1 /* 2 * sd.c Copyright (C) 1992 Drew Eckhardt 3 * Copyright (C) 1993, 1994, 1995, 1999 Eric Youngdale 4 * 5 * Linux scsi disk driver 6 * Initial versions: Drew Eckhardt 7 * Subsequent revisions: Eric Youngdale 8 * Modification history: 9 * - Drew Eckhardt <drew@colorado.edu> original 10 * - Eric Youngdale <eric@andante.org> add scatter-gather, multiple 11 * outstanding request, and other enhancements. 12 * Support loadable low-level scsi drivers. 13 * - Jirka Hanika <geo@ff.cuni.cz> support more scsi disks using 14 * eight major numbers. 15 * - Richard Gooch <rgooch@atnf.csiro.au> support devfs. 16 * - Torben Mathiasen <tmm@image.dk> Resource allocation fixes in 17 * sd_init and cleanups. 18 * - Alex Davis <letmein@erols.com> Fix problem where partition info 19 * not being read in sd_open. Fix problem where removable media 20 * could be ejected after sd_open. 21 * - Douglas Gilbert <dgilbert@interlog.com> cleanup for lk 2.5.x 22 * - Badari Pulavarty <pbadari@us.ibm.com>, Matthew Wilcox 23 * <willy@debian.org>, Kurt Garloff <garloff@suse.de>: 24 * Support 32k/1M disks. 25 * 26 * Logging policy (needs CONFIG_SCSI_LOGGING defined): 27 * - setting up transfer: SCSI_LOG_HLQUEUE levels 1 and 2 28 * - end of transfer (bh + scsi_lib): SCSI_LOG_HLCOMPLETE level 1 29 * - entering sd_ioctl: SCSI_LOG_IOCTL level 1 30 * - entering other commands: SCSI_LOG_HLQUEUE level 3 31 * Note: when the logging level is set by the user, it must be greater 32 * than the level indicated above to trigger output. 33 */ 34 35 #include <linux/module.h> 36 #include <linux/fs.h> 37 #include <linux/kernel.h> 38 #include <linux/mm.h> 39 #include <linux/bio.h> 40 #include <linux/genhd.h> 41 #include <linux/hdreg.h> 42 #include <linux/errno.h> 43 #include <linux/idr.h> 44 #include <linux/interrupt.h> 45 #include <linux/init.h> 46 #include <linux/blkdev.h> 47 #include <linux/blkpg.h> 48 #include <linux/delay.h> 49 #include <linux/mutex.h> 50 #include <linux/string_helpers.h> 51 #include <linux/async.h> 52 #include <linux/slab.h> 53 #include <linux/pm_runtime.h> 54 #include <asm/uaccess.h> 55 #include <asm/unaligned.h> 56 57 #include <scsi/scsi.h> 58 #include <scsi/scsi_cmnd.h> 59 #include <scsi/scsi_dbg.h> 60 #include <scsi/scsi_device.h> 61 #include <scsi/scsi_driver.h> 62 #include <scsi/scsi_eh.h> 63 #include <scsi/scsi_host.h> 64 #include <scsi/scsi_ioctl.h> 65 #include <scsi/scsicam.h> 66 67 #include "sd.h" 68 #include "scsi_priv.h" 69 #include "scsi_logging.h" 70 71 MODULE_AUTHOR("Eric Youngdale"); 72 MODULE_DESCRIPTION("SCSI disk (sd) driver"); 73 MODULE_LICENSE("GPL"); 74 75 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK0_MAJOR); 76 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK1_MAJOR); 77 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK2_MAJOR); 78 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK3_MAJOR); 79 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK4_MAJOR); 80 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK5_MAJOR); 81 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK6_MAJOR); 82 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK7_MAJOR); 83 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK8_MAJOR); 84 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK9_MAJOR); 85 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK10_MAJOR); 86 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK11_MAJOR); 87 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK12_MAJOR); 88 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK13_MAJOR); 89 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK14_MAJOR); 90 MODULE_ALIAS_BLOCKDEV_MAJOR(SCSI_DISK15_MAJOR); 91 MODULE_ALIAS_SCSI_DEVICE(TYPE_DISK); 92 MODULE_ALIAS_SCSI_DEVICE(TYPE_MOD); 93 MODULE_ALIAS_SCSI_DEVICE(TYPE_RBC); 94 95 #if !defined(CONFIG_DEBUG_BLOCK_EXT_DEVT) 96 #define SD_MINORS 16 97 #else 98 #define SD_MINORS 0 99 #endif 100 101 static void sd_config_discard(struct scsi_disk *, unsigned int); 102 static void sd_config_write_same(struct scsi_disk *); 103 static int sd_revalidate_disk(struct gendisk *); 104 static void sd_unlock_native_capacity(struct gendisk *disk); 105 static int sd_probe(struct device *); 106 static int sd_remove(struct device *); 107 static void sd_shutdown(struct device *); 108 static int sd_suspend(struct device *); 109 static int sd_resume(struct device *); 110 static void sd_rescan(struct device *); 111 static int sd_done(struct scsi_cmnd *); 112 static int sd_eh_action(struct scsi_cmnd *, unsigned char *, int, int); 113 static void sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer); 114 static void scsi_disk_release(struct device *cdev); 115 static void sd_print_sense_hdr(struct scsi_disk *, struct scsi_sense_hdr *); 116 static void sd_print_result(struct scsi_disk *, int); 117 118 static DEFINE_SPINLOCK(sd_index_lock); 119 static DEFINE_IDA(sd_index_ida); 120 121 /* This semaphore is used to mediate the 0->1 reference get in the 122 * face of object destruction (i.e. we can't allow a get on an 123 * object after last put) */ 124 static DEFINE_MUTEX(sd_ref_mutex); 125 126 static struct kmem_cache *sd_cdb_cache; 127 static mempool_t *sd_cdb_pool; 128 129 static const char *sd_cache_types[] = { 130 "write through", "none", "write back", 131 "write back, no read (daft)" 132 }; 133 134 static ssize_t 135 cache_type_store(struct device *dev, struct device_attribute *attr, 136 const char *buf, size_t count) 137 { 138 int i, ct = -1, rcd, wce, sp; 139 struct scsi_disk *sdkp = to_scsi_disk(dev); 140 struct scsi_device *sdp = sdkp->device; 141 char buffer[64]; 142 char *buffer_data; 143 struct scsi_mode_data data; 144 struct scsi_sense_hdr sshdr; 145 static const char temp[] = "temporary "; 146 int len; 147 148 if (sdp->type != TYPE_DISK) 149 /* no cache control on RBC devices; theoretically they 150 * can do it, but there's probably so many exceptions 151 * it's not worth the risk */ 152 return -EINVAL; 153 154 if (strncmp(buf, temp, sizeof(temp) - 1) == 0) { 155 buf += sizeof(temp) - 1; 156 sdkp->cache_override = 1; 157 } else { 158 sdkp->cache_override = 0; 159 } 160 161 for (i = 0; i < ARRAY_SIZE(sd_cache_types); i++) { 162 len = strlen(sd_cache_types[i]); 163 if (strncmp(sd_cache_types[i], buf, len) == 0 && 164 buf[len] == '\n') { 165 ct = i; 166 break; 167 } 168 } 169 if (ct < 0) 170 return -EINVAL; 171 rcd = ct & 0x01 ? 1 : 0; 172 wce = ct & 0x02 ? 1 : 0; 173 174 if (sdkp->cache_override) { 175 sdkp->WCE = wce; 176 sdkp->RCD = rcd; 177 return count; 178 } 179 180 if (scsi_mode_sense(sdp, 0x08, 8, buffer, sizeof(buffer), SD_TIMEOUT, 181 SD_MAX_RETRIES, &data, NULL)) 182 return -EINVAL; 183 len = min_t(size_t, sizeof(buffer), data.length - data.header_length - 184 data.block_descriptor_length); 185 buffer_data = buffer + data.header_length + 186 data.block_descriptor_length; 187 buffer_data[2] &= ~0x05; 188 buffer_data[2] |= wce << 2 | rcd; 189 sp = buffer_data[0] & 0x80 ? 1 : 0; 190 191 if (scsi_mode_select(sdp, 1, sp, 8, buffer_data, len, SD_TIMEOUT, 192 SD_MAX_RETRIES, &data, &sshdr)) { 193 if (scsi_sense_valid(&sshdr)) 194 sd_print_sense_hdr(sdkp, &sshdr); 195 return -EINVAL; 196 } 197 revalidate_disk(sdkp->disk); 198 return count; 199 } 200 201 static ssize_t 202 manage_start_stop_show(struct device *dev, struct device_attribute *attr, 203 char *buf) 204 { 205 struct scsi_disk *sdkp = to_scsi_disk(dev); 206 struct scsi_device *sdp = sdkp->device; 207 208 return snprintf(buf, 20, "%u\n", sdp->manage_start_stop); 209 } 210 211 static ssize_t 212 manage_start_stop_store(struct device *dev, struct device_attribute *attr, 213 const char *buf, size_t count) 214 { 215 struct scsi_disk *sdkp = to_scsi_disk(dev); 216 struct scsi_device *sdp = sdkp->device; 217 218 if (!capable(CAP_SYS_ADMIN)) 219 return -EACCES; 220 221 sdp->manage_start_stop = simple_strtoul(buf, NULL, 10); 222 223 return count; 224 } 225 static DEVICE_ATTR_RW(manage_start_stop); 226 227 static ssize_t 228 allow_restart_show(struct device *dev, struct device_attribute *attr, char *buf) 229 { 230 struct scsi_disk *sdkp = to_scsi_disk(dev); 231 232 return snprintf(buf, 40, "%d\n", sdkp->device->allow_restart); 233 } 234 235 static ssize_t 236 allow_restart_store(struct device *dev, struct device_attribute *attr, 237 const char *buf, size_t count) 238 { 239 struct scsi_disk *sdkp = to_scsi_disk(dev); 240 struct scsi_device *sdp = sdkp->device; 241 242 if (!capable(CAP_SYS_ADMIN)) 243 return -EACCES; 244 245 if (sdp->type != TYPE_DISK) 246 return -EINVAL; 247 248 sdp->allow_restart = simple_strtoul(buf, NULL, 10); 249 250 return count; 251 } 252 static DEVICE_ATTR_RW(allow_restart); 253 254 static ssize_t 255 cache_type_show(struct device *dev, struct device_attribute *attr, char *buf) 256 { 257 struct scsi_disk *sdkp = to_scsi_disk(dev); 258 int ct = sdkp->RCD + 2*sdkp->WCE; 259 260 return snprintf(buf, 40, "%s\n", sd_cache_types[ct]); 261 } 262 static DEVICE_ATTR_RW(cache_type); 263 264 static ssize_t 265 FUA_show(struct device *dev, struct device_attribute *attr, char *buf) 266 { 267 struct scsi_disk *sdkp = to_scsi_disk(dev); 268 269 return snprintf(buf, 20, "%u\n", sdkp->DPOFUA); 270 } 271 static DEVICE_ATTR_RO(FUA); 272 273 static ssize_t 274 protection_type_show(struct device *dev, struct device_attribute *attr, 275 char *buf) 276 { 277 struct scsi_disk *sdkp = to_scsi_disk(dev); 278 279 return snprintf(buf, 20, "%u\n", sdkp->protection_type); 280 } 281 282 static ssize_t 283 protection_type_store(struct device *dev, struct device_attribute *attr, 284 const char *buf, size_t count) 285 { 286 struct scsi_disk *sdkp = to_scsi_disk(dev); 287 unsigned int val; 288 int err; 289 290 if (!capable(CAP_SYS_ADMIN)) 291 return -EACCES; 292 293 err = kstrtouint(buf, 10, &val); 294 295 if (err) 296 return err; 297 298 if (val >= 0 && val <= SD_DIF_TYPE3_PROTECTION) 299 sdkp->protection_type = val; 300 301 return count; 302 } 303 static DEVICE_ATTR_RW(protection_type); 304 305 static ssize_t 306 protection_mode_show(struct device *dev, struct device_attribute *attr, 307 char *buf) 308 { 309 struct scsi_disk *sdkp = to_scsi_disk(dev); 310 struct scsi_device *sdp = sdkp->device; 311 unsigned int dif, dix; 312 313 dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 314 dix = scsi_host_dix_capable(sdp->host, sdkp->protection_type); 315 316 if (!dix && scsi_host_dix_capable(sdp->host, SD_DIF_TYPE0_PROTECTION)) { 317 dif = 0; 318 dix = 1; 319 } 320 321 if (!dif && !dix) 322 return snprintf(buf, 20, "none\n"); 323 324 return snprintf(buf, 20, "%s%u\n", dix ? "dix" : "dif", dif); 325 } 326 