1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 102 #define SD_MINORS 16 103 #else 104 #define SD_MINORS 0 105 #endif 106 107 static void sd_config_discard(struct scsi_disk *, unsigned int); 108 static void sd_config_write_same(struct scsi_disk *); 109 static int sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static int sd_probe(struct device *); 112 static int sd_remove(struct device *); 113 static void sd_shutdown(struct device *); 114 static int sd_suspend_system(struct device *); 115 static int sd_suspend_runtime(struct device *); 116 static int sd_resume(struct device *); 117 static void sd_rescan(struct device *); 118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 119 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 120 static int sd_done(struct scsi_cmnd *); 121 static void sd_eh_reset(struct scsi_cmnd *); 122 static int sd_eh_action(struct scsi_cmnd *, int); 123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 124 static void scsi_disk_release(struct device *cdev); 125 126 static DEFINE_IDA(sd_index_ida); 127 128 /* This semaphore is used to mediate the 0->1 reference get in the 129 * face of object destruction (i.e. we can't allow a get on an 130 * object after last put) */ 131 static DEFINE_MUTEX(sd_ref_mutex); 132 133 static struct kmem_cache *sd_cdb_cache; 134 static mempool_t *sd_cdb_pool; 135 static mempool_t *sd_page_pool; 136 137 static const char *sd_cache_types[] = { 138 "write through", "none", "write back", 139 "write back, no read (daft)" 140 }; 141 142 static void sd_set_flush_flag(struct scsi_disk *sdkp) 143 { 144 bool wc = false, fua = false; 145 146 if (sdkp->WCE) { 147 wc = true; 148 if (sdkp->DPOFUA) 149 fua = true; 150 } 151 152 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 153 } 154 155 static ssize_t 156 cache_type_store(struct device *dev, struct device_attribute *attr, 157 const char *buf, size_t count) 158 { 159 int ct, rcd, wce, sp; 160 struct scsi_disk *sdkp = to_scsi_disk(dev); 161 struct scsi_device *sdp = sdkp->device; 162 char buffer[64]; 163 char *buffer_data; 164 struct scsi_mode_data data; 165 struct scsi_sense_hdr sshdr; 166 static const char temp[] = "temporary "; 167 int len; 168 169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 170 /* no cache control on RBC devices; theoretically they 171 * can do it, but there's probably so many exceptions 172 * it's not worth the risk */ 173 return -EINVAL; 174 175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 176 buf += sizeof(temp) - 1; 177 sdkp->cache_override = 1; 178 } else { 179 sdkp->cache_override = 0; 180 } 181 182 ct = sysfs_match_string(sd_cache_types, buf); 183 if (ct < 0) 184 return -EINVAL; 185 186 rcd = ct & 0x01 ? 1 : 0; 187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 188 189 if (sdkp->cache_override) { 190 sdkp->WCE = wce; 191 sdkp->RCD = rcd; 192 sd_set_flush_flag(sdkp); 193 return count; 194 } 195 196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 197 sdkp->max_retries, &data, NULL)) 198 return -EINVAL; 199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 200 data.block_descriptor_length); 201 buffer_data = buffer + data.header_length + 202 data.block_descriptor_length; 203 buffer_data[2] &= ~0x05; 204 buffer_data[2] |= wce << 2 | rcd; 205 sp = buffer_data[0] & 0x80 ? 1 : 0; 206 buffer_data[0] &= ~0x80; 207 208 /* 209 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 210 * received mode parameter buffer before doing MODE SELECT. 211 */ 212 data.device_specific = 0; 213 214 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 215 sdkp->max_retries, &data, &sshdr)) { 216 if (scsi_sense_valid(&sshdr)) 217 sd_print_sense_hdr(sdkp, &sshdr); 218 return -EINVAL; 219 } 220 sd_revalidate_disk(sdkp->disk); 221 return count; 222 } 223 224 static ssize_t 225 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 226 char *buf) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 231 return sprintf(buf, "%u\n", sdp->manage_start_stop); 232 } 233 234 static ssize_t 235 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 236 const char *buf, size_t count) 237 { 238 struct scsi_disk *sdkp = to_scsi_disk(dev); 239 struct scsi_device *sdp = sdkp->device; 240 bool v; 241 242 if (!capable(CAP_SYS_ADMIN)) 243 return -EACCES; 244 245 if (kstrtobool(buf, &v)) 246 return -EINVAL; 247 248 sdp->manage_start_stop = v; 249 250 return count; 251 } 252 static DEVICE_ATTR_RW(manage_start_stop); 253 254 static ssize_t 255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 256 { 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 259 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 260 } 261 262 static ssize_t 263 allow_restart_store(struct device *dev, struct device_attribute *attr, 264 const char *buf, size_t count) 265 { 266 bool v; 267 struct scsi_disk *sdkp = to_scsi_disk(dev); 268 struct scsi_device *sdp = sdkp->device; 269 270 if (!capable(CAP_SYS_ADMIN)) 271 return -EACCES; 272 273 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 274 return -EINVAL; 275 276 if (kstrtobool(buf, &v)) 277 return -EINVAL; 278 279 sdp->allow_restart = v; 280 281 return count; 282 } 283 static DEVICE_ATTR_RW(allow_restart); 284 285 static ssize_t 286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 int ct = sdkp->RCD + 2*sdkp->WCE; 290 291 return sprintf(buf, "%s\n", sd_cache_types[ct]); 292 } 293 static DEVICE_ATTR_RW(cache_type); 294 295 static ssize_t 296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->DPOFUA); 301 } 302 static DEVICE_ATTR_RO(FUA); 303 304 static ssize_t 305 protection_type_show(struct device *dev, struct device_attribute *attr, 306 char *buf) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 310 return sprintf(buf, "%u\n", sdkp->protection_type); 311 } 312 313 static ssize_t 314 protection_type_store(struct device *dev, struct device_attribute *attr, 315 const char *buf, size_t count) 316 { 317 struct scsi_disk *sdkp = to_scsi_disk(dev); 318 unsigned int val; 319 int err; 320 321 if (!capable(CAP_SYS_ADMIN)) 322 return -EACCES; 323 324 err = kstrtouint(buf, 10, &val); 325 326 if (err) 327 return err; 328 329 if (val <= T10_PI_TYPE3_PROTECTION) 330 sdkp->protection_type = val; 331 332 return count; 333 } 334 static DEVICE_ATTR_RW(protection_type); 335 336 static ssize_t 337 protection_mode_show(struct device *dev, struct device_attribute *attr, 338 char *buf) 339 { 340 struct scsi_disk *sdkp = to_scsi_disk(dev); 341 struct scsi_device *sdp = sdkp->device; 342 unsigned int dif, dix; 343 344 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 345 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 346 347 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 348 dif = 0; 349 dix = 1; 350 } 351 352 if (!dif && !dix) 353 return sprintf(buf, "none\n"); 354 355 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 356 } 357 static DEVICE_ATTR_RO(protection_mode); 358 359 static ssize_t 360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->ATO); 365 } 366 static DEVICE_ATTR_RO(app_tag_own); 367 368 static ssize_t 369 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 370 char *buf) 371 { 372 struct scsi_disk *sdkp = to_scsi_disk(dev); 373 374 return sprintf(buf, "%u\n", sdkp->lbpme); 375 } 376 static DEVICE_ATTR_RO(thin_provisioning); 377 378 /* sysfs_match_string() requires dense arrays */ 379 static const char *lbp_mode[] = { 380 [SD_LBP_FULL] = "full", 381 [SD_LBP_UNMAP] = "unmap", 382 [SD_LBP_WS16] = "writesame_16", 383 [SD_LBP_WS10] = "writesame_10", 384 [SD_LBP_ZERO] = "writesame_zero", 385 [SD_LBP_DISABLE] = "disabled", 386 }; 387 388 static ssize_t 389 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 390 char *buf) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 394 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 395 } 396 397 static ssize_t 398 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 399 const char *buf, size_t count) 400 { 401 struct scsi_disk *sdkp = to_scsi_disk(dev); 402 struct scsi_device *sdp = sdkp->device; 403 int mode; 404 405 if (!capable(CAP_SYS_ADMIN)) 406 return -EACCES; 407 408 if (sd_is_zoned(sdkp)) { 409 sd_config_discard(sdkp, SD_LBP_DISABLE); 410 return count; 411 } 412 413 if (sdp->type != TYPE_DISK) 414 return -EINVAL; 415 416 mode = sysfs_match_string(lbp_mode, buf); 417 if (mode < 0) 418 return -EINVAL; 419 420 sd_config_discard(sdkp, mode); 421 422 return count; 423 } 424 static DEVICE_ATTR_RW(provisioning_mode); 425 426 /* sysfs_match_string() requires dense arrays */ 427 static const char *zeroing_mode[] = { 428 [SD_ZERO_WRITE] = "write", 429 [SD_ZERO_WS] = "writesame", 430 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 431 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 432 }; 433 434 static ssize_t 435 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 436 char *buf) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 440 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 441 } 442 443 static ssize_t 444 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 445 const char *buf, size_t count) 446 { 447 struct scsi_disk *sdkp = to_scsi_disk(dev); 448 int mode; 449 450 if (!capable(CAP_SYS_ADMIN)) 451 return -EACCES; 452 453 mode = sysfs_match_string(zeroing_mode, buf); 454 if (mode < 0) 455 return -EINVAL; 456 457 sdkp->zeroing_mode = mode; 458 459 return count; 460 } 461 static DEVICE_ATTR_RW(zeroing_mode); 462 463 static ssize_t 464 max_medium_access_timeouts_show(struct device *dev, 465 struct device_attribute *attr, char *buf) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 469 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 470 } 471 472 static ssize_t 473 max_medium_access_timeouts_store(struct device *dev, 474 struct device_attribute *attr, const char *buf, 475 size_t count) 476 { 477 struct scsi_disk *sdkp = to_scsi_disk(dev); 478 int err; 479 480 if (!capable(CAP_SYS_ADMIN)) 481 return -EACCES; 482 483 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 484 485 return err ? err : count; 486 } 487 static DEVICE_ATTR_RW(max_medium_access_timeouts); 488 489 static ssize_t 490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 491 char *buf) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 495 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 496 } 497 498 static ssize_t 499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 500 const char *buf, size_t count) 501 { 502 struct scsi_disk *sdkp = to_scsi_disk(dev); 503 struct scsi_device *sdp = sdkp->device; 504 unsigned long max; 505 int err; 506 507 if (!capable(CAP_SYS_ADMIN)) 508 return -EACCES; 509 510 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 511 return -EINVAL; 512 513 err = kstrtoul(buf, 10, &max); 514 515 if (err) 516 return err; 517 518 if (max == 0) 519 sdp->no_write_same = 1; 520 else if (max <= SD_MAX_WS16_BLOCKS) { 521 sdp->no_write_same = 0; 522 sdkp->max_ws_blocks = max; 523 } 524 525 sd_config_write_same(sdkp); 526 527 return count; 528 } 529 static DEVICE_ATTR_RW(max_write_same_blocks); 530 531 static ssize_t 532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 533 { 534 struct scsi_disk *sdkp = to_scsi_disk(dev); 535 536 if (sdkp->device->type == TYPE_ZBC) 537 return sprintf(buf, "host-managed\n"); 538 if (sdkp->zoned == 1) 539 return sprintf(buf, "host-aware\n"); 540 if (sdkp->zoned == 2) 541 return sprintf(buf, "drive-managed\n"); 542 return sprintf(buf, "none\n"); 543 } 544 static DEVICE_ATTR_RO(zoned_cap); 545 546 static ssize_t 547 max_retries_store(struct device *dev, struct device_attribute *attr, 548 const char *buf, size_t count) 549 { 550 struct scsi_disk *sdkp = to_scsi_disk(dev); 551 struct scsi_device *sdev = sdkp->device; 552 int retries, err; 553 554 err = kstrtoint(buf, 10, &retries); 555 if (err) 556 return err; 557 558 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 559 sdkp->max_retries = retries; 560 return count; 561 } 562 563 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 564 SD_MAX_RETRIES); 565 return -EINVAL; 566 } 567 568 static ssize_t 569 max_retries_show(struct device *dev, struct device_attribute *attr, 570 char *buf) 571 { 572 struct scsi_disk *sdkp = to_scsi_disk(dev); 573 574 return sprintf(buf, "%d\n", sdkp->max_retries); 575 } 576 577 static DEVICE_ATTR_RW(max_retries); 578 579 static struct attribute *sd_disk_attrs[] = { 580 &dev_attr_cache_type.attr, 581 &dev_attr_FUA.attr, 582 &dev_attr_allow_restart.attr, 583 &dev_attr_manage_start_stop.attr, 584 &dev_attr_protection_type.attr, 585 &dev_attr_protection_mode.attr, 586 &dev_attr_app_tag_own.attr, 587 &dev_attr_thin_provisioning.attr, 588 &dev_attr_provisioning_mode.attr, 589 &dev_attr_zeroing_mode.attr, 590 &dev_attr_max_write_same_blocks.attr, 591 &dev_attr_max_medium_access_timeouts.attr, 592 &dev_attr_zoned_cap.attr, 593 &dev_attr_max_retries.attr, 594 NULL, 595 }; 596 ATTRIBUTE_GROUPS(sd_disk); 597 598 static struct class sd_disk_class = { 599 .name = "scsi_disk", 600 .owner = THIS_MODULE, 601 .dev_release = scsi_disk_release, 602 .dev_groups = sd_disk_groups, 603 }; 604 605 static const struct dev_pm_ops sd_pm_ops = { 606 .suspend = sd_suspend_system, 607 .resume = sd_resume, 608 .poweroff = sd_suspend_system, 609 .restore = sd_resume, 610 .runtime_suspend = sd_suspend_runtime, 611 .runtime_resume = sd_resume, 612 }; 613 614 static struct scsi_driver sd_template = { 615 .gendrv = { 616 .name = "sd", 617 .owner = THIS_MODULE, 618 .probe = sd_probe, 619 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 620 .remove = sd_remove, 621 .shutdown = sd_shutdown, 622 .pm = &sd_pm_ops, 623 }, 624 .rescan = sd_rescan, 625 .init_command = sd_init_command, 626 .uninit_command = sd_uninit_command, 627 .done = sd_done, 628 .eh_action = sd_eh_action, 629 .eh_reset = sd_eh_reset, 630 }; 631 632 /* 633 * Don't request a new module, as that could deadlock in multipath 634 * environment. 