1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <linux/pr.h> 55 #include <linux/t10-pi.h> 56 #include <linux/uaccess.h> 57 #include <asm/unaligned.h> 58 59 #include <scsi/scsi.h> 60 #include <scsi/scsi_cmnd.h> 61 #include <scsi/scsi_dbg.h> 62 #include <scsi/scsi_device.h> 63 #include <scsi/scsi_driver.h> 64 #include <scsi/scsi_eh.h> 65 #include <scsi/scsi_host.h> 66 #include <scsi/scsi_ioctl.h> 67 #include <scsi/scsicam.h> 68 69 #include "sd.h" 70 #include "scsi_priv.h" 71 #include "scsi_logging.h" 72 73 MODULE_AUTHOR("Eric Youngdale"); 74 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 75 MODULE_LICENSE("GPL"); 76 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC); 97 98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 99 #define SD_MINORS 16 100 #else 101 #define SD_MINORS 0 102 #endif 103 104 static void sd_config_discard(struct scsi_disk *, unsigned int); 105 static void sd_config_write_same(struct scsi_disk *); 106 static int sd_revalidate_disk(struct gendisk *); 107 static void sd_unlock_native_capacity(struct gendisk *disk); 108 static int sd_probe(struct device *); 109 static int sd_remove(struct device *); 110 static void sd_shutdown(struct device *); 111 static int sd_suspend_system(struct device *); 112 static int sd_suspend_runtime(struct device *); 113 static int sd_resume(struct device *); 114 static void sd_rescan(struct device *); 115 static int sd_init_command(struct scsi_cmnd *SCpnt); 116 static void sd_uninit_command(struct scsi_cmnd *SCpnt); 117 static int sd_done(struct scsi_cmnd *); 118 static void sd_eh_reset(struct scsi_cmnd *); 119 static int sd_eh_action(struct scsi_cmnd *, int); 120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 121 static void scsi_disk_release(struct device *cdev); 122 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 123 static void sd_print_result(const struct scsi_disk *, const char *, int); 124 125 static DEFINE_SPINLOCK(sd_index_lock); 126 static DEFINE_IDA(sd_index_ida); 127 128 /* This semaphore is used to mediate the 0->1 reference get in the 129 * face of object destruction (i.e. we can't allow a get on an 130 * object after last put) */ 131 static DEFINE_MUTEX(sd_ref_mutex); 132 133 static struct kmem_cache *sd_cdb_cache; 134 static mempool_t *sd_cdb_pool; 135 136 static const char *sd_cache_types[] = { 137 "write through", "none", "write back", 138 "write back, no read (daft)" 139 }; 140 141 static void sd_set_flush_flag(struct scsi_disk *sdkp) 142 { 143 bool wc = false, fua = false; 144 145 if (sdkp->WCE) { 146 wc = true; 147 if (sdkp->DPOFUA) 148 fua = true; 149 } 150 151 blk_queue_write_cache(sdkp->disk->queue, wc, fua); 152 } 153 154 static ssize_t 155 cache_type_store(struct device *dev, struct device_attribute *attr, 156 const char *buf, size_t count) 157 { 158 int i, ct = -1, rcd, wce, sp; 159 struct scsi_disk *sdkp = to_scsi_disk(dev); 160 struct scsi_device *sdp = sdkp->device; 161 char buffer[64]; 162 char *buffer_data; 163 struct scsi_mode_data data; 164 struct scsi_sense_hdr sshdr; 165 static const char temp[] = "temporary "; 166 int len; 167 168 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 169 /* no cache control on RBC devices; theoretically they 170 * can do it, but there's probably so many exceptions 171 * it's not worth the risk */ 172 return -EINVAL; 173 174 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 175 buf += sizeof(temp) - 1; 176 sdkp->cache_override = 1; 177 } else { 178 sdkp->cache_override = 0; 179 } 180 181 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 182 len = strlen(sd_cache_types[i]); 183 if (strncmp(sd_cache_types[i], buf, len) == 0 && 184 buf[len] == '\n') { 185 ct = i; 186 break; 187 } 188 } 189 if (ct < 0) 190 return -EINVAL; 191 rcd = ct & 0x01 ? 1 : 0; 192 wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0; 193 194 if (sdkp->cache_override) { 195 sdkp->WCE = wce; 196 sdkp->RCD = rcd; 197 sd_set_flush_flag(sdkp); 198 return count; 199 } 200 201 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 202 SD_MAX_RETRIES, &data, NULL)) 203 return -EINVAL; 204 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 205 data.block_descriptor_length); 206 buffer_data = buffer + data.header_length + 207 data.block_descriptor_length; 208 buffer_data[2] &= ~0x05; 209 buffer_data[2] |= wce << 2 | rcd; 210 sp = buffer_data[0] & 0x80 ? 1 : 0; 211 buffer_data[0] &= ~0x80; 212 213 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 214 SD_MAX_RETRIES, &data, &sshdr)) { 215 if (scsi_sense_valid(&sshdr)) 216 sd_print_sense_hdr(sdkp, &sshdr); 217 return -EINVAL; 218 } 219 revalidate_disk(sdkp->disk); 220 return count; 221 } 222 223 static ssize_t 224 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 225 char *buf) 226 { 227 struct scsi_disk *sdkp = to_scsi_disk(dev); 228 struct scsi_device *sdp = sdkp->device; 229 230 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 231 } 232 233 static ssize_t 234 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 235 const char *buf, size_t count) 236 { 237 struct scsi_disk *sdkp = to_scsi_disk(dev); 238 struct scsi_device *sdp = sdkp->device; 239 240 if (!capable(CAP_SYS_ADMIN)) 241 return -EACCES; 242 243 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 244 245 return count; 246 } 247 static DEVICE_ATTR_RW(manage_start_stop); 248 249 static ssize_t 250 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 251 { 252 struct scsi_disk *sdkp = to_scsi_disk(dev); 253 254 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 255 } 256 257 static ssize_t 258 allow_restart_store(struct device *dev, struct device_attribute *attr, 259 const char *buf, size_t count) 260 { 261 struct scsi_disk *sdkp = to_scsi_disk(dev); 262 struct scsi_device *sdp = sdkp->device; 263 264 if (!capable(CAP_SYS_ADMIN)) 265 return -EACCES; 266 267 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 268 return -EINVAL; 269 270 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 271 272 return count; 273 } 274 static DEVICE_ATTR_RW(allow_restart); 275 276 static ssize_t 277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 278 { 279 struct scsi_disk *sdkp = to_scsi_disk(dev); 280 int ct = sdkp->RCD + 2*sdkp->WCE; 281 282 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 283 } 284 static DEVICE_ATTR_RW(cache_type); 285 286 static ssize_t 287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 288 { 289 struct scsi_disk *sdkp = to_scsi_disk(dev); 290 291 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 292 } 293 static DEVICE_ATTR_RO(FUA); 294 295 static ssize_t 296 protection_type_show(struct device *dev, struct device_attribute *attr, 297 char *buf) 298 { 299 struct scsi_disk *sdkp = to_scsi_disk(dev); 300 301 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 302 } 303 304 static ssize_t 305 protection_type_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 struct scsi_disk *sdkp = to_scsi_disk(dev); 309 unsigned int val; 310 int err; 311 312 if (!capable(CAP_SYS_ADMIN)) 313 return -EACCES; 314 315 err = kstrtouint(buf, 10, &val); 316 317 if (err) 318 return err; 319 320 if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION) 321 sdkp->protection_type = val; 322 323 return count; 324 } 325 static DEVICE_ATTR_RW(protection_type); 326 327 static ssize_t 328 protection_mode_show(struct device *dev, struct device_attribute *attr, 329 char *buf) 330 { 331 struct scsi_disk *sdkp = to_scsi_disk(dev); 332 struct scsi_device *sdp = sdkp->device; 333 unsigned int dif, dix; 334 335 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 336 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 337 338 if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) { 339 dif = 0; 340 dix = 1; 341 } 342 343 if (!dif && !dix) 344 return snprintf(buf, 20, "none\n"); 345 346 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 347 } 348 static DEVICE_ATTR_RO(protection_mode); 349 350 static ssize_t 351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 352 { 353 struct scsi_disk *sdkp = to_scsi_disk(dev); 354 355 return snprintf(buf, 20, "%u\n", sdkp->ATO); 356 } 357 static DEVICE_ATTR_RO(app_tag_own); 358 359 static ssize_t 360 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 361 char *buf) 362 { 363 struct scsi_disk *sdkp = to_scsi_disk(dev); 364 365 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 366 } 367 static DEVICE_ATTR_RO(thin_provisioning); 368 369 static const char *lbp_mode[] = { 370 [SD_LBP_FULL] = "full", 371 [SD_LBP_UNMAP] = "unmap", 372 [SD_LBP_WS16] = "writesame_16", 373 [SD_LBP_WS10] = "writesame_10", 374 [SD_LBP_ZERO] = "writesame_zero", 375 [SD_LBP_DISABLE] = "disabled", 376 }; 377 378 static ssize_t 379 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 380 char *buf) 381 { 382 struct scsi_disk *sdkp = to_scsi_disk(dev); 383 384 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 385 } 386 387 static ssize_t 388 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 389 const char *buf, size_t count) 390 { 391 struct scsi_disk *sdkp = to_scsi_disk(dev); 392 struct scsi_device *sdp = sdkp->device; 393 394 if (!capable(CAP_SYS_ADMIN)) 395 return -EACCES; 396 397 if (sd_is_zoned(sdkp)) { 398 sd_config_discard(sdkp, SD_LBP_DISABLE); 399 return count; 400 } 401 402 if (sdp->type != TYPE_DISK) 403 return -EINVAL; 404 405 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 406 sd_config_discard(sdkp, SD_LBP_UNMAP); 407 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 408 sd_config_discard(sdkp, SD_LBP_WS16); 409 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 410 sd_config_discard(sdkp, SD_LBP_WS10); 411 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 412 sd_config_discard(sdkp, SD_LBP_ZERO); 413 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 414 sd_config_discard(sdkp, SD_LBP_DISABLE); 415 else 416 return -EINVAL; 417 418 return count; 419 } 420 static DEVICE_ATTR_RW(provisioning_mode); 421 422 static const char *zeroing_mode[] = { 423 [SD_ZERO_WRITE] = "write", 424 [SD_ZERO_WS] = "writesame", 425 [SD_ZERO_WS16_UNMAP] = "writesame_16_unmap", 426 [SD_ZERO_WS10_UNMAP] = "writesame_10_unmap", 427 }; 428 429 static ssize_t 430 zeroing_mode_show(struct device *dev, struct device_attribute *attr, 431 char *buf) 432 { 433 struct scsi_disk *sdkp = to_scsi_disk(dev); 434 435 return snprintf(buf, 20, "%s\n", zeroing_mode[sdkp->zeroing_mode]); 436 } 437 438 static ssize_t 439 zeroing_mode_store(struct device *dev, struct device_attribute *attr, 440 const char *buf, size_t count) 441 { 442 struct scsi_disk *sdkp = to_scsi_disk(dev); 443 444 if (!capable(CAP_SYS_ADMIN)) 445 return -EACCES; 446 447 if (!strncmp(buf, zeroing_mode[SD_ZERO_WRITE], 20)) 448 sdkp->zeroing_mode = SD_ZERO_WRITE; 449 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS], 20)) 450 sdkp->zeroing_mode = SD_ZERO_WS; 451 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS16_UNMAP], 20)) 452 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 453 else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS10_UNMAP], 20)) 454 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 455 else 456 return -EINVAL; 457 458 return count; 459 } 460 static DEVICE_ATTR_RW(zeroing_mode); 461 462 static ssize_t 463 max_medium_access_timeouts_show(struct device *dev, 464 struct device_attribute *attr, char *buf) 465 { 466 struct scsi_disk *sdkp = to_scsi_disk(dev); 467 468 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 469 } 470 471 static ssize_t 472 max_medium_access_timeouts_store(struct device *dev, 473 struct device_attribute *attr, const char *buf, 474 size_t count) 475 { 476 struct scsi_disk *sdkp = to_scsi_disk(dev); 477 int err; 478 479 if (!capable(CAP_SYS_ADMIN)) 480 return -EACCES; 481 482 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 483 484 return err ? err : count; 485 } 486 static DEVICE_ATTR_RW(max_medium_access_timeouts); 487 488 static ssize_t 489 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 490 char *buf) 491 { 492 struct scsi_disk *sdkp = to_scsi_disk(dev); 493 494 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 495 } 496 497 static ssize_t 498 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 499 const char *buf, size_t count) 500 { 501 struct scsi_disk *sdkp = to_scsi_disk(dev); 502 struct scsi_device *sdp = sdkp->device; 503 unsigned long max; 504 int err; 505 506 if (!capable(CAP_SYS_ADMIN)) 507 return -EACCES; 508 509 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 510 return -EINVAL; 511 512 err = kstrtoul(buf, 10, &max); 513 514 if (err) 515 return err; 516 517 if (max == 0) 518 sdp->no_write_same = 1; 519 else if (max <= SD_MAX_WS16_BLOCKS) { 520 sdp->no_write_same = 0; 521 sdkp->max_ws_blocks = max; 522 } 523 524 sd_config_write_same(sdkp); 525 526 return count; 527 } 528 static DEVICE_ATTR_RW(max_write_same_blocks); 529 530 static struct attribute *sd_disk_attrs[] = { 531 &dev_attr_cache_type.attr, 532 &dev_attr_FUA.attr, 533 &dev_attr_allow_restart.attr, 534 &dev_attr_manage_start_stop.attr, 535 &dev_attr_protection_type.attr, 536 &dev_attr_protection_mode.attr, 537 &dev_attr_app_tag_own.attr, 538 &dev_attr_thin_provisioning.attr, 539 &dev_attr_provisioning_mode.attr, 540 &dev_attr_zeroing_mode.attr, 541 &dev_attr_max_write_same_blocks.attr, 542 &dev_attr_max_medium_access_timeouts.attr, 543 NULL, 544 }; 545 ATTRIBUTE_GROUPS(sd_disk); 546 547 static struct class sd_disk_class = { 548 .name = "scsi_disk", 549 .owner = THIS_MODULE, 550 .dev_release = scsi_disk_release, 551 .dev_groups = sd_disk_groups, 552 }; 553 554 static const struct dev_pm_ops sd_pm_ops = { 555 .suspend = sd_suspend_system, 556 .resume = sd_resume, 557 .poweroff = sd_suspend_system, 558 .restore = sd_resume, 559 .runtime_suspend = sd_suspend_runtime, 560 .runtime_resume = sd_resume, 561 }; 562 563 static struct scsi_driver sd_template = { 564 .gendrv = { 565 .name = "sd", 566 .owner = THIS_MODULE, 567 .probe = sd_probe, 568 .remove = sd_remove, 569 .shutdown = sd_shutdown, 570 .pm = &sd_pm_ops, 571 }, 572 .rescan = sd_rescan, 573 .init_command = sd_init_command, 574 .uninit_command = sd_uninit_command, 575 .done = sd_done, 576 .eh_action = sd_eh_action, 577 .eh_reset = sd_eh_reset, 578 }; 579 580 /* 581 * Dummy kobj_map->probe function. 