xref: /openbmc/linux/drivers/scsi/sd.c (revision dd093fb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *      sd.c Copyright (C) 1992 Drew Eckhardt
4  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
5  *
6  *      Linux scsi disk driver
7  *              Initial versions: Drew Eckhardt
8  *              Subsequent revisions: Eric Youngdale
9  *	Modification history:
10  *       - Drew Eckhardt <drew@colorado.edu> original
11  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
12  *         outstanding request, and other enhancements.
13  *         Support loadable low-level scsi drivers.
14  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
15  *         eight major numbers.
16  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
17  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
18  *	   sd_init and cleanups.
19  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
20  *	   not being read in sd_open. Fix problem where removable media
21  *	   could be ejected after sd_open.
22  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
23  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
24  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
25  *	   Support 32k/1M disks.
26  *
27  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
28  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
29  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
30  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
31  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
32  *	Note: when the logging level is set by the user, it must be greater
33  *	than the level indicated above to trigger output.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/fs.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/bio.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/blk-pm.h>
49 #include <linux/delay.h>
50 #include <linux/major.h>
51 #include <linux/mutex.h>
52 #include <linux/string_helpers.h>
53 #include <linux/slab.h>
54 #include <linux/sed-opal.h>
55 #include <linux/pm_runtime.h>
56 #include <linux/pr.h>
57 #include <linux/t10-pi.h>
58 #include <linux/uaccess.h>
59 #include <asm/unaligned.h>
60 
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_dbg.h>
64 #include <scsi/scsi_device.h>
65 #include <scsi/scsi_driver.h>
66 #include <scsi/scsi_eh.h>
67 #include <scsi/scsi_host.h>
68 #include <scsi/scsi_ioctl.h>
69 #include <scsi/scsicam.h>
70 
71 #include "sd.h"
72 #include "scsi_priv.h"
73 #include "scsi_logging.h"
74 
75 MODULE_AUTHOR("Eric Youngdale");
76 MODULE_DESCRIPTION("SCSI disk (sd) driver");
77 MODULE_LICENSE("GPL");
78 
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
93 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
94 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
97 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
98 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
99 
100 #define SD_MINORS	16
101 
102 static void sd_config_discard(struct scsi_disk *, unsigned int);
103 static void sd_config_write_same(struct scsi_disk *);
104 static int  sd_revalidate_disk(struct gendisk *);
105 static void sd_unlock_native_capacity(struct gendisk *disk);
106 static int  sd_probe(struct device *);
107 static int  sd_remove(struct device *);
108 static void sd_shutdown(struct device *);
109 static int sd_suspend_system(struct device *);
110 static int sd_suspend_runtime(struct device *);
111 static int sd_resume_system(struct device *);
112 static int sd_resume_runtime(struct device *);
113 static void sd_rescan(struct device *);
114 static blk_status_t sd_init_command(struct scsi_cmnd *SCpnt);
115 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
116 static int sd_done(struct scsi_cmnd *);
117 static void sd_eh_reset(struct scsi_cmnd *);
118 static int sd_eh_action(struct scsi_cmnd *, int);
119 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
120 static void scsi_disk_release(struct device *cdev);
121 
122 static DEFINE_IDA(sd_index_ida);
123 
124 static struct kmem_cache *sd_cdb_cache;
125 static mempool_t *sd_page_pool;
126 static struct lock_class_key sd_bio_compl_lkclass;
127 
128 static const char *sd_cache_types[] = {
129 	"write through", "none", "write back",
130 	"write back, no read (daft)"
131 };
132 
133 static void sd_set_flush_flag(struct scsi_disk *sdkp)
134 {
135 	bool wc = false, fua = false;
136 
137 	if (sdkp->WCE) {
138 		wc = true;
139 		if (sdkp->DPOFUA)
140 			fua = true;
141 	}
142 
143 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
144 }
145 
146 static ssize_t
147 cache_type_store(struct device *dev, struct device_attribute *attr,
148 		 const char *buf, size_t count)
149 {
150 	int ct, rcd, wce, sp;
151 	struct scsi_disk *sdkp = to_scsi_disk(dev);
152 	struct scsi_device *sdp = sdkp->device;
153 	char buffer[64];
154 	char *buffer_data;
155 	struct scsi_mode_data data;
156 	struct scsi_sense_hdr sshdr;
157 	static const char temp[] = "temporary ";
158 	int len;
159 
160 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
161 		/* no cache control on RBC devices; theoretically they
162 		 * can do it, but there's probably so many exceptions
163 		 * it's not worth the risk */
164 		return -EINVAL;
165 
166 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
167 		buf += sizeof(temp) - 1;
168 		sdkp->cache_override = 1;
169 	} else {
170 		sdkp->cache_override = 0;
171 	}
172 
173 	ct = sysfs_match_string(sd_cache_types, buf);
174 	if (ct < 0)
175 		return -EINVAL;
176 
177 	rcd = ct & 0x01 ? 1 : 0;
178 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
179 
180 	if (sdkp->cache_override) {
181 		sdkp->WCE = wce;
182 		sdkp->RCD = rcd;
183 		sd_set_flush_flag(sdkp);
184 		return count;
185 	}
186 
187 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
188 			    sdkp->max_retries, &data, NULL))
189 		return -EINVAL;
190 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
191 		  data.block_descriptor_length);
192 	buffer_data = buffer + data.header_length +
193 		data.block_descriptor_length;
194 	buffer_data[2] &= ~0x05;
195 	buffer_data[2] |= wce << 2 | rcd;
196 	sp = buffer_data[0] & 0x80 ? 1 : 0;
197 	buffer_data[0] &= ~0x80;
198 
199 	/*
200 	 * Ensure WP, DPOFUA, and RESERVED fields are cleared in
201 	 * received mode parameter buffer before doing MODE SELECT.
202 	 */
203 	data.device_specific = 0;
204 
205 	if (scsi_mode_select(sdp, 1, sp, buffer_data, len, SD_TIMEOUT,
206 			     sdkp->max_retries, &data, &sshdr)) {
207 		if (scsi_sense_valid(&sshdr))
208 			sd_print_sense_hdr(sdkp, &sshdr);
209 		return -EINVAL;
210 	}
211 	sd_revalidate_disk(sdkp->disk);
212 	return count;
213 }
214 
215 static ssize_t
216 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
217 		       char *buf)
218 {
219 	struct scsi_disk *sdkp = to_scsi_disk(dev);
220 	struct scsi_device *sdp = sdkp->device;
221 
222 	return sprintf(buf, "%u\n", sdp->manage_start_stop);
223 }
224 
225 static ssize_t
226 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
227 			const char *buf, size_t count)
228 {
229 	struct scsi_disk *sdkp = to_scsi_disk(dev);
230 	struct scsi_device *sdp = sdkp->device;
231 	bool v;
232 
233 	if (!capable(CAP_SYS_ADMIN))
234 		return -EACCES;
235 
236 	if (kstrtobool(buf, &v))
237 		return -EINVAL;
238 
239 	sdp->manage_start_stop = v;
240 
241 	return count;
242 }
243 static DEVICE_ATTR_RW(manage_start_stop);
244 
245 static ssize_t
246 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
247 {
248 	struct scsi_disk *sdkp = to_scsi_disk(dev);
249 
250 	return sprintf(buf, "%u\n", sdkp->device->allow_restart);
251 }
252 
253 static ssize_t
254 allow_restart_store(struct device *dev, struct device_attribute *attr,
255 		    const char *buf, size_t count)
256 {
257 	bool v;
258 	struct scsi_disk *sdkp = to_scsi_disk(dev);
259 	struct scsi_device *sdp = sdkp->device;
260 
261 	if (!capable(CAP_SYS_ADMIN))
262 		return -EACCES;
263 
264 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
265 		return -EINVAL;
266 
267 	if (kstrtobool(buf, &v))
268 		return -EINVAL;
269 
270 	sdp->allow_restart = v;
271 
272 	return count;
273 }
274 static DEVICE_ATTR_RW(allow_restart);
275 
276 static ssize_t
277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
278 {
279 	struct scsi_disk *sdkp = to_scsi_disk(dev);
280 	int ct = sdkp->RCD + 2*sdkp->WCE;
281 
282 	return sprintf(buf, "%s\n", sd_cache_types[ct]);
283 }
284 static DEVICE_ATTR_RW(cache_type);
285 
286 static ssize_t
287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289 	struct scsi_disk *sdkp = to_scsi_disk(dev);
290 
291 	return sprintf(buf, "%u\n", sdkp->DPOFUA);
292 }
293 static DEVICE_ATTR_RO(FUA);
294 
295 static ssize_t
296 protection_type_show(struct device *dev, struct device_attribute *attr,
297 		     char *buf)
298 {
299 	struct scsi_disk *sdkp = to_scsi_disk(dev);
300 
301 	return sprintf(buf, "%u\n", sdkp->protection_type);
302 }
303 
304 static ssize_t
305 protection_type_store(struct device *dev, struct device_attribute *attr,
306 		      const char *buf, size_t count)
307 {
308 	struct scsi_disk *sdkp = to_scsi_disk(dev);
309 	unsigned int val;
310 	int err;
311 
312 	if (!capable(CAP_SYS_ADMIN))
313 		return -EACCES;
314 
315 	err = kstrtouint(buf, 10, &val);
316 
317 	if (err)
318 		return err;
319 
320 	if (val <= T10_PI_TYPE3_PROTECTION)
321 		sdkp->protection_type = val;
322 
323 	return count;
324 }
325 static DEVICE_ATTR_RW(protection_type);
326 
327 static ssize_t
328 protection_mode_show(struct device *dev, struct device_attribute *attr,
329 		     char *buf)
330 {
331 	struct scsi_disk *sdkp = to_scsi_disk(dev);
332 	struct scsi_device *sdp = sdkp->device;
333 	unsigned int dif, dix;
334 
335 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
336 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
337 
338 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
339 		dif = 0;
340 		dix = 1;
341 	}
342 
343 	if (!dif && !dix)
344 		return sprintf(buf, "none\n");
345 
346 	return sprintf(buf, "%s%u\n", dix ? "dix" : "dif", dif);
347 }
348 static DEVICE_ATTR_RO(protection_mode);
349 
350 static ssize_t
351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353 	struct scsi_disk *sdkp = to_scsi_disk(dev);
354 
355 	return sprintf(buf, "%u\n", sdkp->ATO);
356 }
357 static DEVICE_ATTR_RO(app_tag_own);
358 
359 static ssize_t
360 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
361 		       char *buf)
362 {
363 	struct scsi_disk *sdkp = to_scsi_disk(dev);
364 
365 	return sprintf(buf, "%u\n", sdkp->lbpme);
366 }
367 static DEVICE_ATTR_RO(thin_provisioning);
368 
369 /* sysfs_match_string() requires dense arrays */
370 static const char *lbp_mode[] = {
371 	[SD_LBP_FULL]		= "full",
372 	[SD_LBP_UNMAP]		= "unmap",
373 	[SD_LBP_WS16]		= "writesame_16",
374 	[SD_LBP_WS10]		= "writesame_10",
375 	[SD_LBP_ZERO]		= "writesame_zero",
376 	[SD_LBP_DISABLE]	= "disabled",
377 };
378 
379 static ssize_t
380 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
381 		       char *buf)
382 {
383 	struct scsi_disk *sdkp = to_scsi_disk(dev);
384 
385 	return sprintf(buf, "%s\n", lbp_mode[sdkp->provisioning_mode]);
386 }
387 
388 static ssize_t
389 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
390 			const char *buf, size_t count)
391 {
392 	struct scsi_disk *sdkp = to_scsi_disk(dev);
393 	struct scsi_device *sdp = sdkp->device;
394 	int mode;
395 
396 	if (!capable(CAP_SYS_ADMIN))
397 		return -EACCES;
398 
399 	if (sd_is_zoned(sdkp)) {
400 		sd_config_discard(sdkp, SD_LBP_DISABLE);
401 		return count;
402 	}
403 
404 	if (sdp->type != TYPE_DISK)
405 		return -EINVAL;
406 
407 	mode = sysfs_match_string(lbp_mode, buf);
408 	if (mode < 0)
409 		return -EINVAL;
410 
411 	sd_config_discard(sdkp, mode);
412 
413 	return count;
414 }
415 static DEVICE_ATTR_RW(provisioning_mode);
416 
417 /* sysfs_match_string() requires dense arrays */
418 static const char *zeroing_mode[] = {
419 	[SD_ZERO_WRITE]		= "write",
420 	[SD_ZERO_WS]		= "writesame",
421 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
422 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
423 };
424 
425 static ssize_t
426 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
427 		  char *buf)
428 {
429 	struct scsi_disk *sdkp = to_scsi_disk(dev);
430 
431 	return sprintf(buf, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
432 }
433 
434 static ssize_t
435 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
436 		   const char *buf, size_t count)
437 {
438 	struct scsi_disk *sdkp = to_scsi_disk(dev);
439 	int mode;
440 
441 	if (!capable(CAP_SYS_ADMIN))
442 		return -EACCES;
443 
444 	mode = sysfs_match_string(zeroing_mode, buf);
445 	if (mode < 0)
446 		return -EINVAL;
447 
448 	sdkp->zeroing_mode = mode;
449 
450 	return count;
451 }
452 static DEVICE_ATTR_RW(zeroing_mode);
453 
454 static ssize_t
455 max_medium_access_timeouts_show(struct device *dev,
456 				struct device_attribute *attr, char *buf)
457 {
458 	struct scsi_disk *sdkp = to_scsi_disk(dev);
459 
460 	return sprintf(buf, "%u\n", sdkp->max_medium_access_timeouts);
461 }
462 
463 static ssize_t
464 max_medium_access_timeouts_store(struct device *dev,
465 				 struct device_attribute *attr, const char *buf,
466 				 size_t count)
467 {
468 	struct scsi_disk *sdkp = to_scsi_disk(dev);
469 	int err;
470 
471 	if (!capable(CAP_SYS_ADMIN))
472 		return -EACCES;
473 
474 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
475 
476 	return err ? err : count;
477 }
478 static DEVICE_ATTR_RW(max_medium_access_timeouts);
479 
480 static ssize_t
481 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
482 			   char *buf)
483 {
484 	struct scsi_disk *sdkp = to_scsi_disk(dev);
485 
486 	return sprintf(buf, "%u\n", sdkp->max_ws_blocks);
487 }
488 
489 static ssize_t
490 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
491 			    const char *buf, size_t count)
492 {
493 	struct scsi_disk *sdkp = to_scsi_disk(dev);
494 	struct scsi_device *sdp = sdkp->device;
495 	unsigned long max;
496 	int err;
497 
498 	if (!capable(CAP_SYS_ADMIN))
499 		return -EACCES;
500 
501 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
502 		return -EINVAL;
503 
504 	err = kstrtoul(buf, 10, &max);
505 
506 	if (err)
507 		return err;
508 
509 	if (max == 0)
510 		sdp->no_write_same = 1;
511 	else if (max <= SD_MAX_WS16_BLOCKS) {
512 		sdp->no_write_same = 0;
513 		sdkp->max_ws_blocks = max;
514 	}
515 
516 	sd_config_write_same(sdkp);
517 
518 	return count;
519 }
520 static DEVICE_ATTR_RW(max_write_same_blocks);
521 
522 static ssize_t
523 zoned_cap_show(struct device *dev, struct device_attribute *attr, char *buf)
524 {
525 	struct scsi_disk *sdkp = to_scsi_disk(dev);
526 
527 	if (sdkp->device->type == TYPE_ZBC)
528 		return sprintf(buf, "host-managed\n");
529 	if (sdkp->zoned == 1)
530 		return sprintf(buf, "host-aware\n");
531 	if (sdkp->zoned == 2)
532 		return sprintf(buf, "drive-managed\n");
533 	return sprintf(buf, "none\n");
534 }
535 static DEVICE_ATTR_RO(zoned_cap);
536 
537 static ssize_t
538 max_retries_store(struct device *dev, struct device_attribute *attr,
539 		  const char *buf, size_t count)
540 {
541 	struct scsi_disk *sdkp = to_scsi_disk(dev);
542 	struct scsi_device *sdev = sdkp->device;
543 	int retries, err;
544 
545 	err = kstrtoint(buf, 10, &retries);
546 	if (err)
547 		return err;
548 
549 	if (retries == SCSI_CMD_RETRIES_NO_LIMIT || retries <= SD_MAX_RETRIES) {
550 		sdkp->max_retries = retries;
551 		return count;
552 	}
553 
554 	sdev_printk(KERN_ERR, sdev, "max_retries must be between -1 and %d\n",
555 		    SD_MAX_RETRIES);
556 	return -EINVAL;
557 }
558 
559 static ssize_t
560 max_retries_show(struct device *dev, struct device_attribute *attr,
561 		 char *buf)
562 {
563 	struct scsi_disk *sdkp = to_scsi_disk(dev);
564 
565 	return sprintf(buf, "%d\n", sdkp->max_retries);
566 }
567 
568 static DEVICE_ATTR_RW(max_retries);
569 
570 static struct attribute *sd_disk_attrs[] = {
571 	&dev_attr_cache_type.attr,
572 	&dev_attr_FUA.attr,
573 	&dev_attr_allow_restart.attr,
574 	&dev_attr_manage_start_stop.attr,
575 	&dev_attr_protection_type.attr,
576 	&dev_attr_protection_mode.attr,
577 	&dev_attr_app_tag_own.attr,
578 	&dev_attr_thin_provisioning.attr,
579 	&dev_attr_provisioning_mode.attr,
580 	&dev_attr_zeroing_mode.attr,
581 	&dev_attr_max_write_same_blocks.attr,
582 	&dev_attr_max_medium_access_timeouts.attr,
583 	&dev_attr_zoned_cap.attr,
584 	&dev_attr_max_retries.attr,
585 	NULL,
586 };
587 ATTRIBUTE_GROUPS(sd_disk);
588 
589 static struct class sd_disk_class = {
590 	.name		= "scsi_disk",
591 	.owner		= THIS_MODULE,
592 	.dev_release	= scsi_disk_release,
593 	.dev_groups	= sd_disk_groups,
594 };
595 
596 static const struct dev_pm_ops sd_pm_ops = {
597 	.suspend		= sd_suspend_system,
598 	.resume			= sd_resume_system,
599 	.poweroff		= sd_suspend_system,
600 	.restore		= sd_resume_system,
601 	.runtime_suspend	= sd_suspend_runtime,
602 	.runtime_resume		= sd_resume_runtime,
603 };
604 
605 static struct scsi_driver sd_template = {
606 	.gendrv = {
607 		.name		= "sd",
608 		.owner		= THIS_MODULE,
609 		.probe		= sd_probe,
610 		.probe_type	= PROBE_PREFER_ASYNCHRONOUS,
611 		.remove		= sd_remove,
612 		.shutdown	= sd_shutdown,
613 		.pm		= &sd_pm_ops,
614 	},
615 	.rescan			= sd_rescan,
616 	.init_command		= sd_init_command,
617 	.uninit_command		= sd_uninit_command,
618 	.done			= sd_done,
619 	.eh_action		= sd_eh_action,
620 	.eh_reset		= sd_eh_reset,
621 };
622 
623 /*
624  * Don't request a new module, as that could deadlock in multipath
625  * environment.