635 */ 636 static void sd_default_probe(dev_t devt) 637 { 638 } 639 640 /* 641 * Device no to disk mapping: 642 * 643 * major disc2 disc p1 644 * |............|.............|....|....| <- dev_t 645 * 31 20 19 8 7 4 3 0 646 * 647 * Inside a major, we have 16k disks, however mapped non- 648 * contiguously. The first 16 disks are for major0, the next 649 * ones with major1, ... Disk 256 is for major0 again, disk 272 650 * for major1, ... 651 * As we stay compatible with our numbering scheme, we can reuse 652 * the well-know SCSI majors 8, 65--71, 136--143. 653 */ 654 static int sd_major(int major_idx) 655 { 656 switch (major_idx) { 657 case 0: 658 return SCSI_DISK0_MAJOR; 659 case 1 ... 7: 660 return SCSI_DISK1_MAJOR + major_idx - 1; 661 case 8 ... 15: 662 return SCSI_DISK8_MAJOR + major_idx - 8; 663 default: 664 BUG(); 665 return 0; /* shut up gcc */ 666 } 667 } 668 669 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 670 { 671 struct scsi_disk *sdkp = NULL; 672 673 mutex_lock(&sd_ref_mutex); 674 675 if (disk->private_data) { 676 sdkp = scsi_disk(disk); 677 if (scsi_device_get(sdkp->device) == 0) 678 get_device(&sdkp->dev); 679 else 680 sdkp = NULL; 681 } 682 mutex_unlock(&sd_ref_mutex); 683 return sdkp; 684 } 685 686 static void scsi_disk_put(struct scsi_disk *sdkp) 687 { 688 struct scsi_device *sdev = sdkp->device; 689 690 mutex_lock(&sd_ref_mutex); 691 put_device(&sdkp->dev); 692 scsi_device_put(sdev); 693 mutex_unlock(&sd_ref_mutex); 694 } 695 696 #ifdef CONFIG_BLK_SED_OPAL 697 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 698 size_t len, bool send) 699 { 700 struct scsi_disk *sdkp = data; 701 struct scsi_device *sdev = sdkp->device; 702 u8 cdb[12] = { 0, }; 703 int ret; 704 705 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 706 cdb[1] = secp; 707 put_unaligned_be16(spsp, &cdb[2]); 708 put_unaligned_be32(len, &cdb[6]); 709 710 ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 711 buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0, 712 RQF_PM, NULL); 713 return ret <= 0 ? ret : -EIO; 714 } 715 #endif /* CONFIG_BLK_SED_OPAL */ 716 717 /* 718 * Look up the DIX operation based on whether the command is read or 719 * write and whether dix and dif are enabled. 720 */ 721 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 722 { 723 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 724 static const unsigned int ops[] = { /* wrt dix dif */ 725 SCSI_PROT_NORMAL, /* 0 0 0 */ 726 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 727 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 728 SCSI_PROT_READ_PASS, /* 0 1 1 */ 729 SCSI_PROT_NORMAL, /* 1 0 0 */ 730 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 731 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 732 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 733 }; 734 735 return ops[write << 2 | dix << 1 | dif]; 736 } 737 738 /* 739 * Returns a mask of the protection flags that are valid for a given DIX 740 * operation. 741 */ 742 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 743 { 744 static const unsigned int flag_mask[] = { 745 [SCSI_PROT_NORMAL] = 0, 746 747 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 748 SCSI_PROT_GUARD_CHECK | 749 SCSI_PROT_REF_CHECK | 750 SCSI_PROT_REF_INCREMENT, 751 752 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 753 SCSI_PROT_IP_CHECKSUM, 754 755 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 756 SCSI_PROT_GUARD_CHECK | 757 SCSI_PROT_REF_CHECK | 758 SCSI_PROT_REF_INCREMENT | 759 SCSI_PROT_IP_CHECKSUM, 760 761 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 762 SCSI_PROT_REF_INCREMENT, 763 764 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 765 SCSI_PROT_REF_CHECK | 766 SCSI_PROT_REF_INCREMENT | 767 SCSI_PROT_IP_CHECKSUM, 768 769 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 770 SCSI_PROT_GUARD_CHECK | 771 SCSI_PROT_REF_CHECK | 772 SCSI_PROT_REF_INCREMENT | 773 SCSI_PROT_IP_CHECKSUM, 774 }; 775 776 return flag_mask[prot_op]; 777 } 778 779 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 780 unsigned int dix, unsigned int dif) 781 { 782 struct bio *bio = scmd->request->bio; 783 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 784 unsigned int protect = 0; 785 786 if (dix) { /* DIX Type 0, 1, 2, 3 */ 787 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 788 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 789 790 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 791 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 792 } 793 794 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 795 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 796 797 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 798 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 799 } 800 801 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 802 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 803 804 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 805 protect = 3 << 5; /* Disable target PI checking */ 806 else 807 protect = 1 << 5; /* Enable target PI checking */ 808 } 809 810 scsi_set_prot_op(scmd, prot_op); 811 scsi_set_prot_type(scmd, dif); 812 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 813 814 return protect; 815 } 816 817 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 818 { 819 struct request_queue *q = sdkp->disk->queue; 820 unsigned int logical_block_size = sdkp->device->sector_size; 821 unsigned int max_blocks = 0; 822 823 q->limits.discard_alignment = 824 sdkp->unmap_alignment * logical_block_size; 825 q->limits.discard_granularity = 826 max(sdkp->physical_block_size, 827 sdkp->unmap_granularity * logical_block_size); 828 sdkp->provisioning_mode = mode; 829 830 switch (mode) { 831 832 case SD_LBP_FULL: 833 case SD_LBP_DISABLE: 834 blk_queue_max_discard_sectors(q, 0); 835 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 836 return; 837 838 case SD_LBP_UNMAP: 839 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 840 (u32)SD_MAX_WS16_BLOCKS); 841 break; 842 843 case SD_LBP_WS16: 844 if (sdkp->device->unmap_limit_for_ws) 845 max_blocks = sdkp->max_unmap_blocks; 846 else 847 max_blocks = sdkp->max_ws_blocks; 848 849 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 850 break; 851 852 case SD_LBP_WS10: 853 if (sdkp->device->unmap_limit_for_ws) 854 max_blocks = sdkp->max_unmap_blocks; 855 else 856 max_blocks = sdkp->max_ws_blocks; 857 858 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 859 break; 860 861 case SD_LBP_ZERO: 862 max_blocks = min_not_zero(sdkp->max_ws_blocks, 863 (u32)SD_MAX_WS10_BLOCKS); 864 break; 865 } 866 867 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 868 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 869 } 870 871 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 872 { 873 struct scsi_device *sdp = cmd->device; 874 struct request *rq = cmd->request; 875 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 876 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 877 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 878 unsigned int data_len = 24; 879 char *buf; 880 881 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 882 if (!rq->special_vec.bv_page) 883 return BLK_STS_RESOURCE; 884 clear_highpage(rq->special_vec.bv_page); 885 rq->special_vec.bv_offset = 0; 886 rq->special_vec.bv_len = data_len; 887 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 888 889 cmd->cmd_len = 10; 890 cmd->cmnd[0] = UNMAP; 891 cmd->cmnd[8] = 24; 892 893 buf = page_address(rq->special_vec.bv_page); 894 put_unaligned_be16(6 + 16, &buf[0]); 895 put_unaligned_be16(16, &buf[2]); 896 put_unaligned_be64(lba, &buf[8]); 897 put_unaligned_be32(nr_blocks, &buf[16]); 898 899 cmd->allowed = sdkp->max_retries; 900 cmd->transfersize = data_len; 901 rq->timeout = SD_TIMEOUT; 902 903 return scsi_alloc_sgtables(cmd); 904 } 905 906 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 907 bool unmap) 908 { 909 struct scsi_device *sdp = cmd->device; 910 struct request *rq = cmd->request; 911 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 912 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 913 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 914 u32 data_len = sdp->sector_size; 915 916 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 917 if (!rq->special_vec.bv_page) 918 return BLK_STS_RESOURCE; 919 clear_highpage(rq->special_vec.bv_page); 920 rq->special_vec.bv_offset = 0; 921 rq->special_vec.bv_len = data_len; 922 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 923 924 cmd->cmd_len = 16; 925 cmd->cmnd[0] = WRITE_SAME_16; 926 if (unmap) 927 cmd->cmnd[1] = 0x8; /* UNMAP */ 928 put_unaligned_be64(lba, &cmd->cmnd[2]); 929 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 930 931 cmd->allowed = sdkp->max_retries; 932 cmd->transfersize = data_len; 933 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 934 935 return scsi_alloc_sgtables(cmd); 936 } 937 938 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 939 bool unmap) 940 { 941 struct scsi_device *sdp = cmd->device; 942 struct request *rq = cmd->request; 943 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 944 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 945 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 946 u32 data_len = sdp->sector_size; 947 948 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 949 if (!rq->special_vec.bv_page) 950 return BLK_STS_RESOURCE; 951 clear_highpage(rq->special_vec.bv_page); 952 rq->special_vec.bv_offset = 0; 953 rq->special_vec.bv_len = data_len; 954 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 955 956 cmd->cmd_len = 10; 957 cmd->cmnd[0] = WRITE_SAME; 958 if (unmap) 959 cmd->cmnd[1] = 0x8; /* UNMAP */ 960 put_unaligned_be32(lba, &cmd->cmnd[2]); 961 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 962 963 cmd->allowed = sdkp->max_retries; 964 cmd->transfersize = data_len; 965 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 966 967 return scsi_alloc_sgtables(cmd); 968 } 969 970 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 971 { 972 struct request *rq = cmd->request; 973 struct scsi_device *sdp = cmd->device; 974 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 975 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 976 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 977 978 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 979 switch (sdkp->zeroing_mode) { 980 case SD_ZERO_WS16_UNMAP: 981 return sd_setup_write_same16_cmnd(cmd, true); 982 case SD_ZERO_WS10_UNMAP: 983 return sd_setup_write_same10_cmnd(cmd, true); 984 } 985 } 986 987 if (sdp->no_write_same) { 988 rq->rq_flags |= RQF_QUIET; 989 return BLK_STS_TARGET; 990 } 991 992 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 993 return sd_setup_write_same16_cmnd(cmd, false); 994 995 return sd_setup_write_same10_cmnd(cmd, false); 996 } 997 998 static void sd_config_write_same(struct scsi_disk *sdkp) 999 { 1000 struct request_queue *q = sdkp->disk->queue; 1001 unsigned int logical_block_size = sdkp->device->sector_size; 1002 1003 if (sdkp->device->no_write_same) { 1004 sdkp->max_ws_blocks = 0; 1005 goto out; 1006 } 1007 1008 /* Some devices can not handle block counts above 0xffff despite 1009 * supporting WRITE SAME(16). Consequently we default to 64k 1010 * blocks per I/O unless the device explicitly advertises a 1011 * bigger limit. 1012 */ 1013 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1014 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1015 (u32)SD_MAX_WS16_BLOCKS); 1016 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1017 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1018 (u32)SD_MAX_WS10_BLOCKS); 1019 else { 1020 sdkp->device->no_write_same = 1; 1021 sdkp->max_ws_blocks = 0; 1022 } 1023 1024 if (sdkp->lbprz && sdkp->lbpws) 1025 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1026 else if (sdkp->lbprz && sdkp->lbpws10) 1027 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1028 else if (sdkp->max_ws_blocks) 1029 sdkp->zeroing_mode = SD_ZERO_WS; 1030 else 1031 sdkp->zeroing_mode = SD_ZERO_WRITE; 1032 1033 if (sdkp->max_ws_blocks && 1034 sdkp->physical_block_size > logical_block_size) { 1035 /* 1036 * Reporting a maximum number of blocks that is not aligned 1037 * on the device physical size would cause a large write same 1038 * request to be split into physically unaligned chunks by 1039 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1040 * even if the caller of these functions took care to align the 1041 * large request. So make sure the maximum reported is aligned 1042 * to the device physical block size. This is only an optional 1043 * optimization for regular disks, but this is mandatory to 1044 * avoid failure of large write same requests directed at 1045 * sequential write required zones of host-managed ZBC disks. 1046 */ 1047 sdkp->max_ws_blocks = 1048 round_down(sdkp->max_ws_blocks, 1049 bytes_to_logical(sdkp->device, 1050 sdkp->physical_block_size)); 1051 } 1052 1053 out: 1054 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1055 (logical_block_size >> 9)); 1056 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1057 (logical_block_size >> 9)); 1058 } 1059 1060 /** 1061 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1062 * @cmd: command to prepare 1063 * 1064 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1065 * the preference indicated by the target device. 