582 * The default ->probe function will call modprobe, which is 583 * pointless as this module is already loaded. 584 */ 585 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 586 { 587 return NULL; 588 } 589 590 /* 591 * Device no to disk mapping: 592 * 593 * major disc2 disc p1 594 * |............|.............|....|....| <- dev_t 595 * 31 20 19 8 7 4 3 0 596 * 597 * Inside a major, we have 16k disks, however mapped non- 598 * contiguously. The first 16 disks are for major0, the next 599 * ones with major1, ... Disk 256 is for major0 again, disk 272 600 * for major1, ... 601 * As we stay compatible with our numbering scheme, we can reuse 602 * the well-know SCSI majors 8, 65--71, 136--143. 603 */ 604 static int sd_major(int major_idx) 605 { 606 switch (major_idx) { 607 case 0: 608 return SCSI_DISK0_MAJOR; 609 case 1 ... 7: 610 return SCSI_DISK1_MAJOR + major_idx - 1; 611 case 8 ... 15: 612 return SCSI_DISK8_MAJOR + major_idx - 8; 613 default: 614 BUG(); 615 return 0; /* shut up gcc */ 616 } 617 } 618 619 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 620 { 621 struct scsi_disk *sdkp = NULL; 622 623 mutex_lock(&sd_ref_mutex); 624 625 if (disk->private_data) { 626 sdkp = scsi_disk(disk); 627 if (scsi_device_get(sdkp->device) == 0) 628 get_device(&sdkp->dev); 629 else 630 sdkp = NULL; 631 } 632 mutex_unlock(&sd_ref_mutex); 633 return sdkp; 634 } 635 636 static void scsi_disk_put(struct scsi_disk *sdkp) 637 { 638 struct scsi_device *sdev = sdkp->device; 639 640 mutex_lock(&sd_ref_mutex); 641 put_device(&sdkp->dev); 642 scsi_device_put(sdev); 643 mutex_unlock(&sd_ref_mutex); 644 } 645 646 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd, 647 unsigned int dix, unsigned int dif) 648 { 649 struct bio *bio = scmd->request->bio; 650 unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif); 651 unsigned int protect = 0; 652 653 if (dix) { /* DIX Type 0, 1, 2, 3 */ 654 if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM)) 655 scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM; 656 657 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 658 scmd->prot_flags |= SCSI_PROT_GUARD_CHECK; 659 } 660 661 if (dif != T10_PI_TYPE3_PROTECTION) { /* DIX/DIF Type 0, 1, 2 */ 662 scmd->prot_flags |= SCSI_PROT_REF_INCREMENT; 663 664 if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false) 665 scmd->prot_flags |= SCSI_PROT_REF_CHECK; 666 } 667 668 if (dif) { /* DIX/DIF Type 1, 2, 3 */ 669 scmd->prot_flags |= SCSI_PROT_TRANSFER_PI; 670 671 if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK)) 672 protect = 3 << 5; /* Disable target PI checking */ 673 else 674 protect = 1 << 5; /* Enable target PI checking */ 675 } 676 677 scsi_set_prot_op(scmd, prot_op); 678 scsi_set_prot_type(scmd, dif); 679 scmd->prot_flags &= sd_prot_flag_mask(prot_op); 680 681 return protect; 682 } 683 684 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 685 { 686 struct request_queue *q = sdkp->disk->queue; 687 unsigned int logical_block_size = sdkp->device->sector_size; 688 unsigned int max_blocks = 0; 689 690 q->limits.discard_alignment = 691 sdkp->unmap_alignment * logical_block_size; 692 q->limits.discard_granularity = 693 max(sdkp->physical_block_size, 694 sdkp->unmap_granularity * logical_block_size); 695 sdkp->provisioning_mode = mode; 696 697 switch (mode) { 698 699 case SD_LBP_DISABLE: 700 blk_queue_max_discard_sectors(q, 0); 701 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 702 return; 703 704 case SD_LBP_UNMAP: 705 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 706 (u32)SD_MAX_WS16_BLOCKS); 707 break; 708 709 case SD_LBP_WS16: 710 max_blocks = min_not_zero(sdkp->max_ws_blocks, 711 (u32)SD_MAX_WS16_BLOCKS); 712 break; 713 714 case SD_LBP_WS10: 715 max_blocks = min_not_zero(sdkp->max_ws_blocks, 716 (u32)SD_MAX_WS10_BLOCKS); 717 break; 718 719 case SD_LBP_ZERO: 720 max_blocks = min_not_zero(sdkp->max_ws_blocks, 721 (u32)SD_MAX_WS10_BLOCKS); 722 break; 723 } 724 725 blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9)); 726 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 727 } 728 729 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd) 730 { 731 struct scsi_device *sdp = cmd->device; 732 struct request *rq = cmd->request; 733 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 734 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 735 unsigned int data_len = 24; 736 char *buf; 737 738 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 739 if (!rq->special_vec.bv_page) 740 return BLKPREP_DEFER; 741 rq->special_vec.bv_offset = 0; 742 rq->special_vec.bv_len = data_len; 743 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 744 745 cmd->cmd_len = 10; 746 cmd->cmnd[0] = UNMAP; 747 cmd->cmnd[8] = 24; 748 749 buf = page_address(rq->special_vec.bv_page); 750 put_unaligned_be16(6 + 16, &buf[0]); 751 put_unaligned_be16(16, &buf[2]); 752 put_unaligned_be64(sector, &buf[8]); 753 put_unaligned_be32(nr_sectors, &buf[16]); 754 755 cmd->allowed = SD_MAX_RETRIES; 756 cmd->transfersize = data_len; 757 rq->timeout = SD_TIMEOUT; 758 scsi_req(rq)->resid_len = data_len; 759 760 return scsi_init_io(cmd); 761 } 762 763 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap) 764 { 765 struct scsi_device *sdp = cmd->device; 766 struct request *rq = cmd->request; 767 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 768 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 769 u32 data_len = sdp->sector_size; 770 771 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 772 if (!rq->special_vec.bv_page) 773 return BLKPREP_DEFER; 774 rq->special_vec.bv_offset = 0; 775 rq->special_vec.bv_len = data_len; 776 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 777 778 cmd->cmd_len = 16; 779 cmd->cmnd[0] = WRITE_SAME_16; 780 if (unmap) 781 cmd->cmnd[1] = 0x8; /* UNMAP */ 782 put_unaligned_be64(sector, &cmd->cmnd[2]); 783 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 784 785 cmd->allowed = SD_MAX_RETRIES; 786 cmd->transfersize = data_len; 787 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 788 scsi_req(rq)->resid_len = data_len; 789 790 return scsi_init_io(cmd); 791 } 792 793 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap) 794 { 795 struct scsi_device *sdp = cmd->device; 796 struct request *rq = cmd->request; 797 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 798 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 799 u32 data_len = sdp->sector_size; 800 801 rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 802 if (!rq->special_vec.bv_page) 803 return BLKPREP_DEFER; 804 rq->special_vec.bv_offset = 0; 805 rq->special_vec.bv_len = data_len; 806 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 807 808 cmd->cmd_len = 10; 809 cmd->cmnd[0] = WRITE_SAME; 810 if (unmap) 811 cmd->cmnd[1] = 0x8; /* UNMAP */ 812 put_unaligned_be32(sector, &cmd->cmnd[2]); 813 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 814 815 cmd->allowed = SD_MAX_RETRIES; 816 cmd->transfersize = data_len; 817 rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT; 818 scsi_req(rq)->resid_len = data_len; 819 820 return scsi_init_io(cmd); 821 } 822 823 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd) 824 { 825 struct request *rq = cmd->request; 826 struct scsi_device *sdp = cmd->device; 827 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 828 u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9); 829 u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9); 830 831 if (!(rq->cmd_flags & REQ_NOUNMAP)) { 832 switch (sdkp->zeroing_mode) { 833 case SD_ZERO_WS16_UNMAP: 834 return sd_setup_write_same16_cmnd(cmd, true); 835 case SD_ZERO_WS10_UNMAP: 836 return sd_setup_write_same10_cmnd(cmd, true); 837 } 838 } 839 840 if (sdp->no_write_same) 841 return BLKPREP_INVALID; 842 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) 843 return sd_setup_write_same16_cmnd(cmd, false); 844 return sd_setup_write_same10_cmnd(cmd, false); 845 } 846 847 static void sd_config_write_same(struct scsi_disk *sdkp) 848 { 849 struct request_queue *q = sdkp->disk->queue; 850 unsigned int logical_block_size = sdkp->device->sector_size; 851 852 if (sdkp->device->no_write_same) { 853 sdkp->max_ws_blocks = 0; 854 goto out; 855 } 856 857 /* Some devices can not handle block counts above 0xffff despite 858 * supporting WRITE SAME(16). Consequently we default to 64k 859 * blocks per I/O unless the device explicitly advertises a 860 * bigger limit. 861 */ 862 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 863 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 864 (u32)SD_MAX_WS16_BLOCKS); 865 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 866 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 867 (u32)SD_MAX_WS10_BLOCKS); 868 else { 869 sdkp->device->no_write_same = 1; 870 sdkp->max_ws_blocks = 0; 871 } 872 873 if (sdkp->lbprz && sdkp->lbpws) 874 sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP; 875 else if (sdkp->lbprz && sdkp->lbpws10) 876 sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP; 877 else if (sdkp->max_ws_blocks) 878 sdkp->zeroing_mode = SD_ZERO_WS; 879 else 880 sdkp->zeroing_mode = SD_ZERO_WRITE; 881 882 out: 883 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 884 (logical_block_size >> 9)); 885 blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks * 886 (logical_block_size >> 9)); 887 } 888 889 /** 890 * sd_setup_write_same_cmnd - write the same data to multiple blocks 891 * @cmd: command to prepare 892 * 893 * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on 894 * the preference indicated by the target device. 895 **/ 896 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd) 897 { 898 struct request *rq = cmd->request; 899 struct scsi_device *sdp = cmd->device; 900 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 901 struct bio *bio = rq->bio; 902 sector_t sector = blk_rq_pos(rq); 903 unsigned int nr_sectors = blk_rq_sectors(rq); 904 unsigned int nr_bytes = blk_rq_bytes(rq); 905 int ret; 906 907 if (sdkp->device->no_write_same) 908 return BLKPREP_INVALID; 909 910 BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size); 911 912 if (sd_is_zoned(sdkp)) { 913 ret = sd_zbc_write_lock_zone(cmd); 914 if (ret != BLKPREP_OK) 915 return ret; 916 } 917 918 sector >>= ilog2(sdp->sector_size) - 9; 919 nr_sectors >>= ilog2(sdp->sector_size) - 9; 920 921 rq->timeout = SD_WRITE_SAME_TIMEOUT; 922 923 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 924 cmd->cmd_len = 16; 925 cmd->cmnd[0] = WRITE_SAME_16; 926 put_unaligned_be64(sector, &cmd->cmnd[2]); 927 put_unaligned_be32(nr_sectors, &cmd->cmnd[10]); 928 } else { 929 cmd->cmd_len = 10; 930 cmd->cmnd[0] = WRITE_SAME; 931 put_unaligned_be32(sector, &cmd->cmnd[2]); 932 put_unaligned_be16(nr_sectors, &cmd->cmnd[7]); 933 } 934 935 cmd->transfersize = sdp->sector_size; 936 cmd->allowed = SD_MAX_RETRIES; 937 938 /* 939 * For WRITE SAME the data transferred via the DATA OUT buffer is 940 * different from the amount of data actually written to the target. 941 * 942 * We set up __data_len to the amount of data transferred via the 943 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list 944 * to transfer a single sector of data first, but then reset it to 945 * the amount of data to be written right after so that the I/O path 946 * knows how much to actually write. 