626  */
627 static void sd_default_probe(dev_t devt)
628 {
629 }
630 
631 /*
632  * Device no to disk mapping:
633  *
634  *       major         disc2     disc  p1
635  *   |............|.............|....|....| <- dev_t
636  *    31        20 19          8 7  4 3  0
637  *
638  * Inside a major, we have 16k disks, however mapped non-
639  * contiguously. The first 16 disks are for major0, the next
640  * ones with major1, ... Disk 256 is for major0 again, disk 272
641  * for major1, ...
642  * As we stay compatible with our numbering scheme, we can reuse
643  * the well-know SCSI majors 8, 65--71, 136--143.
644  */
645 static int sd_major(int major_idx)
646 {
647 	switch (major_idx) {
648 	case 0:
649 		return SCSI_DISK0_MAJOR;
650 	case 1 ... 7:
651 		return SCSI_DISK1_MAJOR + major_idx - 1;
652 	case 8 ... 15:
653 		return SCSI_DISK8_MAJOR + major_idx - 8;
654 	default:
655 		BUG();
656 		return 0;	/* shut up gcc */
657 	}
658 }
659 
660 #ifdef CONFIG_BLK_SED_OPAL
661 static int sd_sec_submit(void *data, u16 spsp, u8 secp, void *buffer,
662 		size_t len, bool send)
663 {
664 	struct scsi_disk *sdkp = data;
665 	struct scsi_device *sdev = sdkp->device;
666 	u8 cdb[12] = { 0, };
667 	int ret;
668 
669 	cdb[0] = send ? SECURITY_PROTOCOL_OUT : SECURITY_PROTOCOL_IN;
670 	cdb[1] = secp;
671 	put_unaligned_be16(spsp, &cdb[2]);
672 	put_unaligned_be32(len, &cdb[6]);
673 
674 	ret = scsi_execute(sdev, cdb, send ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
675 		buffer, len, NULL, NULL, SD_TIMEOUT, sdkp->max_retries, 0,
676 		RQF_PM, NULL);
677 	return ret <= 0 ? ret : -EIO;
678 }
679 #endif /* CONFIG_BLK_SED_OPAL */
680 
681 /*
682  * Look up the DIX operation based on whether the command is read or
683  * write and whether dix and dif are enabled.
684  */
685 static unsigned int sd_prot_op(bool write, bool dix, bool dif)
686 {
687 	/* Lookup table: bit 2 (write), bit 1 (dix), bit 0 (dif) */
688 	static const unsigned int ops[] = {	/* wrt dix dif */
689 		SCSI_PROT_NORMAL,		/*  0	0   0  */
690 		SCSI_PROT_READ_STRIP,		/*  0	0   1  */
691 		SCSI_PROT_READ_INSERT,		/*  0	1   0  */
692 		SCSI_PROT_READ_PASS,		/*  0	1   1  */
693 		SCSI_PROT_NORMAL,		/*  1	0   0  */
694 		SCSI_PROT_WRITE_INSERT,		/*  1	0   1  */
695 		SCSI_PROT_WRITE_STRIP,		/*  1	1   0  */
696 		SCSI_PROT_WRITE_PASS,		/*  1	1   1  */
697 	};
698 
699 	return ops[write << 2 | dix << 1 | dif];
700 }
701 
702 /*
703  * Returns a mask of the protection flags that are valid for a given DIX
704  * operation.
705  */
706 static unsigned int sd_prot_flag_mask(unsigned int prot_op)
707 {
708 	static const unsigned int flag_mask[] = {
709 		[SCSI_PROT_NORMAL]		= 0,
710 
711 		[SCSI_PROT_READ_STRIP]		= SCSI_PROT_TRANSFER_PI |
712 						  SCSI_PROT_GUARD_CHECK |
713 						  SCSI_PROT_REF_CHECK |
714 						  SCSI_PROT_REF_INCREMENT,
715 
716 		[SCSI_PROT_READ_INSERT]		= SCSI_PROT_REF_INCREMENT |
717 						  SCSI_PROT_IP_CHECKSUM,
718 
719 		[SCSI_PROT_READ_PASS]		= SCSI_PROT_TRANSFER_PI |
720 						  SCSI_PROT_GUARD_CHECK |
721 						  SCSI_PROT_REF_CHECK |
722 						  SCSI_PROT_REF_INCREMENT |
723 						  SCSI_PROT_IP_CHECKSUM,
724 
725 		[SCSI_PROT_WRITE_INSERT]	= SCSI_PROT_TRANSFER_PI |
726 						  SCSI_PROT_REF_INCREMENT,
727 
728 		[SCSI_PROT_WRITE_STRIP]		= SCSI_PROT_GUARD_CHECK |
729 						  SCSI_PROT_REF_CHECK |
730 						  SCSI_PROT_REF_INCREMENT |
731 						  SCSI_PROT_IP_CHECKSUM,
732 
733 		[SCSI_PROT_WRITE_PASS]		= SCSI_PROT_TRANSFER_PI |
734 						  SCSI_PROT_GUARD_CHECK |
735 						  SCSI_PROT_REF_CHECK |
736 						  SCSI_PROT_REF_INCREMENT |
737 						  SCSI_PROT_IP_CHECKSUM,
738 	};
739 
740 	return flag_mask[prot_op];
741 }
742 
743 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
744 					   unsigned int dix, unsigned int dif)
745 {
746 	struct request *rq = scsi_cmd_to_rq(scmd);
747 	struct bio *bio = rq->bio;
748 	unsigned int prot_op = sd_prot_op(rq_data_dir(rq), dix, dif);
749 	unsigned int protect = 0;
750 
751 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
752 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
753 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
754 
755 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
756 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
757 	}
758 
759 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
760 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
761 
762 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
763 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
764 	}
765 
766 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
767 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
768 
769 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
770 			protect = 3 << 5;	/* Disable target PI checking */
771 		else
772 			protect = 1 << 5;	/* Enable target PI checking */
773 	}
774 
775 	scsi_set_prot_op(scmd, prot_op);
776 	scsi_set_prot_type(scmd, dif);
777 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
778 
779 	return protect;
780 }
781 
782 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
783 {
784 	struct request_queue *q = sdkp->disk->queue;
785 	unsigned int logical_block_size = sdkp->device->sector_size;
786 	unsigned int max_blocks = 0;
787 
788 	q->limits.discard_alignment =
789 		sdkp->unmap_alignment * logical_block_size;
790 	q->limits.discard_granularity =
791 		max(sdkp->physical_block_size,
792 		    sdkp->unmap_granularity * logical_block_size);
793 	sdkp->provisioning_mode = mode;
794 
795 	switch (mode) {
796 
797 	case SD_LBP_FULL:
798 	case SD_LBP_DISABLE:
799 		blk_queue_max_discard_sectors(q, 0);
800 		return;
801 
802 	case SD_LBP_UNMAP:
803 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
804 					  (u32)SD_MAX_WS16_BLOCKS);
805 		break;
806 
807 	case SD_LBP_WS16:
808 		if (sdkp->device->unmap_limit_for_ws)
809 			max_blocks = sdkp->max_unmap_blocks;
810 		else
811 			max_blocks = sdkp->max_ws_blocks;
812 
813 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS16_BLOCKS);
814 		break;
815 
816 	case SD_LBP_WS10:
817 		if (sdkp->device->unmap_limit_for_ws)
818 			max_blocks = sdkp->max_unmap_blocks;
819 		else
820 			max_blocks = sdkp->max_ws_blocks;
821 
822 		max_blocks = min_not_zero(max_blocks, (u32)SD_MAX_WS10_BLOCKS);
823 		break;
824 
825 	case SD_LBP_ZERO:
826 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
827 					  (u32)SD_MAX_WS10_BLOCKS);
828 		break;
829 	}
830 
831 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
832 }
833 
834 static void *sd_set_special_bvec(struct request *rq, unsigned int data_len)
835 {
836 	struct page *page;
837 
838 	page = mempool_alloc(sd_page_pool, GFP_ATOMIC);
839 	if (!page)
840 		return NULL;
841 	clear_highpage(page);
842 	bvec_set_page(&rq->special_vec, page, data_len, 0);
843 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
844 	return bvec_virt(&rq->special_vec);
845 }
846 
847 static blk_status_t sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
848 {
849 	struct scsi_device *sdp = cmd->device;
850 	struct request *rq = scsi_cmd_to_rq(cmd);
851 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
852 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
853 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
854 	unsigned int data_len = 24;
855 	char *buf;
856 
857 	buf = sd_set_special_bvec(rq, data_len);
858 	if (!buf)
859 		return BLK_STS_RESOURCE;
860 
861 	cmd->cmd_len = 10;
862 	cmd->cmnd[0] = UNMAP;
863 	cmd->cmnd[8] = 24;
864 
865 	put_unaligned_be16(6 + 16, &buf[0]);
866 	put_unaligned_be16(16, &buf[2]);
867 	put_unaligned_be64(lba, &buf[8]);
868 	put_unaligned_be32(nr_blocks, &buf[16]);
869 
870 	cmd->allowed = sdkp->max_retries;
871 	cmd->transfersize = data_len;
872 	rq->timeout = SD_TIMEOUT;
873 
874 	return scsi_alloc_sgtables(cmd);
875 }
876 
877 static blk_status_t sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd,
878 		bool unmap)
879 {
880 	struct scsi_device *sdp = cmd->device;
881 	struct request *rq = scsi_cmd_to_rq(cmd);
882 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
883 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
884 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
885 	u32 data_len = sdp->sector_size;
886 
887 	if (!sd_set_special_bvec(rq, data_len))
888 		return BLK_STS_RESOURCE;
889 
890 	cmd->cmd_len = 16;
891 	cmd->cmnd[0] = WRITE_SAME_16;
892 	if (unmap)
893 		cmd->cmnd[1] = 0x8; /* UNMAP */
894 	put_unaligned_be64(lba, &cmd->cmnd[2]);
895 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
896 
897 	cmd->allowed = sdkp->max_retries;
898 	cmd->transfersize = data_len;
899 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
900 
901 	return scsi_alloc_sgtables(cmd);
902 }
903 
904 static blk_status_t sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd,
905 		bool unmap)
906 {
907 	struct scsi_device *sdp = cmd->device;
908 	struct request *rq = scsi_cmd_to_rq(cmd);
909 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
910 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
911 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
912 	u32 data_len = sdp->sector_size;
913 
914 	if (!sd_set_special_bvec(rq, data_len))
915 		return BLK_STS_RESOURCE;
916 
917 	cmd->cmd_len = 10;
918 	cmd->cmnd[0] = WRITE_SAME;
919 	if (unmap)
920 		cmd->cmnd[1] = 0x8; /* UNMAP */
921 	put_unaligned_be32(lba, &cmd->cmnd[2]);
922 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
923 
924 	cmd->allowed = sdkp->max_retries;
925 	cmd->transfersize = data_len;
926 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
927 
928 	return scsi_alloc_sgtables(cmd);
929 }
930 
931 static blk_status_t sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
932 {
933 	struct request *rq = scsi_cmd_to_rq(cmd);
934 	struct scsi_device *sdp = cmd->device;
935 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
936 	u64 lba = sectors_to_logical(sdp, blk_rq_pos(rq));
937 	u32 nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
938 
939 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
940 		switch (sdkp->zeroing_mode) {
941 		case SD_ZERO_WS16_UNMAP:
942 			return sd_setup_write_same16_cmnd(cmd, true);
943 		case SD_ZERO_WS10_UNMAP:
944 			return sd_setup_write_same10_cmnd(cmd, true);
945 		}
946 	}
947 
948 	if (sdp->no_write_same) {
949 		rq->rq_flags |= RQF_QUIET;
950 		return BLK_STS_TARGET;
951 	}
952 
953 	if (sdkp->ws16 || lba > 0xffffffff || nr_blocks > 0xffff)
954 		return sd_setup_write_same16_cmnd(cmd, false);
955 
956 	return sd_setup_write_same10_cmnd(cmd, false);
957 }
958 
959 static void sd_config_write_same(struct scsi_disk *sdkp)
960 {
961 	struct request_queue *q = sdkp->disk->queue;
962 	unsigned int logical_block_size = sdkp->device->sector_size;
963 
964 	if (sdkp->device->no_write_same) {
965 		sdkp->max_ws_blocks = 0;
966 		goto out;
967 	}
968 
969 	/* Some devices can not handle block counts above 0xffff despite
970 	 * supporting WRITE SAME(16). Consequently we default to 64k
971 	 * blocks per I/O unless the device explicitly advertises a
972 	 * bigger limit.
973 	 */
974 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
975 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
976 						   (u32)SD_MAX_WS16_BLOCKS);
977 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
978 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
979 						   (u32)SD_MAX_WS10_BLOCKS);
980 	else {
981 		sdkp->device->no_write_same = 1;
982 		sdkp->max_ws_blocks = 0;
983 	}
984 
985 	if (sdkp->lbprz && sdkp->lbpws)
986 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
987 	else if (sdkp->lbprz && sdkp->lbpws10)
988 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
989 	else if (sdkp->max_ws_blocks)
990 		sdkp->zeroing_mode = SD_ZERO_WS;
991 	else
992 		sdkp->zeroing_mode = SD_ZERO_WRITE;
993 
994 	if (sdkp->max_ws_blocks &&
995 	    sdkp->physical_block_size > logical_block_size) {
996 		/*
997 		 * Reporting a maximum number of blocks that is not aligned
998 		 * on the device physical size would cause a large write same
999 		 * request to be split into physically unaligned chunks by
1000 		 * __blkdev_issue_write_zeroes() even if the caller of this
1001 		 * functions took care to align the large request. So make sure
1002 		 * the maximum reported is aligned to the device physical block
1003 		 * size. This is only an optional optimization for regular
1004 		 * disks, but this is mandatory to avoid failure of large write
1005 		 * same requests directed at sequential write required zones of
1006 		 * host-managed ZBC disks.