1066 **/ 1067 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1068 { 1069 struct request *rq = cmd->request; 1070 struct scsi_device *sdp = cmd->device; 1071 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1072 struct bio *bio = rq->bio; 1073 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1074 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1075 blk_status_t ret; 1076 1077 if (sdkp->device->no_write_same) 1078 return BLK_STS_TARGET; 1079 1080 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1081 1082 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1083 1084 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1085 cmd->cmd_len = 16; 1086 cmd->cmnd[0] = WRITE_SAME_16; 1087 put_unaligned_be64(lba, &cmd->cmnd[2]); 1088 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1089 } else { 1090 cmd->cmd_len = 10; 1091 cmd->cmnd[0] = WRITE_SAME; 1092 put_unaligned_be32(lba, &cmd->cmnd[2]); 1093 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1094 } 1095 1096 cmd->transfersize = sdp->sector_size; 1097 cmd->allowed = sdkp->max_retries; 1098 1099 /* 1100 * For WRITE SAME the data transferred via the DATA OUT buffer is 1101 * different from the amount of data actually written to the target. 1102 * 1103 * We set up __data_len to the amount of data transferred via the 1104 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1105 * to transfer a single sector of data first, but then reset it to 1106 * the amount of data to be written right after so that the I/O path 1107 * knows how much to actually write. 1108 */ 1109 rq->__data_len = sdp->sector_size; 1110 ret = scsi_alloc_sgtables(cmd); 1111 rq->__data_len = blk_rq_bytes(rq); 1112 1113 return ret; 1114 } 1115 1116 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1117 { 1118 struct request *rq = cmd->request; 1119 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1120 1121 /* flush requests don't perform I/O, zero the S/G table */ 1122 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1123 1124 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1125 cmd->cmd_len = 10; 1126 cmd->transfersize = 0; 1127 cmd->allowed = sdkp->max_retries; 1128 1129 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1130 return BLK_STS_OK; 1131 } 1132 1133 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1134 sector_t lba, unsigned int nr_blocks, 1135 unsigned char flags) 1136 { 1137 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1138 if (unlikely(cmd->cmnd == NULL)) 1139 return BLK_STS_RESOURCE; 1140 1141 cmd->cmd_len = SD_EXT_CDB_SIZE; 1142 memset(cmd->cmnd, 0, cmd->cmd_len); 1143 1144 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1145 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1146 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1147 cmd->cmnd[10] = flags; 1148 put_unaligned_be64(lba, &cmd->cmnd[12]); 1149 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1150 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1151 1152 return BLK_STS_OK; 1153 } 1154 1155 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1156 sector_t lba, unsigned int nr_blocks, 1157 unsigned char flags) 1158 { 1159 cmd->cmd_len = 16; 1160 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1161 cmd->cmnd[1] = flags; 1162 cmd->cmnd[14] = 0; 1163 cmd->cmnd[15] = 0; 1164 put_unaligned_be64(lba, &cmd->cmnd[2]); 1165 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1166 1167 return BLK_STS_OK; 1168 } 1169 1170 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1171 sector_t lba, unsigned int nr_blocks, 1172 unsigned char flags) 1173 { 1174 cmd->cmd_len = 10; 1175 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1176 cmd->cmnd[1] = flags; 1177 cmd->cmnd[6] = 0; 1178 cmd->cmnd[9] = 0; 1179 put_unaligned_be32(lba, &cmd->cmnd[2]); 1180 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1181 1182 return BLK_STS_OK; 1183 } 1184 1185 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1186 sector_t lba, unsigned int nr_blocks, 1187 unsigned char flags) 1188 { 1189 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1190 if (WARN_ON_ONCE(nr_blocks == 0)) 1191 return BLK_STS_IOERR; 1192 1193 if (unlikely(flags & 0x8)) { 1194 /* 1195 * This happens only if this drive failed 10byte rw 1196 * command with ILLEGAL_REQUEST during operation and 1197 * thus turned off use_10_for_rw. 1198 */ 1199 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1200 return BLK_STS_IOERR; 1201 } 1202 1203 cmd->cmd_len = 6; 1204 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1205 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1206 cmd->cmnd[2] = (lba >> 8) & 0xff; 1207 cmd->cmnd[3] = lba & 0xff; 1208 cmd->cmnd[4] = nr_blocks; 1209 cmd->cmnd[5] = 0; 1210 1211 return BLK_STS_OK; 1212 } 1213 1214 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1215 { 1216 struct request *rq = cmd->request; 1217 struct scsi_device *sdp = cmd->device; 1218 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1219 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1220 sector_t threshold; 1221 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1222 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1223 bool write = rq_data_dir(rq) == WRITE; 1224 unsigned char protect, fua; 1225 blk_status_t ret; 1226 unsigned int dif; 1227 bool dix; 1228 1229 ret = scsi_alloc_sgtables(cmd); 1230 if (ret != BLK_STS_OK) 1231 return ret; 1232 1233 ret = BLK_STS_IOERR; 1234 if (!scsi_device_online(sdp) || sdp->changed) { 1235 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1236 goto fail; 1237 } 1238 1239 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1240 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1241 goto fail; 1242 } 1243 1244 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1245 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1246 goto fail; 1247 } 1248 1249 /* 1250 * Some SD card readers can't handle accesses which touch the 1251 * last one or two logical blocks. Split accesses as needed. 1252 */ 1253 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1254 1255 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1256 if (lba < threshold) { 1257 /* Access up to the threshold but not beyond */ 1258 nr_blocks = threshold - lba; 1259 } else { 1260 /* Access only a single logical block */ 1261 nr_blocks = 1; 1262 } 1263 } 1264 1265 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1266 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1267 if (ret) 1268 goto fail; 1269 } 1270 1271 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1272 dix = scsi_prot_sg_count(cmd); 1273 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1274 1275 if (dif || dix) 1276 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1277 else 1278 protect = 0; 1279 1280 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1281 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1282 protect | fua); 1283 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1284 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1285 protect | fua); 1286 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1287 sdp->use_10_for_rw || protect) { 1288 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1289 protect | fua); 1290 } else { 1291 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1292 protect | fua); 1293 } 1294 1295 if (unlikely(ret != BLK_STS_OK)) 1296 goto fail; 1297 1298 /* 1299 * We shouldn't disconnect in the middle of a sector, so with a dumb 1300 * host adapter, it's safe to assume that we can at least transfer 1301 * this many bytes between each connect / disconnect. 1302 */ 1303 cmd->transfersize = sdp->sector_size; 1304 cmd->underflow = nr_blocks << 9; 1305 cmd->allowed = sdkp->max_retries; 1306 cmd->sdb.length = nr_blocks * sdp->sector_size; 1307 1308 SCSI_LOG_HLQUEUE(1, 1309 scmd_printk(KERN_INFO, cmd, 1310 "%s: block=%llu, count=%d\n", __func__, 1311 (unsigned long long)blk_rq_pos(rq), 1312 blk_rq_sectors(rq))); 1313 SCSI_LOG_HLQUEUE(2, 1314 scmd_printk(KERN_INFO, cmd, 1315 "%s %d/%u 512 byte blocks.\n", 1316 write ? "writing" : "reading", nr_blocks, 1317 blk_rq_sectors(rq))); 1318 1319 /* 1320 * This indicates that the command is ready from our end to be queued. 1321 */ 1322 return BLK_STS_OK; 1323 fail: 1324 scsi_free_sgtables(cmd); 1325 return ret; 1326 } 1327 1328 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1329 { 1330 struct request *rq = cmd->request; 1331 1332 switch (req_op(rq)) { 1333 case REQ_OP_DISCARD: 1334 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1335 case SD_LBP_UNMAP: 1336 return sd_setup_unmap_cmnd(cmd); 1337 case SD_LBP_WS16: 1338 return sd_setup_write_same16_cmnd(cmd, true); 1339 case SD_LBP_WS10: 1340 return sd_setup_write_same10_cmnd(cmd, true); 1341 case SD_LBP_ZERO: 1342 return sd_setup_write_same10_cmnd(cmd, false); 1343 default: 1344 return BLK_STS_TARGET; 1345 } 1346 case REQ_OP_WRITE_ZEROES: 1347 return sd_setup_write_zeroes_cmnd(cmd); 1348 case REQ_OP_WRITE_SAME: 1349 return sd_setup_write_same_cmnd(cmd); 1350 case REQ_OP_FLUSH: 1351 return sd_setup_flush_cmnd(cmd); 1352 case REQ_OP_READ: 1353 case REQ_OP_WRITE: 1354 case REQ_OP_ZONE_APPEND: 1355 return sd_setup_read_write_cmnd(cmd); 1356 case REQ_OP_ZONE_RESET: 1357 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1358 false); 1359 case REQ_OP_ZONE_RESET_ALL: 1360 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1361 true); 1362 case REQ_OP_ZONE_OPEN: 1363 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1364 case REQ_OP_ZONE_CLOSE: 1365 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1366 case REQ_OP_ZONE_FINISH: 1367 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1368 default: 1369 WARN_ON_ONCE(1); 1370 return BLK_STS_NOTSUPP; 1371 } 1372 } 1373 1374 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1375 { 1376 struct request *rq = SCpnt->request; 1377 u8 *cmnd; 1378 1379 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1380 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1381 1382 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1383 cmnd = SCpnt->cmnd; 1384 SCpnt->cmnd = NULL; 1385 SCpnt->cmd_len = 0; 1386 mempool_free(cmnd, sd_cdb_pool); 1387 } 1388 } 1389 1390 static bool sd_need_revalidate(struct block_device *bdev, 1391 struct scsi_disk *sdkp) 1392 { 1393 if (sdkp->device->removable || sdkp->write_prot) { 1394 if (bdev_check_media_change(bdev)) 1395 return true; 1396 } 1397 1398 /* 1399 * Force a full rescan after ioctl(BLKRRPART). While the disk state has 1400 * nothing to do with partitions, BLKRRPART is used to force a full 1401 * revalidate after things like a format for historical reasons. 1402 */ 1403 return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state); 1404 } 1405 1406 /** 1407 * sd_open - open a scsi disk device 1408 * @bdev: Block device of the scsi disk to open 1409 * @mode: FMODE_* mask 1410 * 1411 * Returns 0 if successful. Returns a negated errno value in case 1412 * of error. 1413 * 1414 * Note: This can be called from a user context (e.g. fsck(1) ) 1415 * or from within the kernel (e.g. as a result of a mount(1) ). 1416 * In the latter case @inode and @filp carry an abridged amount 1417 * of information as noted above. 1418 * 1419 * Locking: called with bdev->bd_disk->open_mutex held. 1420 **/ 1421 static int sd_open(struct block_device *bdev, fmode_t mode) 1422 { 1423 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1424 struct scsi_device *sdev; 1425 int retval; 1426 1427 if (!sdkp) 1428 return -ENXIO; 1429 1430 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1431 1432 sdev = sdkp->device; 1433 1434 /* 1435 * If the device is in error recovery, wait until it is done. 1436 * If the device is offline, then disallow any access to it. 1437 */ 1438 retval = -ENXIO; 1439 if (!scsi_block_when_processing_errors(sdev)) 1440 goto error_out; 1441 1442 if (sd_need_revalidate(bdev, sdkp)) 1443 sd_revalidate_disk(bdev->bd_disk); 1444 1445 /* 1446 * If the drive is empty, just let the open fail. 1447 */ 1448 retval = -ENOMEDIUM; 1449 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1450 goto error_out; 1451 1452 /* 1453 * If the device has the write protect tab set, have the open fail 1454 * if the user expects to be able to write to the thing. 1455 */ 1456 retval = -EROFS; 1457 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1458 goto error_out; 1459 1460 /* 1461 * It is possible that the disk changing stuff resulted in 1462 * the device being taken offline. If this is the case, 1463 * report this to the user, and don't pretend that the 1464 * open actually succeeded. 1465 */ 1466 retval = -ENXIO; 1467 if (!scsi_device_online(sdev)) 1468 goto error_out; 1469 1470 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1471 if (scsi_block_when_processing_errors(sdev)) 1472 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1473 } 1474 1475 return 0; 1476 1477 error_out: 1478 scsi_disk_put(sdkp); 1479 return retval; 1480 } 1481 1482 /** 1483 * sd_release - invoked when the (last) close(2) is called on this 1484 * scsi disk. 1485 * @disk: disk to release 1486 * @mode: FMODE_* mask 1487 * 1488 * Returns 0. 