCpnt->cmd_len = 0;
1386 		mempool_free(cmnd, sd_cdb_pool);
1387 	}
1388 }
1389 
1390 static bool sd_need_revalidate(struct block_device *bdev,
1391 		struct scsi_disk *sdkp)
1392 {
1393 	if (sdkp->device->removable || sdkp->write_prot) {
1394 		if (bdev_check_media_change(bdev))
1395 			return true;
1396 	}
1397 
1398 	/*
1399 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1400 	 * nothing to do with partitions, BLKRRPART is used to force a full
1401 	 * revalidate after things like a format for historical reasons.
1402 	 */
1403 	return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1404 }
1405 
1406 /**
1407  *	sd_open - open a scsi disk device
1408  *	@bdev: Block device of the scsi disk to open
1409  *	@mode: FMODE_* mask
1410  *
1411  *	Returns 0 if successful. Returns a negated errno value in case
1412  *	of error.
1413  *
1414  *	Note: This can be called from a user context (e.g. fsck(1) )
1415  *	or from within the kernel (e.g. as a result of a mount(1) ).
1416  *	In the latter case @inode and @filp carry an abridged amount
1417  *	of information as noted above.
1418  *
1419  *	Locking: called with bdev->bd_disk->open_mutex held.
1420  **/
1421 static int sd_open(struct block_device *bdev, fmode_t mode)
1422 {
1423 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1424 	struct scsi_device *sdev;
1425 	int retval;
1426 
1427 	if (!sdkp)
1428 		return -ENXIO;
1429 
1430 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1431 
1432 	sdev = sdkp->device;
1433 
1434 	/*
1435 	 * If the device is in error recovery, wait until it is done.
1436 	 * If the device is offline, then disallow any access to it.
1437 	 */
1438 	retval = -ENXIO;
1439 	if (!scsi_block_when_processing_errors(sdev))
1440 		goto error_out;
1441 
1442 	if (sd_need_revalidate(bdev, sdkp))
1443 		sd_revalidate_disk(bdev->bd_disk);
1444 
1445 	/*
1446 	 * If the drive is empty, just let the open fail.
1447 	 */
1448 	retval = -ENOMEDIUM;
1449 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1450 		goto error_out;
1451 
1452 	/*
1453 	 * If the device has the write protect tab set, have the open fail
1454 	 * if the user expects to be able to write to the thing.
1455 	 */
1456 	retval = -EROFS;
1457 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1458 		goto error_out;
1459 
1460 	/*
1461 	 * It is possible that the disk changing stuff resulted in
1462 	 * the device being taken offline.  If this is the case,
1463 	 * report this to the user, and don't pretend that the
1464 	 * open actually succeeded.
1465 	 */
1466 	retval = -ENXIO;
1467 	if (!scsi_device_online(sdev))
1468 		goto error_out;
1469 
1470 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1471 		if (scsi_block_when_processing_errors(sdev))
1472 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1473 	}
1474 
1475 	return 0;
1476 
1477 error_out:
1478 	scsi_disk_put(sdkp);
1479 	return retval;
1480 }
1481 
1482 /**
1483  *	sd_release - invoked when the (last) close(2) is called on this
1484  *	scsi disk.
1485  *	@disk: disk to release
1486  *	@mode: FMODE_* mask
1487  *
1488  *	Returns 0.
1489  *
1490  *	Note: may block (uninterruptible) if error recovery is underway
1491  *	on this disk.
1492  *
1493  *	Locking: called with bdev->bd_disk->open_mutex held.
1494  **/
1495 static void sd_release(struct gendisk *disk, fmode_t mode)
1496 {
1497 	struct scsi_disk *sdkp = scsi_disk(disk);
1498 	struct scsi_device *sdev = sdkp->device;
1499 
1500 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1501 
1502 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1503 		if (scsi_block_when_processing_errors(sdev))
1504 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1505 	}
1506 
1507 	scsi_disk_put(sdkp);
1508 }
1509 
1510 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1511 {
1512 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1513 	struct scsi_device *sdp = sdkp->device;
1514 	struct Scsi_Host *host = sdp->host;
1515 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1516 	int diskinfo[4];
1517 
1518 	/* default to most commonly used values */
1519 	diskinfo[0] = 0x40;	/* 1 << 6 */
1520 	diskinfo[1] = 0x20;	/* 1 << 5 */
1521 	diskinfo[2] = capacity >> 11;
1522 
1523 	/* override with calculated, extended default, or driver values */
1524 	if (host->hostt->bios_param)
1525 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1526 	else
1527 		scsicam_bios_param(bdev, capacity, diskinfo);
1528 
1529 	geo->heads = diskinfo[0];
1530 	geo->sectors = diskinfo[1];
1531 	geo->cylinders = diskinfo[2];
1532 	return 0;
1533 }
1534 
1535 /**
1536  *	sd_ioctl_common - process an ioctl
1537  *	@bdev: target block device
1538  *	@mode: FMODE_* mask
1539  *	@cmd: ioctl command number
1540  *	@p: this is third argument given to ioctl(2) system call.
1541  *	Often contains a pointer.
1542  *
1543  *	Returns 0 if successful (some ioctls return positive numbers on
1544  *	success as well). Returns a negated errno value in case of error.
1545  *
1546  *	Note: most ioctls are forward onto the block subsystem or further
1547  *	down in the scsi subsystem.
1548  **/
1549 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode,
1550 			   unsigned int cmd, void __user *p)
1551 {
1552 	struct gendisk *disk = bdev->bd_disk;
1553 	struct scsi_disk *sdkp = scsi_disk(disk);
1554 	struct scsi_device *sdp = sdkp->device;
1555 	int error;
1556 
1557 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1558 				    "cmd=0x%x\n", disk->disk_name, cmd));
1559 
1560 	error = scsi_verify_blk_ioctl(bdev, cmd);
1561 	if (error < 0)
1562 		return error;
1563 
1564 	/*
1565 	 * If we are in the middle of error recovery, don't let anyone
1566 	 * else try and use this device.  Also, if error recovery fails, it
1567 	 * may try and take the device offline, in which case all further
1568 	 * access to the device is prohibited.
1569 	 */
1570 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1571 			(mode & FMODE_NDELAY) != 0);
1572 	if (error)
1573 		goto out;
1574 
1575 	if (is_sed_ioctl(cmd))
1576 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1577 
1578 	/*
1579 	 * Send SCSI addressing ioctls directly to mid level, send other
1580 	 * ioctls to block level and then onto mid level if they can't be
1581 	 * resolved.
1582 	 */
1583 	switch (cmd) {
1584 		case SCSI_IOCTL_GET_IDLUN:
1585 		case SCSI_IOCTL_GET_BUS_NUMBER:
1586 			error = scsi_ioctl(sdp, cmd, p);
1587 			break;
1588 		default:
1589 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1590 			break;
1591 	}
1592 out:
1593 	return error;
1594 }
1595 
1596 static void set_media_not_present(struct scsi_disk *sdkp)
1597 {
1598 	if (sdkp->media_present)
1599 		sdkp->device->changed = 1;
1600 
1601 	if (sdkp->device->removable) {
1602 		sdkp->media_present = 0;
1603 		sdkp->capacity = 0;
1604 	}
1605 }
1606 
1607 static int media_not_present(struct scsi_disk *sdkp,
1608 			     struct scsi_sense_hdr *sshdr)
1609 {
1610 	if (!scsi_sense_valid(sshdr))
1611 		return 0;
1612 
1613 	/* not invoked for commands that could return deferred errors */
1614 	switch (sshdr->sense_key) {
1615 	case UNIT_ATTENTION:
1616 	case NOT_READY:
1617 		/* medium not present */
1618 		if (sshdr->asc == 0x3A) {
1619 			set_media_not_present(sdkp);
1620 			return 1;
1621 		}
1622 	}
1623 	return 0;
1624 }
1625 
1626 /**
1627  *	sd_check_events - check media events
1628  *	@disk: kernel device descriptor
1629  *	@clearing: disk events currently being cleared
1630  *
1631  *	Returns mask of DISK_EVENT_*.
1632  *
1633  *	Note: this function is invoked from the block subsystem.
1634  **/
1635 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1636 {
1637 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1638 	struct scsi_device *sdp;
1639 	int retval;
1640 	bool disk_changed;
1641 
1642 	if (!sdkp)
1643 		return 0;
1644 
1645 	sdp = sdkp->device;
1646 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1647 
1648 	/*
1649 	 * If the device is offline, don't send any commands - just pretend as
1650 	 * if the command failed.  If the device ever comes back online, we
1651 	 * can deal with it then.  It is only because of unrecoverable errors
1652 	 * that we would ever take a device offline in the first place.
1653 	 */
1654 	if (!scsi_device_online(sdp)) {
1655 		set_media_not_present(sdkp);
1656 		goto out;
1657 	}
1658 
1659 	/*
1660 	 * Using TEST_UNIT_READY enables differentiation between drive with
1661 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1662 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1663 	 *
1664 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1665 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1666 	 * sd_revalidate() is called.
1667 	 */
1668 	if (scsi_block_when_processing_errors(sdp)) {
1669 		struct scsi_sense_hdr sshdr = { 0, };
1670 
1671 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1672 					      &sshdr);
1673 
1674 		/* failed to execute TUR, assume media not present */
1675 		if (retval < 0 || host_byte(retval)) {
1676 			set_media_not_present(sdkp);
1677 			goto out;
1678 		}
1679 
1680 		if (media_not_present(sdkp, &sshdr))
1681 			goto out;
1682 	}
1683 
1684 	/*
1685 	 * For removable scsi disk we have to recognise the presence
1686 	 * of a disk in the drive.