1007 		 */
1008 		sdkp->max_ws_blocks =
1009 			round_down(sdkp->max_ws_blocks,
1010 				   bytes_to_logical(sdkp->device,
1011 						    sdkp->physical_block_size));
1012 	}
1013 
1014 out:
1015 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
1016 					 (logical_block_size >> 9));
1017 }
1018 
1019 static blk_status_t sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
1020 {
1021 	struct request *rq = scsi_cmd_to_rq(cmd);
1022 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1023 
1024 	/* flush requests don't perform I/O, zero the S/G table */
1025 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1026 
1027 	if (cmd->device->use_16_for_sync) {
1028 		cmd->cmnd[0] = SYNCHRONIZE_CACHE_16;
1029 		cmd->cmd_len = 16;
1030 	} else {
1031 		cmd->cmnd[0] = SYNCHRONIZE_CACHE;
1032 		cmd->cmd_len = 10;
1033 	}
1034 	cmd->transfersize = 0;
1035 	cmd->allowed = sdkp->max_retries;
1036 
1037 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
1038 	return BLK_STS_OK;
1039 }
1040 
1041 static blk_status_t sd_setup_rw32_cmnd(struct scsi_cmnd *cmd, bool write,
1042 				       sector_t lba, unsigned int nr_blocks,
1043 				       unsigned char flags)
1044 {
1045 	cmd->cmd_len = SD_EXT_CDB_SIZE;
1046 	cmd->cmnd[0]  = VARIABLE_LENGTH_CMD;
1047 	cmd->cmnd[7]  = 0x18; /* Additional CDB len */
1048 	cmd->cmnd[9]  = write ? WRITE_32 : READ_32;
1049 	cmd->cmnd[10] = flags;
1050 	put_unaligned_be64(lba, &cmd->cmnd[12]);
1051 	put_unaligned_be32(lba, &cmd->cmnd[20]); /* Expected Indirect LBA */
1052 	put_unaligned_be32(nr_blocks, &cmd->cmnd[28]);
1053 
1054 	return BLK_STS_OK;
1055 }
1056 
1057 static blk_status_t sd_setup_rw16_cmnd(struct scsi_cmnd *cmd, bool write,
1058 				       sector_t lba, unsigned int nr_blocks,
1059 				       unsigned char flags)
1060 {
1061 	cmd->cmd_len  = 16;
1062 	cmd->cmnd[0]  = write ? WRITE_16 : READ_16;
1063 	cmd->cmnd[1]  = flags;
1064 	cmd->cmnd[14] = 0;
1065 	cmd->cmnd[15] = 0;
1066 	put_unaligned_be64(lba, &cmd->cmnd[2]);
1067 	put_unaligned_be32(nr_blocks, &cmd->cmnd[10]);
1068 
1069 	return BLK_STS_OK;
1070 }
1071 
1072 static blk_status_t sd_setup_rw10_cmnd(struct scsi_cmnd *cmd, bool write,
1073 				       sector_t lba, unsigned int nr_blocks,
1074 				       unsigned char flags)
1075 {
1076 	cmd->cmd_len = 10;
1077 	cmd->cmnd[0] = write ? WRITE_10 : READ_10;
1078 	cmd->cmnd[1] = flags;
1079 	cmd->cmnd[6] = 0;
1080 	cmd->cmnd[9] = 0;
1081 	put_unaligned_be32(lba, &cmd->cmnd[2]);
1082 	put_unaligned_be16(nr_blocks, &cmd->cmnd[7]);
1083 
1084 	return BLK_STS_OK;
1085 }
1086 
1087 static blk_status_t sd_setup_rw6_cmnd(struct scsi_cmnd *cmd, bool write,
1088 				      sector_t lba, unsigned int nr_blocks,
1089 				      unsigned char flags)
1090 {
1091 	/* Avoid that 0 blocks gets translated into 256 blocks. */
1092 	if (WARN_ON_ONCE(nr_blocks == 0))
1093 		return BLK_STS_IOERR;
1094 
1095 	if (unlikely(flags & 0x8)) {
1096 		/*
1097 		 * This happens only if this drive failed 10byte rw
1098 		 * command with ILLEGAL_REQUEST during operation and
1099 		 * thus turned off use_10_for_rw.
1100 		 */
1101 		scmd_printk(KERN_ERR, cmd, "FUA write on READ/WRITE(6) drive\n");
1102 		return BLK_STS_IOERR;
1103 	}
1104 
1105 	cmd->cmd_len = 6;
1106 	cmd->cmnd[0] = write ? WRITE_6 : READ_6;
1107 	cmd->cmnd[1] = (lba >> 16) & 0x1f;
1108 	cmd->cmnd[2] = (lba >> 8) & 0xff;
1109 	cmd->cmnd[3] = lba & 0xff;
1110 	cmd->cmnd[4] = nr_blocks;
1111 	cmd->cmnd[5] = 0;
1112 
1113 	return BLK_STS_OK;
1114 }
1115 
1116 static blk_status_t sd_setup_read_write_cmnd(struct scsi_cmnd *cmd)
1117 {
1118 	struct request *rq = scsi_cmd_to_rq(cmd);
1119 	struct scsi_device *sdp = cmd->device;
1120 	struct scsi_disk *sdkp = scsi_disk(rq->q->disk);
1121 	sector_t lba = sectors_to_logical(sdp, blk_rq_pos(rq));
1122 	sector_t threshold;
1123 	unsigned int nr_blocks = sectors_to_logical(sdp, blk_rq_sectors(rq));
1124 	unsigned int mask = logical_to_sectors(sdp, 1) - 1;
1125 	bool write = rq_data_dir(rq) == WRITE;
1126 	unsigned char protect, fua;
1127 	blk_status_t ret;
1128 	unsigned int dif;
1129 	bool dix;
1130 
1131 	ret = scsi_alloc_sgtables(cmd);
1132 	if (ret != BLK_STS_OK)
1133 		return ret;
1134 
1135 	ret = BLK_STS_IOERR;
1136 	if (!scsi_device_online(sdp) || sdp->changed) {
1137 		scmd_printk(KERN_ERR, cmd, "device offline or changed\n");
1138 		goto fail;
1139 	}
1140 
1141 	if (blk_rq_pos(rq) + blk_rq_sectors(rq) > get_capacity(rq->q->disk)) {
1142 		scmd_printk(KERN_ERR, cmd, "access beyond end of device\n");
1143 		goto fail;
1144 	}
1145 
1146 	if ((blk_rq_pos(rq) & mask) || (blk_rq_sectors(rq) & mask)) {
1147 		scmd_printk(KERN_ERR, cmd, "request not aligned to the logical block size\n");
1148 		goto fail;
1149 	}
1150 
1151 	/*
1152 	 * Some SD card readers can't handle accesses which touch the
1153 	 * last one or two logical blocks. Split accesses as needed.
1154 	 */
1155 	threshold = sdkp->capacity - SD_LAST_BUGGY_SECTORS;
1156 
1157 	if (unlikely(sdp->last_sector_bug && lba + nr_blocks > threshold)) {
1158 		if (lba < threshold) {
1159 			/* Access up to the threshold but not beyond */
1160 			nr_blocks = threshold - lba;
1161 		} else {
1162 			/* Access only a single logical block */
1163 			nr_blocks = 1;
1164 		}
1165 	}
1166 
1167 	if (req_op(rq) == REQ_OP_ZONE_APPEND) {
1168 		ret = sd_zbc_prepare_zone_append(cmd, &lba, nr_blocks);
1169 		if (ret)
1170 			goto fail;
1171 	}
1172 
1173 	fua = rq->cmd_flags & REQ_FUA ? 0x8 : 0;
1174 	dix = scsi_prot_sg_count(cmd);
1175 	dif = scsi_host_dif_capable(cmd->device->host, sdkp->protection_type);
1176 
1177 	if (dif || dix)
1178 		protect = sd_setup_protect_cmnd(cmd, dix, dif);
1179 	else
1180 		protect = 0;
1181 
1182 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1183 		ret = sd_setup_rw32_cmnd(cmd, write, lba, nr_blocks,
1184 					 protect | fua);
1185 	} else if (sdp->use_16_for_rw || (nr_blocks > 0xffff)) {
1186 		ret = sd_setup_rw16_cmnd(cmd, write, lba, nr_blocks,
1187 					 protect | fua);
1188 	} else if ((nr_blocks > 0xff) || (lba > 0x1fffff) ||
1189 		   sdp->use_10_for_rw || protect) {
1190 		ret = sd_setup_rw10_cmnd(cmd, write, lba, nr_blocks,
1191 					 protect | fua);
1192 	} else {
1193 		ret = sd_setup_rw6_cmnd(cmd, write, lba, nr_blocks,
1194 					protect | fua);
1195 	}
1196 
1197 	if (unlikely(ret != BLK_STS_OK))
1198 		goto fail;
1199 
1200 	/*
1201 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1202 	 * host adapter, it's safe to assume that we can at least transfer
1203 	 * this many bytes between each connect / disconnect.
1204 	 */
1205 	cmd->transfersize = sdp->sector_size;
1206 	cmd->underflow = nr_blocks << 9;
1207 	cmd->allowed = sdkp->max_retries;
1208 	cmd->sdb.length = nr_blocks * sdp->sector_size;
1209 
1210 	SCSI_LOG_HLQUEUE(1,
1211 			 scmd_printk(KERN_INFO, cmd,
1212 				     "%s: block=%llu, count=%d\n", __func__,
1213 				     (unsigned long long)blk_rq_pos(rq),
1214 				     blk_rq_sectors(rq)));
1215 	SCSI_LOG_HLQUEUE(2,
1216 			 scmd_printk(KERN_INFO, cmd,
1217 				     "%s %d/%u 512 byte blocks.\n",
1218 				     write ? "writing" : "reading", nr_blocks,
1219 				     blk_rq_sectors(rq)));
1220 
1221 	/*
1222 	 * This indicates that the command is ready from our end to be queued.
1223 	 */
1224 	return BLK_STS_OK;
1225 fail:
1226 	scsi_free_sgtables(cmd);
1227 	return ret;
1228 }
1229 
1230 static blk_status_t sd_init_command(struct scsi_cmnd *cmd)
1231 {
1232 	struct request *rq = scsi_cmd_to_rq(cmd);
1233 
1234 	switch (req_op(rq)) {
1235 	case REQ_OP_DISCARD:
1236 		switch (scsi_disk(rq->q->disk)->provisioning_mode) {
1237 		case SD_LBP_UNMAP:
1238 			return sd_setup_unmap_cmnd(cmd);
1239 		case SD_LBP_WS16:
1240 			return sd_setup_write_same16_cmnd(cmd, true);
1241 		case SD_LBP_WS10:
1242 			return sd_setup_write_same10_cmnd(cmd, true);
1243 		case SD_LBP_ZERO:
1244 			return sd_setup_write_same10_cmnd(cmd, false);
1245 		default:
1246 			return BLK_STS_TARGET;
1247 		}
1248 	case REQ_OP_WRITE_ZEROES:
1249 		return sd_setup_write_zeroes_cmnd(cmd);
1250 	case REQ_OP_FLUSH:
1251 		return sd_setup_flush_cmnd(cmd);
1252 	case REQ_OP_READ:
1253 	case REQ_OP_WRITE:
1254 	case REQ_OP_ZONE_APPEND:
1255 		return sd_setup_read_write_cmnd(cmd);
1256 	case REQ_OP_ZONE_RESET:
1257 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1258 						   false);
1259 	case REQ_OP_ZONE_RESET_ALL:
1260 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_RESET_WRITE_POINTER,
1261 						   true);
1262 	case REQ_OP_ZONE_OPEN:
1263 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_OPEN_ZONE, false);
1264 	case REQ_OP_ZONE_CLOSE:
1265 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_CLOSE_ZONE, false);
1266 	case REQ_OP_ZONE_FINISH:
1267 		return sd_zbc_setup_zone_mgmt_cmnd(cmd, ZO_FINISH_ZONE, false);
1268 	default:
1269 		WARN_ON_ONCE(1);
1270 		return BLK_STS_NOTSUPP;
1271 	}
1272 }
1273 
1274 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1275 {
1276 	struct request *rq = scsi_cmd_to_rq(SCpnt);
1277 
1278 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1279 		mempool_free(rq->special_vec.bv_page, sd_page_pool);
1280 }
1281 
1282 static bool sd_need_revalidate(struct block_device *bdev,
1283 		struct scsi_disk *sdkp)
1284 {
1285 	if (sdkp->device->removable || sdkp->write_prot) {
1286 		if (bdev_check_media_change(bdev))
1287 			return true;
1288 	}
1289 
1290 	/*
1291 	 * Force a full rescan after ioctl(BLKRRPART).  While the disk state has
1292 	 * nothing to do with partitions, BLKRRPART is used to force a full
1293 	 * revalidate after things like a format for historical reasons.
1294 	 */
1295 	return test_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
1296 }
1297 
1298 /**
1299  *	sd_open - open a scsi disk device
1300  *	@bdev: Block device of the scsi disk to open
1301  *	@mode: FMODE_* mask
1302  *
1303  *	Returns 0 if successful. Returns a negated errno value in case
1304  *	of error.
1305  *
1306  *	Note: This can be called from a user context (e.g. fsck(1) )
1307  *	or from within the kernel (e.g. as a result of a mount(1) ).
1308  *	In the latter case @inode and @filp carry an abridged amount
1309  *	of information as noted above.
1310  *
1311  *	Locking: called with bdev->bd_disk->open_mutex held.
1312  **/
1313 static int sd_open(struct block_device *bdev, fmode_t mode)
1314 {
1315 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1316 	struct scsi_device *sdev = sdkp->device;
1317 	int retval;
1318 
1319 	if (scsi_device_get(sdev))
1320 		return -ENXIO;
1321 
1322 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1323 
1324 	/*
1325 	 * If the device is in error recovery, wait until it is done.
1326 	 * If the device is offline, then disallow any access to it.
1327 	 */
1328 	retval = -ENXIO;
1329 	if (!scsi_block_when_processing_errors(sdev))
1330 		goto error_out;
1331 
1332 	if (sd_need_revalidate(bdev, sdkp))
1333 		sd_revalidate_disk(bdev->bd_disk);
1334 
1335 	/*
1336 	 * If the drive is empty, just let the open fail.
1337 	 */
1338 	retval = -ENOMEDIUM;
1339 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1340 		goto error_out;
1341 
1342 	/*
1343 	 * If the device has the write protect tab set, have the open fail
1344 	 * if the user expects to be able to write to the thing.
1345 	 */
1346 	retval = -EROFS;
1347 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1348 		goto error_out;
1349 
1350 	/*
1351 	 * It is possible that the disk changing stuff resulted in
1352 	 * the device being taken offline.  If this is the case,
1353 	 * report this to the user, and don't pretend that the
1354 	 * open actually succeeded.
1355 	 */
1356 	retval = -ENXIO;
1357 	if (!scsi_device_online(sdev))
1358 		goto error_out;
1359 
1360 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1361 		if (scsi_block_when_processing_errors(sdev))
1362 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1363 	}
1364 
1365 	return 0;
1366 
1367 error_out:
1368 	scsi_device_put(sdev);
1369 	return retval;
1370 }
1371 
1372 /**
1373  *	sd_release - invoked when the (last) close(2) is called on this
1374  *	scsi disk.
1375  *	@disk: disk to release
1376  *	@mode: FMODE_* mask
1377  *
1378  *	Returns 0.
1379  *
1380  *	Note: may block (uninterruptible) if error recovery is underway
1381  *	on this disk.
1382  *
1383  *	Locking: called with bdev->bd_disk->open_mutex held.
1384  **/
1385 static void sd_release(struct gendisk *disk, fmode_t mode)
1386 {
1387 	struct scsi_disk *sdkp = scsi_disk(disk);
1388 	struct scsi_device *sdev = sdkp->device;
1389 
1390 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1391 
1392 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1393 		if (scsi_block_when_processing_errors(sdev))
1394 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1395 	}
1396 
1397 	scsi_device_put(sdev);
1398 }
1399 
1400 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1401 {
1402 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1403 	struct scsi_device *sdp = sdkp->device;
1404 	struct Scsi_Host *host = sdp->host;
1405 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1406 	int diskinfo[4];
1407 
1408 	/* default to most commonly used values */
1409 	diskinfo[0] = 0x40;	/* 1 << 6 */
1410 	diskinfo[1] = 0x20;	/* 1 << 5 */
1411 	diskinfo[2] = capacity >> 11;
1412 
1413 	/* override with calculated, extended default, or driver values */
1414 	if (host->hostt->bios_param)
1415 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1416 	else
1417 		scsicam_bios_param(bdev, capacity, diskinfo);
1418 
1419 	geo->heads = diskinfo[0];
1420 	geo->sectors = diskinfo[1];
1421 	geo->cylinders = diskinfo[2];
1422 	return 0;
1423 }
1424 
1425 /**
1426  *	sd_ioctl - process an ioctl
1427  *	@bdev: target block device
1428  *	@mode: FMODE_* mask
1429  *	@cmd: ioctl command number
1430  *	@arg: this is third argument given to ioctl(2) system call.
1431  *	Often contains a pointer.
1432  *
1433  *	Returns 0 if successful (some ioctls return positive numbers on
1434  *	success as well). Returns a negated errno value in case of error.
1435  *
1436  *	Note: most ioctls are forward onto the block subsystem or further
1437  *	down in the scsi subsystem.