1489 * 1490 * Note: may block (uninterruptible) if error recovery is underway 1491 * on this disk. 1492 * 1493 * Locking: called with bdev->bd_disk->open_mutex held. 1494 **/ 1495 static void sd_release(struct gendisk *disk, fmode_t mode) 1496 { 1497 struct scsi_disk *sdkp = scsi_disk(disk); 1498 struct scsi_device *sdev = sdkp->device; 1499 1500 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1501 1502 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1503 if (scsi_block_when_processing_errors(sdev)) 1504 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1505 } 1506 1507 scsi_disk_put(sdkp); 1508 } 1509 1510 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1511 { 1512 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1513 struct scsi_device *sdp = sdkp->device; 1514 struct Scsi_Host *host = sdp->host; 1515 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1516 int diskinfo[4]; 1517 1518 /* default to most commonly used values */ 1519 diskinfo[0] = 0x40; /* 1 << 6 */ 1520 diskinfo[1] = 0x20; /* 1 << 5 */ 1521 diskinfo[2] = capacity >> 11; 1522 1523 /* override with calculated, extended default, or driver values */ 1524 if (host->hostt->bios_param) 1525 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1526 else 1527 scsicam_bios_param(bdev, capacity, diskinfo); 1528 1529 geo->heads = diskinfo[0]; 1530 geo->sectors = diskinfo[1]; 1531 geo->cylinders = diskinfo[2]; 1532 return 0; 1533 } 1534 1535 /** 1536 * sd_ioctl_common - process an ioctl 1537 * @bdev: target block device 1538 * @mode: FMODE_* mask 1539 * @cmd: ioctl command number 1540 * @p: this is third argument given to ioctl(2) system call. 1541 * Often contains a pointer. 1542 * 1543 * Returns 0 if successful (some ioctls return positive numbers on 1544 * success as well). Returns a negated errno value in case of error. 1545 * 1546 * Note: most ioctls are forward onto the block subsystem or further 1547 * down in the scsi subsystem. 1548 **/ 1549 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode, 1550 unsigned int cmd, void __user *p) 1551 { 1552 struct gendisk *disk = bdev->bd_disk; 1553 struct scsi_disk *sdkp = scsi_disk(disk); 1554 struct scsi_device *sdp = sdkp->device; 1555 int error; 1556 1557 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1558 "cmd=0x%x\n", disk->disk_name, cmd)); 1559 1560 error = scsi_verify_blk_ioctl(bdev, cmd); 1561 if (error < 0) 1562 return error; 1563 1564 /* 1565 * If we are in the middle of error recovery, don't let anyone 1566 * else try and use this device. Also, if error recovery fails, it 1567 * may try and take the device offline, in which case all further 1568 * access to the device is prohibited. 1569 */ 1570 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1571 (mode & FMODE_NDELAY) != 0); 1572 if (error) 1573 goto out; 1574 1575 if (is_sed_ioctl(cmd)) 1576 return sed_ioctl(sdkp->opal_dev, cmd, p); 1577 1578 /* 1579 * Send SCSI addressing ioctls directly to mid level, send other 1580 * ioctls to block level and then onto mid level if they can't be 1581 * resolved. 1582 */ 1583 switch (cmd) { 1584 case SCSI_IOCTL_GET_IDLUN: 1585 case SCSI_IOCTL_GET_BUS_NUMBER: 1586 error = scsi_ioctl(sdp, cmd, p); 1587 break; 1588 default: 1589 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1590 break; 1591 } 1592 out: 1593 return error; 1594 } 1595 1596 static void set_media_not_present(struct scsi_disk *sdkp) 1597 { 1598 if (sdkp->media_present) 1599 sdkp->device->changed = 1; 1600 1601 if (sdkp->device->removable) { 1602 sdkp->media_present = 0; 1603 sdkp->capacity = 0; 1604 } 1605 } 1606 1607 static int media_not_present(struct scsi_disk *sdkp, 1608 struct scsi_sense_hdr *sshdr) 1609 { 1610 if (!scsi_sense_valid(sshdr)) 1611 return 0; 1612 1613 /* not invoked for commands that could return deferred errors */ 1614 switch (sshdr->sense_key) { 1615 case UNIT_ATTENTION: 1616 case NOT_READY: 1617 /* medium not present */ 1618 if (sshdr->asc == 0x3A) { 1619 set_media_not_present(sdkp); 1620 return 1; 1621 } 1622 } 1623 return 0; 1624 } 1625 1626 /** 1627 * sd_check_events - check media events 1628 * @disk: kernel device descriptor 1629 * @clearing: disk events currently being cleared 1630 * 1631 * Returns mask of DISK_EVENT_*. 1632 * 1633 * Note: this function is invoked from the block subsystem. 1634 **/ 1635 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1636 { 1637 struct scsi_disk *sdkp = scsi_disk_get(disk); 1638 struct scsi_device *sdp; 1639 int retval; 1640 bool disk_changed; 1641 1642 if (!sdkp) 1643 return 0; 1644 1645 sdp = sdkp->device; 1646 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1647 1648 /* 1649 * If the device is offline, don't send any commands - just pretend as 1650 * if the command failed. If the device ever comes back online, we 1651 * can deal with it then. It is only because of unrecoverable errors 1652 * that we would ever take a device offline in the first place. 1653 */ 1654 if (!scsi_device_online(sdp)) { 1655 set_media_not_present(sdkp); 1656 goto out; 1657 } 1658 1659 /* 1660 * Using TEST_UNIT_READY enables differentiation between drive with 1661 * no cartridge loaded - NOT READY, drive with changed cartridge - 1662 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1663 * 1664 * Drives that auto spin down. eg iomega jaz 1G, will be started 1665 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1666 * sd_revalidate() is called. 1667 */ 1668 if (scsi_block_when_processing_errors(sdp)) { 1669 struct scsi_sense_hdr sshdr = { 0, }; 1670 1671 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1672 &sshdr); 1673 1674 /* failed to execute TUR, assume media not present */ 1675 if (retval < 0 || host_byte(retval)) { 1676 set_media_not_present(sdkp); 1677 goto out; 1678 } 1679 1680 if (media_not_present(sdkp, &sshdr)) 1681 goto out; 1682 } 1683 1684 /* 1685 * For removable scsi disk we have to recognise the presence 1686 * of a disk in the drive. 1687 */ 1688 if (!sdkp->media_present) 1689 sdp->changed = 1; 1690 sdkp->media_present = 1; 1691 out: 1692 /* 1693 * sdp->changed is set under the following conditions: 1694 * 1695 * Medium present state has changed in either direction. 1696 * Device has indicated UNIT_ATTENTION. 1697 */ 1698 disk_changed = sdp->changed; 1699 sdp->changed = 0; 1700 scsi_disk_put(sdkp); 1701 return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1702 } 1703 1704 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1705 { 1706 int retries, res; 1707 struct scsi_device *sdp = sdkp->device; 1708 const int timeout = sdp->request_queue->rq_timeout 1709 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1710 struct scsi_sense_hdr my_sshdr; 1711 1712 if (!scsi_device_online(sdp)) 1713 return -ENODEV; 1714 1715 /* caller might not be interested in sense, but we need it */ 1716 if (!sshdr) 1717 sshdr = &my_sshdr; 1718 1719 for (retries = 3; retries > 0; --retries) { 1720 unsigned char cmd[10] = { 0 }; 1721 1722 cmd[0] = SYNCHRONIZE_CACHE; 1723 /* 1724 * Leave the rest of the command zero to indicate 1725 * flush everything. 1726 */ 1727 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1728 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1729 if (res == 0) 1730 break; 1731 } 1732 1733 if (res) { 1734 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1735 1736 if (res < 0) 1737 return res; 1738 1739 if (scsi_status_is_check_condition(res) && 1740 scsi_sense_valid(sshdr)) { 1741 sd_print_sense_hdr(sdkp, sshdr); 1742 1743 /* we need to evaluate the error return */ 1744 if (sshdr->asc == 0x3a || /* medium not present */ 1745 sshdr->asc == 0x20 || /* invalid command */ 1746 (sshdr->asc == 0x74 && sshdr->ascq == 0x71)) /* drive is password locked */ 1747 /* this is no error here */ 1748 return 0; 1749 } 1750 1751 switch (host_byte(res)) { 1752 /* ignore errors due to racing a disconnection */ 1753 case DID_BAD_TARGET: 1754 case DID_NO_CONNECT: 1755 return 0; 1756 /* signal the upper layer it might try again */ 1757 case DID_BUS_BUSY: 1758 case DID_IMM_RETRY: 1759 case DID_REQUEUE: 1760 case DID_SOFT_ERROR: 1761 return -EBUSY; 1762 default: 1763 return -EIO; 1764 } 1765 } 1766 return 0; 1767 } 1768 1769 static void sd_rescan(struct device *dev) 1770 { 1771 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1772 1773 sd_revalidate_disk(sdkp->disk); 1774 } 1775 1776 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1777 unsigned int cmd, unsigned long arg) 1778 { 1779 void __user *p = (void __user *)arg; 1780 int ret; 1781 1782 ret = sd_ioctl_common(bdev, mode, cmd, p); 1783 if (ret != -ENOTTY) 1784 return ret; 1785 1786 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1787 } 1788 1789 #ifdef CONFIG_COMPAT 1790 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1791 unsigned int cmd, unsigned long arg) 1792 { 1793 void __user *p = compat_ptr(arg); 1794 int ret; 1795 1796 ret = sd_ioctl_common(bdev, mode, cmd, p); 1797 if (ret != -ENOTTY) 1798 return ret; 1799 1800 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1801 } 1802 #endif 1803 1804 static char sd_pr_type(enum pr_type type) 1805 { 1806 switch (type) { 1807 case PR_WRITE_EXCLUSIVE: 1808 return 0x01; 1809 case PR_EXCLUSIVE_ACCESS: 1810 return 0x03; 1811 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1812 return 0x05; 1813 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1814 return 0x06; 1815 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1816 return 0x07; 1817 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1818 return 0x08; 1819 default: 1820 return 0; 1821 } 1822 }; 1823 1824 static int sd_pr_command(struct block_device *bdev, u8 sa, 1825 u64 key, u64 sa_key, u8 type, u8 flags) 1826 { 1827 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1828 struct scsi_device *sdev = sdkp->device; 1829 struct scsi_sense_hdr sshdr; 1830 int result; 1831 u8 cmd[16] = { 0, }; 1832 u8 data[24] = { 0, }; 1833 1834 cmd[0] = PERSISTENT_RESERVE_OUT; 1835 cmd[1] = sa; 1836 cmd[2] = type; 1837 put_unaligned_be32(sizeof(data), &cmd[5]); 1838 1839 put_unaligned_be64(key, &data[0]); 1840 put_unaligned_be64(sa_key, &data[8]); 1841 data[20] = flags; 1842 1843 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1844 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1845 1846 if (scsi_status_is_check_condition(result) && 1847 scsi_sense_valid(&sshdr)) { 1848 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1849 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1850 } 1851 1852 return result; 1853 } 1854 1855 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1856 u32 flags) 1857 { 1858 if (flags & ~PR_FL_IGNORE_KEY) 1859 return -EOPNOTSUPP; 1860 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1861 old_key, new_key, 0, 1862 (1 << 0) /* APTPL */); 1863 } 1864 1865 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1866 u32 flags) 1867 { 1868 if (flags) 1869 return -EOPNOTSUPP; 1870 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1871 } 1872 1873 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1874 { 1875 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1876 } 1877 1878 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1879 enum pr_type type, bool abort) 1880 { 1881 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1882 sd_pr_type(type), 0); 1883 } 1884 1885 static int sd_pr_clear(struct block_device *bdev, u64 key) 1886 { 1887 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1888 } 1889 1890 static const struct pr_ops sd_pr_ops = { 1891 .pr_register = sd_pr_register, 1892 .pr_reserve = sd_pr_reserve, 1893 .pr_release = sd_pr_release, 1894 .pr_preempt = sd_pr_preempt, 1895 .pr_clear = sd_pr_clear, 1896 }; 1897 1898 static const struct block_device_operations sd_fops = { 1899 .owner = THIS_MODULE, 1900 .open = sd_open, 1901 .release = sd_release, 1902 .ioctl = sd_ioctl, 1903 .getgeo = sd_getgeo, 1904 #ifdef CONFIG_COMPAT 1905 .compat_ioctl = sd_compat_ioctl, 1906 #endif 1907 .check_events = sd_check_events, 1908 .unlock_native_capacity = sd_unlock_native_capacity, 1909 .report_zones = sd_zbc_report_zones, 1910 .pr_ops = &sd_pr_ops, 1911 }; 1912 1913 /** 1914 * sd_eh_reset - reset error handling callback 1915 * @scmd: sd-issued command that has failed 1916 * 1917 * This function is called by the SCSI midlayer before starting 1918 * SCSI EH. When counting medium access failures we have to be 1919 * careful to register it only only once per device and SCSI EH run; 1920 * there might be several timed out commands which will cause the 1921 * 'max_medium_access_timeouts' counter to trigger after the first 1922 * SCSI EH run already and set the device to offline. 1923 * So this function resets the internal counter before starting SCSI EH. 1924 **/ 1925 static void sd_eh_reset(struct scsi_cmnd *scmd) 1926 { 1927 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1928 1929 /* New SCSI EH run, reset gate variable */ 1930 sdkp->ignore_medium_access_errors = false; 1931 } 1932 1933 /** 1934 * sd_eh_action - error handling callback 1935 * @scmd: sd-issued command that has failed 1936 * @eh_disp: The recovery disposition suggested by the midlayer 1937 * 1938 * This function is called by the SCSI midlayer upon completion of an 1939 * error test command (currently TEST UNIT READY). The result of sending 1940 * the eh command is passed in eh_disp. We're looking for devices that 1941 * fail medium access commands but are OK with non access commands like 1942 * test unit ready (so wrongly see the device as having a successful 1943 * recovery) 1944 **/ 1945 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1946 { 1947 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1948 struct scsi_device *sdev = scmd->device; 1949 1950 if (!scsi_device_online(sdev) || 1951 !scsi_medium_access_command(scmd) || 1952 host_byte(scmd->result) != DID_TIME_OUT || 1953 eh_disp != SUCCESS) 1954 return eh_disp; 1955 1956 /* 1957 * The device has timed out executing a medium access command. 