1687 	 */
1688 	if (!sdkp->media_present)
1689 		sdp->changed = 1;
1690 	sdkp->media_present = 1;
1691 out:
1692 	/*
1693 	 * sdp->changed is set under the following conditions:
1694 	 *
1695 	 *	Medium present state has changed in either direction.
1696 	 *	Device has indicated UNIT_ATTENTION.
1697 	 */
1698 	disk_changed = sdp->changed;
1699 	sdp->changed = 0;
1700 	scsi_disk_put(sdkp);
1701 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1702 }
1703 
1704 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1705 {
1706 	int retries, res;
1707 	struct scsi_device *sdp = sdkp->device;
1708 	const int timeout = sdp->request_queue->rq_timeout
1709 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1710 	struct scsi_sense_hdr my_sshdr;
1711 
1712 	if (!scsi_device_online(sdp))
1713 		return -ENODEV;
1714 
1715 	/* caller might not be interested in sense, but we need it */
1716 	if (!sshdr)
1717 		sshdr = &my_sshdr;
1718 
1719 	for (retries = 3; retries > 0; --retries) {
1720 		unsigned char cmd[10] = { 0 };
1721 
1722 		cmd[0] = SYNCHRONIZE_CACHE;
1723 		/*
1724 		 * Leave the rest of the command zero to indicate
1725 		 * flush everything.
1726 		 */
1727 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1728 				timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1729 		if (res == 0)
1730 			break;
1731 	}
1732 
1733 	if (res) {
1734 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1735 
1736 		if (res < 0)
1737 			return res;
1738 
1739 		if (scsi_status_is_check_condition(res) &&
1740 		    scsi_sense_valid(sshdr)) {
1741 			sd_print_sense_hdr(sdkp, sshdr);
1742 
1743 			/* we need to evaluate the error return  */
1744 			if (sshdr->asc == 0x3a ||	/* medium not present */
1745 			    sshdr->asc == 0x20 ||	/* invalid command */
1746 			    (sshdr->asc == 0x74 && sshdr->ascq == 0x71))	/* drive is password locked */
1747 				/* this is no error here */
1748 				return 0;
1749 		}
1750 
1751 		switch (host_byte(res)) {
1752 		/* ignore errors due to racing a disconnection */
1753 		case DID_BAD_TARGET:
1754 		case DID_NO_CONNECT:
1755 			return 0;
1756 		/* signal the upper layer it might try again */
1757 		case DID_BUS_BUSY:
1758 		case DID_IMM_RETRY:
1759 		case DID_REQUEUE:
1760 		case DID_SOFT_ERROR:
1761 			return -EBUSY;
1762 		default:
1763 			return -EIO;
1764 		}
1765 	}
1766 	return 0;
1767 }
1768 
1769 static void sd_rescan(struct device *dev)
1770 {
1771 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1772 
1773 	sd_revalidate_disk(sdkp->disk);
1774 }
1775 
1776 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1777 		    unsigned int cmd, unsigned long arg)
1778 {
1779 	void __user *p = (void __user *)arg;
1780 	int ret;
1781 
1782 	ret = sd_ioctl_common(bdev, mode, cmd, p);
1783 	if (ret != -ENOTTY)
1784 		return ret;
1785 
1786 	return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1787 }
1788 
1789 #ifdef CONFIG_COMPAT
1790 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1791 			   unsigned int cmd, unsigned long arg)
1792 {
1793 	void __user *p = compat_ptr(arg);
1794 	int ret;
1795 
1796 	ret = sd_ioctl_common(bdev, mode, cmd, p);
1797 	if (ret != -ENOTTY)
1798 		return ret;
1799 
1800 	return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p);
1801 }
1802 #endif
1803 
1804 static char sd_pr_type(enum pr_type type)
1805 {
1806 	switch (type) {
1807 	case PR_WRITE_EXCLUSIVE:
1808 		return 0x01;
1809 	case PR_EXCLUSIVE_ACCESS:
1810 		return 0x03;
1811 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1812 		return 0x05;
1813 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1814 		return 0x06;
1815 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1816 		return 0x07;
1817 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1818 		return 0x08;
1819 	default:
1820 		return 0;
1821 	}
1822 };
1823 
1824 static int sd_pr_command(struct block_device *bdev, u8 sa,
1825 		u64 key, u64 sa_key, u8 type, u8 flags)
1826 {
1827 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1828 	struct scsi_device *sdev = sdkp->device;
1829 	struct scsi_sense_hdr sshdr;
1830 	int result;
1831 	u8 cmd[16] = { 0, };
1832 	u8 data[24] = { 0, };
1833 
1834 	cmd[0] = PERSISTENT_RESERVE_OUT;
1835 	cmd[1] = sa;
1836 	cmd[2] = type;
1837 	put_unaligned_be32(sizeof(data), &cmd[5]);
1838 
1839 	put_unaligned_be64(key, &data[0]);
1840 	put_unaligned_be64(sa_key, &data[8]);
1841 	data[20] = flags;
1842 
1843 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1844 			&sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1845 
1846 	if (scsi_status_is_check_condition(result) &&
1847 	    scsi_sense_valid(&sshdr)) {
1848 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1849 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1850 	}
1851 
1852 	return result;
1853 }
1854 
1855 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1856 		u32 flags)
1857 {
1858 	if (flags & ~PR_FL_IGNORE_KEY)
1859 		return -EOPNOTSUPP;
1860 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1861 			old_key, new_key, 0,
1862 			(1 << 0) /* APTPL */);
1863 }
1864 
1865 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1866 		u32 flags)
1867 {
1868 	if (flags)
1869 		return -EOPNOTSUPP;
1870 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1871 }
1872 
1873 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1874 {
1875 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1876 }
1877 
1878 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1879 		enum pr_type type, bool abort)
1880 {
1881 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1882 			     sd_pr_type(type), 0);
1883 }
1884 
1885 static int sd_pr_clear(struct block_device *bdev, u64 key)
1886 {
1887 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1888 }
1889 
1890 static const struct pr_ops sd_pr_ops = {
1891 	.pr_register	= sd_pr_register,
1892 	.pr_reserve	= sd_pr_reserve,
1893 	.pr_release	= sd_pr_release,
1894 	.pr_preempt	= sd_pr_preempt,
1895 	.pr_clear	= sd_pr_clear,
1896 };
1897 
1898 static const struct block_device_operations sd_fops = {
1899 	.owner			= THIS_MODULE,
1900 	.open			= sd_open,
1901 	.release		= sd_release,
1902 	.ioctl			= sd_ioctl,
1903 	.getgeo			= sd_getgeo,
1904 #ifdef CONFIG_COMPAT
1905 	.compat_ioctl		= sd_compat_ioctl,
1906 #endif
1907 	.check_events		= sd_check_events,
1908 	.unlock_native_capacity	= sd_unlock_native_capacity,
1909 	.report_zones		= sd_zbc_report_zones,
1910 	.pr_ops			= &sd_pr_ops,
1911 };
1912 
1913 /**
1914  *	sd_eh_reset - reset error handling callback
1915  *	@scmd:		sd-issued command that has failed
1916  *
1917  *	This function is called by the SCSI midlayer before starting
1918  *	SCSI EH. When counting medium access failures we have to be
1919  *	careful to register it only only once per device and SCSI EH run;
1920  *	there might be several timed out commands which will cause the
1921  *	'max_medium_access_timeouts' counter to trigger after the first
1922  *	SCSI EH run already and set the device to offline.
1923  *	So this function resets the internal counter before starting SCSI EH.
1924  **/
1925 static void sd_eh_reset(struct scsi_cmnd *scmd)
1926 {
1927 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1928 
1929 	/* New SCSI EH run, reset gate variable */
1930 	sdkp->ignore_medium_access_errors = false;
1931 }
1932 
1933 /**
1934  *	sd_eh_action - error handling callback
1935  *	@scmd:		sd-issued command that has failed
1936  *	@eh_disp:	The recovery disposition suggested by the midlayer
1937  *
1938  *	This function is called by the SCSI midlayer upon completion of an
1939  *	error test command (currently TEST UNIT READY). The result of sending
1940  *	the eh command is passed in eh_disp.  We're looking for devices that
1941  *	fail medium access commands but are OK with non access commands like
1942  *	test unit ready (so wrongly see the device as having a successful
1943  *	recovery)
1944  **/
1945 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1946 {
1947 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1948 	struct scsi_device *sdev = scmd->device;
1949 
1950 	if (!scsi_device_online(sdev) ||
1951 	    !scsi_medium_access_command(scmd) ||
1952 	    host_byte(scmd->result) != DID_TIME_OUT ||
1953 	    eh_disp != SUCCESS)
1954 		return eh_disp;
1955 
1956 	/*
1957 	 * The device has timed out executing a medium access command.
1958 	 * However, the TEST UNIT READY command sent during error
1959 	 * handling completed successfully. Either the device is in the
1960 	 * process of recovering or has it suffered an internal failure
1961 	 * that prevents access to the storage medium.
1962 	 */
1963 	if (!sdkp->ignore_medium_access_errors) {
1964 		sdkp->medium_access_timed_out++;
1965 		sdkp->ignore_medium_access_errors = true;
1966 	}
1967 
1968 	/*
1969 	 * If the device keeps failing read/write commands but TEST UNIT
1970 	 * READY always completes successfully we assume that medium
1971 	 * access is no longer possible and take the device offline.
1972 	 */
1973 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1974 		scmd_printk(KERN_ERR, scmd,
1975 			    "Medium access timeout failure. Offlining disk!\n");
1976 		mutex_lock(&sdev->state_mutex);
1977 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1978 		mutex_unlock(&sdev->state_mutex);
1979 
1980 		return SUCCESS;
1981 	}
1982 
1983 	return eh_disp;
1984 }
1985 
1986 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1987 {
1988 	struct request *req = scmd->request;
1989 	struct scsi_device *sdev = scmd->device;
1990 	unsigned int transferred, good_bytes;
1991 	u64 start_lba, end_lba, bad_lba;
1992 
1993 	/*
1994 	 * Some commands have a payload smaller than the device logical
1995 	 * block size (e.g. INQUIRY on a 4K disk).