static DEVICE_ATTR_RO(protection_mode); 327 328 static ssize_t 329 app_tag_own_show(struct device *dev, struct device_attribute *attr, char *buf) 330 { 331 struct scsi_disk *sdkp = to_scsi_disk(dev); 332 333 return snprintf(buf, 20, "%u\n", sdkp->ATO); 334 } 335 static DEVICE_ATTR_RO(app_tag_own); 336 337 static ssize_t 338 thin_provisioning_show(struct device *dev, struct device_attribute *attr, 339 char *buf) 340 { 341 struct scsi_disk *sdkp = to_scsi_disk(dev); 342 343 return snprintf(buf, 20, "%u\n", sdkp->lbpme); 344 } 345 static DEVICE_ATTR_RO(thin_provisioning); 346 347 static const char *lbp_mode[] = { 348 [SD_LBP_FULL] = "full", 349 [SD_LBP_UNMAP] = "unmap", 350 [SD_LBP_WS16] = "writesame_16", 351 [SD_LBP_WS10] = "writesame_10", 352 [SD_LBP_ZERO] = "writesame_zero", 353 [SD_LBP_DISABLE] = "disabled", 354 }; 355 356 static ssize_t 357 provisioning_mode_show(struct device *dev, struct device_attribute *attr, 358 char *buf) 359 { 360 struct scsi_disk *sdkp = to_scsi_disk(dev); 361 362 return snprintf(buf, 20, "%s\n", lbp_mode[sdkp->provisioning_mode]); 363 } 364 365 static ssize_t 366 provisioning_mode_store(struct device *dev, struct device_attribute *attr, 367 const char *buf, size_t count) 368 { 369 struct scsi_disk *sdkp = to_scsi_disk(dev); 370 struct scsi_device *sdp = sdkp->device; 371 372 if (!capable(CAP_SYS_ADMIN)) 373 return -EACCES; 374 375 if (sdp->type != TYPE_DISK) 376 return -EINVAL; 377 378 if (!strncmp(buf, lbp_mode[SD_LBP_UNMAP], 20)) 379 sd_config_discard(sdkp, SD_LBP_UNMAP); 380 else if (!strncmp(buf, lbp_mode[SD_LBP_WS16], 20)) 381 sd_config_discard(sdkp, SD_LBP_WS16); 382 else if (!strncmp(buf, lbp_mode[SD_LBP_WS10], 20)) 383 sd_config_discard(sdkp, SD_LBP_WS10); 384 else if (!strncmp(buf, lbp_mode[SD_LBP_ZERO], 20)) 385 sd_config_discard(sdkp, SD_LBP_ZERO); 386 else if (!strncmp(buf, lbp_mode[SD_LBP_DISABLE], 20)) 387 sd_config_discard(sdkp, SD_LBP_DISABLE); 388 else 389 return -EINVAL; 390 391 return count; 392 } 393 static DEVICE_ATTR_RW(provisioning_mode); 394 395 static ssize_t 396 max_medium_access_timeouts_show(struct device *dev, 397 struct device_attribute *attr, char *buf) 398 { 399 struct scsi_disk *sdkp = to_scsi_disk(dev); 400 401 return snprintf(buf, 20, "%u\n", sdkp->max_medium_access_timeouts); 402 } 403 404 static ssize_t 405 max_medium_access_timeouts_store(struct device *dev, 406 struct device_attribute *attr, const char *buf, 407 size_t count) 408 { 409 struct scsi_disk *sdkp = to_scsi_disk(dev); 410 int err; 411 412 if (!capable(CAP_SYS_ADMIN)) 413 return -EACCES; 414 415 err = kstrtouint(buf, 10, &sdkp->max_medium_access_timeouts); 416 417 return err ? err : count; 418 } 419 static DEVICE_ATTR_RW(max_medium_access_timeouts); 420 421 static ssize_t 422 max_write_same_blocks_show(struct device *dev, struct device_attribute *attr, 423 char *buf) 424 { 425 struct scsi_disk *sdkp = to_scsi_disk(dev); 426 427 return snprintf(buf, 20, "%u\n", sdkp->max_ws_blocks); 428 } 429 430 static ssize_t 431 max_write_same_blocks_store(struct device *dev, struct device_attribute *attr, 432 const char *buf, size_t count) 433 { 434 struct scsi_disk *sdkp = to_scsi_disk(dev); 435 struct scsi_device *sdp = sdkp->device; 436 unsigned long max; 437 int err; 438 439 if (!capable(CAP_SYS_ADMIN)) 440 return -EACCES; 441 442 if (sdp->type != TYPE_DISK) 443 return -EINVAL; 444 445 err = kstrtoul(buf, 10, &max); 446 447 if (err) 448 return err; 449 450 if (max == 0) 451 sdp->no_write_same = 1; 452 else if (max <= SD_MAX_WS16_BLOCKS) { 453 sdp->no_write_same = 0; 454 sdkp->max_ws_blocks = max; 455 } 456 457 sd_config_write_same(sdkp); 458 459 return count; 460 } 461 static DEVICE_ATTR_RW(max_write_same_blocks); 462 463 static struct attribute *sd_disk_attrs[] = { 464 &dev_attr_cache_type.attr, 465 &dev_attr_FUA.attr, 466 &dev_attr_allow_restart.attr, 467 &dev_attr_manage_start_stop.attr, 468 &dev_attr_protection_type.attr, 469 &dev_attr_protection_mode.attr, 470 &dev_attr_app_tag_own.attr, 471 &dev_attr_thin_provisioning.attr, 472 &dev_attr_provisioning_mode.attr, 473 &dev_attr_max_write_same_blocks.attr, 474 &dev_attr_max_medium_access_timeouts.attr, 475 NULL, 476 }; 477 ATTRIBUTE_GROUPS(sd_disk); 478 479 static struct class sd_disk_class = { 480 .name = "scsi_disk", 481 .owner = THIS_MODULE, 482 .dev_release = scsi_disk_release, 483 .dev_groups = sd_disk_groups, 484 }; 485 486 static const struct dev_pm_ops sd_pm_ops = { 487 .suspend = sd_suspend, 488 .resume = sd_resume, 489 .poweroff = sd_suspend, 490 .restore = sd_resume, 491 .runtime_suspend = sd_suspend, 492 .runtime_resume = sd_resume, 493 }; 494 495 static struct scsi_driver sd_template = { 496 .owner = THIS_MODULE, 497 .gendrv = { 498 .name = "sd", 499 .probe = sd_probe, 500 .remove = sd_remove, 501 .shutdown = sd_shutdown, 502 .pm = &sd_pm_ops, 503 }, 504 .rescan = sd_rescan, 505 .done = sd_done, 506 .eh_action = sd_eh_action, 507 }; 508 509 /* 510 * Dummy kobj_map->probe function. 511 * The default ->probe function will call modprobe, which is 512 * pointless as this module is already loaded. 513 */ 514 static struct kobject *sd_default_probe(dev_t devt, int *partno, void *data) 515 { 516 return NULL; 517 } 518 519 /* 520 * Device no to disk mapping: 521 * 522 * major disc2 disc p1 523 * |............|.............|....|....| <- dev_t 524 * 31 20 19 8 7 4 3 0 525 * 526 * Inside a major, we have 16k disks, however mapped non- 527 * contiguously. The first 16 disks are for major0, the next 528 * ones with major1, ... Disk 256 is for major0 again, disk 272 529 * for major1, ... 530 * As we stay compatible with our numbering scheme, we can reuse 531 * the well-know SCSI majors 8, 65--71, 136--143. 532 */ 533 static int sd_major(int major_idx) 534 { 535 switch (major_idx) { 536 case 0: 537 return SCSI_DISK0_MAJOR; 538 case 1 ... 7: 539 return SCSI_DISK1_MAJOR + major_idx - 1; 540 case 8 ... 15: 541 return SCSI_DISK8_MAJOR + major_idx - 8; 542 default: 543 BUG(); 544 return 0; /* shut up gcc */ 545 } 546 } 547 548 static struct scsi_disk *__scsi_disk_get(struct gendisk *disk) 549 { 550 struct scsi_disk *sdkp = NULL; 551 552 if (disk->private_data) { 553 sdkp = scsi_disk(disk); 554 if (scsi_device_get(sdkp->device) == 0) 555 get_device(&sdkp->dev); 556 else 557 sdkp = NULL; 558 } 559 return sdkp; 560 } 561 562 static struct scsi_disk *scsi_disk_get(struct gendisk *disk) 563 { 564 struct scsi_disk *sdkp; 565 566 mutex_lock(&sd_ref_mutex); 567 sdkp = __scsi_disk_get(disk); 568 mutex_unlock(&sd_ref_mutex); 569 return sdkp; 570 } 571 572 static struct scsi_disk *scsi_disk_get_from_dev(struct device *dev) 573 { 574 struct scsi_disk *sdkp; 575 576 mutex_lock(&sd_ref_mutex); 577 sdkp = dev_get_drvdata(dev); 578 if (sdkp) 579 sdkp = __scsi_disk_get(sdkp->disk); 580 mutex_unlock(&sd_ref_mutex); 581 return sdkp; 582 } 583 584 static void scsi_disk_put(struct scsi_disk *sdkp) 585 { 586 struct scsi_device *sdev = sdkp->device; 587 588 mutex_lock(&sd_ref_mutex); 589 put_device(&sdkp->dev); 590 scsi_device_put(sdev); 591 mutex_unlock(&sd_ref_mutex); 592 } 593 594 static void sd_prot_op(struct scsi_cmnd *scmd, unsigned int dif) 595 { 596 unsigned int prot_op = SCSI_PROT_NORMAL; 597 unsigned int dix = scsi_prot_sg_count(scmd); 598 599 if (scmd->sc_data_direction == DMA_FROM_DEVICE) { 600 if (dif && dix) 601 prot_op = SCSI_PROT_READ_PASS; 602 else if (dif && !dix) 603 prot_op = SCSI_PROT_READ_STRIP; 604 else if (!dif && dix) 605 prot_op = SCSI_PROT_READ_INSERT; 606 } else { 607 if (dif && dix) 608 prot_op = SCSI_PROT_WRITE_PASS; 609 else if (dif && !dix) 610 prot_op = SCSI_PROT_WRITE_INSERT; 611 else if (!dif && dix) 612 prot_op = SCSI_PROT_WRITE_STRIP; 613 } 614 615 scsi_set_prot_op(scmd, prot_op); 616 scsi_set_prot_type(scmd, dif); 617 } 618 619 static void sd_config_discard(struct scsi_disk *sdkp, unsigned int mode) 620 { 621 struct request_queue *q = sdkp->disk->queue; 622 unsigned int logical_block_size = sdkp->device->sector_size; 623 unsigned int max_blocks = 0; 624 625 q->limits.discard_zeroes_data = sdkp->lbprz; 626 q->limits.discard_alignment = sdkp->unmap_alignment * 627 logical_block_size; 628 q->limits.discard_granularity = 629 max(sdkp->physical_block_size, 630 sdkp->unmap_granularity * logical_block_size); 631 632 sdkp->provisioning_mode = mode; 633 634 switch (mode) { 635 636 case SD_LBP_DISABLE: 637 q->limits.max_discard_sectors = 0; 638 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q); 639 return; 640 641 case SD_LBP_UNMAP: 642 max_blocks = min_not_zero(sdkp->max_unmap_blocks, 643 (u32)SD_MAX_WS16_BLOCKS); 644 break; 645 646 case SD_LBP_WS16: 647 max_blocks = min_not_zero(sdkp->max_ws_blocks, 648 (u32)SD_MAX_WS16_BLOCKS); 649 break; 650 651 case SD_LBP_WS10: 652 max_blocks = min_not_zero(sdkp->max_ws_blocks, 653 (u32)SD_MAX_WS10_BLOCKS); 654 break; 655 656 case SD_LBP_ZERO: 657 max_blocks = min_not_zero(sdkp->max_ws_blocks, 658 (u32)SD_MAX_WS10_BLOCKS); 659 q->limits.discard_zeroes_data = 1; 660 break; 661 } 662 663 q->limits.max_discard_sectors = max_blocks * (logical_block_size >> 9); 664 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q); 665 } 666 667 /** 668 * sd_setup_discard_cmnd - unmap blocks on thinly provisioned device 669 * @sdp: scsi device to operate one 670 * @rq: Request to prepare 671 * 672 * Will issue either UNMAP or WRITE SAME(16) depending on preference 673 * indicated by target device. 