xref: /openbmc/linux/drivers/scsi/sd.c (revision d236d361)
1 /*
2  *      sd.c Copyright (C) 1992 Drew Eckhardt
3  *           Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale
4  *
5  *      Linux scsi disk driver
6  *              Initial versions: Drew Eckhardt
7  *              Subsequent revisions: Eric Youngdale
8  *	Modification history:
9  *       - Drew Eckhardt <drew@colorado.edu> original
10  *       - Eric Youngdale <eric@andante.org> add scatter-gather, multiple
11  *         outstanding request, and other enhancements.
12  *         Support loadable low-level scsi drivers.
13  *       - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using
14  *         eight major numbers.
15  *       - Richard Gooch <rgooch@atnf.csiro.au> support devfs.
16  *	 - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in
17  *	   sd_init and cleanups.
18  *	 - Alex Davis <letmein@erols.com> Fix problem where partition info
19  *	   not being read in sd_open. Fix problem where removable media
20  *	   could be ejected after sd_open.
21  *	 - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x
22  *	 - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox
23  *	   <willy@debian.org>, Kurt Garloff <garloff@suse.de>:
24  *	   Support 32k/1M disks.
25  *
26  *	Logging policy (needs CONFIG_SCSI_LOGGING defined):
27  *	 - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2
28  *	 - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1
29  *	 - entering sd_ioctl: SCSI_LOG_IOCTL level 1
30  *	 - entering other commands: SCSI_LOG_HLQUEUE level 3
31  *	Note: when the logging level is set by the user, it must be greater
32  *	than the level indicated above to trigger output.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/fs.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/bio.h>
40 #include <linux/genhd.h>
41 #include <linux/hdreg.h>
42 #include <linux/errno.h>
43 #include <linux/idr.h>
44 #include <linux/interrupt.h>
45 #include <linux/init.h>
46 #include <linux/blkdev.h>
47 #include <linux/blkpg.h>
48 #include <linux/delay.h>
49 #include <linux/mutex.h>
50 #include <linux/string_helpers.h>
51 #include <linux/async.h>
52 #include <linux/slab.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/pr.h>
55 #include <linux/t10-pi.h>
56 #include <linux/uaccess.h>
57 #include <asm/unaligned.h>
58 
59 #include <scsi/scsi.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_dbg.h>
62 #include <scsi/scsi_device.h>
63 #include <scsi/scsi_driver.h>
64 #include <scsi/scsi_eh.h>
65 #include <scsi/scsi_host.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsicam.h>
68 
69 #include "sd.h"
70 #include "scsi_priv.h"
71 #include "scsi_logging.h"
72 
73 MODULE_AUTHOR("Eric Youngdale");
74 MODULE_DESCRIPTION("SCSI disk (sd) driver");
75 MODULE_LICENSE("GPL");
76 
77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR);
78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR);
79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR);
80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR);
81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR);
82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR);
83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR);
84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR);
85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR);
86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR);
87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR);
88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR);
89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR);
90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR);
91 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR);
92 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR);
93 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK);
94 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD);
95 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC);
96 MODULE_ALIAS_SCSI_DEVICE(TYPE_ZBC);
97 
98 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT)
99 #define SD_MINORS	16
100 #else
101 #define SD_MINORS	0
102 #endif
103 
104 static void sd_config_discard(struct scsi_disk *, unsigned int);
105 static void sd_config_write_same(struct scsi_disk *);
106 static int  sd_revalidate_disk(struct gendisk *);
107 static void sd_unlock_native_capacity(struct gendisk *disk);
108 static int  sd_probe(struct device *);
109 static int  sd_remove(struct device *);
110 static void sd_shutdown(struct device *);
111 static int sd_suspend_system(struct device *);
112 static int sd_suspend_runtime(struct device *);
113 static int sd_resume(struct device *);
114 static void sd_rescan(struct device *);
115 static int sd_init_command(struct scsi_cmnd *SCpnt);
116 static void sd_uninit_command(struct scsi_cmnd *SCpnt);
117 static int sd_done(struct scsi_cmnd *);
118 static void sd_eh_reset(struct scsi_cmnd *);
119 static int sd_eh_action(struct scsi_cmnd *, int);
120 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer);
121 static void scsi_disk_release(struct device *cdev);
122 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *);
123 static void sd_print_result(const struct scsi_disk *, const char *, int);
124 
125 static DEFINE_SPINLOCK(sd_index_lock);
126 static DEFINE_IDA(sd_index_ida);
127 
128 /* This semaphore is used to mediate the 0->1 reference get in the
129  * face of object destruction (i.e. we can't allow a get on an
130  * object after last put) */
131 static DEFINE_MUTEX(sd_ref_mutex);
132 
133 static struct kmem_cache *sd_cdb_cache;
134 static mempool_t *sd_cdb_pool;
135 
136 static const char *sd_cache_types[] = {
137 	"write through", "none", "write back",
138 	"write back, no read (daft)"
139 };
140 
141 static void sd_set_flush_flag(struct scsi_disk *sdkp)
142 {
143 	bool wc = false, fua = false;
144 
145 	if (sdkp->WCE) {
146 		wc = true;
147 		if (sdkp->DPOFUA)
148 			fua = true;
149 	}
150 
151 	blk_queue_write_cache(sdkp->disk->queue, wc, fua);
152 }
153 
154 static ssize_t
155 cache_type_store(struct device *dev, struct device_attribute *attr,
156 		 const char *buf, size_t count)
157 {
158 	int i, ct = -1, rcd, wce, sp;
159 	struct scsi_disk *sdkp = to_scsi_disk(dev);
160 	struct scsi_device *sdp = sdkp->device;
161 	char buffer[64];
162 	char *buffer_data;
163 	struct scsi_mode_data data;
164 	struct scsi_sense_hdr sshdr;
165 	static const char temp[] = "temporary ";
166 	int len;
167 
168 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
169 		/* no cache control on RBC devices; theoretically they
170 		 * can do it, but there's probably so many exceptions
171 		 * it's not worth the risk */
172 		return -EINVAL;
173 
174 	if (strncmp(buf, temp, sizeof(temp) - 1) == 0) {
175 		buf += sizeof(temp) - 1;
176 		sdkp->cache_override = 1;
177 	} else {
178 		sdkp->cache_override = 0;
179 	}
180 
181 	for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) {
182 		len = strlen(sd_cache_types[i]);
183 		if (strncmp(sd_cache_types[i], buf, len) == 0 &&
184 		    buf[len] == '\n') {
185 			ct = i;
186 			break;
187 		}
188 	}
189 	if (ct < 0)
190 		return -EINVAL;
191 	rcd = ct & 0x01 ? 1 : 0;
192 	wce = (ct & 0x02) && !sdkp->write_prot ? 1 : 0;
193 
194 	if (sdkp->cache_override) {
195 		sdkp->WCE = wce;
196 		sdkp->RCD = rcd;
197 		sd_set_flush_flag(sdkp);
198 		return count;
199 	}
200 
201 	if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT,
202 			    SD_MAX_RETRIES, &data, NULL))
203 		return -EINVAL;
204 	len = min_t(size_t, sizeof(buffer), data.length - data.header_length -
205 		  data.block_descriptor_length);
206 	buffer_data = buffer + data.header_length +
207 		data.block_descriptor_length;
208 	buffer_data[2] &= ~0x05;
209 	buffer_data[2] |= wce << 2 | rcd;
210 	sp = buffer_data[0] & 0x80 ? 1 : 0;
211 	buffer_data[0] &= ~0x80;
212 
213 	if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT,
214 			     SD_MAX_RETRIES, &data, &sshdr)) {
215 		if (scsi_sense_valid(&sshdr))
216 			sd_print_sense_hdr(sdkp, &sshdr);
217 		return -EINVAL;
218 	}
219 	revalidate_disk(sdkp->disk);
220 	return count;
221 }
222 
223 static ssize_t
224 manage_start_stop_show(struct device *dev, struct device_attribute *attr,
225 		       char *buf)
226 {
227 	struct scsi_disk *sdkp = to_scsi_disk(dev);
228 	struct scsi_device *sdp = sdkp->device;
229 
230 	return snprintf(buf, 20, "%u\n", sdp->manage_start_stop);
231 }
232 
233 static ssize_t
234 manage_start_stop_store(struct device *dev, struct device_attribute *attr,
235 			const char *buf, size_t count)
236 {
237 	struct scsi_disk *sdkp = to_scsi_disk(dev);
238 	struct scsi_device *sdp = sdkp->device;
239 
240 	if (!capable(CAP_SYS_ADMIN))
241 		return -EACCES;
242 
243 	sdp->manage_start_stop = simple_strtoul(buf, NULL, 10);
244 
245 	return count;
246 }
247 static DEVICE_ATTR_RW(manage_start_stop);
248 
249 static ssize_t
250 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf)
251 {
252 	struct scsi_disk *sdkp = to_scsi_disk(dev);
253 
254 	return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart);
255 }
256 
257 static ssize_t
258 allow_restart_store(struct device *dev, struct device_attribute *attr,
259 		    const char *buf, size_t count)
260 {
261 	struct scsi_disk *sdkp = to_scsi_disk(dev);
262 	struct scsi_device *sdp = sdkp->device;
263 
264 	if (!capable(CAP_SYS_ADMIN))
265 		return -EACCES;
266 
267 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
268 		return -EINVAL;
269 
270 	sdp->allow_restart = simple_strtoul(buf, NULL, 10);
271 
272 	return count;
273 }
274 static DEVICE_ATTR_RW(allow_restart);
275 
276 static ssize_t
277 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf)
278 {
279 	struct scsi_disk *sdkp = to_scsi_disk(dev);
280 	int ct = sdkp->RCD + 2*sdkp->WCE;
281 
282 	return snprintf(buf, 40, "%s\n", sd_cache_types[ct]);
283 }
284 static DEVICE_ATTR_RW(cache_type);
285 
286 static ssize_t
287 FUA_show(struct device *dev, struct device_attribute *attr, char *buf)
288 {
289 	struct scsi_disk *sdkp = to_scsi_disk(dev);
290 
291 	return snprintf(buf, 20, "%u\n", sdkp->DPOFUA);
292 }
293 static DEVICE_ATTR_RO(FUA);
294 
295 static ssize_t
296 protection_type_show(struct device *dev, struct device_attribute *attr,
297 		     char *buf)
298 {
299 	struct scsi_disk *sdkp = to_scsi_disk(dev);
300 
301 	return snprintf(buf, 20, "%u\n", sdkp->protection_type);
302 }
303 
304 static ssize_t
305 protection_type_store(struct device *dev, struct device_attribute *attr,
306 		      const char *buf, size_t count)
307 {
308 	struct scsi_disk *sdkp = to_scsi_disk(dev);
309 	unsigned int val;
310 	int err;
311 
312 	if (!capable(CAP_SYS_ADMIN))
313 		return -EACCES;
314 
315 	err = kstrtouint(buf, 10, &val);
316 
317 	if (err)
318 		return err;
319 
320 	if (val >= 0 && val <= T10_PI_TYPE3_PROTECTION)
321 		sdkp->protection_type = val;
322 
323 	return count;
324 }
325 static DEVICE_ATTR_RW(protection_type);
326 
327 static ssize_t
328 protection_mode_show(struct device *dev, struct device_attribute *attr,
329 		     char *buf)
330 {
331 	struct scsi_disk *sdkp = to_scsi_disk(dev);
332 	struct scsi_device *sdp = sdkp->device;
333 	unsigned int dif, dix;
334 
335 	dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type);
336 	dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type);
337 
338 	if (!dix && scsi_host_dix_capable(sdp->host, T10_PI_TYPE0_PROTECTION)) {
339 		dif = 0;
340 		dix = 1;
341 	}
342 
343 	if (!dif && !dix)
344 		return snprintf(buf, 20, "none\n");
345 
346 	return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif);
347 }
348 static DEVICE_ATTR_RO(protection_mode);
349 
350 static ssize_t
351 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf)
352 {
353 	struct scsi_disk *sdkp = to_scsi_disk(dev);
354 
355 	return snprintf(buf, 20, "%u\n", sdkp->ATO);
356 }
357 static DEVICE_ATTR_RO(app_tag_own);
358 
359 static ssize_t
360 thin_provisioning_show(struct device *dev, struct device_attribute *attr,
361 		       char *buf)
362 {
363 	struct scsi_disk *sdkp = to_scsi_disk(dev);
364 
365 	return snprintf(buf, 20, "%u\n", sdkp->lbpme);
366 }
367 static DEVICE_ATTR_RO(thin_provisioning);
368 
369 static const char *lbp_mode[] = {
370 	[SD_LBP_FULL]		= "full",
371 	[SD_LBP_UNMAP]		= "unmap",
372 	[SD_LBP_WS16]		= "writesame_16",
373 	[SD_LBP_WS10]		= "writesame_10",
374 	[SD_LBP_ZERO]		= "writesame_zero",
375 	[SD_LBP_DISABLE]	= "disabled",
376 };
377 
378 static ssize_t
379 provisioning_mode_show(struct device *dev, struct device_attribute *attr,
380 		       char *buf)
381 {
382 	struct scsi_disk *sdkp = to_scsi_disk(dev);
383 
384 	return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]);
385 }
386 
387 static ssize_t
388 provisioning_mode_store(struct device *dev, struct device_attribute *attr,
389 			const char *buf, size_t count)
390 {
391 	struct scsi_disk *sdkp = to_scsi_disk(dev);
392 	struct scsi_device *sdp = sdkp->device;
393 
394 	if (!capable(CAP_SYS_ADMIN))
395 		return -EACCES;
396 
397 	if (sd_is_zoned(sdkp)) {
398 		sd_config_discard(sdkp, SD_LBP_DISABLE);
399 		return count;
400 	}
401 
402 	if (sdp->type != TYPE_DISK)
403 		return -EINVAL;
404 
405 	if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20))
406 		sd_config_discard(sdkp, SD_LBP_UNMAP);
407 	else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20))
408 		sd_config_discard(sdkp, SD_LBP_WS16);
409 	else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20))
410 		sd_config_discard(sdkp, SD_LBP_WS10);
411 	else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20))
412 		sd_config_discard(sdkp, SD_LBP_ZERO);
413 	else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20))
414 		sd_config_discard(sdkp, SD_LBP_DISABLE);
415 	else
416 		return -EINVAL;
417 
418 	return count;
419 }
420 static DEVICE_ATTR_RW(provisioning_mode);
421 
422 static const char *zeroing_mode[] = {
423 	[SD_ZERO_WRITE]		= "write",
424 	[SD_ZERO_WS]		= "writesame",
425 	[SD_ZERO_WS16_UNMAP]	= "writesame_16_unmap",
426 	[SD_ZERO_WS10_UNMAP]	= "writesame_10_unmap",
427 };
428 
429 static ssize_t
430 zeroing_mode_show(struct device *dev, struct device_attribute *attr,
431 		  char *buf)
432 {
433 	struct scsi_disk *sdkp = to_scsi_disk(dev);
434 
435 	return snprintf(buf, 20, "%s\n", zeroing_mode[sdkp->zeroing_mode]);
436 }
437 
438 static ssize_t
439 zeroing_mode_store(struct device *dev, struct device_attribute *attr,
440 		   const char *buf, size_t count)
441 {
442 	struct scsi_disk *sdkp = to_scsi_disk(dev);
443 
444 	if (!capable(CAP_SYS_ADMIN))
445 		return -EACCES;
446 
447 	if (!strncmp(buf, zeroing_mode[SD_ZERO_WRITE], 20))
448 		sdkp->zeroing_mode = SD_ZERO_WRITE;
449 	else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS], 20))
450 		sdkp->zeroing_mode = SD_ZERO_WS;
451 	else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS16_UNMAP], 20))
452 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
453 	else if (!strncmp(buf, zeroing_mode[SD_ZERO_WS10_UNMAP], 20))
454 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
455 	else
456 		return -EINVAL;
457 
458 	return count;
459 }
460 static DEVICE_ATTR_RW(zeroing_mode);
461 
462 static ssize_t
463 max_medium_access_timeouts_show(struct device *dev,
464 				struct device_attribute *attr, char *buf)
465 {
466 	struct scsi_disk *sdkp = to_scsi_disk(dev);
467 
468 	return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts);
469 }
470 
471 static ssize_t
472 max_medium_access_timeouts_store(struct device *dev,
473 				 struct device_attribute *attr, const char *buf,
474 				 size_t count)
475 {
476 	struct scsi_disk *sdkp = to_scsi_disk(dev);
477 	int err;
478 
479 	if (!capable(CAP_SYS_ADMIN))
480 		return -EACCES;
481 
482 	err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts);
483 
484 	return err ? err : count;
485 }
486 static DEVICE_ATTR_RW(max_medium_access_timeouts);
487 
488 static ssize_t
489 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr,
490 			   char *buf)
491 {
492 	struct scsi_disk *sdkp = to_scsi_disk(dev);
493 
494 	return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks);
495 }
496 
497 static ssize_t
498 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr,
499 			    const char *buf, size_t count)
500 {
501 	struct scsi_disk *sdkp = to_scsi_disk(dev);
502 	struct scsi_device *sdp = sdkp->device;
503 	unsigned long max;
504 	int err;
505 
506 	if (!capable(CAP_SYS_ADMIN))
507 		return -EACCES;
508 
509 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
510 		return -EINVAL;
511 
512 	err = kstrtoul(buf, 10, &max);
513 
514 	if (err)
515 		return err;
516 
517 	if (max == 0)
518 		sdp->no_write_same = 1;
519 	else if (max <= SD_MAX_WS16_BLOCKS) {
520 		sdp->no_write_same = 0;
521 		sdkp->max_ws_blocks = max;
522 	}
523 
524 	sd_config_write_same(sdkp);
525 
526 	return count;
527 }
528 static DEVICE_ATTR_RW(max_write_same_blocks);
529 
530 static struct attribute *sd_disk_attrs[] = {
531 	&dev_attr_cache_type.attr,
532 	&dev_attr_FUA.attr,
533 	&dev_attr_allow_restart.attr,
534 	&dev_attr_manage_start_stop.attr,
535 	&dev_attr_protection_type.attr,
536 	&dev_attr_protection_mode.attr,
537 	&dev_attr_app_tag_own.attr,
538 	&dev_attr_thin_provisioning.attr,
539 	&dev_attr_provisioning_mode.attr,
540 	&dev_attr_zeroing_mode.attr,
541 	&dev_attr_max_write_same_blocks.attr,
542 	&dev_attr_max_medium_access_timeouts.attr,
543 	NULL,
544 };
545 ATTRIBUTE_GROUPS(sd_disk);
546 
547 static struct class sd_disk_class = {
548 	.name		= "scsi_disk",
549 	.owner		= THIS_MODULE,
550 	.dev_release	= scsi_disk_release,
551 	.dev_groups	= sd_disk_groups,
552 };
553 
554 static const struct dev_pm_ops sd_pm_ops = {
555 	.suspend		= sd_suspend_system,
556 	.resume			= sd_resume,
557 	.poweroff		= sd_suspend_system,
558 	.restore		= sd_resume,
559 	.runtime_suspend	= sd_suspend_runtime,
560 	.runtime_resume		= sd_resume,
561 };
562 
563 static struct scsi_driver sd_template = {
564 	.gendrv = {
565 		.name		= "sd",
566 		.owner		= THIS_MODULE,
567 		.probe		= sd_probe,
568 		.remove		= sd_remove,
569 		.shutdown	= sd_shutdown,
570 		.pm		= &sd_pm_ops,
571 	},
572 	.rescan			= sd_rescan,
573 	.init_command		= sd_init_command,
574 	.uninit_command		= sd_uninit_command,
575 	.done			= sd_done,
576 	.eh_action		= sd_eh_action,
577 	.eh_reset		= sd_eh_reset,
578 };
579 
580 /*
581  * Dummy kobj_map->probe function.
