1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * sd.c Copyright (C) 1992 Drew Eckhardt 4 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 5 * 6 * Linux scsi disk driver 7 * Initial versions: Drew Eckhardt 8 * Subsequent revisions: Eric Youngdale 9 * Modification history: 10 * - Drew Eckhardt <drew@colorado.edu> original 11 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 12 * outstanding request, and other enhancements. 13 * Support loadable low-level scsi drivers. 14 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 15 * eight major numbers. 16 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 17 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 18 * sd_init and cleanups. 19 * - Alex Davis <letmein@erols.com> Fix problem where partition info 20 * not being read in sd_open. Fix problem where removable media 21 * could be ejected after sd_open. 22 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 23 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 24 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 25 * Support 32k/1M disks. 26 * 27 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 28 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 29 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 30 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 31 * - entering other commands: SCSI_LOG_HLQUEUE level 3 32 * Note: when the logging level is set by the user, it must be greater 33 * than the level indicated above to trigger output. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/fs.h> 38 #include <linux/kernel.h> 39 #include <linux/mm.h> 40 #include <linux/bio.h> 41 #include <linux/genhd.h> 42 #include <linux/hdreg.h> 43 #include <linux/errno.h> 44 #include <linux/idr.h> 45 #include <linux/interrupt.h> 46 #include <linux/init.h> 47 #include <linux/blkdev.h> 48 #include <linux/blkpg.h> 49 #include <linux/blk-pm.h> 50 #include <linux/delay.h> 51 #include <linux/mutex.h> 52 #include <linux/string_helpers.h> 53 #include <linux/async.h> 54 #include <linux/slab.h> 55 #include <linux/sed-opal.h> 56 #include <linux/pm_runtime.h> 57 #include <linux/pr.h> 58 #include <linux/t10-pi.h> 59 #include <linux/uaccess.h> 60 #include <asm/unaligned.h> 61 62 #include <scsi/scsi.h> 63 #include <scsi/scsi_cmnd.h> 64 #include <scsi/scsi_dbg.h> 65 #include <scsi/scsi_device.h> 66 #include <scsi/scsi_driver.h> 67 #include <scsi/scsi_eh.h> 68 #include <scsi/scsi_host.h> 69 #include <scsi/scsi_ioctl.h> 70 #include <scsi/scsicam.h> 71 72 #include "sd.h" 73 #include "scsi_priv.h" 74 #include "scsi_logging.h" 75 76 MODULE_AUTHOR("Eric Youngdale"); 77 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 78 MODULE_LICENSE("GPL"); 79 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 95 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 97 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 98 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 99 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 100 101 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 102 #define SD_MINORS 16 103 #else 104 #define SD_MINORS 0 105 #endif 106 107 static void sd_config_discard(struct scsi_disk *, unsigned int); 108 static void sd_config_write_same(struct scsi_disk *); 109 static int sd_revalidate_disk(struct gendisk *); 110 static void sd_unlock_native_capacity(struct gendisk *disk); 111 static int sd_probe(struct device *); 112 static int sd_remove(struct device *); 113 static void sd_shutdown(struct device *); 114 static int sd_suspend_system(struct device *); 115 static int sd_suspend_runtime(struct device *); 116 static int sd_resume(struct device *); 117 static void sd_rescan(struct device *); 118 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt); 119 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 120 static int sd_done(struct scsi_cmnd *); 121 static void sd_eh_reset(struct scsi_cmnd *); 122 static int sd_eh_action(struct scsi_cmnd *, int); 123 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 124 static void scsi_disk_release(struct device *cdev); 125 126 static DEFINE_IDA(sd_index_ida); 127 128 /* This semaphore is used to mediate the 0->1 reference get in the 129 * face of object destruction (i.e. we can't allow a get on an 130 * object after last put) */ 131 static DEFINE_MUTEX(sd_ref_mutex); 132 133 static struct kmem_cache *sd_cdb_cache; 134 static mempool_t *sd_cdb_pool; 135 static mempool_t *sd_page_pool; 136 137 static const char *sd_cache_types[] = { 138 "write through", "none", "write back", 139 "write back, no read (daft)" 140 }; 141 142 static void sd_set_flush_flag(struct scsi_disk *sdkp) 143 { 144 bool wc = false, fua = false; 145 146 if (sdkp->WCE) { 147 wc = true; 148 if (sdkp->DPOFUA) 149 fua = true; 150 } 151 152 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 153 } 154 155 static ssize_t 156 cache_type_store(struct device *dev, struct device_attribute *attr, 157 const char *buf, size_t count) 158 { 159 int ct, rcd, wce, sp; 160 struct scsi_disk *sdkp = to_scsi_disk(dev); 161 struct scsi_device *sdp = sdkp->device; 162 char buffer[64]; 163 char *buffer_data; 164 struct scsi_mode_data data; 165 struct scsi_sense_hdr sshdr; 166 static const char temp[] = "temporary "; 167 int len; 168 169 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 170 /* no cache control on RBC devices; theoretically they 171 * can do it, but there's probably so many exceptions 172 * it's not worth the risk */ 173 return -EINVAL; 174 175 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 176 buf += sizeof(temp) - 1; 177 sdkp->cache_override = 1; 178 } else { 179 sdkp->cache_override = 0; 180 } 181 182 ct = sysfs_match_string(sd_cache_types, buf); 183 if (ct < 0) 184 return -EINVAL; 185 186 rcd = ct & 0x01 ? 1 : 0; 187 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 188 189 if (sdkp->cache_override) { 190 sdkp->WCE = wce; 191 sdkp->RCD = rcd; 192 sd_set_flush_flag(sdkp); 193 return count; 194 } 195 196 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 197 sdkp->max_retries, &data, NULL)) 198 return -EINVAL; 199 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 200 data.block_descriptor_length); 201 buffer_data = buffer + data.header_length + 202 data.block_descriptor_length; 203 buffer_data[2] &= ~0x05; 204 buffer_data[2] |= wce << 2 | rcd; 205 sp = buffer_data[0] & 0x80 ? 1 : 0; 206 buffer_data[0] &= ~0x80; 207 208 /* 209 * Ensure WP, DPOFUA, and RESERVED fields are cleared in 210 * received mode parameter buffer before doing MODE SELECT. 211 */ 212 data.device_specific = 0; 213 214 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 215 sdkp->max_retries, &data, &sshdr)) { 216 if (scsi_sense_valid(&sshdr)) 217 sd_print_sense_hdr(sdkp, &sshdr); 218 return -EINVAL; 219 } 220 sd_revalidate_disk(sdkp->disk); 221 return count; 222 } 223 224 static ssize_t 225 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 226 char *buf) 227 { 228 struct scsi_disk *sdkp = to_scsi_disk(dev); 229 struct scsi_device *sdp = sdkp->device; 230 231 return sprintf(buf, "%u\n", sdp->manage_start_stop); 232 } 233 234 static ssize_t 235 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 236 const char *buf, size_t count) 237 { 238 struct scsi_disk *sdkp = to_scsi_disk(dev); 239 struct scsi_device *sdp = sdkp->device; 240 bool v; 241 242 if (!capable(CAP_SYS_ADMIN)) 243 return -EACCES; 244 245 if (kstrtobool(buf, &v)) 246 return -EINVAL; 247 248 sdp->manage_start_stop = v; 249 250 return count; 251 } 252 static DEVICE_ATTR_RW(manage_start_stop); 253 254 static ssize_t 255 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 256 { 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 259 return sprintf(buf, "%u\n", sdkp->device->allow_restart); 260 } 261 262 static ssize_t 263 allow_restart_store(struct device *dev, struct device_attribute *attr, 264 const char *buf, size_t count) 265 { 266 bool v; 267 struct scsi_disk *sdkp = to_scsi_disk(dev); 268 struct scsi_device *sdp = sdkp->device; 269 270 if (!capable(CAP_SYS_ADMIN)) 271 return -EACCES; 272 273 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 274 return -EINVAL; 275 276 if (kstrtobool(buf, &v)) 277 return -EINVAL; 278 279 sdp->allow_restart = v; 280 281 return count; 282 } 283 static DEVICE_ATTR_RW(allow_restart); 284 285 static ssize_t 286 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 287 { 288 struct scsi_disk *sdkp = to_scsi_disk(dev); 289 int ct = sdkp->RCD + 2*sdkp->WCE; 290 291 return sprintf(buf, "%s\n", sd_cache_types[ct]); 292 } 293 static DEVICE_ATTR_RW(cache_type); 294 295 static ssize_t 296 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 297 { 298 struct scsi_disk *sdkp = to_scsi_disk(dev); 299 300 return sprintf(buf, "%u\n", sdkp->DPOFUA); 301 } 302 static DEVICE_ATTR_RO(FUA); 303 304 static ssize_t 305 protection_type_show(struct device *dev, struct device_attribute *attr, 306 char *buf) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 310 return sprintf(buf, "%u\n", sdkp->protection_type); 311 } 312 313 static ssize_t 314 protection_type_store(struct device *dev, struct device_attribute *attr, 315 const char *buf, size_t count) 316 { 317 struct scsi_disk *sdkp = to_scsi_disk(dev); 318 unsigned int val; 319 int err; 320 321 if (!capable(CAP_SYS_ADMIN)) 322 return -EACCES; 323 324 err = kstrtouint(buf, 10, &val); 325 326 if (err) 327 return err; 328 329 if (val <= T10_PI_TYPE3_PROTECTION) 330 sdkp->protection_type = val; 331 332 return count; 333 } 334 static DEVICE_ATTR_RW(protection_type); 335 336 static ssize_t 337 protection_mode_show(struct device *dev, struct device_attribute *attr, 338 char *buf) 339 { 340 struct scsi_disk *sdkp = to_scsi_disk(dev); 341 struct scsi_device *sdp = sdkp->device; 342 unsigned int dif, dix; 343 344 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 345 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 346 347 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 348 dif = 0; 349 dix = 1; 350 } 351 352 if (!dif && !dix) 353 return sprintf(buf, "none\n"); 354 355 return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif); 356 } 357 static DEVICE_ATTR_RO(protection_mode); 358 359 static ssize_t 360 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 361 { 362 struct scsi_disk *sdkp = to_scsi_disk(dev); 363 364 return sprintf(buf, "%u\n", sdkp->ATO); 365 } 366 static DEVICE_ATTR_RO(app_tag_own); 367 368 static ssize_t 369 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 370 char *buf) 371 { 372 struct scsi_disk *sdkp = to_scsi_disk(dev); 373 374 return sprintf(buf, "%u\n", sdkp->lbpme); 375 } 376 static DEVICE_ATTR_RO(thin_provisioning); 377 378 /* sysfs_match_string() requires dense arrays */ 379 static const char *lbp_mode[] = { 380 [SD_LBP_FULL] = "full", 381 [SD_LBP_UNMAP] = "unmap", 382 [SD_LBP_WS16] = "writesame_16", 383 [SD_LBP_WS10] = "writesame_10", 384 [SD_LBP_ZERO] = "writesame_zero", 385 [SD_LBP_DISABLE] = "disabled", 386 }; 387 388 static ssize_t 389 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 390 char *buf) 391 { 392 struct scsi_disk *sdkp = to_scsi_disk(dev); 393 394 return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]); 395 } 396 397 static ssize_t 398 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 399 const char *buf, size_t count) 400 { 401 struct scsi_disk *sdkp = to_scsi_disk(dev); 402 struct scsi_device *sdp = sdkp->device; 403 int mode; 404 405 if (!capable(CAP_SYS_ADMIN)) 406 return -EACCES; 407 408 if (sd_is_zoned(sdkp)) { 409 sd_config_discard(sdkp, SD_LBP_DISABLE); 410 return count; 411 } 412 413 if (sdp->type != TYPE_DISK) 414 return -EINVAL; 415 416 mode = sysfs_match_string(lbp_mode, buf); 417 if (mode < 0) 418 return -EINVAL; 419 420 sd_config_discard(sdkp, mode); 421 422 return count; 423 } 424 static DEVICE_ATTR_RW(provisioning_mode); 425 426 /* sysfs_match_string() requires dense arrays */ 427 static const char *zeroing_mode[] = { 428 [SD_ZERO_WRITE] = "write", 429 [SD_ZERO_WS] = "writesame", 430 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 431 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 432 }; 433 434 static ssize_t 435 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 436 char *buf) 437 { 438 struct scsi_disk *sdkp = to_scsi_disk(dev); 439 440 return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 441 } 442 443 static ssize_t 444 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 445 const char *buf, size_t count) 446 { 447 struct scsi_disk *sdkp = to_scsi_disk(dev); 448 int mode; 449 450 if (!capable(CAP_SYS_ADMIN)) 451 return -EACCES; 452 453 mode = sysfs_match_string(zeroing_mode, buf); 454 if (mode < 0) 455 return -EINVAL; 456 457 sdkp->zeroing_mode = mode; 458 459 return count; 460 } 461 static DEVICE_ATTR_RW(zeroing_mode); 462 463 static ssize_t 464 max_medium_access_timeouts_show(struct device *dev, 465 struct device_attribute *attr, char *buf) 466 { 467 struct scsi_disk *sdkp = to_scsi_disk(dev); 468 469 return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts); 470 } 471 472 static ssize_t 473 max_medium_access_timeouts_store(struct device *dev, 474 struct device_attribute *attr, const char *buf, 475 size_t count) 476 { 477 struct scsi_disk *sdkp = to_scsi_disk(dev); 478 int err; 479 480 if (!capable(CAP_SYS_ADMIN)) 481 return -EACCES; 482 483 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 484 485 return err ? err : count; 486 } 487 static DEVICE_ATTR_RW(max_medium_access_timeouts); 488 489 static ssize_t 490 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 491 char *buf) 492 { 493 struct scsi_disk *sdkp = to_scsi_disk(dev); 494 495 return sprintf(buf, "%u\n", sdkp->max_ws_blocks); 496 } 497 498 static ssize_t 499 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 500 const char *buf, size_t count) 501 { 502 struct scsi_disk *sdkp = to_scsi_disk(dev); 503 struct scsi_device *sdp = sdkp->device; 504 unsigned long max; 505 int err; 506 507 if (!capable(CAP_SYS_ADMIN)) 508 return -EACCES; 509 510 