1958 * However, the TEST UNIT READY command sent during error 1959 * handling completed successfully. Either the device is in the 1960 * process of recovering or has it suffered an internal failure 1961 * that prevents access to the storage medium. 1962 */ 1963 if (!sdkp->ignore_medium_access_errors) { 1964 sdkp->medium_access_timed_out++; 1965 sdkp->ignore_medium_access_errors = true; 1966 } 1967 1968 /* 1969 * If the device keeps failing read/write commands but TEST UNIT 1970 * READY always completes successfully we assume that medium 1971 * access is no longer possible and take the device offline. 1972 */ 1973 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1974 scmd_printk(KERN_ERR, scmd, 1975 "Medium access timeout failure. Offlining disk!\n"); 1976 mutex_lock(&sdev->state_mutex); 1977 scsi_device_set_state(sdev, SDEV_OFFLINE); 1978 mutex_unlock(&sdev->state_mutex); 1979 1980 return SUCCESS; 1981 } 1982 1983 return eh_disp; 1984 } 1985 1986 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1987 { 1988 struct request *req = scmd->request; 1989 struct scsi_device *sdev = scmd->device; 1990 unsigned int transferred, good_bytes; 1991 u64 start_lba, end_lba, bad_lba; 1992 1993 /* 1994 * Some commands have a payload smaller than the device logical 1995 * block size (e.g. INQUIRY on a 4K disk). 1996 */ 1997 if (scsi_bufflen(scmd) <= sdev->sector_size) 1998 return 0; 1999 2000 /* Check if we have a 'bad_lba' information */ 2001 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 2002 SCSI_SENSE_BUFFERSIZE, 2003 &bad_lba)) 2004 return 0; 2005 2006 /* 2007 * If the bad lba was reported incorrectly, we have no idea where 2008 * the error is. 2009 */ 2010 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 2011 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 2012 if (bad_lba < start_lba || bad_lba >= end_lba) 2013 return 0; 2014 2015 /* 2016 * resid is optional but mostly filled in. When it's unused, 2017 * its value is zero, so we assume the whole buffer transferred 2018 */ 2019 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 2020 2021 /* This computation should always be done in terms of the 2022 * resolution of the device's medium. 2023 */ 2024 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2025 2026 return min(good_bytes, transferred); 2027 } 2028 2029 /** 2030 * sd_done - bottom half handler: called when the lower level 2031 * driver has completed (successfully or otherwise) a scsi command. 2032 * @SCpnt: mid-level's per command structure. 2033 * 2034 * Note: potentially run from within an ISR. Must not block. 2035 **/ 2036 static int sd_done(struct scsi_cmnd *SCpnt) 2037 { 2038 int result = SCpnt->result; 2039 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2040 unsigned int sector_size = SCpnt->device->sector_size; 2041 unsigned int resid; 2042 struct scsi_sense_hdr sshdr; 2043 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 2044 struct request *req = SCpnt->request; 2045 int sense_valid = 0; 2046 int sense_deferred = 0; 2047 2048 switch (req_op(req)) { 2049 case REQ_OP_DISCARD: 2050 case REQ_OP_WRITE_ZEROES: 2051 case REQ_OP_WRITE_SAME: 2052 case REQ_OP_ZONE_RESET: 2053 case REQ_OP_ZONE_RESET_ALL: 2054 case REQ_OP_ZONE_OPEN: 2055 case REQ_OP_ZONE_CLOSE: 2056 case REQ_OP_ZONE_FINISH: 2057 if (!result) { 2058 good_bytes = blk_rq_bytes(req); 2059 scsi_set_resid(SCpnt, 0); 2060 } else { 2061 good_bytes = 0; 2062 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2063 } 2064 break; 2065 default: 2066 /* 2067 * In case of bogus fw or device, we could end up having 2068 * an unaligned partial completion. Check this here and force 2069 * alignment. 2070 */ 2071 resid = scsi_get_resid(SCpnt); 2072 if (resid & (sector_size - 1)) { 2073 sd_printk(KERN_INFO, sdkp, 2074 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2075 resid, sector_size); 2076 scsi_print_command(SCpnt); 2077 resid = min(scsi_bufflen(SCpnt), 2078 round_up(resid, sector_size)); 2079 scsi_set_resid(SCpnt, resid); 2080 } 2081 } 2082 2083 if (result) { 2084 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2085 if (sense_valid) 2086 sense_deferred = scsi_sense_is_deferred(&sshdr); 2087 } 2088 sdkp->medium_access_timed_out = 0; 2089 2090 if (!scsi_status_is_check_condition(result) && 2091 (!sense_valid || sense_deferred)) 2092 goto out; 2093 2094 switch (sshdr.sense_key) { 2095 case HARDWARE_ERROR: 2096 case MEDIUM_ERROR: 2097 good_bytes = sd_completed_bytes(SCpnt); 2098 break; 2099 case RECOVERED_ERROR: 2100 good_bytes = scsi_bufflen(SCpnt); 2101 break; 2102 case NO_SENSE: 2103 /* This indicates a false check condition, so ignore it. An 2104 * unknown amount of data was transferred so treat it as an 2105 * error. 2106 */ 2107 SCpnt->result = 0; 2108 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2109 break; 2110 case ABORTED_COMMAND: 2111 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2112 good_bytes = sd_completed_bytes(SCpnt); 2113 break; 2114 case ILLEGAL_REQUEST: 2115 switch (sshdr.asc) { 2116 case 0x10: /* DIX: Host detected corruption */ 2117 good_bytes = sd_completed_bytes(SCpnt); 2118 break; 2119 case 0x20: /* INVALID COMMAND OPCODE */ 2120 case 0x24: /* INVALID FIELD IN CDB */ 2121 switch (SCpnt->cmnd[0]) { 2122 case UNMAP: 2123 sd_config_discard(sdkp, SD_LBP_DISABLE); 2124 break; 2125 case WRITE_SAME_16: 2126 case WRITE_SAME: 2127 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2128 sd_config_discard(sdkp, SD_LBP_DISABLE); 2129 } else { 2130 sdkp->device->no_write_same = 1; 2131 sd_config_write_same(sdkp); 2132 req->rq_flags |= RQF_QUIET; 2133 } 2134 break; 2135 } 2136 } 2137 break; 2138 default: 2139 break; 2140 } 2141 2142 out: 2143 if (sd_is_zoned(sdkp)) 2144 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2145 2146 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2147 "sd_done: completed %d of %d bytes\n", 2148 good_bytes, scsi_bufflen(SCpnt))); 2149 2150 return good_bytes; 2151 } 2152 2153 /* 2154 * spinup disk - called only in sd_revalidate_disk() 2155 */ 2156 static void 2157 sd_spinup_disk(struct scsi_disk *sdkp) 2158 { 2159 unsigned char cmd[10]; 2160 unsigned long spintime_expire = 0; 2161 int retries, spintime; 2162 unsigned int the_result; 2163 struct scsi_sense_hdr sshdr; 2164 int sense_valid = 0; 2165 2166 spintime = 0; 2167 2168 /* Spin up drives, as required. Only do this at boot time */ 2169 /* Spinup needs to be done for module loads too. */ 2170 do { 2171 retries = 0; 2172 2173 do { 2174 cmd[0] = TEST_UNIT_READY; 2175 memset((void *) &cmd[1], 0, 9); 2176 2177 the_result = scsi_execute_req(sdkp->device, cmd, 2178 DMA_NONE, NULL, 0, 2179 &sshdr, SD_TIMEOUT, 2180 sdkp->max_retries, NULL); 2181 2182 /* 2183 * If the drive has indicated to us that it 2184 * doesn't have any media in it, don't bother 2185 * with any more polling. 2186 */ 2187 if (media_not_present(sdkp, &sshdr)) 2188 return; 2189 2190 if (the_result) 2191 sense_valid = scsi_sense_valid(&sshdr); 2192 retries++; 2193 } while (retries < 3 && 2194 (!scsi_status_is_good(the_result) || 2195 (scsi_status_is_check_condition(the_result) && 2196 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2197 2198 if (!scsi_status_is_check_condition(the_result)) { 2199 /* no sense, TUR either succeeded or failed 2200 * with a status error */ 2201 if(!spintime && !scsi_status_is_good(the_result)) { 2202 sd_print_result(sdkp, "Test Unit Ready failed", 2203 the_result); 2204 } 2205 break; 2206 } 2207 2208 /* 2209 * The device does not want the automatic start to be issued. 2210 */ 2211 if (sdkp->device->no_start_on_add) 2212 break; 2213 2214 if (sense_valid && sshdr.sense_key == NOT_READY) { 2215 if (sshdr.asc == 4 && sshdr.ascq == 3) 2216 break; /* manual intervention required */ 2217 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2218 break; /* standby */ 2219 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2220 break; /* unavailable */ 2221 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2222 break; /* sanitize in progress */ 2223 /* 2224 * Issue command to spin up drive when not ready 2225 */ 2226 if (!spintime) { 2227 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2228 cmd[0] = START_STOP; 2229 cmd[1] = 1; /* Return immediately */ 2230 memset((void *) &cmd[2], 0, 8); 2231 cmd[4] = 1; /* Start spin cycle */ 2232 if (sdkp->device->start_stop_pwr_cond) 2233 cmd[4] |= 1 << 4; 2234 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2235 NULL, 0, &sshdr, 2236 SD_TIMEOUT, sdkp->max_retries, 2237 NULL); 2238 spintime_expire = jiffies + 100 * HZ; 2239 spintime = 1; 2240 } 2241 /* Wait 1 second for next try */ 2242 msleep(1000); 2243 printk(KERN_CONT "."); 2244 2245 /* 2246 * Wait for USB flash devices with slow firmware. 2247 * Yes, this sense key/ASC combination shouldn't 2248 * occur here. It's characteristic of these devices. 2249 */ 2250 } else if (sense_valid && 2251 sshdr.sense_key == UNIT_ATTENTION && 2252 sshdr.asc == 0x28) { 2253 if (!spintime) { 2254 spintime_expire = jiffies + 5 * HZ; 2255 spintime = 1; 2256 } 2257 /* Wait 1 second for next try */ 2258 msleep(1000); 2259 } else { 2260 /* we don't understand the sense code, so it's 2261 * probably pointless to loop */ 2262 if(!spintime) { 2263 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2264 sd_print_sense_hdr(sdkp, &sshdr); 2265 } 2266 break; 2267 } 2268 2269 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2270 2271 if (spintime) { 2272 if (scsi_status_is_good(the_result)) 2273 printk(KERN_CONT "ready\n"); 2274 else 2275 printk(KERN_CONT "not responding...\n"); 2276 } 2277 } 2278 2279 /* 2280 * Determine whether disk supports Data Integrity Field. 2281 */ 2282 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2283 { 2284 struct scsi_device *sdp = sdkp->device; 2285 u8 type; 2286 int ret = 0; 2287 2288 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2289 sdkp->protection_type = 0; 2290 return ret; 2291 } 2292 2293 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2294 2295 if (type > T10_PI_TYPE3_PROTECTION) 2296 ret = -ENODEV; 2297 else if (scsi_host_dif_capable(sdp->host, type)) 2298 ret = 1; 2299 2300 if (sdkp->first_scan || type != sdkp->protection_type) 2301 switch (ret) { 2302 case -ENODEV: 2303 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2304 " protection type %u. Disabling disk!\n", 2305 type); 2306 break; 2307 case 1: 2308 sd_printk(KERN_NOTICE, sdkp, 2309 "Enabling DIF Type %u protection\n", type); 2310 break; 2311 case 0: 2312 sd_printk(KERN_NOTICE, sdkp, 2313 "Disabling DIF Type %u protection\n", type); 2314 break; 2315 } 2316 2317 sdkp->protection_type = type; 2318 2319 return ret; 2320 } 2321 2322 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2323 struct scsi_sense_hdr *sshdr, int sense_valid, 2324 int the_result) 2325 { 2326 if (sense_valid) 2327 sd_print_sense_hdr(sdkp, sshdr); 2328 else 2329 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2330 2331 /* 2332 * Set dirty bit for removable devices if not ready - 2333 * sometimes drives will not report this properly. 2334 */ 2335 if (sdp->removable && 2336 sense_valid && sshdr->sense_key == NOT_READY) 2337 set_media_not_present(sdkp); 2338 2339 /* 2340 * We used to set media_present to 0 here to indicate no media 2341 * in the drive, but some drives fail read capacity even with 2342 * media present, so we can't do that. 2343 */ 2344 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2345 } 2346 2347 #define RC16_LEN 32 2348 #if RC16_LEN > SD_BUF_SIZE 2349 #error RC16_LEN must not be more than SD_BUF_SIZE 2350 #endif 2351 2352 #define READ_CAPACITY_RETRIES_ON_RESET 10 2353 2354 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2355 unsigned char *buffer) 2356 { 2357 unsigned char cmd[16]; 2358 struct scsi_sense_hdr sshdr; 2359 int sense_valid = 0; 2360 int the_result; 2361 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2362 unsigned int alignment; 2363 unsigned long long lba; 2364 unsigned sector_size; 2365 2366 if (sdp->no_read_capacity_16) 2367 return -EINVAL; 2368 2369 do { 2370 memset(cmd, 0, 16); 2371 cmd[0] = SERVICE_ACTION_IN_16; 2372 cmd[1] = SAI_READ_CAPACITY_16; 2373 cmd[13] = RC16_LEN; 2374 memset(buffer, 0, RC16_LEN); 2375 2376 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2377 buffer, RC16_LEN, &sshdr, 2378 SD_TIMEOUT, sdkp->max_retries, NULL); 2379 2380 if (media_not_present(sdkp, &sshdr)) 2381 return -ENODEV; 2382 2383 if (the_result > 0) { 2384 sense_valid = scsi_sense_valid(&sshdr); 2385 if (sense_valid && 2386 sshdr.sense_key == ILLEGAL_REQUEST && 2387 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2388 sshdr.ascq == 0x00) 2389 /* Invalid Command Operation Code or 2390 * Invalid Field in CDB, just retry 2391 * silently with RC10 */ 2392 return -EINVAL; 2393 if (sense_valid && 2394 sshdr.sense_key == UNIT_ATTENTION && 2395 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2396 /* Device reset might occur several times, 2397 * give it one more chance */ 2398 if (--reset_retries > 0) 2399 continue; 2400 } 2401 retries--; 2402 2403 } while (the_result && retries); 2404 2405 if (the_result) { 2406 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2407 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2408 return -EINVAL; 2409 } 2410 2411 sector_size = get_unaligned_be32(&buffer[8]); 2412 lba = get_unaligned_be64(&buffer[0]); 2413 2414 if (sd_read_protection_type(sdkp, buffer) < 0) { 2415 sdkp->capacity = 0; 2416 return -ENODEV; 2417 } 2418 2419 /* Logical blocks per physical block exponent */ 2420 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2421 2422 /* RC basis */ 2423 