582  * The default ->probe function will call modprobe, which is
583  * pointless as this module is already loaded.
584  */
585 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data)
586 {
587 	return NULL;
588 }
589 
590 /*
591  * Device no to disk mapping:
592  *
593  *       major         disc2     disc  p1
594  *   |............|.............|....|....| <- dev_t
595  *    31        20 19          8 7  4 3  0
596  *
597  * Inside a major, we have 16k disks, however mapped non-
598  * contiguously. The first 16 disks are for major0, the next
599  * ones with major1, ... Disk 256 is for major0 again, disk 272
600  * for major1, ...
601  * As we stay compatible with our numbering scheme, we can reuse
602  * the well-know SCSI majors 8, 65--71, 136--143.
603  */
604 static int sd_major(int major_idx)
605 {
606 	switch (major_idx) {
607 	case 0:
608 		return SCSI_DISK0_MAJOR;
609 	case 1 ... 7:
610 		return SCSI_DISK1_MAJOR + major_idx - 1;
611 	case 8 ... 15:
612 		return SCSI_DISK8_MAJOR + major_idx - 8;
613 	default:
614 		BUG();
615 		return 0;	/* shut up gcc */
616 	}
617 }
618 
619 static struct scsi_disk *scsi_disk_get(struct gendisk *disk)
620 {
621 	struct scsi_disk *sdkp = NULL;
622 
623 	mutex_lock(&sd_ref_mutex);
624 
625 	if (disk->private_data) {
626 		sdkp = scsi_disk(disk);
627 		if (scsi_device_get(sdkp->device) == 0)
628 			get_device(&sdkp->dev);
629 		else
630 			sdkp = NULL;
631 	}
632 	mutex_unlock(&sd_ref_mutex);
633 	return sdkp;
634 }
635 
636 static void scsi_disk_put(struct scsi_disk *sdkp)
637 {
638 	struct scsi_device *sdev = sdkp->device;
639 
640 	mutex_lock(&sd_ref_mutex);
641 	put_device(&sdkp->dev);
642 	scsi_device_put(sdev);
643 	mutex_unlock(&sd_ref_mutex);
644 }
645 
646 static unsigned char sd_setup_protect_cmnd(struct scsi_cmnd *scmd,
647 					   unsigned int dix, unsigned int dif)
648 {
649 	struct bio *bio = scmd->request->bio;
650 	unsigned int prot_op = sd_prot_op(rq_data_dir(scmd->request), dix, dif);
651 	unsigned int protect = 0;
652 
653 	if (dix) {				/* DIX Type 0, 1, 2, 3 */
654 		if (bio_integrity_flagged(bio, BIP_IP_CHECKSUM))
655 			scmd->prot_flags |= SCSI_PROT_IP_CHECKSUM;
656 
657 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
658 			scmd->prot_flags |= SCSI_PROT_GUARD_CHECK;
659 	}
660 
661 	if (dif != T10_PI_TYPE3_PROTECTION) {	/* DIX/DIF Type 0, 1, 2 */
662 		scmd->prot_flags |= SCSI_PROT_REF_INCREMENT;
663 
664 		if (bio_integrity_flagged(bio, BIP_CTRL_NOCHECK) == false)
665 			scmd->prot_flags |= SCSI_PROT_REF_CHECK;
666 	}
667 
668 	if (dif) {				/* DIX/DIF Type 1, 2, 3 */
669 		scmd->prot_flags |= SCSI_PROT_TRANSFER_PI;
670 
671 		if (bio_integrity_flagged(bio, BIP_DISK_NOCHECK))
672 			protect = 3 << 5;	/* Disable target PI checking */
673 		else
674 			protect = 1 << 5;	/* Enable target PI checking */
675 	}
676 
677 	scsi_set_prot_op(scmd, prot_op);
678 	scsi_set_prot_type(scmd, dif);
679 	scmd->prot_flags &= sd_prot_flag_mask(prot_op);
680 
681 	return protect;
682 }
683 
684 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode)
685 {
686 	struct request_queue *q = sdkp->disk->queue;
687 	unsigned int logical_block_size = sdkp->device->sector_size;
688 	unsigned int max_blocks = 0;
689 
690 	q->limits.discard_alignment =
691 		sdkp->unmap_alignment * logical_block_size;
692 	q->limits.discard_granularity =
693 		max(sdkp->physical_block_size,
694 		    sdkp->unmap_granularity * logical_block_size);
695 	sdkp->provisioning_mode = mode;
696 
697 	switch (mode) {
698 
699 	case SD_LBP_DISABLE:
700 		blk_queue_max_discard_sectors(q, 0);
701 		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
702 		return;
703 
704 	case SD_LBP_UNMAP:
705 		max_blocks = min_not_zero(sdkp->max_unmap_blocks,
706 					  (u32)SD_MAX_WS16_BLOCKS);
707 		break;
708 
709 	case SD_LBP_WS16:
710 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
711 					  (u32)SD_MAX_WS16_BLOCKS);
712 		break;
713 
714 	case SD_LBP_WS10:
715 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
716 					  (u32)SD_MAX_WS10_BLOCKS);
717 		break;
718 
719 	case SD_LBP_ZERO:
720 		max_blocks = min_not_zero(sdkp->max_ws_blocks,
721 					  (u32)SD_MAX_WS10_BLOCKS);
722 		break;
723 	}
724 
725 	blk_queue_max_discard_sectors(q, max_blocks * (logical_block_size >> 9));
726 	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
727 }
728 
729 static int sd_setup_unmap_cmnd(struct scsi_cmnd *cmd)
730 {
731 	struct scsi_device *sdp = cmd->device;
732 	struct request *rq = cmd->request;
733 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
734 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
735 	unsigned int data_len = 24;
736 	char *buf;
737 
738 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
739 	if (!rq->special_vec.bv_page)
740 		return BLKPREP_DEFER;
741 	rq->special_vec.bv_offset = 0;
742 	rq->special_vec.bv_len = data_len;
743 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
744 
745 	cmd->cmd_len = 10;
746 	cmd->cmnd[0] = UNMAP;
747 	cmd->cmnd[8] = 24;
748 
749 	buf = page_address(rq->special_vec.bv_page);
750 	put_unaligned_be16(6 + 16, &buf[0]);
751 	put_unaligned_be16(16, &buf[2]);
752 	put_unaligned_be64(sector, &buf[8]);
753 	put_unaligned_be32(nr_sectors, &buf[16]);
754 
755 	cmd->allowed = SD_MAX_RETRIES;
756 	cmd->transfersize = data_len;
757 	rq->timeout = SD_TIMEOUT;
758 	scsi_req(rq)->resid_len = data_len;
759 
760 	return scsi_init_io(cmd);
761 }
762 
763 static int sd_setup_write_same16_cmnd(struct scsi_cmnd *cmd, bool unmap)
764 {
765 	struct scsi_device *sdp = cmd->device;
766 	struct request *rq = cmd->request;
767 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
768 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
769 	u32 data_len = sdp->sector_size;
770 
771 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
772 	if (!rq->special_vec.bv_page)
773 		return BLKPREP_DEFER;
774 	rq->special_vec.bv_offset = 0;
775 	rq->special_vec.bv_len = data_len;
776 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
777 
778 	cmd->cmd_len = 16;
779 	cmd->cmnd[0] = WRITE_SAME_16;
780 	if (unmap)
781 		cmd->cmnd[1] = 0x8; /* UNMAP */
782 	put_unaligned_be64(sector, &cmd->cmnd[2]);
783 	put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
784 
785 	cmd->allowed = SD_MAX_RETRIES;
786 	cmd->transfersize = data_len;
787 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
788 	scsi_req(rq)->resid_len = data_len;
789 
790 	return scsi_init_io(cmd);
791 }
792 
793 static int sd_setup_write_same10_cmnd(struct scsi_cmnd *cmd, bool unmap)
794 {
795 	struct scsi_device *sdp = cmd->device;
796 	struct request *rq = cmd->request;
797 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
798 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
799 	u32 data_len = sdp->sector_size;
800 
801 	rq->special_vec.bv_page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
802 	if (!rq->special_vec.bv_page)
803 		return BLKPREP_DEFER;
804 	rq->special_vec.bv_offset = 0;
805 	rq->special_vec.bv_len = data_len;
806 	rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
807 
808 	cmd->cmd_len = 10;
809 	cmd->cmnd[0] = WRITE_SAME;
810 	if (unmap)
811 		cmd->cmnd[1] = 0x8; /* UNMAP */
812 	put_unaligned_be32(sector, &cmd->cmnd[2]);
813 	put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
814 
815 	cmd->allowed = SD_MAX_RETRIES;
816 	cmd->transfersize = data_len;
817 	rq->timeout = unmap ? SD_TIMEOUT : SD_WRITE_SAME_TIMEOUT;
818 	scsi_req(rq)->resid_len = data_len;
819 
820 	return scsi_init_io(cmd);
821 }
822 
823 static int sd_setup_write_zeroes_cmnd(struct scsi_cmnd *cmd)
824 {
825 	struct request *rq = cmd->request;
826 	struct scsi_device *sdp = cmd->device;
827 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
828 	u64 sector = blk_rq_pos(rq) >> (ilog2(sdp->sector_size) - 9);
829 	u32 nr_sectors = blk_rq_sectors(rq) >> (ilog2(sdp->sector_size) - 9);
830 
831 	if (!(rq->cmd_flags & REQ_NOUNMAP)) {
832 		switch (sdkp->zeroing_mode) {
833 		case SD_ZERO_WS16_UNMAP:
834 			return sd_setup_write_same16_cmnd(cmd, true);
835 		case SD_ZERO_WS10_UNMAP:
836 			return sd_setup_write_same10_cmnd(cmd, true);
837 		}
838 	}
839 
840 	if (sdp->no_write_same)
841 		return BLKPREP_INVALID;
842 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff)
843 		return sd_setup_write_same16_cmnd(cmd, false);
844 	return sd_setup_write_same10_cmnd(cmd, false);
845 }
846 
847 static void sd_config_write_same(struct scsi_disk *sdkp)
848 {
849 	struct request_queue *q = sdkp->disk->queue;
850 	unsigned int logical_block_size = sdkp->device->sector_size;
851 
852 	if (sdkp->device->no_write_same) {
853 		sdkp->max_ws_blocks = 0;
854 		goto out;
855 	}
856 
857 	/* Some devices can not handle block counts above 0xffff despite
858 	 * supporting WRITE SAME(16). Consequently we default to 64k
859 	 * blocks per I/O unless the device explicitly advertises a
860 	 * bigger limit.
861 	 */
862 	if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS)
863 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
864 						   (u32)SD_MAX_WS16_BLOCKS);
865 	else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes)
866 		sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks,
867 						   (u32)SD_MAX_WS10_BLOCKS);
868 	else {
869 		sdkp->device->no_write_same = 1;
870 		sdkp->max_ws_blocks = 0;
871 	}
872 
873 	if (sdkp->lbprz && sdkp->lbpws)
874 		sdkp->zeroing_mode = SD_ZERO_WS16_UNMAP;
875 	else if (sdkp->lbprz && sdkp->lbpws10)
876 		sdkp->zeroing_mode = SD_ZERO_WS10_UNMAP;
877 	else if (sdkp->max_ws_blocks)
878 		sdkp->zeroing_mode = SD_ZERO_WS;
879 	else
880 		sdkp->zeroing_mode = SD_ZERO_WRITE;
881 
882 out:
883 	blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks *
884 					 (logical_block_size >> 9));
885 	blk_queue_max_write_zeroes_sectors(q, sdkp->max_ws_blocks *
886 					 (logical_block_size >> 9));
887 }
888 
889 /**
890  * sd_setup_write_same_cmnd - write the same data to multiple blocks
891  * @cmd: command to prepare
892  *
893  * Will set up either WRITE SAME(10) or WRITE SAME(16) depending on
894  * the preference indicated by the target device.
895  **/
896 static int sd_setup_write_same_cmnd(struct scsi_cmnd *cmd)
897 {
898 	struct request *rq = cmd->request;
899 	struct scsi_device *sdp = cmd->device;
900 	struct scsi_disk *sdkp = scsi_disk(rq->rq_disk);
901 	struct bio *bio = rq->bio;
902 	sector_t sector = blk_rq_pos(rq);
903 	unsigned int nr_sectors = blk_rq_sectors(rq);
904 	unsigned int nr_bytes = blk_rq_bytes(rq);
905 	int ret;
906 
907 	if (sdkp->device->no_write_same)
908 		return BLKPREP_INVALID;
909 
910 	BUG_ON(bio_offset(bio) || bio_iovec(bio).bv_len != sdp->sector_size);
911 
912 	if (sd_is_zoned(sdkp)) {
913 		ret = sd_zbc_write_lock_zone(cmd);
914 		if (ret != BLKPREP_OK)
915 			return ret;
916 	}
917 
918 	sector >>= ilog2(sdp->sector_size) - 9;
919 	nr_sectors >>= ilog2(sdp->sector_size) - 9;
920 
921 	rq->timeout = SD_WRITE_SAME_TIMEOUT;
922 
923 	if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) {
924 		cmd->cmd_len = 16;
925 		cmd->cmnd[0] = WRITE_SAME_16;
926 		put_unaligned_be64(sector, &cmd->cmnd[2]);
927 		put_unaligned_be32(nr_sectors, &cmd->cmnd[10]);
928 	} else {
929 		cmd->cmd_len = 10;
930 		cmd->cmnd[0] = WRITE_SAME;
931 		put_unaligned_be32(sector, &cmd->cmnd[2]);
932 		put_unaligned_be16(nr_sectors, &cmd->cmnd[7]);
933 	}
934 
935 	cmd->transfersize = sdp->sector_size;
936 	cmd->allowed = SD_MAX_RETRIES;
937 
938 	/*
939 	 * For WRITE SAME the data transferred via the DATA OUT buffer is
940 	 * different from the amount of data actually written to the target.