1996 	 */
1997 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1998 		return 0;
1999 
2000 	/* Check if we have a 'bad_lba' information */
2001 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
2002 				     SCSI_SENSE_BUFFERSIZE,
2003 				     &bad_lba))
2004 		return 0;
2005 
2006 	/*
2007 	 * If the bad lba was reported incorrectly, we have no idea where
2008 	 * the error is.
2009 	 */
2010 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
2011 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
2012 	if (bad_lba < start_lba || bad_lba >= end_lba)
2013 		return 0;
2014 
2015 	/*
2016 	 * resid is optional but mostly filled in.  When it's unused,
2017 	 * its value is zero, so we assume the whole buffer transferred
2018 	 */
2019 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
2020 
2021 	/* This computation should always be done in terms of the
2022 	 * resolution of the device's medium.
2023 	 */
2024 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
2025 
2026 	return min(good_bytes, transferred);
2027 }
2028 
2029 /**
2030  *	sd_done - bottom half handler: called when the lower level
2031  *	driver has completed (successfully or otherwise) a scsi command.
2032  *	@SCpnt: mid-level's per command structure.
2033  *
2034  *	Note: potentially run from within an ISR. Must not block.
2035  **/
2036 static int sd_done(struct scsi_cmnd *SCpnt)
2037 {
2038 	int result = SCpnt->result;
2039 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
2040 	unsigned int sector_size = SCpnt->device->sector_size;
2041 	unsigned int resid;
2042 	struct scsi_sense_hdr sshdr;
2043 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
2044 	struct request *req = SCpnt->request;
2045 	int sense_valid = 0;
2046 	int sense_deferred = 0;
2047 
2048 	switch (req_op(req)) {
2049 	case REQ_OP_DISCARD:
2050 	case REQ_OP_WRITE_ZEROES:
2051 	case REQ_OP_WRITE_SAME:
2052 	case REQ_OP_ZONE_RESET:
2053 	case REQ_OP_ZONE_RESET_ALL:
2054 	case REQ_OP_ZONE_OPEN:
2055 	case REQ_OP_ZONE_CLOSE:
2056 	case REQ_OP_ZONE_FINISH:
2057 		if (!result) {
2058 			good_bytes = blk_rq_bytes(req);
2059 			scsi_set_resid(SCpnt, 0);
2060 		} else {
2061 			good_bytes = 0;
2062 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
2063 		}
2064 		break;
2065 	default:
2066 		/*
2067 		 * In case of bogus fw or device, we could end up having
2068 		 * an unaligned partial completion. Check this here and force
2069 		 * alignment.
2070 		 */
2071 		resid = scsi_get_resid(SCpnt);
2072 		if (resid & (sector_size - 1)) {
2073 			sd_printk(KERN_INFO, sdkp,
2074 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2075 				resid, sector_size);
2076 			scsi_print_command(SCpnt);
2077 			resid = min(scsi_bufflen(SCpnt),
2078 				    round_up(resid, sector_size));
2079 			scsi_set_resid(SCpnt, resid);
2080 		}
2081 	}
2082 
2083 	if (result) {
2084 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2085 		if (sense_valid)
2086 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2087 	}
2088 	sdkp->medium_access_timed_out = 0;
2089 
2090 	if (!scsi_status_is_check_condition(result) &&
2091 	    (!sense_valid || sense_deferred))
2092 		goto out;
2093 
2094 	switch (sshdr.sense_key) {
2095 	case HARDWARE_ERROR:
2096 	case MEDIUM_ERROR:
2097 		good_bytes = sd_completed_bytes(SCpnt);
2098 		break;
2099 	case RECOVERED_ERROR:
2100 		good_bytes = scsi_bufflen(SCpnt);
2101 		break;
2102 	case NO_SENSE:
2103 		/* This indicates a false check condition, so ignore it.  An
2104 		 * unknown amount of data was transferred so treat it as an
2105 		 * error.
2106 		 */
2107 		SCpnt->result = 0;
2108 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2109 		break;
2110 	case ABORTED_COMMAND:
2111 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2112 			good_bytes = sd_completed_bytes(SCpnt);
2113 		break;
2114 	case ILLEGAL_REQUEST:
2115 		switch (sshdr.asc) {
2116 		case 0x10:	/* DIX: Host detected corruption */
2117 			good_bytes = sd_completed_bytes(SCpnt);
2118 			break;
2119 		case 0x20:	/* INVALID COMMAND OPCODE */
2120 		case 0x24:	/* INVALID FIELD IN CDB */
2121 			switch (SCpnt->cmnd[0]) {
2122 			case UNMAP:
2123 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2124 				break;
2125 			case WRITE_SAME_16:
2126 			case WRITE_SAME:
2127 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2128 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2129 				} else {
2130 					sdkp->device->no_write_same = 1;
2131 					sd_config_write_same(sdkp);
2132 					req->rq_flags |= RQF_QUIET;
2133 				}
2134 				break;
2135 			}
2136 		}
2137 		break;
2138 	default:
2139 		break;
2140 	}
2141 
2142  out:
2143 	if (sd_is_zoned(sdkp))
2144 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2145 
2146 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2147 					   "sd_done: completed %d of %d bytes\n",
2148 					   good_bytes, scsi_bufflen(SCpnt)));
2149 
2150 	return good_bytes;
2151 }
2152 
2153 /*
2154  * spinup disk - called only in sd_revalidate_disk()
2155  */
2156 static void
2157 sd_spinup_disk(struct scsi_disk *sdkp)
2158 {
2159 	unsigned char cmd[10];
2160 	unsigned long spintime_expire = 0;
2161 	int retries, spintime;
2162 	unsigned int the_result;
2163 	struct scsi_sense_hdr sshdr;
2164 	int sense_valid = 0;
2165 
2166 	spintime = 0;
2167 
2168 	/* Spin up drives, as required.  Only do this at boot time */
2169 	/* Spinup needs to be done for module loads too. */
2170 	do {
2171 		retries = 0;
2172 
2173 		do {
2174 			cmd[0] = TEST_UNIT_READY;
2175 			memset((void *) &cmd[1], 0, 9);
2176 
2177 			the_result = scsi_execute_req(sdkp->device, cmd,
2178 						      DMA_NONE, NULL, 0,
2179 						      &sshdr, SD_TIMEOUT,
2180 						      sdkp->max_retries, NULL);
2181 
2182 			/*
2183 			 * If the drive has indicated to us that it
2184 			 * doesn't have any media in it, don't bother
2185 			 * with any more polling.
2186 			 */
2187 			if (media_not_present(sdkp, &sshdr))
2188 				return;
2189 
2190 			if (the_result)
2191 				sense_valid = scsi_sense_valid(&sshdr);
2192 			retries++;
2193 		} while (retries < 3 &&
2194 			 (!scsi_status_is_good(the_result) ||
2195 			  (scsi_status_is_check_condition(the_result) &&
2196 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2197 
2198 		if (!scsi_status_is_check_condition(the_result)) {
2199 			/* no sense, TUR either succeeded or failed
2200 			 * with a status error */
2201 			if(!spintime && !scsi_status_is_good(the_result)) {
2202 				sd_print_result(sdkp, "Test Unit Ready failed",
2203 						the_result);
2204 			}
2205 			break;
2206 		}
2207 
2208 		/*
2209 		 * The device does not want the automatic start to be issued.
2210 		 */
2211 		if (sdkp->device->no_start_on_add)
2212 			break;
2213 
2214 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2215 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2216 				break;	/* manual intervention required */
2217 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2218 				break;	/* standby */
2219 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2220 				break;	/* unavailable */
2221 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2222 				break;	/* sanitize in progress */
2223 			/*
2224 			 * Issue command to spin up drive when not ready
2225 			 */
2226 			if (!spintime) {
2227 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2228 				cmd[0] = START_STOP;
2229 				cmd[1] = 1;	/* Return immediately */
2230 				memset((void *) &cmd[2], 0, 8);
2231 				cmd[4] = 1;	/* Start spin cycle */
2232 				if (sdkp->device->start_stop_pwr_cond)
2233 					cmd[4] |= 1 << 4;
2234 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2235 						 NULL, 0, &sshdr,
2236 						 SD_TIMEOUT, sdkp->max_retries,
2237 						 NULL);
2238 				spintime_expire = jiffies + 100 * HZ;
2239 				spintime = 1;
2240 			}
2241 			/* Wait 1 second for next try */
2242 			msleep(1000);
2243 			printk(KERN_CONT ".");
2244 
2245 		/*
2246 		 * Wait for USB flash devices with slow firmware.
2247 		 * Yes, this sense key/ASC combination shouldn't
2248 		 * occur here.  It's characteristic of these devices.
2249 		 */
2250 		} else if (sense_valid &&
2251 				sshdr.sense_key == UNIT_ATTENTION &&
2252 				sshdr.asc == 0x28) {
2253 			if (!spintime) {
2254 				spintime_expire = jiffies + 5 * HZ;
2255 				spintime = 1;
2256 			}
2257 			/* Wait 1 second for next try */
2258 			msleep(1000);
2259 		} else {
2260 			/* we don't understand the sense code, so it's
2261 			 * probably pointless to loop */
2262 			if(!spintime) {
2263 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2264 				sd_print_sense_hdr(sdkp, &sshdr);
2265 			}
2266 			break;
2267 		}
2268 
2269 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2270 
2271 	if (spintime) {
2272 		if (scsi_status_is_good(the_result))
2273 			printk(KERN_CONT "ready\n");
2274 		else
2275 			printk(KERN_CONT "not responding...\n");
2276 	}
2277 }
2278 
2279 /*
2280  * Determine whether disk supports Data Integrity Field.