674 **/ 675 static int sd_setup_discard_cmnd(struct scsi_device *sdp, struct request *rq) 676 { 677 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 678 sector_t sector = blk_rq_pos(rq); 679 unsigned int nr_sectors = blk_rq_sectors(rq); 680 unsigned int nr_bytes = blk_rq_bytes(rq); 681 unsigned int len; 682 int ret; 683 char *buf; 684 struct page *page; 685 686 sector >>= ilog2(sdp->sector_size) - 9; 687 nr_sectors >>= ilog2(sdp->sector_size) - 9; 688 rq->timeout = SD_TIMEOUT; 689 690 memset(rq->cmd, 0, rq->cmd_len); 691 692 page = alloc_page(GFP_ATOMIC | __GFP_ZERO); 693 if (!page) 694 return BLKPREP_DEFER; 695 696 switch (sdkp->provisioning_mode) { 697 case SD_LBP_UNMAP: 698 buf = page_address(page); 699 700 rq->cmd_len = 10; 701 rq->cmd[0] = UNMAP; 702 rq->cmd[8] = 24; 703 704 put_unaligned_be16(6 + 16, &buf[0]); 705 put_unaligned_be16(16, &buf[2]); 706 put_unaligned_be64(sector, &buf[8]); 707 put_unaligned_be32(nr_sectors, &buf[16]); 708 709 len = 24; 710 break; 711 712 case SD_LBP_WS16: 713 rq->cmd_len = 16; 714 rq->cmd[0] = WRITE_SAME_16; 715 rq->cmd[1] = 0x8; /* UNMAP */ 716 put_unaligned_be64(sector, &rq->cmd[2]); 717 put_unaligned_be32(nr_sectors, &rq->cmd[10]); 718 719 len = sdkp->device->sector_size; 720 break; 721 722 case SD_LBP_WS10: 723 case SD_LBP_ZERO: 724 rq->cmd_len = 10; 725 rq->cmd[0] = WRITE_SAME; 726 if (sdkp->provisioning_mode == SD_LBP_WS10) 727 rq->cmd[1] = 0x8; /* UNMAP */ 728 put_unaligned_be32(sector, &rq->cmd[2]); 729 put_unaligned_be16(nr_sectors, &rq->cmd[7]); 730 731 len = sdkp->device->sector_size; 732 break; 733 734 default: 735 ret = BLKPREP_KILL; 736 goto out; 737 } 738 739 blk_add_request_payload(rq, page, len); 740 ret = scsi_setup_blk_pc_cmnd(sdp, rq); 741 rq->buffer = page_address(page); 742 rq->__data_len = nr_bytes; 743 744 out: 745 if (ret != BLKPREP_OK) { 746 __free_page(page); 747 rq->buffer = NULL; 748 } 749 return ret; 750 } 751 752 static void sd_config_write_same(struct scsi_disk *sdkp) 753 { 754 struct request_queue *q = sdkp->disk->queue; 755 unsigned int logical_block_size = sdkp->device->sector_size; 756 757 if (sdkp->device->no_write_same) { 758 sdkp->max_ws_blocks = 0; 759 goto out; 760 } 761 762 /* Some devices can not handle block counts above 0xffff despite 763 * supporting WRITE SAME(16). Consequently we default to 64k 764 * blocks per I/O unless the device explicitly advertises a 765 * bigger limit. 766 */ 767 if (sdkp->max_ws_blocks > SD_MAX_WS10_BLOCKS) 768 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 769 (u32)SD_MAX_WS16_BLOCKS); 770 else if (sdkp->ws16 || sdkp->ws10 || sdkp->device->no_report_opcodes) 771 sdkp->max_ws_blocks = min_not_zero(sdkp->max_ws_blocks, 772 (u32)SD_MAX_WS10_BLOCKS); 773 else { 774 sdkp->device->no_write_same = 1; 775 sdkp->max_ws_blocks = 0; 776 } 777 778 out: 779 blk_queue_max_write_same_sectors(q, sdkp->max_ws_blocks * 780 (logical_block_size >> 9)); 781 } 782 783 /** 784 * sd_setup_write_same_cmnd - write the same data to multiple blocks 785 * @sdp: scsi device to operate one 786 * @rq: Request to prepare 787 * 788 * Will issue either WRITE SAME(10) or WRITE SAME(16) depending on 789 * preference indicated by target device. 790 **/ 791 static int sd_setup_write_same_cmnd(struct scsi_device *sdp, struct request *rq) 792 { 793 struct scsi_disk *sdkp = scsi_disk(rq->rq_disk); 794 struct bio *bio = rq->bio; 795 sector_t sector = blk_rq_pos(rq); 796 unsigned int nr_sectors = blk_rq_sectors(rq); 797 unsigned int nr_bytes = blk_rq_bytes(rq); 798 int ret; 799 800 if (sdkp->device->no_write_same) 801 return BLKPREP_KILL; 802 803 BUG_ON(bio_offset(bio) || bio_iovec(bio)->bv_len != sdp->sector_size); 804 805 sector >>= ilog2(sdp->sector_size) - 9; 806 nr_sectors >>= ilog2(sdp->sector_size) - 9; 807 808 rq->__data_len = sdp->sector_size; 809 rq->timeout = SD_WRITE_SAME_TIMEOUT; 810 memset(rq->cmd, 0, rq->cmd_len); 811 812 if (sdkp->ws16 || sector > 0xffffffff || nr_sectors > 0xffff) { 813 rq->cmd_len = 16; 814 rq->cmd[0] = WRITE_SAME_16; 815 put_unaligned_be64(sector, &rq->cmd[2]); 816 put_unaligned_be32(nr_sectors, &rq->cmd[10]); 817 } else { 818 rq->cmd_len = 10; 819 rq->cmd[0] = WRITE_SAME; 820 put_unaligned_be32(sector, &rq->cmd[2]); 821 put_unaligned_be16(nr_sectors, &rq->cmd[7]); 822 } 823 824 ret = scsi_setup_blk_pc_cmnd(sdp, rq); 825 rq->__data_len = nr_bytes; 826 827 return ret; 828 } 829 830 static int scsi_setup_flush_cmnd(struct scsi_device *sdp, struct request *rq) 831 { 832 rq->timeout = SD_FLUSH_TIMEOUT; 833 rq->retries = SD_MAX_RETRIES; 834 rq->cmd[0] = SYNCHRONIZE_CACHE; 835 rq->cmd_len = 10; 836 837 return scsi_setup_blk_pc_cmnd(sdp, rq); 838 } 839 840 static void sd_unprep_fn(struct request_queue *q, struct request *rq) 841 { 842 struct scsi_cmnd *SCpnt = rq->special; 843 844 if (rq->cmd_flags & REQ_DISCARD) { 845 free_page((unsigned long)rq->buffer); 846 rq->buffer = NULL; 847 } 848 if (SCpnt->cmnd != rq->cmd) { 849 mempool_free(SCpnt->cmnd, sd_cdb_pool); 850 SCpnt->cmnd = NULL; 851 SCpnt->cmd_len = 0; 852 } 853 } 854 855 /** 856 * sd_prep_fn - build a scsi (read or write) command from 857 * information in the request structure. 858 * @SCpnt: pointer to mid-level's per scsi command structure that 859 * contains request and into which the scsi command is written 860 * 861 * Returns 1 if successful and 0 if error (or cannot be done now). 862 **/ 863 static int sd_prep_fn(struct request_queue *q, struct request *rq) 864 { 865 struct scsi_cmnd *SCpnt; 866 struct scsi_device *sdp = q->queuedata; 867 struct gendisk *disk = rq->rq_disk; 868 struct scsi_disk *sdkp; 869 sector_t block = blk_rq_pos(rq); 870 sector_t threshold; 871 unsigned int this_count = blk_rq_sectors(rq); 872 int ret, host_dif; 873 unsigned char protect; 874 875 /* 876 * Discard request come in as REQ_TYPE_FS but we turn them into 877 * block PC requests to make life easier. 878 */ 879 if (rq->cmd_flags & REQ_DISCARD) { 880 ret = sd_setup_discard_cmnd(sdp, rq); 881 goto out; 882 } else if (rq->cmd_flags & REQ_WRITE_SAME) { 883 ret = sd_setup_write_same_cmnd(sdp, rq); 884 goto out; 885 } else if (rq->cmd_flags & REQ_FLUSH) { 886 ret = scsi_setup_flush_cmnd(sdp, rq); 887 goto out; 888 } else if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 889 ret = scsi_setup_blk_pc_cmnd(sdp, rq); 890 goto out; 891 } else if (rq->cmd_type != REQ_TYPE_FS) { 892 ret = BLKPREP_KILL; 893 goto out; 894 } 895 ret = scsi_setup_fs_cmnd(sdp, rq); 896 if (ret != BLKPREP_OK) 897 goto out; 898 SCpnt = rq->special; 899 sdkp = scsi_disk(disk); 900 901 /* from here on until we're complete, any goto out 902 * is used for a killable error condition */ 903 ret = BLKPREP_KILL; 904 905 SCSI_LOG_HLQUEUE(1, scmd_printk(KERN_INFO, SCpnt, 906 "sd_prep_fn: block=%llu, " 907 "count=%d\n", 908 (unsigned long long)block, 909 this_count)); 910 911 if (!sdp || !scsi_device_online(sdp) || 912 block + blk_rq_sectors(rq) > get_capacity(disk)) { 913 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 914 "Finishing %u sectors\n", 915 blk_rq_sectors(rq))); 916 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 917 "Retry with 0x%p\n", SCpnt)); 918 goto out; 919 } 920 921 if (sdp->changed) { 922 /* 923 * quietly refuse to do anything to a changed disc until 924 * the changed bit has been reset 925 */ 926 /* printk("SCSI disk has been changed or is not present. Prohibiting further I/O.\n"); */ 927 goto out; 928 } 929 930 /* 931 * Some SD card readers can't handle multi-sector accesses which touch 932 * the last one or two hardware sectors. Split accesses as needed. 933 */ 934 threshold = get_capacity(disk) - SD_LAST_BUGGY_SECTORS * 935 (sdp->sector_size / 512); 936 937 if (unlikely(sdp->last_sector_bug && block + this_count > threshold)) { 938 if (block < threshold) { 939 /* Access up to the threshold but not beyond */ 940 this_count = threshold - block; 941 } else { 942 /* Access only a single hardware sector */ 943 this_count = sdp->sector_size / 512; 944 } 945 } 946 947 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, "block=%llu\n", 948 (unsigned long long)block)); 949 950 /* 951 * If we have a 1K hardware sectorsize, prevent access to single 952 * 512 byte sectors. In theory we could handle this - in fact 953 * the scsi cdrom driver must be able to handle this because 954 * we typically use 1K blocksizes, and cdroms typically have 955 * 2K hardware sectorsizes. Of course, things are simpler 956 * with the cdrom, since it is read-only. For performance 957 * reasons, the filesystems should be able to handle this 958 * and not force the scsi disk driver to use bounce buffers 959 * for this. 960 */ 961 if (sdp->sector_size == 1024) { 962 if ((block & 1) || (blk_rq_sectors(rq) & 1)) { 963 scmd_printk(KERN_ERR, SCpnt, 964 "Bad block number requested\n"); 965 goto out; 966 } else { 967 block = block >> 1; 968 this_count = this_count >> 1; 969 } 970 } 971 if (sdp->sector_size == 2048) { 972 if ((block & 3) || (blk_rq_sectors(rq) & 3)) { 973 scmd_printk(KERN_ERR, SCpnt, 974 "Bad block number requested\n"); 975 goto out; 976 } else { 977 block = block >> 2; 978 this_count = this_count >> 2; 979 } 980 } 981 if (sdp->sector_size == 4096) { 982 if ((block & 7) || (blk_rq_sectors(rq) & 7)) { 983 scmd_printk(KERN_ERR, SCpnt, 984 "Bad block number requested\n"); 985 goto out; 986 } else { 987 block = block >> 3; 988 this_count = this_count >> 3; 989 } 990 } 991 if (rq_data_dir(rq) == WRITE) { 992 if (!sdp->writeable) { 993 goto out; 994 } 995 SCpnt->cmnd[0] = WRITE_6; 996 SCpnt->sc_data_direction = DMA_TO_DEVICE; 997 998 if (blk_integrity_rq(rq)) 999 sd_dif_prepare(rq, block, sdp->sector_size); 1000 1001 } else if (rq_data_dir(rq) == READ) { 1002 SCpnt->cmnd[0] = READ_6; 1003 SCpnt->sc_data_direction = DMA_FROM_DEVICE; 1004 } else { 1005 scmd_printk(KERN_ERR, SCpnt, "Unknown command %x\n", rq->cmd_flags); 1006 goto out; 1007 } 1008 1009 SCSI_LOG_HLQUEUE(2, scmd_printk(KERN_INFO, SCpnt, 1010 "%s %d/%u 512 byte blocks.\n", 1011 (rq_data_dir(rq) == WRITE) ? 1012 "writing" : "reading", this_count, 1013 blk_rq_sectors(rq))); 1014 1015 /* Set RDPROTECT/WRPROTECT if disk is formatted with DIF */ 1016 host_dif = scsi_host_dif_capable(sdp->host, sdkp->protection_type); 1017 if (host_dif) 1018 protect = 1 << 5; 1019 else 1020 protect = 0; 1021 1022 if (host_dif == SD_DIF_TYPE2_PROTECTION) { 1023 SCpnt->cmnd = mempool_alloc(sd_cdb_pool, GFP_ATOMIC); 1024 1025 if (unlikely(SCpnt->cmnd == NULL)) { 1026 ret = BLKPREP_DEFER; 1027 goto out; 1028 } 1029 1030 SCpnt->cmd_len = SD_EXT_CDB_SIZE; 1031 memset(SCpnt->cmnd, 0, SCpnt->cmd_len); 1032 SCpnt->cmnd[0] = VARIABLE_LENGTH_CMD; 1033 SCpnt->cmnd[7] = 0x18; 1034 SCpnt->cmnd[9] = (rq_data_dir(rq) == READ) ? READ_32 : WRITE_32; 1035 SCpnt->cmnd[10] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1036 1037 /* LBA */ 1038 SCpnt->cmnd[12] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1039 SCpnt->cmnd[13] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1040 SCpnt->cmnd[14] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1041 SCpnt->cmnd[15] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1042 SCpnt->cmnd[16] = (unsigned char) (block >> 24) & 0xff; 1043 SCpnt->cmnd[17] = (unsigned char) (block >> 16) & 0xff; 1044 SCpnt->cmnd[18] = (unsigned char) (block >> 8) & 0xff; 1045 SCpnt->cmnd[19] = (unsigned char) block & 0xff; 1046 1047 /* Expected Indirect LBA */ 1048 SCpnt->cmnd[20] = (unsigned char) (block >> 24) & 0xff; 1049 SCpnt->cmnd[21] = (unsigned char) (block >> 16) & 0xff; 1050 SCpnt->cmnd[22] = (unsigned char) (block >> 8) & 0xff; 1051 SCpnt->cmnd[23] = (unsigned char) block & 0xff; 1052 1053 /* Transfer length */ 1054 SCpnt->cmnd[28] = (unsigned char) (this_count >> 24) & 0xff; 1055 SCpnt->cmnd[29] = (unsigned char) (this_count >> 16) & 0xff; 1056 SCpnt->cmnd[30] = (unsigned char) (this_count >> 8) & 0xff; 1057 SCpnt->cmnd[31] = (unsigned char) this_count & 0xff; 1058 } else if (sdp->use_16_for_rw) { 1059 SCpnt->cmnd[0] += READ_16 - READ_6; 1060 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1061 SCpnt->cmnd[2] = sizeof(block) > 4 ? (unsigned char) (block >> 56) & 0xff : 0; 1062 SCpnt->cmnd[3] = sizeof(block) > 4 ? (unsigned char) (block >> 48) & 0xff : 0; 1063 SCpnt->cmnd[4] = sizeof(block) > 4 ? (unsigned char) (block >> 40) & 0xff : 0; 1064 SCpnt->cmnd[5] = sizeof(block) > 4 ? (unsigned char) (block >> 32) & 0xff : 0; 1065 SCpnt->cmnd[6] = (unsigned char) (block >> 24) & 0xff; 1066 SCpnt->cmnd[7] = (unsigned char) (block >> 16) & 0xff; 1067 SCpnt->cmnd[8] = (unsigned char) (block >> 8) & 0xff; 1068 SCpnt->cmnd[9] = (unsigned char) block & 0xff; 1069 SCpnt->cmnd[10] = (unsigned char) (this_count >> 24) & 0xff; 1070 SCpnt->cmnd[11] = (unsigned char) (this_count >> 16) & 0xff; 1071 SCpnt->cmnd[12] = (unsigned char) (this_count >> 8) & 0xff; 1072 SCpnt->cmnd[13] = (unsigned char) this_count & 0xff; 1073 SCpnt->cmnd[14] = SCpnt->cmnd[15] = 0; 1074 } else if ((this_count > 0xff) || (block > 0x1fffff) || 1075 scsi_device_protection(SCpnt->device) || 1076 SCpnt->device->use_10_for_rw) { 1077 if (this_count > 0xffff) 1078 this_count = 0xffff; 1079 1080 SCpnt->cmnd[0] += READ_10 - READ_6; 1081 SCpnt->cmnd[1] = protect | ((rq->cmd_flags & REQ_FUA) ? 