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 511 return -EINVAL; 512 513 err = kstrtoul(buf, 10, &max); 514 515 if (err) 516 return err; 517 518 if (max == 0) 519 sdp->no_write_same = 1; 520 else if (max <= SD_MAX_WS16_BLOCKS) { 521 sdp->no_write_same = 0; 522 sdkp->max_ws_blocks = max; 523 } 524 525 sd_config_write_same(sdkp); 526 527 return count; 528 } 529 static DEVICE_ATTR_RW(max_write_same_blocks); 530 531 static ssize_t 532 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf) 533 { 534 struct scsi_disk *sdkp = to_scsi_disk(dev); 535 536 if (sdkp->device->type == TYPE_ZBC) 537 return sprintf(buf, "host-managed\n"); 538 if (sdkp->zoned == 1) 539 return sprintf(buf, "host-aware\n"); 540 if (sdkp->zoned == 2) 541 return sprintf(buf, "drive-managed\n"); 542 return sprintf(buf, "none\n"); 543 } 544 static DEVICE_ATTR_RO(zoned_cap); 545 546 static ssize_t 547 max_retries_store(struct device *dev, struct device_attribute *attr, 548 const char *buf, size_t count) 549 { 550 struct scsi_disk *sdkp = to_scsi_disk(dev); 551 struct scsi_device *sdev = sdkp->device; 552 int retries, err; 553 554 err = kstrtoint(buf, 10, &retries); 555 if (err) 556 return err; 557 558 if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) { 559 sdkp->max_retries = retries; 560 return count; 561 } 562 563 sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n", 564 SD_MAX_RETRIES); 565 return -EINVAL; 566 } 567 568 static ssize_t 569 max_retries_show(struct device *dev, struct device_attribute *attr, 570 char *buf) 571 { 572 struct scsi_disk *sdkp = to_scsi_disk(dev); 573 574 return sprintf(buf, "%d\n", sdkp->max_retries); 575 } 576 577 static DEVICE_ATTR_RW(max_retries); 578 579 static struct attribute *sd_disk_attrs[] = { 580 &dev_attr_cache_type.attr, 581 &dev_attr_FUA.attr, 582 &dev_attr_allow_restart.attr, 583 &dev_attr_manage_start_stop.attr, 584 &dev_attr_protection_type.attr, 585 &dev_attr_protection_mode.attr, 586 &dev_attr_app_tag_own.attr, 587 &dev_attr_thin_provisioning.attr, 588 &dev_attr_provisioning_mode.attr, 589 &dev_attr_zeroing_mode.attr, 590 &dev_attr_max_write_same_blocks.attr, 591 &dev_attr_max_medium_access_timeouts.attr, 592 &dev_attr_zoned_cap.attr, 593 &dev_attr_max_retries.attr, 594 NULL, 595 }; 596 ATTRIBUTE_GROUPS(sd_disk); 597 598 static struct class sd_disk_class = { 599 .name = "scsi_disk", 600 .owner = THIS_MODULE, 601 .dev_release = scsi_disk_release, 602 .dev_groups = sd_disk_groups, 603 }; 604 605 static const struct dev_pm_ops sd_pm_ops = { 606 .suspend = sd_suspend_system, 607 .resume = sd_resume, 608 .poweroff = sd_suspend_system, 609 .restore = sd_resume, 610 .runtime_suspend = sd_suspend_runtime, 611 .runtime_resume = sd_resume, 612 }; 613 614 static struct scsi_driver sd_template = { 615 .gendrv = { 616 .name = "sd", 617 .owner = THIS_MODULE, 618 .probe = sd_probe, 619 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 620 .remove = sd_remove, 621 .shutdown = sd_shutdown, 622 .pm = &sd_pm_ops, 623 }, 624 .rescan = sd_rescan, 625 .init_command = sd_init_command, 626 .uninit_command = sd_uninit_command, 627 .done = sd_done, 628 .eh_action = sd_eh_action, 629 .eh_reset = sd_eh_reset, 630 }; 631 632 /* 633 * Don't request a new module, as that could deadlock in multipath 634 * environment. 635 */ 636 static void sd_default_probe(dev_t devt) 637 { 638 } 639 640 /* 641 * Device no to disk mapping: 642 * 643 * major disc2 disc p1 644 * |............|.............|....|....| <- dev_t 645 * 31 20 19 8 7 4 3 0 646 * 647 * Inside a major, we have 16k disks, however mapped non- 648 * contiguously. The first 16 disks are for major0, the next 649 * ones with major1, ... Disk 256 is for major0 again, disk 272 650 * for major1, ... 651 * As we stay compatible with our numbering scheme, we can reuse 652 * the well-know SCSI majors 8, 65--71, 136--143. 653 */ 654 static int sd_major(int major_idx) 655 { 656 switch (major_idx) { 657 case 0: 658 return SCSI_DISK0_MAJOR; 659 case 1 ... 7: 660 return SCSI_DISK1_MAJOR + major_idx - 1; 661 case 8 ... 15: 662 return SCSI_DISK8_MAJOR + major_idx - 8; 663 default: 664 BUG(); 665 return 0; /* shut up gcc */ 666 } 667 } 668 669 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 670 { 671 struct scsi_disk *sdkp = NULL; 672 673 mutex_lock(&sd_ref_mutex); 674 675 if (disk->private_data) { 676 sdkp = scsi_disk(disk); 677 if (scsi_device_get(sdkp->device) == 0) 678 get_device(&sdkp->dev); 679 else 680 sdkp = NULL; 681 } 682 mutex_unlock(&sd_ref_mutex); 683 return sdkp; 684 } 685 686 static void scsi_disk_put(struct scsi_disk *sdkp) 687 { 688 struct scsi_device *sdev = sdkp->device; 689 690 mutex_lock(&sd_ref_mutex); 691 put_device(&sdkp->dev); 692 scsi_device_put(sdev); 693 mutex_unlock(&sd_ref_mutex); 694 } 695 696 #ifdef CONFIG_BLK_SED_OPAL 697 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, 698 size_t len, bool send) 699 { 700 struct scsi_disk *sdkp = data; 701 struct scsi_device *sdev = sdkp->device; 702 u8 cdb[12] = { 0, }; 703 int ret; 704 705 cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN; 706 cdb[1] = secp; 707 put_unaligned_be16(spsp, &cdb[2]); 708 put_unaligned_be32(len, &cdb[6]); 709 710 ret = scsi_execute_req(sdev, cdb, 711 send ? DMA_TO_DEVICE : DMA_FROM_DEVICE, 712 buffer, len, NULL, SD_TIMEOUT, sdkp->max_retries, NULL); 713 return ret <= 0 ? ret : -EIO; 714 } 715 #endif /* CONFIG_BLK_SED_OPAL */ 716 717 /* 718 * Look up the DIX operation based on whether the command is read or 719 * write and whether dix and dif are enabled. 720 */ 721 static unsigned int sd_prot_op(bool write, bool dix, bool dif) 722 { 723 /* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */ 724 static const unsigned int ops[] = { /* wrt dix dif */ 725 SCSI_PROT_NORMAL, /* 0 0 0 */ 726 SCSI_PROT_READ_STRIP, /* 0 0 1 */ 727 SCSI_PROT_READ_INSERT, /* 0 1 0 */ 728 SCSI_PROT_READ_PASS, /* 0 1 1 */ 729 SCSI_PROT_NORMAL, /* 1 0 0 */ 730 SCSI_PROT_WRITE_INSERT, /* 1 0 1 */ 731 SCSI_PROT_WRITE_STRIP, /* 1 1 0 */ 732 SCSI_PROT_WRITE_PASS, /* 1 1 1 */ 733 }; 734 735 return ops[write << 2 | dix << 1 | dif]; 736 } 737 738 /* 739 * Returns a mask of the protection flags that are valid for a given DIX 740 * operation. 741 */ 742 static unsigned int sd_prot_flag_mask(unsigned int prot_op) 743 { 744 static const unsigned int flag_mask[] = { 745 [SCSI_PROT_NORMAL] = 0, 746 747 [SCSI_PROT_READ_STRIP] = SCSI_PROT_TRANSFER_PI | 748 SCSI_PROT_GUARD_CHECK | 749 SCSI_PROT_REF_CHECK | 750 SCSI_PROT_REF_INCREMENT, 751 752 [SCSI_PROT_READ_INSERT] = SCSI_PROT_REF_INCREMENT | 753 SCSI_PROT_IP_CHECKSUM, 754 755 [SCSI_PROT_READ_PASS] = SCSI_PROT_TRANSFER_PI | 756 SCSI_PROT_GUARD_CHECK | 757 SCSI_PROT_REF_CHECK | 758 SCSI_PROT_REF_INCREMENT | 759 SCSI_PROT_IP_CHECKSUM, 760 761 [SCSI_PROT_WRITE_INSERT] = SCSI_PROT_TRANSFER_PI | 762 SCSI_PROT_REF_INCREMENT, 763 764 [SCSI_PROT_WRITE_STRIP] = SCSI_PROT_GUARD_CHECK | 765 SCSI_PROT_REF_CHECK | 766 SCSI_PROT_REF_INCREMENT | 767 SCSI_PROT_IP_CHECKSUM, 768 769 [SCSI_PROT_WRITE_PASS] = SCSI_PROT_TRANSFER_PI | 770 SCSI_PROT_GUARD_CHECK | 771 SCSI_PROT_REF_CHECK | 772 SCSI_PROT_REF_INCREMENT | 773 SCSI_PROT_IP_CHECKSUM, 774 }; 775 776 return flag_mask[prot_op]; 777 } 778 779 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 780 unsigned int dix, unsigned int dif) 781 { 782 struct bio *bio = scmd->request->bio; 783 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 784 unsigned int protect = 0; 785 786 if (dix) { /* DIX Type 0, 1, 2, 3 */ 787 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 788 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 789 790 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 791 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 792 } 793 794 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 795 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 796 797 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 798 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 799 } 800 801 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 802 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 803 804 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 805 protect = 3 << 5; /* Disable target PI checking */ 806 else 807 protect = 1 << 5; /* Enable target PI checking */ 808 } 809 810 scsi_set_prot_op(scmd, prot_op); 811 scsi_set_prot_type(scmd, dif); 812 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 813 814 return protect; 815 } 816 817 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 818 { 819 struct request_queue *q = sdkp->disk->queue; 820 unsigned int logical_block_size = sdkp->device->sector_size; 821 unsigned int max_blocks = 0; 822 823 q->limits.discard_alignment = 824 sdkp->unmap_alignment * logical_block_size; 825 q->limits.discard_granularity = 826 max(sdkp->physical_block_size, 827 sdkp->unmap_granularity * logical_block_size); 828 sdkp->provisioning_mode = mode; 829 830 switch (mode) { 831 832 case SD_LBP_FULL: 833 case SD_LBP_DISABLE: 834 blk_queue_max_discard_sectors(q, 0); 835 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); 836 return; 837 838 case SD_LBP_UNMAP: 839 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 840 (u32)SD_MAX_WS16_BLOCKS); 841 break; 842 843 case SD_LBP_WS16: 844 if (sdkp->device->unmap_limit_for_ws) 845 max_blocks = sdkp->max_unmap_blocks; 846 else 847 max_blocks = sdkp->max_ws_blocks; 848 849 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS); 850 break; 851 852 case SD_LBP_WS10: 853 if (sdkp->device->unmap_limit_for_ws) 854 max_blocks = sdkp->max_unmap_blocks; 855 else 856 max_blocks = sdkp->max_ws_blocks; 857 858 max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS); 859 break; 860 861 case SD_LBP_ZERO: 862 max_blocks = min_not_zero(sdkp->max_ws_blocks, 863 (u32)SD_MAX_WS10_BLOCKS); 864 break; 865 } 866 867 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 868 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); 869 } 870 871 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 872 { 873 struct scsi_device *sdp = cmd->device; 874 struct request *rq = cmd->request; 875 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 876 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 877 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 878 unsigned int data_len = 24; 879 char *buf; 880 881 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 882 if (!rq->special_vec.bv_page) 883 return BLK_STS_RESOURCE; 884 clear_highpage(rq->special_vec.bv_page); 885 rq->special_vec.bv_offset = 0; 886 rq->special_vec.bv_len = data_len; 887 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 888 889 cmd->cmd_len = 10; 890 cmd->cmnd[0] = UNMAP; 891 cmd->cmnd[8] = 24; 892 893 buf = page_address(rq->special_vec.bv_page); 894 put_unaligned_be16(6 + 16, &buf[0]); 895 put_unaligned_be16(16, &buf[2]); 896 put_unaligned_be64(lba, &buf[8]); 897 put_unaligned_be32(nr_blocks, &buf[16]); 898 899 cmd->allowed = sdkp->max_retries; 900 cmd->transfersize = data_len; 901 rq->timeout = SD_TIMEOUT; 902 903 return scsi_alloc_sgtables(cmd); 904 } 905 906 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, 907 bool unmap) 908 { 909 struct scsi_device *sdp = cmd->device; 910 struct request *rq = cmd->request; 911 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 912 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 913 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 914 u32 data_len = sdp->sector_size; 915 916 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 917 if (!rq->special_vec.bv_page) 918 return BLK_STS_RESOURCE; 919 clear_highpage(rq->special_vec.bv_page); 920 rq->special_vec.bv_offset = 0; 921 rq->special_vec.bv_len = data_len; 922 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 923 924 cmd->cmd_len = 16; 925 cmd->cmnd[0] = WRITE_SAME_16; 926 if (unmap) 927 cmd->cmnd[1] = 0x8; /* UNMAP */ 928 put_unaligned_be64(lba, &cmd->cmnd[2]); 929 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 930 931 cmd->allowed = sdkp->max_retries; 932 cmd->transfersize = data_len; 933 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 934 935 return scsi_alloc_sgtables(cmd); 936 } 937 938 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, 939 bool unmap) 940 { 941 struct scsi_device *sdp = cmd->device; 942 struct request *rq = cmd->request; 943 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 944 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 945 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 946 u32 data_len = sdp->sector_size; 947 948 rq->special_vec.bv_page = mempool_alloc(sd_page_pool, GFP_ATOMIC); 949 if (!rq->special_vec.bv_page) 950 return BLK_STS_RESOURCE; 951 clear_highpage(rq->special_vec.bv_page); 952 rq->special_vec.bv_offset = 0; 953 rq->special_vec.bv_len = data_len; 954 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 955 956 cmd->cmd_len = 10; 957 cmd->cmnd[0] = WRITE_SAME; 958 if (unmap) 959 cmd->cmnd[1] = 0x8; /* UNMAP */ 960 put_unaligned_be32(lba, &cmd->cmnd[2]); 961 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 962 963 cmd->allowed = sdkp->max_retries; 964 cmd->transfersize = data_len; 965 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 966 967 return scsi_alloc_sgtables(cmd); 968 } 969 970 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 971 { 972 struct request *rq = cmd->request; 973 struct scsi_device *sdp = cmd->device; 974 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 975 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 976 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 977 978 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 979 switch (sdkp->zeroing_mode) { 980 case SD_ZERO_WS16_UNMAP: 981 return sd_setup_write_same16_cmnd(cmd, true); 982 case SD_ZERO_WS10_UNMAP: 983 return sd_setup_write_same10_cmnd(cmd, true); 984 } 985 } 986 987 if (sdp->no_write_same) 988 return BLK_STS_TARGET; 989 990 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) 991 return sd_setup_write_same16_cmnd(cmd, false); 992 993 return sd_setup_write_same10_cmnd(cmd, false); 994 } 995 996 static void sd_config_write_same(struct scsi_disk *sdkp) 997 { 998 struct request_queue *q = sdkp->disk->queue; 999 unsigned int logical_block_size = sdkp->device->sector_size; 1000 1001 if (sdkp->device->no_write_same) { 1002 sdkp->max_ws_blocks = 0; 1003 goto out; 1004 } 1005 1006 /* Some devices can not handle block counts above 0xffff despite 1007 * supporting WRITE SAME(16). Consequently we default to 64k 1008 * blocks per I/O unless the device explicitly advertises a 1009 * bigger limit. 