941 	 *
942 	 * We set up __data_len to the amount of data transferred via the
943 	 * DATA OUT buffer so that blk_rq_map_sg sets up the proper S/G list
944 	 * to transfer a single sector of data first, but then reset it to
945 	 * the amount of data to be written right after so that the I/O path
946 	 * knows how much to actually write.
947 	 */
948 	rq->__data_len = sdp->sector_size;
949 	ret = scsi_init_io(cmd);
950 	rq->__data_len = nr_bytes;
951 	return ret;
952 }
953 
954 static int sd_setup_flush_cmnd(struct scsi_cmnd *cmd)
955 {
956 	struct request *rq = cmd->request;
957 
958 	/* flush requests don't perform I/O, zero the S/G table */
959 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
960 
961 	cmd->cmnd[0] = SYNCHRONIZE_CACHE;
962 	cmd->cmd_len = 10;
963 	cmd->transfersize = 0;
964 	cmd->allowed = SD_MAX_RETRIES;
965 
966 	rq->timeout = rq->q->rq_timeout * SD_FLUSH_TIMEOUT_MULTIPLIER;
967 	return BLKPREP_OK;
968 }
969 
970 static int sd_setup_read_write_cmnd(struct scsi_cmnd *SCpnt)
971 {
972 	struct request *rq = SCpnt->request;
973 	struct scsi_device *sdp = SCpnt->device;
974 	struct gendisk *disk = rq->rq_disk;
975 	struct scsi_disk *sdkp = scsi_disk(disk);
976 	sector_t block = blk_rq_pos(rq);
977 	sector_t threshold;
978 	unsigned int this_count = blk_rq_sectors(rq);
979 	unsigned int dif, dix;
980 	bool zoned_write = sd_is_zoned(sdkp) && rq_data_dir(rq) == WRITE;
981 	int ret;
982 	unsigned char protect;
983 
984 	if (zoned_write) {
985 		ret = sd_zbc_write_lock_zone(SCpnt);
986 		if (ret != BLKPREP_OK)
987 			return ret;
988 	}
989 
990 	ret = scsi_init_io(SCpnt);
991 	if (ret != BLKPREP_OK)
992 		goto out;
993 	SCpnt = rq->special;
994 
995 	/* from here on until we're complete, any goto out
996 	 * is used for a killable error condition */
997 	ret = BLKPREP_KILL;
998 
999 	SCSI_LOG_HLQUEUE(1,
1000 		scmd_printk(KERN_INFO, SCpnt,
1001 			"%s: block=%llu, count=%d\n",
1002 			__func__, (unsigned long long)block, this_count));
1003 
1004 	if (!sdp || !scsi_device_online(sdp) ||
1005 	    block + blk_rq_sectors(rq) > get_capacity(disk)) {
1006 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1007 						"Finishing %u sectors\n",
1008 						blk_rq_sectors(rq)));
1009 		SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1010 						"Retry with 0x%p\n", SCpnt));
1011 		goto out;
1012 	}
1013 
1014 	if (sdp->changed) {
1015 		/*
1016 		 * quietly refuse to do anything to a changed disc until
1017 		 * the changed bit has been reset
1018 		 */
1019 		/* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */
1020 		goto out;
1021 	}
1022 
1023 	/*
1024 	 * Some SD card readers can't handle multi-sector accesses which touch
1025 	 * the last one or two hardware sectors.  Split accesses as needed.
1026 	 */
1027 	threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS *
1028 		(sdp->sector_size / 512);
1029 
1030 	if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) {
1031 		if (block < threshold) {
1032 			/* Access up to the threshold but not beyond */
1033 			this_count = threshold - block;
1034 		} else {
1035 			/* Access only a single hardware sector */
1036 			this_count = sdp->sector_size / 512;
1037 		}
1038 	}
1039 
1040 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n",
1041 					(unsigned long long)block));
1042 
1043 	/*
1044 	 * If we have a 1K hardware sectorsize, prevent access to single
1045 	 * 512 byte sectors.  In theory we could handle this - in fact
1046 	 * the scsi cdrom driver must be able to handle this because
1047 	 * we typically use 1K blocksizes, and cdroms typically have
1048 	 * 2K hardware sectorsizes.  Of course, things are simpler
1049 	 * with the cdrom, since it is read-only.  For performance
1050 	 * reasons, the filesystems should be able to handle this
1051 	 * and not force the scsi disk driver to use bounce buffers
1052 	 * for this.
1053 	 */
1054 	if (sdp->sector_size == 1024) {
1055 		if ((block & 1) || (blk_rq_sectors(rq) & 1)) {
1056 			scmd_printk(KERN_ERR, SCpnt,
1057 				    "Bad block number requested\n");
1058 			goto out;
1059 		} else {
1060 			block = block >> 1;
1061 			this_count = this_count >> 1;
1062 		}
1063 	}
1064 	if (sdp->sector_size == 2048) {
1065 		if ((block & 3) || (blk_rq_sectors(rq) & 3)) {
1066 			scmd_printk(KERN_ERR, SCpnt,
1067 				    "Bad block number requested\n");
1068 			goto out;
1069 		} else {
1070 			block = block >> 2;
1071 			this_count = this_count >> 2;
1072 		}
1073 	}
1074 	if (sdp->sector_size == 4096) {
1075 		if ((block & 7) || (blk_rq_sectors(rq) & 7)) {
1076 			scmd_printk(KERN_ERR, SCpnt,
1077 				    "Bad block number requested\n");
1078 			goto out;
1079 		} else {
1080 			block = block >> 3;
1081 			this_count = this_count >> 3;
1082 		}
1083 	}
1084 	if (rq_data_dir(rq) == WRITE) {
1085 		SCpnt->cmnd[0] = WRITE_6;
1086 
1087 		if (blk_integrity_rq(rq))
1088 			sd_dif_prepare(SCpnt);
1089 
1090 	} else if (rq_data_dir(rq) == READ) {
1091 		SCpnt->cmnd[0] = READ_6;
1092 	} else {
1093 		scmd_printk(KERN_ERR, SCpnt, "Unknown command %d\n", req_op(rq));
1094 		goto out;
1095 	}
1096 
1097 	SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt,
1098 					"%s %d/%u 512 byte blocks.\n",
1099 					(rq_data_dir(rq) == WRITE) ?
1100 					"writing" : "reading", this_count,
1101 					blk_rq_sectors(rq)));
1102 
1103 	dix = scsi_prot_sg_count(SCpnt);
1104 	dif = scsi_host_dif_capable(SCpnt->device->host, sdkp->protection_type);
1105 
1106 	if (dif || dix)
1107 		protect = sd_setup_protect_cmnd(SCpnt, dix, dif);
1108 	else
1109 		protect = 0;
1110 
1111 	if (protect && sdkp->protection_type == T10_PI_TYPE2_PROTECTION) {
1112 		SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC);
1113 
1114 		if (unlikely(SCpnt->cmnd == NULL)) {
1115 			ret = BLKPREP_DEFER;
1116 			goto out;
1117 		}
1118 
1119 		SCpnt->cmd_len = SD_EXT_CDB_SIZE;
1120 		memset(SCpnt->cmnd, 0, SCpnt->cmd_len);
1121 		SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD;
1122 		SCpnt->cmnd[7] = 0x18;
1123 		SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32;
1124 		SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1125 
1126 		/* LBA */
1127 		SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1128 		SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1129 		SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1130 		SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1131 		SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff;
1132 		SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff;
1133 		SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff;
1134 		SCpnt->cmnd[19] = (unsigned char) block & 0xff;
1135 
1136 		/* Expected Indirect LBA */
1137 		SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff;
1138 		SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff;
1139 		SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff;
1140 		SCpnt->cmnd[23] = (unsigned char) block & 0xff;
1141 
1142 		/* Transfer length */
1143 		SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff;
1144 		SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff;
1145 		SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff;
1146 		SCpnt->cmnd[31] = (unsigned char) this_count & 0xff;
1147 	} else if (sdp->use_16_for_rw || (this_count > 0xffff)) {
1148 		SCpnt->cmnd[0] += READ_16 - READ_6;
1149 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1150 		SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0;
1151 		SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0;
1152 		SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0;
1153 		SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0;
1154 		SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff;
1155 		SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff;
1156 		SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff;
1157 		SCpnt->cmnd[9] = (unsigned char) block & 0xff;
1158 		SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff;
1159 		SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff;
1160 		SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff;
1161 		SCpnt->cmnd[13] = (unsigned char) this_count & 0xff;
1162 		SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0;
1163 	} else if ((this_count > 0xff) || (block > 0x1fffff) ||
1164 		   scsi_device_protection(SCpnt->device) ||
1165 		   SCpnt->device->use_10_for_rw) {
1166 		SCpnt->cmnd[0] += READ_10 - READ_6;
1167 		SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0);
1168 		SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff;
1169 		SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff;
1170 		SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff;
1171 		SCpnt->cmnd[5] = (unsigned char) block & 0xff;
1172 		SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0;
1173 		SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff;
1174 		SCpnt->cmnd[8] = (unsigned char) this_count & 0xff;
1175 	} else {
1176 		if (unlikely(rq->cmd_flags & REQ_FUA)) {
1177 			/*
1178 			 * This happens only if this drive failed
1179 			 * 10byte rw command with ILLEGAL_REQUEST
1180 			 * during operation and thus turned off
1181 			 * use_10_for_rw.
1182 			 */
1183 			scmd_printk(KERN_ERR, SCpnt,
1184 				    "FUA write on READ/WRITE(6) drive\n");
1185 			goto out;
1186 		}
1187 
1188 		SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f);
1189 		SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff);
1190 		SCpnt->cmnd[3] = (unsigned char) block & 0xff;
1191 		SCpnt->cmnd[4] = (unsigned char) this_count;
1192 		SCpnt->cmnd[5] = 0;
1193 	}
1194 	SCpnt->sdb.length = this_count * sdp->sector_size;
1195 
1196 	/*
1197 	 * We shouldn't disconnect in the middle of a sector, so with a dumb
1198 	 * host adapter, it's safe to assume that we can at least transfer
1199 	 * this many bytes between each connect / disconnect.
1200 	 */
1201 	SCpnt->transfersize = sdp->sector_size;
1202 	SCpnt->underflow = this_count << 9;
1203 	SCpnt->allowed = SD_MAX_RETRIES;
1204 
1205 	/*
1206 	 * This indicates that the command is ready from our end to be
1207 	 * queued.
1208 	 */
1209 	ret = BLKPREP_OK;
1210  out:
1211 	if (zoned_write && ret != BLKPREP_OK)
1212 		sd_zbc_write_unlock_zone(SCpnt);
1213 
1214 	return ret;
1215 }
1216 
1217 static int sd_init_command(struct scsi_cmnd *cmd)
1218 {
1219 	struct request *rq = cmd->request;
1220 
1221 	switch (req_op(rq)) {
1222 	case REQ_OP_DISCARD:
1223 		switch (scsi_disk(rq->rq_disk)->provisioning_mode) {
1224 		case SD_LBP_UNMAP:
1225 			return sd_setup_unmap_cmnd(cmd);
1226 		case SD_LBP_WS16:
1227 			return sd_setup_write_same16_cmnd(cmd, true);
1228 		case SD_LBP_WS10:
1229 			return sd_setup_write_same10_cmnd(cmd, true);
1230 		case SD_LBP_ZERO:
1231 			return sd_setup_write_same10_cmnd(cmd, false);
1232 		default:
1233 			return BLKPREP_INVALID;
1234 		}
1235 	case REQ_OP_WRITE_ZEROES:
1236 		return sd_setup_write_zeroes_cmnd(cmd);
1237 	case REQ_OP_WRITE_SAME:
1238 		return sd_setup_write_same_cmnd(cmd);
1239 	case REQ_OP_FLUSH:
1240 		return sd_setup_flush_cmnd(cmd);
1241 	case REQ_OP_READ:
1242 	case REQ_OP_WRITE:
1243 		return sd_setup_read_write_cmnd(cmd);
1244 	case REQ_OP_ZONE_REPORT:
1245 		return sd_zbc_setup_report_cmnd(cmd);
1246 	case REQ_OP_ZONE_RESET:
1247 		return sd_zbc_setup_reset_cmnd(cmd);
1248 	default:
1249 		BUG();
1250 	}
1251 }
1252 
1253 static void sd_uninit_command(struct scsi_cmnd *SCpnt)
1254 {
1255 	struct request *rq = SCpnt->request;
1256 
1257 	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1258 		__free_page(rq->special_vec.bv_page);
1259 
1260 	if (SCpnt->cmnd != scsi_req(rq)->cmd) {
1261 		mempool_free(SCpnt->cmnd, sd_cdb_pool);
1262 		SCpnt->cmnd = NULL;
1263 		SCpnt->cmd_len = 0;
1264 	}
1265 }
1266 
1267 /**
1268  *	sd_open - open a scsi disk device
1269  *	@bdev: Block device of the scsi disk to open
1270  *	@mode: FMODE_* mask
1271  *
1272  *	Returns 0 if successful. Returns a negated errno value in case
1273  *	of error.
1274  *
1275  *	Note: This can be called from a user context (e.g. fsck(1) )
1276  *	or from within the kernel (e.g. as a result of a mount(1) ).
1277  *	In the latter case @inode and @filp carry an abridged amount
1278  *	of information as noted above.
1279  *
1280  *	Locking: called with bdev->bd_mutex held.
1281  **/
1282 static int sd_open(struct block_device *bdev, fmode_t mode)
1283 {
1284 	struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk);
1285 	struct scsi_device *sdev;
1286 	int retval;
1287 
1288 	if (!sdkp)
1289 		return -ENXIO;
1290 
1291 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n"));
1292 
1293 	sdev = sdkp->device;
1294 
1295 	/*
1296 	 * If the device is in error recovery, wait until it is done.
1297 	 * If the device is offline, then disallow any access to it.
1298 	 */
1299 	retval = -ENXIO;
1300 	if (!scsi_block_when_processing_errors(sdev))
1301 		goto error_out;
1302 
1303 	if (sdev->removable || sdkp->write_prot)
1304 		check_disk_change(bdev);
1305 
1306 	/*
1307 	 * If the drive is empty, just let the open fail.
1308 	 */
1309 	retval = -ENOMEDIUM;
1310 	if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY))
1311 		goto error_out;
1312 
1313 	/*
1314 	 * If the device has the write protect tab set, have the open fail
1315 	 * if the user expects to be able to write to the thing.
1316 	 */
1317 	retval = -EROFS;
1318 	if (sdkp->write_prot && (mode & FMODE_WRITE))
1319 		goto error_out;
1320 
1321 	/*
1322 	 * It is possible that the disk changing stuff resulted in
1323 	 * the device being taken offline.  If this is the case,
1324 	 * report this to the user, and don't pretend that the
1325 	 * open actually succeeded.
1326 	 */
1327 	retval = -ENXIO;
1328 	if (!scsi_device_online(sdev))
1329 		goto error_out;
1330 
1331 	if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) {
1332 		if (scsi_block_when_processing_errors(sdev))
1333 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT);
1334 	}
1335 
1336 	return 0;
1337 
1338 error_out:
1339 	scsi_disk_put(sdkp);
1340 	return retval;
1341 }
1342 
1343 /**
1344  *	sd_release - invoked when the (last) close(2) is called on this
1345  *	scsi disk.
1346  *	@disk: disk to release
1347  *	@mode: FMODE_* mask
1348  *
1349  *	Returns 0.
1350  *
1351  *	Note: may block (uninterruptible) if error recovery is underway
1352  *	on this disk.
1353  *
1354  *	Locking: called with bdev->bd_mutex held.
1355  **/
1356 static void sd_release(struct gendisk *disk, fmode_t mode)
1357 {
1358 	struct scsi_disk *sdkp = scsi_disk(disk);
1359 	struct scsi_device *sdev = sdkp->device;
1360 
1361 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n"));
1362 
1363 	if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) {
1364 		if (scsi_block_when_processing_errors(sdev))
1365 			scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW);
1366 	}
1367 
1368 	/*
1369 	 * XXX and what if there are packets in flight and this close()
1370 	 * XXX is followed by a "rmmod sd_mod"?