0x8 : 0); 1082 SCpnt->cmnd[2] = (unsigned char) (block >> 24) & 0xff; 1083 SCpnt->cmnd[3] = (unsigned char) (block >> 16) & 0xff; 1084 SCpnt->cmnd[4] = (unsigned char) (block >> 8) & 0xff; 1085 SCpnt->cmnd[5] = (unsigned char) block & 0xff; 1086 SCpnt->cmnd[6] = SCpnt->cmnd[9] = 0; 1087 SCpnt->cmnd[7] = (unsigned char) (this_count >> 8) & 0xff; 1088 SCpnt->cmnd[8] = (unsigned char) this_count & 0xff; 1089 } else { 1090 if (unlikely(rq->cmd_flags & REQ_FUA)) { 1091 /* 1092 * This happens only if this drive failed 1093 * 10byte rw command with ILLEGAL_REQUEST 1094 * during operation and thus turned off 1095 * use_10_for_rw. 1096 */ 1097 scmd_printk(KERN_ERR, SCpnt, 1098 "FUA write on READ/WRITE(6) drive\n"); 1099 goto out; 1100 } 1101 1102 SCpnt->cmnd[1] |= (unsigned char) ((block >> 16) & 0x1f); 1103 SCpnt->cmnd[2] = (unsigned char) ((block >> 8) & 0xff); 1104 SCpnt->cmnd[3] = (unsigned char) block & 0xff; 1105 SCpnt->cmnd[4] = (unsigned char) this_count; 1106 SCpnt->cmnd[5] = 0; 1107 } 1108 SCpnt->sdb.length = this_count * sdp->sector_size; 1109 1110 /* If DIF or DIX is enabled, tell HBA how to handle request */ 1111 if (host_dif || scsi_prot_sg_count(SCpnt)) 1112 sd_prot_op(SCpnt, host_dif); 1113 1114 /* 1115 * We shouldn't disconnect in the middle of a sector, so with a dumb 1116 * host adapter, it's safe to assume that we can at least transfer 1117 * this many bytes between each connect / disconnect. 1118 */ 1119 SCpnt->transfersize = sdp->sector_size; 1120 SCpnt->underflow = this_count << 9; 1121 SCpnt->allowed = SD_MAX_RETRIES; 1122 1123 /* 1124 * This indicates that the command is ready from our end to be 1125 * queued. 1126 */ 1127 ret = BLKPREP_OK; 1128 out: 1129 return scsi_prep_return(q, rq, ret); 1130 } 1131 1132 /** 1133 * sd_open - open a scsi disk device 1134 * @inode: only i_rdev member may be used 1135 * @filp: only f_mode and f_flags may be used 1136 * 1137 * Returns 0 if successful. Returns a negated errno value in case 1138 * of error. 1139 * 1140 * Note: This can be called from a user context (e.g. fsck(1) ) 1141 * or from within the kernel (e.g. as a result of a mount(1) ). 1142 * In the latter case @inode and @filp carry an abridged amount 1143 * of information as noted above. 1144 * 1145 * Locking: called with bdev->bd_mutex held. 1146 **/ 1147 static int sd_open(struct block_device *bdev, fmode_t mode) 1148 { 1149 struct scsi_disk *sdkp = scsi_disk_get(bdev->bd_disk); 1150 struct scsi_device *sdev; 1151 int retval; 1152 1153 if (!sdkp) 1154 return -ENXIO; 1155 1156 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_open\n")); 1157 1158 sdev = sdkp->device; 1159 1160 /* 1161 * If the device is in error recovery, wait until it is done. 1162 * If the device is offline, then disallow any access to it. 1163 */ 1164 retval = -ENXIO; 1165 if (!scsi_block_when_processing_errors(sdev)) 1166 goto error_out; 1167 1168 if (sdev->removable || sdkp->write_prot) 1169 check_disk_change(bdev); 1170 1171 /* 1172 * If the drive is empty, just let the open fail. 1173 */ 1174 retval = -ENOMEDIUM; 1175 if (sdev->removable && !sdkp->media_present && !(mode & FMODE_NDELAY)) 1176 goto error_out; 1177 1178 /* 1179 * If the device has the write protect tab set, have the open fail 1180 * if the user expects to be able to write to the thing. 1181 */ 1182 retval = -EROFS; 1183 if (sdkp->write_prot && (mode & FMODE_WRITE)) 1184 goto error_out; 1185 1186 /* 1187 * It is possible that the disk changing stuff resulted in 1188 * the device being taken offline. If this is the case, 1189 * report this to the user, and don't pretend that the 1190 * open actually succeeded. 1191 */ 1192 retval = -ENXIO; 1193 if (!scsi_device_online(sdev)) 1194 goto error_out; 1195 1196 if ((atomic_inc_return(&sdkp->openers) == 1) && sdev->removable) { 1197 if (scsi_block_when_processing_errors(sdev)) 1198 scsi_set_medium_removal(sdev, SCSI_REMOVAL_PREVENT); 1199 } 1200 1201 return 0; 1202 1203 error_out: 1204 scsi_disk_put(sdkp); 1205 return retval; 1206 } 1207 1208 /** 1209 * sd_release - invoked when the (last) close(2) is called on this 1210 * scsi disk. 1211 * @inode: only i_rdev member may be used 1212 * @filp: only f_mode and f_flags may be used 1213 * 1214 * Returns 0. 1215 * 1216 * Note: may block (uninterruptible) if error recovery is underway 1217 * on this disk. 1218 * 1219 * Locking: called with bdev->bd_mutex held. 1220 **/ 1221 static void sd_release(struct gendisk *disk, fmode_t mode) 1222 { 1223 struct scsi_disk *sdkp = scsi_disk(disk); 1224 struct scsi_device *sdev = sdkp->device; 1225 1226 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_release\n")); 1227 1228 if (atomic_dec_return(&sdkp->openers) == 0 && sdev->removable) { 1229 if (scsi_block_when_processing_errors(sdev)) 1230 scsi_set_medium_removal(sdev, SCSI_REMOVAL_ALLOW); 1231 } 1232 1233 /* 1234 * XXX and what if there are packets in flight and this close() 1235 * XXX is followed by a "rmmod sd_mod"? 1236 */ 1237 1238 scsi_disk_put(sdkp); 1239 } 1240 1241 static int sd_getgeo(struct block_device *bdev, struct hd_geometry *geo) 1242 { 1243 struct scsi_disk *sdkp = scsi_disk(bdev->bd_disk); 1244 struct scsi_device *sdp = sdkp->device; 1245 struct Scsi_Host *host = sdp->host; 1246 int diskinfo[4]; 1247 1248 /* default to most commonly used values */ 1249 diskinfo[0] = 0x40; /* 1 << 6 */ 1250 diskinfo[1] = 0x20; /* 1 << 5 */ 1251 diskinfo[2] = sdkp->capacity >> 11; 1252 1253 /* override with calculated, extended default, or driver values */ 1254 if (host->hostt->bios_param) 1255 host->hostt->bios_param(sdp, bdev, sdkp->capacity, diskinfo); 1256 else 1257 scsicam_bios_param(bdev, sdkp->capacity, diskinfo); 1258 1259 geo->heads = diskinfo[0]; 1260 geo->sectors = diskinfo[1]; 1261 geo->cylinders = diskinfo[2]; 1262 return 0; 1263 } 1264 1265 /** 1266 * sd_ioctl - process an ioctl 1267 * @inode: only i_rdev/i_bdev members may be used 1268 * @filp: only f_mode and f_flags may be used 1269 * @cmd: ioctl command number 1270 * @arg: this is third argument given to ioctl(2) system call. 1271 * Often contains a pointer. 1272 * 1273 * Returns 0 if successful (some ioctls return positive numbers on 1274 * success as well). Returns a negated errno value in case of error. 1275 * 1276 * Note: most ioctls are forward onto the block subsystem or further 1277 * down in the scsi subsystem. 1278 **/ 1279 static int sd_ioctl(struct block_device *bdev, fmode_t mode, 1280 unsigned int cmd, unsigned long arg) 1281 { 1282 struct gendisk *disk = bdev->bd_disk; 1283 struct scsi_disk *sdkp = scsi_disk(disk); 1284 struct scsi_device *sdp = sdkp->device; 1285 void __user *p = (void __user *)arg; 1286 int error; 1287 1288 SCSI_LOG_IOCTL(1, sd_printk(KERN_INFO, sdkp, "sd_ioctl: disk=%s, " 1289 "cmd=0x%x\n", disk->disk_name, cmd)); 1290 1291 error = scsi_verify_blk_ioctl(bdev, cmd); 1292 if (error < 0) 1293 return error; 1294 1295 /* 1296 * If we are in the middle of error recovery, don't let anyone 1297 * else try and use this device. Also, if error recovery fails, it 1298 * may try and take the device offline, in which case all further 1299 * access to the device is prohibited. 1300 */ 1301 error = scsi_nonblockable_ioctl(sdp, cmd, p, 1302 (mode & FMODE_NDELAY) != 0); 1303 if (!scsi_block_when_processing_errors(sdp) || !error) 1304 goto out; 1305 1306 /* 1307 * Send SCSI addressing ioctls directly to mid level, send other 1308 * ioctls to block level and then onto mid level if they can't be 1309 * resolved. 1310 */ 1311 switch (cmd) { 1312 case SCSI_IOCTL_GET_IDLUN: 1313 case SCSI_IOCTL_GET_BUS_NUMBER: 1314 error = scsi_ioctl(sdp, cmd, p); 1315 break; 1316 default: 1317 error = scsi_cmd_blk_ioctl(bdev, mode, cmd, p); 1318 if (error != -ENOTTY) 1319 break; 1320 error = scsi_ioctl(sdp, cmd, p); 1321 break; 1322 } 1323 out: 1324 return error; 1325 } 1326 1327 static void set_media_not_present(struct scsi_disk *sdkp) 1328 { 1329 if (sdkp->media_present) 1330 sdkp->device->changed = 1; 1331 1332 if (sdkp->device->removable) { 1333 sdkp->media_present = 0; 1334 sdkp->capacity = 0; 1335 } 1336 } 1337 1338 static int media_not_present(struct scsi_disk *sdkp, 1339 struct scsi_sense_hdr *sshdr) 1340 { 1341 if (!scsi_sense_valid(sshdr)) 1342 return 0; 1343 1344 /* not invoked for commands that could return deferred errors */ 1345 switch (sshdr->sense_key) { 1346 case UNIT_ATTENTION: 1347 case NOT_READY: 1348 /* medium not present */ 1349 if (sshdr->asc == 0x3A) { 1350 set_media_not_present(sdkp); 1351 return 1; 1352 } 1353 } 1354 return 0; 1355 } 1356 1357 /** 1358 * sd_check_events - check media events 1359 * @disk: kernel device descriptor 1360 * @clearing: disk events currently being cleared 1361 * 1362 * Returns mask of DISK_EVENT_*. 1363 * 1364 * Note: this function is invoked from the block subsystem. 1365 **/ 1366 static unsigned int sd_check_events(struct gendisk *disk, unsigned int clearing) 1367 { 1368 struct scsi_disk *sdkp = scsi_disk(disk); 1369 struct scsi_device *sdp = sdkp->device; 1370 struct scsi_sense_hdr *sshdr = NULL; 1371 int retval; 1372 1373 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, "sd_check_events\n")); 1374 1375 /* 1376 * If the device is offline, don't send any commands - just pretend as 1377 * if the command failed. If the device ever comes back online, we 1378 * can deal with it then. It is only because of unrecoverable errors 1379 * that we would ever take a device offline in the first place. 