1010 */ 1011 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 1012 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1013 (u32)SD_MAX_WS16_BLOCKS); 1014 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 1015 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 1016 (u32)SD_MAX_WS10_BLOCKS); 1017 else { 1018 sdkp->device->no_write_same = 1; 1019 sdkp->max_ws_blocks = 0; 1020 } 1021 1022 if (sdkp->lbprz && sdkp->lbpws) 1023 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 1024 else if (sdkp->lbprz && sdkp->lbpws10) 1025 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 1026 else if (sdkp->max_ws_blocks) 1027 sdkp->zeroing_mode = SD_ZERO_WS; 1028 else 1029 sdkp->zeroing_mode = SD_ZERO_WRITE; 1030 1031 if (sdkp->max_ws_blocks && 1032 sdkp->physical_block_size > logical_block_size) { 1033 /* 1034 * Reporting a maximum number of blocks that is not aligned 1035 * on the device physical size would cause a large write same 1036 * request to be split into physically unaligned chunks by 1037 * __blkdev_issue_write_zeroes() and __blkdev_issue_write_same() 1038 * even if the caller of these functions took care to align the 1039 * large request. So make sure the maximum reported is aligned 1040 * to the device physical block size. This is only an optional 1041 * optimization for regular disks, but this is mandatory to 1042 * avoid failure of large write same requests directed at 1043 * sequential write required zones of host-managed ZBC disks. 1044 */ 1045 sdkp->max_ws_blocks = 1046 round_down(sdkp->max_ws_blocks, 1047 bytes_to_logical(sdkp->device, 1048 sdkp->physical_block_size)); 1049 } 1050 1051 out: 1052 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 1053 (logical_block_size >> 9)); 1054 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 1055 (logical_block_size >> 9)); 1056 } 1057 1058 /** 1059 * sd_setup_write_same_cmnd - write the same data to multiple blocks 1060 * @cmd: command to prepare 1061 * 1062 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 1063 * the preference indicated by the target device. 1064 **/ 1065 static blk_status_t sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 1066 { 1067 struct request *rq = cmd->request; 1068 struct scsi_device *sdp = cmd->device; 1069 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1070 struct bio *bio = rq->bio; 1071 u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1072 u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1073 blk_status_t ret; 1074 1075 if (sdkp->device->no_write_same) 1076 return BLK_STS_TARGET; 1077 1078 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 1079 1080 rq->timeout = SD_WRITE_SAME_TIMEOUT; 1081 1082 if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff) { 1083 cmd->cmd_len = 16; 1084 cmd->cmnd[0] = WRITE_SAME_16; 1085 put_unaligned_be64(lba, &cmd->cmnd[2]); 1086 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1087 } else { 1088 cmd->cmd_len = 10; 1089 cmd->cmnd[0] = WRITE_SAME; 1090 put_unaligned_be32(lba, &cmd->cmnd[2]); 1091 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1092 } 1093 1094 cmd->transfersize = sdp->sector_size; 1095 cmd->allowed = sdkp->max_retries; 1096 1097 /* 1098 * For WRITE SAME the data transferred via the DATA OUT buffer is 1099 * different from the amount of data actually written to the target. 1100 * 1101 * We set up __data_len to the amount of data transferred via the 1102 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 1103 * to transfer a single sector of data first, but then reset it to 1104 * the amount of data to be written right after so that the I/O path 1105 * knows how much to actually write. 1106 */ 1107 rq->__data_len = sdp->sector_size; 1108 ret = scsi_alloc_sgtables(cmd); 1109 rq->__data_len = blk_rq_bytes(rq); 1110 1111 return ret; 1112 } 1113 1114 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 1115 { 1116 struct request *rq = cmd->request; 1117 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1118 1119 /* flush requests don't perform I/O, zero the S/G table */ 1120 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 1121 1122 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 1123 cmd->cmd_len = 10; 1124 cmd->transfersize = 0; 1125 cmd->allowed = sdkp->max_retries; 1126 1127 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 1128 return BLK_STS_OK; 1129 } 1130 1131 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write, 1132 sector_t lba, unsigned int nr_blocks, 1133 unsigned char flags) 1134 { 1135 cmd->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1136 if (unlikely(cmd->cmnd == NULL)) 1137 return BLK_STS_RESOURCE; 1138 1139 cmd->cmd_len = SD_EXT_CDB_SIZE; 1140 memset(cmd->cmnd, 0, cmd->cmd_len); 1141 1142 cmd->cmnd[0] = VARIABLE_LENGTH_CMD; 1143 cmd->cmnd[7] = 0x18; /* Additional CDB len */ 1144 cmd->cmnd[9] = write ? WRITE_32 : READ_32; 1145 cmd->cmnd[10] = flags; 1146 put_unaligned_be64(lba, &cmd->cmnd[12]); 1147 put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */ 1148 put_unaligned_be32(nr_blocks, &cmd->cmnd[28]); 1149 1150 return BLK_STS_OK; 1151 } 1152 1153 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write, 1154 sector_t lba, unsigned int nr_blocks, 1155 unsigned char flags) 1156 { 1157 cmd->cmd_len = 16; 1158 cmd->cmnd[0] = write ? WRITE_16 : READ_16; 1159 cmd->cmnd[1] = flags; 1160 cmd->cmnd[14] = 0; 1161 cmd->cmnd[15] = 0; 1162 put_unaligned_be64(lba, &cmd->cmnd[2]); 1163 put_unaligned_be32(nr_blocks, &cmd->cmnd[10]); 1164 1165 return BLK_STS_OK; 1166 } 1167 1168 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write, 1169 sector_t lba, unsigned int nr_blocks, 1170 unsigned char flags) 1171 { 1172 cmd->cmd_len = 10; 1173 cmd->cmnd[0] = write ? WRITE_10 : READ_10; 1174 cmd->cmnd[1] = flags; 1175 cmd->cmnd[6] = 0; 1176 cmd->cmnd[9] = 0; 1177 put_unaligned_be32(lba, &cmd->cmnd[2]); 1178 put_unaligned_be16(nr_blocks, &cmd->cmnd[7]); 1179 1180 return BLK_STS_OK; 1181 } 1182 1183 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write, 1184 sector_t lba, unsigned int nr_blocks, 1185 unsigned char flags) 1186 { 1187 /* Avoid that 0 blocks gets translated into 256 blocks. */ 1188 if (WARN_ON_ONCE(nr_blocks == 0)) 1189 return BLK_STS_IOERR; 1190 1191 if (unlikely(flags & 0x8)) { 1192 /* 1193 * This happens only if this drive failed 10byte rw 1194 * command with ILLEGAL_REQUEST during operation and 1195 * thus turned off use_10_for_rw. 1196 */ 1197 scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n"); 1198 return BLK_STS_IOERR; 1199 } 1200 1201 cmd->cmd_len = 6; 1202 cmd->cmnd[0] = write ? WRITE_6 : READ_6; 1203 cmd->cmnd[1] = (lba >> 16) & 0x1f; 1204 cmd->cmnd[2] = (lba >> 8) & 0xff; 1205 cmd->cmnd[3] = lba & 0xff; 1206 cmd->cmnd[4] = nr_blocks; 1207 cmd->cmnd[5] = 0; 1208 1209 return BLK_STS_OK; 1210 } 1211 1212 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd) 1213 { 1214 struct request *rq = cmd->request; 1215 struct scsi_device *sdp = cmd->device; 1216 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 1217 sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq)); 1218 sector_t threshold; 1219 unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq)); 1220 unsigned int mask = logical_to_sectors(sdp, 1) - 1; 1221 bool write = rq_data_dir(rq) == WRITE; 1222 unsigned char protect, fua; 1223 blk_status_t ret; 1224 unsigned int dif; 1225 bool dix; 1226 1227 ret = scsi_alloc_sgtables(cmd); 1228 if (ret != BLK_STS_OK) 1229 return ret; 1230 1231 ret = BLK_STS_IOERR; 1232 if (!scsi_device_online(sdp) || sdp->changed) { 1233 scmd_printk(KERN_ERR, cmd, "device offline or changed\n"); 1234 goto fail; 1235 } 1236 1237 if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->rq_disk)) { 1238 scmd_printk(KERN_ERR, cmd, "access beyond end of device\n"); 1239 goto fail; 1240 } 1241 1242 if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) { 1243 scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n"); 1244 goto fail; 1245 } 1246 1247 /* 1248 * Some SD card readers can't handle accesses which touch the 1249 * last one or two logical blocks. Split accesses as needed. 1250 */ 1251 threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS; 1252 1253 if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) { 1254 if (lba < threshold) { 1255 /* Access up to the threshold but not beyond */ 1256 nr_blocks = threshold - lba; 1257 } else { 1258 /* Access only a single logical block */ 1259 nr_blocks = 1; 1260 } 1261 } 1262 1263 if (req_op(rq) == REQ_OP_ZONE_APPEND) { 1264 ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks); 1265 if (ret) 1266 goto fail; 1267 } 1268 1269 fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0; 1270 dix = scsi_prot_sg_count(cmd); 1271 dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type); 1272 1273 if (dif || dix) 1274 protect = sd_setup_protect_cmnd(cmd, dix, dif); 1275 else 1276 protect = 0; 1277 1278 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1279 ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks, 1280 protect | fua); 1281 } else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) { 1282 ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks, 1283 protect | fua); 1284 } else if ((nr_blocks > 0xff) || (lba > 0x1fffff) || 1285 sdp->use_10_for_rw || protect) { 1286 ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks, 1287 protect | fua); 1288 } else { 1289 ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks, 1290 protect | fua); 1291 } 1292 1293 if (unlikely(ret != BLK_STS_OK)) 1294 goto fail; 1295 1296 /* 1297 * We shouldn't disconnect in the middle of a sector, so with a dumb 1298 * host adapter, it's safe to assume that we can at least transfer 1299 * this many bytes between each connect / disconnect. 1300 */ 1301 cmd->transfersize = sdp->sector_size; 1302 cmd->underflow = nr_blocks << 9; 1303 cmd->allowed = sdkp->max_retries; 1304 cmd->sdb.length = nr_blocks * sdp->sector_size; 1305 1306 SCSI_LOG_HLQUEUE(1, 1307 scmd_printk(KERN_INFO, cmd, 1308 "%s: block=%llu, count=%d\n", __func__, 1309 (unsigned long long)blk_rq_pos(rq), 1310 blk_rq_sectors(rq))); 1311 SCSI_LOG_HLQUEUE(2, 1312 scmd_printk(KERN_INFO, cmd, 1313 "%s %d/%u 512 byte blocks.\n", 1314 write ? "writing" : "reading", nr_blocks, 1315 blk_rq_sectors(rq))); 1316 1317 /* 1318 * This indicates that the command is ready from our end to be queued. 1319 */ 1320 return BLK_STS_OK; 1321 fail: 1322 scsi_free_sgtables(cmd); 1323 return ret; 1324 } 1325 1326 static blk_status_t sd_init_command(struct scsi_cmnd *cmd) 1327 { 1328 struct request *rq = cmd->request; 1329 1330 switch (req_op(rq)) { 1331 case REQ_OP_DISCARD: 1332 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1333 case SD_LBP_UNMAP: 1334 return sd_setup_unmap_cmnd(cmd); 1335 case SD_LBP_WS16: 1336 return sd_setup_write_same16_cmnd(cmd, true); 1337 case SD_LBP_WS10: 1338 return sd_setup_write_same10_cmnd(cmd, true); 1339 case SD_LBP_ZERO: 1340 return sd_setup_write_same10_cmnd(cmd, false); 1341 default: 1342 return BLK_STS_TARGET; 1343 } 1344 case REQ_OP_WRITE_ZEROES: 1345 return sd_setup_write_zeroes_cmnd(cmd); 1346 case REQ_OP_WRITE_SAME: 1347 return sd_setup_write_same_cmnd(cmd); 1348 case REQ_OP_FLUSH: 1349 return sd_setup_flush_cmnd(cmd); 1350 case REQ_OP_READ: 1351 case REQ_OP_WRITE: 1352 case REQ_OP_ZONE_APPEND: 1353 return sd_setup_read_write_cmnd(cmd); 1354 case REQ_OP_ZONE_RESET: 1355 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1356 false); 1357 case REQ_OP_ZONE_RESET_ALL: 1358 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER, 1359 true); 1360 case REQ_OP_ZONE_OPEN: 1361 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false); 1362 case REQ_OP_ZONE_CLOSE: 1363 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false); 1364 case REQ_OP_ZONE_FINISH: 1365 return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false); 1366 default: 1367 WARN_ON_ONCE(1); 1368 return BLK_STS_NOTSUPP; 1369 } 1370 } 1371 1372 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1373 { 1374 struct request *rq = SCpnt->request; 1375 u8 *cmnd; 1376 1377 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1378 mempool_free(rq->special_vec.bv_page, sd_page_pool); 1379 1380 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1381 cmnd = SCpnt->cmnd; 1382 SCpnt->cmnd = NULL; 1383 SCpnt->cmd_len = 0; 1384 mempool_free(cmnd, sd_cdb_pool); 1385 } 1386 } 1387 1388 /** 1389 * sd_open - open a scsi disk device 1390 * @bdev: Block device of the scsi disk to open 1391 * @mode: FMODE_* mask 1392 * 1393 * Returns 0 if successful. Returns a negated errno value in case 1394 * of error. 1395 * 1396 * Note: This can be called from a user context (e.g. fsck(1) ) 1397 * or from within the kernel (e.g. as a result of a mount(1) ). 1398 * In the latter case @inode and @filp carry an abridged amount 1399 * of information as noted above. 1400 * 1401 * Locking: called with bdev->bd_mutex held. 1402 **/ 1403 static int sd_open(struct block_device *bdev, fmode_t mode) 1404 { 1405 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1406 struct scsi_device *sdev; 1407 int retval; 1408 1409 if (!sdkp) 1410 return -ENXIO; 1411 1412 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1413 1414 sdev = sdkp->device; 1415 1416 /* 1417 * If the device is in error recovery, wait until it is done. 1418 * If the device is offline, then disallow any access to it. 1419 */ 1420 retval = -ENXIO; 1421 if (!scsi_block_when_processing_errors(sdev)) 1422 goto error_out; 1423 1424 if (sdev->removable || sdkp->write_prot) { 1425 if (bdev_check_media_change(bdev)) 1426 sd_revalidate_disk(bdev->bd_disk); 1427 } 1428 1429 /* 1430 * If the drive is empty, just let the open fail. 1431 */ 1432 retval = -ENOMEDIUM; 1433 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1434 goto error_out; 1435 1436 /* 1437 * If the device has the write protect tab set, have the open fail 1438 * if the user expects to be able to write to the thing. 