2281  */
2282 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2283 {
2284 	struct scsi_device *sdp = sdkp->device;
2285 	u8 type;
2286 	int ret = 0;
2287 
2288 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2289 		sdkp->protection_type = 0;
2290 		return ret;
2291 	}
2292 
2293 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2294 
2295 	if (type > T10_PI_TYPE3_PROTECTION)
2296 		ret = -ENODEV;
2297 	else if (scsi_host_dif_capable(sdp->host, type))
2298 		ret = 1;
2299 
2300 	if (sdkp->first_scan || type != sdkp->protection_type)
2301 		switch (ret) {
2302 		case -ENODEV:
2303 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2304 				  " protection type %u. Disabling disk!\n",
2305 				  type);
2306 			break;
2307 		case 1:
2308 			sd_printk(KERN_NOTICE, sdkp,
2309 				  "Enabling DIF Type %u protection\n", type);
2310 			break;
2311 		case 0:
2312 			sd_printk(KERN_NOTICE, sdkp,
2313 				  "Disabling DIF Type %u protection\n", type);
2314 			break;
2315 		}
2316 
2317 	sdkp->protection_type = type;
2318 
2319 	return ret;
2320 }
2321 
2322 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2323 			struct scsi_sense_hdr *sshdr, int sense_valid,
2324 			int the_result)
2325 {
2326 	if (sense_valid)
2327 		sd_print_sense_hdr(sdkp, sshdr);
2328 	else
2329 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2330 
2331 	/*
2332 	 * Set dirty bit for removable devices if not ready -
2333 	 * sometimes drives will not report this properly.
2334 	 */
2335 	if (sdp->removable &&
2336 	    sense_valid && sshdr->sense_key == NOT_READY)
2337 		set_media_not_present(sdkp);
2338 
2339 	/*
2340 	 * We used to set media_present to 0 here to indicate no media
2341 	 * in the drive, but some drives fail read capacity even with
2342 	 * media present, so we can't do that.
2343 	 */
2344 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2345 }
2346 
2347 #define RC16_LEN 32
2348 #if RC16_LEN > SD_BUF_SIZE
2349 #error RC16_LEN must not be more than SD_BUF_SIZE
2350 #endif
2351 
2352 #define READ_CAPACITY_RETRIES_ON_RESET	10
2353 
2354 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2355 						unsigned char *buffer)
2356 {
2357 	unsigned char cmd[16];
2358 	struct scsi_sense_hdr sshdr;
2359 	int sense_valid = 0;
2360 	int the_result;
2361 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2362 	unsigned int alignment;
2363 	unsigned long long lba;
2364 	unsigned sector_size;
2365 
2366 	if (sdp->no_read_capacity_16)
2367 		return -EINVAL;
2368 
2369 	do {
2370 		memset(cmd, 0, 16);
2371 		cmd[0] = SERVICE_ACTION_IN_16;
2372 		cmd[1] = SAI_READ_CAPACITY_16;
2373 		cmd[13] = RC16_LEN;
2374 		memset(buffer, 0, RC16_LEN);
2375 
2376 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2377 					buffer, RC16_LEN, &sshdr,
2378 					SD_TIMEOUT, sdkp->max_retries, NULL);
2379 
2380 		if (media_not_present(sdkp, &sshdr))
2381 			return -ENODEV;
2382 
2383 		if (the_result > 0) {
2384 			sense_valid = scsi_sense_valid(&sshdr);
2385 			if (sense_valid &&
2386 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2387 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2388 			    sshdr.ascq == 0x00)
2389 				/* Invalid Command Operation Code or
2390 				 * Invalid Field in CDB, just retry
2391 				 * silently with RC10 */
2392 				return -EINVAL;
2393 			if (sense_valid &&
2394 			    sshdr.sense_key == UNIT_ATTENTION &&
2395 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2396 				/* Device reset might occur several times,
2397 				 * give it one more chance */
2398 				if (--reset_retries > 0)
2399 					continue;
2400 		}
2401 		retries--;
2402 
2403 	} while (the_result && retries);
2404 
2405 	if (the_result) {
2406 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2407 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2408 		return -EINVAL;
2409 	}
2410 
2411 	sector_size = get_unaligned_be32(&buffer[8]);
2412 	lba = get_unaligned_be64(&buffer[0]);
2413 
2414 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2415 		sdkp->capacity = 0;
2416 		return -ENODEV;
2417 	}
2418 
2419 	/* Logical blocks per physical block exponent */
2420 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2421 
2422 	/* RC basis */
2423 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2424 
2425 	/* Lowest aligned logical block */
2426 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2427 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2428 	if (alignment && sdkp->first_scan)
2429 		sd_printk(KERN_NOTICE, sdkp,
2430 			  "physical block alignment offset: %u\n", alignment);
2431 
2432 	if (buffer[14] & 0x80) { /* LBPME */
2433 		sdkp->lbpme = 1;
2434 
2435 		if (buffer[14] & 0x40) /* LBPRZ */
2436 			sdkp->lbprz = 1;
2437 
2438 		sd_config_discard(sdkp, SD_LBP_WS16);
2439 	}
2440 
2441 	sdkp->capacity = lba + 1;
2442 	return sector_size;
2443 }
2444 
2445 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2446 						unsigned char *buffer)
2447 {
2448 	unsigned char cmd[16];
2449 	struct scsi_sense_hdr sshdr;
2450 	int sense_valid = 0;
2451 	int the_result;
2452 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2453 	sector_t lba;
2454 	unsigned sector_size;
2455 
2456 	do {
2457 		cmd[0] = READ_CAPACITY;
2458 		memset(&cmd[1], 0, 9);
2459 		memset(buffer, 0, 8);
2460 
2461 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2462 					buffer, 8, &sshdr,
2463 					SD_TIMEOUT, sdkp->max_retries, NULL);
2464 
2465 		if (media_not_present(sdkp, &sshdr))
2466 			return -ENODEV;
2467 
2468 		if (the_result > 0) {
2469 			sense_valid = scsi_sense_valid(&sshdr);
2470 			if (sense_valid &&
2471 			    sshdr.sense_key == UNIT_ATTENTION &&
2472 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2473 				/* Device reset might occur several times,
2474 				 * give it one more chance */
2475 				if (--reset_retries > 0)
2476 					continue;
2477 		}
2478 		retries--;
2479 
2480 	} while (the_result && retries);
2481 
2482 	if (the_result) {
2483 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2484 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2485 		return -EINVAL;
2486 	}
2487 
2488 	sector_size = get_unaligned_be32(&buffer[4]);
2489 	lba = get_unaligned_be32(&buffer[0]);
2490 
2491 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2492 		/* Some buggy (usb cardreader) devices return an lba of
2493 		   0xffffffff when the want to report a size of 0 (with
2494 		   which they really mean no media is present) */
2495 		sdkp->capacity = 0;
2496 		sdkp->physical_block_size = sector_size;
2497 		return sector_size;
2498 	}
2499 
2500 	sdkp->capacity = lba + 1;
2501 	sdkp->physical_block_size = sector_size;
2502 	return sector_size;
2503 }
2504 
2505 static int sd_try_rc16_first(struct scsi_device *sdp)
2506 {
2507 	if (sdp->host->max_cmd_len < 16)
2508 		return 0;
2509 	if (sdp->try_rc_10_first)
2510 		return 0;
2511 	if (sdp->scsi_level > SCSI_SPC_2)
2512 		return 1;
2513 	if (scsi_device_protection(sdp))
2514 		return 1;
2515 	return 0;
2516 }
2517 
2518 /*
2519  * read disk capacity
2520  */
2521 static void
2522 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2523 {
2524 	int sector_size;
2525 	struct scsi_device *sdp = sdkp->device;
2526 
2527 	if (sd_try_rc16_first(sdp)) {
2528 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2529 		if (sector_size == -EOVERFLOW)
2530 			goto got_data;
2531 		if (sector_size == -ENODEV)
2532 			return;
2533 		if (sector_size < 0)
2534 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2535 		if (sector_size < 0)
2536 			return;
2537 	} else {
2538 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2539 		if (sector_size == -EOVERFLOW)
2540 			goto got_data;
2541 		if (sector_size < 0)
2542 			return;
2543 		if ((sizeof(sdkp->capacity) > 4) &&
2544 		    (sdkp->capacity > 0xffffffffULL)) {
2545 			int old_sector_size = sector_size;
2546 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2547 					"Trying to use READ CAPACITY(16).\n");
2548 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2549 			if (sector_size < 0) {
2550 				sd_printk(KERN_NOTICE, sdkp,
2551 					"Using 0xffffffff as device size\n");
2552 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2553 				sector_size = old_sector_size;
2554 				goto got_data;
2555 			}
2556 			/* Remember that READ CAPACITY(16) succeeded */
2557 			sdp->try_rc_10_first = 0;
2558 		}
2559 	}
2560 
2561 	/* Some devices are known to return the total number of blocks,
2562 	 * not the highest block number.  Some devices have versions
2563 	 * which do this and others which do not.  Some devices we might
2564 	 * suspect of doing this but we don't know for certain.
2565 	 *
2566 	 * If we know the reported capacity is wrong, decrement it.  If
2567 	 * we can only guess, then assume the number of blocks is even
2568 	 * (usually true but not always) and err on the side of lowering
2569 	 * the capacity.