1380 */ 1381 if (!scsi_device_online(sdp)) { 1382 set_media_not_present(sdkp); 1383 goto out; 1384 } 1385 1386 /* 1387 * Using TEST_UNIT_READY enables differentiation between drive with 1388 * no cartridge loaded - NOT READY, drive with changed cartridge - 1389 * UNIT ATTENTION, or with same cartridge - GOOD STATUS. 1390 * 1391 * Drives that auto spin down. eg iomega jaz 1G, will be started 1392 * by sd_spinup_disk() from sd_revalidate_disk(), which happens whenever 1393 * sd_revalidate() is called. 1394 */ 1395 retval = -ENODEV; 1396 1397 if (scsi_block_when_processing_errors(sdp)) { 1398 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL); 1399 retval = scsi_test_unit_ready(sdp, SD_TIMEOUT, SD_MAX_RETRIES, 1400 sshdr); 1401 } 1402 1403 /* failed to execute TUR, assume media not present */ 1404 if (host_byte(retval)) { 1405 set_media_not_present(sdkp); 1406 goto out; 1407 } 1408 1409 if (media_not_present(sdkp, sshdr)) 1410 goto out; 1411 1412 /* 1413 * For removable scsi disk we have to recognise the presence 1414 * of a disk in the drive. 1415 */ 1416 if (!sdkp->media_present) 1417 sdp->changed = 1; 1418 sdkp->media_present = 1; 1419 out: 1420 /* 1421 * sdp->changed is set under the following conditions: 1422 * 1423 * Medium present state has changed in either direction. 1424 * Device has indicated UNIT_ATTENTION. 1425 */ 1426 kfree(sshdr); 1427 retval = sdp->changed ? DISK_EVENT_MEDIA_CHANGE : 0; 1428 sdp->changed = 0; 1429 return retval; 1430 } 1431 1432 static int sd_sync_cache(struct scsi_disk *sdkp) 1433 { 1434 int retries, res; 1435 struct scsi_device *sdp = sdkp->device; 1436 struct scsi_sense_hdr sshdr; 1437 1438 if (!scsi_device_online(sdp)) 1439 return -ENODEV; 1440 1441 1442 for (retries = 3; retries > 0; --retries) { 1443 unsigned char cmd[10] = { 0 }; 1444 1445 cmd[0] = SYNCHRONIZE_CACHE; 1446 /* 1447 * Leave the rest of the command zero to indicate 1448 * flush everything. 1449 */ 1450 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, 1451 &sshdr, SD_FLUSH_TIMEOUT, 1452 SD_MAX_RETRIES, NULL, REQ_PM); 1453 if (res == 0) 1454 break; 1455 } 1456 1457 if (res) { 1458 sd_print_result(sdkp, res); 1459 if (driver_byte(res) & DRIVER_SENSE) 1460 sd_print_sense_hdr(sdkp, &sshdr); 1461 } 1462 1463 if (res) 1464 return -EIO; 1465 return 0; 1466 } 1467 1468 static void sd_rescan(struct device *dev) 1469 { 1470 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); 1471 1472 if (sdkp) { 1473 revalidate_disk(sdkp->disk); 1474 scsi_disk_put(sdkp); 1475 } 1476 } 1477 1478 1479 #ifdef CONFIG_COMPAT 1480 /* 1481 * This gets directly called from VFS. When the ioctl 1482 * is not recognized we go back to the other translation paths. 1483 */ 1484 static int sd_compat_ioctl(struct block_device *bdev, fmode_t mode, 1485 unsigned int cmd, unsigned long arg) 1486 { 1487 struct scsi_device *sdev = scsi_disk(bdev->bd_disk)->device; 1488 int ret; 1489 1490 ret = scsi_verify_blk_ioctl(bdev, cmd); 1491 if (ret < 0) 1492 return ret; 1493 1494 /* 1495 * If we are in the middle of error recovery, don't let anyone 1496 * else try and use this device. Also, if error recovery fails, it 1497 * may try and take the device offline, in which case all further 1498 * access to the device is prohibited. 1499 */ 1500 if (!scsi_block_when_processing_errors(sdev)) 1501 return -ENODEV; 1502 1503 if (sdev->host->hostt->compat_ioctl) { 1504 ret = sdev->host->hostt->compat_ioctl(sdev, cmd, (void __user *)arg); 1505 1506 return ret; 1507 } 1508 1509 /* 1510 * Let the static ioctl translation table take care of it. 1511 */ 1512 return -ENOIOCTLCMD; 1513 } 1514 #endif 1515 1516 static const struct block_device_operations sd_fops = { 1517 .owner = THIS_MODULE, 1518 .open = sd_open, 1519 .release = sd_release, 1520 .ioctl = sd_ioctl, 1521 .getgeo = sd_getgeo, 1522 #ifdef CONFIG_COMPAT 1523 .compat_ioctl = sd_compat_ioctl, 1524 #endif 1525 .check_events = sd_check_events, 1526 .revalidate_disk = sd_revalidate_disk, 1527 .unlock_native_capacity = sd_unlock_native_capacity, 1528 }; 1529 1530 /** 1531 * sd_eh_action - error handling callback 1532 * @scmd: sd-issued command that has failed 1533 * @eh_cmnd: The command that was sent during error handling 1534 * @eh_cmnd_len: Length of eh_cmnd in bytes 1535 * @eh_disp: The recovery disposition suggested by the midlayer 1536 * 1537 * This function is called by the SCSI midlayer upon completion of 1538 * an error handling command (TEST UNIT READY, START STOP UNIT, 1539 * etc.) The command sent to the device by the error handler is 1540 * stored in eh_cmnd. The result of sending the eh command is 1541 * passed in eh_disp. 1542 **/ 1543 static int sd_eh_action(struct scsi_cmnd *scmd, unsigned char *eh_cmnd, 1544 int eh_cmnd_len, int eh_disp) 1545 { 1546 struct scsi_disk *sdkp = scsi_disk(scmd->request->rq_disk); 1547 1548 if (!scsi_device_online(scmd->device) || 1549 !scsi_medium_access_command(scmd)) 1550 return eh_disp; 1551 1552 /* 1553 * The device has timed out executing a medium access command. 1554 * However, the TEST UNIT READY command sent during error 1555 * handling completed successfully. Either the device is in the 1556 * process of recovering or has it suffered an internal failure 1557 * that prevents access to the storage medium. 1558 */ 1559 if (host_byte(scmd->result) == DID_TIME_OUT && eh_disp == SUCCESS && 1560 eh_cmnd_len && eh_cmnd[0] == TEST_UNIT_READY) 1561 sdkp->medium_access_timed_out++; 1562 1563 /* 1564 * If the device keeps failing read/write commands but TEST UNIT 1565 * READY always completes successfully we assume that medium 1566 * access is no longer possible and take the device offline. 1567 */ 1568 if (sdkp->medium_access_timed_out >= sdkp->max_medium_access_timeouts) { 1569 scmd_printk(KERN_ERR, scmd, 1570 "Medium access timeout failure. Offlining disk!\n"); 1571 scsi_device_set_state(scmd->device, SDEV_OFFLINE); 1572 1573 return FAILED; 1574 } 1575 1576 return eh_disp; 1577 } 1578 1579 static unsigned int sd_completed_bytes(struct scsi_cmnd *scmd) 1580 { 1581 u64 start_lba = blk_rq_pos(scmd->request); 1582 u64 end_lba = blk_rq_pos(scmd->request) + (scsi_bufflen(scmd) / 512); 1583 u64 bad_lba; 1584 int info_valid; 1585 /* 1586 * resid is optional but mostly filled in. When it's unused, 1587 * its value is zero, so we assume the whole buffer transferred 1588 */ 1589 unsigned int transferred = scsi_bufflen(scmd) - scsi_get_resid(scmd); 1590 unsigned int good_bytes; 1591 1592 if (scmd->request->cmd_type != REQ_TYPE_FS) 1593 return 0; 1594 1595 info_valid = scsi_get_sense_info_fld(scmd->sense_buffer, 1596 SCSI_SENSE_BUFFERSIZE, 1597 &bad_lba); 1598 if (!info_valid) 1599 return 0; 1600 1601 if (scsi_bufflen(scmd) <= scmd->device->sector_size) 1602 return 0; 1603 1604 if (scmd->device->sector_size < 512) { 1605 /* only legitimate sector_size here is 256 */ 1606 start_lba <<= 1; 1607 end_lba <<= 1; 1608 } else { 1609 /* be careful ... don't want any overflows */ 1610 u64 factor = scmd->device->sector_size / 512; 1611 do_div(start_lba, factor); 1612 do_div(end_lba, factor); 1613 } 1614 1615 /* The bad lba was reported incorrectly, we have no idea where 1616 * the error is. 1617 */ 1618 if (bad_lba < start_lba || bad_lba >= end_lba) 1619 return 0; 1620 1621 /* This computation should always be done in terms of 1622 * the resolution of the device's medium. 1623 */ 1624 good_bytes = (bad_lba - start_lba) * scmd->device->sector_size; 1625 return min(good_bytes, transferred); 1626 } 1627 1628 /** 1629 * sd_done - bottom half handler: called when the lower level 1630 * driver has completed (successfully or otherwise) a scsi command. 1631 * @SCpnt: mid-level's per command structure. 1632 * 1633 * Note: potentially run from within an ISR. Must not block. 1634 **/ 1635 static int sd_done(struct scsi_cmnd *SCpnt) 1636 { 1637 int result = SCpnt->result; 1638 unsigned int good_bytes = result ? 0 : scsi_bufflen(SCpnt); 1639 struct scsi_sense_hdr sshdr; 1640 struct scsi_disk *sdkp = scsi_disk(SCpnt->request->rq_disk); 1641 struct request *req = SCpnt->request; 1642 int sense_valid = 0; 1643 int sense_deferred = 0; 1644 unsigned char op = SCpnt->cmnd[0]; 1645 unsigned char unmap = SCpnt->cmnd[1] & 8; 1646 1647 if (req->cmd_flags & REQ_DISCARD || req->cmd_flags & REQ_WRITE_SAME) { 1648 if (!result) { 1649 good_bytes = blk_rq_bytes(req); 1650 scsi_set_resid(SCpnt, 0); 1651 } else { 1652 good_bytes = 0; 1653 scsi_set_resid(SCpnt, blk_rq_bytes(req)); 1654 } 1655 } 1656 1657 if (result) { 1658 sense_valid = scsi_command_normalize_sense(SCpnt, &sshdr); 1659 if (sense_valid) 1660 sense_deferred = scsi_sense_is_deferred(&sshdr); 1661 } 1662 #ifdef CONFIG_SCSI_LOGGING 1663 SCSI_LOG_HLCOMPLETE(1, scsi_print_result(SCpnt)); 1664 if (sense_valid) { 1665 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, SCpnt, 1666 "sd_done: sb[respc,sk,asc," 1667 "ascq]=%x,%x,%x,%x\n", 1668 sshdr.response_code, 1669 sshdr.sense_key, sshdr.asc, 1670 sshdr.ascq)); 1671 } 1672 #endif 1673 if (driver_byte(result) != DRIVER_SENSE && 1674 (!sense_valid || sense_deferred)) 1675 goto out; 1676 1677 sdkp->medium_access_timed_out = 0; 1678 1679 switch (sshdr.sense_key) { 1680 case HARDWARE_ERROR: 1681 case MEDIUM_ERROR: 1682 good_bytes = sd_completed_bytes(SCpnt); 1683 break; 1684 case RECOVERED_ERROR: 1685 good_bytes = scsi_bufflen(SCpnt); 1686 break; 1687 case NO_SENSE: 1688 /* This indicates a false check condition, so ignore it. An 1689 * unknown amount of data was transferred so treat it as an 1690 * error. 