1439 */ 1440 retval = -EROFS; 1441 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1442 goto error_out; 1443 1444 /* 1445 * It is possible that the disk changing stuff resulted in 1446 * the device being taken offline. If this is the case, 1447 * report this to the user, and don't pretend that the 1448 * open actually succeeded. 1449 */ 1450 retval = -ENXIO; 1451 if (!scsi_device_online(sdev)) 1452 goto error_out; 1453 1454 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1455 if (scsi_block_when_processing_errors(sdev)) 1456 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1457 } 1458 1459 return 0; 1460 1461 error_out: 1462 scsi_disk_put(sdkp); 1463 return retval; 1464 } 1465 1466 /** 1467 * sd_release - invoked when the (last) close(2) is called on this 1468 * scsi disk. 1469 * @disk: disk to release 1470 * @mode: FMODE_* mask 1471 * 1472 * Returns 0. 1473 * 1474 * Note: may block (uninterruptible) if error recovery is underway 1475 * on this disk. 1476 * 1477 * Locking: called with bdev->bd_mutex held. 1478 **/ 1479 static void sd_release(struct gendisk *disk, fmode_t mode) 1480 { 1481 struct scsi_disk *sdkp = scsi_disk(disk); 1482 struct scsi_device *sdev = sdkp->device; 1483 1484 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1485 1486 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1487 if (scsi_block_when_processing_errors(sdev)) 1488 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1489 } 1490 1491 scsi_disk_put(sdkp); 1492 } 1493 1494 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1495 { 1496 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1497 struct scsi_device *sdp = sdkp->device; 1498 struct Scsi_Host *host = sdp->host; 1499 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1500 int diskinfo[4]; 1501 1502 /* default to most commonly used values */ 1503 diskinfo[0] = 0x40; /* 1 << 6 */ 1504 diskinfo[1] = 0x20; /* 1 << 5 */ 1505 diskinfo[2] = capacity >> 11; 1506 1507 /* override with calculated, extended default, or driver values */ 1508 if (host->hostt->bios_param) 1509 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1510 else 1511 scsicam_bios_param(bdev, capacity, diskinfo); 1512 1513 geo->heads = diskinfo[0]; 1514 geo->sectors = diskinfo[1]; 1515 geo->cylinders = diskinfo[2]; 1516 return 0; 1517 } 1518 1519 /** 1520 * sd_ioctl - process an ioctl 1521 * @bdev: target block device 1522 * @mode: FMODE_* mask 1523 * @cmd: ioctl command number 1524 * @p: this is third argument given to ioctl(2) system call. 1525 * Often contains a pointer. 1526 * 1527 * Returns 0 if successful (some ioctls return positive numbers on 1528 * success as well). Returns a negated errno value in case of error. 1529 * 1530 * Note: most ioctls are forward onto the block subsystem or further 1531 * down in the scsi subsystem. 1532 **/ 1533 static int sd_ioctl_common(struct block_device *bdev, fmode_t mode, 1534 unsigned int cmd, void __user *p) 1535 { 1536 struct gendisk *disk = bdev->bd_disk; 1537 struct scsi_disk *sdkp = scsi_disk(disk); 1538 struct scsi_device *sdp = sdkp->device; 1539 int error; 1540 1541 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1542 "cmd=0x%x\n", disk->disk_name, cmd)); 1543 1544 error = scsi_verify_blk_ioctl(bdev, cmd); 1545 if (error < 0) 1546 return error; 1547 1548 /* 1549 * If we are in the middle of error recovery, don't let anyone 1550 * else try and use this device. Also, if error recovery fails, it 1551 * may try and take the device offline, in which case all further 1552 * access to the device is prohibited. 1553 */ 1554 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1555 (mode & FMODE_NDELAY) != 0); 1556 if (error) 1557 goto out; 1558 1559 if (is_sed_ioctl(cmd)) 1560 return sed_ioctl(sdkp->opal_dev, cmd, p); 1561 1562 /* 1563 * Send SCSI addressing ioctls directly to mid level, send other 1564 * ioctls to block level and then onto mid level if they can't be 1565 * resolved. 1566 */ 1567 switch (cmd) { 1568 case SCSI_IOCTL_GET_IDLUN: 1569 case SCSI_IOCTL_GET_BUS_NUMBER: 1570 error = scsi_ioctl(sdp, cmd, p); 1571 break; 1572 default: 1573 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1574 break; 1575 } 1576 out: 1577 return error; 1578 } 1579 1580 static void set_media_not_present(struct scsi_disk *sdkp) 1581 { 1582 if (sdkp->media_present) 1583 sdkp->device->changed = 1; 1584 1585 if (sdkp->device->removable) { 1586 sdkp->media_present = 0; 1587 sdkp->capacity = 0; 1588 } 1589 } 1590 1591 static int media_not_present(struct scsi_disk *sdkp, 1592 struct scsi_sense_hdr *sshdr) 1593 { 1594 if (!scsi_sense_valid(sshdr)) 1595 return 0; 1596 1597 /* not invoked for commands that could return deferred errors */ 1598 switch (sshdr->sense_key) { 1599 case UNIT_ATTENTION: 1600 case NOT_READY: 1601 /* medium not present */ 1602 if (sshdr->asc == 0x3A) { 1603 set_media_not_present(sdkp); 1604 return 1; 1605 } 1606 } 1607 return 0; 1608 } 1609 1610 /** 1611 * sd_check_events - check media events 1612 * @disk: kernel device descriptor 1613 * @clearing: disk events currently being cleared 1614 * 1615 * Returns mask of DISK_EVENT_*. 1616 * 1617 * Note: this function is invoked from the block subsystem. 1618 **/ 1619 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1620 { 1621 struct scsi_disk *sdkp = scsi_disk_get(disk); 1622 struct scsi_device *sdp; 1623 int retval; 1624 1625 if (!sdkp) 1626 return 0; 1627 1628 sdp = sdkp->device; 1629 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1630 1631 /* 1632 * If the device is offline, don't send any commands - just pretend as 1633 * if the command failed. If the device ever comes back online, we 1634 * can deal with it then. It is only because of unrecoverable errors 1635 * that we would ever take a device offline in the first place. 1636 */ 1637 if (!scsi_device_online(sdp)) { 1638 set_media_not_present(sdkp); 1639 goto out; 1640 } 1641 1642 /* 1643 * Using TEST_UNIT_READY enables differentiation between drive with 1644 * no cartridge loaded - NOT READY, drive with changed cartridge - 1645 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1646 * 1647 * Drives that auto spin down. eg iomega jaz 1G, will be started 1648 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1649 * sd_revalidate() is called. 1650 */ 1651 if (scsi_block_when_processing_errors(sdp)) { 1652 struct scsi_sense_hdr sshdr = { 0, }; 1653 1654 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries, 1655 &sshdr); 1656 1657 /* failed to execute TUR, assume media not present */ 1658 if (host_byte(retval)) { 1659 set_media_not_present(sdkp); 1660 goto out; 1661 } 1662 1663 if (media_not_present(sdkp, &sshdr)) 1664 goto out; 1665 } 1666 1667 /* 1668 * For removable scsi disk we have to recognise the presence 1669 * of a disk in the drive. 1670 */ 1671 if (!sdkp->media_present) 1672 sdp->changed = 1; 1673 sdkp->media_present = 1; 1674 out: 1675 /* 1676 * sdp->changed is set under the following conditions: 1677 * 1678 * Medium present state has changed in either direction. 1679 * Device has indicated UNIT_ATTENTION. 1680 */ 1681 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1682 sdp->changed = 0; 1683 scsi_disk_put(sdkp); 1684 return retval; 1685 } 1686 1687 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 1688 { 1689 int retries, res; 1690 struct scsi_device *sdp = sdkp->device; 1691 const int timeout = sdp->request_queue->rq_timeout 1692 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1693 struct scsi_sense_hdr my_sshdr; 1694 1695 if (!scsi_device_online(sdp)) 1696 return -ENODEV; 1697 1698 /* caller might not be interested in sense, but we need it */ 1699 if (!sshdr) 1700 sshdr = &my_sshdr; 1701 1702 for (retries = 3; retries > 0; --retries) { 1703 unsigned char cmd[10] = { 0 }; 1704 1705 cmd[0] = SYNCHRONIZE_CACHE; 1706 /* 1707 * Leave the rest of the command zero to indicate 1708 * flush everything. 1709 */ 1710 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr, 1711 timeout, sdkp->max_retries, 0, RQF_PM, NULL); 1712 if (res == 0) 1713 break; 1714 } 1715 1716 if (res) { 1717 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1718 1719 if (driver_byte(res) == DRIVER_SENSE) 1720 sd_print_sense_hdr(sdkp, sshdr); 1721 1722 /* we need to evaluate the error return */ 1723 if (scsi_sense_valid(sshdr) && 1724 (sshdr->asc == 0x3a || /* medium not present */ 1725 sshdr->asc == 0x20 || /* invalid command */ 1726 (sshdr->asc == 0x74 && sshdr->ascq == 0x71))) /* drive is password locked */ 1727 /* this is no error here */ 1728 return 0; 1729 1730 switch (host_byte(res)) { 1731 /* ignore errors due to racing a disconnection */ 1732 case DID_BAD_TARGET: 1733 case DID_NO_CONNECT: 1734 return 0; 1735 /* signal the upper layer it might try again */ 1736 case DID_BUS_BUSY: 1737 case DID_IMM_RETRY: 1738 case DID_REQUEUE: 1739 case DID_SOFT_ERROR: 1740 return -EBUSY; 1741 default: 1742 return -EIO; 1743 } 1744 } 1745 return 0; 1746 } 1747 1748 static void sd_rescan(struct device *dev) 1749 { 1750 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1751 1752 sd_revalidate_disk(sdkp->disk); 1753 } 1754 1755 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1756 unsigned int cmd, unsigned long arg) 1757 { 1758 void __user *p = (void __user *)arg; 1759 int ret; 1760 1761 ret = sd_ioctl_common(bdev, mode, cmd, p); 1762 if (ret != -ENOTTY) 1763 return ret; 1764 1765 return scsi_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1766 } 1767 1768 #ifdef CONFIG_COMPAT 1769 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1770 unsigned int cmd, unsigned long arg) 1771 { 1772 void __user *p = compat_ptr(arg); 1773 int ret; 1774 1775 ret = sd_ioctl_common(bdev, mode, cmd, p); 1776 if (ret != -ENOTTY) 1777 return ret; 1778 1779 return scsi_compat_ioctl(scsi_disk(bdev->bd_disk)->device, cmd, p); 1780 } 1781 #endif 1782 1783 static char sd_pr_type(enum pr_type type) 1784 { 1785 switch (type) { 1786 case PR_WRITE_EXCLUSIVE: 1787 return 0x01; 1788 case PR_EXCLUSIVE_ACCESS: 1789 return 0x03; 1790 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1791 return 0x05; 1792 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1793 return 0x06; 1794 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1795 return 0x07; 1796 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1797 return 0x08; 1798 default: 1799 return 0; 1800 } 1801 }; 1802 1803 static int sd_pr_command(struct block_device *bdev, u8 sa, 1804 u64 key, u64 sa_key, u8 type, u8 flags) 1805 { 1806 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1807 struct scsi_device *sdev = sdkp->device; 1808 struct scsi_sense_hdr sshdr; 1809 int result; 1810 u8 cmd[16] = { 0, }; 1811 u8 data[24] = { 0, }; 1812 1813 cmd[0] = PERSISTENT_RESERVE_OUT; 1814 cmd[1] = sa; 1815 cmd[2] = type; 1816 put_unaligned_be32(sizeof(data), &cmd[5]); 1817 1818 put_unaligned_be64(key, &data[0]); 1819 put_unaligned_be64(sa_key, &data[8]); 1820 data[20] = flags; 1821 1822 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1823 &sshdr, SD_TIMEOUT, sdkp->max_retries, NULL); 1824 1825 if (driver_byte(result) == DRIVER_SENSE && 1826 scsi_sense_valid(&sshdr)) { 1827 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1828 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1829 } 1830 1831 return result; 1832 } 1833 1834 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1835 u32 flags) 1836 { 1837 if (flags & ~PR_FL_IGNORE_KEY) 1838 return -EOPNOTSUPP; 1839 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1840 old_key, new_key, 0, 1841 (1 << 0) /* APTPL */); 1842 } 1843 1844 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1845 u32 flags) 1846 { 1847 if (flags) 1848 return -EOPNOTSUPP; 1849 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1850 } 1851 1852 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1853 { 1854 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1855 } 1856 1857 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1858 enum pr_type type, bool abort) 1859 { 1860 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1861 sd_pr_type(type), 0); 1862 } 1863 1864 static int sd_pr_clear(struct block_device *bdev, u64 key) 1865 { 1866 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1867 } 1868 1869 static const struct pr_ops sd_pr_ops = { 1870 .pr_register = sd_pr_register, 1871 .pr_reserve = sd_pr_reserve, 1872 .pr_release = sd_pr_release, 1873 .pr_preempt = sd_pr_preempt, 1874 .pr_clear = sd_pr_clear, 1875 }; 1876 1877 static const struct block_device_operations sd_fops = { 1878 .owner = THIS_MODULE, 1879 .open = sd_open, 1880 .release = sd_release, 1881 .ioctl = sd_ioctl, 1882 .getgeo = sd_getgeo, 1883 #ifdef CONFIG_COMPAT 1884 .compat_ioctl = sd_compat_ioctl, 1885 #endif 1886 .check_events = sd_check_events, 1887 .unlock_native_capacity = sd_unlock_native_capacity, 1888 .report_zones = sd_zbc_report_zones, 1889 .pr_ops = &sd_pr_ops, 1890 }; 1891 1892 /** 1893 * sd_eh_reset - reset error handling callback 1894 * @scmd: sd-issued command that has failed 1895 * 1896 * This function is called by the SCSI midlayer before starting 1897 * SCSI EH. When counting medium access failures we have to be 1898 * careful to register it only only once per device and SCSI EH run; 1899 * there might be several timed out commands which will cause the 1900 * 'max_medium_access_timeouts' counter to trigger after the first 1901 * SCSI EH run already and set the device to offline. 