1438  **/
1439 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1440 		    unsigned int cmd, unsigned long arg)
1441 {
1442 	struct gendisk *disk = bdev->bd_disk;
1443 	struct scsi_disk *sdkp = scsi_disk(disk);
1444 	struct scsi_device *sdp = sdkp->device;
1445 	void __user *p = (void __user *)arg;
1446 	int error;
1447 
1448 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1449 				    "cmd=0x%x\n", disk->disk_name, cmd));
1450 
1451 	if (bdev_is_partition(bdev) && !capable(CAP_SYS_RAWIO))
1452 		return -ENOIOCTLCMD;
1453 
1454 	/*
1455 	 * If we are in the middle of error recovery, don't let anyone
1456 	 * else try and use this device.  Also, if error recovery fails, it
1457 	 * may try and take the device offline, in which case all further
1458 	 * access to the device is prohibited.
1459 	 */
1460 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1461 			(mode & FMODE_NDELAY) != 0);
1462 	if (error)
1463 		return error;
1464 
1465 	if (is_sed_ioctl(cmd))
1466 		return sed_ioctl(sdkp->opal_dev, cmd, p);
1467 	return scsi_ioctl(sdp, mode, cmd, p);
1468 }
1469 
1470 static void set_media_not_present(struct scsi_disk *sdkp)
1471 {
1472 	if (sdkp->media_present)
1473 		sdkp->device->changed = 1;
1474 
1475 	if (sdkp->device->removable) {
1476 		sdkp->media_present = 0;
1477 		sdkp->capacity = 0;
1478 	}
1479 }
1480 
1481 static int media_not_present(struct scsi_disk *sdkp,
1482 			     struct scsi_sense_hdr *sshdr)
1483 {
1484 	if (!scsi_sense_valid(sshdr))
1485 		return 0;
1486 
1487 	/* not invoked for commands that could return deferred errors */
1488 	switch (sshdr->sense_key) {
1489 	case UNIT_ATTENTION:
1490 	case NOT_READY:
1491 		/* medium not present */
1492 		if (sshdr->asc == 0x3A) {
1493 			set_media_not_present(sdkp);
1494 			return 1;
1495 		}
1496 	}
1497 	return 0;
1498 }
1499 
1500 /**
1501  *	sd_check_events - check media events
1502  *	@disk: kernel device descriptor
1503  *	@clearing: disk events currently being cleared
1504  *
1505  *	Returns mask of DISK_EVENT_*.
1506  *
1507  *	Note: this function is invoked from the block subsystem.
1508  **/
1509 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1510 {
1511 	struct scsi_disk *sdkp = disk->private_data;
1512 	struct scsi_device *sdp;
1513 	int retval;
1514 	bool disk_changed;
1515 
1516 	if (!sdkp)
1517 		return 0;
1518 
1519 	sdp = sdkp->device;
1520 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1521 
1522 	/*
1523 	 * If the device is offline, don't send any commands - just pretend as
1524 	 * if the command failed.  If the device ever comes back online, we
1525 	 * can deal with it then.  It is only because of unrecoverable errors
1526 	 * that we would ever take a device offline in the first place.
1527 	 */
1528 	if (!scsi_device_online(sdp)) {
1529 		set_media_not_present(sdkp);
1530 		goto out;
1531 	}
1532 
1533 	/*
1534 	 * Using TEST_UNIT_READY enables differentiation between drive with
1535 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1536 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1537 	 *
1538 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1539 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1540 	 * sd_revalidate() is called.
1541 	 */
1542 	if (scsi_block_when_processing_errors(sdp)) {
1543 		struct scsi_sense_hdr sshdr = { 0, };
1544 
1545 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, sdkp->max_retries,
1546 					      &sshdr);
1547 
1548 		/* failed to execute TUR, assume media not present */
1549 		if (retval < 0 || host_byte(retval)) {
1550 			set_media_not_present(sdkp);
1551 			goto out;
1552 		}
1553 
1554 		if (media_not_present(sdkp, &sshdr))
1555 			goto out;
1556 	}
1557 
1558 	/*
1559 	 * For removable scsi disk we have to recognise the presence
1560 	 * of a disk in the drive.
1561 	 */
1562 	if (!sdkp->media_present)
1563 		sdp->changed = 1;
1564 	sdkp->media_present = 1;
1565 out:
1566 	/*
1567 	 * sdp->changed is set under the following conditions:
1568 	 *
1569 	 *	Medium present state has changed in either direction.
1570 	 *	Device has indicated UNIT_ATTENTION.
1571 	 */
1572 	disk_changed = sdp->changed;
1573 	sdp->changed = 0;
1574 	return disk_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1575 }
1576 
1577 static int sd_sync_cache(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
1578 {
1579 	int retries, res;
1580 	struct scsi_device *sdp = sdkp->device;
1581 	const int timeout = sdp->request_queue->rq_timeout
1582 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1583 	struct scsi_sense_hdr my_sshdr;
1584 
1585 	if (!scsi_device_online(sdp))
1586 		return -ENODEV;
1587 
1588 	/* caller might not be interested in sense, but we need it */
1589 	if (!sshdr)
1590 		sshdr = &my_sshdr;
1591 
1592 	for (retries = 3; retries > 0; --retries) {
1593 		unsigned char cmd[16] = { 0 };
1594 
1595 		if (sdp->use_16_for_sync)
1596 			cmd[0] = SYNCHRONIZE_CACHE_16;
1597 		else
1598 			cmd[0] = SYNCHRONIZE_CACHE;
1599 		/*
1600 		 * Leave the rest of the command zero to indicate
1601 		 * flush everything.
1602 		 */
1603 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, sshdr,
1604 				timeout, sdkp->max_retries, 0, RQF_PM, NULL);
1605 		if (res == 0)
1606 			break;
1607 	}
1608 
1609 	if (res) {
1610 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1611 
1612 		if (res < 0)
1613 			return res;
1614 
1615 		if (scsi_status_is_check_condition(res) &&
1616 		    scsi_sense_valid(sshdr)) {
1617 			sd_print_sense_hdr(sdkp, sshdr);
1618 
1619 			/* we need to evaluate the error return  */
1620 			if (sshdr->asc == 0x3a ||	/* medium not present */
1621 			    sshdr->asc == 0x20 ||	/* invalid command */
1622 			    (sshdr->asc == 0x74 && sshdr->ascq == 0x71))	/* drive is password locked */
1623 				/* this is no error here */
1624 				return 0;
1625 		}
1626 
1627 		switch (host_byte(res)) {
1628 		/* ignore errors due to racing a disconnection */
1629 		case DID_BAD_TARGET:
1630 		case DID_NO_CONNECT:
1631 			return 0;
1632 		/* signal the upper layer it might try again */
1633 		case DID_BUS_BUSY:
1634 		case DID_IMM_RETRY:
1635 		case DID_REQUEUE:
1636 		case DID_SOFT_ERROR:
1637 			return -EBUSY;
1638 		default:
1639 			return -EIO;
1640 		}
1641 	}
1642 	return 0;
1643 }
1644 
1645 static void sd_rescan(struct device *dev)
1646 {
1647 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1648 
1649 	sd_revalidate_disk(sdkp->disk);
1650 }
1651 
1652 static int sd_get_unique_id(struct gendisk *disk, u8 id[16],
1653 		enum blk_unique_id type)
1654 {
1655 	struct scsi_device *sdev = scsi_disk(disk)->device;
1656 	const struct scsi_vpd *vpd;
1657 	const unsigned char *d;
1658 	int ret = -ENXIO, len;
1659 
1660 	rcu_read_lock();
1661 	vpd = rcu_dereference(sdev->vpd_pg83);
1662 	if (!vpd)
1663 		goto out_unlock;
1664 
1665 	ret = -EINVAL;
1666 	for (d = vpd->data + 4; d < vpd->data + vpd->len; d += d[3] + 4) {
1667 		/* we only care about designators with LU association */
1668 		if (((d[1] >> 4) & 0x3) != 0x00)
1669 			continue;
1670 		if ((d[1] & 0xf) != type)
1671 			continue;
1672 
1673 		/*
1674 		 * Only exit early if a 16-byte descriptor was found.  Otherwise
1675 		 * keep looking as one with more entropy might still show up.
1676 		 */
1677 		len = d[3];
1678 		if (len != 8 && len != 12 && len != 16)
1679 			continue;
1680 		ret = len;
1681 		memcpy(id, d + 4, len);
1682 		if (len == 16)
1683 			break;
1684 	}
1685 out_unlock:
1686 	rcu_read_unlock();
1687 	return ret;
1688 }
1689 
1690 static char sd_pr_type(enum pr_type type)
1691 {
1692 	switch (type) {
1693 	case PR_WRITE_EXCLUSIVE:
1694 		return 0x01;
1695 	case PR_EXCLUSIVE_ACCESS:
1696 		return 0x03;
1697 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1698 		return 0x05;
1699 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1700 		return 0x06;
1701 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1702 		return 0x07;
1703 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1704 		return 0x08;
1705 	default:
1706 		return 0;
1707 	}
1708 };
1709 
1710 static int sd_scsi_to_pr_err(struct scsi_sense_hdr *sshdr, int result)
1711 {
1712 	switch (host_byte(result)) {
1713 	case DID_TRANSPORT_MARGINAL:
1714 	case DID_TRANSPORT_DISRUPTED:
1715 	case DID_BUS_BUSY:
1716 		return PR_STS_RETRY_PATH_FAILURE;
1717 	case DID_NO_CONNECT:
1718 		return PR_STS_PATH_FAILED;
1719 	case DID_TRANSPORT_FAILFAST:
1720 		return PR_STS_PATH_FAST_FAILED;
1721 	}
1722 
1723 	switch (status_byte(result)) {
1724 	case SAM_STAT_RESERVATION_CONFLICT:
1725 		return PR_STS_RESERVATION_CONFLICT;
1726 	case SAM_STAT_CHECK_CONDITION:
1727 		if (!scsi_sense_valid(sshdr))
1728 			return PR_STS_IOERR;
1729 
1730 		if (sshdr->sense_key == ILLEGAL_REQUEST &&
1731 		    (sshdr->asc == 0x26 || sshdr->asc == 0x24))
1732 			return -EINVAL;
1733 
1734 		fallthrough;
1735 	default:
1736 		return PR_STS_IOERR;
1737 	}
1738 }
1739 
1740 static int sd_pr_command(struct block_device *bdev, u8 sa,
1741 		u64 key, u64 sa_key, u8 type, u8 flags)
1742 {
1743 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1744 	struct scsi_device *sdev = sdkp->device;
1745 	struct scsi_sense_hdr sshdr;
1746 	int result;
1747 	u8 cmd[16] = { 0, };
1748 	u8 data[24] = { 0, };
1749 
1750 	cmd[0] = PERSISTENT_RESERVE_OUT;
1751 	cmd[1] = sa;
1752 	cmd[2] = type;
1753 	put_unaligned_be32(sizeof(data), &cmd[5]);
1754 
1755 	put_unaligned_be64(key, &data[0]);
1756 	put_unaligned_be64(sa_key, &data[8]);
1757 	data[20] = flags;
1758 
1759 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1760 			&sshdr, SD_TIMEOUT, sdkp->max_retries, NULL);
1761 
1762 	if (scsi_status_is_check_condition(result) &&
1763 	    scsi_sense_valid(&sshdr)) {
1764 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1765 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1766 	}
1767 
1768 	if (result <= 0)
1769 		return result;
1770 
1771 	return sd_scsi_to_pr_err(&sshdr, result);
1772 }
1773 
1774 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1775 		u32 flags)
1776 {
1777 	if (flags & ~PR_FL_IGNORE_KEY)
1778 		return -EOPNOTSUPP;
1779 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1780 			old_key, new_key, 0,
1781 			(1 << 0) /* APTPL */);
1782 }
1783 
1784 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1785 		u32 flags)
1786 {
1787 	if (flags)
1788 		return -EOPNOTSUPP;
1789 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1790 }
1791 
1792 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1793 {
1794 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1795 }
1796 
1797 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1798 		enum pr_type type, bool abort)
1799 {
1800 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1801 			     sd_pr_type(type), 0);
1802 }
1803 
1804 static int sd_pr_clear(struct block_device *bdev, u64 key)
1805 {
1806 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1807 }
1808 
1809 static const struct pr_ops sd_pr_ops = {
1810 	.pr_register	= sd_pr_register,
1811 	.pr_reserve	= sd_pr_reserve,
1812 	.pr_release	= sd_pr_release,
1813 	.pr_preempt	= sd_pr_preempt,
1814 	.pr_clear	= sd_pr_clear,
1815 };
1816 
1817 static void scsi_disk_free_disk(struct gendisk *disk)
1818 {
1819 	struct scsi_disk *sdkp = scsi_disk(disk);
1820 
1821 	put_device(&sdkp->disk_dev);
1822 }
1823 
1824 static const struct block_device_operations sd_fops = {
1825 	.owner			= THIS_MODULE,
1826 	.open			= sd_open,
1827 	.release		= sd_release,
1828 	.ioctl			= sd_ioctl,
1829 	.getgeo			= sd_getgeo,
1830 	.compat_ioctl		= blkdev_compat_ptr_ioctl,
1831 	.check_events		= sd_check_events,
1832 	.unlock_native_capacity	= sd_unlock_native_capacity,
1833 	.report_zones		= sd_zbc_report_zones,
1834 	.get_unique_id		= sd_get_unique_id,
1835 	.free_disk		= scsi_disk_free_disk,
1836 	.pr_ops			= &sd_pr_ops,
1837 };
1838 
1839 /**
1840  *	sd_eh_reset - reset error handling callback
1841  *	@scmd:		sd-issued command that has failed
1842  *
1843  *	This function is called by the SCSI midlayer before starting
1844  *	SCSI EH. When counting medium access failures we have to be
1845  *	careful to register it only only once per device and SCSI EH run;
1846  *	there might be several timed out commands which will cause the
1847  *	'max_medium_access_timeouts' counter to trigger after the first
1848  *	SCSI EH run already and set the device to offline.
1849  *	So this function resets the internal counter before starting SCSI EH.
1850  **/
1851 static void sd_eh_reset(struct scsi_cmnd *scmd)
1852 {
1853 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1854 
1855 	/* New SCSI EH run, reset gate variable */
1856 	sdkp->ignore_medium_access_errors = false;
1857 }
1858 
1859 /**
1860  *	sd_eh_action - error handling callback
1861  *	@scmd:		sd-issued command that has failed
1862  *	@eh_disp:	The recovery disposition suggested by the midlayer
1863  *
1864  *	This function is called by the SCSI midlayer upon completion of an
1865  *	error test command (currently TEST UNIT READY). The result of sending
1866  *	the eh command is passed in eh_disp.  We're looking for devices that
1867  *	fail medium access commands but are OK with non access commands like
1868  *	test unit ready (so wrongly see the device as having a successful
1869  *	recovery)
1870  **/
1871 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1872 {
1873 	struct scsi_disk *sdkp = scsi_disk(scsi_cmd_to_rq(scmd)->q->disk);
1874 	struct scsi_device *sdev = scmd->device;
1875 
1876 	if (!scsi_device_online(sdev) ||
1877 	    !scsi_medium_access_command(scmd) ||
1878 	    host_byte(scmd->result) != DID_TIME_OUT ||
1879 	    eh_disp != SUCCESS)
1880 		return eh_disp;
1881 
1882 	/*
1883 	 * The device has timed out executing a medium access command.
1884 	 * However, the TEST UNIT READY command sent during error
1885 	 * handling completed successfully. Either the device is in the
1886 	 * process of recovering or has it suffered an internal failure
1887 	 * that prevents access to the storage medium.
1888 	 */
1889 	if (!sdkp->ignore_medium_access_errors) {
1890 		sdkp->medium_access_timed_out++;
1891 		sdkp->ignore_medium_access_errors = true;
1892 	}
1893 
1894 	/*
1895 	 * If the device keeps failing read/write commands but TEST UNIT
1896 	 * READY always completes successfully we assume that medium
1897 	 * access is no longer possible and take the device offline.
1898 	 */
1899 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1900 		scmd_printk(KERN_ERR, scmd,
1901 			    "Medium access timeout failure. Offlining disk!\n");
1902 		mutex_lock(&sdev->state_mutex);
1903 		scsi_device_set_state(sdev, SDEV_OFFLINE);
1904 		mutex_unlock(&sdev->state_mutex);
1905 
1906 		return SUCCESS;
1907 	}
1908 
1909 	return eh_disp;
1910 }
1911 
1912 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1913 {
1914 	struct request *req = scsi_cmd_to_rq(scmd);
1915 	struct scsi_device *sdev = scmd->device;
1916 	unsigned int transferred, good_bytes;
1917 	u64 start_lba, end_lba, bad_lba;
1918 
1919 	/*
1920 	 * Some commands have a payload smaller than the device logical
1921 	 * block size (e.g. INQUIRY on a 4K disk).