1371 	 */
1372 
1373 	scsi_disk_put(sdkp);
1374 }
1375 
1376 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1377 {
1378 	struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk);
1379 	struct scsi_device *sdp = sdkp->device;
1380 	struct Scsi_Host *host = sdp->host;
1381 	sector_t capacity = logical_to_sectors(sdp, sdkp->capacity);
1382 	int diskinfo[4];
1383 
1384 	/* default to most commonly used values */
1385 	diskinfo[0] = 0x40;	/* 1 << 6 */
1386 	diskinfo[1] = 0x20;	/* 1 << 5 */
1387 	diskinfo[2] = capacity >> 11;
1388 
1389 	/* override with calculated, extended default, or driver values */
1390 	if (host->hostt->bios_param)
1391 		host->hostt->bios_param(sdp, bdev, capacity, diskinfo);
1392 	else
1393 		scsicam_bios_param(bdev, capacity, diskinfo);
1394 
1395 	geo->heads = diskinfo[0];
1396 	geo->sectors = diskinfo[1];
1397 	geo->cylinders = diskinfo[2];
1398 	return 0;
1399 }
1400 
1401 /**
1402  *	sd_ioctl - process an ioctl
1403  *	@bdev: target block device
1404  *	@mode: FMODE_* mask
1405  *	@cmd: ioctl command number
1406  *	@arg: this is third argument given to ioctl(2) system call.
1407  *	Often contains a pointer.
1408  *
1409  *	Returns 0 if successful (some ioctls return positive numbers on
1410  *	success as well). Returns a negated errno value in case of error.
1411  *
1412  *	Note: most ioctls are forward onto the block subsystem or further
1413  *	down in the scsi subsystem.
1414  **/
1415 static int sd_ioctl(struct block_device *bdev, fmode_t mode,
1416 		    unsigned int cmd, unsigned long arg)
1417 {
1418 	struct gendisk *disk = bdev->bd_disk;
1419 	struct scsi_disk *sdkp = scsi_disk(disk);
1420 	struct scsi_device *sdp = sdkp->device;
1421 	void __user *p = (void __user *)arg;
1422 	int error;
1423 
1424 	SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, "
1425 				    "cmd=0x%x\n", disk->disk_name, cmd));
1426 
1427 	error = scsi_verify_blk_ioctl(bdev, cmd);
1428 	if (error < 0)
1429 		return error;
1430 
1431 	/*
1432 	 * If we are in the middle of error recovery, don't let anyone
1433 	 * else try and use this device.  Also, if error recovery fails, it
1434 	 * may try and take the device offline, in which case all further
1435 	 * access to the device is prohibited.
1436 	 */
1437 	error = scsi_ioctl_block_when_processing_errors(sdp, cmd,
1438 			(mode & FMODE_NDELAY) != 0);
1439 	if (error)
1440 		goto out;
1441 
1442 	/*
1443 	 * Send SCSI addressing ioctls directly to mid level, send other
1444 	 * ioctls to block level and then onto mid level if they can't be
1445 	 * resolved.
1446 	 */
1447 	switch (cmd) {
1448 		case SCSI_IOCTL_GET_IDLUN:
1449 		case SCSI_IOCTL_GET_BUS_NUMBER:
1450 			error = scsi_ioctl(sdp, cmd, p);
1451 			break;
1452 		default:
1453 			error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p);
1454 			if (error != -ENOTTY)
1455 				break;
1456 			error = scsi_ioctl(sdp, cmd, p);
1457 			break;
1458 	}
1459 out:
1460 	return error;
1461 }
1462 
1463 static void set_media_not_present(struct scsi_disk *sdkp)
1464 {
1465 	if (sdkp->media_present)
1466 		sdkp->device->changed = 1;
1467 
1468 	if (sdkp->device->removable) {
1469 		sdkp->media_present = 0;
1470 		sdkp->capacity = 0;
1471 	}
1472 }
1473 
1474 static int media_not_present(struct scsi_disk *sdkp,
1475 			     struct scsi_sense_hdr *sshdr)
1476 {
1477 	if (!scsi_sense_valid(sshdr))
1478 		return 0;
1479 
1480 	/* not invoked for commands that could return deferred errors */
1481 	switch (sshdr->sense_key) {
1482 	case UNIT_ATTENTION:
1483 	case NOT_READY:
1484 		/* medium not present */
1485 		if (sshdr->asc == 0x3A) {
1486 			set_media_not_present(sdkp);
1487 			return 1;
1488 		}
1489 	}
1490 	return 0;
1491 }
1492 
1493 /**
1494  *	sd_check_events - check media events
1495  *	@disk: kernel device descriptor
1496  *	@clearing: disk events currently being cleared
1497  *
1498  *	Returns mask of DISK_EVENT_*.
1499  *
1500  *	Note: this function is invoked from the block subsystem.
1501  **/
1502 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing)
1503 {
1504 	struct scsi_disk *sdkp = scsi_disk_get(disk);
1505 	struct scsi_device *sdp;
1506 	int retval;
1507 
1508 	if (!sdkp)
1509 		return 0;
1510 
1511 	sdp = sdkp->device;
1512 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n"));
1513 
1514 	/*
1515 	 * If the device is offline, don't send any commands - just pretend as
1516 	 * if the command failed.  If the device ever comes back online, we
1517 	 * can deal with it then.  It is only because of unrecoverable errors
1518 	 * that we would ever take a device offline in the first place.
1519 	 */
1520 	if (!scsi_device_online(sdp)) {
1521 		set_media_not_present(sdkp);
1522 		goto out;
1523 	}
1524 
1525 	/*
1526 	 * Using TEST_UNIT_READY enables differentiation between drive with
1527 	 * no cartridge loaded - NOT READY, drive with changed cartridge -
1528 	 * UNIT ATTENTION, or with same cartridge - GOOD STATUS.
1529 	 *
1530 	 * Drives that auto spin down. eg iomega jaz 1G, will be started
1531 	 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever
1532 	 * sd_revalidate() is called.
1533 	 */
1534 	if (scsi_block_when_processing_errors(sdp)) {
1535 		struct scsi_sense_hdr sshdr = { 0, };
1536 
1537 		retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES,
1538 					      &sshdr);
1539 
1540 		/* failed to execute TUR, assume media not present */
1541 		if (host_byte(retval)) {
1542 			set_media_not_present(sdkp);
1543 			goto out;
1544 		}
1545 
1546 		if (media_not_present(sdkp, &sshdr))
1547 			goto out;
1548 	}
1549 
1550 	/*
1551 	 * For removable scsi disk we have to recognise the presence
1552 	 * of a disk in the drive.
1553 	 */
1554 	if (!sdkp->media_present)
1555 		sdp->changed = 1;
1556 	sdkp->media_present = 1;
1557 out:
1558 	/*
1559 	 * sdp->changed is set under the following conditions:
1560 	 *
1561 	 *	Medium present state has changed in either direction.
1562 	 *	Device has indicated UNIT_ATTENTION.
1563 	 */
1564 	retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1565 	sdp->changed = 0;
1566 	scsi_disk_put(sdkp);
1567 	return retval;
1568 }
1569 
1570 static int sd_sync_cache(struct scsi_disk *sdkp)
1571 {
1572 	int retries, res;
1573 	struct scsi_device *sdp = sdkp->device;
1574 	const int timeout = sdp->request_queue->rq_timeout
1575 		* SD_FLUSH_TIMEOUT_MULTIPLIER;
1576 	struct scsi_sense_hdr sshdr;
1577 
1578 	if (!scsi_device_online(sdp))
1579 		return -ENODEV;
1580 
1581 	for (retries = 3; retries > 0; --retries) {
1582 		unsigned char cmd[10] = { 0 };
1583 
1584 		cmd[0] = SYNCHRONIZE_CACHE;
1585 		/*
1586 		 * Leave the rest of the command zero to indicate
1587 		 * flush everything.
1588 		 */
1589 		res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
1590 				timeout, SD_MAX_RETRIES, 0, RQF_PM, NULL);
1591 		if (res == 0)
1592 			break;
1593 	}
1594 
1595 	if (res) {
1596 		sd_print_result(sdkp, "Synchronize Cache(10) failed", res);
1597 
1598 		if (driver_byte(res) & DRIVER_SENSE)
1599 			sd_print_sense_hdr(sdkp, &sshdr);
1600 		/* we need to evaluate the error return  */
1601 		if (scsi_sense_valid(&sshdr) &&
1602 			(sshdr.asc == 0x3a ||	/* medium not present */
1603 			 sshdr.asc == 0x20))	/* invalid command */
1604 				/* this is no error here */
1605 				return 0;
1606 
1607 		switch (host_byte(res)) {
1608 		/* ignore errors due to racing a disconnection */
1609 		case DID_BAD_TARGET:
1610 		case DID_NO_CONNECT:
1611 			return 0;
1612 		/* signal the upper layer it might try again */
1613 		case DID_BUS_BUSY:
1614 		case DID_IMM_RETRY:
1615 		case DID_REQUEUE:
1616 		case DID_SOFT_ERROR:
1617 			return -EBUSY;
1618 		default:
1619 			return -EIO;
1620 		}
1621 	}
1622 	return 0;
1623 }
1624 
1625 static void sd_rescan(struct device *dev)
1626 {
1627 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
1628 
1629 	revalidate_disk(sdkp->disk);
1630 }
1631 
1632 
1633 #ifdef CONFIG_COMPAT
1634 /*
1635  * This gets directly called from VFS. When the ioctl
1636  * is not recognized we go back to the other translation paths.
1637  */
1638 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode,
1639 			   unsigned int cmd, unsigned long arg)
1640 {
1641 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1642 	int error;
1643 
1644 	error = scsi_ioctl_block_when_processing_errors(sdev, cmd,
1645 			(mode & FMODE_NDELAY) != 0);
1646 	if (error)
1647 		return error;
1648 
1649 	/*
1650 	 * Let the static ioctl translation table take care of it.
1651 	 */
1652 	if (!sdev->host->hostt->compat_ioctl)
1653 		return -ENOIOCTLCMD;
1654 	return sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg);
1655 }
1656 #endif
1657 
1658 static char sd_pr_type(enum pr_type type)
1659 {
1660 	switch (type) {
1661 	case PR_WRITE_EXCLUSIVE:
1662 		return 0x01;
1663 	case PR_EXCLUSIVE_ACCESS:
1664 		return 0x03;
1665 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
1666 		return 0x05;
1667 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1668 		return 0x06;
1669 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
1670 		return 0x07;
1671 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1672 		return 0x08;
1673 	default:
1674 		return 0;
1675 	}
1676 };
1677 
1678 static int sd_pr_command(struct block_device *bdev, u8 sa,
1679 		u64 key, u64 sa_key, u8 type, u8 flags)
1680 {
1681 	struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device;
1682 	struct scsi_sense_hdr sshdr;
1683 	int result;
1684 	u8 cmd[16] = { 0, };
1685 	u8 data[24] = { 0, };
1686 
1687 	cmd[0] = PERSISTENT_RESERVE_OUT;
1688 	cmd[1] = sa;
1689 	cmd[2] = type;
1690 	put_unaligned_be32(sizeof(data), &cmd[5]);
1691 
1692 	put_unaligned_be64(key, &data[0]);
1693 	put_unaligned_be64(sa_key, &data[8]);
1694 	data[20] = flags;
1695 
1696 	result = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, &data, sizeof(data),
1697 			&sshdr, SD_TIMEOUT, SD_MAX_RETRIES, NULL);
1698 
1699 	if ((driver_byte(result) & DRIVER_SENSE) &&
1700 	    (scsi_sense_valid(&sshdr))) {
1701 		sdev_printk(KERN_INFO, sdev, "PR command failed: %d\n", result);
1702 		scsi_print_sense_hdr(sdev, NULL, &sshdr);
1703 	}
1704 
1705 	return result;
1706 }
1707 
1708 static int sd_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
1709 		u32 flags)
1710 {
1711 	if (flags & ~PR_FL_IGNORE_KEY)
1712 		return -EOPNOTSUPP;
1713 	return sd_pr_command(bdev, (flags & PR_FL_IGNORE_KEY) ? 0x06 : 0x00,
1714 			old_key, new_key, 0,
1715 			(1 << 0) /* APTPL */);
1716 }
1717 
1718 static int sd_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
1719 		u32 flags)
1720 {
1721 	if (flags)
1722 		return -EOPNOTSUPP;
1723 	return sd_pr_command(bdev, 0x01, key, 0, sd_pr_type(type), 0);
1724 }
1725 
1726 static int sd_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1727 {
1728 	return sd_pr_command(bdev, 0x02, key, 0, sd_pr_type(type), 0);
1729 }
1730 
1731 static int sd_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
1732 		enum pr_type type, bool abort)
1733 {
1734 	return sd_pr_command(bdev, abort ? 0x05 : 0x04, old_key, new_key,
1735 			     sd_pr_type(type), 0);
1736 }
1737 
1738 static int sd_pr_clear(struct block_device *bdev, u64 key)
1739 {
1740 	return sd_pr_command(bdev, 0x03, key, 0, 0, 0);
1741 }
1742 
1743 static const struct pr_ops sd_pr_ops = {
1744 	.pr_register	= sd_pr_register,
1745 	.pr_reserve	= sd_pr_reserve,
1746 	.pr_release	= sd_pr_release,
1747 	.pr_preempt	= sd_pr_preempt,
1748 	.pr_clear	= sd_pr_clear,
1749 };
1750 
1751 static const struct block_device_operations sd_fops = {
1752 	.owner			= THIS_MODULE,
1753 	.open			= sd_open,
1754 	.release		= sd_release,
1755 	.ioctl			= sd_ioctl,
1756 	.getgeo			= sd_getgeo,
1757 #ifdef CONFIG_COMPAT
1758 	.compat_ioctl		= sd_compat_ioctl,
1759 #endif
1760 	.check_events		= sd_check_events,
1761 	.revalidate_disk	= sd_revalidate_disk,
1762 	.unlock_native_capacity	= sd_unlock_native_capacity,
1763 	.pr_ops			= &sd_pr_ops,
1764 };
1765 
1766 /**
1767  *	sd_eh_reset - reset error handling callback
1768  *	@scmd:		sd-issued command that has failed
1769  *
1770  *	This function is called by the SCSI midlayer before starting
1771  *	SCSI EH. When counting medium access failures we have to be
1772  *	careful to register it only only once per device and SCSI EH run;
1773  *	there might be several timed out commands which will cause the
1774  *	'max_medium_access_timeouts' counter to trigger after the first
1775  *	SCSI EH run already and set the device to offline.
1776  *	So this function resets the internal counter before starting SCSI EH.
1777  **/
1778 static void sd_eh_reset(struct scsi_cmnd *scmd)
1779 {
1780 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1781 
1782 	/* New SCSI EH run, reset gate variable */
1783 	sdkp->ignore_medium_access_errors = false;
1784 }
1785 
1786 /**
1787  *	sd_eh_action - error handling callback
1788  *	@scmd:		sd-issued command that has failed
1789  *	@eh_disp:	The recovery disposition suggested by the midlayer
1790  *
1791  *	This function is called by the SCSI midlayer upon completion of an
1792  *	error test command (currently TEST UNIT READY). The result of sending
1793  *	the eh command is passed in eh_disp.  We're looking for devices that
1794  *	fail medium access commands but are OK with non access commands like
1795  *	test unit ready (so wrongly see the device as having a successful
1796  *	recovery)
1797  **/
1798 static int sd_eh_action(struct scsi_cmnd *scmd, int eh_disp)
1799 {
1800 	struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk);
1801 
1802 	if (!scsi_device_online(scmd->device) ||
1803 	    !scsi_medium_access_command(scmd) ||
1804 	    host_byte(scmd->result) != DID_TIME_OUT ||
1805 	    eh_disp != SUCCESS)
1806 		return eh_disp;
1807 
1808 	/*
1809 	 * The device has timed out executing a medium access command.
1810 	 * However, the TEST UNIT READY command sent during error
1811 	 * handling completed successfully. Either the device is in the
1812 	 * process of recovering or has it suffered an internal failure
1813 	 * that prevents access to the storage medium.