947 */ 948 rq->__data_len = sdp->sector_size; 949 ret = scsi_init_io(cmd); 950 rq->__data_len = nr_bytes; 951 return ret; 952 } 953 954 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd) 955 { 956 struct request *rq = cmd->request; 957 958 /* flush requests don't perform I/O, zero the S/G table */ 959 memset(&cmd->sdb, 0, sizeof(cmd->sdb)); 960 961 cmd->cmnd[0] = SYNCHRONIZE_CACHE; 962 cmd->cmd_len = 10; 963 cmd->transfersize = 0; 964 cmd->allowed = SD_MAX_RETRIES; 965 966 rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER; 967 return BLKPREP_OK; 968 } 969 970 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt) 971 { 972 struct request *rq = SCpnt->request; 973 struct scsi_device *sdp = SCpnt->device; 974 struct gendisk *disk = rq->rq_disk; 975 struct scsi_disk *sdkp = scsi_disk(disk); 976 sector_t block = blk_rq_pos(rq); 977 sector_t threshold; 978 unsigned int this_count = blk_rq_sectors(rq); 979 unsigned int dif, dix; 980 bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE; 981 int ret; 982 unsigned char protect; 983 984 if (zoned_write) { 985 ret = sd_zbc_write_lock_zone(SCpnt); 986 if (ret != BLKPREP_OK) 987 return ret; 988 } 989 990 ret = scsi_init_io(SCpnt); 991 if (ret != BLKPREP_OK) 992 goto out; 993 SCpnt = rq->special; 994 995 /* from here on until we're complete, any goto out 996 * is used for a killable error condition */ 997 ret = BLKPREP_KILL; 998 999 SCSI_LOG_HLQUEUE(1, 1000 scmd_printk(KERN_INFO, SCpnt, 1001 "%s: block=%llu, count=%d\n", 1002 __func__, (unsigned long long)block, this_count)); 1003 1004 if (!sdp || !scsi_device_online(sdp) || 1005 block + blk_rq_sectors(rq) > get_capacity(disk)) { 1006 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1007 "Finishing %u sectors\n", 1008 blk_rq_sectors(rq))); 1009 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1010 "Retry with 0x%p\n", SCpnt)); 1011 goto out; 1012 } 1013 1014 if (sdp->changed) { 1015 /* 1016 * quietly refuse to do anything to a changed disc until 1017 * the changed bit has been reset 1018 */ 1019 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 1020 goto out; 1021 } 1022 1023 /* 1024 * Some SD card readers can't handle multi-sector accesses which touch 1025 * the last one or two hardware sectors. Split accesses as needed. 1026 */ 1027 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 1028 (sdp->sector_size / 512); 1029 1030 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 1031 if (block < threshold) { 1032 /* Access up to the threshold but not beyond */ 1033 this_count = threshold - block; 1034 } else { 1035 /* Access only a single hardware sector */ 1036 this_count = sdp->sector_size / 512; 1037 } 1038 } 1039 1040 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 1041 (unsigned long long)block)); 1042 1043 /* 1044 * If we have a 1K hardware sectorsize, prevent access to single 1045 * 512 byte sectors. In theory we could handle this - in fact 1046 * the scsi cdrom driver must be able to handle this because 1047 * we typically use 1K blocksizes, and cdroms typically have 1048 * 2K hardware sectorsizes. Of course, things are simpler 1049 * with the cdrom, since it is read-only. For performance 1050 * reasons, the filesystems should be able to handle this 1051 * and not force the scsi disk driver to use bounce buffers 1052 * for this. 1053 */ 1054 if (sdp->sector_size == 1024) { 1055 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 1056 scmd_printk(KERN_ERR, SCpnt, 1057 "Bad block number requested\n"); 1058 goto out; 1059 } else { 1060 block = block >> 1; 1061 this_count = this_count >> 1; 1062 } 1063 } 1064 if (sdp->sector_size == 2048) { 1065 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 1066 scmd_printk(KERN_ERR, SCpnt, 1067 "Bad block number requested\n"); 1068 goto out; 1069 } else { 1070 block = block >> 2; 1071 this_count = this_count >> 2; 1072 } 1073 } 1074 if (sdp->sector_size == 4096) { 1075 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 1076 scmd_printk(KERN_ERR, SCpnt, 1077 "Bad block number requested\n"); 1078 goto out; 1079 } else { 1080 block = block >> 3; 1081 this_count = this_count >> 3; 1082 } 1083 } 1084 if (rq_data_dir(rq) == WRITE) { 1085 SCpnt->cmnd[0] = WRITE_6; 1086 1087 if (blk_integrity_rq(rq)) 1088 sd_dif_prepare(SCpnt); 1089 1090 } else if (rq_data_dir(rq) == READ) { 1091 SCpnt->cmnd[0] = READ_6; 1092 } else { 1093 scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq)); 1094 goto out; 1095 } 1096 1097 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1098 "%s %d/%u 512 byte blocks.\n", 1099 (rq_data_dir(rq) == WRITE) ? 1100 "writing" : "reading", this_count, 1101 blk_rq_sectors(rq))); 1102 1103 dix = scsi_prot_sg_count(SCpnt); 1104 dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type); 1105 1106 if (dif || dix) 1107 protect = sd_setup_protect_cmnd(SCpnt, dix, dif); 1108 else 1109 protect = 0; 1110 1111 if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) { 1112 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1113 1114 if (unlikely(SCpnt->cmnd == NULL)) { 1115 ret = BLKPREP_DEFER; 1116 goto out; 1117 } 1118 1119 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1120 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1121 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1122 SCpnt->cmnd[7] = 0x18; 1123 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1124 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1125 1126 /* LBA */ 1127 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1128 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1129 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1130 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1131 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1132 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1133 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1134 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1135 1136 /* Expected Indirect LBA */ 1137 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1138 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1139 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1140 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1141 1142 /* Transfer length */ 1143 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1144 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1145 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1146 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1147 } else if (sdp->use_16_for_rw || (this_count > 0xffff)) { 1148 SCpnt->cmnd[0] += READ_16 - READ_6; 1149 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1150 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1151 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1152 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1153 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1154 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1155 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1156 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1157 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1158 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1159 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1160 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1161 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1162 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1163 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1164 scsi_device_protection(SCpnt->device) || 1165 SCpnt->device->use_10_for_rw) { 1166 SCpnt->cmnd[0] += READ_10 - READ_6; 1167 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1168 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1169 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1170 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1171 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1172 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1173 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1174 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1175 } else { 1176 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1177 /* 1178 * This happens only if this drive failed 1179 * 10byte rw command with ILLEGAL_REQUEST 1180 * during operation and thus turned off 1181 * use_10_for_rw. 1182 */ 1183 scmd_printk(KERN_ERR, SCpnt, 1184 "FUA write on READ/WRITE(6) drive\n"); 1185 goto out; 1186 } 1187 1188 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1189 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1190 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1191 SCpnt->cmnd[4] = (unsigned char) this_count; 1192 SCpnt->cmnd[5] = 0; 1193 } 1194 SCpnt->sdb.length = this_count * sdp->sector_size; 1195 1196 /* 1197 * We shouldn't disconnect in the middle of a sector, so with a dumb 1198 * host adapter, it's safe to assume that we can at least transfer 1199 * this many bytes between each connect / disconnect. 1200 */ 1201 SCpnt->transfersize = sdp->sector_size; 1202 SCpnt->underflow = this_count << 9; 1203 SCpnt->allowed = SD_MAX_RETRIES; 1204 1205 /* 1206 * This indicates that the command is ready from our end to be 1207 * queued. 1208 */ 1209 ret = BLKPREP_OK; 1210 out: 1211 if (zoned_write && ret != BLKPREP_OK) 1212 sd_zbc_write_unlock_zone(SCpnt); 1213 1214 return ret; 1215 } 1216 1217 static int sd_init_command(struct scsi_cmnd *cmd) 1218 { 1219 struct request *rq = cmd->request; 1220 1221 switch (req_op(rq)) { 1222 case REQ_OP_DISCARD: 1223 switch (scsi_disk(rq->rq_disk)->provisioning_mode) { 1224 case SD_LBP_UNMAP: 1225 return sd_setup_unmap_cmnd(cmd); 1226 case SD_LBP_WS16: 1227 return sd_setup_write_same16_cmnd(cmd, true); 1228 case SD_LBP_WS10: 1229 return sd_setup_write_same10_cmnd(cmd, true); 1230 case SD_LBP_ZERO: 1231 return sd_setup_write_same10_cmnd(cmd, false); 1232 default: 1233 return BLKPREP_INVALID; 1234 } 1235 case REQ_OP_WRITE_ZEROES: 1236 return sd_setup_write_zeroes_cmnd(cmd); 1237 case REQ_OP_WRITE_SAME: 1238 return sd_setup_write_same_cmnd(cmd); 1239 case REQ_OP_FLUSH: 1240 return sd_setup_flush_cmnd(cmd); 1241 case REQ_OP_READ: 1242 case REQ_OP_WRITE: 1243 return sd_setup_read_write_cmnd(cmd); 1244 case REQ_OP_ZONE_REPORT: 1245 return sd_zbc_setup_report_cmnd(cmd); 1246 case REQ_OP_ZONE_RESET: 1247 return sd_zbc_setup_reset_cmnd(cmd); 1248 default: 1249 BUG(); 1250 } 1251 } 1252 1253 static void sd_uninit_command(struct scsi_cmnd *SCpnt) 1254 { 1255 struct request *rq = SCpnt->request; 1256 1257 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1258 __free_page(rq->special_vec.bv_page); 1259 1260 if (SCpnt->cmnd != scsi_req(rq)->cmd) { 1261 mempool_free(SCpnt->cmnd, sd_cdb_pool); 1262 SCpnt->cmnd = NULL; 1263 SCpnt->cmd_len = 0; 1264 } 1265 } 1266 1267 /** 1268 * sd_open - open a scsi disk device 1269 * @bdev: Block device of the scsi disk to open 1270 * @mode: FMODE_* mask 1271 * 1272 * Returns 0 if successful. Returns a negated errno value in case 1273 * of error. 1274 * 1275 * Note: This can be called from a user context (e.g. fsck(1) ) 1276 * or from within the kernel (e.g. as a result of a mount(1) ). 1277 * In the latter case @inode and @filp carry an abridged amount 1278 * of information as noted above. 1279 * 1280 * Locking: called with bdev->bd_mutex held. 1281 **/ 1282 static int sd_open(struct block_device *bdev, fmode_t mode) 1283 { 1284 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1285 struct scsi_device *sdev; 1286 int retval; 1287 1288 if (!sdkp) 1289 return -ENXIO; 1290 1291 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1292 1293 sdev = sdkp->device; 1294 1295 /* 1296 * If the device is in error recovery, wait until it is done. 1297 * If the device is offline, then disallow any access to it. 1298 */ 1299 retval = -ENXIO; 1300 if (!scsi_block_when_processing_errors(sdev)) 1301 goto error_out; 1302 1303 if (sdev->removable || sdkp->write_prot) 1304 check_disk_change(bdev); 1305 1306 /* 1307 * If the drive is empty, just let the open fail. 1308 */ 1309 retval = -ENOMEDIUM; 1310 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1311 goto error_out; 1312 1313 /* 1314 * If the device has the write protect tab set, have the open fail 1315 * if the user expects to be able to write to the thing. 1316 */ 1317 retval = -EROFS; 1318 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1319 goto error_out; 1320 1321 /* 1322 * It is possible that the disk changing stuff resulted in 1323 * the device being taken offline. If this is the case, 1324 * report this to the user, and don't pretend that the 1325 * open actually succeeded. 1326 */ 1327 retval = -ENXIO; 1328 if (!scsi_device_online(sdev)) 1329 goto error_out; 1330 1331 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1332 if (scsi_block_when_processing_errors(sdev)) 1333 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1334 } 1335 1336 return 0; 1337 1338 error_out: 1339 scsi_disk_put(sdkp); 1340 return retval; 1341 } 1342 1343 /** 1344 * sd_release - invoked when the (last) close(2) is called on this 1345 * scsi disk. 1346 * @disk: disk to release 1347 * @mode: FMODE_* mask 1348 * 1349 * Returns 0. 1350 * 1351 * Note: may block (uninterruptible) if error recovery is underway 1352 * on this disk. 1353 * 1354 * Locking: called with bdev->bd_mutex held. 1355 **/ 1356 static void sd_release(struct gendisk *disk, fmode_t mode) 1357 { 1358 struct scsi_disk *sdkp = scsi_disk(disk); 1359 struct scsi_device *sdev = sdkp->device; 1360 1361 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1362 1363 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1364 if (scsi_block_when_processing_errors(sdev)) 1365 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1366 } 1367 1368 /* 1369 * XXX and what if there are packets in flight and this close() 1370 * XXX is followed by a "rmmod sd_mod"? 