2570 	 */
2571 	if (sdp->fix_capacity ||
2572 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2573 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2574 				"from its reported value: %llu\n",
2575 				(unsigned long long) sdkp->capacity);
2576 		--sdkp->capacity;
2577 	}
2578 
2579 got_data:
2580 	if (sector_size == 0) {
2581 		sector_size = 512;
2582 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2583 			  "assuming 512.\n");
2584 	}
2585 
2586 	if (sector_size != 512 &&
2587 	    sector_size != 1024 &&
2588 	    sector_size != 2048 &&
2589 	    sector_size != 4096) {
2590 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2591 			  sector_size);
2592 		/*
2593 		 * The user might want to re-format the drive with
2594 		 * a supported sectorsize.  Once this happens, it
2595 		 * would be relatively trivial to set the thing up.
2596 		 * For this reason, we leave the thing in the table.
2597 		 */
2598 		sdkp->capacity = 0;
2599 		/*
2600 		 * set a bogus sector size so the normal read/write
2601 		 * logic in the block layer will eventually refuse any
2602 		 * request on this device without tripping over power
2603 		 * of two sector size assumptions
2604 		 */
2605 		sector_size = 512;
2606 	}
2607 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2608 	blk_queue_physical_block_size(sdp->request_queue,
2609 				      sdkp->physical_block_size);
2610 	sdkp->device->sector_size = sector_size;
2611 
2612 	if (sdkp->capacity > 0xffffffff)
2613 		sdp->use_16_for_rw = 1;
2614 
2615 }
2616 
2617 /*
2618  * Print disk capacity
2619  */
2620 static void
2621 sd_print_capacity(struct scsi_disk *sdkp,
2622 		  sector_t old_capacity)
2623 {
2624 	int sector_size = sdkp->device->sector_size;
2625 	char cap_str_2[10], cap_str_10[10];
2626 
2627 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2628 		return;
2629 
2630 	string_get_size(sdkp->capacity, sector_size,
2631 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2632 	string_get_size(sdkp->capacity, sector_size,
2633 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2634 
2635 	sd_printk(KERN_NOTICE, sdkp,
2636 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2637 		  (unsigned long long)sdkp->capacity,
2638 		  sector_size, cap_str_10, cap_str_2);
2639 
2640 	if (sdkp->physical_block_size != sector_size)
2641 		sd_printk(KERN_NOTICE, sdkp,
2642 			  "%u-byte physical blocks\n",
2643 			  sdkp->physical_block_size);
2644 }
2645 
2646 /* called with buffer of length 512 */
2647 static inline int
2648 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2649 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2650 		 struct scsi_sense_hdr *sshdr)
2651 {
2652 	return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2653 			       SD_TIMEOUT, sdkp->max_retries, data,
2654 			       sshdr);
2655 }
2656 
2657 /*
2658  * read write protect setting, if possible - called only in sd_revalidate_disk()
2659  * called with buffer of length SD_BUF_SIZE
2660  */
2661 static void
2662 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2663 {
2664 	int res;
2665 	struct scsi_device *sdp = sdkp->device;
2666 	struct scsi_mode_data data;
2667 	int old_wp = sdkp->write_prot;
2668 
2669 	set_disk_ro(sdkp->disk, 0);
2670 	if (sdp->skip_ms_page_3f) {
2671 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2672 		return;
2673 	}
2674 
2675 	if (sdp->use_192_bytes_for_3f) {
2676 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2677 	} else {
2678 		/*
2679 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2680 		 * We have to start carefully: some devices hang if we ask
2681 		 * for more than is available.
2682 		 */
2683 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2684 
2685 		/*
2686 		 * Second attempt: ask for page 0 When only page 0 is
2687 		 * implemented, a request for page 3F may return Sense Key
2688 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2689 		 * CDB.
2690 		 */
2691 		if (res < 0)
2692 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2693 
2694 		/*
2695 		 * Third attempt: ask 255 bytes, as we did earlier.
2696 		 */
2697 		if (res < 0)
2698 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2699 					       &data, NULL);
2700 	}
2701 
2702 	if (res < 0) {
2703 		sd_first_printk(KERN_WARNING, sdkp,
2704 			  "Test WP failed, assume Write Enabled\n");
2705 	} else {
2706 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2707 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2708 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2709 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2710 				  sdkp->write_prot ? "on" : "off");
2711 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2712 		}
2713 	}
2714 }
2715 
2716 /*
2717  * sd_read_cache_type - called only from sd_revalidate_disk()
2718  * called with buffer of length SD_BUF_SIZE
2719  */
2720 static void
2721 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2722 {
2723 	int len = 0, res;
2724 	struct scsi_device *sdp = sdkp->device;
2725 
2726 	int dbd;
2727 	int modepage;
2728 	int first_len;
2729 	struct scsi_mode_data data;
2730 	struct scsi_sense_hdr sshdr;
2731 	int old_wce = sdkp->WCE;
2732 	int old_rcd = sdkp->RCD;
2733 	int old_dpofua = sdkp->DPOFUA;
2734 
2735 
2736 	if (sdkp->cache_override)
2737 		return;
2738 
2739 	first_len = 4;
2740 	if (sdp->skip_ms_page_8) {
2741 		if (sdp->type == TYPE_RBC)
2742 			goto defaults;
2743 		else {
2744 			if (sdp->skip_ms_page_3f)
2745 				goto defaults;
2746 			modepage = 0x3F;
2747 			if (sdp->use_192_bytes_for_3f)
2748 				first_len = 192;
2749 			dbd = 0;
2750 		}
2751 	} else if (sdp->type == TYPE_RBC) {
2752 		modepage = 6;
2753 		dbd = 8;
2754 	} else {
2755 		modepage = 8;
2756 		dbd = 0;
2757 	}
2758 
2759 	/* cautiously ask */
2760 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2761 			&data, &sshdr);
2762 
2763 	if (res < 0)
2764 		goto bad_sense;
2765 
2766 	if (!data.header_length) {
2767 		modepage = 6;
2768 		first_len = 0;
2769 		sd_first_printk(KERN_ERR, sdkp,
2770 				"Missing header in MODE_SENSE response\n");
2771 	}
2772 
2773 	/* that went OK, now ask for the proper length */
2774 	len = data.length;
2775 
2776 	/*
2777 	 * We're only interested in the first three bytes, actually.
2778 	 * But the data cache page is defined for the first 20.
2779 	 */
2780 	if (len < 3)
2781 		goto bad_sense;
2782 	else if (len > SD_BUF_SIZE) {
2783 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2784 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2785 		len = SD_BUF_SIZE;
2786 	}
2787 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2788 		len = 192;
2789 
2790 	/* Get the data */
2791 	if (len > first_len)
2792 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2793 				&data, &sshdr);
2794 
2795 	if (!res) {
2796 		int offset = data.header_length + data.block_descriptor_length;
2797 
2798 		while (offset < len) {
2799 			u8 page_code = buffer[offset] & 0x3F;
2800 			u8 spf       = buffer[offset] & 0x40;
2801 
2802 			if (page_code == 8 || page_code == 6) {
2803 				/* We're interested only in the first 3 bytes.
2804 				 */
2805 				if (len - offset <= 2) {
2806 					sd_first_printk(KERN_ERR, sdkp,
2807 						"Incomplete mode parameter "
2808 							"data\n");
2809 					goto defaults;
2810 				} else {
2811 					modepage = page_code;
2812 					goto Page_found;
2813 				}
2814 			} else {
2815 				/* Go to the next page */
2816 				if (spf && len - offset > 3)
2817 					offset += 4 + (buffer[offset+2] << 8) +
2818 						buffer[offset+3];
2819 				else if (!spf && len - offset > 1)
2820 					offset += 2 + buffer[offset+1];
2821 				else {
2822 					sd_first_printk(KERN_ERR, sdkp,
2823 							"Incomplete mode "
2824 							"parameter data\n");
2825 					goto defaults;
2826 				}
2827 			}
2828 		}
2829 
2830 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2831 		goto defaults;
2832 
2833 	Page_found:
2834 		if (modepage == 8) {
2835 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2836 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2837 		} else {
2838 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2839 			sdkp->RCD = 0;
2840 		}
2841 
2842 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2843 		if (sdp->broken_fua) {
2844 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2845 			sdkp->DPOFUA = 0;
2846 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2847 			   !sdkp->device->use_16_for_rw) {
2848 			sd_first_printk(KERN_NOTICE, sdkp,
2849 				  "Uses READ/WRITE(6), disabling FUA\n");
2850 			sdkp->DPOFUA = 0;
2851 		}
2852 
2853 		/* No cache flush allowed for write protected devices */
2854 		if (sdkp->WCE && sdkp->write_prot)
2855 			sdkp->WCE = 0;
2856 
2857 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2858 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2859 			sd_printk(KERN_NOTICE, sdkp,
2860 				  "Write cache: %s, read cache: %s, %s\n",
2861 				  sdkp->WCE ? "enabled" : "disabled",
2862 				  sdkp->RCD ? "disabled" : "enabled",
2863 				  sdkp->DPOFUA ? "supports DPO and FUA"
2864 				  : "doesn't support DPO or FUA");
2865 
2866 		return;
2867 	}
2868 
2869 bad_sense:
2870 	if (scsi_sense_valid(&sshdr) &&
2871 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2872 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2873 		/* Invalid field in CDB */
2874 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2875 	else
2876 		sd_first_printk(KERN_ERR, sdkp,
2877 				"Asking for cache data failed\n");
2878 
2879 defaults:
2880 	if (sdp->wce_default_on) {
2881 		sd_first_printk(KERN_NOTICE, sdkp,
2882 				"Assuming drive cache: write back\n");
2883 		sdkp->WCE = 1;
2884 	} else {
2885 		sd_first_printk(KERN_ERR, sdkp,
2886 				"Assuming drive cache: write through\n");
2887 		sdkp->WCE = 0;
2888 	}
2889 	sdkp->RCD = 0;
2890 	sdkp->DPOFUA = 0;
2891 }
2892 
2893 /*
2894  * The ATO bit indicates whether the DIF application tag is available
2895  * for use by the operating system.