1814 	 */
1815 	if (!sdkp->ignore_medium_access_errors) {
1816 		sdkp->medium_access_timed_out++;
1817 		sdkp->ignore_medium_access_errors = true;
1818 	}
1819 
1820 	/*
1821 	 * If the device keeps failing read/write commands but TEST UNIT
1822 	 * READY always completes successfully we assume that medium
1823 	 * access is no longer possible and take the device offline.
1824 	 */
1825 	if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) {
1826 		scmd_printk(KERN_ERR, scmd,
1827 			    "Medium access timeout failure. Offlining disk!\n");
1828 		scsi_device_set_state(scmd->device, SDEV_OFFLINE);
1829 
1830 		return SUCCESS;
1831 	}
1832 
1833 	return eh_disp;
1834 }
1835 
1836 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd)
1837 {
1838 	struct request *req = scmd->request;
1839 	struct scsi_device *sdev = scmd->device;
1840 	unsigned int transferred, good_bytes;
1841 	u64 start_lba, end_lba, bad_lba;
1842 
1843 	/*
1844 	 * Some commands have a payload smaller than the device logical
1845 	 * block size (e.g. INQUIRY on a 4K disk).
1846 	 */
1847 	if (scsi_bufflen(scmd) <= sdev->sector_size)
1848 		return 0;
1849 
1850 	/* Check if we have a 'bad_lba' information */
1851 	if (!scsi_get_sense_info_fld(scmd->sense_buffer,
1852 				     SCSI_SENSE_BUFFERSIZE,
1853 				     &bad_lba))
1854 		return 0;
1855 
1856 	/*
1857 	 * If the bad lba was reported incorrectly, we have no idea where
1858 	 * the error is.
1859 	 */
1860 	start_lba = sectors_to_logical(sdev, blk_rq_pos(req));
1861 	end_lba = start_lba + bytes_to_logical(sdev, scsi_bufflen(scmd));
1862 	if (bad_lba < start_lba || bad_lba >= end_lba)
1863 		return 0;
1864 
1865 	/*
1866 	 * resid is optional but mostly filled in.  When it's unused,
1867 	 * its value is zero, so we assume the whole buffer transferred
1868 	 */
1869 	transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd);
1870 
1871 	/* This computation should always be done in terms of the
1872 	 * resolution of the device's medium.
1873 	 */
1874 	good_bytes = logical_to_bytes(sdev, bad_lba - start_lba);
1875 
1876 	return min(good_bytes, transferred);
1877 }
1878 
1879 /**
1880  *	sd_done - bottom half handler: called when the lower level
1881  *	driver has completed (successfully or otherwise) a scsi command.
1882  *	@SCpnt: mid-level's per command structure.
1883  *
1884  *	Note: potentially run from within an ISR. Must not block.
1885  **/
1886 static int sd_done(struct scsi_cmnd *SCpnt)
1887 {
1888 	int result = SCpnt->result;
1889 	unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt);
1890 	unsigned int sector_size = SCpnt->device->sector_size;
1891 	unsigned int resid;
1892 	struct scsi_sense_hdr sshdr;
1893 	struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk);
1894 	struct request *req = SCpnt->request;
1895 	int sense_valid = 0;
1896 	int sense_deferred = 0;
1897 
1898 	switch (req_op(req)) {
1899 	case REQ_OP_DISCARD:
1900 	case REQ_OP_WRITE_ZEROES:
1901 	case REQ_OP_WRITE_SAME:
1902 	case REQ_OP_ZONE_RESET:
1903 		if (!result) {
1904 			good_bytes = blk_rq_bytes(req);
1905 			scsi_set_resid(SCpnt, 0);
1906 		} else {
1907 			good_bytes = 0;
1908 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1909 		}
1910 		break;
1911 	case REQ_OP_ZONE_REPORT:
1912 		if (!result) {
1913 			good_bytes = scsi_bufflen(SCpnt)
1914 				- scsi_get_resid(SCpnt);
1915 			scsi_set_resid(SCpnt, 0);
1916 		} else {
1917 			good_bytes = 0;
1918 			scsi_set_resid(SCpnt, blk_rq_bytes(req));
1919 		}
1920 		break;
1921 	default:
1922 		/*
1923 		 * In case of bogus fw or device, we could end up having
1924 		 * an unaligned partial completion. Check this here and force
1925 		 * alignment.
1926 		 */
1927 		resid = scsi_get_resid(SCpnt);
1928 		if (resid & (sector_size - 1)) {
1929 			sd_printk(KERN_INFO, sdkp,
1930 				"Unaligned partial completion (resid=%u, sector_sz=%u)\n",
1931 				resid, sector_size);
1932 			resid = min(scsi_bufflen(SCpnt),
1933 				    round_up(resid, sector_size));
1934 			scsi_set_resid(SCpnt, resid);
1935 		}
1936 	}
1937 
1938 	if (result) {
1939 		sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr);
1940 		if (sense_valid)
1941 			sense_deferred = scsi_sense_is_deferred(&sshdr);
1942 	}
1943 	sdkp->medium_access_timed_out = 0;
1944 
1945 	if (driver_byte(result) != DRIVER_SENSE &&
1946 	    (!sense_valid || sense_deferred))
1947 		goto out;
1948 
1949 	switch (sshdr.sense_key) {
1950 	case HARDWARE_ERROR:
1951 	case MEDIUM_ERROR:
1952 		good_bytes = sd_completed_bytes(SCpnt);
1953 		break;
1954 	case RECOVERED_ERROR:
1955 		good_bytes = scsi_bufflen(SCpnt);
1956 		break;
1957 	case NO_SENSE:
1958 		/* This indicates a false check condition, so ignore it.  An
1959 		 * unknown amount of data was transferred so treat it as an
1960 		 * error.
1961 		 */
1962 		SCpnt->result = 0;
1963 		memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1964 		break;
1965 	case ABORTED_COMMAND:
1966 		if (sshdr.asc == 0x10)  /* DIF: Target detected corruption */
1967 			good_bytes = sd_completed_bytes(SCpnt);
1968 		break;
1969 	case ILLEGAL_REQUEST:
1970 		switch (sshdr.asc) {
1971 		case 0x10:	/* DIX: Host detected corruption */
1972 			good_bytes = sd_completed_bytes(SCpnt);
1973 			break;
1974 		case 0x20:	/* INVALID COMMAND OPCODE */
1975 		case 0x24:	/* INVALID FIELD IN CDB */
1976 			switch (SCpnt->cmnd[0]) {
1977 			case UNMAP:
1978 				sd_config_discard(sdkp, SD_LBP_DISABLE);
1979 				break;
1980 			case WRITE_SAME_16:
1981 			case WRITE_SAME:
1982 				if (SCpnt->cmnd[1] & 8) { /* UNMAP */
1983 					sd_config_discard(sdkp, SD_LBP_DISABLE);
1984 				} else {
1985 					sdkp->device->no_write_same = 1;
1986 					sd_config_write_same(sdkp);
1987 					req->__data_len = blk_rq_bytes(req);
1988 					req->rq_flags |= RQF_QUIET;
1989 				}
1990 				break;
1991 			}
1992 		}
1993 		break;
1994 	default:
1995 		break;
1996 	}
1997 
1998  out:
1999 	if (sd_is_zoned(sdkp))
2000 		sd_zbc_complete(SCpnt, good_bytes, &sshdr);
2001 
2002 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt,
2003 					   "sd_done: completed %d of %d bytes\n",
2004 					   good_bytes, scsi_bufflen(SCpnt)));
2005 
2006 	if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt))
2007 		sd_dif_complete(SCpnt, good_bytes);
2008 
2009 	return good_bytes;
2010 }
2011 
2012 /*
2013  * spinup disk - called only in sd_revalidate_disk()
2014  */
2015 static void
2016 sd_spinup_disk(struct scsi_disk *sdkp)
2017 {
2018 	unsigned char cmd[10];
2019 	unsigned long spintime_expire = 0;
2020 	int retries, spintime;
2021 	unsigned int the_result;
2022 	struct scsi_sense_hdr sshdr;
2023 	int sense_valid = 0;
2024 
2025 	spintime = 0;
2026 
2027 	/* Spin up drives, as required.  Only do this at boot time */
2028 	/* Spinup needs to be done for module loads too. */
2029 	do {
2030 		retries = 0;
2031 
2032 		do {
2033 			cmd[0] = TEST_UNIT_READY;
2034 			memset((void *) &cmd[1], 0, 9);
2035 
2036 			the_result = scsi_execute_req(sdkp->device, cmd,
2037 						      DMA_NONE, NULL, 0,
2038 						      &sshdr, SD_TIMEOUT,
2039 						      SD_MAX_RETRIES, NULL);
2040 
2041 			/*
2042 			 * If the drive has indicated to us that it
2043 			 * doesn't have any media in it, don't bother
2044 			 * with any more polling.
2045 			 */
2046 			if (media_not_present(sdkp, &sshdr))
2047 				return;
2048 
2049 			if (the_result)
2050 				sense_valid = scsi_sense_valid(&sshdr);
2051 			retries++;
2052 		} while (retries < 3 &&
2053 			 (!scsi_status_is_good(the_result) ||
2054 			  ((driver_byte(the_result) & DRIVER_SENSE) &&
2055 			  sense_valid && sshdr.sense_key == UNIT_ATTENTION)));
2056 
2057 		if ((driver_byte(the_result) & DRIVER_SENSE) == 0) {
2058 			/* no sense, TUR either succeeded or failed
2059 			 * with a status error */
2060 			if(!spintime && !scsi_status_is_good(the_result)) {
2061 				sd_print_result(sdkp, "Test Unit Ready failed",
2062 						the_result);
2063 			}
2064 			break;
2065 		}
2066 
2067 		/*
2068 		 * The device does not want the automatic start to be issued.
2069 		 */
2070 		if (sdkp->device->no_start_on_add)
2071 			break;
2072 
2073 		if (sense_valid && sshdr.sense_key == NOT_READY) {
2074 			if (sshdr.asc == 4 && sshdr.ascq == 3)
2075 				break;	/* manual intervention required */
2076 			if (sshdr.asc == 4 && sshdr.ascq == 0xb)
2077 				break;	/* standby */
2078 			if (sshdr.asc == 4 && sshdr.ascq == 0xc)
2079 				break;	/* unavailable */
2080 			/*
2081 			 * Issue command to spin up drive when not ready
2082 			 */
2083 			if (!spintime) {
2084 				sd_printk(KERN_NOTICE, sdkp, "Spinning up disk...");
2085 				cmd[0] = START_STOP;
2086 				cmd[1] = 1;	/* Return immediately */
2087 				memset((void *) &cmd[2], 0, 8);
2088 				cmd[4] = 1;	/* Start spin cycle */
2089 				if (sdkp->device->start_stop_pwr_cond)
2090 					cmd[4] |= 1 << 4;
2091 				scsi_execute_req(sdkp->device, cmd, DMA_NONE,
2092 						 NULL, 0, &sshdr,
2093 						 SD_TIMEOUT, SD_MAX_RETRIES,
2094 						 NULL);
2095 				spintime_expire = jiffies + 100 * HZ;
2096 				spintime = 1;
2097 			}
2098 			/* Wait 1 second for next try */
2099 			msleep(1000);
2100 			printk(".");
2101 
2102 		/*
2103 		 * Wait for USB flash devices with slow firmware.
2104 		 * Yes, this sense key/ASC combination shouldn't
2105 		 * occur here.  It's characteristic of these devices.
2106 		 */
2107 		} else if (sense_valid &&
2108 				sshdr.sense_key == UNIT_ATTENTION &&
2109 				sshdr.asc == 0x28) {
2110 			if (!spintime) {
2111 				spintime_expire = jiffies + 5 * HZ;
2112 				spintime = 1;
2113 			}
2114 			/* Wait 1 second for next try */
2115 			msleep(1000);
2116 		} else {
2117 			/* we don't understand the sense code, so it's
2118 			 * probably pointless to loop */
2119 			if(!spintime) {
2120 				sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n");
2121 				sd_print_sense_hdr(sdkp, &sshdr);
2122 			}
2123 			break;
2124 		}
2125 
2126 	} while (spintime && time_before_eq(jiffies, spintime_expire));
2127 
2128 	if (spintime) {
2129 		if (scsi_status_is_good(the_result))
2130 			printk("ready\n");
2131 		else
2132 			printk("not responding...\n");
2133 	}
2134 }
2135 
2136 /*
2137  * Determine whether disk supports Data Integrity Field.
2138  */
2139 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer)
2140 {
2141 	struct scsi_device *sdp = sdkp->device;
2142 	u8 type;
2143 	int ret = 0;
2144 
2145 	if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0)
2146 		return ret;
2147 
2148 	type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */
2149 
2150 	if (type > T10_PI_TYPE3_PROTECTION)
2151 		ret = -ENODEV;
2152 	else if (scsi_host_dif_capable(sdp->host, type))
2153 		ret = 1;
2154 
2155 	if (sdkp->first_scan || type != sdkp->protection_type)
2156 		switch (ret) {
2157 		case -ENODEV:
2158 			sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \
2159 				  " protection type %u. Disabling disk!\n",
2160 				  type);
2161 			break;
2162 		case 1:
2163 			sd_printk(KERN_NOTICE, sdkp,
2164 				  "Enabling DIF Type %u protection\n", type);
2165 			break;
2166 		case 0:
2167 			sd_printk(KERN_NOTICE, sdkp,
2168 				  "Disabling DIF Type %u protection\n", type);
2169 			break;
2170 		}
2171 
2172 	sdkp->protection_type = type;
2173 
2174 	return ret;
2175 }
2176 
2177 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp,
2178 			struct scsi_sense_hdr *sshdr, int sense_valid,
2179 			int the_result)
2180 {
2181 	if (driver_byte(the_result) & DRIVER_SENSE)
2182 		sd_print_sense_hdr(sdkp, sshdr);
2183 	else
2184 		sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n");
2185 
2186 	/*
2187 	 * Set dirty bit for removable devices if not ready -
2188 	 * sometimes drives will not report this properly.
2189 	 */
2190 	if (sdp->removable &&
2191 	    sense_valid && sshdr->sense_key == NOT_READY)
2192 		set_media_not_present(sdkp);
2193 
2194 	/*
2195 	 * We used to set media_present to 0 here to indicate no media
2196 	 * in the drive, but some drives fail read capacity even with
2197 	 * media present, so we can't do that.
2198 	 */
2199 	sdkp->capacity = 0; /* unknown mapped to zero - as usual */
2200 }
2201 
2202 #define RC16_LEN 32
2203 #if RC16_LEN > SD_BUF_SIZE
2204 #error RC16_LEN must not be more than SD_BUF_SIZE
2205 #endif
2206 
2207 #define READ_CAPACITY_RETRIES_ON_RESET	10
2208 
2209 /*
2210  * Ensure that we don't overflow sector_t when CONFIG_LBDAF is not set
2211  * and the reported logical block size is bigger than 512 bytes. Note
2212  * that last_sector is a u64 and therefore logical_to_sectors() is not
2213  * applicable.