1922 	 */
1923 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1924 		return 0;
1925 
1926 	/* Check if we have a 'bad_lba' information */
1927 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1928 				     SCSI_SENSE_BUFFERSIZE,
1929 				     &bad_lba))
1930 		return 0;
1931 
1932 	/*
1933 	 * If the bad lba was reported incorrectly, we have no idea where
1934 	 * the error is.
1935 	 */
1936 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1937 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1938 	if (bad_lba < start_lba || bad_lba >= end_lba)
1939 		return 0;
1940 
1941 	/*
1942 	 * resid is optional but mostly filled in.  When it's unused,
1943 	 * its value is zero, so we assume the whole buffer transferred
1944 	 */
1945 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1946 
1947 	/* This computation should always be done in terms of the
1948 	 * resolution of the device's medium.
1949 	 */
1950 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1951 
1952 	return min(good_bytes, transferred);
1953 }
1954 
1955 /**
1956  *	sd_done - bottom half handler: called when the lower level
1957  *	driver has completed (successfully or otherwise) a scsi command.
1958  *	@SCpnt: mid-level's per command structure.
1959  *
1960  *	Note: potentially run from within an ISR. Must not block.
1961  **/
1962 static int sd_done(struct scsi_cmnd *SCpnt)
1963 {
1964 	int result = SCpnt->result;
1965 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1966 	unsigned int sector_size = SCpnt->device->sector_size;
1967 	unsigned int resid;
1968 	struct scsi_sense_hdr sshdr;
1969 	struct request *req = scsi_cmd_to_rq(SCpnt);
1970 	struct scsi_disk *sdkp = scsi_disk(req->q->disk);
1971 	int sense_valid = 0;
1972 	int sense_deferred = 0;
1973 
1974 	switch (req_op(req)) {
1975 	case REQ_OP_DISCARD:
1976 	case REQ_OP_WRITE_ZEROES:
1977 	case REQ_OP_ZONE_RESET:
1978 	case REQ_OP_ZONE_RESET_ALL:
1979 	case REQ_OP_ZONE_OPEN:
1980 	case REQ_OP_ZONE_CLOSE:
1981 	case REQ_OP_ZONE_FINISH:
1982 		if (!result) {
1983 			good_bytes = blk_rq_bytes(req);
1984 			scsi_set_resid(SCpnt, 0);
1985 		} else {
1986 			good_bytes = 0;
1987 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1988 		}
1989 		break;
1990 	default:
1991 		/*
1992 		 * In case of bogus fw or device, we could end up having
1993 		 * an unaligned partial completion. Check this here and force
1994 		 * alignment.
1995 		 */
1996 		resid = scsi_get_resid(SCpnt);
1997 		if (resid & (sector_size - 1)) {
1998 			sd_printk(KERN_INFO, sdkp,
1999 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
2000 				resid, sector_size);
2001 			scsi_print_command(SCpnt);
2002 			resid = min(scsi_bufflen(SCpnt),
2003 				    round_up(resid, sector_size));
2004 			scsi_set_resid(SCpnt, resid);
2005 		}
2006 	}
2007 
2008 	if (result) {
2009 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
2010 		if (sense_valid)
2011 			sense_deferred = scsi_sense_is_deferred(&sshdr);
2012 	}
2013 	sdkp->medium_access_timed_out = 0;
2014 
2015 	if (!scsi_status_is_check_condition(result) &&
2016 	    (!sense_valid || sense_deferred))
2017 		goto out;
2018 
2019 	switch (sshdr.sense_key) {
2020 	case HARDWARE_ERROR:
2021 	case MEDIUM_ERROR:
2022 		good_bytes = sd_completed_bytes(SCpnt);
2023 		break;
2024 	case RECOVERED_ERROR:
2025 		good_bytes = scsi_bufflen(SCpnt);
2026 		break;
2027 	case NO_SENSE:
2028 		/* This indicates a false check condition, so ignore it.  An
2029 		 * unknown amount of data was transferred so treat it as an
2030 		 * error.
2031 		 */
2032 		SCpnt->result = 0;
2033 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
2034 		break;
2035 	case ABORTED_COMMAND:
2036 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
2037 			good_bytes = sd_completed_bytes(SCpnt);
2038 		break;
2039 	case ILLEGAL_REQUEST:
2040 		switch (sshdr.asc) {
2041 		case 0x10:	/* DIX: Host detected corruption */
2042 			good_bytes = sd_completed_bytes(SCpnt);
2043 			break;
2044 		case 0x20:	/* INVALID COMMAND OPCODE */
2045 		case 0x24:	/* INVALID FIELD IN CDB */
2046 			switch (SCpnt->cmnd[0]) {
2047 			case UNMAP:
2048 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2049 				break;
2050 			case WRITE_SAME_16:
2051 			case WRITE_SAME:
2052 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
2053 					sd_config_discard(sdkp, SD_LBP_DISABLE);
2054 				} else {
2055 					sdkp->device->no_write_same = 1;
2056 					sd_config_write_same(sdkp);
2057 					req->rq_flags |= RQF_QUIET;
2058 				}
2059 				break;
2060 			}
2061 		}
2062 		break;
2063 	default:
2064 		break;
2065 	}
2066 
2067  out:
2068 	if (sd_is_zoned(sdkp))
2069 		good_bytes = sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2070 
2071 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2072 					   "sd_done: completed %d of %d bytes\n",
2073 					   good_bytes, scsi_bufflen(SCpnt)));
2074 
2075 	return good_bytes;
2076 }
2077 
2078 /*
2079  * spinup disk - called only in sd_revalidate_disk()
2080  */
2081 static void
2082 sd_spinup_disk(struct scsi_disk *sdkp)
2083 {
2084 	unsigned char cmd[10];
2085 	unsigned long spintime_expire = 0;
2086 	int retries, spintime;
2087 	unsigned int the_result;
2088 	struct scsi_sense_hdr sshdr;
2089 	int sense_valid = 0;
2090 
2091 	spintime = 0;
2092 
2093 	/* Spin up drives, as required.  Only do this at boot time */
2094 	/* Spinup needs to be done for module loads too. */
2095 	do {
2096 		retries = 0;
2097 
2098 		do {
2099 			bool media_was_present = sdkp->media_present;
2100 
2101 			cmd[0] = TEST_UNIT_READY;
2102 			memset((void *) &cmd[1], 0, 9);
2103 
2104 			the_result = scsi_execute_req(sdkp->device, cmd,
2105 						      DMA_NONE, NULL, 0,
2106 						      &sshdr, SD_TIMEOUT,
2107 						      sdkp->max_retries, NULL);
2108 
2109 			/*
2110 			 * If the drive has indicated to us that it
2111 			 * doesn't have any media in it, don't bother
2112 			 * with any more polling.
2113 			 */
2114 			if (media_not_present(sdkp, &sshdr)) {
2115 				if (media_was_present)
2116 					sd_printk(KERN_NOTICE, sdkp, "Media removed, stopped polling\n");
2117 				return;
2118 			}
2119 
2120 			if (the_result)
2121 				sense_valid = scsi_sense_valid(&sshdr);
2122 			retries++;
2123 		} while (retries < 3 &&
2124 			 (!scsi_status_is_good(the_result) ||
2125 			  (scsi_status_is_check_condition(the_result) &&
2126 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2127 
2128 		if (!scsi_status_is_check_condition(the_result)) {
2129 			/* no sense, TUR either succeeded or failed
2130 			 * with a status error */
2131 			if(!spintime && !scsi_status_is_good(the_result)) {
2132 				sd_print_result(sdkp, "Test Unit Ready failed",
2133 						the_result);
2134 			}
2135 			break;
2136 		}
2137 
2138 		/*
2139 		 * The device does not want the automatic start to be issued.
2140 		 */
2141 		if (sdkp->device->no_start_on_add)
2142 			break;
2143 
2144 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2145 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2146 				break;	/* manual intervention required */
2147 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2148 				break;	/* standby */
2149 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2150 				break;	/* unavailable */
2151 			if (sshdr.asc == 4 && sshdr.ascq == 0x1b)
2152 				break;	/* sanitize in progress */
2153 			/*
2154 			 * Issue command to spin up drive when not ready
2155 			 */
2156 			if (!spintime) {
2157 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2158 				cmd[0] = START_STOP;
2159 				cmd[1] = 1;	/* Return immediately */
2160 				memset((void *) &cmd[2], 0, 8);
2161 				cmd[4] = 1;	/* Start spin cycle */
2162 				if (sdkp->device->start_stop_pwr_cond)
2163 					cmd[4] |= 1 << 4;
2164 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2165 						 NULL, 0, &sshdr,
2166 						 SD_TIMEOUT, sdkp->max_retries,
2167 						 NULL);
2168 				spintime_expire = jiffies + 100 * HZ;
2169 				spintime = 1;
2170 			}
2171 			/* Wait 1 second for next try */
2172 			msleep(1000);
2173 			printk(KERN_CONT ".");
2174 
2175 		/*
2176 		 * Wait for USB flash devices with slow firmware.
2177 		 * Yes, this sense key/ASC combination shouldn't
2178 		 * occur here.  It's characteristic of these devices.
2179 		 */
2180 		} else if (sense_valid &&
2181 				sshdr.sense_key == UNIT_ATTENTION &&
2182 				sshdr.asc == 0x28) {
2183 			if (!spintime) {
2184 				spintime_expire = jiffies + 5 * HZ;
2185 				spintime = 1;
2186 			}
2187 			/* Wait 1 second for next try */
2188 			msleep(1000);
2189 		} else {
2190 			/* we don't understand the sense code, so it's
2191 			 * probably pointless to loop */
2192 			if(!spintime) {
2193 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2194 				sd_print_sense_hdr(sdkp, &sshdr);
2195 			}
2196 			break;
2197 		}
2198 
2199 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2200 
2201 	if (spintime) {
2202 		if (scsi_status_is_good(the_result))
2203 			printk(KERN_CONT "ready\n");
2204 		else
2205 			printk(KERN_CONT "not responding...\n");
2206 	}
2207 }
2208 
2209 /*
2210  * Determine whether disk supports Data Integrity Field.
2211  */
2212 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2213 {
2214 	struct scsi_device *sdp = sdkp->device;
2215 	u8 type;
2216 
2217 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) {
2218 		sdkp->protection_type = 0;
2219 		return 0;
2220 	}
2221 
2222 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2223 
2224 	if (type > T10_PI_TYPE3_PROTECTION) {
2225 		sd_printk(KERN_ERR, sdkp, "formatted with unsupported"	\
2226 			  " protection type %u. Disabling disk!\n",
2227 			  type);
2228 		sdkp->protection_type = 0;
2229 		return -ENODEV;
2230 	}
2231 
2232 	sdkp->protection_type = type;
2233 
2234 	return 0;
2235 }
2236 
2237 static void sd_config_protection(struct scsi_disk *sdkp)
2238 {
2239 	struct scsi_device *sdp = sdkp->device;
2240 
2241 	if (!sdkp->first_scan)
2242 		return;
2243 
2244 	sd_dif_config_host(sdkp);
2245 
2246 	if (!sdkp->protection_type)
2247 		return;
2248 
2249 	if (!scsi_host_dif_capable(sdp->host, sdkp->protection_type)) {
2250 		sd_printk(KERN_NOTICE, sdkp,
2251 			  "Disabling DIF Type %u protection\n",
2252 			  sdkp->protection_type);
2253 		sdkp->protection_type = 0;
2254 	}
2255 
2256 	sd_printk(KERN_NOTICE, sdkp, "Enabling DIF Type %u protection\n",
2257 		  sdkp->protection_type);
2258 }
2259 
2260 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2261 			struct scsi_sense_hdr *sshdr, int sense_valid,
2262 			int the_result)
2263 {
2264 	if (sense_valid)
2265 		sd_print_sense_hdr(sdkp, sshdr);
2266 	else
2267 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2268 
2269 	/*
2270 	 * Set dirty bit for removable devices if not ready -
2271 	 * sometimes drives will not report this properly.
2272 	 */
2273 	if (sdp->removable &&
2274 	    sense_valid && sshdr->sense_key == NOT_READY)
2275 		set_media_not_present(sdkp);
2276 
2277 	/*
2278 	 * We used to set media_present to 0 here to indicate no media
2279 	 * in the drive, but some drives fail read capacity even with
2280 	 * media present, so we can't do that.
2281 	 */
2282 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2283 }
2284 
2285 #define RC16_LEN 32
2286 #if RC16_LEN > SD_BUF_SIZE
2287 #error RC16_LEN must not be more than SD_BUF_SIZE
2288 #endif
2289 
2290 #define READ_CAPACITY_RETRIES_ON_RESET	10
2291 
2292 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2293 						unsigned char *buffer)
2294 {
2295 	unsigned char cmd[16];
2296 	struct scsi_sense_hdr sshdr;
2297 	int sense_valid = 0;
2298 	int the_result;
2299 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2300 	unsigned int alignment;
2301 	unsigned long long lba;
2302 	unsigned sector_size;
2303 
2304 	if (sdp->no_read_capacity_16)
2305 		return -EINVAL;
2306 
2307 	do {
2308 		memset(cmd, 0, 16);
2309 		cmd[0] = SERVICE_ACTION_IN_16;
2310 		cmd[1] = SAI_READ_CAPACITY_16;
2311 		cmd[13] = RC16_LEN;
2312 		memset(buffer, 0, RC16_LEN);
2313 
2314 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2315 					buffer, RC16_LEN, &sshdr,
2316 					SD_TIMEOUT, sdkp->max_retries, NULL);
2317 
2318 		if (media_not_present(sdkp, &sshdr))
2319 			return -ENODEV;
2320 
2321 		if (the_result > 0) {
2322 			sense_valid = scsi_sense_valid(&sshdr);
2323 			if (sense_valid &&
2324 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2325 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2326 			    sshdr.ascq == 0x00)
2327 				/* Invalid Command Operation Code or
2328 				 * Invalid Field in CDB, just retry
2329 				 * silently with RC10 */
2330 				return -EINVAL;
2331 			if (sense_valid &&
2332 			    sshdr.sense_key == UNIT_ATTENTION &&
2333 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2334 				/* Device reset might occur several times,
2335 				 * give it one more chance */
2336 				if (--reset_retries > 0)
2337 					continue;
2338 		}
2339 		retries--;
2340 
2341 	} while (the_result && retries);
2342 
2343 	if (the_result) {
2344 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2345 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2346 		return -EINVAL;
2347 	}
2348 
2349 	sector_size = get_unaligned_be32(&buffer[8]);
2350 	lba = get_unaligned_be64(&buffer[0]);
2351 
2352 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2353 		sdkp->capacity = 0;
2354 		return -ENODEV;
2355 	}
2356 
2357 	/* Logical blocks per physical block exponent */
2358 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2359 
2360 	/* RC basis */
2361 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2362 
2363 	/* Lowest aligned logical block */
2364 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2365 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2366 	if (alignment && sdkp->first_scan)
2367 		sd_printk(KERN_NOTICE, sdkp,
2368 			  "physical block alignment offset: %u\n", alignment);
2369 
2370 	if (buffer[14] & 0x80) { /* LBPME */
2371 		sdkp->lbpme = 1;
2372 
2373 		if (buffer[14] & 0x40) /* LBPRZ */
2374 			sdkp->lbprz = 1;
2375 
2376 		sd_config_discard(sdkp, SD_LBP_WS16);
2377 	}
2378 
2379 	sdkp->capacity = lba + 1;
2380 	return sector_size;
2381 }
2382 
2383 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2384 						unsigned char *buffer)
2385 {
2386 	unsigned char cmd[16];
2387 	struct scsi_sense_hdr sshdr;
2388 	int sense_valid = 0;
2389 	int the_result;
2390 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2391 	sector_t lba;
2392 	unsigned sector_size;
2393 
2394 	do {
2395 		cmd[0] = READ_CAPACITY;
2396 		memset(&cmd[1], 0, 9);
2397 		memset(buffer, 0, 8);
2398 
2399 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2400 					buffer, 8, &sshdr,
2401 					SD_TIMEOUT, sdkp->max_retries, NULL);
2402 
2403 		if (media_not_present(sdkp, &sshdr))
2404 			return -ENODEV;
2405 
2406 		if (the_result > 0) {
2407 			sense_valid = scsi_sense_valid(&sshdr);
2408 			if (sense_valid &&
2409 			    sshdr.sense_key == UNIT_ATTENTION &&
2410 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2411 				/* Device reset might occur several times,
2412 				 * give it one more chance */
2413 				if (--reset_retries > 0)
2414 					continue;
2415 		}
2416 		retries--;
2417 
2418 	} while (the_result && retries);
2419 
2420 	if (the_result) {
2421 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2422 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2423 		return -EINVAL;
2424 	}
2425 
2426 	sector_size = get_unaligned_be32(&buffer[4]);
2427 	lba = get_unaligned_be32(&buffer[0]);
2428 
2429 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2430 		/* Some buggy (usb cardreader) devices return an lba of
2431 		   0xffffffff when the want to report a size of 0 (with
2432 		   which they really mean no media is present) */
2433 		sdkp->capacity = 0;
2434 		sdkp->physical_block_size = sector_size;
2435 		return sector_size;
2436 	}
2437 
2438 	sdkp->capacity = lba + 1;
2439 	sdkp->physical_block_size = sector_size;
2440 	return sector_size;
2441 }
2442 
2443 static int sd_try_rc16_first(struct scsi_device *sdp)
2444 {
2445 	if (sdp->host->max_cmd_len < 16)
2446 		return 0;
2447 	if (sdp->try_rc_10_first)
2448 		return 0;
2449 	if (sdp->scsi_level > SCSI_SPC_2)
2450 		return 1;
2451 	if (scsi_device_protection(sdp))
2452 		return 1;
2453 	return 0;
2454 }
2455 
2456 /*
2457  * read disk capacity
2458  */
2459 static void
2460 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2461 {
2462 	int sector_size;
2463 	struct scsi_device *sdp = sdkp->device;
2464 
2465 	if (sd_try_rc16_first(sdp)) {
2466 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2467 		if (sector_size == -EOVERFLOW)
2468 			goto got_data;
2469 		if (sector_size == -ENODEV)
2470 			return;
2471 		if (sector_size < 0)
2472 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2473 		if (sector_size < 0)
2474 			return;
2475 	} else {
2476 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2477 		if (sector_size == -EOVERFLOW)
2478 			goto got_data;
2479 		if (sector_size < 0)
2480 			return;
2481 		if ((sizeof(sdkp->capacity) > 4) &&
2482 		    (sdkp->capacity > 0xffffffffULL)) {
2483 			int old_sector_size = sector_size;
2484 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2485 					"Trying to use READ CAPACITY(16).\n");
2486 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2487 			if (sector_size < 0) {
2488 				sd_printk(KERN_NOTICE, sdkp,
2489 					"Using 0xffffffff as device size\n");
2490 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2491 				sector_size = old_sector_size;
2492 				goto got_data;
2493 			}
2494 			/* Remember that READ CAPACITY(16) succeeded */
2495 			sdp->try_rc_10_first = 0;
2496 		}
2497 	}
2498 
2499 	/* Some devices are known to return the total number of blocks,
2500 	 * not the highest block number.  Some devices have versions
2501 	 * which do this and others which do not.  Some devices we might
2502 	 * suspect of doing this but we don't know for certain.