2896  */
2897 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2898 {
2899 	int res, offset;
2900 	struct scsi_device *sdp = sdkp->device;
2901 	struct scsi_mode_data data;
2902 	struct scsi_sense_hdr sshdr;
2903 
2904 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2905 		return;
2906 
2907 	if (sdkp->protection_type == 0)
2908 		return;
2909 
2910 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2911 			      sdkp->max_retries, &data, &sshdr);
2912 
2913 	if (res < 0 || !data.header_length ||
2914 	    data.length < 6) {
2915 		sd_first_printk(KERN_WARNING, sdkp,
2916 			  "getting Control mode page failed, assume no ATO\n");
2917 
2918 		if (scsi_sense_valid(&sshdr))
2919 			sd_print_sense_hdr(sdkp, &sshdr);
2920 
2921 		return;
2922 	}
2923 
2924 	offset = data.header_length + data.block_descriptor_length;
2925 
2926 	if ((buffer[offset] & 0x3f) != 0x0a) {
2927 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2928 		return;
2929 	}
2930 
2931 	if ((buffer[offset + 5] & 0x80) == 0)
2932 		return;
2933 
2934 	sdkp->ATO = 1;
2935 
2936 	return;
2937 }
2938 
2939 /**
2940  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2941  * @sdkp: disk to query
2942  */
2943 static void sd_read_block_limits(struct scsi_disk *sdkp)
2944 {
2945 	unsigned int sector_sz = sdkp->device->sector_size;
2946 	const int vpd_len = 64;
2947 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2948 
2949 	if (!buffer ||
2950 	    /* Block Limits VPD */
2951 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2952 		goto out;
2953 
2954 	blk_queue_io_min(sdkp->disk->queue,
2955 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2956 
2957 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2958 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2959 
2960 	if (buffer[3] == 0x3c) {
2961 		unsigned int lba_count, desc_count;
2962 
2963 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2964 
2965 		if (!sdkp->lbpme)
2966 			goto out;
2967 
2968 		lba_count = get_unaligned_be32(&buffer[20]);
2969 		desc_count = get_unaligned_be32(&buffer[24]);
2970 
2971 		if (lba_count && desc_count)
2972 			sdkp->max_unmap_blocks = lba_count;
2973 
2974 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2975 
2976 		if (buffer[32] & 0x80)
2977 			sdkp->unmap_alignment =
2978 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2979 
2980 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2981 
2982 			if (sdkp->max_unmap_blocks)
2983 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2984 			else
2985 				sd_config_discard(sdkp, SD_LBP_WS16);
2986 
2987 		} else {	/* LBP VPD page tells us what to use */
2988 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2989 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2990 			else if (sdkp->lbpws)
2991 				sd_config_discard(sdkp, SD_LBP_WS16);
2992 			else if (sdkp->lbpws10)
2993 				sd_config_discard(sdkp, SD_LBP_WS10);
2994 			else
2995 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2996 		}
2997 	}
2998 
2999  out:
3000 	kfree(buffer);
3001 }
3002 
3003 /**
3004  * sd_read_block_characteristics - Query block dev. characteristics
3005  * @sdkp: disk to query
3006  */
3007 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
3008 {
3009 	struct request_queue *q = sdkp->disk->queue;
3010 	unsigned char *buffer;
3011 	u16 rot;
3012 	const int vpd_len = 64;
3013 
3014 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3015 
3016 	if (!buffer ||
3017 	    /* Block Device Characteristics VPD */
3018 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
3019 		goto out;
3020 
3021 	rot = get_unaligned_be16(&buffer[4]);
3022 
3023 	if (rot == 1) {
3024 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
3025 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
3026 	}
3027 
3028 	if (sdkp->device->type == TYPE_ZBC) {
3029 		/* Host-managed */
3030 		blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM);
3031 	} else {
3032 		sdkp->zoned = (buffer[8] >> 4) & 3;
3033 		if (sdkp->zoned == 1) {
3034 			/* Host-aware */
3035 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA);
3036 		} else {
3037 			/* Regular disk or drive managed disk */
3038 			blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE);
3039 		}
3040 	}
3041 
3042 	if (!sdkp->first_scan)
3043 		goto out;
3044 
3045 	if (blk_queue_is_zoned(q)) {
3046 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
3047 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
3048 	} else {
3049 		if (sdkp->zoned == 1)
3050 			sd_printk(KERN_NOTICE, sdkp,
3051 				  "Host-aware SMR disk used as regular disk\n");
3052 		else if (sdkp->zoned == 2)
3053 			sd_printk(KERN_NOTICE, sdkp,
3054 				  "Drive-managed SMR disk\n");
3055 	}
3056 
3057  out:
3058 	kfree(buffer);
3059 }
3060 
3061 /**
3062  * sd_read_block_provisioning - Query provisioning VPD page
3063  * @sdkp: disk to query
3064  */
3065 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3066 {
3067 	unsigned char *buffer;
3068 	const int vpd_len = 8;
3069 
3070 	if (sdkp->lbpme == 0)
3071 		return;
3072 
3073 	buffer = kmalloc(vpd_len, GFP_KERNEL);
3074 
3075 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
3076 		goto out;
3077 
3078 	sdkp->lbpvpd	= 1;
3079 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
3080 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
3081 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
3082 
3083  out:
3084 	kfree(buffer);
3085 }
3086 
3087 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3088 {
3089 	struct scsi_device *sdev = sdkp->device;
3090 
3091 	if (sdev->host->no_write_same) {
3092 		sdev->no_write_same = 1;
3093 
3094 		return;
3095 	}
3096 
3097 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3098 		/* too large values might cause issues with arcmsr */
3099 		int vpd_buf_len = 64;
3100 
3101 		sdev->no_report_opcodes = 1;
3102 
3103 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3104 		 * CODES is unsupported and the device has an ATA
3105 		 * Information VPD page (SAT).
3106 		 */
3107 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
3108 			sdev->no_write_same = 1;
3109 	}
3110 
3111 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3112 		sdkp->ws16 = 1;
3113 
3114 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3115 		sdkp->ws10 = 1;
3116 }
3117 
3118 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3119 {
3120 	struct scsi_device *sdev = sdkp->device;
3121 
3122 	if (!sdev->security_supported)
3123 		return;
3124 
3125 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3126 			SECURITY_PROTOCOL_IN) == 1 &&
3127 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3128 			SECURITY_PROTOCOL_OUT) == 1)
3129 		sdkp->security = 1;
3130 }
3131 
3132 /*
3133  * Determine the device's preferred I/O size for reads and writes
3134  * unless the reported value is unreasonably small, large, not a
3135  * multiple of the physical block size, or simply garbage.
3136  */
3137 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3138 				      unsigned int dev_max)
3139 {
3140 	struct scsi_device *sdp = sdkp->device;
3141 	unsigned int opt_xfer_bytes =
3142 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3143 
3144 	if (sdkp->opt_xfer_blocks == 0)
3145 		return false;
3146 
3147 	if (sdkp->opt_xfer_blocks > dev_max) {
3148 		sd_first_printk(KERN_WARNING, sdkp,
3149 				"Optimal transfer size %u logical blocks " \
3150 				"> dev_max (%u logical blocks)\n",
3151 				sdkp->opt_xfer_blocks, dev_max);
3152 		return false;
3153 	}
3154 
3155 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3156 		sd_first_printk(KERN_WARNING, sdkp,
3157 				"Optimal transfer size %u logical blocks " \
3158 				"> sd driver limit (%u logical blocks)\n",
3159 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3160 		return false;
3161 	}
3162 
3163 	if (opt_xfer_bytes < PAGE_SIZE) {
3164 		sd_first_printk(KERN_WARNING, sdkp,
3165 				"Optimal transfer size %u bytes < " \
3166 				"PAGE_SIZE (%u bytes)\n",
3167 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3168 		return false;
3169 	}
3170 
3171 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3172 		sd_first_printk(KERN_WARNING, sdkp,
3173 				"Optimal transfer size %u bytes not a " \
3174 				"multiple of physical block size (%u bytes)\n",
3175 				opt_xfer_bytes, sdkp->physical_block_size);
3176 		return false;
3177 	}
3178 
3179 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3180 			opt_xfer_bytes);
3181 	return true;
3182 }
3183 
3184 /**
3185  *	sd_revalidate_disk - called the first time a new disk is seen,
3186  *	performs disk spin up, read_capacity, etc.
3187  *	@disk: struct gendisk we care about
3188  **/
3189 static int sd_revalidate_disk(struct gendisk *disk)
3190 {
3191 	struct scsi_disk *sdkp = scsi_disk(disk);
3192 	struct scsi_device *sdp = sdkp->device;
3193 	struct request_queue *q = sdkp->disk->queue;
3194 	sector_t old_capacity = sdkp->capacity;
3195 	unsigned char *buffer;
3196 	unsigned int dev_max, rw_max;
3197 
3198 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3199 				      "sd_revalidate_disk\n"));
3200 
3201 	/*
3202 	 * If the device is offline, don't try and read capacity or any
3203 	 * of the other niceties.
3204 	 */
3205 	if (!scsi_device_online(sdp))
3206 		goto out;
3207 
3208 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3209 	if (!buffer) {
3210 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3211 			  "allocation failure.\n");
3212 		goto out;
3213 	}
3214 
3215 	sd_spinup_disk(sdkp);
3216 
3217 	/*
3218 	 * Without media there is no reason to ask; moreover, some devices
3219 	 * react badly if we do.