2214  */
2215 static bool sd_addressable_capacity(u64 lba, unsigned int sector_size)
2216 {
2217 	u64 last_sector = (lba + 1ULL) << (ilog2(sector_size) - 9);
2218 
2219 	if (sizeof(sector_t) == 4 && last_sector > U32_MAX)
2220 		return false;
2221 
2222 	return true;
2223 }
2224 
2225 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp,
2226 						unsigned char *buffer)
2227 {
2228 	unsigned char cmd[16];
2229 	struct scsi_sense_hdr sshdr;
2230 	int sense_valid = 0;
2231 	int the_result;
2232 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2233 	unsigned int alignment;
2234 	unsigned long long lba;
2235 	unsigned sector_size;
2236 
2237 	if (sdp->no_read_capacity_16)
2238 		return -EINVAL;
2239 
2240 	do {
2241 		memset(cmd, 0, 16);
2242 		cmd[0] = SERVICE_ACTION_IN_16;
2243 		cmd[1] = SAI_READ_CAPACITY_16;
2244 		cmd[13] = RC16_LEN;
2245 		memset(buffer, 0, RC16_LEN);
2246 
2247 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2248 					buffer, RC16_LEN, &sshdr,
2249 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2250 
2251 		if (media_not_present(sdkp, &sshdr))
2252 			return -ENODEV;
2253 
2254 		if (the_result) {
2255 			sense_valid = scsi_sense_valid(&sshdr);
2256 			if (sense_valid &&
2257 			    sshdr.sense_key == ILLEGAL_REQUEST &&
2258 			    (sshdr.asc == 0x20 || sshdr.asc == 0x24) &&
2259 			    sshdr.ascq == 0x00)
2260 				/* Invalid Command Operation Code or
2261 				 * Invalid Field in CDB, just retry
2262 				 * silently with RC10 */
2263 				return -EINVAL;
2264 			if (sense_valid &&
2265 			    sshdr.sense_key == UNIT_ATTENTION &&
2266 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2267 				/* Device reset might occur several times,
2268 				 * give it one more chance */
2269 				if (--reset_retries > 0)
2270 					continue;
2271 		}
2272 		retries--;
2273 
2274 	} while (the_result && retries);
2275 
2276 	if (the_result) {
2277 		sd_print_result(sdkp, "Read Capacity(16) failed", the_result);
2278 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2279 		return -EINVAL;
2280 	}
2281 
2282 	sector_size = get_unaligned_be32(&buffer[8]);
2283 	lba = get_unaligned_be64(&buffer[0]);
2284 
2285 	if (sd_read_protection_type(sdkp, buffer) < 0) {
2286 		sdkp->capacity = 0;
2287 		return -ENODEV;
2288 	}
2289 
2290 	if (!sd_addressable_capacity(lba, sector_size)) {
2291 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2292 			"kernel compiled with support for large block "
2293 			"devices.\n");
2294 		sdkp->capacity = 0;
2295 		return -EOVERFLOW;
2296 	}
2297 
2298 	/* Logical blocks per physical block exponent */
2299 	sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size;
2300 
2301 	/* RC basis */
2302 	sdkp->rc_basis = (buffer[12] >> 4) & 0x3;
2303 
2304 	/* Lowest aligned logical block */
2305 	alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size;
2306 	blk_queue_alignment_offset(sdp->request_queue, alignment);
2307 	if (alignment && sdkp->first_scan)
2308 		sd_printk(KERN_NOTICE, sdkp,
2309 			  "physical block alignment offset: %u\n", alignment);
2310 
2311 	if (buffer[14] & 0x80) { /* LBPME */
2312 		sdkp->lbpme = 1;
2313 
2314 		if (buffer[14] & 0x40) /* LBPRZ */
2315 			sdkp->lbprz = 1;
2316 
2317 		sd_config_discard(sdkp, SD_LBP_WS16);
2318 	}
2319 
2320 	sdkp->capacity = lba + 1;
2321 	return sector_size;
2322 }
2323 
2324 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp,
2325 						unsigned char *buffer)
2326 {
2327 	unsigned char cmd[16];
2328 	struct scsi_sense_hdr sshdr;
2329 	int sense_valid = 0;
2330 	int the_result;
2331 	int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET;
2332 	sector_t lba;
2333 	unsigned sector_size;
2334 
2335 	do {
2336 		cmd[0] = READ_CAPACITY;
2337 		memset(&cmd[1], 0, 9);
2338 		memset(buffer, 0, 8);
2339 
2340 		the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE,
2341 					buffer, 8, &sshdr,
2342 					SD_TIMEOUT, SD_MAX_RETRIES, NULL);
2343 
2344 		if (media_not_present(sdkp, &sshdr))
2345 			return -ENODEV;
2346 
2347 		if (the_result) {
2348 			sense_valid = scsi_sense_valid(&sshdr);
2349 			if (sense_valid &&
2350 			    sshdr.sense_key == UNIT_ATTENTION &&
2351 			    sshdr.asc == 0x29 && sshdr.ascq == 0x00)
2352 				/* Device reset might occur several times,
2353 				 * give it one more chance */
2354 				if (--reset_retries > 0)
2355 					continue;
2356 		}
2357 		retries--;
2358 
2359 	} while (the_result && retries);
2360 
2361 	if (the_result) {
2362 		sd_print_result(sdkp, "Read Capacity(10) failed", the_result);
2363 		read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result);
2364 		return -EINVAL;
2365 	}
2366 
2367 	sector_size = get_unaligned_be32(&buffer[4]);
2368 	lba = get_unaligned_be32(&buffer[0]);
2369 
2370 	if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) {
2371 		/* Some buggy (usb cardreader) devices return an lba of
2372 		   0xffffffff when the want to report a size of 0 (with
2373 		   which they really mean no media is present) */
2374 		sdkp->capacity = 0;
2375 		sdkp->physical_block_size = sector_size;
2376 		return sector_size;
2377 	}
2378 
2379 	if (!sd_addressable_capacity(lba, sector_size)) {
2380 		sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a "
2381 			"kernel compiled with support for large block "
2382 			"devices.\n");
2383 		sdkp->capacity = 0;
2384 		return -EOVERFLOW;
2385 	}
2386 
2387 	sdkp->capacity = lba + 1;
2388 	sdkp->physical_block_size = sector_size;
2389 	return sector_size;
2390 }
2391 
2392 static int sd_try_rc16_first(struct scsi_device *sdp)
2393 {
2394 	if (sdp->host->max_cmd_len < 16)
2395 		return 0;
2396 	if (sdp->try_rc_10_first)
2397 		return 0;
2398 	if (sdp->scsi_level > SCSI_SPC_2)
2399 		return 1;
2400 	if (scsi_device_protection(sdp))
2401 		return 1;
2402 	return 0;
2403 }
2404 
2405 /*
2406  * read disk capacity
2407  */
2408 static void
2409 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer)
2410 {
2411 	int sector_size;
2412 	struct scsi_device *sdp = sdkp->device;
2413 
2414 	if (sd_try_rc16_first(sdp)) {
2415 		sector_size = read_capacity_16(sdkp, sdp, buffer);
2416 		if (sector_size == -EOVERFLOW)
2417 			goto got_data;
2418 		if (sector_size == -ENODEV)
2419 			return;
2420 		if (sector_size < 0)
2421 			sector_size = read_capacity_10(sdkp, sdp, buffer);
2422 		if (sector_size < 0)
2423 			return;
2424 	} else {
2425 		sector_size = read_capacity_10(sdkp, sdp, buffer);
2426 		if (sector_size == -EOVERFLOW)
2427 			goto got_data;
2428 		if (sector_size < 0)
2429 			return;
2430 		if ((sizeof(sdkp->capacity) > 4) &&
2431 		    (sdkp->capacity > 0xffffffffULL)) {
2432 			int old_sector_size = sector_size;
2433 			sd_printk(KERN_NOTICE, sdkp, "Very big device. "
2434 					"Trying to use READ CAPACITY(16).\n");
2435 			sector_size = read_capacity_16(sdkp, sdp, buffer);
2436 			if (sector_size < 0) {
2437 				sd_printk(KERN_NOTICE, sdkp,
2438 					"Using 0xffffffff as device size\n");
2439 				sdkp->capacity = 1 + (sector_t) 0xffffffff;
2440 				sector_size = old_sector_size;
2441 				goto got_data;
2442 			}
2443 		}
2444 	}
2445 
2446 	/* Some devices are known to return the total number of blocks,
2447 	 * not the highest block number.  Some devices have versions
2448 	 * which do this and others which do not.  Some devices we might
2449 	 * suspect of doing this but we don't know for certain.
2450 	 *
2451 	 * If we know the reported capacity is wrong, decrement it.  If
2452 	 * we can only guess, then assume the number of blocks is even
2453 	 * (usually true but not always) and err on the side of lowering
2454 	 * the capacity.
2455 	 */
2456 	if (sdp->fix_capacity ||
2457 	    (sdp->guess_capacity && (sdkp->capacity & 0x01))) {
2458 		sd_printk(KERN_INFO, sdkp, "Adjusting the sector count "
2459 				"from its reported value: %llu\n",
2460 				(unsigned long long) sdkp->capacity);
2461 		--sdkp->capacity;
2462 	}
2463 
2464 got_data:
2465 	if (sector_size == 0) {
2466 		sector_size = 512;
2467 		sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, "
2468 			  "assuming 512.\n");
2469 	}
2470 
2471 	if (sector_size != 512 &&
2472 	    sector_size != 1024 &&
2473 	    sector_size != 2048 &&
2474 	    sector_size != 4096) {
2475 		sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n",
2476 			  sector_size);
2477 		/*
2478 		 * The user might want to re-format the drive with
2479 		 * a supported sectorsize.  Once this happens, it
2480 		 * would be relatively trivial to set the thing up.
2481 		 * For this reason, we leave the thing in the table.
2482 		 */
2483 		sdkp->capacity = 0;
2484 		/*
2485 		 * set a bogus sector size so the normal read/write
2486 		 * logic in the block layer will eventually refuse any
2487 		 * request on this device without tripping over power
2488 		 * of two sector size assumptions
2489 		 */
2490 		sector_size = 512;
2491 	}
2492 	blk_queue_logical_block_size(sdp->request_queue, sector_size);
2493 	blk_queue_physical_block_size(sdp->request_queue,
2494 				      sdkp->physical_block_size);
2495 	sdkp->device->sector_size = sector_size;
2496 
2497 	if (sdkp->capacity > 0xffffffff)
2498 		sdp->use_16_for_rw = 1;
2499 
2500 }
2501 
2502 /*
2503  * Print disk capacity
2504  */
2505 static void
2506 sd_print_capacity(struct scsi_disk *sdkp,
2507 		  sector_t old_capacity)
2508 {
2509 	int sector_size = sdkp->device->sector_size;
2510 	char cap_str_2[10], cap_str_10[10];
2511 
2512 	string_get_size(sdkp->capacity, sector_size,
2513 			STRING_UNITS_2, cap_str_2, sizeof(cap_str_2));
2514 	string_get_size(sdkp->capacity, sector_size,
2515 			STRING_UNITS_10, cap_str_10,
2516 			sizeof(cap_str_10));
2517 
2518 	if (sdkp->first_scan || old_capacity != sdkp->capacity) {
2519 		sd_printk(KERN_NOTICE, sdkp,
2520 			  "%llu %d-byte logical blocks: (%s/%s)\n",
2521 			  (unsigned long long)sdkp->capacity,
2522 			  sector_size, cap_str_10, cap_str_2);
2523 
2524 		if (sdkp->physical_block_size != sector_size)
2525 			sd_printk(KERN_NOTICE, sdkp,
2526 				  "%u-byte physical blocks\n",
2527 				  sdkp->physical_block_size);
2528 
2529 		sd_zbc_print_zones(sdkp);
2530 	}
2531 }
2532 
2533 /* called with buffer of length 512 */
2534 static inline int
2535 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage,
2536 		 unsigned char *buffer, int len, struct scsi_mode_data *data,
2537 		 struct scsi_sense_hdr *sshdr)
2538 {
2539 	return scsi_mode_sense(sdp, dbd, modepage, buffer, len,
2540 			       SD_TIMEOUT, SD_MAX_RETRIES, data,
2541 			       sshdr);
2542 }
2543 
2544 /*
2545  * read write protect setting, if possible - called only in sd_revalidate_disk()
2546  * called with buffer of length SD_BUF_SIZE
2547  */
2548 static void
2549 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer)
2550 {
2551 	int res;
2552 	struct scsi_device *sdp = sdkp->device;
2553 	struct scsi_mode_data data;
2554 	int old_wp = sdkp->write_prot;
2555 
2556 	set_disk_ro(sdkp->disk, 0);
2557 	if (sdp->skip_ms_page_3f) {
2558 		sd_first_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n");
2559 		return;
2560 	}
2561 
2562 	if (sdp->use_192_bytes_for_3f) {
2563 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL);
2564 	} else {
2565 		/*
2566 		 * First attempt: ask for all pages (0x3F), but only 4 bytes.
2567 		 * We have to start carefully: some devices hang if we ask
2568 		 * for more than is available.
2569 		 */
2570 		res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL);
2571 
2572 		/*
2573 		 * Second attempt: ask for page 0 When only page 0 is
2574 		 * implemented, a request for page 3F may return Sense Key
2575 		 * 5: Illegal Request, Sense Code 24: Invalid field in
2576 		 * CDB.
2577 		 */
2578 		if (!scsi_status_is_good(res))
2579 			res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL);
2580 
2581 		/*
2582 		 * Third attempt: ask 255 bytes, as we did earlier.
2583 		 */
2584 		if (!scsi_status_is_good(res))
2585 			res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255,
2586 					       &data, NULL);
2587 	}
2588 
2589 	if (!scsi_status_is_good(res)) {
2590 		sd_first_printk(KERN_WARNING, sdkp,
2591 			  "Test WP failed, assume Write Enabled\n");
2592 	} else {
2593 		sdkp->write_prot = ((data.device_specific & 0x80) != 0);
2594 		set_disk_ro(sdkp->disk, sdkp->write_prot);
2595 		if (sdkp->first_scan || old_wp != sdkp->write_prot) {
2596 			sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n",
2597 				  sdkp->write_prot ? "on" : "off");
2598 			sd_printk(KERN_DEBUG, sdkp, "Mode Sense: %4ph\n", buffer);
2599 		}
2600 	}
2601 }
2602 
2603 /*
2604  * sd_read_cache_type - called only from sd_revalidate_disk()
2605  * called with buffer of length SD_BUF_SIZE
2606  */
2607 static void
2608 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer)
2609 {
2610 	int len = 0, res;
2611 	struct scsi_device *sdp = sdkp->device;
2612 
2613 	int dbd;
2614 	int modepage;
2615 	int first_len;
2616 	struct scsi_mode_data data;
2617 	struct scsi_sense_hdr sshdr;
2618 	int old_wce = sdkp->WCE;
2619 	int old_rcd = sdkp->RCD;
2620 	int old_dpofua = sdkp->DPOFUA;
2621 
2622 
2623 	if (sdkp->cache_override)
2624 		return;
2625 
2626 	first_len = 4;
2627 	if (sdp->skip_ms_page_8) {
2628 		if (sdp->type == TYPE_RBC)
2629 			goto defaults;
2630 		else {
2631 			if (sdp->skip_ms_page_3f)
2632 				goto defaults;
2633 			modepage = 0x3F;
2634 			if (sdp->use_192_bytes_for_3f)
2635 				first_len = 192;
2636 			dbd = 0;
2637 		}
2638 	} else if (sdp->type == TYPE_RBC) {
2639 		modepage = 6;
2640 		dbd = 8;
2641 	} else {
2642 		modepage = 8;
2643 		dbd = 0;
2644 	}
2645 
2646 	/* cautiously ask */
2647 	res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len,
2648 			&data, &sshdr);
2649 
2650 	if (!scsi_status_is_good(res))
2651 		goto bad_sense;
2652 
2653 	if (!data.header_length) {
2654 		modepage = 6;
2655 		first_len = 0;
2656 		sd_first_printk(KERN_ERR, sdkp,
2657 				"Missing header in MODE_SENSE response\n");
2658 	}
2659 
2660 	/* that went OK, now ask for the proper length */
2661 	len = data.length;
2662 
2663 	/*
2664 	 * We're only interested in the first three bytes, actually.
2665 	 * But the data cache page is defined for the first 20.
2666 	 */
2667 	if (len < 3)
2668 		goto bad_sense;
2669 	else if (len > SD_BUF_SIZE) {
2670 		sd_first_printk(KERN_NOTICE, sdkp, "Truncating mode parameter "
2671 			  "data from %d to %d bytes\n", len, SD_BUF_SIZE);
2672 		len = SD_BUF_SIZE;
2673 	}
2674 	if (modepage == 0x3F && sdp->use_192_bytes_for_3f)
2675 		len = 192;
2676 
2677 	/* Get the data */
2678 	if (len > first_len)
2679 		res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len,
2680 				&data, &sshdr);
2681 
2682 	if (scsi_status_is_good(res)) {
2683 		int offset = data.header_length + data.block_descriptor_length;
2684 
2685 		while (offset < len) {
2686 			u8 page_code = buffer[offset] & 0x3F;
2687 			u8 spf       = buffer[offset] & 0x40;
2688 
2689 			if (page_code == 8 || page_code == 6) {
2690 				/* We're interested only in the first 3 bytes.