1902 * So this function resets the internal counter before starting SCSI EH. 1903 **/ 1904 static void sd_eh_reset(struct scsi_cmnd *scmd) 1905 { 1906 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1907 1908 /* New SCSI EH run, reset gate variable */ 1909 sdkp->ignore_medium_access_errors = false; 1910 } 1911 1912 /** 1913 * sd_eh_action - error handling callback 1914 * @scmd: sd-issued command that has failed 1915 * @eh_disp: The recovery disposition suggested by the midlayer 1916 * 1917 * This function is called by the SCSI midlayer upon completion of an 1918 * error test command (currently TEST UNIT READY). The result of sending 1919 * the eh command is passed in eh_disp. We're looking for devices that 1920 * fail medium access commands but are OK with non access commands like 1921 * test unit ready (so wrongly see the device as having a successful 1922 * recovery) 1923 **/ 1924 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1925 { 1926 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1927 struct scsi_device *sdev = scmd->device; 1928 1929 if (!scsi_device_online(sdev) || 1930 !scsi_medium_access_command(scmd) || 1931 host_byte(scmd->result) != DID_TIME_OUT || 1932 eh_disp != SUCCESS) 1933 return eh_disp; 1934 1935 /* 1936 * The device has timed out executing a medium access command. 1937 * However, the TEST UNIT READY command sent during error 1938 * handling completed successfully. Either the device is in the 1939 * process of recovering or has it suffered an internal failure 1940 * that prevents access to the storage medium. 1941 */ 1942 if (!sdkp->ignore_medium_access_errors) { 1943 sdkp->medium_access_timed_out++; 1944 sdkp->ignore_medium_access_errors = true; 1945 } 1946 1947 /* 1948 * If the device keeps failing read/write commands but TEST UNIT 1949 * READY always completes successfully we assume that medium 1950 * access is no longer possible and take the device offline. 1951 */ 1952 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1953 scmd_printk(KERN_ERR, scmd, 1954 "Medium access timeout failure. Offlining disk!\n"); 1955 mutex_lock(&sdev->state_mutex); 1956 scsi_device_set_state(sdev, SDEV_OFFLINE); 1957 mutex_unlock(&sdev->state_mutex); 1958 1959 return SUCCESS; 1960 } 1961 1962 return eh_disp; 1963 } 1964 1965 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1966 { 1967 struct request *req = scmd->request; 1968 struct scsi_device *sdev = scmd->device; 1969 unsigned int transferred, good_bytes; 1970 u64 start_lba, end_lba, bad_lba; 1971 1972 /* 1973 * Some commands have a payload smaller than the device logical 1974 * block size (e.g. INQUIRY on a 4K disk). 1975 */ 1976 if (scsi_bufflen(scmd) <= sdev->sector_size) 1977 return 0; 1978 1979 /* Check if we have a 'bad_lba' information */ 1980 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1981 SCSI_SENSE_BUFFERSIZE, 1982 &bad_lba)) 1983 return 0; 1984 1985 /* 1986 * If the bad lba was reported incorrectly, we have no idea where 1987 * the error is. 1988 */ 1989 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1990 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1991 if (bad_lba < start_lba || bad_lba >= end_lba) 1992 return 0; 1993 1994 /* 1995 * resid is optional but mostly filled in. When it's unused, 1996 * its value is zero, so we assume the whole buffer transferred 1997 */ 1998 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1999 2000 /* This computation should always be done in terms of the 2001 * resolution of the device's medium. 2002 */ 2003 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 2004 2005 return min(good_bytes, transferred); 2006 } 2007 2008 /** 2009 * sd_done - bottom half handler: called when the lower level 2010 * driver has completed (successfully or otherwise) a scsi command. 2011 * @SCpnt: mid-level's per command structure. 2012 * 2013 * Note: potentially run from within an ISR. Must not block. 2014 **/ 2015 static int sd_done(struct scsi_cmnd *SCpnt) 2016 { 2017 int result = SCpnt->result; 2018 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 2019 unsigned int sector_size = SCpnt->device->sector_size; 2020 unsigned int resid; 2021 struct scsi_sense_hdr sshdr; 2022 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 2023 struct request *req = SCpnt->request; 2024 int sense_valid = 0; 2025 int sense_deferred = 0; 2026 2027 switch (req_op(req)) { 2028 case REQ_OP_DISCARD: 2029 case REQ_OP_WRITE_ZEROES: 2030 case REQ_OP_WRITE_SAME: 2031 case REQ_OP_ZONE_RESET: 2032 case REQ_OP_ZONE_RESET_ALL: 2033 case REQ_OP_ZONE_OPEN: 2034 case REQ_OP_ZONE_CLOSE: 2035 case REQ_OP_ZONE_FINISH: 2036 if (!result) { 2037 good_bytes = blk_rq_bytes(req); 2038 scsi_set_resid(SCpnt, 0); 2039 } else { 2040 good_bytes = 0; 2041 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 2042 } 2043 break; 2044 default: 2045 /* 2046 * In case of bogus fw or device, we could end up having 2047 * an unaligned partial completion. Check this here and force 2048 * alignment. 2049 */ 2050 resid = scsi_get_resid(SCpnt); 2051 if (resid & (sector_size - 1)) { 2052 sd_printk(KERN_INFO, sdkp, 2053 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 2054 resid, sector_size); 2055 scsi_print_command(SCpnt); 2056 resid = min(scsi_bufflen(SCpnt), 2057 round_up(resid, sector_size)); 2058 scsi_set_resid(SCpnt, resid); 2059 } 2060 } 2061 2062 if (result) { 2063 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 2064 if (sense_valid) 2065 sense_deferred = scsi_sense_is_deferred(&sshdr); 2066 } 2067 sdkp->medium_access_timed_out = 0; 2068 2069 if (driver_byte(result) != DRIVER_SENSE && 2070 (!sense_valid || sense_deferred)) 2071 goto out; 2072 2073 switch (sshdr.sense_key) { 2074 case HARDWARE_ERROR: 2075 case MEDIUM_ERROR: 2076 good_bytes = sd_completed_bytes(SCpnt); 2077 break; 2078 case RECOVERED_ERROR: 2079 good_bytes = scsi_bufflen(SCpnt); 2080 break; 2081 case NO_SENSE: 2082 /* This indicates a false check condition, so ignore it. An 2083 * unknown amount of data was transferred so treat it as an 2084 * error. 2085 */ 2086 SCpnt->result = 0; 2087 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 2088 break; 2089 case ABORTED_COMMAND: 2090 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 2091 good_bytes = sd_completed_bytes(SCpnt); 2092 break; 2093 case ILLEGAL_REQUEST: 2094 switch (sshdr.asc) { 2095 case 0x10: /* DIX: Host detected corruption */ 2096 good_bytes = sd_completed_bytes(SCpnt); 2097 break; 2098 case 0x20: /* INVALID COMMAND OPCODE */ 2099 case 0x24: /* INVALID FIELD IN CDB */ 2100 switch (SCpnt->cmnd[0]) { 2101 case UNMAP: 2102 sd_config_discard(sdkp, SD_LBP_DISABLE); 2103 break; 2104 case WRITE_SAME_16: 2105 case WRITE_SAME: 2106 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 2107 sd_config_discard(sdkp, SD_LBP_DISABLE); 2108 } else { 2109 sdkp->device->no_write_same = 1; 2110 sd_config_write_same(sdkp); 2111 req->rq_flags |= RQF_QUIET; 2112 } 2113 break; 2114 } 2115 } 2116 break; 2117 default: 2118 break; 2119 } 2120 2121 out: 2122 if (sd_is_zoned(sdkp)) 2123 good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2124 2125 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2126 "sd_done: completed %d of %d bytes\n", 2127 good_bytes, scsi_bufflen(SCpnt))); 2128 2129 return good_bytes; 2130 } 2131 2132 /* 2133 * spinup disk - called only in sd_revalidate_disk() 2134 */ 2135 static void 2136 sd_spinup_disk(struct scsi_disk *sdkp) 2137 { 2138 unsigned char cmd[10]; 2139 unsigned long spintime_expire = 0; 2140 int retries, spintime; 2141 unsigned int the_result; 2142 struct scsi_sense_hdr sshdr; 2143 int sense_valid = 0; 2144 2145 spintime = 0; 2146 2147 /* Spin up drives, as required. Only do this at boot time */ 2148 /* Spinup needs to be done for module loads too. */ 2149 do { 2150 retries = 0; 2151 2152 do { 2153 cmd[0] = TEST_UNIT_READY; 2154 memset((void *) &cmd[1], 0, 9); 2155 2156 the_result = scsi_execute_req(sdkp->device, cmd, 2157 DMA_NONE, NULL, 0, 2158 &sshdr, SD_TIMEOUT, 2159 sdkp->max_retries, NULL); 2160 2161 /* 2162 * If the drive has indicated to us that it 2163 * doesn't have any media in it, don't bother 2164 * with any more polling. 2165 */ 2166 if (media_not_present(sdkp, &sshdr)) 2167 return; 2168 2169 if (the_result) 2170 sense_valid = scsi_sense_valid(&sshdr); 2171 retries++; 2172 } while (retries < 3 && 2173 (!scsi_status_is_good(the_result) || 2174 ((driver_byte(the_result) == DRIVER_SENSE) && 2175 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2176 2177 if (driver_byte(the_result) != DRIVER_SENSE) { 2178 /* no sense, TUR either succeeded or failed 2179 * with a status error */ 2180 if(!spintime && !scsi_status_is_good(the_result)) { 2181 sd_print_result(sdkp, "Test Unit Ready failed", 2182 the_result); 2183 } 2184 break; 2185 } 2186 2187 /* 2188 * The device does not want the automatic start to be issued. 2189 */ 2190 if (sdkp->device->no_start_on_add) 2191 break; 2192 2193 if (sense_valid && sshdr.sense_key == NOT_READY) { 2194 if (sshdr.asc == 4 && sshdr.ascq == 3) 2195 break; /* manual intervention required */ 2196 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2197 break; /* standby */ 2198 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2199 break; /* unavailable */ 2200 if (sshdr.asc == 4 && sshdr.ascq == 0x1b) 2201 break; /* sanitize in progress */ 2202 /* 2203 * Issue command to spin up drive when not ready 2204 */ 2205 if (!spintime) { 2206 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2207 cmd[0] = START_STOP; 2208 cmd[1] = 1; /* Return immediately */ 2209 memset((void *) &cmd[2], 0, 8); 2210 cmd[4] = 1; /* Start spin cycle */ 2211 if (sdkp->device->start_stop_pwr_cond) 2212 cmd[4] |= 1 << 4; 2213 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2214 NULL, 0, &sshdr, 2215 SD_TIMEOUT, sdkp->max_retries, 2216 NULL); 2217 spintime_expire = jiffies + 100 * HZ; 2218 spintime = 1; 2219 } 2220 /* Wait 1 second for next try */ 2221 msleep(1000); 2222 printk(KERN_CONT "."); 2223 2224 /* 2225 * Wait for USB flash devices with slow firmware. 2226 * Yes, this sense key/ASC combination shouldn't 2227 * occur here. It's characteristic of these devices. 2228 */ 2229 } else if (sense_valid && 2230 sshdr.sense_key == UNIT_ATTENTION && 2231 sshdr.asc == 0x28) { 2232 if (!spintime) { 2233 spintime_expire = jiffies + 5 * HZ; 2234 spintime = 1; 2235 } 2236 /* Wait 1 second for next try */ 2237 msleep(1000); 2238 } else { 2239 /* we don't understand the sense code, so it's 2240 * probably pointless to loop */ 2241 if(!spintime) { 2242 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2243 sd_print_sense_hdr(sdkp, &sshdr); 2244 } 2245 break; 2246 } 2247 2248 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2249 2250 if (spintime) { 2251 if (scsi_status_is_good(the_result)) 2252 printk(KERN_CONT "ready\n"); 2253 else 2254 printk(KERN_CONT "not responding...\n"); 2255 } 2256 } 2257 2258 /* 2259 * Determine whether disk supports Data Integrity Field. 2260 */ 2261 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2262 { 2263 struct scsi_device *sdp = sdkp->device; 2264 u8 type; 2265 int ret = 0; 2266 2267 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) { 2268 sdkp->protection_type = 0; 2269 return ret; 2270 } 2271 2272 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2273 2274 if (type > T10_PI_TYPE3_PROTECTION) 2275 ret = -ENODEV; 2276 else if (scsi_host_dif_capable(sdp->host, type)) 2277 ret = 1; 2278 2279 if (sdkp->first_scan || type != sdkp->protection_type) 2280 switch (ret) { 2281 case -ENODEV: 2282 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2283 " protection type %u. Disabling disk!\n", 2284 type); 2285 break; 2286 case 1: 2287 sd_printk(KERN_NOTICE, sdkp, 2288 "Enabling DIF Type %u protection\n", type); 2289 break; 2290 case 0: 2291 sd_printk(KERN_NOTICE, sdkp, 2292 "Disabling DIF Type %u protection\n", type); 2293 break; 2294 } 2295 2296 sdkp->protection_type = type; 2297 2298 return ret; 2299 } 2300 2301 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2302 struct scsi_sense_hdr *sshdr, int sense_valid, 2303 int the_result) 2304 { 2305 if (driver_byte(the_result) == DRIVER_SENSE) 2306 sd_print_sense_hdr(sdkp, sshdr); 2307 else 2308 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2309 2310 /* 2311 * Set dirty bit for removable devices if not ready - 2312 * sometimes drives will not report this properly. 