2503 	 *
2504 	 * If we know the reported capacity is wrong, decrement it.  If
2505 	 * we can only guess, then assume the number of blocks is even
2506 	 * (usually true but not always) and err on the side of lowering
2507 	 * the capacity.
2508 	 */
2509 	if (sdp->fix_capacity ||
2510 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2511 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2512 				"from its reported value: %llu\n",
2513 				(unsigned long long) sdkp->capacity);
2514 		--sdkp->capacity;
2515 	}
2516 
2517 got_data:
2518 	if (sector_size == 0) {
2519 		sector_size = 512;
2520 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2521 			  "assuming 512.\n");
2522 	}
2523 
2524 	if (sector_size != 512 &&
2525 	    sector_size != 1024 &&
2526 	    sector_size != 2048 &&
2527 	    sector_size != 4096) {
2528 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2529 			  sector_size);
2530 		/*
2531 		 * The user might want to re-format the drive with
2532 		 * a supported sectorsize.  Once this happens, it
2533 		 * would be relatively trivial to set the thing up.
2534 		 * For this reason, we leave the thing in the table.
2535 		 */
2536 		sdkp->capacity = 0;
2537 		/*
2538 		 * set a bogus sector size so the normal read/write
2539 		 * logic in the block layer will eventually refuse any
2540 		 * request on this device without tripping over power
2541 		 * of two sector size assumptions
2542 		 */
2543 		sector_size = 512;
2544 	}
2545 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2546 	blk_queue_physical_block_size(sdp->request_queue,
2547 				      sdkp->physical_block_size);
2548 	sdkp->device->sector_size = sector_size;
2549 
2550 	if (sdkp->capacity > 0xffffffff)
2551 		sdp->use_16_for_rw = 1;
2552 
2553 }
2554 
2555 /*
2556  * Print disk capacity
2557  */
2558 static void
2559 sd_print_capacity(struct scsi_disk *sdkp,
2560 		  sector_t old_capacity)
2561 {
2562 	int sector_size = sdkp->device->sector_size;
2563 	char cap_str_2[10], cap_str_10[10];
2564 
2565 	if (!sdkp->first_scan && old_capacity == sdkp->capacity)
2566 		return;
2567 
2568 	string_get_size(sdkp->capacity, sector_size,
2569 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2570 	string_get_size(sdkp->capacity, sector_size,
2571 			STRING_UNITS_10, cap_str_10, sizeof(cap_str_10));
2572 
2573 	sd_printk(KERN_NOTICE, sdkp,
2574 		  "%llu %d-byte logical blocks: (%s/%s)\n",
2575 		  (unsigned long long)sdkp->capacity,
2576 		  sector_size, cap_str_10, cap_str_2);
2577 
2578 	if (sdkp->physical_block_size != sector_size)
2579 		sd_printk(KERN_NOTICE, sdkp,
2580 			  "%u-byte physical blocks\n",
2581 			  sdkp->physical_block_size);
2582 }
2583 
2584 /* called with buffer of length 512 */
2585 static inline int
2586 sd_do_mode_sense(struct scsi_disk *sdkp, int dbd, int modepage,
2587 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2588 		 struct scsi_sense_hdr *sshdr)
2589 {
2590 	/*
2591 	 * If we must use MODE SENSE(10), make sure that the buffer length
2592 	 * is at least 8 bytes so that the mode sense header fits.
2593 	 */
2594 	if (sdkp->device->use_10_for_ms && len < 8)
2595 		len = 8;
2596 
2597 	return scsi_mode_sense(sdkp->device, dbd, modepage, buffer, len,
2598 			       SD_TIMEOUT, sdkp->max_retries, data,
2599 			       sshdr);
2600 }
2601 
2602 /*
2603  * read write protect setting, if possible - called only in sd_revalidate_disk()
2604  * called with buffer of length SD_BUF_SIZE
2605  */
2606 static void
2607 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2608 {
2609 	int res;
2610 	struct scsi_device *sdp = sdkp->device;
2611 	struct scsi_mode_data data;
2612 	int old_wp = sdkp->write_prot;
2613 
2614 	set_disk_ro(sdkp->disk, 0);
2615 	if (sdp->skip_ms_page_3f) {
2616 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2617 		return;
2618 	}
2619 
2620 	if (sdp->use_192_bytes_for_3f) {
2621 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 192, &data, NULL);
2622 	} else {
2623 		/*
2624 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2625 		 * We have to start carefully: some devices hang if we ask
2626 		 * for more than is available.
2627 		 */
2628 		res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 4, &data, NULL);
2629 
2630 		/*
2631 		 * Second attempt: ask for page 0 When only page 0 is
2632 		 * implemented, a request for page 3F may return Sense Key
2633 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2634 		 * CDB.
2635 		 */
2636 		if (res < 0)
2637 			res = sd_do_mode_sense(sdkp, 0, 0, buffer, 4, &data, NULL);
2638 
2639 		/*
2640 		 * Third attempt: ask 255 bytes, as we did earlier.
2641 		 */
2642 		if (res < 0)
2643 			res = sd_do_mode_sense(sdkp, 0, 0x3F, buffer, 255,
2644 					       &data, NULL);
2645 	}
2646 
2647 	if (res < 0) {
2648 		sd_first_printk(KERN_WARNING, sdkp,
2649 			  "Test WP failed, assume Write Enabled\n");
2650 	} else {
2651 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2652 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2653 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2654 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2655 				  sdkp->write_prot ? "on" : "off");
2656 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2657 		}
2658 	}
2659 }
2660 
2661 /*
2662  * sd_read_cache_type - called only from sd_revalidate_disk()
2663  * called with buffer of length SD_BUF_SIZE
2664  */
2665 static void
2666 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2667 {
2668 	int len = 0, res;
2669 	struct scsi_device *sdp = sdkp->device;
2670 
2671 	int dbd;
2672 	int modepage;
2673 	int first_len;
2674 	struct scsi_mode_data data;
2675 	struct scsi_sense_hdr sshdr;
2676 	int old_wce = sdkp->WCE;
2677 	int old_rcd = sdkp->RCD;
2678 	int old_dpofua = sdkp->DPOFUA;
2679 
2680 
2681 	if (sdkp->cache_override)
2682 		return;
2683 
2684 	first_len = 4;
2685 	if (sdp->skip_ms_page_8) {
2686 		if (sdp->type == TYPE_RBC)
2687 			goto defaults;
2688 		else {
2689 			if (sdp->skip_ms_page_3f)
2690 				goto defaults;
2691 			modepage = 0x3F;
2692 			if (sdp->use_192_bytes_for_3f)
2693 				first_len = 192;
2694 			dbd = 0;
2695 		}
2696 	} else if (sdp->type == TYPE_RBC) {
2697 		modepage = 6;
2698 		dbd = 8;
2699 	} else {
2700 		modepage = 8;
2701 		dbd = 0;
2702 	}
2703 
2704 	/* cautiously ask */
2705 	res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, first_len,
2706 			&data, &sshdr);
2707 
2708 	if (res < 0)
2709 		goto bad_sense;
2710 
2711 	if (!data.header_length) {
2712 		modepage = 6;
2713 		first_len = 0;
2714 		sd_first_printk(KERN_ERR, sdkp,
2715 				"Missing header in MODE_SENSE response\n");
2716 	}
2717 
2718 	/* that went OK, now ask for the proper length */
2719 	len = data.length;
2720 
2721 	/*
2722 	 * We're only interested in the first three bytes, actually.
2723 	 * But the data cache page is defined for the first 20.
2724 	 */
2725 	if (len < 3)
2726 		goto bad_sense;
2727 	else if (len > SD_BUF_SIZE) {
2728 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2729 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2730 		len = SD_BUF_SIZE;
2731 	}
2732 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2733 		len = 192;
2734 
2735 	/* Get the data */
2736 	if (len > first_len)
2737 		res = sd_do_mode_sense(sdkp, dbd, modepage, buffer, len,
2738 				&data, &sshdr);
2739 
2740 	if (!res) {
2741 		int offset = data.header_length + data.block_descriptor_length;
2742 
2743 		while (offset < len) {
2744 			u8 page_code = buffer[offset] & 0x3F;
2745 			u8 spf       = buffer[offset] & 0x40;
2746 
2747 			if (page_code == 8 || page_code == 6) {
2748 				/* We're interested only in the first 3 bytes.
2749 				 */
2750 				if (len - offset <= 2) {
2751 					sd_first_printk(KERN_ERR, sdkp,
2752 						"Incomplete mode parameter "
2753 							"data\n");
2754 					goto defaults;
2755 				} else {
2756 					modepage = page_code;
2757 					goto Page_found;
2758 				}
2759 			} else {
2760 				/* Go to the next page */
2761 				if (spf && len - offset > 3)
2762 					offset += 4 + (buffer[offset+2] << 8) +
2763 						buffer[offset+3];
2764 				else if (!spf && len - offset > 1)
2765 					offset += 2 + buffer[offset+1];
2766 				else {
2767 					sd_first_printk(KERN_ERR, sdkp,
2768 							"Incomplete mode "
2769 							"parameter data\n");
2770 					goto defaults;
2771 				}
2772 			}
2773 		}
2774 
2775 		sd_first_printk(KERN_WARNING, sdkp,
2776 				"No Caching mode page found\n");
2777 		goto defaults;
2778 
2779 	Page_found:
2780 		if (modepage == 8) {
2781 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2782 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2783 		} else {
2784 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2785 			sdkp->RCD = 0;
2786 		}
2787 
2788 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2789 		if (sdp->broken_fua) {
2790 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2791 			sdkp->DPOFUA = 0;
2792 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2793 			   !sdkp->device->use_16_for_rw) {
2794 			sd_first_printk(KERN_NOTICE, sdkp,
2795 				  "Uses READ/WRITE(6), disabling FUA\n");
2796 			sdkp->DPOFUA = 0;
2797 		}
2798 
2799 		/* No cache flush allowed for write protected devices */
2800 		if (sdkp->WCE && sdkp->write_prot)
2801 			sdkp->WCE = 0;
2802 
2803 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2804 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2805 			sd_printk(KERN_NOTICE, sdkp,
2806 				  "Write cache: %s, read cache: %s, %s\n",
2807 				  sdkp->WCE ? "enabled" : "disabled",
2808 				  sdkp->RCD ? "disabled" : "enabled",
2809 				  sdkp->DPOFUA ? "supports DPO and FUA"
2810 				  : "doesn't support DPO or FUA");
2811 
2812 		return;
2813 	}
2814 
2815 bad_sense:
2816 	if (scsi_sense_valid(&sshdr) &&
2817 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2818 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2819 		/* Invalid field in CDB */
2820 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2821 	else
2822 		sd_first_printk(KERN_ERR, sdkp,
2823 				"Asking for cache data failed\n");
2824 
2825 defaults:
2826 	if (sdp->wce_default_on) {
2827 		sd_first_printk(KERN_NOTICE, sdkp,
2828 				"Assuming drive cache: write back\n");
2829 		sdkp->WCE = 1;
2830 	} else {
2831 		sd_first_printk(KERN_WARNING, sdkp,
2832 				"Assuming drive cache: write through\n");
2833 		sdkp->WCE = 0;
2834 	}
2835 	sdkp->RCD = 0;
2836 	sdkp->DPOFUA = 0;
2837 }
2838 
2839 /*
2840  * The ATO bit indicates whether the DIF application tag is available
2841  * for use by the operating system.