1371 */ 1372 1373 scsi_disk_put(sdkp); 1374 } 1375 1376 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1377 { 1378 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1379 struct scsi_device *sdp = sdkp->device; 1380 struct Scsi_Host *host = sdp->host; 1381 sector_t capacity = logical_to_sectors(sdp, sdkp->capacity); 1382 int diskinfo[4]; 1383 1384 /* default to most commonly used values */ 1385 diskinfo[0] = 0x40; /* 1 << 6 */ 1386 diskinfo[1] = 0x20; /* 1 << 5 */ 1387 diskinfo[2] = capacity >> 11; 1388 1389 /* override with calculated, extended default, or driver values */ 1390 if (host->hostt->bios_param) 1391 host->hostt->bios_param(sdp, bdev, capacity, diskinfo); 1392 else 1393 scsicam_bios_param(bdev, capacity, diskinfo); 1394 1395 geo->heads = diskinfo[0]; 1396 geo->sectors = diskinfo[1]; 1397 geo->cylinders = diskinfo[2]; 1398 return 0; 1399 } 1400 1401 /** 1402 * sd_ioctl - process an ioctl 1403 * @bdev: target block device 1404 * @mode: FMODE_* mask 1405 * @cmd: ioctl command number 1406 * @arg: this is third argument given to ioctl(2) system call. 1407 * Often contains a pointer. 1408 * 1409 * Returns 0 if successful (some ioctls return positive numbers on 1410 * success as well). Returns a negated errno value in case of error. 1411 * 1412 * Note: most ioctls are forward onto the block subsystem or further 1413 * down in the scsi subsystem. 1414 **/ 1415 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1416 unsigned int cmd, unsigned long arg) 1417 { 1418 struct gendisk *disk = bdev->bd_disk; 1419 struct scsi_disk *sdkp = scsi_disk(disk); 1420 struct scsi_device *sdp = sdkp->device; 1421 void __user *p = (void __user *)arg; 1422 int error; 1423 1424 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1425 "cmd=0x%x\n", disk->disk_name, cmd)); 1426 1427 error = scsi_verify_blk_ioctl(bdev, cmd); 1428 if (error < 0) 1429 return error; 1430 1431 /* 1432 * If we are in the middle of error recovery, don't let anyone 1433 * else try and use this device. Also, if error recovery fails, it 1434 * may try and take the device offline, in which case all further 1435 * access to the device is prohibited. 1436 */ 1437 error = scsi_ioctl_block_when_processing_errors(sdp, cmd, 1438 (mode & FMODE_NDELAY) != 0); 1439 if (error) 1440 goto out; 1441 1442 /* 1443 * Send SCSI addressing ioctls directly to mid level, send other 1444 * ioctls to block level and then onto mid level if they can't be 1445 * resolved. 1446 */ 1447 switch (cmd) { 1448 case SCSI_IOCTL_GET_IDLUN: 1449 case SCSI_IOCTL_GET_BUS_NUMBER: 1450 error = scsi_ioctl(sdp, cmd, p); 1451 break; 1452 default: 1453 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1454 if (error != -ENOTTY) 1455 break; 1456 error = scsi_ioctl(sdp, cmd, p); 1457 break; 1458 } 1459 out: 1460 return error; 1461 } 1462 1463 static void set_media_not_present(struct scsi_disk *sdkp) 1464 { 1465 if (sdkp->media_present) 1466 sdkp->device->changed = 1; 1467 1468 if (sdkp->device->removable) { 1469 sdkp->media_present = 0; 1470 sdkp->capacity = 0; 1471 } 1472 } 1473 1474 static int media_not_present(struct scsi_disk *sdkp, 1475 struct scsi_sense_hdr *sshdr) 1476 { 1477 if (!scsi_sense_valid(sshdr)) 1478 return 0; 1479 1480 /* not invoked for commands that could return deferred errors */ 1481 switch (sshdr->sense_key) { 1482 case UNIT_ATTENTION: 1483 case NOT_READY: 1484 /* medium not present */ 1485 if (sshdr->asc == 0x3A) { 1486 set_media_not_present(sdkp); 1487 return 1; 1488 } 1489 } 1490 return 0; 1491 } 1492 1493 /** 1494 * sd_check_events - check media events 1495 * @disk: kernel device descriptor 1496 * @clearing: disk events currently being cleared 1497 * 1498 * Returns mask of DISK_EVENT_*. 1499 * 1500 * Note: this function is invoked from the block subsystem. 1501 **/ 1502 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1503 { 1504 struct scsi_disk *sdkp = scsi_disk_get(disk); 1505 struct scsi_device *sdp; 1506 int retval; 1507 1508 if (!sdkp) 1509 return 0; 1510 1511 sdp = sdkp->device; 1512 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1513 1514 /* 1515 * If the device is offline, don't send any commands - just pretend as 1516 * if the command failed. If the device ever comes back online, we 1517 * can deal with it then. It is only because of unrecoverable errors 1518 * that we would ever take a device offline in the first place. 1519 */ 1520 if (!scsi_device_online(sdp)) { 1521 set_media_not_present(sdkp); 1522 goto out; 1523 } 1524 1525 /* 1526 * Using TEST_UNIT_READY enables differentiation between drive with 1527 * no cartridge loaded - NOT READY, drive with changed cartridge - 1528 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1529 * 1530 * Drives that auto spin down. eg iomega jaz 1G, will be started 1531 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1532 * sd_revalidate() is called. 1533 */ 1534 if (scsi_block_when_processing_errors(sdp)) { 1535 struct scsi_sense_hdr sshdr = { 0, }; 1536 1537 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1538 &sshdr); 1539 1540 /* failed to execute TUR, assume media not present */ 1541 if (host_byte(retval)) { 1542 set_media_not_present(sdkp); 1543 goto out; 1544 } 1545 1546 if (media_not_present(sdkp, &sshdr)) 1547 goto out; 1548 } 1549 1550 /* 1551 * For removable scsi disk we have to recognise the presence 1552 * of a disk in the drive. 1553 */ 1554 if (!sdkp->media_present) 1555 sdp->changed = 1; 1556 sdkp->media_present = 1; 1557 out: 1558 /* 1559 * sdp->changed is set under the following conditions: 1560 * 1561 * Medium present state has changed in either direction. 1562 * Device has indicated UNIT_ATTENTION. 1563 */ 1564 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1565 sdp->changed = 0; 1566 scsi_disk_put(sdkp); 1567 return retval; 1568 } 1569 1570 static int sd_sync_cache(struct scsi_disk *sdkp) 1571 { 1572 int retries, res; 1573 struct scsi_device *sdp = sdkp->device; 1574 const int timeout = sdp->request_queue->rq_timeout 1575 * SD_FLUSH_TIMEOUT_MULTIPLIER; 1576 struct scsi_sense_hdr sshdr; 1577 1578 if (!scsi_device_online(sdp)) 1579 return -ENODEV; 1580 1581 for (retries = 3; retries > 0; --retries) { 1582 unsigned char cmd[10] = { 0 }; 1583 1584 cmd[0] = SYNCHRONIZE_CACHE; 1585 /* 1586 * Leave the rest of the command zero to indicate 1587 * flush everything. 1588 */ 1589 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 1590 timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL); 1591 if (res == 0) 1592 break; 1593 } 1594 1595 if (res) { 1596 sd_print_result(sdkp, "Synchronize Cache(10) failed", res); 1597 1598 if (driver_byte(res) & DRIVER_SENSE) 1599 sd_print_sense_hdr(sdkp, &sshdr); 1600 /* we need to evaluate the error return */ 1601 if (scsi_sense_valid(&sshdr) && 1602 (sshdr.asc == 0x3a || /* medium not present */ 1603 sshdr.asc == 0x20)) /* invalid command */ 1604 /* this is no error here */ 1605 return 0; 1606 1607 switch (host_byte(res)) { 1608 /* ignore errors due to racing a disconnection */ 1609 case DID_BAD_TARGET: 1610 case DID_NO_CONNECT: 1611 return 0; 1612 /* signal the upper layer it might try again */ 1613 case DID_BUS_BUSY: 1614 case DID_IMM_RETRY: 1615 case DID_REQUEUE: 1616 case DID_SOFT_ERROR: 1617 return -EBUSY; 1618 default: 1619 return -EIO; 1620 } 1621 } 1622 return 0; 1623 } 1624 1625 static void sd_rescan(struct device *dev) 1626 { 1627 struct scsi_disk *sdkp = dev_get_drvdata(dev); 1628 1629 revalidate_disk(sdkp->disk); 1630 } 1631 1632 1633 #ifdef CONFIG_COMPAT 1634 /* 1635 * This gets directly called from VFS. When the ioctl 1636 * is not recognized we go back to the other translation paths. 1637 */ 1638 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1639 unsigned int cmd, unsigned long arg) 1640 { 1641 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1642 int error; 1643 1644 error = scsi_ioctl_block_when_processing_errors(sdev, cmd, 1645 (mode & FMODE_NDELAY) != 0); 1646 if (error) 1647 return error; 1648 1649 /* 1650 * Let the static ioctl translation table take care of it. 1651 */ 1652 if (!sdev->host->hostt->compat_ioctl) 1653 return -ENOIOCTLCMD; 1654 return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1655 } 1656 #endif 1657 1658 static char sd_pr_type(enum pr_type type) 1659 { 1660 switch (type) { 1661 case PR_WRITE_EXCLUSIVE: 1662 return 0x01; 1663 case PR_EXCLUSIVE_ACCESS: 1664 return 0x03; 1665 case PR_WRITE_EXCLUSIVE_REG_ONLY: 1666 return 0x05; 1667 case PR_EXCLUSIVE_ACCESS_REG_ONLY: 1668 return 0x06; 1669 case PR_WRITE_EXCLUSIVE_ALL_REGS: 1670 return 0x07; 1671 case PR_EXCLUSIVE_ACCESS_ALL_REGS: 1672 return 0x08; 1673 default: 1674 return 0; 1675 } 1676 }; 1677 1678 static int sd_pr_command(struct block_device *bdev, u8 sa, 1679 u64 key, u64 sa_key, u8 type, u8 flags) 1680 { 1681 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1682 struct scsi_sense_hdr sshdr; 1683 int result; 1684 u8 cmd[16] = { 0, }; 1685 u8 data[24] = { 0, }; 1686 1687 cmd[0] = PERSISTENT_RESERVE_OUT; 1688 cmd[1] = sa; 1689 cmd[2] = type; 1690 put_unaligned_be32(sizeof(data), &cmd[5]); 1691 1692 put_unaligned_be64(key, &data[0]); 1693 put_unaligned_be64(sa_key, &data[8]); 1694 data[20] = flags; 1695 1696 result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data), 1697 &sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1698 1699 if ((driver_byte(result) & DRIVER_SENSE) && 1700 (scsi_sense_valid(&sshdr))) { 1701 sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result); 1702 scsi_print_sense_hdr(sdev, NULL, &sshdr); 1703 } 1704 1705 return result; 1706 } 1707 1708 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key, 1709 u32 flags) 1710 { 1711 if (flags & ~PR_FL_IGNORE_KEY) 1712 return -EOPNOTSUPP; 1713 return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00, 1714 old_key, new_key, 0, 1715 (1 << 0) /* APTPL */); 1716 } 1717 1718 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type, 1719 u32 flags) 1720 { 1721 if (flags) 1722 return -EOPNOTSUPP; 1723 return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0); 1724 } 1725 1726 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type) 1727 { 1728 return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0); 1729 } 1730 1731 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key, 1732 enum pr_type type, bool abort) 1733 { 1734 return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key, 1735 sd_pr_type(type), 0); 1736 } 1737 1738 static int sd_pr_clear(struct block_device *bdev, u64 key) 1739 { 1740 return sd_pr_command(bdev, 0x03, key, 0, 0, 0); 1741 } 1742 1743 static const struct pr_ops sd_pr_ops = { 1744 .pr_register = sd_pr_register, 1745 .pr_reserve = sd_pr_reserve, 1746 .pr_release = sd_pr_release, 1747 .pr_preempt = sd_pr_preempt, 1748 .pr_clear = sd_pr_clear, 1749 }; 1750 1751 static const struct block_device_operations sd_fops = { 1752 .owner = THIS_MODULE, 1753 .open = sd_open, 1754 .release = sd_release, 1755 .ioctl = sd_ioctl, 1756 .getgeo = sd_getgeo, 1757 #ifdef CONFIG_COMPAT 1758 .compat_ioctl = sd_compat_ioctl, 1759 #endif 1760 .check_events = sd_check_events, 1761 .revalidate_disk = sd_revalidate_disk, 1762 .unlock_native_capacity = sd_unlock_native_capacity, 1763 .pr_ops = &sd_pr_ops, 1764 }; 1765 1766 /** 1767 * sd_eh_reset - reset error handling callback 1768 * @scmd: sd-issued command that has failed 1769 * 1770 * This function is called by the SCSI midlayer before starting 1771 * SCSI EH. When counting medium access failures we have to be 1772 * careful to register it only only once per device and SCSI EH run; 1773 * there might be several timed out commands which will cause the 1774 * 'max_medium_access_timeouts' counter to trigger after the first 1775 * SCSI EH run already and set the device to offline. 1776 * So this function resets the internal counter before starting SCSI EH. 1777 **/ 1778 static void sd_eh_reset(struct scsi_cmnd *scmd) 1779 { 1780 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1781 1782 /* New SCSI EH run, reset gate variable */ 1783 sdkp->ignore_medium_access_errors = false; 1784 } 1785 1786 /** 1787 * sd_eh_action - error handling callback 1788 * @scmd: sd-issued command that has failed 1789 * @eh_disp: The recovery disposition suggested by the midlayer 1790 * 1791 * This function is called by the SCSI midlayer upon completion of an 1792 * error test command (currently TEST UNIT READY). The result of sending 1793 * the eh command is passed in eh_disp. We're looking for devices that 1794 * fail medium access commands but are OK with non access commands like 1795 * test unit ready (so wrongly see the device as having a successful 1796 * recovery) 1797 **/ 1798 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp) 1799 { 1800 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1801 1802 if (!scsi_device_online(scmd->device) || 1803 !scsi_medium_access_command(scmd) || 1804 host_byte(scmd->result) != DID_TIME_OUT || 1805 eh_disp != SUCCESS) 1806 return eh_disp; 1807 1808 /* 1809 * The device has timed out executing a medium access command. 