2313 */ 2314 if (sdp->removable && 2315 sense_valid && sshdr->sense_key == NOT_READY) 2316 set_media_not_present(sdkp); 2317 2318 /* 2319 * We used to set media_present to 0 here to indicate no media 2320 * in the drive, but some drives fail read capacity even with 2321 * media present, so we can't do that. 2322 */ 2323 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2324 } 2325 2326 #define RC16_LEN 32 2327 #if RC16_LEN > SD_BUF_SIZE 2328 #error RC16_LEN must not be more than SD_BUF_SIZE 2329 #endif 2330 2331 #define READ_CAPACITY_RETRIES_ON_RESET 10 2332 2333 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2334 unsigned char *buffer) 2335 { 2336 unsigned char cmd[16]; 2337 struct scsi_sense_hdr sshdr; 2338 int sense_valid = 0; 2339 int the_result; 2340 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2341 unsigned int alignment; 2342 unsigned long long lba; 2343 unsigned sector_size; 2344 2345 if (sdp->no_read_capacity_16) 2346 return -EINVAL; 2347 2348 do { 2349 memset(cmd, 0, 16); 2350 cmd[0] = SERVICE_ACTION_IN_16; 2351 cmd[1] = SAI_READ_CAPACITY_16; 2352 cmd[13] = RC16_LEN; 2353 memset(buffer, 0, RC16_LEN); 2354 2355 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2356 buffer, RC16_LEN, &sshdr, 2357 SD_TIMEOUT, sdkp->max_retries, NULL); 2358 2359 if (media_not_present(sdkp, &sshdr)) 2360 return -ENODEV; 2361 2362 if (the_result) { 2363 sense_valid = scsi_sense_valid(&sshdr); 2364 if (sense_valid && 2365 sshdr.sense_key == ILLEGAL_REQUEST && 2366 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2367 sshdr.ascq == 0x00) 2368 /* Invalid Command Operation Code or 2369 * Invalid Field in CDB, just retry 2370 * silently with RC10 */ 2371 return -EINVAL; 2372 if (sense_valid && 2373 sshdr.sense_key == UNIT_ATTENTION && 2374 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2375 /* Device reset might occur several times, 2376 * give it one more chance */ 2377 if (--reset_retries > 0) 2378 continue; 2379 } 2380 retries--; 2381 2382 } while (the_result && retries); 2383 2384 if (the_result) { 2385 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2386 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2387 return -EINVAL; 2388 } 2389 2390 sector_size = get_unaligned_be32(&buffer[8]); 2391 lba = get_unaligned_be64(&buffer[0]); 2392 2393 if (sd_read_protection_type(sdkp, buffer) < 0) { 2394 sdkp->capacity = 0; 2395 return -ENODEV; 2396 } 2397 2398 /* Logical blocks per physical block exponent */ 2399 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2400 2401 /* RC basis */ 2402 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2403 2404 /* Lowest aligned logical block */ 2405 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2406 blk_queue_alignment_offset(sdp->request_queue, alignment); 2407 if (alignment && sdkp->first_scan) 2408 sd_printk(KERN_NOTICE, sdkp, 2409 "physical block alignment offset: %u\n", alignment); 2410 2411 if (buffer[14] & 0x80) { /* LBPME */ 2412 sdkp->lbpme = 1; 2413 2414 if (buffer[14] & 0x40) /* LBPRZ */ 2415 sdkp->lbprz = 1; 2416 2417 sd_config_discard(sdkp, SD_LBP_WS16); 2418 } 2419 2420 sdkp->capacity = lba + 1; 2421 return sector_size; 2422 } 2423 2424 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2425 unsigned char *buffer) 2426 { 2427 unsigned char cmd[16]; 2428 struct scsi_sense_hdr sshdr; 2429 int sense_valid = 0; 2430 int the_result; 2431 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2432 sector_t lba; 2433 unsigned sector_size; 2434 2435 do { 2436 cmd[0] = READ_CAPACITY; 2437 memset(&cmd[1], 0, 9); 2438 memset(buffer, 0, 8); 2439 2440 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2441 buffer, 8, &sshdr, 2442 SD_TIMEOUT, sdkp->max_retries, NULL); 2443 2444 if (media_not_present(sdkp, &sshdr)) 2445 return -ENODEV; 2446 2447 if (the_result) { 2448 sense_valid = scsi_sense_valid(&sshdr); 2449 if (sense_valid && 2450 sshdr.sense_key == UNIT_ATTENTION && 2451 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2452 /* Device reset might occur several times, 2453 * give it one more chance */ 2454 if (--reset_retries > 0) 2455 continue; 2456 } 2457 retries--; 2458 2459 } while (the_result && retries); 2460 2461 if (the_result) { 2462 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2463 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2464 return -EINVAL; 2465 } 2466 2467 sector_size = get_unaligned_be32(&buffer[4]); 2468 lba = get_unaligned_be32(&buffer[0]); 2469 2470 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2471 /* Some buggy (usb cardreader) devices return an lba of 2472 0xffffffff when the want to report a size of 0 (with 2473 which they really mean no media is present) */ 2474 sdkp->capacity = 0; 2475 sdkp->physical_block_size = sector_size; 2476 return sector_size; 2477 } 2478 2479 sdkp->capacity = lba + 1; 2480 sdkp->physical_block_size = sector_size; 2481 return sector_size; 2482 } 2483 2484 static int sd_try_rc16_first(struct scsi_device *sdp) 2485 { 2486 if (sdp->host->max_cmd_len < 16) 2487 return 0; 2488 if (sdp->try_rc_10_first) 2489 return 0; 2490 if (sdp->scsi_level > SCSI_SPC_2) 2491 return 1; 2492 if (scsi_device_protection(sdp)) 2493 return 1; 2494 return 0; 2495 } 2496 2497 /* 2498 * read disk capacity 2499 */ 2500 static void 2501 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2502 { 2503 int sector_size; 2504 struct scsi_device *sdp = sdkp->device; 2505 2506 if (sd_try_rc16_first(sdp)) { 2507 sector_size = read_capacity_16(sdkp, sdp, buffer); 2508 if (sector_size == -EOVERFLOW) 2509 goto got_data; 2510 if (sector_size == -ENODEV) 2511 return; 2512 if (sector_size < 0) 2513 sector_size = read_capacity_10(sdkp, sdp, buffer); 2514 if (sector_size < 0) 2515 return; 2516 } else { 2517 sector_size = read_capacity_10(sdkp, sdp, buffer); 2518 if (sector_size == -EOVERFLOW) 2519 goto got_data; 2520 if (sector_size < 0) 2521 return; 2522 if ((sizeof(sdkp->capacity) > 4) && 2523 (sdkp->capacity > 0xffffffffULL)) { 2524 int old_sector_size = sector_size; 2525 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2526 "Trying to use READ CAPACITY(16).\n"); 2527 sector_size = read_capacity_16(sdkp, sdp, buffer); 2528 if (sector_size < 0) { 2529 sd_printk(KERN_NOTICE, sdkp, 2530 "Using 0xffffffff as device size\n"); 2531 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2532 sector_size = old_sector_size; 2533 goto got_data; 2534 } 2535 /* Remember that READ CAPACITY(16) succeeded */ 2536 sdp->try_rc_10_first = 0; 2537 } 2538 } 2539 2540 /* Some devices are known to return the total number of blocks, 2541 * not the highest block number. Some devices have versions 2542 * which do this and others which do not. Some devices we might 2543 * suspect of doing this but we don't know for certain. 2544 * 2545 * If we know the reported capacity is wrong, decrement it. If 2546 * we can only guess, then assume the number of blocks is even 2547 * (usually true but not always) and err on the side of lowering 2548 * the capacity. 2549 */ 2550 if (sdp->fix_capacity || 2551 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2552 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2553 "from its reported value: %llu\n", 2554 (unsigned long long) sdkp->capacity); 2555 --sdkp->capacity; 2556 } 2557 2558 got_data: 2559 if (sector_size == 0) { 2560 sector_size = 512; 2561 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2562 "assuming 512.\n"); 2563 } 2564 2565 if (sector_size != 512 && 2566 sector_size != 1024 && 2567 sector_size != 2048 && 2568 sector_size != 4096) { 2569 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2570 sector_size); 2571 /* 2572 * The user might want to re-format the drive with 2573 * a supported sectorsize. Once this happens, it 2574 * would be relatively trivial to set the thing up. 2575 * For this reason, we leave the thing in the table. 2576 */ 2577 sdkp->capacity = 0; 2578 /* 2579 * set a bogus sector size so the normal read/write 2580 * logic in the block layer will eventually refuse any 2581 * request on this device without tripping over power 2582 * of two sector size assumptions 2583 */ 2584 sector_size = 512; 2585 } 2586 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2587 blk_queue_physical_block_size(sdp->request_queue, 2588 sdkp->physical_block_size); 2589 sdkp->device->sector_size = sector_size; 2590 2591 if (sdkp->capacity > 0xffffffff) 2592 sdp->use_16_for_rw = 1; 2593 2594 } 2595 2596 /* 2597 * Print disk capacity 2598 */ 2599 static void 2600 sd_print_capacity(struct scsi_disk *sdkp, 2601 sector_t old_capacity) 2602 { 2603 int sector_size = sdkp->device->sector_size; 2604 char cap_str_2[10], cap_str_10[10]; 2605 2606 if (!sdkp->first_scan && old_capacity == sdkp->capacity) 2607 return; 2608 2609 string_get_size(sdkp->capacity, sector_size, 2610 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2611 string_get_size(sdkp->capacity, sector_size, 2612 STRING_UNITS_10, cap_str_10, sizeof(cap_str_10)); 2613 2614 sd_printk(KERN_NOTICE, sdkp, 2615 "%llu %d-byte logical blocks: (%s/%s)\n", 2616 (unsigned long long)sdkp->capacity, 2617 sector_size, cap_str_10, cap_str_2); 2618 2619 if (sdkp->physical_block_size != sector_size) 2620 sd_printk(KERN_NOTICE, sdkp, 2621 "%u-byte physical blocks\n", 2622 sdkp->physical_block_size); 2623 } 2624 2625 /* called with buffer of length 512 */ 2626 static inline int 2627 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage, 2628 unsigned char *buffer, int len, struct scsi_mode_data *data, 2629 struct scsi_sense_hdr *sshdr) 2630 { 2631 return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len, 2632 SD_TIMEOUT, sdkp->max_retries, data, 2633 sshdr); 2634 } 2635 2636 /* 2637 * read write protect setting, if possible - called only in sd_revalidate_disk() 2638 * called with buffer of length SD_BUF_SIZE 2639 */ 2640 static void 2641 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2642 { 2643 int res; 2644 struct scsi_device *sdp = sdkp->device; 2645 struct scsi_mode_data data; 2646 int old_wp = sdkp->write_prot; 2647 2648 set_disk_ro(sdkp->disk, 0); 2649 if (sdp->skip_ms_page_3f) { 2650 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2651 return; 2652 } 2653 2654 if (sdp->use_192_bytes_for_3f) { 2655 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL); 2656 } else { 2657 /* 2658 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2659 * We have to start carefully: some devices hang if we ask 2660 * for more than is available. 2661 */ 2662 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL); 2663 2664 /* 2665 * Second attempt: ask for page 0 When only page 0 is 2666 * implemented, a request for page 3F may return Sense Key 2667 * 5: Illegal Request, Sense Code 24: Invalid field in 2668 * CDB. 2669 */ 2670 if (!scsi_status_is_good(res)) 2671 res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL); 2672 2673 /* 2674 * Third attempt: ask 255 bytes, as we did earlier. 2675 */ 2676 if (!scsi_status_is_good(res)) 2677 res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255, 2678 &data, NULL); 2679 } 2680 2681 if (!scsi_status_is_good(res)) { 2682 sd_first_printk(KERN_WARNING, sdkp, 2683 "Test WP failed, assume Write Enabled\n"); 2684 } else { 2685 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2686 set_disk_ro(sdkp->disk, sdkp->write_prot); 2687 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2688 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2689 sdkp->write_prot ? "on" : "off"); 2690 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2691 } 2692 } 2693 } 2694 2695 /* 2696 * sd_read_cache_type - called only from sd_revalidate_disk() 2697 * called with buffer of length SD_BUF_SIZE 2698 */ 2699 static void 2700 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2701 { 2702 int len = 0, res; 2703 struct scsi_device *sdp = sdkp->device; 2704 2705 int dbd; 2706 int modepage; 2707 int first_len; 2708 struct scsi_mode_data data; 2709 struct scsi_sense_hdr sshdr; 2710 int old_wce = sdkp->WCE; 2711 int old_rcd = sdkp->RCD; 2712 int old_dpofua = sdkp->DPOFUA; 2713 2714 2715 if (sdkp->cache_override) 2716 return; 2717 2718 first_len = 4; 2719 if (sdp->skip_ms_page_8) { 2720 if (sdp->type == TYPE_RBC) 2721 goto defaults; 2722 else { 2723 if (sdp->skip_ms_page_3f) 2724 goto defaults; 2725 modepage = 0x3F; 2726 if (sdp->use_192_bytes_for_3f) 2727 first_len = 192; 2728 dbd = 0; 2729 } 2730 } else if (sdp->type == TYPE_RBC) { 2731 modepage = 6; 2732 dbd = 8; 2733 } else { 2734 modepage = 8; 2735 dbd = 0; 2736 } 2737 2738 /* cautiously ask */ 2739 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len, 2740 &data, &sshdr); 2741 2742 if (!scsi_status_is_good(res)) 2743 goto bad_sense; 2744 2745 if (!data.header_length) { 2746 modepage = 6; 2747 first_len = 0; 2748 sd_first_printk(KERN_ERR, sdkp, 2749 "Missing header in MODE_SENSE response\n"); 2750 } 2751 2752 /* that went OK, now ask for the proper length */ 2753 len = data.length; 2754 2755 /* 2756 * We're only interested in the first three bytes, actually. 2757 * But the data cache page is defined for the first 20. 2758 */ 2759 if (len < 3) 2760 goto bad_sense; 2761 else if (len > SD_BUF_SIZE) { 2762 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2763 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2764 len = SD_BUF_SIZE; 2765 } 2766 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2767 len = 192; 2768 2769 /* Get the data */ 2770 if (len > first_len) 2771 res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len, 2772 &data, &sshdr); 2773 2774 if (scsi_status_is_good(res)) { 2775 int offset = data.header_length + data.block_descriptor_length; 2776 2777 while (offset < len) { 2778 u8 page_code = buffer[offset] & 0x3F; 2779 u8 spf = buffer[offset] & 0x40; 2780 2781 if (page_code == 8 || page_code == 6) { 2782 /* We're interested only in the first 3 bytes. 2783 */ 2784 if (len - offset <= 2) { 2785 sd_first_printk(KERN_ERR, sdkp, 2786 "Incomplete mode parameter " 2787 "data\n"); 2788 goto defaults; 2789 } else { 2790 modepage = page_code; 2791 goto Page_found; 2792 } 2793 } else { 2794 /* Go to the next page */ 2795 if (spf && len - offset > 3) 2796 offset += 4 + (buffer[offset+2] << 8) + 2797 buffer[offset+3]; 2798 else if (!spf && len - offset > 1) 2799 offset += 2 + buffer[offset+1]; 2800 else { 2801 sd_first_printk(KERN_ERR, sdkp, 2802 "Incomplete mode " 2803 "parameter data\n"); 2804 goto defaults; 2805 } 2806 } 2807 } 2808 2809 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2810 goto defaults; 2811 2812 Page_found: 2813 if (modepage == 8) { 2814 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2815 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2816 } else { 2817 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2818 sdkp->RCD = 0; 2819 } 2820 2821 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2822 if (sdp->broken_fua) { 2823 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2824 sdkp->DPOFUA = 0; 2825 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2826 !sdkp->device->use_16_for_rw) { 2827 sd_first_printk(KERN_NOTICE, sdkp, 2828 "Uses READ/WRITE(6), disabling FUA\n"); 2829 sdkp->DPOFUA = 0; 2830 } 2831 2832 /* No cache flush allowed for write protected devices */ 2833 if (sdkp->WCE && sdkp->write_prot) 2834 sdkp->WCE = 0; 2835 2836 if (sdkp->first_scan || old_wce != sdkp->WCE || 2837 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2838 sd_printk(KERN_NOTICE, sdkp, 2839 "Write cache: %s, read cache: %s, %s\n", 2840 sdkp->WCE ? "enabled" : "disabled", 2841 sdkp->RCD ? "disabled" : "enabled", 2842 sdkp->DPOFUA ? "supports DPO and FUA" 2843 : "doesn't support DPO or FUA"); 2844 2845 return; 2846 } 2847 2848 bad_sense: 2849 if (scsi_sense_valid(&sshdr) && 2850 sshdr.sense_key == ILLEGAL_REQUEST && 2851 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2852 /* Invalid field in CDB */ 2853 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2854 else 2855 sd_first_printk(KERN_ERR, sdkp, 2856 "Asking for cache data failed\n"); 2857 2858 defaults: 2859 if (sdp->wce_default_on) { 2860 sd_first_printk(KERN_NOTICE, sdkp, 2861 "Assuming drive cache: write back\n"); 2862 sdkp->WCE = 1; 2863 } else { 2864 sd_first_printk(KERN_ERR, sdkp, 2865 "Assuming drive cache: write through\n"); 2866 sdkp->WCE = 0; 2867 } 2868 sdkp->RCD = 0; 2869 sdkp->DPOFUA = 0; 2870 } 2871 2872 /* 2873 * The ATO bit indicates whether the DIF application tag is available 2874 * for use by the operating system. 