2842  */
2843 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2844 {
2845 	int res, offset;
2846 	struct scsi_device *sdp = sdkp->device;
2847 	struct scsi_mode_data data;
2848 	struct scsi_sense_hdr sshdr;
2849 
2850 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2851 		return;
2852 
2853 	if (sdkp->protection_type == 0)
2854 		return;
2855 
2856 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2857 			      sdkp->max_retries, &data, &sshdr);
2858 
2859 	if (res < 0 || !data.header_length ||
2860 	    data.length < 6) {
2861 		sd_first_printk(KERN_WARNING, sdkp,
2862 			  "getting Control mode page failed, assume no ATO\n");
2863 
2864 		if (scsi_sense_valid(&sshdr))
2865 			sd_print_sense_hdr(sdkp, &sshdr);
2866 
2867 		return;
2868 	}
2869 
2870 	offset = data.header_length + data.block_descriptor_length;
2871 
2872 	if ((buffer[offset] & 0x3f) != 0x0a) {
2873 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2874 		return;
2875 	}
2876 
2877 	if ((buffer[offset + 5] & 0x80) == 0)
2878 		return;
2879 
2880 	sdkp->ATO = 1;
2881 
2882 	return;
2883 }
2884 
2885 /**
2886  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2887  * @sdkp: disk to query
2888  */
2889 static void sd_read_block_limits(struct scsi_disk *sdkp)
2890 {
2891 	struct scsi_vpd *vpd;
2892 
2893 	rcu_read_lock();
2894 
2895 	vpd = rcu_dereference(sdkp->device->vpd_pgb0);
2896 	if (!vpd || vpd->len < 16)
2897 		goto out;
2898 
2899 	sdkp->min_xfer_blocks = get_unaligned_be16(&vpd->data[6]);
2900 	sdkp->max_xfer_blocks = get_unaligned_be32(&vpd->data[8]);
2901 	sdkp->opt_xfer_blocks = get_unaligned_be32(&vpd->data[12]);
2902 
2903 	if (vpd->len >= 64) {
2904 		unsigned int lba_count, desc_count;
2905 
2906 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&vpd->data[36]);
2907 
2908 		if (!sdkp->lbpme)
2909 			goto out;
2910 
2911 		lba_count = get_unaligned_be32(&vpd->data[20]);
2912 		desc_count = get_unaligned_be32(&vpd->data[24]);
2913 
2914 		if (lba_count && desc_count)
2915 			sdkp->max_unmap_blocks = lba_count;
2916 
2917 		sdkp->unmap_granularity = get_unaligned_be32(&vpd->data[28]);
2918 
2919 		if (vpd->data[32] & 0x80)
2920 			sdkp->unmap_alignment =
2921 				get_unaligned_be32(&vpd->data[32]) & ~(1 << 31);
2922 
2923 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2924 
2925 			if (sdkp->max_unmap_blocks)
2926 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2927 			else
2928 				sd_config_discard(sdkp, SD_LBP_WS16);
2929 
2930 		} else {	/* LBP VPD page tells us what to use */
2931 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2932 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2933 			else if (sdkp->lbpws)
2934 				sd_config_discard(sdkp, SD_LBP_WS16);
2935 			else if (sdkp->lbpws10)
2936 				sd_config_discard(sdkp, SD_LBP_WS10);
2937 			else
2938 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2939 		}
2940 	}
2941 
2942  out:
2943 	rcu_read_unlock();
2944 }
2945 
2946 /**
2947  * sd_read_block_characteristics - Query block dev. characteristics
2948  * @sdkp: disk to query
2949  */
2950 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2951 {
2952 	struct request_queue *q = sdkp->disk->queue;
2953 	struct scsi_vpd *vpd;
2954 	u16 rot;
2955 	u8 zoned;
2956 
2957 	rcu_read_lock();
2958 	vpd = rcu_dereference(sdkp->device->vpd_pgb1);
2959 
2960 	if (!vpd || vpd->len < 8) {
2961 		rcu_read_unlock();
2962 	        return;
2963 	}
2964 
2965 	rot = get_unaligned_be16(&vpd->data[4]);
2966 	zoned = (vpd->data[8] >> 4) & 3;
2967 	rcu_read_unlock();
2968 
2969 	if (rot == 1) {
2970 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2971 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2972 	}
2973 
2974 	if (sdkp->device->type == TYPE_ZBC) {
2975 		/* Host-managed */
2976 		disk_set_zoned(sdkp->disk, BLK_ZONED_HM);
2977 	} else {
2978 		sdkp->zoned = zoned;
2979 		if (sdkp->zoned == 1) {
2980 			/* Host-aware */
2981 			disk_set_zoned(sdkp->disk, BLK_ZONED_HA);
2982 		} else {
2983 			/* Regular disk or drive managed disk */
2984 			disk_set_zoned(sdkp->disk, BLK_ZONED_NONE);
2985 		}
2986 	}
2987 
2988 	if (!sdkp->first_scan)
2989 		return;
2990 
2991 	if (blk_queue_is_zoned(q)) {
2992 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2993 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2994 	} else {
2995 		if (sdkp->zoned == 1)
2996 			sd_printk(KERN_NOTICE, sdkp,
2997 				  "Host-aware SMR disk used as regular disk\n");
2998 		else if (sdkp->zoned == 2)
2999 			sd_printk(KERN_NOTICE, sdkp,
3000 				  "Drive-managed SMR disk\n");
3001 	}
3002 }
3003 
3004 /**
3005  * sd_read_block_provisioning - Query provisioning VPD page
3006  * @sdkp: disk to query
3007  */
3008 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
3009 {
3010 	struct scsi_vpd *vpd;
3011 
3012 	if (sdkp->lbpme == 0)
3013 		return;
3014 
3015 	rcu_read_lock();
3016 	vpd = rcu_dereference(sdkp->device->vpd_pgb2);
3017 
3018 	if (!vpd || vpd->len < 8) {
3019 		rcu_read_unlock();
3020 		return;
3021 	}
3022 
3023 	sdkp->lbpvpd	= 1;
3024 	sdkp->lbpu	= (vpd->data[5] >> 7) & 1; /* UNMAP */
3025 	sdkp->lbpws	= (vpd->data[5] >> 6) & 1; /* WRITE SAME(16) w/ UNMAP */
3026 	sdkp->lbpws10	= (vpd->data[5] >> 5) & 1; /* WRITE SAME(10) w/ UNMAP */
3027 	rcu_read_unlock();
3028 }
3029 
3030 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
3031 {
3032 	struct scsi_device *sdev = sdkp->device;
3033 
3034 	if (sdev->host->no_write_same) {
3035 		sdev->no_write_same = 1;
3036 
3037 		return;
3038 	}
3039 
3040 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
3041 		struct scsi_vpd *vpd;
3042 
3043 		sdev->no_report_opcodes = 1;
3044 
3045 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
3046 		 * CODES is unsupported and the device has an ATA
3047 		 * Information VPD page (SAT).
3048 		 */
3049 		rcu_read_lock();
3050 		vpd = rcu_dereference(sdev->vpd_pg89);
3051 		if (vpd)
3052 			sdev->no_write_same = 1;
3053 		rcu_read_unlock();
3054 	}
3055 
3056 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
3057 		sdkp->ws16 = 1;
3058 
3059 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
3060 		sdkp->ws10 = 1;
3061 }
3062 
3063 static void sd_read_security(struct scsi_disk *sdkp, unsigned char *buffer)
3064 {
3065 	struct scsi_device *sdev = sdkp->device;
3066 
3067 	if (!sdev->security_supported)
3068 		return;
3069 
3070 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3071 			SECURITY_PROTOCOL_IN) == 1 &&
3072 	    scsi_report_opcode(sdev, buffer, SD_BUF_SIZE,
3073 			SECURITY_PROTOCOL_OUT) == 1)
3074 		sdkp->security = 1;
3075 }
3076 
3077 static inline sector_t sd64_to_sectors(struct scsi_disk *sdkp, u8 *buf)
3078 {
3079 	return logical_to_sectors(sdkp->device, get_unaligned_be64(buf));
3080 }
3081 
3082 /**
3083  * sd_read_cpr - Query concurrent positioning ranges
3084  * @sdkp:	disk to query
3085  */
3086 static void sd_read_cpr(struct scsi_disk *sdkp)
3087 {
3088 	struct blk_independent_access_ranges *iars = NULL;
3089 	unsigned char *buffer = NULL;
3090 	unsigned int nr_cpr = 0;
3091 	int i, vpd_len, buf_len = SD_BUF_SIZE;
3092 	u8 *desc;
3093 
3094 	/*
3095 	 * We need to have the capacity set first for the block layer to be
3096 	 * able to check the ranges.
3097 	 */
3098 	if (sdkp->first_scan)
3099 		return;
3100 
3101 	if (!sdkp->capacity)
3102 		goto out;
3103 
3104 	/*
3105 	 * Concurrent Positioning Ranges VPD: there can be at most 256 ranges,
3106 	 * leading to a maximum page size of 64 + 256*32 bytes.
3107 	 */
3108 	buf_len = 64 + 256*32;
3109 	buffer = kmalloc(buf_len, GFP_KERNEL);
3110 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb9, buffer, buf_len))
3111 		goto out;
3112 
3113 	/* We must have at least a 64B header and one 32B range descriptor */
3114 	vpd_len = get_unaligned_be16(&buffer[2]) + 4;
3115 	if (vpd_len > buf_len || vpd_len < 64 + 32 || (vpd_len & 31)) {
3116 		sd_printk(KERN_ERR, sdkp,
3117 			  "Invalid Concurrent Positioning Ranges VPD page\n");
3118 		goto out;
3119 	}
3120 
3121 	nr_cpr = (vpd_len - 64) / 32;
3122 	if (nr_cpr == 1) {
3123 		nr_cpr = 0;
3124 		goto out;
3125 	}
3126 
3127 	iars = disk_alloc_independent_access_ranges(sdkp->disk, nr_cpr);
3128 	if (!iars) {
3129 		nr_cpr = 0;
3130 		goto out;
3131 	}
3132 
3133 	desc = &buffer[64];
3134 	for (i = 0; i < nr_cpr; i++, desc += 32) {
3135 		if (desc[0] != i) {
3136 			sd_printk(KERN_ERR, sdkp,
3137 				"Invalid Concurrent Positioning Range number\n");
3138 			nr_cpr = 0;
3139 			break;
3140 		}
3141 
3142 		iars->ia_range[i].sector = sd64_to_sectors(sdkp, desc + 8);
3143 		iars->ia_range[i].nr_sectors = sd64_to_sectors(sdkp, desc + 16);
3144 	}
3145 
3146 out:
3147 	disk_set_independent_access_ranges(sdkp->disk, iars);
3148 	if (nr_cpr && sdkp->nr_actuators != nr_cpr) {
3149 		sd_printk(KERN_NOTICE, sdkp,
3150 			  "%u concurrent positioning ranges\n", nr_cpr);
3151 		sdkp->nr_actuators = nr_cpr;
3152 	}
3153 
3154 	kfree(buffer);
3155 }
3156 
3157 static bool sd_validate_min_xfer_size(struct scsi_disk *sdkp)
3158 {
3159 	struct scsi_device *sdp = sdkp->device;
3160 	unsigned int min_xfer_bytes =
3161 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3162 
3163 	if (sdkp->min_xfer_blocks == 0)
3164 		return false;
3165 
3166 	if (min_xfer_bytes & (sdkp->physical_block_size - 1)) {
3167 		sd_first_printk(KERN_WARNING, sdkp,
3168 				"Preferred minimum I/O size %u bytes not a " \
3169 				"multiple of physical block size (%u bytes)\n",
3170 				min_xfer_bytes, sdkp->physical_block_size);
3171 		sdkp->min_xfer_blocks = 0;
3172 		return false;
3173 	}
3174 
3175 	sd_first_printk(KERN_INFO, sdkp, "Preferred minimum I/O size %u bytes\n",
3176 			min_xfer_bytes);
3177 	return true;
3178 }
3179 
3180 /*
3181  * Determine the device's preferred I/O size for reads and writes
3182  * unless the reported value is unreasonably small, large, not a
3183  * multiple of the physical block size, or simply garbage.
3184  */
3185 static bool sd_validate_opt_xfer_size(struct scsi_disk *sdkp,
3186 				      unsigned int dev_max)
3187 {
3188 	struct scsi_device *sdp = sdkp->device;
3189 	unsigned int opt_xfer_bytes =
3190 		logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3191 	unsigned int min_xfer_bytes =
3192 		logical_to_bytes(sdp, sdkp->min_xfer_blocks);
3193 
3194 	if (sdkp->opt_xfer_blocks == 0)
3195 		return false;
3196 
3197 	if (sdkp->opt_xfer_blocks > dev_max) {
3198 		sd_first_printk(KERN_WARNING, sdkp,
3199 				"Optimal transfer size %u logical blocks " \
3200 				"> dev_max (%u logical blocks)\n",
3201 				sdkp->opt_xfer_blocks, dev_max);
3202 		return false;
3203 	}
3204 
3205 	if (sdkp->opt_xfer_blocks > SD_DEF_XFER_BLOCKS) {
3206 		sd_first_printk(KERN_WARNING, sdkp,
3207 				"Optimal transfer size %u logical blocks " \
3208 				"> sd driver limit (%u logical blocks)\n",
3209 				sdkp->opt_xfer_blocks, SD_DEF_XFER_BLOCKS);
3210 		return false;
3211 	}
3212 
3213 	if (opt_xfer_bytes < PAGE_SIZE) {
3214 		sd_first_printk(KERN_WARNING, sdkp,
3215 				"Optimal transfer size %u bytes < " \
3216 				"PAGE_SIZE (%u bytes)\n",
3217 				opt_xfer_bytes, (unsigned int)PAGE_SIZE);
3218 		return false;
3219 	}
3220 
3221 	if (min_xfer_bytes && opt_xfer_bytes % min_xfer_bytes) {
3222 		sd_first_printk(KERN_WARNING, sdkp,
3223 				"Optimal transfer size %u bytes not a " \
3224 				"multiple of preferred minimum block " \
3225 				"size (%u bytes)\n",
3226 				opt_xfer_bytes, min_xfer_bytes);
3227 		return false;
3228 	}
3229 
3230 	if (opt_xfer_bytes & (sdkp->physical_block_size - 1)) {
3231 		sd_first_printk(KERN_WARNING, sdkp,
3232 				"Optimal transfer size %u bytes not a " \
3233 				"multiple of physical block size (%u bytes)\n",
3234 				opt_xfer_bytes, sdkp->physical_block_size);
3235 		return false;
3236 	}
3237 
3238 	sd_first_printk(KERN_INFO, sdkp, "Optimal transfer size %u bytes\n",
3239 			opt_xfer_bytes);
3240 	return true;
3241 }
3242 
3243 /**
3244  *	sd_revalidate_disk - called the first time a new disk is seen,
3245  *	performs disk spin up, read_capacity, etc.
3246  *	@disk: struct gendisk we care about
3247  **/
3248 static int sd_revalidate_disk(struct gendisk *disk)
3249 {
3250 	struct scsi_disk *sdkp = scsi_disk(disk);
3251 	struct scsi_device *sdp = sdkp->device;
3252 	struct request_queue *q = sdkp->disk->queue;
3253 	sector_t old_capacity = sdkp->capacity;
3254 	unsigned char *buffer;
3255 	unsigned int dev_max, rw_max;
3256 
3257 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3258 				      "sd_revalidate_disk\n"));
3259 
3260 	/*
3261 	 * If the device is offline, don't try and read capacity or any
3262 	 * of the other niceties.
3263 	 */
3264 	if (!scsi_device_online(sdp))
3265 		goto out;
3266 
3267 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3268 	if (!buffer) {
3269 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3270 			  "allocation failure.\n");
3271 		goto out;
3272 	}
3273 
3274 	sd_spinup_disk(sdkp);
3275 
3276 	/*
3277 	 * Without media there is no reason to ask; moreover, some devices
3278 	 * react badly if we do.
3279 	 */
3280 	if (sdkp->media_present) {
3281 		sd_read_capacity(sdkp, buffer);
3282 
3283 		/*
3284 		 * set the default to rotational.  All non-rotational devices
3285 		 * support the block characteristics VPD page, which will
3286 		 * cause this to be updated correctly and any device which
3287 		 * doesn't support it should be treated as rotational.
3288 		 */
3289 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
3290 		blk_queue_flag_set(QUEUE_FLAG_ADD_RANDOM, q);
3291 
3292 		if (scsi_device_supports_vpd(sdp)) {
3293 			sd_read_block_provisioning(sdkp);
3294 			sd_read_block_limits(sdkp);
3295 			sd_read_block_characteristics(sdkp);
3296 			sd_zbc_read_zones(sdkp, buffer);
3297 			sd_read_cpr(sdkp);
3298 		}
3299 
3300 		sd_print_capacity(sdkp, old_capacity);
3301 
3302 		sd_read_write_protect_flag(sdkp, buffer);
3303 		sd_read_cache_type(sdkp, buffer);
3304 		sd_read_app_tag_own(sdkp, buffer);
3305 		sd_read_write_same(sdkp, buffer);
3306 		sd_read_security(sdkp, buffer);
3307 		sd_config_protection(sdkp);
3308 	}
3309 
3310 	/*
3311 	 * We now have all cache related info, determine how we deal
3312 	 * with flush requests.
3313 	 */
3314 	sd_set_flush_flag(sdkp);
3315 
3316 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3317 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3318 
3319 	/* Some devices report a maximum block count for READ/WRITE requests. */
3320 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3321 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3322 
3323 	if (sd_validate_min_xfer_size(sdkp))
3324 		blk_queue_io_min(sdkp->disk->queue,
3325 				 logical_to_bytes(sdp, sdkp->min_xfer_blocks));
3326 	else
3327 		blk_queue_io_min(sdkp->disk->queue, 0);
3328 
3329 	if (sd_validate_opt_xfer_size(sdkp, dev_max)) {
3330 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3331 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3332 	} else {
3333 		q->limits.io_opt = 0;
3334 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3335 				      (sector_t)BLK_DEF_MAX_SECTORS);
3336 	}
3337 
3338 	/*
3339 	 * Limit default to SCSI host optimal sector limit if set. There may be
3340 	 * an impact on performance for when the size of a request exceeds this
3341 	 * host limit.
3342 	 */
3343 	rw_max = min_not_zero(rw_max, sdp->host->opt_sectors);
3344 
3345 	/* Do not exceed controller limit */
3346 	rw_max = min(rw_max, queue_max_hw_sectors(q));
3347 
3348 	/*
3349 	 * Only update max_sectors if previously unset or if the current value
3350 	 * exceeds the capabilities of the hardware.
3351 	 */
3352 	if (sdkp->first_scan ||
3353 	    q->limits.max_sectors > q->limits.max_dev_sectors ||
3354 	    q->limits.max_sectors > q->limits.max_hw_sectors)
3355 		q->limits.max_sectors = rw_max;
3356 
3357 	sdkp->first_scan = 0;
3358 
3359 	set_capacity_and_notify(disk, logical_to_sectors(sdp, sdkp->capacity));
3360 	sd_config_write_same(sdkp);
3361 	kfree(buffer);
3362 
3363 	/*
3364 	 * For a zoned drive, revalidating the zones can be done only once
3365 	 * the gendisk capacity is set. So if this fails, set back the gendisk
3366 	 * capacity to 0.
3367 	 */
3368 	if (sd_zbc_revalidate_zones(sdkp))
3369 		set_capacity_and_notify(disk, 0);
3370 
3371  out:
3372 	return 0;
3373 }
3374 
3375 /**
3376  *	sd_unlock_native_capacity - unlock native capacity
3377  *	@disk: struct gendisk to set capacity for
3378  *
3379  *	Block layer calls this function if it detects that partitions
3380  *	on @disk reach beyond the end of the device.  If the SCSI host
3381  *	implements ->unlock_native_capacity() method, it's invoked to
3382  *	give it a chance to adjust the device capacity.
3383  *
3384  *	CONTEXT:
3385  *	Defined by block layer.  Might sleep.