1691 */ 1692 scsi_print_sense("sd", SCpnt); 1693 SCpnt->result = 0; 1694 memset(SCpnt->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1695 break; 1696 case ABORTED_COMMAND: 1697 if (sshdr.asc == 0x10) /* DIF: Target detected corruption */ 1698 good_bytes = sd_completed_bytes(SCpnt); 1699 break; 1700 case ILLEGAL_REQUEST: 1701 if (sshdr.asc == 0x10) /* DIX: Host detected corruption */ 1702 good_bytes = sd_completed_bytes(SCpnt); 1703 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */ 1704 if (sshdr.asc == 0x20 || sshdr.asc == 0x24) { 1705 switch (op) { 1706 case UNMAP: 1707 sd_config_discard(sdkp, SD_LBP_DISABLE); 1708 break; 1709 case WRITE_SAME_16: 1710 case WRITE_SAME: 1711 if (unmap) 1712 sd_config_discard(sdkp, SD_LBP_DISABLE); 1713 else { 1714 sdkp->device->no_write_same = 1; 1715 sd_config_write_same(sdkp); 1716 1717 good_bytes = 0; 1718 req->__data_len = blk_rq_bytes(req); 1719 req->cmd_flags |= REQ_QUIET; 1720 } 1721 } 1722 } 1723 break; 1724 default: 1725 break; 1726 } 1727 out: 1728 if (rq_data_dir(SCpnt->request) == READ && scsi_prot_sg_count(SCpnt)) 1729 sd_dif_complete(SCpnt, good_bytes); 1730 1731 return good_bytes; 1732 } 1733 1734 /* 1735 * spinup disk - called only in sd_revalidate_disk() 1736 */ 1737 static void 1738 sd_spinup_disk(struct scsi_disk *sdkp) 1739 { 1740 unsigned char cmd[10]; 1741 unsigned long spintime_expire = 0; 1742 int retries, spintime; 1743 unsigned int the_result; 1744 struct scsi_sense_hdr sshdr; 1745 int sense_valid = 0; 1746 1747 spintime = 0; 1748 1749 /* Spin up drives, as required. Only do this at boot time */ 1750 /* Spinup needs to be done for module loads too. */ 1751 do { 1752 retries = 0; 1753 1754 do { 1755 cmd[0] = TEST_UNIT_READY; 1756 memset((void *) &cmd[1], 0, 9); 1757 1758 the_result = scsi_execute_req(sdkp->device, cmd, 1759 DMA_NONE, NULL, 0, 1760 &sshdr, SD_TIMEOUT, 1761 SD_MAX_RETRIES, NULL); 1762 1763 /* 1764 * If the drive has indicated to us that it 1765 * doesn't have any media in it, don't bother 1766 * with any more polling. 1767 */ 1768 if (media_not_present(sdkp, &sshdr)) 1769 return; 1770 1771 if (the_result) 1772 sense_valid = scsi_sense_valid(&sshdr); 1773 retries++; 1774 } while (retries < 3 && 1775 (!scsi_status_is_good(the_result) || 1776 ((driver_byte(the_result) & DRIVER_SENSE) && 1777 sense_valid && sshdr.sense_key == UNIT_ATTENTION))); 1778 1779 if ((driver_byte(the_result) & DRIVER_SENSE) == 0) { 1780 /* no sense, TUR either succeeded or failed 1781 * with a status error */ 1782 if(!spintime && !scsi_status_is_good(the_result)) { 1783 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 1784 sd_print_result(sdkp, the_result); 1785 } 1786 break; 1787 } 1788 1789 /* 1790 * The device does not want the automatic start to be issued. 1791 */ 1792 if (sdkp->device->no_start_on_add) 1793 break; 1794 1795 if (sense_valid && sshdr.sense_key == NOT_READY) { 1796 if (sshdr.asc == 4 && sshdr.ascq == 3) 1797 break; /* manual intervention required */ 1798 if (sshdr.asc == 4 && sshdr.ascq == 0xb) 1799 break; /* standby */ 1800 if (sshdr.asc == 4 && sshdr.ascq == 0xc) 1801 break; /* unavailable */ 1802 /* 1803 * Issue command to spin up drive when not ready 1804 */ 1805 if (!spintime) { 1806 sd_printk(KERN_NOTICE, sdkp, "Spinning up disk..."); 1807 cmd[0] = START_STOP; 1808 cmd[1] = 1; /* Return immediately */ 1809 memset((void *) &cmd[2], 0, 8); 1810 cmd[4] = 1; /* Start spin cycle */ 1811 if (sdkp->device->start_stop_pwr_cond) 1812 cmd[4] |= 1 << 4; 1813 scsi_execute_req(sdkp->device, cmd, DMA_NONE, 1814 NULL, 0, &sshdr, 1815 SD_TIMEOUT, SD_MAX_RETRIES, 1816 NULL); 1817 spintime_expire = jiffies + 100 * HZ; 1818 spintime = 1; 1819 } 1820 /* Wait 1 second for next try */ 1821 msleep(1000); 1822 printk("."); 1823 1824 /* 1825 * Wait for USB flash devices with slow firmware. 1826 * Yes, this sense key/ASC combination shouldn't 1827 * occur here. It's characteristic of these devices. 1828 */ 1829 } else if (sense_valid && 1830 sshdr.sense_key == UNIT_ATTENTION && 1831 sshdr.asc == 0x28) { 1832 if (!spintime) { 1833 spintime_expire = jiffies + 5 * HZ; 1834 spintime = 1; 1835 } 1836 /* Wait 1 second for next try */ 1837 msleep(1000); 1838 } else { 1839 /* we don't understand the sense code, so it's 1840 * probably pointless to loop */ 1841 if(!spintime) { 1842 sd_printk(KERN_NOTICE, sdkp, "Unit Not Ready\n"); 1843 sd_print_sense_hdr(sdkp, &sshdr); 1844 } 1845 break; 1846 } 1847 1848 } while (spintime && time_before_eq(jiffies, spintime_expire)); 1849 1850 if (spintime) { 1851 if (scsi_status_is_good(the_result)) 1852 printk("ready\n"); 1853 else 1854 printk("not responding...\n"); 1855 } 1856 } 1857 1858 1859 /* 1860 * Determine whether disk supports Data Integrity Field. 1861 */ 1862 static int sd_read_protection_type(struct scsi_disk *sdkp, unsigned char *buffer) 1863 { 1864 struct scsi_device *sdp = sdkp->device; 1865 u8 type; 1866 int ret = 0; 1867 1868 if (scsi_device_protection(sdp) == 0 || (buffer[12] & 1) == 0) 1869 return ret; 1870 1871 type = ((buffer[12] >> 1) & 7) + 1; /* P_TYPE 0 = Type 1 */ 1872 1873 if (type > SD_DIF_TYPE3_PROTECTION) 1874 ret = -ENODEV; 1875 else if (scsi_host_dif_capable(sdp->host, type)) 1876 ret = 1; 1877 1878 if (sdkp->first_scan || type != sdkp->protection_type) 1879 switch (ret) { 1880 case -ENODEV: 1881 sd_printk(KERN_ERR, sdkp, "formatted with unsupported" \ 1882 " protection type %u. Disabling disk!\n", 1883 type); 1884 break; 1885 case 1: 1886 sd_printk(KERN_NOTICE, sdkp, 1887 "Enabling DIF Type %u protection\n", type); 1888 break; 1889 case 0: 1890 sd_printk(KERN_NOTICE, sdkp, 1891 "Disabling DIF Type %u protection\n", type); 1892 break; 1893 } 1894 1895 sdkp->protection_type = type; 1896 1897 return ret; 1898 } 1899 1900 static void read_capacity_error(struct scsi_disk *sdkp, struct scsi_device *sdp, 1901 struct scsi_sense_hdr *sshdr, int sense_valid, 1902 int the_result) 1903 { 1904 sd_print_result(sdkp, the_result); 1905 if (driver_byte(the_result) & DRIVER_SENSE) 1906 sd_print_sense_hdr(sdkp, sshdr); 1907 else 1908 sd_printk(KERN_NOTICE, sdkp, "Sense not available.\n"); 1909 1910 /* 1911 * Set dirty bit for removable devices if not ready - 1912 * sometimes drives will not report this properly. 1913 */ 1914 if (sdp->removable && 1915 sense_valid && sshdr->sense_key == NOT_READY) 1916 set_media_not_present(sdkp); 1917 1918 /* 1919 * We used to set media_present to 0 here to indicate no media 1920 * in the drive, but some drives fail read capacity even with 1921 * media present, so we can't do that. 1922 */ 1923 sdkp->capacity = 0; /* unknown mapped to zero - as usual */ 1924 } 1925 1926 #define RC16_LEN 32 1927 #if RC16_LEN > SD_BUF_SIZE 1928 #error RC16_LEN must not be more than SD_BUF_SIZE 1929 #endif 1930 1931 #define READ_CAPACITY_RETRIES_ON_RESET 10 1932 1933 static int read_capacity_16(struct scsi_disk *sdkp, struct scsi_device *sdp, 1934 unsigned char *buffer) 1935 { 1936 unsigned char cmd[16]; 1937 struct scsi_sense_hdr sshdr; 1938 int sense_valid = 0; 1939 int the_result; 1940 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 1941 unsigned int alignment; 1942 unsigned long long lba; 1943 unsigned sector_size; 1944 1945 if (sdp->no_read_capacity_16) 1946 return -EINVAL; 1947 1948 do { 1949 memset(cmd, 0, 16); 1950 cmd[0] = SERVICE_ACTION_IN; 1951 cmd[1] = SAI_READ_CAPACITY_16; 1952 cmd[13] = RC16_LEN; 1953 memset(buffer, 0, RC16_LEN); 1954 1955 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 1956 buffer, RC16_LEN, &sshdr, 1957 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 1958 1959 if (media_not_present(sdkp, &sshdr)) 1960 return -ENODEV; 1961 1962 if (the_result) { 1963 sense_valid = scsi_sense_valid(&sshdr); 1964 if (sense_valid && 1965 sshdr.sense_key == ILLEGAL_REQUEST && 1966 (sshdr.asc == 0x20 || sshdr.asc == 0x24) && 1967 sshdr.ascq == 0x00) 1968 /* Invalid Command Operation Code or 1969 * Invalid Field in CDB, just retry 1970 * silently with RC10 */ 1971 return -EINVAL; 1972 if (sense_valid && 1973 sshdr.sense_key == UNIT_ATTENTION && 1974 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 1975 /* Device reset might occur several times, 1976 * give it one more chance */ 1977 if (--reset_retries > 0) 1978 continue; 1979 } 1980 retries--; 1981 1982 } while (the_result && retries); 1983 1984 if (the_result) { 1985 sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY(16) failed\n"); 1986 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 1987 return -EINVAL; 1988 } 1989 1990 sector_size = get_unaligned_be32(&buffer[8]); 1991 lba = get_unaligned_be64(&buffer[0]); 1992 1993 if (sd_read_protection_type(sdkp, buffer) < 0) { 1994 sdkp->capacity = 0; 1995 return -ENODEV; 1996 } 1997 1998 if ((sizeof(sdkp->capacity) == 4) && (lba >= 0xffffffffULL)) { 1999 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2000 "kernel compiled with support for large block " 2001 "devices.\n"); 2002 sdkp->capacity = 0; 2003 return -EOVERFLOW; 2004 } 2005 2006 /* Logical blocks per physical block exponent */ 2007 sdkp->physical_block_size = (1 << (buffer[13] & 0xf)) * sector_size; 2008 2009 /* Lowest aligned logical block */ 2010 alignment = ((buffer[14] & 0x3f) << 8 | buffer[15]) * sector_size; 2011 blk_queue_alignment_offset(sdp->request_queue, alignment); 2012 if (alignment && sdkp->first_scan) 2013 sd_printk(KERN_NOTICE, sdkp, 2014 "physical block alignment offset: %u\n", alignment); 2015 2016 if (buffer[14] & 0x80) { /* LBPME */ 2017 sdkp->lbpme = 1; 2018 2019 if (buffer[14] & 0x40) /* LBPRZ */ 2020 sdkp->lbprz = 1; 2021 2022 sd_config_discard(sdkp, SD_LBP_WS16); 2023 } 2024 2025 sdkp->capacity = lba + 1; 2026 return sector_size; 2027 } 2028 2029 static int read_capacity_10(struct scsi_disk *sdkp, struct scsi_device *sdp, 2030 unsigned char *buffer) 2031 { 2032 unsigned char cmd[16]; 2033 struct scsi_sense_hdr sshdr; 2034 int sense_valid = 0; 2035 int the_result; 2036 int retries = 3, reset_retries = READ_CAPACITY_RETRIES_ON_RESET; 2037 sector_t lba; 2038 unsigned sector_size; 2039 2040 do { 2041 cmd[0] = READ_CAPACITY; 2042 memset(&cmd[1], 0, 9); 2043 memset(buffer, 0, 8); 2044 2045 the_result = scsi_execute_req(sdp, cmd, DMA_FROM_DEVICE, 2046 buffer, 8, &sshdr, 2047 SD_TIMEOUT, SD_MAX_RETRIES, NULL); 2048 2049 if (media_not_present(sdkp, &sshdr)) 2050 return -ENODEV; 2051 2052 if (the_result) { 2053 sense_valid = scsi_sense_valid(&sshdr); 2054 if (sense_valid && 2055 sshdr.sense_key == UNIT_ATTENTION && 2056 sshdr.asc == 0x29 && sshdr.ascq == 0x00) 2057 /* Device reset might occur several times, 2058 * give it one more chance */ 2059 if (--reset_retries > 0) 2060 continue; 2061 } 2062 retries--; 2063 2064 } while (the_result && retries); 2065 2066 if (the_result) { 2067 sd_printk(KERN_NOTICE, sdkp, "READ CAPACITY failed\n"); 2068 read_capacity_error(sdkp, sdp, &sshdr, sense_valid, the_result); 2069 return -EINVAL; 2070 } 2071 2072 sector_size = get_unaligned_be32(&buffer[4]); 2073 lba = get_unaligned_be32(&buffer[0]); 2074 2075 if (sdp->no_read_capacity_16 && (lba == 0xffffffff)) { 2076 /* Some buggy (usb cardreader) devices return an lba of 2077 0xffffffff when the want to report a size of 0 (with 2078 which they really mean no media is present) */ 2079 sdkp->capacity = 0; 2080 sdkp->physical_block_size = sector_size; 2081 return sector_size; 2082 } 2083 2084 if ((sizeof(sdkp->capacity) == 4) && (lba == 0xffffffff)) { 2085 sd_printk(KERN_ERR, sdkp, "Too big for this kernel. Use a " 2086 "kernel compiled with support for large block " 2087 "devices.