1810 * However, the TEST UNIT READY command sent during error 1811 * handling completed successfully. Either the device is in the 1812 * process of recovering or has it suffered an internal failure 1813 * that prevents access to the storage medium. 1814 */ 1815 if (!sdkp->ignore_medium_access_errors) { 1816 sdkp->medium_access_timed_out++; 1817 sdkp->ignore_medium_access_errors = true; 1818 } 1819 1820 /* 1821 * If the device keeps failing read/write commands but TEST UNIT 1822 * READY always completes successfully we assume that medium 1823 * access is no longer possible and take the device offline. 1824 */ 1825 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1826 scmd_printk(KERN_ERR, scmd, 1827 "Medium access timeout failure. Offlining disk!\n"); 1828 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1829 1830 return SUCCESS; 1831 } 1832 1833 return eh_disp; 1834 } 1835 1836 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1837 { 1838 struct request *req = scmd->request; 1839 struct scsi_device *sdev = scmd->device; 1840 unsigned int transferred, good_bytes; 1841 u64 start_lba, end_lba, bad_lba; 1842 1843 /* 1844 * Some commands have a payload smaller than the device logical 1845 * block size (e.g. INQUIRY on a 4K disk). 1846 */ 1847 if (scsi_bufflen(scmd) <= sdev->sector_size) 1848 return 0; 1849 1850 /* Check if we have a 'bad_lba' information */ 1851 if (!scsi_get_sense_info_fld(scmd->sense_buffer, 1852 SCSI_SENSE_BUFFERSIZE, 1853 &bad_lba)) 1854 return 0; 1855 1856 /* 1857 * If the bad lba was reported incorrectly, we have no idea where 1858 * the error is. 1859 */ 1860 start_lba = sectors_to_logical(sdev, blk_rq_pos(req)); 1861 end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd)); 1862 if (bad_lba < start_lba || bad_lba >= end_lba) 1863 return 0; 1864 1865 /* 1866 * resid is optional but mostly filled in. When it's unused, 1867 * its value is zero, so we assume the whole buffer transferred 1868 */ 1869 transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1870 1871 /* This computation should always be done in terms of the 1872 * resolution of the device's medium. 1873 */ 1874 good_bytes = logical_to_bytes(sdev, bad_lba - start_lba); 1875 1876 return min(good_bytes, transferred); 1877 } 1878 1879 /** 1880 * sd_done - bottom half handler: called when the lower level 1881 * driver has completed (successfully or otherwise) a scsi command. 1882 * @SCpnt: mid-level's per command structure. 1883 * 1884 * Note: potentially run from within an ISR. Must not block. 1885 **/ 1886 static int sd_done(struct scsi_cmnd *SCpnt) 1887 { 1888 int result = SCpnt->result; 1889 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1890 unsigned int sector_size = SCpnt->device->sector_size; 1891 unsigned int resid; 1892 struct scsi_sense_hdr sshdr; 1893 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1894 struct request *req = SCpnt->request; 1895 int sense_valid = 0; 1896 int sense_deferred = 0; 1897 1898 switch (req_op(req)) { 1899 case REQ_OP_DISCARD: 1900 case REQ_OP_WRITE_ZEROES: 1901 case REQ_OP_WRITE_SAME: 1902 case REQ_OP_ZONE_RESET: 1903 if (!result) { 1904 good_bytes = blk_rq_bytes(req); 1905 scsi_set_resid(SCpnt, 0); 1906 } else { 1907 good_bytes = 0; 1908 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1909 } 1910 break; 1911 case REQ_OP_ZONE_REPORT: 1912 if (!result) { 1913 good_bytes = scsi_bufflen(SCpnt) 1914 - scsi_get_resid(SCpnt); 1915 scsi_set_resid(SCpnt, 0); 1916 } else { 1917 good_bytes = 0; 1918 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1919 } 1920 break; 1921 default: 1922 /* 1923 * In case of bogus fw or device, we could end up having 1924 * an unaligned partial completion. Check this here and force 1925 * alignment. 1926 */ 1927 resid = scsi_get_resid(SCpnt); 1928 if (resid & (sector_size - 1)) { 1929 sd_printk(KERN_INFO, sdkp, 1930 "Unaligned partial completion (resid=%u, sector_sz=%u)\n", 1931 resid, sector_size); 1932 resid = min(scsi_bufflen(SCpnt), 1933 round_up(resid, sector_size)); 1934 scsi_set_resid(SCpnt, resid); 1935 } 1936 } 1937 1938 if (result) { 1939 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1940 if (sense_valid) 1941 sense_deferred = scsi_sense_is_deferred(&sshdr); 1942 } 1943 sdkp->medium_access_timed_out = 0; 1944 1945 if (driver_byte(result) != DRIVER_SENSE && 1946 (!sense_valid || sense_deferred)) 1947 goto out; 1948 1949 switch (sshdr.sense_key) { 1950 case HARDWARE_ERROR: 1951 case MEDIUM_ERROR: 1952 good_bytes = sd_completed_bytes(SCpnt); 1953 break; 1954 case RECOVERED_ERROR: 1955 good_bytes = scsi_bufflen(SCpnt); 1956 break; 1957 case NO_SENSE: 1958 /* This indicates a false check condition, so ignore it. An 1959 * unknown amount of data was transferred so treat it as an 1960 * error. 1961 */ 1962 SCpnt->result = 0; 1963 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1964 break; 1965 case ABORTED_COMMAND: 1966 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1967 good_bytes = sd_completed_bytes(SCpnt); 1968 break; 1969 case ILLEGAL_REQUEST: 1970 switch (sshdr.asc) { 1971 case 0x10: /* DIX: Host detected corruption */ 1972 good_bytes = sd_completed_bytes(SCpnt); 1973 break; 1974 case 0x20: /* INVALID COMMAND OPCODE */ 1975 case 0x24: /* INVALID FIELD IN CDB */ 1976 switch (SCpnt->cmnd[0]) { 1977 case UNMAP: 1978 sd_config_discard(sdkp, SD_LBP_DISABLE); 1979 break; 1980 case WRITE_SAME_16: 1981 case WRITE_SAME: 1982 if (SCpnt->cmnd[1] & 8) { /* UNMAP */ 1983 sd_config_discard(sdkp, SD_LBP_DISABLE); 1984 } else { 1985 sdkp->device->no_write_same = 1; 1986 sd_config_write_same(sdkp); 1987 req->__data_len = blk_rq_bytes(req); 1988 req->rq_flags |= RQF_QUIET; 1989 } 1990 break; 1991 } 1992 } 1993 break; 1994 default: 1995 break; 1996 } 1997 1998 out: 1999 if (sd_is_zoned(sdkp)) 2000 sd_zbc_complete(SCpnt, good_bytes, &sshdr); 2001 2002 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 2003 "sd_done: completed %d of %d bytes\n", 2004 good_bytes, scsi_bufflen(SCpnt))); 2005 2006 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 2007 sd_dif_complete(SCpnt, good_bytes); 2008 2009 return good_bytes; 2010 } 2011 2012 /* 2013 * spinup disk - called only in sd_revalidate_disk() 2014 */ 2015 static void 2016 sd_spinup_disk(struct scsi_disk *sdkp) 2017 { 2018 unsigned char cmd[10]; 2019 unsigned long spintime_expire = 0; 2020 int retries, spintime; 2021 unsigned int the_result; 2022 struct scsi_sense_hdr sshdr; 2023 int sense_valid = 0; 2024 2025 spintime = 0; 2026 2027 /* Spin up drives, as required. Only do this at boot time */ 2028 /* Spinup needs to be done for module loads too. */ 2029 do { 2030 retries = 0; 2031 2032 do { 2033 cmd[0] = TEST_UNIT_READY; 2034 memset((void *) &cmd[1], 0, 9); 2035 2036 the_result = scsi_execute_req(sdkp->device, cmd, 2037 DMA_NONE, NULL, 0, 2038 &sshdr, SD_TIMEOUT, 2039 SD_MAX_RETRIES, NULL); 2040 2041 /* 2042 * If the drive has indicated to us that it 2043 * doesn't have any media in it, don't bother 2044 * with any more polling. 2045 */ 2046 if (media_not_present(sdkp, &sshdr)) 2047 return; 2048 2049 if (the_result) 2050 sense_valid = scsi_sense_valid(&sshdr); 2051 retries++; 2052 } while (retries < 3 && 2053 (!scsi_status_is_good(the_result) || 2054 ((driver_byte(the_result) & DRIVER_SENSE) && 2055 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 2056 2057 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 2058 /* no sense, TUR either succeeded or failed 2059 * with a status error */ 2060 if(!spintime && !scsi_status_is_good(the_result)) { 2061 sd_print_result(sdkp, "Test Unit Ready failed", 2062 the_result); 2063 } 2064 break; 2065 } 2066 2067 /* 2068 * The device does not want the automatic start to be issued. 2069 */ 2070 if (sdkp->device->no_start_on_add) 2071 break; 2072 2073 if (sense_valid && sshdr.sense_key == NOT_READY) { 2074 if (sshdr.asc == 4 && sshdr.ascq == 3) 2075 break; /* manual intervention required */ 2076 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 2077 break; /* standby */ 2078 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 2079 break; /* unavailable */ 2080 /* 2081 * Issue command to spin up drive when not ready 2082 */ 2083 if (!spintime) { 2084 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 2085 cmd[0] = START_STOP; 2086 cmd[1] = 1; /* Return immediately */ 2087 memset((void *) &cmd[2], 0, 8); 2088 cmd[4] = 1; /* Start spin cycle */ 2089 if (sdkp->device->start_stop_pwr_cond) 2090 cmd[4] |= 1 << 4; 2091 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 2092 NULL, 0, &sshdr, 2093 SD_TIMEOUT, SD_MAX_RETRIES, 2094 NULL); 2095 spintime_expire = jiffies + 100 * HZ; 2096 spintime = 1; 2097 } 2098 /* Wait 1 second for next try */ 2099 msleep(1000); 2100 printk("."); 2101 2102 /* 2103 * Wait for USB flash devices with slow firmware. 2104 * Yes, this sense key/ASC combination shouldn't 2105 * occur here. It's characteristic of these devices. 2106 */ 2107 } else if (sense_valid && 2108 sshdr.sense_key == UNIT_ATTENTION && 2109 sshdr.asc == 0x28) { 2110 if (!spintime) { 2111 spintime_expire = jiffies + 5 * HZ; 2112 spintime = 1; 2113 } 2114 /* Wait 1 second for next try */ 2115 msleep(1000); 2116 } else { 2117 /* we don't understand the sense code, so it's 2118 * probably pointless to loop */ 2119 if(!spintime) { 2120 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 2121 sd_print_sense_hdr(sdkp, &sshdr); 2122 } 2123 break; 2124 } 2125 2126 } while (spintime && time_before_eq(jiffies, spintime_expire)); 2127 2128 if (spintime) { 2129 if (scsi_status_is_good(the_result)) 2130 printk("ready\n"); 2131 else 2132 printk("not responding...\n"); 2133 } 2134 } 2135 2136 /* 2137 * Determine whether disk supports Data Integrity Field. 2138 */ 2139 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 2140 { 2141 struct scsi_device *sdp = sdkp->device; 2142 u8 type; 2143 int ret = 0; 2144 2145 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 2146 return ret; 2147 2148 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 2149 2150 if (type > T10_PI_TYPE3_PROTECTION) 2151 ret = -ENODEV; 2152 else if (scsi_host_dif_capable(sdp->host, type)) 2153 ret = 1; 2154 2155 if (sdkp->first_scan || type != sdkp->protection_type) 2156 switch (ret) { 2157 case -ENODEV: 2158 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 2159 " protection type %u. Disabling disk!\n", 2160 type); 2161 break; 2162 case 1: 2163 sd_printk(KERN_NOTICE, sdkp, 2164 "Enabling DIF Type %u protection\n", type); 2165 break; 2166 case 0: 2167 sd_printk(KERN_NOTICE, sdkp, 2168 "Disabling DIF Type %u protection\n", type); 2169 break; 2170 } 2171 2172 sdkp->protection_type = type; 2173 2174 return ret; 2175 } 2176 2177 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 2178 struct scsi_sense_hdr *sshdr, int sense_valid, 2179 int the_result) 2180 { 2181 if (driver_byte(the_result) & DRIVER_SENSE) 2182 sd_print_sense_hdr(sdkp, sshdr); 2183 else 2184 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 2185 2186 /* 2187 * Set dirty bit for removable devices if not ready - 2188 * sometimes drives will not report this properly. 2189 */ 2190 if (sdp->removable && 2191 sense_valid && sshdr->sense_key == NOT_READY) 2192 set_media_not_present(sdkp); 2193 2194 /* 2195 * We used to set media_present to 0 here to indicate no media 2196 * in the drive, but some drives fail read capacity even with 2197 * media present, so we can't do that. 2198 */ 2199 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 2200 } 2201 2202 #define RC16_LEN 32 2203 #if RC16_LEN > SD_BUF_SIZE 2204 #error RC16_LEN must not be more than SD_BUF_SIZE 2205 #endif 2206 2207 #define READ_CAPACITY_RETRIES_ON_RESET 10 2208 2209 /* 2210 * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set 2211 * and the reported logical block size is bigger than 512 bytes. Note 2212 * that last_sector is a u64 and therefore logical_to_sectors() is not 2213 * applicable. 