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2424 2425 /* Lowest aligned logical block */ 2426 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2427 blk_queue_alignment_offset(sdp->request_queue, alignment); 2428 if (alignment && sdkp->first_scan) 2429 sd_printk(KERN_NOTICE, sdkp, 2430 "physical block alignment offset: %u\n", alignment); 2431 2432 if (buffer[14] & 0x80) { /* LBPME */ 2433 sdkp->lbpme = 1; 2434 2435 if (buffer[14] & 0x40) /* LBPRZ */ 2436 sdkp->lbprz = 1; 2437 2438 sd_config_discard(sdkp, SD_LBP_WS16); 2439 } 2440 2441 sdkp->capacity = lba + 1; 2442 return sector_size; 2443 } 2444 2445 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2446 unsigned char *buffer) 2447 { 2448 unsigned char cmd[16]; 2449 struct scsi_sense_hdr sshdr; 2450 int sense_valid = 0; 2451 int the_result; 2452 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2453 sector_t lba; 2454 unsigned sector_size; 2455 2456 do { 2457 cmd[0] = READ_CAPACITY; 2458 memset(&cmd[1], 0, 9); 2459 memset(buffer, 0, 8); 2460 2461 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2462 buffer, 8, &sshdr, 2463 SD_TIMEOUT, sdkp->max_retries, NULL); 2464 2465 if (media_not_present(sdkp, &sshdr)) 2466 return -ENODEV; 2467 2468 if (the_result > 0) { 2469 sense_valid = scsi_sense_valid(&sshdr); 2470 if (sense_valid && 2471 sshdr.sense_key == UNIT_ATTENTION && 2472 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2473 /* Device reset might occur several times, 2474 * give it one more chance */ 2475 if (--reset_retries > 0) 2476 continue; 2477 } 2478 retries--; 2479 2480 } while (the_result && retries); 2481 2482 if (the_result) { 2483 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2484 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2485 return -EINVAL; 2486 } 2487 2488 sector_size = get_unaligned_be32(&buffer[4]); 2489 lba = get_unaligned_be32(&buffer[0]); 2490 2491 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2492 /* Some buggy (usb cardreader) devices return an lba of 2493 0xffffffff when the want to report a size of 0 (with 2494 which they really mean no media is present) */ 2495 sdkp->capacity = 0; 2496 sdkp->physical_block_size = sector_size; 2497 return sector_size; 2498 } 2499 2500 sdkp->capacity = lba + 1; 2501 sdkp->physical_block_size = sector_size; 2502 return sector_size; 2503 } 2504 2505 static int sd_try_rc16_first(struct scsi_device *sdp) 2506 { 2507 if (sdp->host->max_cmd_len < 16) 2508 return 0; 2509 if (sdp->try_rc_10_first) 2510 return 0; 2511 if (sdp->scsi_level > SCSI_SPC_2) 2512 return 1; 2513 if (scsi_device_protection(sdp)) 2514 return 1; 2515 return 0; 2516 } 2517 2518 /* 2519 * read disk capacity 2520 */ 2521 static void 2522 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2523 { 2524 int sector_size; 2525 struct scsi_device *sdp = sdkp->device; 2526 2527 if (sd_try_rc16_first(sdp)) { 2528 sector_size = read_capacity_16(sdkp, sdp, buffer); 2529 if (sector_size == -EOVERFLOW) 2530 goto got_data; 2531 if (sector_size == -ENODEV) 2532 return; 2533 if (sector_size < 0) 2534 sector_size = read_capacity_10(sdkp, sdp, buffer); 2535 if (sector_size < 0) 2536 return; 2537 } else { 2538 sector_size = read_capacity_10(sdkp, sdp, buffer); 2539 if (sector_size == -EOVERFLOW) 2540 goto got_data; 2541 if (sector_size < 0) 2542 return; 2543 if ((sizeof(sdkp->capacity) > 4) && 2544 (sdkp->capacity > 0xffffffffULL)) { 2545 int old_sector_size = sector_size; 2546 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2547 "Trying to use READ CAPACITY(16).\n"); 2548 sector_size = read_capacity_16(sdkp, sdp, buffer); 2549 if (sector_size < 0) { 2550 sd_printk(KERN_NOTICE, sdkp, 2551 "Using 0xffffffff as device size\n"); 2552 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2553 sector_size = old_sector_size; 2554 goto got_data; 2555 } 2556 /* Remember that READ CAPACITY(16) succeeded */ 2557 sdp->try_rc_10_first = 0; 2558 } 2559 } 2560 2561 /* Some devices are known to return the total number of blocks, 2562 * not the highest block number. Some devices have versions 2563 * which do this and others which do not. Some devices we might 2564 * suspect of doing this but we don't know for certain. 2565 * 2566 * If we know the reported capacity is wrong, decrement it. If 2567 * we can only guess, then assume the number of blocks is even 2568 * (usually true but not always) and err on the side of lowering 2569 * the capacity. 2570 */ 2571 if (sdp->fix_capacity || 2572 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2573 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2574 "from its reported value: %llu\n", 2575 (unsigned long long) sdkp->capacity); 2576 --sdkp->capacity; 2577 } 2578 2579 got_data: 2580 if (sector_size == 0) { 2581 sector_size = 512; 2582 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2583 "assuming 512.\n"); 2584 } 2585 2586 if (sector_size != 512 && 2587 sector_size != 1024 && 2588 sector_size != 2048 && 2589 sector_size != 4096) { 2590 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2591 sector_size); 2592 /* 2593 * The user might want to re-format the drive with 2594 * a supported sectorsize. Once this happens, it 2595 * would be relatively trivial to set the thing up. 2596 * For this reason, we leave the thing in the table. 2597 */ 2598 sdkp->capacity = 0; 2599 /* 2600 * set a bogus sector size so the normal read/write 2601 * logic in the block layer will eventually refuse any 2602 * request on this device without tripping over power 2603 * of two sector size assumptions 2604 */ 2605 sector_size = 512; 2606 } 2607 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2608 blk_queue_physical_block_size(sdp->request_queue, 2609 sdkp->physical_block_size); 2610 sdkp->device->sector_size = sector_size; 2611 2612 if (sdkp->capacity > 0xffffffff) 2613 sdp->use_16_for_rw = 1; 2614 2615 } 2616 2617 /* 2618 * Print disk capacity 2619 */ 2620 static void 2621 sd_print_capacity(struct scsi_disk *sdkp, 2622 sector_t old_capacity) 2623 { 2624 int sector_size = sdkp->device->sector_size; 2625 char cap_str_2[10], cap_str_10[10]; 2626 2627 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2628 return; 2629 2630 string_get_size(sdkp->capacity, sector_size, 2631 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2632 string_get_size(sdkp->capacity, sector_size, 2633 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2634 2635 sd_printk(KERN_NOTICE, sdkp, 2636 "%llu %d-byte logical blocks: (%s/%s)\n", 2637 (unsigned long long)sdkp->capacity, 2638 sector_size, cap_str_10, cap_str_2); 2639 2640 if (sdkp->physical_block_size != sector_size) 2641 sd_printk(KERN_NOTICE, sdkp, 2642 "%u-byte physical blocks\n", 2643 sdkp->physical_block_size); 2644 } 2645 2646 /* called with buffer of length 512 */ 2647 static inline int 2648 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2649 unsigned char *buffer, int len, struct scsi_mode_data *data, 2650 struct scsi_sense_hdr *sshdr) 2651 { 2652 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2653 SD_TIMEOUT, sdkp->max_retries, data, 2654 sshdr); 2655 } 2656 2657 /* 2658 * read write protect setting, if possible - called only in sd_revalidate_disk() 2659 * called with buffer of length SD_BUF_SIZE 2660 */ 2661 static void 2662 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2663 { 2664 int res; 2665 struct scsi_device *sdp = sdkp->device; 2666 struct scsi_mode_data data; 2667 int old_wp = sdkp->write_prot; 2668 2669 set_disk_ro(sdkp->disk, 0); 2670 if (sdp->skip_ms_page_3f) { 2671 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2672 return; 2673 } 2674 2675 if (sdp->use_192_bytes_for_3f) { 2676 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2677 } else { 2678 /* 2679 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2680 * We have to start carefully: some devices hang if we ask 2681 * for more than is available. 2682 */ 2683 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2684 2685 /* 2686 * Second attempt: ask for page 0 When only page 0 is 2687 * implemented, a request for page 3F may return Sense Key 2688 * 5: Illegal Request, Sense Code 24: Invalid field in 2689 * CDB. 2690 */ 2691 if (res < 0) 2692 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2693 2694 /* 2695 * Third attempt: ask 255 bytes, as we did earlier. 2696 */ 2697 if (res < 0) 2698 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2699 &data, NULL); 2700 } 2701 2702 if (res < 0) { 2703 sd_first_printk(KERN_WARNING, sdkp, 2704 "Test WP failed, assume Write Enabled\n"); 2705 } else { 2706 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2707 set_disk_ro(sdkp->disk, sdkp->write_prot); 2708 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2709 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2710 sdkp->write_prot ? "on" : "off"); 2711 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2712 } 2713 } 2714 } 2715 2716 /* 2717 * sd_read_cache_type - called only from sd_revalidate_disk() 2718 * called with buffer of length SD_BUF_SIZE 2719 */ 2720 static void 2721 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2722 { 2723 int len = 0, res; 2724 struct scsi_device *sdp = sdkp->device; 2725 2726 int dbd; 2727 int modepage; 2728 int first_len; 2729 struct scsi_mode_data data; 2730 struct scsi_sense_hdr sshdr; 2731 int old_wce = sdkp->WCE; 2732 int old_rcd = sdkp->RCD; 2733 int old_dpofua = sdkp->DPOFUA; 2734 2735 2736 if (sdkp->cache_override) 2737 return; 2738 2739 first_len = 4; 2740 if (sdp->skip_ms_page_8) { 2741 if (sdp->type == TYPE_RBC) 2742 goto defaults; 2743 else { 2744 if (sdp->skip_ms_page_3f) 2745 goto defaults; 2746 modepage = 0x3F; 2747 if (sdp->use_192_bytes_for_3f) 2748 first_len = 192; 2749 dbd = 0; 2750 } 2751 } else if (sdp->type == TYPE_RBC) { 2752 modepage = 6; 2753 dbd = 8; 2754 } else { 2755 modepage = 8; 2756 dbd = 0; 2757 } 2758 2759 /* cautiously ask */ 2760 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2761 &data, &sshdr); 2762 2763 if (res < 0) 2764 goto bad_sense; 2765 2766 if (!data.header_length) { 2767 modepage = 6; 2768 first_len = 0; 2769 sd_first_printk(KERN_ERR, sdkp, 2770 "Missing header in MODE_SENSE response\n"); 2771 } 2772 2773 /* that went OK, now ask for the proper length */ 2774 len = data.length; 2775 2776 /* 2777 * We're only interested in the first three bytes, actually. 2778 * But the data cache page is defined for the first 20. 2779 */ 2780 if (len < 3) 2781 goto bad_sense; 2782 else if (len > SD_BUF_SIZE) { 2783 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2784 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2785 len = SD_BUF_SIZE; 2786 } 2787 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2788 len = 192; 2789 2790 /* Get the data */ 2791 if (len > first_len) 2792 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2793 &data, &sshdr); 2794 2795 if (!res) { 2796 int offset = data.header_length + data.block_descriptor_length; 2797 2798 while (offset < len) { 2799 u8 page_code = buffer[offset] & 0x3F; 2800 u8 spf = buffer[offset] & 0x40; 2801 2802 if (page_code == 8 || page_code == 6) { 2803 /* We're interested only in the first 3 bytes. 2804 */ 2805 if (len - offset <= 2) { 2806 sd_first_printk(KERN_ERR, sdkp, 2807 "Incomplete mode parameter " 2808 "data\n"); 2809 goto defaults; 2810 } else { 2811 modepage = page_code; 2812 goto Page_found; 2813 } 2814 } else { 2815 /* Go to the next page */ 2816 if (spf && len - offset > 3) 2817 offset += 4 + (buffer[offset+2] << 8) + 2818 buffer[offset+3]; 2819 else if (!spf && len - offset > 1) 2820 offset += 2 + buffer[offset+1]; 2821 else { 2822 sd_first_printk(KERN_ERR, sdkp, 2823 "Incomplete mode " 2824 "parameter data\n"); 2825 goto defaults; 2826 } 2827 } 2828 } 2829 2830 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2831 goto defaults; 2832 2833 Page_found: 2834 if (modepage == 8) { 2835 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2836 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2837 } else { 2838 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2839 sdkp->RCD = 0; 2840 } 2841 2842 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2843 if (sdp->broken_fua) { 2844 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2845 sdkp->DPOFUA = 0; 2846 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2847 !sdkp->device->use_16_for_rw) { 2848 sd_first_printk(KERN_NOTICE, sdkp, 2849 "Uses READ/WRITE(6), disabling FUA\n"); 2850 sdkp->DPOFUA = 0; 2851 } 2852 2853 /* No cache flush allowed for write protected devices */ 2854 if (sdkp->WCE && sdkp->write_prot) 2855 sdkp->WCE = 0; 2856 2857 if (sdkp->first_scan || old_wce != sdkp->WCE || 2858 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2859 sd_printk(KERN_NOTICE, sdkp, 2860 "Write cache: %s, read cache: %s, %s\n", 2861 sdkp->WCE ? "enabled" : "disabled", 2862 sdkp->RCD ? "disabled" : "enabled", 2863 sdkp->DPOFUA ? "supports DPO and FUA" 2864 : "doesn't support DPO or FUA"); 2865 2866 return; 2867 } 2868 2869 bad_sense: 2870 if (scsi_sense_valid(&sshdr) && 2871 sshdr.sense_key == ILLEGAL_REQUEST && 2872 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2873 /* Invalid field in CDB */ 2874 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2875 else 2876 sd_first_printk(KERN_ERR, sdkp, 2877 "Asking for cache data failed\n"); 2878 2879 defaults: 2880 if (sdp->wce_default_on) { 2881 sd_first_printk(KERN_NOTICE, sdkp, 2882 "Assuming drive cache: write back\n"); 2883 sdkp->WCE = 1; 2884 } else { 2885 sd_first_printk(KERN_ERR, sdkp, 2886 "Assuming drive cache: write through\n"); 2887 sdkp->WCE = 0; 2888 } 2889 sdkp->RCD = 0; 2890 sdkp->DPOFUA = 0; 2891 } 2892 2893 /* 2894 * The ATO bit indicates whether the DIF application tag is available 2895 * for use by the operating system. 