3386  */
3387 static void sd_unlock_native_capacity(struct gendisk *disk)
3388 {
3389 	struct scsi_device *sdev = scsi_disk(disk)->device;
3390 
3391 	if (sdev->host->hostt->unlock_native_capacity)
3392 		sdev->host->hostt->unlock_native_capacity(sdev);
3393 }
3394 
3395 /**
3396  *	sd_format_disk_name - format disk name
3397  *	@prefix: name prefix - ie. "sd" for SCSI disks
3398  *	@index: index of the disk to format name for
3399  *	@buf: output buffer
3400  *	@buflen: length of the output buffer
3401  *
3402  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3403  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3404  *	which is followed by sdaaa.
3405  *
3406  *	This is basically 26 base counting with one extra 'nil' entry
3407  *	at the beginning from the second digit on and can be
3408  *	determined using similar method as 26 base conversion with the
3409  *	index shifted -1 after each digit is computed.
3410  *
3411  *	CONTEXT:
3412  *	Don't care.
3413  *
3414  *	RETURNS:
3415  *	0 on success, -errno on failure.
3416  */
3417 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3418 {
3419 	const int base = 'z' - 'a' + 1;
3420 	char *begin = buf + strlen(prefix);
3421 	char *end = buf + buflen;
3422 	char *p;
3423 	int unit;
3424 
3425 	p = end - 1;
3426 	*p = '\0';
3427 	unit = base;
3428 	do {
3429 		if (p == begin)
3430 			return -EINVAL;
3431 		*--p = 'a' + (index % unit);
3432 		index = (index / unit) - 1;
3433 	} while (index >= 0);
3434 
3435 	memmove(begin, p, end - p);
3436 	memcpy(buf, prefix, strlen(prefix));
3437 
3438 	return 0;
3439 }
3440 
3441 /**
3442  *	sd_probe - called during driver initialization and whenever a
3443  *	new scsi device is attached to the system. It is called once
3444  *	for each scsi device (not just disks) present.
3445  *	@dev: pointer to device object
3446  *
3447  *	Returns 0 if successful (or not interested in this scsi device
3448  *	(e.g. scanner)); 1 when there is an error.
3449  *
3450  *	Note: this function is invoked from the scsi mid-level.
3451  *	This function sets up the mapping between a given
3452  *	<host,channel,id,lun> (found in sdp) and new device name
3453  *	(e.g. /dev/sda). More precisely it is the block device major
3454  *	and minor number that is chosen here.
3455  *
3456  *	Assume sd_probe is not re-entrant (for time being)
3457  *	Also think about sd_probe() and sd_remove() running coincidentally.
3458  **/
3459 static int sd_probe(struct device *dev)
3460 {
3461 	struct scsi_device *sdp = to_scsi_device(dev);
3462 	struct scsi_disk *sdkp;
3463 	struct gendisk *gd;
3464 	int index;
3465 	int error;
3466 
3467 	scsi_autopm_get_device(sdp);
3468 	error = -ENODEV;
3469 	if (sdp->type != TYPE_DISK &&
3470 	    sdp->type != TYPE_ZBC &&
3471 	    sdp->type != TYPE_MOD &&
3472 	    sdp->type != TYPE_RBC)
3473 		goto out;
3474 
3475 	if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED) && sdp->type == TYPE_ZBC) {
3476 		sdev_printk(KERN_WARNING, sdp,
3477 			    "Unsupported ZBC host-managed device.\n");
3478 		goto out;
3479 	}
3480 
3481 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3482 					"sd_probe\n"));
3483 
3484 	error = -ENOMEM;
3485 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3486 	if (!sdkp)
3487 		goto out;
3488 
3489 	gd = blk_mq_alloc_disk_for_queue(sdp->request_queue,
3490 					 &sd_bio_compl_lkclass);
3491 	if (!gd)
3492 		goto out_free;
3493 
3494 	index = ida_alloc(&sd_index_ida, GFP_KERNEL);
3495 	if (index < 0) {
3496 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3497 		goto out_put;
3498 	}
3499 
3500 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3501 	if (error) {
3502 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3503 		goto out_free_index;
3504 	}
3505 
3506 	sdkp->device = sdp;
3507 	sdkp->disk = gd;
3508 	sdkp->index = index;
3509 	sdkp->max_retries = SD_MAX_RETRIES;
3510 	atomic_set(&sdkp->openers, 0);
3511 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3512 
3513 	if (!sdp->request_queue->rq_timeout) {
3514 		if (sdp->type != TYPE_MOD)
3515 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3516 		else
3517 			blk_queue_rq_timeout(sdp->request_queue,
3518 					     SD_MOD_TIMEOUT);
3519 	}
3520 
3521 	device_initialize(&sdkp->disk_dev);
3522 	sdkp->disk_dev.parent = get_device(dev);
3523 	sdkp->disk_dev.class = &sd_disk_class;
3524 	dev_set_name(&sdkp->disk_dev, "%s", dev_name(dev));
3525 
3526 	error = device_add(&sdkp->disk_dev);
3527 	if (error) {
3528 		put_device(&sdkp->disk_dev);
3529 		goto out;
3530 	}
3531 
3532 	dev_set_drvdata(dev, sdkp);
3533 
3534 	gd->major = sd_major((index & 0xf0) >> 4);
3535 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3536 	gd->minors = SD_MINORS;
3537 
3538 	gd->fops = &sd_fops;
3539 	gd->private_data = sdkp;
3540 
3541 	/* defaults, until the device tells us otherwise */
3542 	sdp->sector_size = 512;
3543 	sdkp->capacity = 0;
3544 	sdkp->media_present = 1;
3545 	sdkp->write_prot = 0;
3546 	sdkp->cache_override = 0;
3547 	sdkp->WCE = 0;
3548 	sdkp->RCD = 0;
3549 	sdkp->ATO = 0;
3550 	sdkp->first_scan = 1;
3551 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3552 
3553 	sd_revalidate_disk(gd);
3554 
3555 	if (sdp->removable) {
3556 		gd->flags |= GENHD_FL_REMOVABLE;
3557 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3558 		gd->event_flags = DISK_EVENT_FLAG_POLL | DISK_EVENT_FLAG_UEVENT;
3559 	}
3560 
3561 	blk_pm_runtime_init(sdp->request_queue, dev);
3562 	if (sdp->rpm_autosuspend) {
3563 		pm_runtime_set_autosuspend_delay(dev,
3564 			sdp->host->hostt->rpm_autosuspend_delay);
3565 	}
3566 
3567 	error = device_add_disk(dev, gd, NULL);
3568 	if (error) {
3569 		put_device(&sdkp->disk_dev);
3570 		put_disk(gd);
3571 		goto out;
3572 	}
3573 
3574 	if (sdkp->security) {
3575 		sdkp->opal_dev = init_opal_dev(sdkp, &sd_sec_submit);
3576 		if (sdkp->opal_dev)
3577 			sd_printk(KERN_NOTICE, sdkp, "supports TCG Opal\n");
3578 	}
3579 
3580 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3581 		  sdp->removable ? "removable " : "");
3582 	scsi_autopm_put_device(sdp);
3583 
3584 	return 0;
3585 
3586  out_free_index:
3587 	ida_free(&sd_index_ida, index);
3588  out_put:
3589 	put_disk(gd);
3590  out_free:
3591 	kfree(sdkp);
3592  out:
3593 	scsi_autopm_put_device(sdp);
3594 	return error;
3595 }
3596 
3597 /**
3598  *	sd_remove - called whenever a scsi disk (previously recognized by
3599  *	sd_probe) is detached from the system. It is called (potentially
3600  *	multiple times) during sd module unload.
3601  *	@dev: pointer to device object
3602  *
3603  *	Note: this function is invoked from the scsi mid-level.
3604  *	This function potentially frees up a device name (e.g. /dev/sdc)
3605  *	that could be re-used by a subsequent sd_probe().
3606  *	This function is not called when the built-in sd driver is "exit-ed".
3607  **/
3608 static int sd_remove(struct device *dev)
3609 {
3610 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3611 
3612 	scsi_autopm_get_device(sdkp->device);
3613 
3614 	device_del(&sdkp->disk_dev);
3615 	del_gendisk(sdkp->disk);
3616 	sd_shutdown(dev);
3617 
3618 	put_disk(sdkp->disk);
3619 	return 0;
3620 }
3621 
3622 static void scsi_disk_release(struct device *dev)
3623 {
3624 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3625 
3626 	ida_free(&sd_index_ida, sdkp->index);
3627 	sd_zbc_free_zone_info(sdkp);
3628 	put_device(&sdkp->device->sdev_gendev);
3629 	free_opal_dev(sdkp->opal_dev);
3630 
3631 	kfree(sdkp);
3632 }
3633 
3634 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3635 {
3636 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3637 	struct scsi_sense_hdr sshdr;
3638 	struct scsi_device *sdp = sdkp->device;
3639 	int res;
3640 
3641 	if (start)
3642 		cmd[4] |= 1;	/* START */
3643 
3644 	if (sdp->start_stop_pwr_cond)
3645 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3646 
3647 	if (!scsi_device_online(sdp))
3648 		return -ENODEV;
3649 
3650 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3651 			SD_TIMEOUT, sdkp->max_retries, 0, RQF_PM, NULL);
3652 	if (res) {
3653 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3654 		if (res > 0 && scsi_sense_valid(&sshdr)) {
3655 			sd_print_sense_hdr(sdkp, &sshdr);
3656 			/* 0x3a is medium not present */
3657 			if (sshdr.asc == 0x3a)
3658 				res = 0;
3659 		}
3660 	}
3661 
3662 	/* SCSI error codes must not go to the generic layer */
3663 	if (res)
3664 		return -EIO;
3665 
3666 	return 0;
3667 }
3668 
3669 /*
3670  * Send a SYNCHRONIZE CACHE instruction down to the device through
3671  * the normal SCSI command structure.  Wait for the command to
3672  * complete.
3673  */
3674 static void sd_shutdown(struct device *dev)
3675 {
3676 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3677 
3678 	if (!sdkp)
3679 		return;         /* this can happen */
3680 
3681 	if (pm_runtime_suspended(dev))
3682 		return;
3683 
3684 	if (sdkp->WCE && sdkp->media_present) {
3685 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3686 		sd_sync_cache(sdkp, NULL);
3687 	}
3688 
3689 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3690 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3691 		sd_start_stop_device(sdkp, 0);
3692 	}
3693 }
3694 
3695 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3696 {
3697 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3698 	struct scsi_sense_hdr sshdr;
3699 	int ret = 0;
3700 
3701 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3702 		return 0;
3703 
3704 	if (sdkp->WCE && sdkp->media_present) {
3705 		if (!sdkp->device->silence_suspend)
3706 			sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3707 		ret = sd_sync_cache(sdkp, &sshdr);
3708 
3709 		if (ret) {
3710 			/* ignore OFFLINE device */
3711 			if (ret == -ENODEV)
3712 				return 0;
3713 
3714 			if (!scsi_sense_valid(&sshdr) ||
3715 			    sshdr.sense_key != ILLEGAL_REQUEST)
3716 				return ret;
3717 
3718 			/*
3719 			 * sshdr.sense_key == ILLEGAL_REQUEST means this drive
3720 			 * doesn't support sync. There's not much to do and
3721 			 * suspend shouldn't fail.
3722 			 */
3723 			ret = 0;
3724 		}
3725 	}
3726 
3727 	if (sdkp->device->manage_start_stop) {
3728 		if (!sdkp->device->silence_suspend)
3729 			sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3730 		/* an error is not worth aborting a system sleep */
3731 		ret = sd_start_stop_device(sdkp, 0);
3732 		if (ignore_stop_errors)
3733 			ret = 0;
3734 	}
3735 
3736 	return ret;
3737 }
3738 
3739 static int sd_suspend_system(struct device *dev)
3740 {
3741 	if (pm_runtime_suspended(dev))
3742 		return 0;
3743 
3744 	return sd_suspend_common(dev, true);
3745 }
3746 
3747 static int sd_suspend_runtime(struct device *dev)
3748 {
3749 	return sd_suspend_common(dev, false);
3750 }
3751 
3752 static int sd_resume(struct device *dev)
3753 {
3754 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3755 	int ret;
3756 
3757 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3758 		return 0;
3759 
3760 	if (!sdkp->device->manage_start_stop)
3761 		return 0;
3762 
3763 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3764 	ret = sd_start_stop_device(sdkp, 1);
3765 	if (!ret)
3766 		opal_unlock_from_suspend(sdkp->opal_dev);
3767 	return ret;
3768 }
3769 
3770 static int sd_resume_system(struct device *dev)
3771 {
3772 	if (pm_runtime_suspended(dev))
3773 		return 0;
3774 
3775 	return sd_resume(dev);
3776 }
3777 
3778 static int sd_resume_runtime(struct device *dev)
3779 {
3780 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3781 	struct scsi_device *sdp;
3782 
3783 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3784 		return 0;
3785 
3786 	sdp = sdkp->device;
3787 
3788 	if (sdp->ignore_media_change) {
3789 		/* clear the device's sense data */
3790 		static const u8 cmd[10] = { REQUEST_SENSE };
3791 
3792 		if (scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL,
3793 				 NULL, sdp->request_queue->rq_timeout, 1, 0,
3794 				 RQF_PM, NULL))
3795 			sd_printk(KERN_NOTICE, sdkp,
3796 				  "Failed to clear sense data\n");
3797 	}
3798 
3799 	return sd_resume(dev);
3800 }
3801 
3802 /**
3803  *	init_sd - entry point for this driver (both when built in or when
3804  *	a module).
3805  *
3806  *	Note: this function registers this driver with the scsi mid-level.
3807  **/
3808 static int __init init_sd(void)
3809 {
3810 	int majors = 0, i, err;
3811 
3812 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3813 
3814 	for (i = 0; i < SD_MAJORS; i++) {
3815 		if (__register_blkdev(sd_major(i), "sd", sd_default_probe))
3816 			continue;
3817 		majors++;
3818 	}
3819 
3820 	if (!majors)
3821 		return -ENODEV;
3822 
3823 	err = class_register(&sd_disk_class);
3824 	if (err)
3825 		goto err_out;
3826 
3827 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3828 					 0, 0, NULL);
3829 	if (!sd_cdb_cache) {
3830 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3831 		err = -ENOMEM;
3832 		goto err_out_class;
3833 	}
3834 
3835 	sd_page_pool = mempool_create_page_pool(SD_MEMPOOL_SIZE, 0);
3836 	if (!sd_page_pool) {
3837 		printk(KERN_ERR "sd: can't init discard page pool\n");
3838 		err = -ENOMEM;
3839 		goto err_out_cache;
3840 	}
3841 
3842 	err = scsi_register_driver(&sd_template.gendrv);
3843 	if (err)
3844 		goto err_out_driver;
3845 
3846 	return 0;
3847 
3848 err_out_driver:
3849 	mempool_destroy(sd_page_pool);
3850 
3851 err_out_cache:
3852 	kmem_cache_destroy(sd_cdb_cache);
3853 
3854 err_out_class:
3855 	class_unregister(&sd_disk_class);
3856 err_out:
3857 	for (i = 0; i < SD_MAJORS; i++)
3858 		unregister_blkdev(sd_major(i), "sd");
3859 	return err;
3860 }
3861 
3862 /**
3863  *	exit_sd - exit point for this driver (when it is a module).
3864  *
3865  *	Note: this function unregisters this driver from the scsi mid-level.
3866  **/
3867 static void __exit exit_sd(void)
3868 {
3869 	int i;
3870 
3871 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3872 
3873 	scsi_unregister_driver(&sd_template.gendrv);
3874 	mempool_destroy(sd_page_pool);
3875 	kmem_cache_destroy(sd_cdb_cache);
3876 
3877 	class_unregister(&sd_disk_class);
3878 
3879 	for (i = 0; i < SD_MAJORS; i++)
3880 		unregister_blkdev(sd_major(i), "sd");
3881 }
3882 
3883 module_init(init_sd);
3884 module_exit(exit_sd);
3885 
3886 void sd_print_sense_hdr(struct scsi_disk *sdkp, struct scsi_sense_hdr *sshdr)
3887 {
3888 	scsi_print_sense_hdr(sdkp->device,
3889 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3890 }
3891 
3892 void sd_print_result(const struct scsi_disk *sdkp, const char *msg, int result)
3893 {
3894 	const char *hb_string = scsi_hostbyte_string(result);
3895 
3896 	if (hb_string)
3897 		sd_printk(KERN_INFO, sdkp,
3898 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3899 			  hb_string ? hb_string : "invalid",
3900 			  "DRIVER_OK");
3901 	else
3902 		sd_printk(KERN_INFO, sdkp,
3903 			  "%s: Result: hostbyte=0x%02x driverbyte=%s\n",
3904 			  msg, host_byte(result), "DRIVER_OK");
3905 }
3906