2214 */ 2215 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size) 2216 { 2217 u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9); 2218 2219 if (sizeof(sector_t) == 4 && last_sector > U32_MAX) 2220 return false; 2221 2222 return true; 2223 } 2224 2225 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 2226 unsigned char *buffer) 2227 { 2228 unsigned char cmd[16]; 2229 struct scsi_sense_hdr sshdr; 2230 int sense_valid = 0; 2231 int the_result; 2232 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2233 unsigned int alignment; 2234 unsigned long long lba; 2235 unsigned sector_size; 2236 2237 if (sdp->no_read_capacity_16) 2238 return -EINVAL; 2239 2240 do { 2241 memset(cmd, 0, 16); 2242 cmd[0] = SERVICE_ACTION_IN_16; 2243 cmd[1] = SAI_READ_CAPACITY_16; 2244 cmd[13] = RC16_LEN; 2245 memset(buffer, 0, RC16_LEN); 2246 2247 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2248 buffer, RC16_LEN, &sshdr, 2249 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2250 2251 if (media_not_present(sdkp, &sshdr)) 2252 return -ENODEV; 2253 2254 if (the_result) { 2255 sense_valid = scsi_sense_valid(&sshdr); 2256 if (sense_valid && 2257 sshdr.sense_key == ILLEGAL_REQUEST && 2258 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 2259 sshdr.ascq == 0x00) 2260 /* Invalid Command Operation Code or 2261 * Invalid Field in CDB, just retry 2262 * silently with RC10 */ 2263 return -EINVAL; 2264 if (sense_valid && 2265 sshdr.sense_key == UNIT_ATTENTION && 2266 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2267 /* Device reset might occur several times, 2268 * give it one more chance */ 2269 if (--reset_retries > 0) 2270 continue; 2271 } 2272 retries--; 2273 2274 } while (the_result && retries); 2275 2276 if (the_result) { 2277 sd_print_result(sdkp, "Read Capacity(16) failed", the_result); 2278 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2279 return -EINVAL; 2280 } 2281 2282 sector_size = get_unaligned_be32(&buffer[8]); 2283 lba = get_unaligned_be64(&buffer[0]); 2284 2285 if (sd_read_protection_type(sdkp, buffer) < 0) { 2286 sdkp->capacity = 0; 2287 return -ENODEV; 2288 } 2289 2290 if (!sd_addressable_capacity(lba, sector_size)) { 2291 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2292 "kernel compiled with support for large block " 2293 "devices.\n"); 2294 sdkp->capacity = 0; 2295 return -EOVERFLOW; 2296 } 2297 2298 /* Logical blocks per physical block exponent */ 2299 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2300 2301 /* RC basis */ 2302 sdkp->rc_basis = (buffer[12] >> 4) & 0x3; 2303 2304 /* Lowest aligned logical block */ 2305 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2306 blk_queue_alignment_offset(sdp->request_queue, alignment); 2307 if (alignment && sdkp->first_scan) 2308 sd_printk(KERN_NOTICE, sdkp, 2309 "physical block alignment offset: %u\n", alignment); 2310 2311 if (buffer[14] & 0x80) { /* LBPME */ 2312 sdkp->lbpme = 1; 2313 2314 if (buffer[14] & 0x40) /* LBPRZ */ 2315 sdkp->lbprz = 1; 2316 2317 sd_config_discard(sdkp, SD_LBP_WS16); 2318 } 2319 2320 sdkp->capacity = lba + 1; 2321 return sector_size; 2322 } 2323 2324 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2325 unsigned char *buffer) 2326 { 2327 unsigned char cmd[16]; 2328 struct scsi_sense_hdr sshdr; 2329 int sense_valid = 0; 2330 int the_result; 2331 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2332 sector_t lba; 2333 unsigned sector_size; 2334 2335 do { 2336 cmd[0] = READ_CAPACITY; 2337 memset(&cmd[1], 0, 9); 2338 memset(buffer, 0, 8); 2339 2340 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2341 buffer, 8, &sshdr, 2342 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2343 2344 if (media_not_present(sdkp, &sshdr)) 2345 return -ENODEV; 2346 2347 if (the_result) { 2348 sense_valid = scsi_sense_valid(&sshdr); 2349 if (sense_valid && 2350 sshdr.sense_key == UNIT_ATTENTION && 2351 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2352 /* Device reset might occur several times, 2353 * give it one more chance */ 2354 if (--reset_retries > 0) 2355 continue; 2356 } 2357 retries--; 2358 2359 } while (the_result && retries); 2360 2361 if (the_result) { 2362 sd_print_result(sdkp, "Read Capacity(10) failed", the_result); 2363 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2364 return -EINVAL; 2365 } 2366 2367 sector_size = get_unaligned_be32(&buffer[4]); 2368 lba = get_unaligned_be32(&buffer[0]); 2369 2370 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2371 /* Some buggy (usb cardreader) devices return an lba of 2372 0xffffffff when the want to report a size of 0 (with 2373 which they really mean no media is present) */ 2374 sdkp->capacity = 0; 2375 sdkp->physical_block_size = sector_size; 2376 return sector_size; 2377 } 2378 2379 if (!sd_addressable_capacity(lba, sector_size)) { 2380 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2381 "kernel compiled with support for large block " 2382 "devices.\n"); 2383 sdkp->capacity = 0; 2384 return -EOVERFLOW; 2385 } 2386 2387 sdkp->capacity = lba + 1; 2388 sdkp->physical_block_size = sector_size; 2389 return sector_size; 2390 } 2391 2392 static int sd_try_rc16_first(struct scsi_device *sdp) 2393 { 2394 if (sdp->host->max_cmd_len < 16) 2395 return 0; 2396 if (sdp->try_rc_10_first) 2397 return 0; 2398 if (sdp->scsi_level > SCSI_SPC_2) 2399 return 1; 2400 if (scsi_device_protection(sdp)) 2401 return 1; 2402 return 0; 2403 } 2404 2405 /* 2406 * read disk capacity 2407 */ 2408 static void 2409 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2410 { 2411 int sector_size; 2412 struct scsi_device *sdp = sdkp->device; 2413 2414 if (sd_try_rc16_first(sdp)) { 2415 sector_size = read_capacity_16(sdkp, sdp, buffer); 2416 if (sector_size == -EOVERFLOW) 2417 goto got_data; 2418 if (sector_size == -ENODEV) 2419 return; 2420 if (sector_size < 0) 2421 sector_size = read_capacity_10(sdkp, sdp, buffer); 2422 if (sector_size < 0) 2423 return; 2424 } else { 2425 sector_size = read_capacity_10(sdkp, sdp, buffer); 2426 if (sector_size == -EOVERFLOW) 2427 goto got_data; 2428 if (sector_size < 0) 2429 return; 2430 if ((sizeof(sdkp->capacity) > 4) && 2431 (sdkp->capacity > 0xffffffffULL)) { 2432 int old_sector_size = sector_size; 2433 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2434 "Trying to use READ CAPACITY(16).\n"); 2435 sector_size = read_capacity_16(sdkp, sdp, buffer); 2436 if (sector_size < 0) { 2437 sd_printk(KERN_NOTICE, sdkp, 2438 "Using 0xffffffff as device size\n"); 2439 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2440 sector_size = old_sector_size; 2441 goto got_data; 2442 } 2443 } 2444 } 2445 2446 /* Some devices are known to return the total number of blocks, 2447 * not the highest block number. Some devices have versions 2448 * which do this and others which do not. Some devices we might 2449 * suspect of doing this but we don't know for certain. 2450 * 2451 * If we know the reported capacity is wrong, decrement it. If 2452 * we can only guess, then assume the number of blocks is even 2453 * (usually true but not always) and err on the side of lowering 2454 * the capacity. 2455 */ 2456 if (sdp->fix_capacity || 2457 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2458 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2459 "from its reported value: %llu\n", 2460 (unsigned long long) sdkp->capacity); 2461 --sdkp->capacity; 2462 } 2463 2464 got_data: 2465 if (sector_size == 0) { 2466 sector_size = 512; 2467 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2468 "assuming 512.\n"); 2469 } 2470 2471 if (sector_size != 512 && 2472 sector_size != 1024 && 2473 sector_size != 2048 && 2474 sector_size != 4096) { 2475 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2476 sector_size); 2477 /* 2478 * The user might want to re-format the drive with 2479 * a supported sectorsize. Once this happens, it 2480 * would be relatively trivial to set the thing up. 2481 * For this reason, we leave the thing in the table. 2482 */ 2483 sdkp->capacity = 0; 2484 /* 2485 * set a bogus sector size so the normal read/write 2486 * logic in the block layer will eventually refuse any 2487 * request on this device without tripping over power 2488 * of two sector size assumptions 2489 */ 2490 sector_size = 512; 2491 } 2492 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2493 blk_queue_physical_block_size(sdp->request_queue, 2494 sdkp->physical_block_size); 2495 sdkp->device->sector_size = sector_size; 2496 2497 if (sdkp->capacity > 0xffffffff) 2498 sdp->use_16_for_rw = 1; 2499 2500 } 2501 2502 /* 2503 * Print disk capacity 2504 */ 2505 static void 2506 sd_print_capacity(struct scsi_disk *sdkp, 2507 sector_t old_capacity) 2508 { 2509 int sector_size = sdkp->device->sector_size; 2510 char cap_str_2[10], cap_str_10[10]; 2511 2512 string_get_size(sdkp->capacity, sector_size, 2513 STRING_UNITS_2, cap_str_2, sizeof(cap_str_2)); 2514 string_get_size(sdkp->capacity, sector_size, 2515 STRING_UNITS_10, cap_str_10, 2516 sizeof(cap_str_10)); 2517 2518 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2519 sd_printk(KERN_NOTICE, sdkp, 2520 "%llu %d-byte logical blocks: (%s/%s)\n", 2521 (unsigned long long)sdkp->capacity, 2522 sector_size, cap_str_10, cap_str_2); 2523 2524 if (sdkp->physical_block_size != sector_size) 2525 sd_printk(KERN_NOTICE, sdkp, 2526 "%u-byte physical blocks\n", 2527 sdkp->physical_block_size); 2528 2529 sd_zbc_print_zones(sdkp); 2530 } 2531 } 2532 2533 /* called with buffer of length 512 */ 2534 static inline int 2535 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2536 unsigned char *buffer, int len, struct scsi_mode_data *data, 2537 struct scsi_sense_hdr *sshdr) 2538 { 2539 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2540 SD_TIMEOUT, SD_MAX_RETRIES, data, 2541 sshdr); 2542 } 2543 2544 /* 2545 * read write protect setting, if possible - called only in sd_revalidate_disk() 2546 * called with buffer of length SD_BUF_SIZE 2547 */ 2548 static void 2549 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2550 { 2551 int res; 2552 struct scsi_device *sdp = sdkp->device; 2553 struct scsi_mode_data data; 2554 int old_wp = sdkp->write_prot; 2555 2556 set_disk_ro(sdkp->disk, 0); 2557 if (sdp->skip_ms_page_3f) { 2558 sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2559 return; 2560 } 2561 2562 if (sdp->use_192_bytes_for_3f) { 2563 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2564 } else { 2565 /* 2566 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2567 * We have to start carefully: some devices hang if we ask 2568 * for more than is available. 2569 */ 2570 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2571 2572 /* 2573 * Second attempt: ask for page 0 When only page 0 is 2574 * implemented, a request for page 3F may return Sense Key 2575 * 5: Illegal Request, Sense Code 24: Invalid field in 2576 * CDB. 2577 */ 2578 if (!scsi_status_is_good(res)) 2579 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2580 2581 /* 2582 * Third attempt: ask 255 bytes, as we did earlier. 2583 */ 2584 if (!scsi_status_is_good(res)) 2585 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2586 &data, NULL); 2587 } 2588 2589 if (!scsi_status_is_good(res)) { 2590 sd_first_printk(KERN_WARNING, sdkp, 2591 "Test WP failed, assume Write Enabled\n"); 2592 } else { 2593 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2594 set_disk_ro(sdkp->disk, sdkp->write_prot); 2595 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2596 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2597 sdkp->write_prot ? "on" : "off"); 2598 sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer); 2599 } 2600 } 2601 } 2602 2603 /* 2604 * sd_read_cache_type - called only from sd_revalidate_disk() 2605 * called with buffer of length SD_BUF_SIZE 2606 */ 2607 static void 2608 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2609 { 2610 int len = 0, res; 2611 struct scsi_device *sdp = sdkp->device; 2612 2613 int dbd; 2614 int modepage; 2615 int first_len; 2616 struct scsi_mode_data data; 2617 struct scsi_sense_hdr sshdr; 2618 int old_wce = sdkp->WCE; 2619 int old_rcd = sdkp->RCD; 2620 int old_dpofua = sdkp->DPOFUA; 2621 2622 2623 if (sdkp->cache_override) 2624 return; 2625 2626 first_len = 4; 2627 if (sdp->skip_ms_page_8) { 2628 if (sdp->type == TYPE_RBC) 2629 goto defaults; 2630 else { 2631 if (sdp->skip_ms_page_3f) 2632 goto defaults; 2633 modepage = 0x3F; 2634 if (sdp->use_192_bytes_for_3f) 2635 first_len = 192; 2636 dbd = 0; 2637 } 2638 } else if (sdp->type == TYPE_RBC) { 2639 modepage = 6; 2640 dbd = 8; 2641 } else { 2642 modepage = 8; 2643 dbd = 0; 2644 } 2645 2646 /* cautiously ask */ 2647 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2648 &data, &sshdr); 2649 2650 if (!scsi_status_is_good(res)) 2651 goto bad_sense; 2652 2653 if (!data.header_length) { 2654 modepage = 6; 2655 first_len = 0; 2656 sd_first_printk(KERN_ERR, sdkp, 2657 "Missing header in MODE_SENSE response\n"); 2658 } 2659 2660 /* that went OK, now ask for the proper length */ 2661 len = data.length; 2662 2663 /* 2664 * We're only interested in the first three bytes, actually. 2665 * But the data cache page is defined for the first 20. 2666 */ 2667 if (len < 3) 2668 goto bad_sense; 2669 else if (len > SD_BUF_SIZE) { 2670 sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2671 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2672 len = SD_BUF_SIZE; 2673 } 2674 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2675 len = 192; 2676 2677 /* Get the data */ 2678 if (len > first_len) 2679 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2680 &data, &sshdr); 2681 2682 if (scsi_status_is_good(res)) { 2683 int offset = data.header_length + data.block_descriptor_length; 2684 2685 while (offset < len) { 2686 u8 page_code = buffer[offset] & 0x3F; 2687 u8 spf = buffer[offset] & 0x40; 2688 2689 if (page_code == 8 || page_code == 6) { 2690 /* We're interested only in the first 3 bytes. 