2691 				 */
2692 				if (len - offset <= 2) {
2693 					sd_first_printk(KERN_ERR, sdkp,
2694 						"Incomplete mode parameter "
2695 							"data\n");
2696 					goto defaults;
2697 				} else {
2698 					modepage = page_code;
2699 					goto Page_found;
2700 				}
2701 			} else {
2702 				/* Go to the next page */
2703 				if (spf && len - offset > 3)
2704 					offset += 4 + (buffer[offset+2] << 8) +
2705 						buffer[offset+3];
2706 				else if (!spf && len - offset > 1)
2707 					offset += 2 + buffer[offset+1];
2708 				else {
2709 					sd_first_printk(KERN_ERR, sdkp,
2710 							"Incomplete mode "
2711 							"parameter data\n");
2712 					goto defaults;
2713 				}
2714 			}
2715 		}
2716 
2717 		sd_first_printk(KERN_ERR, sdkp, "No Caching mode page found\n");
2718 		goto defaults;
2719 
2720 	Page_found:
2721 		if (modepage == 8) {
2722 			sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0);
2723 			sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0);
2724 		} else {
2725 			sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0);
2726 			sdkp->RCD = 0;
2727 		}
2728 
2729 		sdkp->DPOFUA = (data.device_specific & 0x10) != 0;
2730 		if (sdp->broken_fua) {
2731 			sd_first_printk(KERN_NOTICE, sdkp, "Disabling FUA\n");
2732 			sdkp->DPOFUA = 0;
2733 		} else if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw &&
2734 			   !sdkp->device->use_16_for_rw) {
2735 			sd_first_printk(KERN_NOTICE, sdkp,
2736 				  "Uses READ/WRITE(6), disabling FUA\n");
2737 			sdkp->DPOFUA = 0;
2738 		}
2739 
2740 		/* No cache flush allowed for write protected devices */
2741 		if (sdkp->WCE && sdkp->write_prot)
2742 			sdkp->WCE = 0;
2743 
2744 		if (sdkp->first_scan || old_wce != sdkp->WCE ||
2745 		    old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA)
2746 			sd_printk(KERN_NOTICE, sdkp,
2747 				  "Write cache: %s, read cache: %s, %s\n",
2748 				  sdkp->WCE ? "enabled" : "disabled",
2749 				  sdkp->RCD ? "disabled" : "enabled",
2750 				  sdkp->DPOFUA ? "supports DPO and FUA"
2751 				  : "doesn't support DPO or FUA");
2752 
2753 		return;
2754 	}
2755 
2756 bad_sense:
2757 	if (scsi_sense_valid(&sshdr) &&
2758 	    sshdr.sense_key == ILLEGAL_REQUEST &&
2759 	    sshdr.asc == 0x24 && sshdr.ascq == 0x0)
2760 		/* Invalid field in CDB */
2761 		sd_first_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n");
2762 	else
2763 		sd_first_printk(KERN_ERR, sdkp,
2764 				"Asking for cache data failed\n");
2765 
2766 defaults:
2767 	if (sdp->wce_default_on) {
2768 		sd_first_printk(KERN_NOTICE, sdkp,
2769 				"Assuming drive cache: write back\n");
2770 		sdkp->WCE = 1;
2771 	} else {
2772 		sd_first_printk(KERN_ERR, sdkp,
2773 				"Assuming drive cache: write through\n");
2774 		sdkp->WCE = 0;
2775 	}
2776 	sdkp->RCD = 0;
2777 	sdkp->DPOFUA = 0;
2778 }
2779 
2780 /*
2781  * The ATO bit indicates whether the DIF application tag is available
2782  * for use by the operating system.
2783  */
2784 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer)
2785 {
2786 	int res, offset;
2787 	struct scsi_device *sdp = sdkp->device;
2788 	struct scsi_mode_data data;
2789 	struct scsi_sense_hdr sshdr;
2790 
2791 	if (sdp->type != TYPE_DISK && sdp->type != TYPE_ZBC)
2792 		return;
2793 
2794 	if (sdkp->protection_type == 0)
2795 		return;
2796 
2797 	res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT,
2798 			      SD_MAX_RETRIES, &data, &sshdr);
2799 
2800 	if (!scsi_status_is_good(res) || !data.header_length ||
2801 	    data.length < 6) {
2802 		sd_first_printk(KERN_WARNING, sdkp,
2803 			  "getting Control mode page failed, assume no ATO\n");
2804 
2805 		if (scsi_sense_valid(&sshdr))
2806 			sd_print_sense_hdr(sdkp, &sshdr);
2807 
2808 		return;
2809 	}
2810 
2811 	offset = data.header_length + data.block_descriptor_length;
2812 
2813 	if ((buffer[offset] & 0x3f) != 0x0a) {
2814 		sd_first_printk(KERN_ERR, sdkp, "ATO Got wrong page\n");
2815 		return;
2816 	}
2817 
2818 	if ((buffer[offset + 5] & 0x80) == 0)
2819 		return;
2820 
2821 	sdkp->ATO = 1;
2822 
2823 	return;
2824 }
2825 
2826 /**
2827  * sd_read_block_limits - Query disk device for preferred I/O sizes.
2828  * @sdkp: disk to query
2829  */
2830 static void sd_read_block_limits(struct scsi_disk *sdkp)
2831 {
2832 	unsigned int sector_sz = sdkp->device->sector_size;
2833 	const int vpd_len = 64;
2834 	unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL);
2835 
2836 	if (!buffer ||
2837 	    /* Block Limits VPD */
2838 	    scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len))
2839 		goto out;
2840 
2841 	blk_queue_io_min(sdkp->disk->queue,
2842 			 get_unaligned_be16(&buffer[6]) * sector_sz);
2843 
2844 	sdkp->max_xfer_blocks = get_unaligned_be32(&buffer[8]);
2845 	sdkp->opt_xfer_blocks = get_unaligned_be32(&buffer[12]);
2846 
2847 	if (buffer[3] == 0x3c) {
2848 		unsigned int lba_count, desc_count;
2849 
2850 		sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]);
2851 
2852 		if (!sdkp->lbpme)
2853 			goto out;
2854 
2855 		lba_count = get_unaligned_be32(&buffer[20]);
2856 		desc_count = get_unaligned_be32(&buffer[24]);
2857 
2858 		if (lba_count && desc_count)
2859 			sdkp->max_unmap_blocks = lba_count;
2860 
2861 		sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]);
2862 
2863 		if (buffer[32] & 0x80)
2864 			sdkp->unmap_alignment =
2865 				get_unaligned_be32(&buffer[32]) & ~(1 << 31);
2866 
2867 		if (!sdkp->lbpvpd) { /* LBP VPD page not provided */
2868 
2869 			if (sdkp->max_unmap_blocks)
2870 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2871 			else
2872 				sd_config_discard(sdkp, SD_LBP_WS16);
2873 
2874 		} else {	/* LBP VPD page tells us what to use */
2875 			if (sdkp->lbpu && sdkp->max_unmap_blocks)
2876 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2877 			else if (sdkp->lbpws)
2878 				sd_config_discard(sdkp, SD_LBP_WS16);
2879 			else if (sdkp->lbpws10)
2880 				sd_config_discard(sdkp, SD_LBP_WS10);
2881 			else if (sdkp->lbpu && sdkp->max_unmap_blocks)
2882 				sd_config_discard(sdkp, SD_LBP_UNMAP);
2883 			else
2884 				sd_config_discard(sdkp, SD_LBP_DISABLE);
2885 		}
2886 	}
2887 
2888  out:
2889 	kfree(buffer);
2890 }
2891 
2892 /**
2893  * sd_read_block_characteristics - Query block dev. characteristics
2894  * @sdkp: disk to query
2895  */
2896 static void sd_read_block_characteristics(struct scsi_disk *sdkp)
2897 {
2898 	struct request_queue *q = sdkp->disk->queue;
2899 	unsigned char *buffer;
2900 	u16 rot;
2901 	const int vpd_len = 64;
2902 
2903 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2904 
2905 	if (!buffer ||
2906 	    /* Block Device Characteristics VPD */
2907 	    scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len))
2908 		goto out;
2909 
2910 	rot = get_unaligned_be16(&buffer[4]);
2911 
2912 	if (rot == 1) {
2913 		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
2914 		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
2915 	}
2916 
2917 	if (sdkp->device->type == TYPE_ZBC) {
2918 		/* Host-managed */
2919 		q->limits.zoned = BLK_ZONED_HM;
2920 	} else {
2921 		sdkp->zoned = (buffer[8] >> 4) & 3;
2922 		if (sdkp->zoned == 1)
2923 			/* Host-aware */
2924 			q->limits.zoned = BLK_ZONED_HA;
2925 		else
2926 			/*
2927 			 * Treat drive-managed devices as
2928 			 * regular block devices.
2929 			 */
2930 			q->limits.zoned = BLK_ZONED_NONE;
2931 	}
2932 	if (blk_queue_is_zoned(q) && sdkp->first_scan)
2933 		sd_printk(KERN_NOTICE, sdkp, "Host-%s zoned block device\n",
2934 		      q->limits.zoned == BLK_ZONED_HM ? "managed" : "aware");
2935 
2936  out:
2937 	kfree(buffer);
2938 }
2939 
2940 /**
2941  * sd_read_block_provisioning - Query provisioning VPD page
2942  * @sdkp: disk to query
2943  */
2944 static void sd_read_block_provisioning(struct scsi_disk *sdkp)
2945 {
2946 	unsigned char *buffer;
2947 	const int vpd_len = 8;
2948 
2949 	if (sdkp->lbpme == 0)
2950 		return;
2951 
2952 	buffer = kmalloc(vpd_len, GFP_KERNEL);
2953 
2954 	if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len))
2955 		goto out;
2956 
2957 	sdkp->lbpvpd	= 1;
2958 	sdkp->lbpu	= (buffer[5] >> 7) & 1;	/* UNMAP */
2959 	sdkp->lbpws	= (buffer[5] >> 6) & 1;	/* WRITE SAME(16) with UNMAP */
2960 	sdkp->lbpws10	= (buffer[5] >> 5) & 1;	/* WRITE SAME(10) with UNMAP */
2961 
2962  out:
2963 	kfree(buffer);
2964 }
2965 
2966 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer)
2967 {
2968 	struct scsi_device *sdev = sdkp->device;
2969 
2970 	if (sdev->host->no_write_same) {
2971 		sdev->no_write_same = 1;
2972 
2973 		return;
2974 	}
2975 
2976 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) {
2977 		/* too large values might cause issues with arcmsr */
2978 		int vpd_buf_len = 64;
2979 
2980 		sdev->no_report_opcodes = 1;
2981 
2982 		/* Disable WRITE SAME if REPORT SUPPORTED OPERATION
2983 		 * CODES is unsupported and the device has an ATA
2984 		 * Information VPD page (SAT).
2985 		 */
2986 		if (!scsi_get_vpd_page(sdev, 0x89, buffer, vpd_buf_len))
2987 			sdev->no_write_same = 1;
2988 	}
2989 
2990 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1)
2991 		sdkp->ws16 = 1;
2992 
2993 	if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1)
2994 		sdkp->ws10 = 1;
2995 }
2996 
2997 /**
2998  *	sd_revalidate_disk - called the first time a new disk is seen,
2999  *	performs disk spin up, read_capacity, etc.
3000  *	@disk: struct gendisk we care about
3001  **/
3002 static int sd_revalidate_disk(struct gendisk *disk)
3003 {
3004 	struct scsi_disk *sdkp = scsi_disk(disk);
3005 	struct scsi_device *sdp = sdkp->device;
3006 	struct request_queue *q = sdkp->disk->queue;
3007 	sector_t old_capacity = sdkp->capacity;
3008 	unsigned char *buffer;
3009 	unsigned int dev_max, rw_max;
3010 
3011 	SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp,
3012 				      "sd_revalidate_disk\n"));
3013 
3014 	/*
3015 	 * If the device is offline, don't try and read capacity or any
3016 	 * of the other niceties.
3017 	 */
3018 	if (!scsi_device_online(sdp))
3019 		goto out;
3020 
3021 	buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL);
3022 	if (!buffer) {
3023 		sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory "
3024 			  "allocation failure.\n");
3025 		goto out;
3026 	}
3027 
3028 	sd_spinup_disk(sdkp);
3029 
3030 	/*
3031 	 * Without media there is no reason to ask; moreover, some devices
3032 	 * react badly if we do.
3033 	 */
3034 	if (sdkp->media_present) {
3035 		sd_read_capacity(sdkp, buffer);
3036 
3037 		if (scsi_device_supports_vpd(sdp)) {
3038 			sd_read_block_provisioning(sdkp);
3039 			sd_read_block_limits(sdkp);
3040 			sd_read_block_characteristics(sdkp);
3041 			sd_zbc_read_zones(sdkp, buffer);
3042 		}
3043 
3044 		sd_print_capacity(sdkp, old_capacity);
3045 
3046 		sd_read_write_protect_flag(sdkp, buffer);
3047 		sd_read_cache_type(sdkp, buffer);
3048 		sd_read_app_tag_own(sdkp, buffer);
3049 		sd_read_write_same(sdkp, buffer);
3050 	}
3051 
3052 	sdkp->first_scan = 0;
3053 
3054 	/*
3055 	 * We now have all cache related info, determine how we deal
3056 	 * with flush requests.
3057 	 */
3058 	sd_set_flush_flag(sdkp);
3059 
3060 	/* Initial block count limit based on CDB TRANSFER LENGTH field size. */
3061 	dev_max = sdp->use_16_for_rw ? SD_MAX_XFER_BLOCKS : SD_DEF_XFER_BLOCKS;
3062 
3063 	/* Some devices report a maximum block count for READ/WRITE requests. */
3064 	dev_max = min_not_zero(dev_max, sdkp->max_xfer_blocks);
3065 	q->limits.max_dev_sectors = logical_to_sectors(sdp, dev_max);
3066 
3067 	/*
3068 	 * Use the device's preferred I/O size for reads and writes
3069 	 * unless the reported value is unreasonably small, large, or
3070 	 * garbage.
3071 	 */
3072 	if (sdkp->opt_xfer_blocks &&
3073 	    sdkp->opt_xfer_blocks <= dev_max &&
3074 	    sdkp->opt_xfer_blocks <= SD_DEF_XFER_BLOCKS &&
3075 	    logical_to_bytes(sdp, sdkp->opt_xfer_blocks) >= PAGE_SIZE) {
3076 		q->limits.io_opt = logical_to_bytes(sdp, sdkp->opt_xfer_blocks);
3077 		rw_max = logical_to_sectors(sdp, sdkp->opt_xfer_blocks);
3078 	} else
3079 		rw_max = min_not_zero(logical_to_sectors(sdp, dev_max),
3080 				      (sector_t)BLK_DEF_MAX_SECTORS);
3081 
3082 	/* Combine with controller limits */
3083 	q->limits.max_sectors = min(rw_max, queue_max_hw_sectors(q));
3084 
3085 	set_capacity(disk, logical_to_sectors(sdp, sdkp->capacity));
3086 	sd_config_write_same(sdkp);
3087 	kfree(buffer);
3088 
3089  out:
3090 	return 0;
3091 }
3092 
3093 /**
3094  *	sd_unlock_native_capacity - unlock native capacity
3095  *	@disk: struct gendisk to set capacity for
3096  *
3097  *	Block layer calls this function if it detects that partitions
3098  *	on @disk reach beyond the end of the device.  If the SCSI host
3099  *	implements ->unlock_native_capacity() method, it's invoked to
3100  *	give it a chance to adjust the device capacity.
3101  *
3102  *	CONTEXT:
3103  *	Defined by block layer.  Might sleep.
3104  */
3105 static void sd_unlock_native_capacity(struct gendisk *disk)
3106 {
3107 	struct scsi_device *sdev = scsi_disk(disk)->device;
3108 
3109 	if (sdev->host->hostt->unlock_native_capacity)
3110 		sdev->host->hostt->unlock_native_capacity(sdev);
3111 }
3112 
3113 /**
3114  *	sd_format_disk_name - format disk name
3115  *	@prefix: name prefix - ie. "sd" for SCSI disks
3116  *	@index: index of the disk to format name for
3117  *	@buf: output buffer
3118  *	@buflen: length of the output buffer
3119  *
3120  *	SCSI disk names starts at sda.  The 26th device is sdz and the
3121  *	27th is sdaa.  The last one for two lettered suffix is sdzz
3122  *	which is followed by sdaaa.
3123  *
3124  *	This is basically 26 base counting with one extra 'nil' entry
3125  *	at the beginning from the second digit on and can be
3126  *	determined using similar method as 26 base conversion with the
3127  *	index shifted -1 after each digit is computed.
3128  *
3129  *	CONTEXT:
3130  *	Don't care.
3131  *
3132  *	RETURNS:
3133  *	0 on success, -errno on failure.