\n"); 2088 sdkp->capacity = 0; 2089 return -EOVERFLOW; 2090 } 2091 2092 sdkp->capacity = lba + 1; 2093 sdkp->physical_block_size = sector_size; 2094 return sector_size; 2095 } 2096 2097 static int sd_try_rc16_first(struct scsi_device *sdp) 2098 { 2099 if (sdp->host->max_cmd_len < 16) 2100 return 0; 2101 if (sdp->try_rc_10_first) 2102 return 0; 2103 if (sdp->scsi_level > SCSI_SPC_2) 2104 return 1; 2105 if (scsi_device_protection(sdp)) 2106 return 1; 2107 return 0; 2108 } 2109 2110 /* 2111 * read disk capacity 2112 */ 2113 static void 2114 sd_read_capacity(struct scsi_disk *sdkp, unsigned char *buffer) 2115 { 2116 int sector_size; 2117 struct scsi_device *sdp = sdkp->device; 2118 sector_t old_capacity = sdkp->capacity; 2119 2120 if (sd_try_rc16_first(sdp)) { 2121 sector_size = read_capacity_16(sdkp, sdp, buffer); 2122 if (sector_size == -EOVERFLOW) 2123 goto got_data; 2124 if (sector_size == -ENODEV) 2125 return; 2126 if (sector_size < 0) 2127 sector_size = read_capacity_10(sdkp, sdp, buffer); 2128 if (sector_size < 0) 2129 return; 2130 } else { 2131 sector_size = read_capacity_10(sdkp, sdp, buffer); 2132 if (sector_size == -EOVERFLOW) 2133 goto got_data; 2134 if (sector_size < 0) 2135 return; 2136 if ((sizeof(sdkp->capacity) > 4) && 2137 (sdkp->capacity > 0xffffffffULL)) { 2138 int old_sector_size = sector_size; 2139 sd_printk(KERN_NOTICE, sdkp, "Very big device. " 2140 "Trying to use READ CAPACITY(16).\n"); 2141 sector_size = read_capacity_16(sdkp, sdp, buffer); 2142 if (sector_size < 0) { 2143 sd_printk(KERN_NOTICE, sdkp, 2144 "Using 0xffffffff as device size\n"); 2145 sdkp->capacity = 1 + (sector_t) 0xffffffff; 2146 sector_size = old_sector_size; 2147 goto got_data; 2148 } 2149 } 2150 } 2151 2152 /* Some devices are known to return the total number of blocks, 2153 * not the highest block number. Some devices have versions 2154 * which do this and others which do not. Some devices we might 2155 * suspect of doing this but we don't know for certain. 2156 * 2157 * If we know the reported capacity is wrong, decrement it. If 2158 * we can only guess, then assume the number of blocks is even 2159 * (usually true but not always) and err on the side of lowering 2160 * the capacity. 2161 */ 2162 if (sdp->fix_capacity || 2163 (sdp->guess_capacity && (sdkp->capacity & 0x01))) { 2164 sd_printk(KERN_INFO, sdkp, "Adjusting the sector count " 2165 "from its reported value: %llu\n", 2166 (unsigned long long) sdkp->capacity); 2167 --sdkp->capacity; 2168 } 2169 2170 got_data: 2171 if (sector_size == 0) { 2172 sector_size = 512; 2173 sd_printk(KERN_NOTICE, sdkp, "Sector size 0 reported, " 2174 "assuming 512.\n"); 2175 } 2176 2177 if (sector_size != 512 && 2178 sector_size != 1024 && 2179 sector_size != 2048 && 2180 sector_size != 4096 && 2181 sector_size != 256) { 2182 sd_printk(KERN_NOTICE, sdkp, "Unsupported sector size %d.\n", 2183 sector_size); 2184 /* 2185 * The user might want to re-format the drive with 2186 * a supported sectorsize. Once this happens, it 2187 * would be relatively trivial to set the thing up. 2188 * For this reason, we leave the thing in the table. 2189 */ 2190 sdkp->capacity = 0; 2191 /* 2192 * set a bogus sector size so the normal read/write 2193 * logic in the block layer will eventually refuse any 2194 * request on this device without tripping over power 2195 * of two sector size assumptions 2196 */ 2197 sector_size = 512; 2198 } 2199 blk_queue_logical_block_size(sdp->request_queue, sector_size); 2200 2201 { 2202 char cap_str_2[10], cap_str_10[10]; 2203 u64 sz = (u64)sdkp->capacity << ilog2(sector_size); 2204 2205 string_get_size(sz, STRING_UNITS_2, cap_str_2, 2206 sizeof(cap_str_2)); 2207 string_get_size(sz, STRING_UNITS_10, cap_str_10, 2208 sizeof(cap_str_10)); 2209 2210 if (sdkp->first_scan || old_capacity != sdkp->capacity) { 2211 sd_printk(KERN_NOTICE, sdkp, 2212 "%llu %d-byte logical blocks: (%s/%s)\n", 2213 (unsigned long long)sdkp->capacity, 2214 sector_size, cap_str_10, cap_str_2); 2215 2216 if (sdkp->physical_block_size != sector_size) 2217 sd_printk(KERN_NOTICE, sdkp, 2218 "%u-byte physical blocks\n", 2219 sdkp->physical_block_size); 2220 } 2221 } 2222 2223 sdp->use_16_for_rw = (sdkp->capacity > 0xffffffff); 2224 2225 /* Rescale capacity to 512-byte units */ 2226 if (sector_size == 4096) 2227 sdkp->capacity <<= 3; 2228 else if (sector_size == 2048) 2229 sdkp->capacity <<= 2; 2230 else if (sector_size == 1024) 2231 sdkp->capacity <<= 1; 2232 else if (sector_size == 256) 2233 sdkp->capacity >>= 1; 2234 2235 blk_queue_physical_block_size(sdp->request_queue, 2236 sdkp->physical_block_size); 2237 sdkp->device->sector_size = sector_size; 2238 } 2239 2240 /* called with buffer of length 512 */ 2241 static inline int 2242 sd_do_mode_sense(struct scsi_device *sdp, int dbd, int modepage, 2243 unsigned char *buffer, int len, struct scsi_mode_data *data, 2244 struct scsi_sense_hdr *sshdr) 2245 { 2246 return scsi_mode_sense(sdp, dbd, modepage, buffer, len, 2247 SD_TIMEOUT, SD_MAX_RETRIES, data, 2248 sshdr); 2249 } 2250 2251 /* 2252 * read write protect setting, if possible - called only in sd_revalidate_disk() 2253 * called with buffer of length SD_BUF_SIZE 2254 */ 2255 static void 2256 sd_read_write_protect_flag(struct scsi_disk *sdkp, unsigned char *buffer) 2257 { 2258 int res; 2259 struct scsi_device *sdp = sdkp->device; 2260 struct scsi_mode_data data; 2261 int old_wp = sdkp->write_prot; 2262 2263 set_disk_ro(sdkp->disk, 0); 2264 if (sdp->skip_ms_page_3f) { 2265 sd_printk(KERN_NOTICE, sdkp, "Assuming Write Enabled\n"); 2266 return; 2267 } 2268 2269 if (sdp->use_192_bytes_for_3f) { 2270 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 192, &data, NULL); 2271 } else { 2272 /* 2273 * First attempt: ask for all pages (0x3F), but only 4 bytes. 2274 * We have to start carefully: some devices hang if we ask 2275 * for more than is available. 2276 */ 2277 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 4, &data, NULL); 2278 2279 /* 2280 * Second attempt: ask for page 0 When only page 0 is 2281 * implemented, a request for page 3F may return Sense Key 2282 * 5: Illegal Request, Sense Code 24: Invalid field in 2283 * CDB. 2284 */ 2285 if (!scsi_status_is_good(res)) 2286 res = sd_do_mode_sense(sdp, 0, 0, buffer, 4, &data, NULL); 2287 2288 /* 2289 * Third attempt: ask 255 bytes, as we did earlier. 2290 */ 2291 if (!scsi_status_is_good(res)) 2292 res = sd_do_mode_sense(sdp, 0, 0x3F, buffer, 255, 2293 &data, NULL); 2294 } 2295 2296 if (!scsi_status_is_good(res)) { 2297 sd_printk(KERN_WARNING, sdkp, 2298 "Test WP failed, assume Write Enabled\n"); 2299 } else { 2300 sdkp->write_prot = ((data.device_specific & 0x80) != 0); 2301 set_disk_ro(sdkp->disk, sdkp->write_prot); 2302 if (sdkp->first_scan || old_wp != sdkp->write_prot) { 2303 sd_printk(KERN_NOTICE, sdkp, "Write Protect is %s\n", 2304 sdkp->write_prot ? "on" : "off"); 2305 sd_printk(KERN_DEBUG, sdkp, 2306 "Mode Sense: %02x %02x %02x %02x\n", 2307 buffer[0], buffer[1], buffer[2], buffer[3]); 2308 } 2309 } 2310 } 2311 2312 /* 2313 * sd_read_cache_type - called only from sd_revalidate_disk() 2314 * called with buffer of length SD_BUF_SIZE 2315 */ 2316 static void 2317 sd_read_cache_type(struct scsi_disk *sdkp, unsigned char *buffer) 2318 { 2319 int len = 0, res; 2320 struct scsi_device *sdp = sdkp->device; 2321 2322 int dbd; 2323 int modepage; 2324 int first_len; 2325 struct scsi_mode_data data; 2326 struct scsi_sense_hdr sshdr; 2327 int old_wce = sdkp->WCE; 2328 int old_rcd = sdkp->RCD; 2329 int old_dpofua = sdkp->DPOFUA; 2330 2331 2332 if (sdkp->cache_override) 2333 return; 2334 2335 first_len = 4; 2336 if (sdp->skip_ms_page_8) { 2337 if (sdp->type == TYPE_RBC) 2338 goto defaults; 2339 else { 2340 if (sdp->skip_ms_page_3f) 2341 goto defaults; 2342 modepage = 0x3F; 2343 if (sdp->use_192_bytes_for_3f) 2344 first_len = 192; 2345 dbd = 0; 2346 } 2347 } else if (sdp->type == TYPE_RBC) { 2348 modepage = 6; 2349 dbd = 8; 2350 } else { 2351 modepage = 8; 2352 dbd = 0; 2353 } 2354 2355 /* cautiously ask */ 2356 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, first_len, 2357 &data, &sshdr); 2358 2359 if (!scsi_status_is_good(res)) 2360 goto bad_sense; 2361 2362 if (!data.header_length) { 2363 modepage = 6; 2364 first_len = 0; 2365 sd_printk(KERN_ERR, sdkp, "Missing header in MODE_SENSE response\n"); 2366 } 2367 2368 /* that went OK, now ask for the proper length */ 2369 len = data.length; 2370 2371 /* 2372 * We're only interested in the first three bytes, actually. 2373 * But the data cache page is defined for the first 20. 2374 */ 2375 if (len < 3) 2376 goto bad_sense; 2377 else if (len > SD_BUF_SIZE) { 2378 sd_printk(KERN_NOTICE, sdkp, "Truncating mode parameter " 2379 "data from %d to %d bytes\n", len, SD_BUF_SIZE); 2380 len = SD_BUF_SIZE; 2381 } 2382 if (modepage == 0x3F && sdp->use_192_bytes_for_3f) 2383 len = 192; 2384 2385 /* Get the data */ 2386 if (len > first_len) 2387 res = sd_do_mode_sense(sdp, dbd, modepage, buffer, len, 2388 &data, &sshdr); 2389 2390 if (scsi_status_is_good(res)) { 2391 int offset = data.header_length + data.block_descriptor_length; 2392 2393 while (offset < len) { 2394 u8 page_code = buffer[offset] & 0x3F; 2395 u8 spf = buffer[offset] & 0x40; 2396 2397 if (page_code == 8 || page_code == 6) { 2398 /* We're interested only in the first 3 bytes. 