2691 */ 2692 if (len - offset <= 2) { 2693 sd_first_printk(KERN_ERR, sdkp, 2694 "Incomplete mode parameter " 2695 "data\n"); 2696 goto defaults; 2697 } else { 2698 modepage = page_code; 2699 goto Page_found; 2700 } 2701 } else { 2702 /* Go to the next page */ 2703 if (spf && len - offset > 3) 2704 offset += 4 + (buffer[offset+2] << 8) + 2705 buffer[offset+3]; 2706 else if (!spf && len - offset > 1) 2707 offset += 2 + buffer[offset+1]; 2708 else { 2709 sd_first_printk(KERN_ERR, sdkp, 2710 "Incomplete mode " 2711 "parameter data\n"); 2712 goto defaults; 2713 } 2714 } 2715 } 2716 2717 sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2718 goto defaults; 2719 2720 Page_found: 2721 if (modepage == 8) { 2722 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2723 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2724 } else { 2725 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2726 sdkp->RCD = 0; 2727 } 2728 2729 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2730 if (sdp->broken_fua) { 2731 sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n"); 2732 sdkp->DPOFUA = 0; 2733 } else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw && 2734 !sdkp->device->use_16_for_rw) { 2735 sd_first_printk(KERN_NOTICE, sdkp, 2736 "Uses READ/WRITE(6), disabling FUA\n"); 2737 sdkp->DPOFUA = 0; 2738 } 2739 2740 /* No cache flush allowed for write protected devices */ 2741 if (sdkp->WCE && sdkp->write_prot) 2742 sdkp->WCE = 0; 2743 2744 if (sdkp->first_scan || old_wce != sdkp->WCE || 2745 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2746 sd_printk(KERN_NOTICE, sdkp, 2747 "Write cache: %s, read cache: %s, %s\n", 2748 sdkp->WCE ? "enabled" : "disabled", 2749 sdkp->RCD ? "disabled" : "enabled", 2750 sdkp->DPOFUA ? "supports DPO and FUA" 2751 : "doesn't support DPO or FUA"); 2752 2753 return; 2754 } 2755 2756 bad_sense: 2757 if (scsi_sense_valid(&sshdr) && 2758 sshdr.sense_key == ILLEGAL_REQUEST && 2759 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2760 /* Invalid field in CDB */ 2761 sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2762 else 2763 sd_first_printk(KERN_ERR, sdkp, 2764 "Asking for cache data failed\n"); 2765 2766 defaults: 2767 if (sdp->wce_default_on) { 2768 sd_first_printk(KERN_NOTICE, sdkp, 2769 "Assuming drive cache: write back\n"); 2770 sdkp->WCE = 1; 2771 } else { 2772 sd_first_printk(KERN_ERR, sdkp, 2773 "Assuming drive cache: write through\n"); 2774 sdkp->WCE = 0; 2775 } 2776 sdkp->RCD = 0; 2777 sdkp->DPOFUA = 0; 2778 } 2779 2780 /* 2781 * The ATO bit indicates whether the DIF application tag is available 2782 * for use by the operating system. 2783 */ 2784 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2785 { 2786 int res, offset; 2787 struct scsi_device *sdp = sdkp->device; 2788 struct scsi_mode_data data; 2789 struct scsi_sense_hdr sshdr; 2790 2791 if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC) 2792 return; 2793 2794 if (sdkp->protection_type == 0) 2795 return; 2796 2797 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2798 SD_MAX_RETRIES, &data, &sshdr); 2799 2800 if (!scsi_status_is_good(res) || !data.header_length || 2801 data.length < 6) { 2802 sd_first_printk(KERN_WARNING, sdkp, 2803 "getting Control mode page failed, assume no ATO\n"); 2804 2805 if (scsi_sense_valid(&sshdr)) 2806 sd_print_sense_hdr(sdkp, &sshdr); 2807 2808 return; 2809 } 2810 2811 offset = data.header_length + data.block_descriptor_length; 2812 2813 if ((buffer[offset] & 0x3f) != 0x0a) { 2814 sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2815 return; 2816 } 2817 2818 if ((buffer[offset + 5] & 0x80) == 0) 2819 return; 2820 2821 sdkp->ATO = 1; 2822 2823 return; 2824 } 2825 2826 /** 2827 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2828 * @sdkp: disk to query 2829 */ 2830 static void sd_read_block_limits(struct scsi_disk *sdkp) 2831 { 2832 unsigned int sector_sz = sdkp->device->sector_size; 2833 const int vpd_len = 64; 2834 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2835 2836 if (!buffer || 2837 /* Block Limits VPD */ 2838 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2839 goto out; 2840 2841 blk_queue_io_min(sdkp->disk->queue, 2842 get_unaligned_be16(&buffer[6]) * sector_sz); 2843 2844 sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]); 2845 sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]); 2846 2847 if (buffer[3] == 0x3c) { 2848 unsigned int lba_count, desc_count; 2849 2850 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2851 2852 if (!sdkp->lbpme) 2853 goto out; 2854 2855 lba_count = get_unaligned_be32(&buffer[20]); 2856 desc_count = get_unaligned_be32(&buffer[24]); 2857 2858 if (lba_count && desc_count) 2859 sdkp->max_unmap_blocks = lba_count; 2860 2861 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2862 2863 if (buffer[32] & 0x80) 2864 sdkp->unmap_alignment = 2865 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2866 2867 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2868 2869 if (sdkp->max_unmap_blocks) 2870 sd_config_discard(sdkp, SD_LBP_UNMAP); 2871 else 2872 sd_config_discard(sdkp, SD_LBP_WS16); 2873 2874 } else { /* LBP VPD page tells us what to use */ 2875 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2876 sd_config_discard(sdkp, SD_LBP_UNMAP); 2877 else if (sdkp->lbpws) 2878 sd_config_discard(sdkp, SD_LBP_WS16); 2879 else if (sdkp->lbpws10) 2880 sd_config_discard(sdkp, SD_LBP_WS10); 2881 else if (sdkp->lbpu && sdkp->max_unmap_blocks) 2882 sd_config_discard(sdkp, SD_LBP_UNMAP); 2883 else 2884 sd_config_discard(sdkp, SD_LBP_DISABLE); 2885 } 2886 } 2887 2888 out: 2889 kfree(buffer); 2890 } 2891 2892 /** 2893 * sd_read_block_characteristics - Query block dev. characteristics 2894 * @sdkp: disk to query 2895 */ 2896 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2897 { 2898 struct request_queue *q = sdkp->disk->queue; 2899 unsigned char *buffer; 2900 u16 rot; 2901 const int vpd_len = 64; 2902 2903 buffer = kmalloc(vpd_len, GFP_KERNEL); 2904 2905 if (!buffer || 2906 /* Block Device Characteristics VPD */ 2907 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2908 goto out; 2909 2910 rot = get_unaligned_be16(&buffer[4]); 2911 2912 if (rot == 1) { 2913 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q); 2914 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q); 2915 } 2916 2917 if (sdkp->device->type == TYPE_ZBC) { 2918 /* Host-managed */ 2919 q->limits.zoned = BLK_ZONED_HM; 2920 } else { 2921 sdkp->zoned = (buffer[8] >> 4) & 3; 2922 if (sdkp->zoned == 1) 2923 /* Host-aware */ 2924 q->limits.zoned = BLK_ZONED_HA; 2925 else 2926 /* 2927 * Treat drive-managed devices as 2928 * regular block devices. 2929 */ 2930 q->limits.zoned = BLK_ZONED_NONE; 2931 } 2932 if (blk_queue_is_zoned(q) && sdkp->first_scan) 2933 sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n", 2934 q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware"); 2935 2936 out: 2937 kfree(buffer); 2938 } 2939 2940 /** 2941 * sd_read_block_provisioning - Query provisioning VPD page 2942 * @sdkp: disk to query 2943 */ 2944 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2945 { 2946 unsigned char *buffer; 2947 const int vpd_len = 8; 2948 2949 if (sdkp->lbpme == 0) 2950 return; 2951 2952 buffer = kmalloc(vpd_len, GFP_KERNEL); 2953 2954 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2955 goto out; 2956 2957 sdkp->lbpvpd = 1; 2958 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2959 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2960 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2961 2962 out: 2963 kfree(buffer); 2964 } 2965 2966 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2967 { 2968 struct scsi_device *sdev = sdkp->device; 2969 2970 if (sdev->host->no_write_same) { 2971 sdev->no_write_same = 1; 2972 2973 return; 2974 } 2975 2976 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2977 /* too large values might cause issues with arcmsr */ 2978 int vpd_buf_len = 64; 2979 2980 sdev->no_report_opcodes = 1; 2981 2982 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2983 * CODES is unsupported and the device has an ATA 2984 * Information VPD page (SAT). 2985 */ 2986 if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len)) 2987 sdev->no_write_same = 1; 2988 } 2989 2990 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2991 sdkp->ws16 = 1; 2992 2993 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2994 sdkp->ws10 = 1; 2995 } 2996 2997 /** 2998 * sd_revalidate_disk - called the first time a new disk is seen, 2999 * performs disk spin up, read_capacity, etc. 3000 * @disk: struct gendisk we care about 3001 **/ 3002 static int sd_revalidate_disk(struct gendisk *disk) 3003 { 3004 struct scsi_disk *sdkp = scsi_disk(disk); 3005 struct scsi_device *sdp = sdkp->device; 3006 struct request_queue *q = sdkp->disk->queue; 3007 sector_t old_capacity = sdkp->capacity; 3008 unsigned char *buffer; 3009 unsigned int dev_max, rw_max; 3010 3011 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 3012 "sd_revalidate_disk\n")); 3013 3014 /* 3015 * If the device is offline, don't try and read capacity or any 3016 * of the other niceties. 3017 */ 3018 if (!scsi_device_online(sdp)) 3019 goto out; 3020 3021 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 3022 if (!buffer) { 3023 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 3024 "allocation failure.\n"); 3025 goto out; 3026 } 3027 3028 sd_spinup_disk(sdkp); 3029 3030 /* 3031 * Without media there is no reason to ask; moreover, some devices 3032 * react badly if we do. 3033 */ 3034 if (sdkp->media_present) { 3035 sd_read_capacity(sdkp, buffer); 3036 3037 if (scsi_device_supports_vpd(sdp)) { 3038 sd_read_block_provisioning(sdkp); 3039 sd_read_block_limits(sdkp); 3040 sd_read_block_characteristics(sdkp); 3041 sd_zbc_read_zones(sdkp, buffer); 3042 } 3043 3044 sd_print_capacity(sdkp, old_capacity); 3045 3046 sd_read_write_protect_flag(sdkp, buffer); 3047 sd_read_cache_type(sdkp, buffer); 3048 sd_read_app_tag_own(sdkp, buffer); 3049 sd_read_write_same(sdkp, buffer); 3050 } 3051 3052 sdkp->first_scan = 0; 3053 3054 /* 3055 * We now have all cache related info, determine how we deal 3056 * with flush requests. 3057 */ 3058 sd_set_flush_flag(sdkp); 3059 3060 /* Initial block count limit based on CDB TRANSFER LENGTH field size. */ 3061 dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS; 3062 3063 /* Some devices report a maximum block count for READ/WRITE requests. */ 3064 dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks); 3065 q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max); 3066 3067 /* 3068 * Use the device's preferred I/O size for reads and writes 3069 * unless the reported value is unreasonably small, large, or 3070 * garbage. 3071 */ 3072 if (sdkp->opt_xfer_blocks && 3073 sdkp->opt_xfer_blocks <= dev_max && 3074 sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS && 3075 logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) { 3076 q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks); 3077 rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks); 3078 } else 3079 rw_max = min_not_zero(logical_to_sectors(sdp, dev_max), 3080 (sector_t)BLK_DEF_MAX_SECTORS); 3081 3082 /* Combine with controller limits */ 3083 q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q)); 3084 3085 set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity)); 3086 sd_config_write_same(sdkp); 3087 kfree(buffer); 3088 3089 out: 3090 return 0; 3091 } 3092 3093 /** 3094 * sd_unlock_native_capacity - unlock native capacity 3095 * @disk: struct gendisk to set capacity for 3096 * 3097 * Block layer calls this function if it detects that partitions 3098 * on @disk reach beyond the end of the device. If the SCSI host 3099 * implements ->unlock_native_capacity() method, it's invoked to 3100 * give it a chance to adjust the device capacity. 3101 * 3102 * CONTEXT: 3103 * Defined by block layer. Might sleep. 3104 */ 3105 static void sd_unlock_native_capacity(struct gendisk *disk) 3106 { 3107 struct scsi_device *sdev = scsi_disk(disk)->device; 3108 3109 if (sdev->host->hostt->unlock_native_capacity) 3110 sdev->host->hostt->unlock_native_capacity(sdev); 3111 } 3112 3113 /** 3114 * sd_format_disk_name - format disk name 3115 * @prefix: name prefix - ie. "sd" for SCSI disks 3116 * @index: index of the disk to format name for 3117 * @buf: output buffer 3118 * @buflen: length of the output buffer 3119 * 3120 * SCSI disk names starts at sda. The 26th device is sdz and the 3121 * 27th is sdaa. The last one for two lettered suffix is sdzz 3122 * which is followed by sdaaa. 3123 * 3124 * This is basically 26 base counting with one extra 'nil' entry 3125 * at the beginning from the second digit on and can be 3126 * determined using similar method as 26 base conversion with the 3127 * index shifted -1 after each digit is computed. 3128 * 3129 * CONTEXT: 3130 * Don't care. 3131 * 3132 * RETURNS: 3133 * 0 on success, -errno on failure. 