3134  */
3135 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen)
3136 {
3137 	const int base = 'z' - 'a' + 1;
3138 	char *begin = buf + strlen(prefix);
3139 	char *end = buf + buflen;
3140 	char *p;
3141 	int unit;
3142 
3143 	p = end - 1;
3144 	*p = '\0';
3145 	unit = base;
3146 	do {
3147 		if (p == begin)
3148 			return -EINVAL;
3149 		*--p = 'a' + (index % unit);
3150 		index = (index / unit) - 1;
3151 	} while (index >= 0);
3152 
3153 	memmove(begin, p, end - p);
3154 	memcpy(buf, prefix, strlen(prefix));
3155 
3156 	return 0;
3157 }
3158 
3159 /*
3160  * The asynchronous part of sd_probe
3161  */
3162 static void sd_probe_async(void *data, async_cookie_t cookie)
3163 {
3164 	struct scsi_disk *sdkp = data;
3165 	struct scsi_device *sdp;
3166 	struct gendisk *gd;
3167 	u32 index;
3168 	struct device *dev;
3169 
3170 	sdp = sdkp->device;
3171 	gd = sdkp->disk;
3172 	index = sdkp->index;
3173 	dev = &sdp->sdev_gendev;
3174 
3175 	gd->major = sd_major((index & 0xf0) >> 4);
3176 	gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00);
3177 	gd->minors = SD_MINORS;
3178 
3179 	gd->fops = &sd_fops;
3180 	gd->private_data = &sdkp->driver;
3181 	gd->queue = sdkp->device->request_queue;
3182 
3183 	/* defaults, until the device tells us otherwise */
3184 	sdp->sector_size = 512;
3185 	sdkp->capacity = 0;
3186 	sdkp->media_present = 1;
3187 	sdkp->write_prot = 0;
3188 	sdkp->cache_override = 0;
3189 	sdkp->WCE = 0;
3190 	sdkp->RCD = 0;
3191 	sdkp->ATO = 0;
3192 	sdkp->first_scan = 1;
3193 	sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS;
3194 
3195 	sd_revalidate_disk(gd);
3196 
3197 	gd->flags = GENHD_FL_EXT_DEVT;
3198 	if (sdp->removable) {
3199 		gd->flags |= GENHD_FL_REMOVABLE;
3200 		gd->events |= DISK_EVENT_MEDIA_CHANGE;
3201 	}
3202 
3203 	blk_pm_runtime_init(sdp->request_queue, dev);
3204 	device_add_disk(dev, gd);
3205 	if (sdkp->capacity)
3206 		sd_dif_config_host(sdkp);
3207 
3208 	sd_revalidate_disk(gd);
3209 
3210 	sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n",
3211 		  sdp->removable ? "removable " : "");
3212 	scsi_autopm_put_device(sdp);
3213 	put_device(&sdkp->dev);
3214 }
3215 
3216 /**
3217  *	sd_probe - called during driver initialization and whenever a
3218  *	new scsi device is attached to the system. It is called once
3219  *	for each scsi device (not just disks) present.
3220  *	@dev: pointer to device object
3221  *
3222  *	Returns 0 if successful (or not interested in this scsi device
3223  *	(e.g. scanner)); 1 when there is an error.
3224  *
3225  *	Note: this function is invoked from the scsi mid-level.
3226  *	This function sets up the mapping between a given
3227  *	<host,channel,id,lun> (found in sdp) and new device name
3228  *	(e.g. /dev/sda). More precisely it is the block device major
3229  *	and minor number that is chosen here.
3230  *
3231  *	Assume sd_probe is not re-entrant (for time being)
3232  *	Also think about sd_probe() and sd_remove() running coincidentally.
3233  **/
3234 static int sd_probe(struct device *dev)
3235 {
3236 	struct scsi_device *sdp = to_scsi_device(dev);
3237 	struct scsi_disk *sdkp;
3238 	struct gendisk *gd;
3239 	int index;
3240 	int error;
3241 
3242 	scsi_autopm_get_device(sdp);
3243 	error = -ENODEV;
3244 	if (sdp->type != TYPE_DISK &&
3245 	    sdp->type != TYPE_ZBC &&
3246 	    sdp->type != TYPE_MOD &&
3247 	    sdp->type != TYPE_RBC)
3248 		goto out;
3249 
3250 #ifndef CONFIG_BLK_DEV_ZONED
3251 	if (sdp->type == TYPE_ZBC)
3252 		goto out;
3253 #endif
3254 	SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp,
3255 					"sd_probe\n"));
3256 
3257 	error = -ENOMEM;
3258 	sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL);
3259 	if (!sdkp)
3260 		goto out;
3261 
3262 	gd = alloc_disk(SD_MINORS);
3263 	if (!gd)
3264 		goto out_free;
3265 
3266 	do {
3267 		if (!ida_pre_get(&sd_index_ida, GFP_KERNEL))
3268 			goto out_put;
3269 
3270 		spin_lock(&sd_index_lock);
3271 		error = ida_get_new(&sd_index_ida, &index);
3272 		spin_unlock(&sd_index_lock);
3273 	} while (error == -EAGAIN);
3274 
3275 	if (error) {
3276 		sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n");
3277 		goto out_put;
3278 	}
3279 
3280 	error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN);
3281 	if (error) {
3282 		sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n");
3283 		goto out_free_index;
3284 	}
3285 
3286 	sdkp->device = sdp;
3287 	sdkp->driver = &sd_template;
3288 	sdkp->disk = gd;
3289 	sdkp->index = index;
3290 	atomic_set(&sdkp->openers, 0);
3291 	atomic_set(&sdkp->device->ioerr_cnt, 0);
3292 
3293 	if (!sdp->request_queue->rq_timeout) {
3294 		if (sdp->type != TYPE_MOD)
3295 			blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT);
3296 		else
3297 			blk_queue_rq_timeout(sdp->request_queue,
3298 					     SD_MOD_TIMEOUT);
3299 	}
3300 
3301 	device_initialize(&sdkp->dev);
3302 	sdkp->dev.parent = dev;
3303 	sdkp->dev.class = &sd_disk_class;
3304 	dev_set_name(&sdkp->dev, "%s", dev_name(dev));
3305 
3306 	error = device_add(&sdkp->dev);
3307 	if (error)
3308 		goto out_free_index;
3309 
3310 	get_device(dev);
3311 	dev_set_drvdata(dev, sdkp);
3312 
3313 	get_device(&sdkp->dev);	/* prevent release before async_schedule */
3314 	async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain);
3315 
3316 	return 0;
3317 
3318  out_free_index:
3319 	spin_lock(&sd_index_lock);
3320 	ida_remove(&sd_index_ida, index);
3321 	spin_unlock(&sd_index_lock);
3322  out_put:
3323 	put_disk(gd);
3324  out_free:
3325 	kfree(sdkp);
3326  out:
3327 	scsi_autopm_put_device(sdp);
3328 	return error;
3329 }
3330 
3331 /**
3332  *	sd_remove - called whenever a scsi disk (previously recognized by
3333  *	sd_probe) is detached from the system. It is called (potentially
3334  *	multiple times) during sd module unload.
3335  *	@dev: pointer to device object
3336  *
3337  *	Note: this function is invoked from the scsi mid-level.
3338  *	This function potentially frees up a device name (e.g. /dev/sdc)
3339  *	that could be re-used by a subsequent sd_probe().
3340  *	This function is not called when the built-in sd driver is "exit-ed".
3341  **/
3342 static int sd_remove(struct device *dev)
3343 {
3344 	struct scsi_disk *sdkp;
3345 	dev_t devt;
3346 
3347 	sdkp = dev_get_drvdata(dev);
3348 	devt = disk_devt(sdkp->disk);
3349 	scsi_autopm_get_device(sdkp->device);
3350 
3351 	async_synchronize_full_domain(&scsi_sd_pm_domain);
3352 	async_synchronize_full_domain(&scsi_sd_probe_domain);
3353 	device_del(&sdkp->dev);
3354 	del_gendisk(sdkp->disk);
3355 	sd_shutdown(dev);
3356 
3357 	sd_zbc_remove(sdkp);
3358 
3359 	blk_register_region(devt, SD_MINORS, NULL,
3360 			    sd_default_probe, NULL, NULL);
3361 
3362 	mutex_lock(&sd_ref_mutex);
3363 	dev_set_drvdata(dev, NULL);
3364 	put_device(&sdkp->dev);
3365 	mutex_unlock(&sd_ref_mutex);
3366 
3367 	return 0;
3368 }
3369 
3370 /**
3371  *	scsi_disk_release - Called to free the scsi_disk structure
3372  *	@dev: pointer to embedded class device
3373  *
3374  *	sd_ref_mutex must be held entering this routine.  Because it is
3375  *	called on last put, you should always use the scsi_disk_get()
3376  *	scsi_disk_put() helpers which manipulate the semaphore directly
3377  *	and never do a direct put_device.
3378  **/
3379 static void scsi_disk_release(struct device *dev)
3380 {
3381 	struct scsi_disk *sdkp = to_scsi_disk(dev);
3382 	struct gendisk *disk = sdkp->disk;
3383 
3384 	spin_lock(&sd_index_lock);
3385 	ida_remove(&sd_index_ida, sdkp->index);
3386 	spin_unlock(&sd_index_lock);
3387 
3388 	disk->private_data = NULL;
3389 	put_disk(disk);
3390 	put_device(&sdkp->device->sdev_gendev);
3391 
3392 	kfree(sdkp);
3393 }
3394 
3395 static int sd_start_stop_device(struct scsi_disk *sdkp, int start)
3396 {
3397 	unsigned char cmd[6] = { START_STOP };	/* START_VALID */
3398 	struct scsi_sense_hdr sshdr;
3399 	struct scsi_device *sdp = sdkp->device;
3400 	int res;
3401 
3402 	if (start)
3403 		cmd[4] |= 1;	/* START */
3404 
3405 	if (sdp->start_stop_pwr_cond)
3406 		cmd[4] |= start ? 1 << 4 : 3 << 4;	/* Active or Standby */
3407 
3408 	if (!scsi_device_online(sdp))
3409 		return -ENODEV;
3410 
3411 	res = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
3412 			SD_TIMEOUT, SD_MAX_RETRIES, 0, RQF_PM, NULL);
3413 	if (res) {
3414 		sd_print_result(sdkp, "Start/Stop Unit failed", res);
3415 		if (driver_byte(res) & DRIVER_SENSE)
3416 			sd_print_sense_hdr(sdkp, &sshdr);
3417 		if (scsi_sense_valid(&sshdr) &&
3418 			/* 0x3a is medium not present */
3419 			sshdr.asc == 0x3a)
3420 			res = 0;
3421 	}
3422 
3423 	/* SCSI error codes must not go to the generic layer */
3424 	if (res)
3425 		return -EIO;
3426 
3427 	return 0;
3428 }
3429 
3430 /*
3431  * Send a SYNCHRONIZE CACHE instruction down to the device through
3432  * the normal SCSI command structure.  Wait for the command to
3433  * complete.
3434  */
3435 static void sd_shutdown(struct device *dev)
3436 {
3437 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3438 
3439 	if (!sdkp)
3440 		return;         /* this can happen */
3441 
3442 	if (pm_runtime_suspended(dev))
3443 		return;
3444 
3445 	if (sdkp->WCE && sdkp->media_present) {
3446 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3447 		sd_sync_cache(sdkp);
3448 	}
3449 
3450 	if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) {
3451 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3452 		sd_start_stop_device(sdkp, 0);
3453 	}
3454 }
3455 
3456 static int sd_suspend_common(struct device *dev, bool ignore_stop_errors)
3457 {
3458 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3459 	int ret = 0;
3460 
3461 	if (!sdkp)	/* E.g.: runtime suspend following sd_remove() */
3462 		return 0;
3463 
3464 	if (sdkp->WCE && sdkp->media_present) {
3465 		sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n");
3466 		ret = sd_sync_cache(sdkp);
3467 		if (ret) {
3468 			/* ignore OFFLINE device */
3469 			if (ret == -ENODEV)
3470 				ret = 0;
3471 			goto done;
3472 		}
3473 	}
3474 
3475 	if (sdkp->device->manage_start_stop) {
3476 		sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n");
3477 		/* an error is not worth aborting a system sleep */
3478 		ret = sd_start_stop_device(sdkp, 0);
3479 		if (ignore_stop_errors)
3480 			ret = 0;
3481 	}
3482 
3483 done:
3484 	return ret;
3485 }
3486 
3487 static int sd_suspend_system(struct device *dev)
3488 {
3489 	return sd_suspend_common(dev, true);
3490 }
3491 
3492 static int sd_suspend_runtime(struct device *dev)
3493 {
3494 	return sd_suspend_common(dev, false);
3495 }
3496 
3497 static int sd_resume(struct device *dev)
3498 {
3499 	struct scsi_disk *sdkp = dev_get_drvdata(dev);
3500 
3501 	if (!sdkp)	/* E.g.: runtime resume at the start of sd_probe() */
3502 		return 0;
3503 
3504 	if (!sdkp->device->manage_start_stop)
3505 		return 0;
3506 
3507 	sd_printk(KERN_NOTICE, sdkp, "Starting disk\n");
3508 	return sd_start_stop_device(sdkp, 1);
3509 }
3510 
3511 /**
3512  *	init_sd - entry point for this driver (both when built in or when
3513  *	a module).
3514  *
3515  *	Note: this function registers this driver with the scsi mid-level.
3516  **/
3517 static int __init init_sd(void)
3518 {
3519 	int majors = 0, i, err;
3520 
3521 	SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n"));
3522 
3523 	for (i = 0; i < SD_MAJORS; i++) {
3524 		if (register_blkdev(sd_major(i), "sd") != 0)
3525 			continue;
3526 		majors++;
3527 		blk_register_region(sd_major(i), SD_MINORS, NULL,
3528 				    sd_default_probe, NULL, NULL);
3529 	}
3530 
3531 	if (!majors)
3532 		return -ENODEV;
3533 
3534 	err = class_register(&sd_disk_class);
3535 	if (err)
3536 		goto err_out;
3537 
3538 	sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE,
3539 					 0, 0, NULL);
3540 	if (!sd_cdb_cache) {
3541 		printk(KERN_ERR "sd: can't init extended cdb cache\n");
3542 		err = -ENOMEM;
3543 		goto err_out_class;
3544 	}
3545 
3546 	sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache);
3547 	if (!sd_cdb_pool) {
3548 		printk(KERN_ERR "sd: can't init extended cdb pool\n");
3549 		err = -ENOMEM;
3550 		goto err_out_cache;
3551 	}
3552 
3553 	err = scsi_register_driver(&sd_template.gendrv);
3554 	if (err)
3555 		goto err_out_driver;
3556 
3557 	return 0;
3558 
3559 err_out_driver:
3560 	mempool_destroy(sd_cdb_pool);
3561 
3562 err_out_cache:
3563 	kmem_cache_destroy(sd_cdb_cache);
3564 
3565 err_out_class:
3566 	class_unregister(&sd_disk_class);
3567 err_out:
3568 	for (i = 0; i < SD_MAJORS; i++)
3569 		unregister_blkdev(sd_major(i), "sd");
3570 	return err;
3571 }
3572 
3573 /**
3574  *	exit_sd - exit point for this driver (when it is a module).
3575  *
3576  *	Note: this function unregisters this driver from the scsi mid-level.
3577  **/
3578 static void __exit exit_sd(void)
3579 {
3580 	int i;
3581 
3582 	SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n"));
3583 
3584 	scsi_unregister_driver(&sd_template.gendrv);
3585 	mempool_destroy(sd_cdb_pool);
3586 	kmem_cache_destroy(sd_cdb_cache);
3587 
3588 	class_unregister(&sd_disk_class);
3589 
3590 	for (i = 0; i < SD_MAJORS; i++) {
3591 		blk_unregister_region(sd_major(i), SD_MINORS);
3592 		unregister_blkdev(sd_major(i), "sd");
3593 	}
3594 }
3595 
3596 module_init(init_sd);
3597 module_exit(exit_sd);
3598 
3599 static void sd_print_sense_hdr(struct scsi_disk *sdkp,
3600 			       struct scsi_sense_hdr *sshdr)
3601 {
3602 	scsi_print_sense_hdr(sdkp->device,
3603 			     sdkp->disk ? sdkp->disk->disk_name : NULL, sshdr);
3604 }
3605 
3606 static void sd_print_result(const struct scsi_disk *sdkp, const char *msg,
3607 			    int result)
3608 {
3609 	const char *hb_string = scsi_hostbyte_string(result);
3610 	const char *db_string = scsi_driverbyte_string(result);
3611 
3612 	if (hb_string || db_string)
3613 		sd_printk(KERN_INFO, sdkp,
3614 			  "%s: Result: hostbyte=%s driverbyte=%s\n", msg,
3615 			  hb_string ? hb_string : "invalid",
3616 			  db_string ? db_string : "invalid");
3617 	else
3618 		sd_printk(KERN_INFO, sdkp,
3619 			  "%s: Result: hostbyte=0x%02x driverbyte=0x%02x\n",
3620 			  msg, host_byte(result), driver_byte(result));
3621 }
3622 
3623