2896 */ 2897 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2898 { 2899 int res, offset; 2900 struct scsi_device *sdp = sdkp->device; 2901 struct scsi_mode_data data; 2902 struct scsi_sense_hdr sshdr; 2903 2904 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2905 return; 2906 2907 if (sdkp->protection_type == 0) 2908 return; 2909 2910 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2911 sdkp->max_retries, &data, &sshdr); 2912 2913 if (res < 0 || !data.header_length || 2914 data.length < 6) { 2915 sd_first_printk(KERN_WARNING, sdkp, 2916 "getting Control mode page failed, assume no ATO\n"); 2917 2918 if (scsi_sense_valid(&sshdr)) 2919 sd_print_sense_hdr(sdkp, &sshdr); 2920 2921 return; 2922 } 2923 2924 offset = data.header_length + data.block_descriptor_length; 2925 2926 if ((buffer[offset] & 0x3f) != 0x0a) { 2927 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2928 return; 2929 } 2930 2931 if ((buffer[offset + 5] & 0x80) == 0) 2932 return; 2933 2934 sdkp->ATO = 1; 2935 2936 return; 2937 } 2938 2939 /** 2940 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2941 * @sdkp: disk to query 2942 */ 2943 static void sd_read_block_limits(struct scsi_disk *sdkp) 2944 { 2945 unsigned int sector_sz = sdkp->device->sector_size; 2946 const int vpd_len = 64; 2947 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2948 2949 if (!buffer || 2950 /* Block Limits VPD */ 2951 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2952 goto out; 2953 2954 blk_queue_io_min(sdkp->disk->queue, 2955 get_unaligned_be16(&buffer[6]) * sector_sz); 2956 2957 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2958 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2959 2960 if (buffer[3] == 0x3c) { 2961 unsigned int lba_count, desc_count; 2962 2963 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2964 2965 if (!sdkp->lbpme) 2966 goto out; 2967 2968 lba_count = get_unaligned_be32(&buffer[20]); 2969 desc_count = get_unaligned_be32(&buffer[24]); 2970 2971 if (lba_count && desc_count) 2972 sdkp->max_unmap_blocks = lba_count; 2973 2974 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2975 2976 if (buffer[32] & 0x80) 2977 sdkp->unmap_alignment = 2978 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2979 2980 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2981 2982 if (sdkp->max_unmap_blocks) 2983 sd_config_discard(sdkp, SD_LBP_UNMAP); 2984 else 2985 sd_config_discard(sdkp, SD_LBP_WS16); 2986 2987 } else { /* LBP VPD page tells us what to use */ 2988 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2989 sd_config_discard(sdkp, SD_LBP_UNMAP); 2990 else if (sdkp->lbpws) 2991 sd_config_discard(sdkp, SD_LBP_WS16); 2992 else if (sdkp->lbpws10) 2993 sd_config_discard(sdkp, SD_LBP_WS10); 2994 else 2995 sd_config_discard(sdkp, SD_LBP_DISABLE); 2996 } 2997 } 2998 2999 out: 3000 kfree(buffer); 3001 } 3002 3003 /** 3004 * sd_read_block_characteristics - Query block dev. characteristics 3005 * @sdkp: disk to query 3006 */ 3007 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 3008 { 3009 struct request_queue *q = sdkp->disk->queue; 3010 unsigned char *buffer; 3011 u16 rot; 3012 const int vpd_len = 64; 3013 3014 buffer = kmalloc(vpd_len, GFP_KERNEL); 3015 3016 if (!buffer || 3017 /* Block Device Characteristics VPD */ 3018 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 3019 goto out; 3020 3021 rot = get_unaligned_be16(&buffer[4]); 3022 3023 if (rot == 1) { 3024 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3025 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3026 } 3027 3028 if (sdkp->device->type == TYPE_ZBC) { 3029 /* Host-managed */ 3030 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 3031 } else { 3032 sdkp->zoned = (buffer[8] >> 4) & 3; 3033 if (sdkp->zoned == 1) { 3034 /* Host-aware */ 3035 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 3036 } else { 3037 /* Regular disk or drive managed disk */ 3038 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3039 } 3040 } 3041 3042 if (!sdkp->first_scan) 3043 goto out; 3044 3045 if (blk_queue_is_zoned(q)) { 3046 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3047 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3048 } else { 3049 if (sdkp->zoned == 1) 3050 sd_printk(KERN_NOTICE, sdkp, 3051 "Host-aware SMR disk used as regular disk\n"); 3052 else if (sdkp->zoned == 2) 3053 sd_printk(KERN_NOTICE, sdkp, 3054 "Drive-managed SMR disk\n"); 3055 } 3056 3057 out: 3058 kfree(buffer); 3059 } 3060 3061 /** 3062 * sd_read_block_provisioning - Query provisioning VPD page 3063 * @sdkp: disk to query 3064 */ 3065 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3066 { 3067 unsigned char *buffer; 3068 const int vpd_len = 8; 3069 3070 if (sdkp->lbpme == 0) 3071 return; 3072 3073 buffer = kmalloc(vpd_len, GFP_KERNEL); 3074 3075 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3076 goto out; 3077 3078 sdkp->lbpvpd = 1; 3079 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3080 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3081 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3082 3083 out: 3084 kfree(buffer); 3085 } 3086 3087 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3088 { 3089 struct scsi_device *sdev = sdkp->device; 3090 3091 if (sdev->host->no_write_same) { 3092 sdev->no_write_same = 1; 3093 3094 return; 3095 } 3096 3097 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3098 /* too large values might cause issues with arcmsr */ 3099 int vpd_buf_len = 64; 3100 3101 sdev->no_report_opcodes = 1; 3102 3103 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3104 * CODES is unsupported and the device has an ATA 3105 * Information VPD page (SAT). 3106 */ 3107 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3108 sdev->no_write_same = 1; 3109 } 3110 3111 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3112 sdkp->ws16 = 1; 3113 3114 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3115 sdkp->ws10 = 1; 3116 } 3117 3118 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3119 { 3120 struct scsi_device *sdev = sdkp->device; 3121 3122 if (!sdev->security_supported) 3123 return; 3124 3125 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3126 SECURITY_PROTOCOL_IN) == 1 && 3127 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3128 SECURITY_PROTOCOL_OUT) == 1) 3129 sdkp->security = 1; 3130 } 3131 3132 /* 3133 * Determine the device's preferred I/O size for reads and writes 3134 * unless the reported value is unreasonably small, large, not a 3135 * multiple of the physical block size, or simply garbage. 3136 */ 3137 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3138 unsigned int dev_max) 3139 { 3140 struct scsi_device *sdp = sdkp->device; 3141 unsigned int opt_xfer_bytes = 3142 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3143 3144 if (sdkp->opt_xfer_blocks == 0) 3145 return false; 3146 3147 if (sdkp->opt_xfer_blocks > dev_max) { 3148 sd_first_printk(KERN_WARNING, sdkp, 3149 "Optimal transfer size %u logical blocks " \ 3150 "> dev_max (%u logical blocks)\n", 3151 sdkp->opt_xfer_blocks, dev_max); 3152 return false; 3153 } 3154 3155 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3156 sd_first_printk(KERN_WARNING, sdkp, 3157 "Optimal transfer size %u logical blocks " \ 3158 "> sd driver limit (%u logical blocks)\n", 3159 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3160 return false; 3161 } 3162 3163 if (opt_xfer_bytes < PAGE_SIZE) { 3164 sd_first_printk(KERN_WARNING, sdkp, 3165 "Optimal transfer size %u bytes < " \ 3166 "PAGE_SIZE (%u bytes)\n", 3167 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3168 return false; 3169 } 3170 3171 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3172 sd_first_printk(KERN_WARNING, sdkp, 3173 "Optimal transfer size %u bytes not a " \ 3174 "multiple of physical block size (%u bytes)\n", 3175 opt_xfer_bytes, sdkp->physical_block_size); 3176 return false; 3177 } 3178 3179 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3180 opt_xfer_bytes); 3181 return true; 3182 } 3183 3184 /** 3185 * sd_revalidate_disk - called the first time a new disk is seen, 3186 * performs disk spin up, read_capacity, etc. 3187 * @disk: struct gendisk we care about 3188 **/ 3189 static int sd_revalidate_disk(struct gendisk *disk) 3190 { 3191 struct scsi_disk *sdkp = scsi_disk(disk); 3192 struct scsi_device *sdp = sdkp->device; 3193 struct request_queue *q = sdkp->disk->queue; 3194 sector_t old_capacity = sdkp->capacity; 3195 unsigned char *buffer; 3196 unsigned int dev_max, rw_max; 3197 3198 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3199 "sd_revalidate_disk\n")); 3200 3201 /* 3202 * If the device is offline, don't try and read capacity or any 3203 * of the other niceties. 3204 */ 3205 if (!scsi_device_online(sdp)) 3206 goto out; 3207 3208 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3209 if (!buffer) { 3210 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3211 "allocation failure.\n"); 3212 goto out; 3213 } 3214 3215 sd_spinup_disk(sdkp); 3216 3217 /* 3218 * Without media there is no reason to ask; moreover, some devices 3219 * react badly if we do. 3220 */ 3221 if (sdkp->media_present) { 3222 sd_read_capacity(sdkp, buffer); 3223 3224 /* 3225 * set the default to rotational. All non-rotational devices 3226 * support the block characteristics VPD page, which will 3227 * cause this to be updated correctly and any device which 3228 * doesn't support it should be treated as rotational. 3229 */ 3230 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3231 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3232 3233 if (scsi_device_supports_vpd(sdp)) { 3234 sd_read_block_provisioning(sdkp); 3235 sd_read_block_limits(sdkp); 3236 sd_read_block_characteristics(sdkp); 3237 sd_zbc_read_zones(sdkp, buffer); 3238 } 3239 3240 sd_print_capacity(sdkp, old_capacity); 3241 3242 sd_read_write_protect_flag(sdkp, buffer); 3243 sd_read_cache_type(sdkp, buffer); 3244 sd_read_app_tag_own(sdkp, buffer); 3245 sd_read_write_same(sdkp, buffer); 3246 sd_read_security(sdkp, buffer); 3247 } 3248 3249 /* 3250 * We now have all cache related info, determine how we deal 3251 * with flush requests. 3252 */ 3253 sd_set_flush_flag(sdkp); 3254 3255 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3256 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3257 3258 /* Some devices report a maximum block count for READ/WRITE requests. */ 3259 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3260 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3261 3262 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3263 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3264 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3265 } else { 3266 q->limits.io_opt = 0; 3267 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3268 (sector_t)BLK_DEF_MAX_SECTORS); 3269 } 3270 3271 /* Do not exceed controller limit */ 3272 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3273 3274 /* 3275 * Only update max_sectors if previously unset or if the current value 3276 * exceeds the capabilities of the hardware. 3277 */ 3278 if (sdkp->first_scan || 3279 q->limits.max_sectors > q->limits.max_dev_sectors || 3280 q->limits.max_sectors > q->limits.max_hw_sectors) 3281 q->limits.max_sectors = rw_max; 3282 3283 sdkp->first_scan = 0; 3284 3285 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3286 sd_config_write_same(sdkp); 3287 kfree(buffer); 3288 3289 /* 3290 * For a zoned drive, revalidating the zones can be done only once 3291 * the gendisk capacity is set. So if this fails, set back the gendisk 3292 * capacity to 0. 3293 */ 3294 if (sd_zbc_revalidate_zones(sdkp)) 3295 set_capacity_and_notify(disk, 0); 3296 3297 out: 3298 return 0; 3299 } 3300 3301 /** 3302 * sd_unlock_native_capacity - unlock native capacity 3303 * @disk: struct gendisk to set capacity for 3304 * 3305 * Block layer calls this function if it detects that partitions 3306 * on @disk reach beyond the end of the device. If the SCSI host 3307 * implements ->unlock_native_capacity() method, it's invoked to 3308 * give it a chance to adjust the device capacity. 3309 * 3310 * CONTEXT: 3311 * Defined by block layer. Might sleep. 3312 */ 3313 static void sd_unlock_native_capacity(struct gendisk *disk) 3314 { 3315 struct scsi_device *sdev = scsi_disk(disk)->device; 3316 3317 if (sdev->host->hostt->unlock_native_capacity) 3318 sdev->host->hostt->unlock_native_capacity(sdev); 3319 } 3320 3321 /** 3322 * sd_format_disk_name - format disk name 3323 * @prefix: name prefix - ie. "sd" for SCSI disks 3324 * @index: index of the disk to format name for 3325 * @buf: output buffer 3326 * @buflen: length of the output buffer 3327 * 3328 * SCSI disk names starts at sda. The 26th device is sdz and the 3329 * 27th is sdaa. The last one for two lettered suffix is sdzz 3330 * which is followed by sdaaa. 3331 * 3332 * This is basically 26 base counting with one extra 'nil' entry 3333 * at the beginning from the second digit on and can be 3334 * determined using similar method as 26 base conversion with the 3335 * index shifted -1 after each digit is computed. 3336 * 3337 * CONTEXT: 3338 * Don't care. 3339 * 3340 * RETURNS: 3341 * 0 on success, -errno on failure. 