2875 */ 2876 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2877 { 2878 int res, offset; 2879 struct scsi_device *sdp = sdkp->device; 2880 struct scsi_mode_data data; 2881 struct scsi_sense_hdr sshdr; 2882 2883 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2884 return; 2885 2886 if (sdkp->protection_type == 0) 2887 return; 2888 2889 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2890 sdkp->max_retries, &data, &sshdr); 2891 2892 if (!scsi_status_is_good(res) || !data.header_length || 2893 data.length < 6) { 2894 sd_first_printk(KERN_WARNING, sdkp, 2895 "getting Control mode page failed, assume no ATO\n"); 2896 2897 if (scsi_sense_valid(&sshdr)) 2898 sd_print_sense_hdr(sdkp, &sshdr); 2899 2900 return; 2901 } 2902 2903 offset = data.header_length + data.block_descriptor_length; 2904 2905 if ((buffer[offset] & 0x3f) != 0x0a) { 2906 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2907 return; 2908 } 2909 2910 if ((buffer[offset + 5] & 0x80) == 0) 2911 return; 2912 2913 sdkp->ATO = 1; 2914 2915 return; 2916 } 2917 2918 /** 2919 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2920 * @sdkp: disk to query 2921 */ 2922 static void sd_read_block_limits(struct scsi_disk *sdkp) 2923 { 2924 unsigned int sector_sz = sdkp->device->sector_size; 2925 const int vpd_len = 64; 2926 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2927 2928 if (!buffer || 2929 /* Block Limits VPD */ 2930 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2931 goto out; 2932 2933 blk_queue_io_min(sdkp->disk->queue, 2934 get_unaligned_be16(&buffer[6]) * sector_sz); 2935 2936 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2937 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2938 2939 if (buffer[3] == 0x3c) { 2940 unsigned int lba_count, desc_count; 2941 2942 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2943 2944 if (!sdkp->lbpme) 2945 goto out; 2946 2947 lba_count = get_unaligned_be32(&buffer[20]); 2948 desc_count = get_unaligned_be32(&buffer[24]); 2949 2950 if (lba_count && desc_count) 2951 sdkp->max_unmap_blocks = lba_count; 2952 2953 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2954 2955 if (buffer[32] & 0x80) 2956 sdkp->unmap_alignment = 2957 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2958 2959 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2960 2961 if (sdkp->max_unmap_blocks) 2962 sd_config_discard(sdkp, SD_LBP_UNMAP); 2963 else 2964 sd_config_discard(sdkp, SD_LBP_WS16); 2965 2966 } else { /* LBP VPD page tells us what to use */ 2967 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2968 sd_config_discard(sdkp, SD_LBP_UNMAP); 2969 else if (sdkp->lbpws) 2970 sd_config_discard(sdkp, SD_LBP_WS16); 2971 else if (sdkp->lbpws10) 2972 sd_config_discard(sdkp, SD_LBP_WS10); 2973 else 2974 sd_config_discard(sdkp, SD_LBP_DISABLE); 2975 } 2976 } 2977 2978 out: 2979 kfree(buffer); 2980 } 2981 2982 /** 2983 * sd_read_block_characteristics - Query block dev. characteristics 2984 * @sdkp: disk to query 2985 */ 2986 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2987 { 2988 struct request_queue *q = sdkp->disk->queue; 2989 unsigned char *buffer; 2990 u16 rot; 2991 const int vpd_len = 64; 2992 2993 buffer = kmalloc(vpd_len, GFP_KERNEL); 2994 2995 if (!buffer || 2996 /* Block Device Characteristics VPD */ 2997 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2998 goto out; 2999 3000 rot = get_unaligned_be16(&buffer[4]); 3001 3002 if (rot == 1) { 3003 blk_queue_flag_set(QUEUE_FLAG_NONROT, q); 3004 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q); 3005 } 3006 3007 if (sdkp->device->type == TYPE_ZBC) { 3008 /* Host-managed */ 3009 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HM); 3010 } else { 3011 sdkp->zoned = (buffer[8] >> 4) & 3; 3012 if (sdkp->zoned == 1) { 3013 /* Host-aware */ 3014 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_HA); 3015 } else { 3016 /* Regular disk or drive managed disk */ 3017 blk_queue_set_zoned(sdkp->disk, BLK_ZONED_NONE); 3018 } 3019 } 3020 3021 if (!sdkp->first_scan) 3022 goto out; 3023 3024 if (blk_queue_is_zoned(q)) { 3025 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 3026 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 3027 } else { 3028 if (sdkp->zoned == 1) 3029 sd_printk(KERN_NOTICE, sdkp, 3030 "Host-aware SMR disk used as regular disk\n"); 3031 else if (sdkp->zoned == 2) 3032 sd_printk(KERN_NOTICE, sdkp, 3033 "Drive-managed SMR disk\n"); 3034 } 3035 3036 out: 3037 kfree(buffer); 3038 } 3039 3040 /** 3041 * sd_read_block_provisioning - Query provisioning VPD page 3042 * @sdkp: disk to query 3043 */ 3044 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 3045 { 3046 unsigned char *buffer; 3047 const int vpd_len = 8; 3048 3049 if (sdkp->lbpme == 0) 3050 return; 3051 3052 buffer = kmalloc(vpd_len, GFP_KERNEL); 3053 3054 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 3055 goto out; 3056 3057 sdkp->lbpvpd = 1; 3058 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 3059 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 3060 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 3061 3062 out: 3063 kfree(buffer); 3064 } 3065 3066 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 3067 { 3068 struct scsi_device *sdev = sdkp->device; 3069 3070 if (sdev->host->no_write_same) { 3071 sdev->no_write_same = 1; 3072 3073 return; 3074 } 3075 3076 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 3077 /* too large values might cause issues with arcmsr */ 3078 int vpd_buf_len = 64; 3079 3080 sdev->no_report_opcodes = 1; 3081 3082 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 3083 * CODES is unsupported and the device has an ATA 3084 * Information VPD page (SAT). 3085 */ 3086 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 3087 sdev->no_write_same = 1; 3088 } 3089 3090 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 3091 sdkp->ws16 = 1; 3092 3093 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 3094 sdkp->ws10 = 1; 3095 } 3096 3097 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer) 3098 { 3099 struct scsi_device *sdev = sdkp->device; 3100 3101 if (!sdev->security_supported) 3102 return; 3103 3104 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3105 SECURITY_PROTOCOL_IN) == 1 && 3106 scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, 3107 SECURITY_PROTOCOL_OUT) == 1) 3108 sdkp->security = 1; 3109 } 3110 3111 /* 3112 * Determine the device's preferred I/O size for reads and writes 3113 * unless the reported value is unreasonably small, large, not a 3114 * multiple of the physical block size, or simply garbage. 3115 */ 3116 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp, 3117 unsigned int dev_max) 3118 { 3119 struct scsi_device *sdp = sdkp->device; 3120 unsigned int opt_xfer_bytes = 3121 logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3122 3123 if (sdkp->opt_xfer_blocks == 0) 3124 return false; 3125 3126 if (sdkp->opt_xfer_blocks > dev_max) { 3127 sd_first_printk(KERN_WARNING, sdkp, 3128 "Optimal transfer size %u logical blocks " \ 3129 "> dev_max (%u logical blocks)\n", 3130 sdkp->opt_xfer_blocks, dev_max); 3131 return false; 3132 } 3133 3134 if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) { 3135 sd_first_printk(KERN_WARNING, sdkp, 3136 "Optimal transfer size %u logical blocks " \ 3137 "> sd driver limit (%u logical blocks)\n", 3138 sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS); 3139 return false; 3140 } 3141 3142 if (opt_xfer_bytes < PAGE_SIZE) { 3143 sd_first_printk(KERN_WARNING, sdkp, 3144 "Optimal transfer size %u bytes < " \ 3145 "PAGE_SIZE (%u bytes)\n", 3146 opt_xfer_bytes, (unsigned int)PAGE_SIZE); 3147 return false; 3148 } 3149 3150 if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) { 3151 sd_first_printk(KERN_WARNING, sdkp, 3152 "Optimal transfer size %u bytes not a " \ 3153 "multiple of physical block size (%u bytes)\n", 3154 opt_xfer_bytes, sdkp->physical_block_size); 3155 return false; 3156 } 3157 3158 sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n", 3159 opt_xfer_bytes); 3160 return true; 3161 } 3162 3163 /** 3164 * sd_revalidate_disk - called the first time a new disk is seen, 3165 * performs disk spin up, read_capacity, etc. 3166 * @disk: struct gendisk we care about 3167 **/ 3168 static int sd_revalidate_disk(struct gendisk *disk) 3169 { 3170 struct scsi_disk *sdkp = scsi_disk(disk); 3171 struct scsi_device *sdp = sdkp->device; 3172 struct request_queue *q = sdkp->disk->queue; 3173 sector_t old_capacity = sdkp->capacity; 3174 unsigned char *buffer; 3175 unsigned int dev_max, rw_max; 3176 3177 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3178 "sd_revalidate_disk\n")); 3179 3180 /* 3181 * If the device is offline, don't try and read capacity or any 3182 * of the other niceties. 3183 */ 3184 if (!scsi_device_online(sdp)) 3185 goto out; 3186 3187 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3188 if (!buffer) { 3189 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3190 "allocation failure.\n"); 3191 goto out; 3192 } 3193 3194 sd_spinup_disk(sdkp); 3195 3196 /* 3197 * Without media there is no reason to ask; moreover, some devices 3198 * react badly if we do. 3199 */ 3200 if (sdkp->media_present) { 3201 sd_read_capacity(sdkp, buffer); 3202 3203 /* 3204 * set the default to rotational. All non-rotational devices 3205 * support the block characteristics VPD page, which will 3206 * cause this to be updated correctly and any device which 3207 * doesn't support it should be treated as rotational. 3208 */ 3209 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q); 3210 blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q); 3211 3212 if (scsi_device_supports_vpd(sdp)) { 3213 sd_read_block_provisioning(sdkp); 3214 sd_read_block_limits(sdkp); 3215 sd_read_block_characteristics(sdkp); 3216 sd_zbc_read_zones(sdkp, buffer); 3217 } 3218 3219 sd_print_capacity(sdkp, old_capacity); 3220 3221 sd_read_write_protect_flag(sdkp, buffer); 3222 sd_read_cache_type(sdkp, buffer); 3223 sd_read_app_tag_own(sdkp, buffer); 3224 sd_read_write_same(sdkp, buffer); 3225 sd_read_security(sdkp, buffer); 3226 } 3227 3228 /* 3229 * We now have all cache related info, determine how we deal 3230 * with flush requests. 3231 */ 3232 sd_set_flush_flag(sdkp); 3233 3234 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3235 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3236 3237 /* Some devices report a maximum block count for READ/WRITE requests. */ 3238 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3239 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3240 3241 if (sd_validate_opt_xfer_size(sdkp, dev_max)) { 3242 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3243 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3244 } else { 3245 q->limits.io_opt = 0; 3246 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3247 (sector_t)BLK_DEF_MAX_SECTORS); 3248 } 3249 3250 /* Do not exceed controller limit */ 3251 rw_max = min(rw_max, queue_max_hw_sectors(q)); 3252 3253 /* 3254 * Only update max_sectors if previously unset or if the current value 3255 * exceeds the capabilities of the hardware. 3256 */ 3257 if (sdkp->first_scan || 3258 q->limits.max_sectors > q->limits.max_dev_sectors || 3259 q->limits.max_sectors > q->limits.max_hw_sectors) 3260 q->limits.max_sectors = rw_max; 3261 3262 sdkp->first_scan = 0; 3263 3264 set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity)); 3265 sd_config_write_same(sdkp); 3266 kfree(buffer); 3267 3268 /* 3269 * For a zoned drive, revalidating the zones can be done only once 3270 * the gendisk capacity is set. So if this fails, set back the gendisk 3271 * capacity to 0. 3272 */ 3273 if (sd_zbc_revalidate_zones(sdkp)) 3274 set_capacity_and_notify(disk, 0); 3275 3276 out: 3277 return 0; 3278 } 3279 3280 /** 3281 * sd_unlock_native_capacity - unlock native capacity 3282 * @disk: struct gendisk to set capacity for 3283 * 3284 * Block layer calls this function if it detects that partitions 3285 * on @disk reach beyond the end of the device. If the SCSI host 3286 * implements ->unlock_native_capacity() method, it's invoked to 3287 * give it a chance to adjust the device capacity. 3288 * 3289 * CONTEXT: 3290 * Defined by block layer. Might sleep. 3291 */ 3292 static void sd_unlock_native_capacity(struct gendisk *disk) 3293 { 3294 struct scsi_device *sdev = scsi_disk(disk)->device; 3295 3296 if (sdev->host->hostt->unlock_native_capacity) 3297 sdev->host->hostt->unlock_native_capacity(sdev); 3298 } 3299 3300 /** 3301 * sd_format_disk_name - format disk name 3302 * @prefix: name prefix - ie. "sd" for SCSI disks 3303 * @index: index of the disk to format name for 3304 * @buf: output buffer 3305 * @buflen: length of the output buffer 3306 * 3307 * SCSI disk names starts at sda. The 26th device is sdz and the 3308 * 27th is sdaa. The last one for two lettered suffix is sdzz 3309 * which is followed by sdaaa. 3310 * 3311 * This is basically 26 base counting with one extra 'nil' entry 3312 * at the beginning from the second digit on and can be 3313 * determined using similar method as 26 base conversion with the 3314 * index shifted -1 after each digit is computed. 