3220 	 */
3221 	if (sdkp->media_present) {
3222 		sd_read_capacity(sdkp, buffer);
3223 
3224 		/*
3225 		 * set the default to rotational.  All non-rotational devices
3226 		 * support the block characteristics VPD page, which will
3227 		 * cause this to be updated correctly and any device which
3228 		 * doesn't support it should be treated as rotational.
3229 		 */
3230 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3231 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3232 
3233 		if (scsi_device_supports_vpd(sdp)) {
3234 			sd_read_block_provisioning(sdkp);
3235 			sd_read_block_limits(sdkp);
3236 			sd_read_block_characteristics(sdkp);
3237 			sd_zbc_read_zones(sdkp, buffer);
3238 		}
3239 
3240 		sd_print_capacity(sdkp, old_capacity);
3241 
3242 		sd_read_write_protect_flag(sdkp, buffer);
3243 		sd_read_cache_type(sdkp, buffer);
3244 		sd_read_app_tag_own(sdkp, buffer);
3245 		sd_read_write_same(sdkp, buffer);
3246 		sd_read_security(sdkp, buffer);
3247 	}
3248 
3249 	/*
3250 	 * We now have all cache related info, determine how we deal
3251 	 * with flush requests.
3252 	 */
3253 	sd_set_flush_flag(sdkp);
3254 
3255 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3256 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3257 
3258 	/* Some devices report a maximum block count for READ/WRITE requests. */
3259 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3260 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3261 
3262 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3263 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3264 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3265 	} else {
3266 		q->limits.io_opt = 0;
3267 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3268 				      (sector_t)BLK_DEF_MAX_SECTORS);
3269 	}
3270 
3271 	/* Do not exceed controller limit */
3272 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3273 
3274 	/*
3275 	 * Only update max_sectors if previously unset or if the current value
3276 	 * exceeds the capabilities of the hardware.
3277 	 */
3278 	if (sdkp->first_scan ||
3279 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3280 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3281 		q->limits.max_sectors = rw_max;
3282 
3283 	sdkp->first_scan = 0;
3284 
3285 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3286 	sd_config_write_same(sdkp);
3287 	kfree(buffer);
3288 
3289 	/*
3290 	 * For a zoned drive, revalidating the zones can be done only once
3291 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3292 	 * capacity to 0.
3293 	 */
3294 	if (sd_zbc_revalidate_zones(sdkp))
3295 		set_capacity_and_notify(disk, 0);
3296 
3297  out:
3298 	return 0;
3299 }
3300 
3301 /**
3302  *	sd_unlock_native_capacity - unlock native capacity
3303  *	@disk: struct gendisk to set capacity for
3304  *
3305  *	Block layer calls this function if it detects that partitions
3306  *	on @disk reach beyond the end of the device.  If the SCSI host
3307  *	implements ->unlock_native_capacity() method, it's invoked to
3308  *	give it a chance to adjust the device capacity.
3309  *
3310  *	CONTEXT:
3311  *	Defined by block layer.  Might sleep.
3312  */
3313 static void sd_unlock_native_capacity(struct gendisk *disk)
3314 {
3315 	struct scsi_device *sdev = scsi_disk(disk)->device;
3316 
3317 	if (sdev->host->hostt->unlock_native_capacity)
3318 		sdev->host->hostt->unlock_native_capacity(sdev);
3319 }
3320 
3321 /**
3322  *	sd_format_disk_name - format disk name
3323  *	@prefix: name prefix - ie. "sd" for SCSI disks
3324  *	@index: index of the disk to format name for
3325  *	@buf: output buffer
3326  *	@buflen: length of the output buffer
3327  *
3328  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3329  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3330  *	which is followed by sdaaa.
3331  *
3332  *	This is basically 26 base counting with one extra 'nil' entry
3333  *	at the beginning from the second digit on and can be
3334  *	determined using similar method as 26 base conversion with the
3335  *	index shifted -1 after each digit is computed.
3336  *
3337  *	CONTEXT:
3338  *	Don't care.
3339  *
3340  *	RETURNS:
3341  *	0 on success, -errno on failure.
3342  */
3343 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3344 {
3345 	const int base = 'z' - 'a' + 1;
3346 	char *begin = buf + strlen(prefix);
3347 	char *end = buf + buflen;
3348 	char *p;
3349 	int unit;
3350 
3351 	p = end - 1;
3352 	*p = '\0';
3353 	unit = base;
3354 	do {
3355 		if (p == begin)
3356 			return -EINVAL;
3357 		*--p = 'a' + (index % unit);
3358 		index = (index / unit) - 1;
3359 	} while (index >= 0);
3360 
3361 	memmove(begin, p, end - p);
3362 	memcpy(buf, prefix, strlen(prefix));
3363 
3364 	return 0;
3365 }
3366 
3367 /**
3368  *	sd_probe - called during driver initialization and whenever a
3369  *	new scsi device is attached to the system. It is called once
3370  *	for each scsi device (not just disks) present.
3371  *	@dev: pointer to device object
3372  *
3373  *	Returns 0 if successful (or not interested in this scsi device
3374  *	(e.g. scanner)); 1 when there is an error.
3375  *
3376  *	Note: this function is invoked from the scsi mid-level.
3377  *	This function sets up the mapping between a given
3378  *	<host,channel,id,lun> (found in sdp) and new device name
3379  *	(e.g. /dev/sda). More precisely it is the block device major
3380  *	and minor number that is chosen here.
3381  *
3382  *	Assume sd_probe is not re-entrant (for time being)
3383  *	Also think about sd_probe() and sd_remove() running coincidentally.
3384  **/
3385 static int sd_probe(struct device *dev)
3386 {
3387 	struct scsi_device *sdp = to_scsi_device(dev);
3388 	struct scsi_disk *sdkp;
3389 	struct gendisk *gd;
3390 	int index;
3391 	int error;
3392 
3393 	scsi_autopm_get_device(sdp);
3394 	error = -ENODEV;
3395 	if (sdp->type != TYPE_DISK &&
3396 	    sdp->type != TYPE_ZBC &&
3397 	    sdp->type != TYPE_MOD &&
3398 	    sdp->type != TYPE_RBC)
3399 		goto out;
3400 
3401 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3402 		sdev_printk(KERN_WARNING, sdp,
3403 			    "Unsupported ZBC host-managed device.\n");
3404 		goto out;
3405 	}
3406 
3407 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3408 					"sd_probe\n"));
3409 
3410 	error = -ENOMEM;
3411 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3412 	if (!sdkp)
3413 		goto out;
3414 
3415 	gd = alloc_disk(SD_MINORS);
3416 	if (!gd)
3417 		goto out_free;
3418 
3419 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3420 	if (index < 0) {
3421 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3422 		goto out_put;
3423 	}
3424 
3425 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3426 	if (error) {
3427 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3428 		goto out_free_index;
3429 	}
3430 
3431 	sdkp->device = sdp;
3432 	sdkp->driver = &sd_template;
3433 	sdkp->disk = gd;
3434 	sdkp->index = index;
3435 	sdkp->max_retries = SD_MAX_RETRIES;
3436 	atomic_set(&sdkp->openers, 0);
3437 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3438 
3439 	if (!sdp->request_queue->rq_timeout) {
3440 		if (sdp->type != TYPE_MOD)
3441 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3442 		else
3443 			blk_queue_rq_timeout(sdp->request_queue,
3444 					     SD_MOD_TIMEOUT);
3445 	}
3446 
3447 	device_initialize(&sdkp->dev);
3448 	sdkp->dev.parent = dev;
3449 	sdkp->dev.class = &sd_disk_class;
3450 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3451 
3452 	error = device_add(&sdkp->dev);
3453 	if (error)
3454 		goto out_free_index;
3455 
3456 	get_device(dev);
3457 	dev_set_drvdata(dev, sdkp);
3458 
3459 	gd->major = sd_major((index & 0xf0) >> 4);
3460 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3461 
3462 	gd->fops = &sd_fops;
3463 	gd->private_data = &sdkp->driver;
3464 	gd->queue = sdkp->device->request_queue;
3465 
3466 	/* defaults, until the device tells us otherwise */
3467 	sdp->sector_size = 512;
3468 	sdkp->capacity = 0;
3469 	sdkp->media_present = 1;
3470 	sdkp->write_prot = 0;
3471 	sdkp->cache_override = 0;
3472 	sdkp->WCE = 0;
3473 	sdkp->RCD = 0;
3474 	sdkp->ATO = 0;
3475 	sdkp->first_scan = 1;
3476 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3477 
3478 	sd_revalidate_disk(gd);
3479 
3480 	gd->flags = GENHD_FL_EXT_DEVT;
3481 	if (sdp->removable) {
3482 		gd->flags |= GENHD_FL_REMOVABLE;
3483 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3484 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3485 	}
3486 
3487 	blk_pm_runtime_init(sdp->request_queue, dev);
3488 	if (sdp->rpm_autosuspend) {
3489 		pm_runtime_set_autosuspend_delay(dev,
3490 			sdp->host->hostt->rpm_autosuspend_delay);
3491 	}
3492 	device_add_disk(dev, gd, NULL);
3493 	if (sdkp->capacity)
3494 		sd_dif_config_host(sdkp);
3495 
3496 	sd_revalidate_disk(gd);
3497 
3498 	if (sdkp->security) {
3499 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3500 		if (sdkp->opal_dev)
3501 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3502 	}
3503 
3504 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3505 		  sdp->removable ? "removable " : "");
3506 	scsi_autopm_put_device(sdp);
3507 
3508 	return 0;
3509 
3510  out_free_index:
3511 	ida_free(&sd_index_ida, index);
3512  out_put:
3513 	put_disk(gd);
3514  out_free:
3515 	sd_zbc_release_disk(sdkp);
3516 	kfree(sdkp);
3517  out:
3518 	scsi_autopm_put_device(sdp);
3519 	return error;
3520 }
3521 
3522 /**
3523  *	sd_remove - called whenever a scsi disk (previously recognized by
3524  *	sd_probe) is detached from the system. It is called (potentially
3525  *	multiple times) during sd module unload.