3134 */ 3135 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 3136 { 3137 const int base = 'z' - 'a' + 1; 3138 char *begin = buf + strlen(prefix); 3139 char *end = buf + buflen; 3140 char *p; 3141 int unit; 3142 3143 p = end - 1; 3144 *p = '\0'; 3145 unit = base; 3146 do { 3147 if (p == begin) 3148 return -EINVAL; 3149 *--p = 'a' + (index % unit); 3150 index = (index / unit) - 1; 3151 } while (index >= 0); 3152 3153 memmove(begin, p, end - p); 3154 memcpy(buf, prefix, strlen(prefix)); 3155 3156 return 0; 3157 } 3158 3159 /* 3160 * The asynchronous part of sd_probe 3161 */ 3162 static void sd_probe_async(void *data, async_cookie_t cookie) 3163 { 3164 struct scsi_disk *sdkp = data; 3165 struct scsi_device *sdp; 3166 struct gendisk *gd; 3167 u32 index; 3168 struct device *dev; 3169 3170 sdp = sdkp->device; 3171 gd = sdkp->disk; 3172 index = sdkp->index; 3173 dev = &sdp->sdev_gendev; 3174 3175 gd->major = sd_major((index & 0xf0) >> 4); 3176 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 3177 gd->minors = SD_MINORS; 3178 3179 gd->fops = &sd_fops; 3180 gd->private_data = &sdkp->driver; 3181 gd->queue = sdkp->device->request_queue; 3182 3183 /* defaults, until the device tells us otherwise */ 3184 sdp->sector_size = 512; 3185 sdkp->capacity = 0; 3186 sdkp->media_present = 1; 3187 sdkp->write_prot = 0; 3188 sdkp->cache_override = 0; 3189 sdkp->WCE = 0; 3190 sdkp->RCD = 0; 3191 sdkp->ATO = 0; 3192 sdkp->first_scan = 1; 3193 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 3194 3195 sd_revalidate_disk(gd); 3196 3197 gd->flags = GENHD_FL_EXT_DEVT; 3198 if (sdp->removable) { 3199 gd->flags |= GENHD_FL_REMOVABLE; 3200 gd->events |= DISK_EVENT_MEDIA_CHANGE; 3201 } 3202 3203 blk_pm_runtime_init(sdp->request_queue, dev); 3204 device_add_disk(dev, gd); 3205 if (sdkp->capacity) 3206 sd_dif_config_host(sdkp); 3207 3208 sd_revalidate_disk(gd); 3209 3210 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 3211 sdp->removable ? "removable " : ""); 3212 scsi_autopm_put_device(sdp); 3213 put_device(&sdkp->dev); 3214 } 3215 3216 /** 3217 * sd_probe - called during driver initialization and whenever a 3218 * new scsi device is attached to the system. It is called once 3219 * for each scsi device (not just disks) present. 3220 * @dev: pointer to device object 3221 * 3222 * Returns 0 if successful (or not interested in this scsi device 3223 * (e.g. scanner)); 1 when there is an error. 3224 * 3225 * Note: this function is invoked from the scsi mid-level. 3226 * This function sets up the mapping between a given 3227 * <host,channel,id,lun> (found in sdp) and new device name 3228 * (e.g. /dev/sda). More precisely it is the block device major 3229 * and minor number that is chosen here. 3230 * 3231 * Assume sd_probe is not re-entrant (for time being) 3232 * Also think about sd_probe() and sd_remove() running coincidentally. 3233 **/ 3234 static int sd_probe(struct device *dev) 3235 { 3236 struct scsi_device *sdp = to_scsi_device(dev); 3237 struct scsi_disk *sdkp; 3238 struct gendisk *gd; 3239 int index; 3240 int error; 3241 3242 scsi_autopm_get_device(sdp); 3243 error = -ENODEV; 3244 if (sdp->type != TYPE_DISK && 3245 sdp->type != TYPE_ZBC && 3246 sdp->type != TYPE_MOD && 3247 sdp->type != TYPE_RBC) 3248 goto out; 3249 3250 #ifndef CONFIG_BLK_DEV_ZONED 3251 if (sdp->type == TYPE_ZBC) 3252 goto out; 3253 #endif 3254 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 3255 "sd_probe\n")); 3256 3257 error = -ENOMEM; 3258 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 3259 if (!sdkp) 3260 goto out; 3261 3262 gd = alloc_disk(SD_MINORS); 3263 if (!gd) 3264 goto out_free; 3265 3266 do { 3267 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 3268 goto out_put; 3269 3270 spin_lock(&sd_index_lock); 3271 error = ida_get_new(&sd_index_ida, &index); 3272 spin_unlock(&sd_index_lock); 3273 } while (error == -EAGAIN); 3274 3275 if (error) { 3276 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 3277 goto out_put; 3278 } 3279 3280 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 3281 if (error) { 3282 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 3283 goto out_free_index; 3284 } 3285 3286 sdkp->device = sdp; 3287 sdkp->driver = &sd_template; 3288 sdkp->disk = gd; 3289 sdkp->index = index; 3290 atomic_set(&sdkp->openers, 0); 3291 atomic_set(&sdkp->device->ioerr_cnt, 0); 3292 3293 if (!sdp->request_queue->rq_timeout) { 3294 if (sdp->type != TYPE_MOD) 3295 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 3296 else 3297 blk_queue_rq_timeout(sdp->request_queue, 3298 SD_MOD_TIMEOUT); 3299 } 3300 3301 device_initialize(&sdkp->dev); 3302 sdkp->dev.parent = dev; 3303 sdkp->dev.class = &sd_disk_class; 3304 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 3305 3306 error = device_add(&sdkp->dev); 3307 if (error) 3308 goto out_free_index; 3309 3310 get_device(dev); 3311 dev_set_drvdata(dev, sdkp); 3312 3313 get_device(&sdkp->dev); /* prevent release before async_schedule */ 3314 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 3315 3316 return 0; 3317 3318 out_free_index: 3319 spin_lock(&sd_index_lock); 3320 ida_remove(&sd_index_ida, index); 3321 spin_unlock(&sd_index_lock); 3322 out_put: 3323 put_disk(gd); 3324 out_free: 3325 kfree(sdkp); 3326 out: 3327 scsi_autopm_put_device(sdp); 3328 return error; 3329 } 3330 3331 /** 3332 * sd_remove - called whenever a scsi disk (previously recognized by 3333 * sd_probe) is detached from the system. It is called (potentially 3334 * multiple times) during sd module unload. 3335 * @dev: pointer to device object 3336 * 3337 * Note: this function is invoked from the scsi mid-level. 3338 * This function potentially frees up a device name (e.g. /dev/sdc) 3339 * that could be re-used by a subsequent sd_probe(). 3340 * This function is not called when the built-in sd driver is "exit-ed". 3341 **/ 3342 static int sd_remove(struct device *dev) 3343 { 3344 struct scsi_disk *sdkp; 3345 dev_t devt; 3346 3347 sdkp = dev_get_drvdata(dev); 3348 devt = disk_devt(sdkp->disk); 3349 scsi_autopm_get_device(sdkp->device); 3350 3351 async_synchronize_full_domain(&scsi_sd_pm_domain); 3352 async_synchronize_full_domain(&scsi_sd_probe_domain); 3353 device_del(&sdkp->dev); 3354 del_gendisk(sdkp->disk); 3355 sd_shutdown(dev); 3356 3357 sd_zbc_remove(sdkp); 3358 3359 blk_register_region(devt, SD_MINORS, NULL, 3360 sd_default_probe, NULL, NULL); 3361 3362 mutex_lock(&sd_ref_mutex); 3363 dev_set_drvdata(dev, NULL); 3364 put_device(&sdkp->dev); 3365 mutex_unlock(&sd_ref_mutex); 3366 3367 return 0; 3368 } 3369 3370 /** 3371 * scsi_disk_release - Called to free the scsi_disk structure 3372 * @dev: pointer to embedded class device 3373 * 3374 * sd_ref_mutex must be held entering this routine. Because it is 3375 * called on last put, you should always use the scsi_disk_get() 3376 * scsi_disk_put() helpers which manipulate the semaphore directly 3377 * and never do a direct put_device. 3378 **/ 3379 static void scsi_disk_release(struct device *dev) 3380 { 3381 struct scsi_disk *sdkp = to_scsi_disk(dev); 3382 struct gendisk *disk = sdkp->disk; 3383 3384 spin_lock(&sd_index_lock); 3385 ida_remove(&sd_index_ida, sdkp->index); 3386 spin_unlock(&sd_index_lock); 3387 3388 disk->private_data = NULL; 3389 put_disk(disk); 3390 put_device(&sdkp->device->sdev_gendev); 3391 3392 kfree(sdkp); 3393 } 3394 3395 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3396 { 3397 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3398 struct scsi_sense_hdr sshdr; 3399 struct scsi_device *sdp = sdkp->device; 3400 int res; 3401 3402 if (start) 3403 cmd[4] |= 1; /* START */ 3404 3405 if (sdp->start_stop_pwr_cond) 3406 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3407 3408 if (!scsi_device_online(sdp)) 3409 return -ENODEV; 3410 3411 res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr, 3412 SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL); 3413 if (res) { 3414 sd_print_result(sdkp, "Start/Stop Unit failed", res); 3415 if (driver_byte(res) & DRIVER_SENSE) 3416 sd_print_sense_hdr(sdkp, &sshdr); 3417 if (scsi_sense_valid(&sshdr) && 3418 /* 0x3a is medium not present */ 3419 sshdr.asc == 0x3a) 3420 res = 0; 3421 } 3422 3423 /* SCSI error codes must not go to the generic layer */ 3424 if (res) 3425 return -EIO; 3426 3427 return 0; 3428 } 3429 3430 /* 3431 * Send a SYNCHRONIZE CACHE instruction down to the device through 3432 * the normal SCSI command structure. Wait for the command to 3433 * complete. 3434 */ 3435 static void sd_shutdown(struct device *dev) 3436 { 3437 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3438 3439 if (!sdkp) 3440 return; /* this can happen */ 3441 3442 if (pm_runtime_suspended(dev)) 3443 return; 3444 3445 if (sdkp->WCE && sdkp->media_present) { 3446 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3447 sd_sync_cache(sdkp); 3448 } 3449 3450 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3451 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3452 sd_start_stop_device(sdkp, 0); 3453 } 3454 } 3455 3456 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors) 3457 { 3458 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3459 int ret = 0; 3460 3461 if (!sdkp) /* E.g.: runtime suspend following sd_remove() */ 3462 return 0; 3463 3464 if (sdkp->WCE && sdkp->media_present) { 3465 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3466 ret = sd_sync_cache(sdkp); 3467 if (ret) { 3468 /* ignore OFFLINE device */ 3469 if (ret == -ENODEV) 3470 ret = 0; 3471 goto done; 3472 } 3473 } 3474 3475 if (sdkp->device->manage_start_stop) { 3476 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3477 /* an error is not worth aborting a system sleep */ 3478 ret = sd_start_stop_device(sdkp, 0); 3479 if (ignore_stop_errors) 3480 ret = 0; 3481 } 3482 3483 done: 3484 return ret; 3485 } 3486 3487 static int sd_suspend_system(struct device *dev) 3488 { 3489 return sd_suspend_common(dev, true); 3490 } 3491 3492 static int sd_suspend_runtime(struct device *dev) 3493 { 3494 return sd_suspend_common(dev, false); 3495 } 3496 3497 static int sd_resume(struct device *dev) 3498 { 3499 struct scsi_disk *sdkp = dev_get_drvdata(dev); 3500 3501 if (!sdkp) /* E.g.: runtime resume at the start of sd_probe() */ 3502 return 0; 3503 3504 if (!sdkp->device->manage_start_stop) 3505 return 0; 3506 3507 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3508 return sd_start_stop_device(sdkp, 1); 3509 } 3510 3511 /** 3512 * init_sd - entry point for this driver (both when built in or when 3513 * a module). 3514 * 3515 * Note: this function registers this driver with the scsi mid-level. 3516 **/ 3517 static int __init init_sd(void) 3518 { 3519 int majors = 0, i, err; 3520 3521 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3522 3523 for (i = 0; i < SD_MAJORS; i++) { 3524 if (register_blkdev(sd_major(i), "sd") != 0) 3525 continue; 3526 majors++; 3527 blk_register_region(sd_major(i), SD_MINORS, NULL, 3528 sd_default_probe, NULL, NULL); 3529 } 3530 3531 if (!majors) 3532 return -ENODEV; 3533 3534 err = class_register(&sd_disk_class); 3535 if (err) 3536 goto err_out; 3537 3538 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3539 0, 0, NULL); 3540 if (!sd_cdb_cache) { 3541 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3542 err = -ENOMEM; 3543 goto err_out_class; 3544 } 3545 3546 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3547 if (!sd_cdb_pool) { 3548 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3549 err = -ENOMEM; 3550 goto err_out_cache; 3551 } 3552 3553 err = scsi_register_driver(&sd_template.gendrv); 3554 if (err) 3555 goto err_out_driver; 3556 3557 return 0; 3558 3559 err_out_driver: 3560 mempool_destroy(sd_cdb_pool); 3561 3562 err_out_cache: 3563 kmem_cache_destroy(sd_cdb_cache); 3564 3565 err_out_class: 3566 class_unregister(&sd_disk_class); 3567 err_out: 3568 for (i = 0; i < SD_MAJORS; i++) 3569 unregister_blkdev(sd_major(i), "sd"); 3570 return err; 3571 } 3572 3573 /** 3574 * exit_sd - exit point for this driver (when it is a module). 3575 * 3576 * Note: this function unregisters this driver from the scsi mid-level. 3577 **/ 3578 static void __exit exit_sd(void) 3579 { 3580 int i; 3581 3582 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3583 3584 scsi_unregister_driver(&sd_template.gendrv); 3585 mempool_destroy(sd_cdb_pool); 3586 kmem_cache_destroy(sd_cdb_cache); 3587 3588 class_unregister(&sd_disk_class); 3589 3590 for (i = 0; i < SD_MAJORS; i++) { 3591 blk_unregister_region(sd_major(i), SD_MINORS); 3592 unregister_blkdev(sd_major(i), "sd"); 3593 } 3594 } 3595 3596 module_init(init_sd); 3597 module_exit(exit_sd); 3598 3599 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3600 struct scsi_sense_hdr *sshdr) 3601 { 3602 scsi_print_sense_hdr(sdkp->device, 3603 sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr); 3604 } 3605 3606 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg, 3607 int result) 3608 { 3609 const char *hb_string = scsi_hostbyte_string(result); 3610 const char *db_string = scsi_driverbyte_string(result); 3611 3612 if (hb_string || db_string) 3613 sd_printk(KERN_INFO, sdkp, 3614 "%s: Result: hostbyte=%s driverbyte=%s\n", msg, 3615 hb_string ? hb_string : "invalid", 3616 db_string ? db_string : "invalid"); 3617 else 3618 sd_printk(KERN_INFO, sdkp, 3619 "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n", 3620 msg, host_byte(result), driver_byte(result)); 3621 } 3622 3623