3315 * 3316 * CONTEXT: 3317 * Don't care. 3318 * 3319 * RETURNS: 3320 * 0 on success, -errno on failure. 3321 */ 3322 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3323 { 3324 const int base = 'z' - 'a' + 1; 3325 char *begin = buf + strlen(prefix); 3326 char *end = buf + buflen; 3327 char *p; 3328 int unit; 3329 3330 p = end - 1; 3331 *p = '\0'; 3332 unit = base; 3333 do { 3334 if (p == begin) 3335 return -EINVAL; 3336 *--p = 'a' + (index % unit); 3337 index = (index / unit) - 1; 3338 } while (index >= 0); 3339 3340 memmove(begin, p, end - p); 3341 memcpy(buf, prefix, strlen(prefix)); 3342 3343 return 0; 3344 } 3345 3346 /** 3347 * sd_probe - called during driver initialization and whenever a 3348 * new scsi device is attached to the system. It is called once 3349 * for each scsi device (not just disks) present. 3350 * @dev: pointer to device object 3351 * 3352 * Returns 0 if successful (or not interested in this scsi device 3353 * (e.g. scanner)); 1 when there is an error. 3354 * 3355 * Note: this function is invoked from the scsi mid-level. 3356 * This function sets up the mapping between a given 3357 * <host,channel,id,lun> (found in sdp) and new device name 3358 * (e.g. /dev/sda). More precisely it is the block device major 3359 * and minor number that is chosen here. 3360 * 3361 * Assume sd_probe is not re-entrant (for time being) 3362 * Also think about sd_probe() and sd_remove() running coincidentally. 3363 **/ 3364 static int sd_probe(struct device *dev) 3365 { 3366 struct scsi_device *sdp = to_scsi_device(dev); 3367 struct scsi_disk *sdkp; 3368 struct gendisk *gd; 3369 int index; 3370 int error; 3371 3372 scsi_autopm_get_device(sdp); 3373 error = -ENODEV; 3374 if (sdp->type != TYPE_DISK && 3375 sdp->type != TYPE_ZBC && 3376 sdp->type != TYPE_MOD && 3377 sdp->type != TYPE_RBC) 3378 goto out; 3379 3380 #ifndef CONFIG_BLK_DEV_ZONED 3381 if (sdp->type == TYPE_ZBC) 3382 goto out; 3383 #endif 3384 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3385 "sd_probe\n")); 3386 3387 error = -ENOMEM; 3388 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3389 if (!sdkp) 3390 goto out; 3391 3392 gd = alloc_disk(SD_MINORS); 3393 if (!gd) 3394 goto out_free; 3395 3396 index = ida_alloc(&sd_index_ida, GFP_KERNEL); 3397 if (index < 0) { 3398 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3399 goto out_put; 3400 } 3401 3402 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3403 if (error) { 3404 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3405 goto out_free_index; 3406 } 3407 3408 sdkp->device = sdp; 3409 sdkp->driver = &sd_template; 3410 sdkp->disk = gd; 3411 sdkp->index = index; 3412 sdkp->max_retries = SD_MAX_RETRIES; 3413 atomic_set(&sdkp->openers, 0); 3414 atomic_set(&sdkp->device->ioerr_cnt, 0); 3415 3416 if (!sdp->request_queue->rq_timeout) { 3417 if (sdp->type != TYPE_MOD) 3418 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3419 else 3420 blk_queue_rq_timeout(sdp->request_queue, 3421 SD_MOD_TIMEOUT); 3422 } 3423 3424 device_initialize(&sdkp->dev); 3425 sdkp->dev.parent = dev; 3426 sdkp->dev.class = &sd_disk_class; 3427 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3428 3429 error = device_add(&sdkp->dev); 3430 if (error) 3431 goto out_free_index; 3432 3433 get_device(dev); 3434 dev_set_drvdata(dev, sdkp); 3435 3436 gd->major = sd_major((index & 0xf0) >> 4); 3437 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3438 3439 gd->fops = &sd_fops; 3440 gd->private_data = &sdkp->driver; 3441 gd->queue = sdkp->device->request_queue; 3442 3443 /* defaults, until the device tells us otherwise */ 3444 sdp->sector_size = 512; 3445 sdkp->capacity = 0; 3446 sdkp->media_present = 1; 3447 sdkp->write_prot = 0; 3448 sdkp->cache_override = 0; 3449 sdkp->WCE = 0; 3450 sdkp->RCD = 0; 3451 sdkp->ATO = 0; 3452 sdkp->first_scan = 1; 3453 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3454 3455 sd_revalidate_disk(gd); 3456 3457 gd->flags = GENHD_FL_EXT_DEVT; 3458 if (sdp->removable) { 3459 gd->flags |= GENHD_FL_REMOVABLE; 3460 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3461 gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT; 3462 } 3463 3464 blk_pm_runtime_init(sdp->request_queue, dev); 3465 if (sdp->rpm_autosuspend) { 3466 pm_runtime_set_autosuspend_delay(dev, 3467 sdp->host->hostt->rpm_autosuspend_delay); 3468 } 3469 device_add_disk(dev, gd, NULL); 3470 if (sdkp->capacity) 3471 sd_dif_config_host(sdkp); 3472 3473 sd_revalidate_disk(gd); 3474 3475 if (sdkp->security) { 3476 sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit); 3477 if (sdkp->opal_dev) 3478 sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n"); 3479 } 3480 3481 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3482 sdp->removable ? "removable " : ""); 3483 scsi_autopm_put_device(sdp); 3484 3485 return 0; 3486 3487 out_free_index: 3488 ida_free(&sd_index_ida, index); 3489 out_put: 3490 put_disk(gd); 3491 out_free: 3492 sd_zbc_release_disk(sdkp); 3493 kfree(sdkp); 3494 out: 3495 scsi_autopm_put_device(sdp); 3496 return error; 3497 } 3498 3499 /** 3500 * sd_remove - called whenever a scsi disk (previously recognized by 3501 * sd_probe) is detached from the system. It is called (potentially 3502 * multiple times) during sd module unload. 3503 * @dev: pointer to device object 3504 * 3505 * Note: this function is invoked from the scsi mid-level. 3506 * This function potentially frees up a device name (e.g. /dev/sdc) 3507 * that could be re-used by a subsequent sd_probe(). 3508 * This function is not called when the built-in sd driver is "exit-ed". 3509 **/ 3510 static int sd_remove(struct device *dev) 3511 { 3512 struct scsi_disk *sdkp; 3513 dev_t devt; 3514 3515 sdkp = dev_get_drvdata(dev); 3516 devt = disk_devt(sdkp->disk); 3517 scsi_autopm_get_device(sdkp->device); 3518 3519 async_synchronize_full_domain(&scsi_sd_pm_domain); 3520 device_del(&sdkp->dev); 3521 del_gendisk(sdkp->disk); 3522 sd_shutdown(dev); 3523 3524 free_opal_dev(sdkp->opal_dev); 3525 3526 mutex_lock(&sd_ref_mutex); 3527 dev_set_drvdata(dev, NULL); 3528 put_device(&sdkp->dev); 3529 mutex_unlock(&sd_ref_mutex); 3530 3531 return 0; 3532 } 3533 3534 /** 3535 * scsi_disk_release - Called to free the scsi_disk structure 3536 * @dev: pointer to embedded class device 3537 * 3538 * sd_ref_mutex must be held entering this routine. Because it is 3539 * called on last put, you should always use the scsi_disk_get() 3540 * scsi_disk_put() helpers which manipulate the semaphore directly 3541 * and never do a direct put_device. 3542 **/ 3543 static void scsi_disk_release(struct device *dev) 3544 { 3545 struct scsi_disk *sdkp = to_scsi_disk(dev); 3546 struct gendisk *disk = sdkp->disk; 3547 struct request_queue *q = disk->queue; 3548 3549 ida_free(&sd_index_ida, sdkp->index); 3550 3551 /* 3552 * Wait until all requests that are in progress have completed. 3553 * This is necessary to avoid that e.g. scsi_end_request() crashes 3554 * due to clearing the disk->private_data pointer. Wait from inside 3555 * scsi_disk_release() instead of from sd_release() to avoid that 3556 * freezing and unfreezing the request queue affects user space I/O 3557 * in case multiple processes open a /dev/sd... node concurrently. 3558 */ 3559 blk_mq_freeze_queue(q); 3560 blk_mq_unfreeze_queue(q); 3561 3562 disk->private_data = NULL; 3563 put_disk(disk); 3564 put_device(&sdkp->device->sdev_gendev); 3565 3566 sd_zbc_release_disk(sdkp); 3567 3568 kfree(sdkp); 3569 } 3570 3571 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3572 { 3573 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3574 struct scsi_sense_hdr sshdr; 3575 struct scsi_device *sdp = sdkp->device; 3576 int res; 3577 3578 if (start) 3579 cmd[4] |= 1; /* START */ 3580 3581 if (sdp->start_stop_pwr_cond) 3582 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3583 3584 if (!scsi_device_online(sdp)) 3585 return -ENODEV; 3586 3587 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3588 SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL); 3589 if (res) { 3590 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3591 if (driver_byte(res) == DRIVER_SENSE) 3592 sd_print_sense_hdr(sdkp, &sshdr); 3593 if (scsi_sense_valid(&sshdr) && 3594 /* 0x3a is medium not present */ 3595 sshdr.asc == 0x3a) 3596 res = 0; 3597 } 3598 3599 /* SCSI error codes must not go to the generic layer */ 3600 if (res) 3601 return -EIO; 3602 3603 return 0; 3604 } 3605 3606 /* 3607 * Send a SYNCHRONIZE CACHE instruction down to the device through 3608 * the normal SCSI command structure. Wait for the command to 3609 * complete. 3610 */ 3611 static void sd_shutdown(struct device *dev) 3612 { 3613 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3614 3615 if (!sdkp) 3616 return; /* this can happen */ 3617 3618 if (pm_runtime_suspended(dev)) 3619 return; 3620 3621 if (sdkp->WCE && sdkp->media_present) { 3622 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3623 sd_sync_cache(sdkp, NULL); 3624 } 3625 3626 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3627 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3628 sd_start_stop_device(sdkp, 0); 3629 } 3630 } 3631 3632 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3633 { 3634 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3635 struct scsi_sense_hdr sshdr; 3636 int ret = 0; 3637 3638 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3639 return 0; 3640 3641 if (sdkp->WCE && sdkp->media_present) { 3642 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3643 ret = sd_sync_cache(sdkp, &sshdr); 3644 3645 if (ret) { 3646 /* ignore OFFLINE device */ 3647 if (ret == -ENODEV) 3648 return 0; 3649 3650 if (!scsi_sense_valid(&sshdr) || 3651 sshdr.sense_key != ILLEGAL_REQUEST) 3652 return ret; 3653 3654 /* 3655 * sshdr.sense_key == ILLEGAL_REQUEST means this drive 3656 * doesn't support sync. There's not much to do and 3657 * suspend shouldn't fail. 3658 */ 3659 ret = 0; 3660 } 3661 } 3662 3663 if (sdkp->device->manage_start_stop) { 3664 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3665 /* an error is not worth aborting a system sleep */ 3666 ret = sd_start_stop_device(sdkp, 0); 3667 if (ignore_stop_errors) 3668 ret = 0; 3669 } 3670 3671 return ret; 3672 } 3673 3674 static int sd_suspend_system(struct device *dev) 3675 { 3676 return sd_suspend_common(dev, true); 3677 } 3678 3679 static int sd_suspend_runtime(struct device *dev) 3680 { 3681 return sd_suspend_common(dev, false); 3682 } 3683 3684 static int sd_resume(struct device *dev) 3685 { 3686 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3687 int ret; 3688 3689 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3690 return 0; 3691 3692 if (!sdkp->device->manage_start_stop) 3693 return 0; 3694 3695 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3696 ret = sd_start_stop_device(sdkp, 1); 3697 if (!ret) 3698 opal_unlock_from_suspend(sdkp->opal_dev); 3699 return ret; 3700 } 3701 3702 /** 3703 * init_sd - entry point for this driver (both when built in or when 3704 * a module). 3705 * 3706 * Note: this function registers this driver with the scsi mid-level. 3707 **/ 3708 static int __init init_sd(void) 3709 { 3710 int majors = 0, i, err; 3711 3712 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3713 3714 for (i = 0; i < SD_MAJORS; i++) { 3715 if (__register_blkdev(sd_major(i), "sd", sd_default_probe)) 3716 continue; 3717 majors++; 3718 } 3719 3720 if (!majors) 3721 return -ENODEV; 3722 3723 err = class_register(&sd_disk_class); 3724 if (err) 3725 goto err_out; 3726 3727 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3728 0, 0, NULL); 3729 if (!sd_cdb_cache) { 3730 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3731 err = -ENOMEM; 3732 goto err_out_class; 3733 } 3734 3735 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3736 if (!sd_cdb_pool) { 3737 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3738 err = -ENOMEM; 3739 goto err_out_cache; 3740 } 3741 3742 sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0); 3743 if (!sd_page_pool) { 3744 printk(KERN_ERR "sd: can't init discard page pool\n"); 3745 err = -ENOMEM; 3746 goto err_out_ppool; 3747 } 3748 3749 err = scsi_register_driver(&sd_template.gendrv); 3750 if (err) 3751 goto err_out_driver; 3752 3753 return 0; 3754 3755 err_out_driver: 3756 mempool_destroy(sd_page_pool); 3757 3758 err_out_ppool: 3759 mempool_destroy(sd_cdb_pool); 3760 3761 err_out_cache: 3762 kmem_cache_destroy(sd_cdb_cache); 3763 3764 err_out_class: 3765 class_unregister(&sd_disk_class); 3766 err_out: 3767 for (i = 0; i < SD_MAJORS; i++) 3768 unregister_blkdev(sd_major(i), "sd"); 3769 return err; 3770 } 3771 3772 /** 3773 * exit_sd - exit point for this driver (when it is a module). 3774 * 3775 * Note: this function unregisters this driver from the scsi mid-level. 3776 **/ 3777 static void __exit exit_sd(void) 3778 { 3779 int i; 3780 3781 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3782 3783 scsi_unregister_driver(&sd_template.gendrv); 3784 mempool_destroy(sd_cdb_pool); 3785 mempool_destroy(sd_page_pool); 3786 kmem_cache_destroy(sd_cdb_cache); 3787 3788 class_unregister(&sd_disk_class); 3789 3790 for (i = 0; i < SD_MAJORS; i++) 3791 unregister_blkdev(sd_major(i), "sd"); 3792 } 3793 3794 module_init(init_sd); 3795 module_exit(exit_sd); 3796 3797 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr) 3798 { 3799 scsi_print_sense_hdr(sdkp->device, 3800 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3801 } 3802 3803 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result) 3804 { 3805 const char *hb_string = scsi_hostbyte_string(result); 3806 const char *db_string = scsi_driverbyte_string(result); 3807 3808 if (hb_string || db_string) 3809 sd_printk(KERN_INFO, sdkp, 3810 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3811 hb_string ? hb_string : "invalid", 3812 db_string ? db_string : "invalid"); 3813 else 3814 sd_printk(KERN_INFO, sdkp, 3815 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3816 msg, host_byte(result), driver_byte(result)); 3817 } 3818