3526  *	@dev: pointer to device object
3527  *
3528  *	Note: this function is invoked from the scsi mid-level.
3529  *	This function potentially frees up a device name (e.g. /dev/sdc)
3530  *	that could be re-used by a subsequent sd_probe().
3531  *	This function is not called when the built-in sd driver is "exit-ed".
3532  **/
3533 static int sd_remove(struct device *dev)
3534 {
3535 	struct scsi_disk *sdkp;
3536 
3537 	sdkp = dev_get_drvdata(dev);
3538 	scsi_autopm_get_device(sdkp->device);
3539 
3540 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3541 	device_del(&sdkp->dev);
3542 	del_gendisk(sdkp->disk);
3543 	sd_shutdown(dev);
3544 
3545 	free_opal_dev(sdkp->opal_dev);
3546 
3547 	mutex_lock(&sd_ref_mutex);
3548 	dev_set_drvdata(dev, NULL);
3549 	put_device(&sdkp->dev);
3550 	mutex_unlock(&sd_ref_mutex);
3551 
3552 	return 0;
3553 }
3554 
3555 /**
3556  *	scsi_disk_release - Called to free the scsi_disk structure
3557  *	@dev: pointer to embedded class device
3558  *
3559  *	sd_ref_mutex must be held entering this routine.  Because it is
3560  *	called on last put, you should always use the scsi_disk_get()
3561  *	scsi_disk_put() helpers which manipulate the semaphore directly
3562  *	and never do a direct put_device.
3563  **/
3564 static void scsi_disk_release(struct device *dev)
3565 {
3566 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3567 	struct gendisk *disk = sdkp->disk;
3568 	struct request_queue *q = disk->queue;
3569 
3570 	ida_free(&sd_index_ida, sdkp->index);
3571 
3572 	/*
3573 	 * Wait until all requests that are in progress have completed.
3574 	 * This is necessary to avoid that e.g. scsi_end_request() crashes
3575 	 * due to clearing the disk->private_data pointer. Wait from inside
3576 	 * scsi_disk_release() instead of from sd_release() to avoid that
3577 	 * freezing and unfreezing the request queue affects user space I/O
3578 	 * in case multiple processes open a /dev/sd... node concurrently.
3579 	 */
3580 	blk_mq_freeze_queue(q);
3581 	blk_mq_unfreeze_queue(q);
3582 
3583 	disk->private_data = NULL;
3584 	put_disk(disk);
3585 	put_device(&sdkp->device->sdev_gendev);
3586 
3587 	sd_zbc_release_disk(sdkp);
3588 
3589 	kfree(sdkp);
3590 }
3591 
3592 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3593 {
3594 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3595 	struct scsi_sense_hdr sshdr;
3596 	struct scsi_device *sdp = sdkp->device;
3597 	int res;
3598 
3599 	if (start)
3600 		cmd[4] |= 1;	/* START */
3601 
3602 	if (sdp->start_stop_pwr_cond)
3603 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3604 
3605 	if (!scsi_device_online(sdp))
3606 		return -ENODEV;
3607 
3608 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3609 			SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3610 	if (res) {
3611 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3612 		if (res > 0 && scsi_sense_valid(&sshdr)) {
3613 			sd_print_sense_hdr(sdkp, &sshdr);
3614 			/* 0x3a is medium not present */
3615 			if (sshdr.asc == 0x3a)
3616 				res = 0;
3617 		}
3618 	}
3619 
3620 	/* SCSI error codes must not go to the generic layer */
3621 	if (res)
3622 		return -EIO;
3623 
3624 	return 0;
3625 }
3626 
3627 /*
3628  * Send a SYNCHRONIZE CACHE instruction down to the device through
3629  * the normal SCSI command structure.  Wait for the command to
3630  * complete.
3631  */
3632 static void sd_shutdown(struct device *dev)
3633 {
3634 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3635 
3636 	if (!sdkp)
3637 		return;         /* this can happen */
3638 
3639 	if (pm_runtime_suspended(dev))
3640 		return;
3641 
3642 	if (sdkp->WCE && sdkp->media_present) {
3643 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3644 		sd_sync_cache(sdkp, NULL);
3645 	}
3646 
3647 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3648 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3649 		sd_start_stop_device(sdkp, 0);
3650 	}
3651 }
3652 
3653 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3654 {
3655 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3656 	struct scsi_sense_hdr sshdr;
3657 	int ret = 0;
3658 
3659 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3660 		return 0;
3661 
3662 	if (sdkp->WCE && sdkp->media_present) {
3663 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3664 		ret = sd_sync_cache(sdkp, &sshdr);
3665 
3666 		if (ret) {
3667 			/* ignore OFFLINE device */
3668 			if (ret == -ENODEV)
3669 				return 0;
3670 
3671 			if (!scsi_sense_valid(&sshdr) ||
3672 			    sshdr.sense_key != ILLEGAL_REQUEST)
3673 				return ret;
3674 
3675 			/*
3676 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3677 			 * doesn't support sync. There's not much to do and
3678 			 * suspend shouldn't fail.
3679 			 */
3680 			ret = 0;
3681 		}
3682 	}
3683 
3684 	if (sdkp->device->manage_start_stop) {
3685 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3686 		/* an error is not worth aborting a system sleep */
3687 		ret = sd_start_stop_device(sdkp, 0);
3688 		if (ignore_stop_errors)
3689 			ret = 0;
3690 	}
3691 
3692 	return ret;
3693 }
3694 
3695 static int sd_suspend_system(struct device *dev)
3696 {
3697 	return sd_suspend_common(dev, true);
3698 }
3699 
3700 static int sd_suspend_runtime(struct device *dev)
3701 {
3702 	return sd_suspend_common(dev, false);
3703 }
3704 
3705 static int sd_resume(struct device *dev)
3706 {
3707 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3708 	int ret;
3709 
3710 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3711 		return 0;
3712 
3713 	if (!sdkp->device->manage_start_stop)
3714 		return 0;
3715 
3716 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3717 	ret = sd_start_stop_device(sdkp, 1);
3718 	if (!ret)
3719 		opal_unlock_from_suspend(sdkp->opal_dev);
3720 	return ret;
3721 }
3722 
3723 /**
3724  *	init_sd - entry point for this driver (both when built in or when
3725  *	a module).
3726  *
3727  *	Note: this function registers this driver with the scsi mid-level.
3728  **/
3729 static int __init init_sd(void)
3730 {
3731 	int majors = 0, i, err;
3732 
3733 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3734 
3735 	for (i = 0; i < SD_MAJORS; i++) {
3736 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3737 			continue;
3738 		majors++;
3739 	}
3740 
3741 	if (!majors)
3742 		return -ENODEV;
3743 
3744 	err = class_register(&sd_disk_class);
3745 	if (err)
3746 		goto err_out;
3747 
3748 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3749 					 0, 0, NULL);
3750 	if (!sd_cdb_cache) {
3751 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3752 		err = -ENOMEM;
3753 		goto err_out_class;
3754 	}
3755 
3756 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3757 	if (!sd_cdb_pool) {
3758 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3759 		err = -ENOMEM;
3760 		goto err_out_cache;
3761 	}
3762 
3763 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3764 	if (!sd_page_pool) {
3765 		printk(KERN_ERR "sd: can't init discard page pool\n");
3766 		err = -ENOMEM;
3767 		goto err_out_ppool;
3768 	}
3769 
3770 	err = scsi_register_driver(&sd_template.gendrv);
3771 	if (err)
3772 		goto err_out_driver;
3773 
3774 	return 0;
3775 
3776 err_out_driver:
3777 	mempool_destroy(sd_page_pool);
3778 
3779 err_out_ppool:
3780 	mempool_destroy(sd_cdb_pool);
3781 
3782 err_out_cache:
3783 	kmem_cache_destroy(sd_cdb_cache);
3784 
3785 err_out_class:
3786 	class_unregister(&sd_disk_class);
3787 err_out:
3788 	for (i = 0; i < SD_MAJORS; i++)
3789 		unregister_blkdev(sd_major(i), "sd");
3790 	return err;
3791 }
3792 
3793 /**
3794  *	exit_sd - exit point for this driver (when it is a module).
3795  *
3796  *	Note: this function unregisters this driver from the scsi mid-level.
3797  **/
3798 static void __exit exit_sd(void)
3799 {
3800 	int i;
3801 
3802 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3803 
3804 	scsi_unregister_driver(&sd_template.gendrv);
3805 	mempool_destroy(sd_cdb_pool);
3806 	mempool_destroy(sd_page_pool);
3807 	kmem_cache_destroy(sd_cdb_cache);
3808 
3809 	class_unregister(&sd_disk_class);
3810 
3811 	for (i = 0; i < SD_MAJORS; i++)
3812 		unregister_blkdev(sd_major(i), "sd");
3813 }
3814 
3815 module_init(init_sd);
3816 module_exit(exit_sd);
3817 
3818 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3819 {
3820 	scsi_print_sense_hdr(sdkp->device,
3821 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3822 }
3823 
3824 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3825 {
3826 	const char *hb_string = scsi_hostbyte_string(result);
3827 
3828 	if (hb_string)
3829 		sd_printk(KERN_INFO, sdkp,
3830 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3831 			  hb_string ? hb_string : "invalid",
3832 			  "DRIVER_OK");
3833 	else
3834 		sd_printk(KERN_INFO, sdkp,
3835 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3836 			  msg, host_byte(result), "DRIVER_OK");
3837 }
3838