3342 */ 3343 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3344 { 3345 const int base = 'z' - 'a' + 1; 3346 char *begin = buf + strlen(prefix); 3347 char *end = buf + buflen; 3348 char *p; 3349 int unit; 3350 3351 p = end - 1; 3352 *p = '\0'; 3353 unit = base; 3354 do { 3355 if (p == begin) 3356 return -EINVAL; 3357 *--p = 'a' + (index % unit); 3358 index = (index / unit) - 1; 3359 } while (index >= 0); 3360 3361 memmove(begin, p, end - p); 3362 memcpy(buf, prefix, strlen(prefix)); 3363 3364 return 0; 3365 } 3366 3367 /** 3368 * sd_probe - called during driver initialization and whenever a 3369 * new scsi device is attached to the system. It is called once 3370 * for each scsi device (not just disks) present. 3371 * @dev: pointer to device object 3372 * 3373 * Returns 0 if successful (or not interested in this scsi device 3374 * (e.g. scanner)); 1 when there is an error. 3375 * 3376 * Note: this function is invoked from the scsi mid-level. 3377 * This function sets up the mapping between a given 3378 * <host,channel,id,lun> (found in sdp) and new device name 3379 * (e.g. /dev/sda). More precisely it is the block device major 3380 * and minor number that is chosen here. 3381 * 3382 * Assume sd_probe is not re-entrant (for time being) 3383 * Also think about sd_probe() and sd_remove() running coincidentally. 3384 **/ 3385 static int sd_probe(struct device *dev) 3386 { 3387 struct scsi_device *sdp = to_scsi_device(dev); 3388 struct scsi_disk *sdkp; 3389 struct gendisk *gd; 3390 int index; 3391 int error; 3392 3393 scsi_autopm_get_device(sdp); 3394 error = -ENODEV; 3395 if (sdp->type != TYPE_DISK && 3396 sdp->type != TYPE_ZBC && 3397 sdp->type != TYPE_MOD && 3398 sdp->type != TYPE_RBC) 3399 goto out; 3400 3401 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) { 3402 sdev_printk(KERN_WARNING, sdp, 3403 "Unsupported ZBC host-managed device.\n"); 3404 goto out; 3405 } 3406 3407 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3408 "sd_probe\n")); 3409 3410 error = -ENOMEM; 3411 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3412 if (!sdkp) 3413 goto out; 3414 3415 gd = alloc_disk(SD_MINORS); 3416 if (!gd) 3417 goto out_free; 3418 3419 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3420 if (index < 0) { 3421 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3422 goto out_put; 3423 } 3424 3425 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3426 if (error) { 3427 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3428 goto out_free_index; 3429 } 3430 3431 sdkp->device = sdp; 3432 sdkp->driver = &sd_template; 3433 sdkp->disk = gd; 3434 sdkp->index = index; 3435 sdkp->max_retries = SD_MAX_RETRIES; 3436 atomic_set(&sdkp->openers, 0); 3437 atomic_set(&sdkp->device->ioerr_cnt, 0); 3438 3439 if (!sdp->request_queue->rq_timeout) { 3440 if (sdp->type != TYPE_MOD) 3441 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3442 else 3443 blk_queue_rq_timeout(sdp->request_queue, 3444 SD_MOD_TIMEOUT); 3445 } 3446 3447 device_initialize(&sdkp->dev); 3448 sdkp->dev.parent = dev; 3449 sdkp->dev.class = &sd_disk_class; 3450 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3451 3452 error = device_add(&sdkp->dev); 3453 if (error) 3454 goto out_free_index; 3455 3456 get_device(dev); 3457 dev_set_drvdata(dev, sdkp); 3458 3459 gd->major = sd_major((index & 0xf0) >> 4); 3460 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3461 3462 gd->fops = &sd_fops; 3463 gd->private_data = &sdkp->driver; 3464 gd->queue = sdkp->device->request_queue; 3465 3466 /* defaults, until the device tells us otherwise */ 3467 sdp->sector_size = 512; 3468 sdkp->capacity = 0; 3469 sdkp->media_present = 1; 3470 sdkp->write_prot = 0; 3471 sdkp->cache_override = 0; 3472 sdkp->WCE = 0; 3473 sdkp->RCD = 0; 3474 sdkp->ATO = 0; 3475 sdkp->first_scan = 1; 3476 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3477 3478 sd_revalidate_disk(gd); 3479 3480 gd->flags = GENHD_FL_EXT_DEVT; 3481 if (sdp->removable) { 3482 gd->flags |= GENHD_FL_REMOVABLE; 3483 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3484 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3485 } 3486 3487 blk_pm_runtime_init(sdp->request_queue, dev); 3488 if (sdp->rpm_autosuspend) { 3489 pm_runtime_set_autosuspend_delay(dev, 3490 sdp->host->hostt->rpm_autosuspend_delay); 3491 } 3492 device_add_disk(dev, gd, NULL); 3493 if (sdkp->capacity) 3494 sd_dif_config_host(sdkp); 3495 3496 sd_revalidate_disk(gd); 3497 3498 if (sdkp->security) { 3499 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3500 if (sdkp->opal_dev) 3501 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3502 } 3503 3504 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3505 sdp->removable ? "removable " : ""); 3506 scsi_autopm_put_device(sdp); 3507 3508 return 0; 3509 3510 out_free_index: 3511 ida_free(&sd_index_ida, index); 3512 out_put: 3513 put_disk(gd); 3514 out_free: 3515 sd_zbc_release_disk(sdkp); 3516 kfree(sdkp); 3517 out: 3518 scsi_autopm_put_device(sdp); 3519 return error; 3520 } 3521 3522 /** 3523 * sd_remove - called whenever a scsi disk (previously recognized by 3524 * sd_probe) is detached from the system. It is called (potentially 3525 * multiple times) during sd module unload. 3526 * @dev: pointer to device object 3527 * 3528 * Note: this function is invoked from the scsi mid-level. 3529 * This function potentially frees up a device name (e.g. /dev/sdc) 3530 * that could be re-used by a subsequent sd_probe(). 3531 * This function is not called when the built-in sd driver is "exit-ed". 3532 **/ 3533 static int sd_remove(struct device *dev) 3534 { 3535 struct scsi_disk *sdkp; 3536 3537 sdkp = dev_get_drvdata(dev); 3538 scsi_autopm_get_device(sdkp->device); 3539 3540 async_synchronize_full_domain(&scsi_sd_pm_domain); 3541 device_del(&sdkp->dev); 3542 del_gendisk(sdkp->disk); 3543 sd_shutdown(dev); 3544 3545 free_opal_dev(sdkp->opal_dev); 3546 3547 mutex_lock(&sd_ref_mutex); 3548 dev_set_drvdata(dev, NULL); 3549 put_device(&sdkp->dev); 3550 mutex_unlock(&sd_ref_mutex); 3551 3552 return 0; 3553 } 3554 3555 /** 3556 * scsi_disk_release - Called to free the scsi_disk structure 3557 * @dev: pointer to embedded class device 3558 * 3559 * sd_ref_mutex must be held entering this routine. Because it is 3560 * called on last put, you should always use the scsi_disk_get() 3561 * scsi_disk_put() helpers which manipulate the semaphore directly 3562 * and never do a direct put_device. 3563 **/ 3564 static void scsi_disk_release(struct device *dev) 3565 { 3566 struct scsi_disk *sdkp = to_scsi_disk(dev); 3567 struct gendisk *disk = sdkp->disk; 3568 struct request_queue *q = disk->queue; 3569 3570 ida_free(&sd_index_ida, sdkp->index); 3571 3572 /* 3573 * Wait until all requests that are in progress have completed. 3574 * This is necessary to avoid that e.g. scsi_end_request() crashes 3575 * due to clearing the disk->private_data pointer. Wait from inside 3576 * scsi_disk_release() instead of from sd_release() to avoid that 3577 * freezing and unfreezing the request queue affects user space I/O 3578 * in case multiple processes open a /dev/sd... node concurrently. 3579 */ 3580 blk_mq_freeze_queue(q); 3581 blk_mq_unfreeze_queue(q); 3582 3583 disk->private_data = NULL; 3584 put_disk(disk); 3585 put_device(&sdkp->device->sdev_gendev); 3586 3587 sd_zbc_release_disk(sdkp); 3588 3589 kfree(sdkp); 3590 } 3591 3592 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3593 { 3594 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3595 struct scsi_sense_hdr sshdr; 3596 struct scsi_device *sdp = sdkp->device; 3597 int res; 3598 3599 if (start) 3600 cmd[4] |= 1; /* START */ 3601 3602 if (sdp->start_stop_pwr_cond) 3603 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3604 3605 if (!scsi_device_online(sdp)) 3606 return -ENODEV; 3607 3608 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3609 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3610 if (res) { 3611 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3612 if (res > 0 && scsi_sense_valid(&sshdr)) { 3613 sd_print_sense_hdr(sdkp, &sshdr); 3614 /* 0x3a is medium not present */ 3615 if (sshdr.asc == 0x3a) 3616 res = 0; 3617 } 3618 } 3619 3620 /* SCSI error codes must not go to the generic layer */ 3621 if (res) 3622 return -EIO; 3623 3624 return 0; 3625 } 3626 3627 /* 3628 * Send a SYNCHRONIZE CACHE instruction down to the device through 3629 * the normal SCSI command structure. Wait for the command to 3630 * complete. 3631 */ 3632 static void sd_shutdown(struct device *dev) 3633 { 3634 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3635 3636 if (!sdkp) 3637 return; /* this can happen */ 3638 3639 if (pm_runtime_suspended(dev)) 3640 return; 3641 3642 if (sdkp->WCE && sdkp->media_present) { 3643 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3644 sd_sync_cache(sdkp, NULL); 3645 } 3646 3647 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3648 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3649 sd_start_stop_device(sdkp, 0); 3650 } 3651 } 3652 3653 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3654 { 3655 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3656 struct scsi_sense_hdr sshdr; 3657 int ret = 0; 3658 3659 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3660 return 0; 3661 3662 if (sdkp->WCE && sdkp->media_present) { 3663 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3664 ret = sd_sync_cache(sdkp, &sshdr); 3665 3666 if (ret) { 3667 /* ignore OFFLINE device */ 3668 if (ret == -ENODEV) 3669 return 0; 3670 3671 if (!scsi_sense_valid(&sshdr) || 3672 sshdr.sense_key != ILLEGAL_REQUEST) 3673 return ret; 3674 3675 /* 3676 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3677 * doesn't support sync. There's not much to do and 3678 * suspend shouldn't fail. 3679 */ 3680 ret = 0; 3681 } 3682 } 3683 3684 if (sdkp->device->manage_start_stop) { 3685 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3686 /* an error is not worth aborting a system sleep */ 3687 ret = sd_start_stop_device(sdkp, 0); 3688 if (ignore_stop_errors) 3689 ret = 0; 3690 } 3691 3692 return ret; 3693 } 3694 3695 static int sd_suspend_system(struct device *dev) 3696 { 3697 return sd_suspend_common(dev, true); 3698 } 3699 3700 static int sd_suspend_runtime(struct device *dev) 3701 { 3702 return sd_suspend_common(dev, false); 3703 } 3704 3705 static int sd_resume(struct device *dev) 3706 { 3707 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3708 int ret; 3709 3710 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3711 return 0; 3712 3713 if (!sdkp->device->manage_start_stop) 3714 return 0; 3715 3716 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3717 ret = sd_start_stop_device(sdkp, 1); 3718 if (!ret) 3719 opal_unlock_from_suspend(sdkp->opal_dev); 3720 return ret; 3721 } 3722 3723 /** 3724 * init_sd - entry point for this driver (both when built in or when 3725 * a module). 3726 * 3727 * Note: this function registers this driver with the scsi mid-level. 3728 **/ 3729 static int __init init_sd(void) 3730 { 3731 int majors = 0, i, err; 3732 3733 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3734 3735 for (i = 0; i < SD_MAJORS; i++) { 3736 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3737 continue; 3738 majors++; 3739 } 3740 3741 if (!majors) 3742 return -ENODEV; 3743 3744 err = class_register(&sd_disk_class); 3745 if (err) 3746 goto err_out; 3747 3748 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3749 0, 0, NULL); 3750 if (!sd_cdb_cache) { 3751 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3752 err = -ENOMEM; 3753 goto err_out_class; 3754 } 3755 3756 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3757 if (!sd_cdb_pool) { 3758 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3759 err = -ENOMEM; 3760 goto err_out_cache; 3761 } 3762 3763 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3764 if (!sd_page_pool) { 3765 printk(KERN_ERR "sd: can't init discard page pool\n"); 3766 err = -ENOMEM; 3767 goto err_out_ppool; 3768 } 3769 3770 err = scsi_register_driver(&sd_template.gendrv); 3771 if (err) 3772 goto err_out_driver; 3773 3774 return 0; 3775 3776 err_out_driver: 3777 mempool_destroy(sd_page_pool); 3778 3779 err_out_ppool: 3780 mempool_destroy(sd_cdb_pool); 3781 3782 err_out_cache: 3783 kmem_cache_destroy(sd_cdb_cache); 3784 3785 err_out_class: 3786 class_unregister(&sd_disk_class); 3787 err_out: 3788 for (i = 0; i < SD_MAJORS; i++) 3789 unregister_blkdev(sd_major(i), "sd"); 3790 return err; 3791 } 3792 3793 /** 3794 * exit_sd - exit point for this driver (when it is a module). 3795 * 3796 * Note: this function unregisters this driver from the scsi mid-level. 3797 **/ 3798 static void __exit exit_sd(void) 3799 { 3800 int i; 3801 3802 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3803 3804 scsi_unregister_driver(&sd_template.gendrv); 3805 mempool_destroy(sd_cdb_pool); 3806 mempool_destroy(sd_page_pool); 3807 kmem_cache_destroy(sd_cdb_cache); 3808 3809 class_unregister(&sd_disk_class); 3810 3811 for (i = 0; i < SD_MAJORS; i++) 3812 unregister_blkdev(sd_major(i), "sd"); 3813 } 3814 3815 module_init(init_sd); 3816 module_exit(exit_sd); 3817 3818 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3819 { 3820 scsi_print_sense_hdr(sdkp->device, 3821 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3822 } 3823 3824 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3825 { 3826 const char *hb_string = scsi_hostbyte_string(result); 3827 3828 if (hb_string) 3829 sd_printk(KERN_INFO, sdkp, 3830 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3831 hb_string ? hb_string : "invalid", 3832 "DRIVER_OK"); 3833 else 3834 sd_printk(KERN_INFO, sdkp, 3835 "%s: Result: hostbyte=0x%02x driverbyte=%s\n", 3836 msg, host_byte(result), "DRIVER_OK"); 3837 } 3838