2399 */ 2400 if (len - offset <= 2) { 2401 sd_printk(KERN_ERR, sdkp, "Incomplete " 2402 "mode parameter data\n"); 2403 goto defaults; 2404 } else { 2405 modepage = page_code; 2406 goto Page_found; 2407 } 2408 } else { 2409 /* Go to the next page */ 2410 if (spf && len - offset > 3) 2411 offset += 4 + (buffer[offset+2] << 8) + 2412 buffer[offset+3]; 2413 else if (!spf && len - offset > 1) 2414 offset += 2 + buffer[offset+1]; 2415 else { 2416 sd_printk(KERN_ERR, sdkp, "Incomplete " 2417 "mode parameter data\n"); 2418 goto defaults; 2419 } 2420 } 2421 } 2422 2423 sd_printk(KERN_ERR, sdkp, "No Caching mode page found\n"); 2424 goto defaults; 2425 2426 Page_found: 2427 if (modepage == 8) { 2428 sdkp->WCE = ((buffer[offset + 2] & 0x04) != 0); 2429 sdkp->RCD = ((buffer[offset + 2] & 0x01) != 0); 2430 } else { 2431 sdkp->WCE = ((buffer[offset + 2] & 0x01) == 0); 2432 sdkp->RCD = 0; 2433 } 2434 2435 sdkp->DPOFUA = (data.device_specific & 0x10) != 0; 2436 if (sdkp->DPOFUA && !sdkp->device->use_10_for_rw) { 2437 sd_printk(KERN_NOTICE, sdkp, 2438 "Uses READ/WRITE(6), disabling FUA\n"); 2439 sdkp->DPOFUA = 0; 2440 } 2441 2442 if (sdkp->first_scan || old_wce != sdkp->WCE || 2443 old_rcd != sdkp->RCD || old_dpofua != sdkp->DPOFUA) 2444 sd_printk(KERN_NOTICE, sdkp, 2445 "Write cache: %s, read cache: %s, %s\n", 2446 sdkp->WCE ? "enabled" : "disabled", 2447 sdkp->RCD ? "disabled" : "enabled", 2448 sdkp->DPOFUA ? "supports DPO and FUA" 2449 : "doesn't support DPO or FUA"); 2450 2451 return; 2452 } 2453 2454 bad_sense: 2455 if (scsi_sense_valid(&sshdr) && 2456 sshdr.sense_key == ILLEGAL_REQUEST && 2457 sshdr.asc == 0x24 && sshdr.ascq == 0x0) 2458 /* Invalid field in CDB */ 2459 sd_printk(KERN_NOTICE, sdkp, "Cache data unavailable\n"); 2460 else 2461 sd_printk(KERN_ERR, sdkp, "Asking for cache data failed\n"); 2462 2463 defaults: 2464 if (sdp->wce_default_on) { 2465 sd_printk(KERN_NOTICE, sdkp, "Assuming drive cache: write back\n"); 2466 sdkp->WCE = 1; 2467 } else { 2468 sd_printk(KERN_ERR, sdkp, "Assuming drive cache: write through\n"); 2469 sdkp->WCE = 0; 2470 } 2471 sdkp->RCD = 0; 2472 sdkp->DPOFUA = 0; 2473 } 2474 2475 /* 2476 * The ATO bit indicates whether the DIF application tag is available 2477 * for use by the operating system. 2478 */ 2479 static void sd_read_app_tag_own(struct scsi_disk *sdkp, unsigned char *buffer) 2480 { 2481 int res, offset; 2482 struct scsi_device *sdp = sdkp->device; 2483 struct scsi_mode_data data; 2484 struct scsi_sense_hdr sshdr; 2485 2486 if (sdp->type != TYPE_DISK) 2487 return; 2488 2489 if (sdkp->protection_type == 0) 2490 return; 2491 2492 res = scsi_mode_sense(sdp, 1, 0x0a, buffer, 36, SD_TIMEOUT, 2493 SD_MAX_RETRIES, &data, &sshdr); 2494 2495 if (!scsi_status_is_good(res) || !data.header_length || 2496 data.length < 6) { 2497 sd_printk(KERN_WARNING, sdkp, 2498 "getting Control mode page failed, assume no ATO\n"); 2499 2500 if (scsi_sense_valid(&sshdr)) 2501 sd_print_sense_hdr(sdkp, &sshdr); 2502 2503 return; 2504 } 2505 2506 offset = data.header_length + data.block_descriptor_length; 2507 2508 if ((buffer[offset] & 0x3f) != 0x0a) { 2509 sd_printk(KERN_ERR, sdkp, "ATO Got wrong page\n"); 2510 return; 2511 } 2512 2513 if ((buffer[offset + 5] & 0x80) == 0) 2514 return; 2515 2516 sdkp->ATO = 1; 2517 2518 return; 2519 } 2520 2521 /** 2522 * sd_read_block_limits - Query disk device for preferred I/O sizes. 2523 * @disk: disk to query 2524 */ 2525 static void sd_read_block_limits(struct scsi_disk *sdkp) 2526 { 2527 unsigned int sector_sz = sdkp->device->sector_size; 2528 const int vpd_len = 64; 2529 unsigned char *buffer = kmalloc(vpd_len, GFP_KERNEL); 2530 2531 if (!buffer || 2532 /* Block Limits VPD */ 2533 scsi_get_vpd_page(sdkp->device, 0xb0, buffer, vpd_len)) 2534 goto out; 2535 2536 blk_queue_io_min(sdkp->disk->queue, 2537 get_unaligned_be16(&buffer[6]) * sector_sz); 2538 blk_queue_io_opt(sdkp->disk->queue, 2539 get_unaligned_be32(&buffer[12]) * sector_sz); 2540 2541 if (buffer[3] == 0x3c) { 2542 unsigned int lba_count, desc_count; 2543 2544 sdkp->max_ws_blocks = (u32)get_unaligned_be64(&buffer[36]); 2545 2546 if (!sdkp->lbpme) 2547 goto out; 2548 2549 lba_count = get_unaligned_be32(&buffer[20]); 2550 desc_count = get_unaligned_be32(&buffer[24]); 2551 2552 if (lba_count && desc_count) 2553 sdkp->max_unmap_blocks = lba_count; 2554 2555 sdkp->unmap_granularity = get_unaligned_be32(&buffer[28]); 2556 2557 if (buffer[32] & 0x80) 2558 sdkp->unmap_alignment = 2559 get_unaligned_be32(&buffer[32]) & ~(1 << 31); 2560 2561 if (!sdkp->lbpvpd) { /* LBP VPD page not provided */ 2562 2563 if (sdkp->max_unmap_blocks) 2564 sd_config_discard(sdkp, SD_LBP_UNMAP); 2565 else 2566 sd_config_discard(sdkp, SD_LBP_WS16); 2567 2568 } else { /* LBP VPD page tells us what to use */ 2569 2570 if (sdkp->lbpu && sdkp->max_unmap_blocks) 2571 sd_config_discard(sdkp, SD_LBP_UNMAP); 2572 else if (sdkp->lbpws) 2573 sd_config_discard(sdkp, SD_LBP_WS16); 2574 else if (sdkp->lbpws10) 2575 sd_config_discard(sdkp, SD_LBP_WS10); 2576 else 2577 sd_config_discard(sdkp, SD_LBP_DISABLE); 2578 } 2579 } 2580 2581 out: 2582 kfree(buffer); 2583 } 2584 2585 /** 2586 * sd_read_block_characteristics - Query block dev. characteristics 2587 * @disk: disk to query 2588 */ 2589 static void sd_read_block_characteristics(struct scsi_disk *sdkp) 2590 { 2591 unsigned char *buffer; 2592 u16 rot; 2593 const int vpd_len = 64; 2594 2595 buffer = kmalloc(vpd_len, GFP_KERNEL); 2596 2597 if (!buffer || 2598 /* Block Device Characteristics VPD */ 2599 scsi_get_vpd_page(sdkp->device, 0xb1, buffer, vpd_len)) 2600 goto out; 2601 2602 rot = get_unaligned_be16(&buffer[4]); 2603 2604 if (rot == 1) 2605 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, sdkp->disk->queue); 2606 2607 out: 2608 kfree(buffer); 2609 } 2610 2611 /** 2612 * sd_read_block_provisioning - Query provisioning VPD page 2613 * @disk: disk to query 2614 */ 2615 static void sd_read_block_provisioning(struct scsi_disk *sdkp) 2616 { 2617 unsigned char *buffer; 2618 const int vpd_len = 8; 2619 2620 if (sdkp->lbpme == 0) 2621 return; 2622 2623 buffer = kmalloc(vpd_len, GFP_KERNEL); 2624 2625 if (!buffer || scsi_get_vpd_page(sdkp->device, 0xb2, buffer, vpd_len)) 2626 goto out; 2627 2628 sdkp->lbpvpd = 1; 2629 sdkp->lbpu = (buffer[5] >> 7) & 1; /* UNMAP */ 2630 sdkp->lbpws = (buffer[5] >> 6) & 1; /* WRITE SAME(16) with UNMAP */ 2631 sdkp->lbpws10 = (buffer[5] >> 5) & 1; /* WRITE SAME(10) with UNMAP */ 2632 2633 out: 2634 kfree(buffer); 2635 } 2636 2637 static void sd_read_write_same(struct scsi_disk *sdkp, unsigned char *buffer) 2638 { 2639 struct scsi_device *sdev = sdkp->device; 2640 2641 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, INQUIRY) < 0) { 2642 sdev->no_report_opcodes = 1; 2643 2644 /* Disable WRITE SAME if REPORT SUPPORTED OPERATION 2645 * CODES is unsupported and the device has an ATA 2646 * Information VPD page (SAT). 2647 */ 2648 if (!scsi_get_vpd_page(sdev, 0x89, buffer, SD_BUF_SIZE)) 2649 sdev->no_write_same = 1; 2650 } 2651 2652 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME_16) == 1) 2653 sdkp->ws16 = 1; 2654 2655 if (scsi_report_opcode(sdev, buffer, SD_BUF_SIZE, WRITE_SAME) == 1) 2656 sdkp->ws10 = 1; 2657 } 2658 2659 static int sd_try_extended_inquiry(struct scsi_device *sdp) 2660 { 2661 /* 2662 * Although VPD inquiries can go to SCSI-2 type devices, 2663 * some USB ones crash on receiving them, and the pages 2664 * we currently ask for are for SPC-3 and beyond 2665 */ 2666 if (sdp->scsi_level > SCSI_SPC_2 && !sdp->skip_vpd_pages) 2667 return 1; 2668 return 0; 2669 } 2670 2671 /** 2672 * sd_revalidate_disk - called the first time a new disk is seen, 2673 * performs disk spin up, read_capacity, etc. 2674 * @disk: struct gendisk we care about 2675 **/ 2676 static int sd_revalidate_disk(struct gendisk *disk) 2677 { 2678 struct scsi_disk *sdkp = scsi_disk(disk); 2679 struct scsi_device *sdp = sdkp->device; 2680 unsigned char *buffer; 2681 unsigned flush = 0; 2682 2683 SCSI_LOG_HLQUEUE(3, sd_printk(KERN_INFO, sdkp, 2684 "sd_revalidate_disk\n")); 2685 2686 /* 2687 * If the device is offline, don't try and read capacity or any 2688 * of the other niceties. 2689 */ 2690 if (!scsi_device_online(sdp)) 2691 goto out; 2692 2693 buffer = kmalloc(SD_BUF_SIZE, GFP_KERNEL); 2694 if (!buffer) { 2695 sd_printk(KERN_WARNING, sdkp, "sd_revalidate_disk: Memory " 2696 "allocation failure.\n"); 2697 goto out; 2698 } 2699 2700 sd_spinup_disk(sdkp); 2701 2702 /* 2703 * Without media there is no reason to ask; moreover, some devices 2704 * react badly if we do. 2705 */ 2706 if (sdkp->media_present) { 2707 sd_read_capacity(sdkp, buffer); 2708 2709 if (sd_try_extended_inquiry(sdp)) { 2710 sd_read_block_provisioning(sdkp); 2711 sd_read_block_limits(sdkp); 2712 sd_read_block_characteristics(sdkp); 2713 } 2714 2715 sd_read_write_protect_flag(sdkp, buffer); 2716 sd_read_cache_type(sdkp, buffer); 2717 sd_read_app_tag_own(sdkp, buffer); 2718 sd_read_write_same(sdkp, buffer); 2719 } 2720 2721 sdkp->first_scan = 0; 2722 2723 /* 2724 * We now have all cache related info, determine how we deal 2725 * with flush requests. 2726 */ 2727 if (sdkp->WCE) { 2728 flush |= REQ_FLUSH; 2729 if (sdkp->DPOFUA) 2730 flush |= REQ_FUA; 2731 } 2732 2733 blk_queue_flush(sdkp->disk->queue, flush); 2734 2735 set_capacity(disk, sdkp->capacity); 2736 sd_config_write_same(sdkp); 2737 kfree(buffer); 2738 2739 out: 2740 return 0; 2741 } 2742 2743 /** 2744 * sd_unlock_native_capacity - unlock native capacity 2745 * @disk: struct gendisk to set capacity for 2746 * 2747 * Block layer calls this function if it detects that partitions 2748 * on @disk reach beyond the end of the device. If the SCSI host 2749 * implements ->unlock_native_capacity() method, it's invoked to 2750 * give it a chance to adjust the device capacity. 2751 * 2752 * CONTEXT: 2753 * Defined by block layer. Might sleep. 2754 */ 2755 static void sd_unlock_native_capacity(struct gendisk *disk) 2756 { 2757 struct scsi_device *sdev = scsi_disk(disk)->device; 2758 2759 if (sdev->host->hostt->unlock_native_capacity) 2760 sdev->host->hostt->unlock_native_capacity(sdev); 2761 } 2762 2763 /** 2764 * sd_format_disk_name - format disk name 2765 * @prefix: name prefix - ie. "sd" for SCSI disks 2766 * @index: index of the disk to format name for 2767 * @buf: output buffer 2768 * @buflen: length of the output buffer 2769 * 2770 * SCSI disk names starts at sda. The 26th device is sdz and the 2771 * 27th is sdaa. The last one for two lettered suffix is sdzz 2772 * which is followed by sdaaa. 2773 * 2774 * This is basically 26 base counting with one extra 'nil' entry 2775 * at the beginning from the second digit on and can be 2776 * determined using similar method as 26 base conversion with the 2777 * index shifted -1 after each digit is computed. 2778 * 2779 * CONTEXT: 2780 * Don't care. 2781 * 2782 * RETURNS: 2783 * 0 on success, -errno on failure. 2784 */ 2785 static int sd_format_disk_name(char *prefix, int index, char *buf, int buflen) 2786 { 2787 const int base = 'z' - 'a' + 1; 2788 char *begin = buf + strlen(prefix); 2789 char *end = buf + buflen; 2790 char *p; 2791 int unit; 2792 2793 p = end - 1; 2794 *p = '\0'; 2795 unit = base; 2796 do { 2797 if (p == begin) 2798 return -EINVAL; 2799 *--p = 'a' + (index % unit); 2800 index = (index / unit) - 1; 2801 } while (index >= 0); 2802 2803 memmove(begin, p, end - p); 2804 memcpy(buf, prefix, strlen(prefix)); 2805 2806 return 0; 2807 } 2808 2809 /* 2810 * The asynchronous part of sd_probe 2811 */ 2812 static void sd_probe_async(void *data, async_cookie_t cookie) 2813 { 2814 struct scsi_disk *sdkp = data; 2815 struct scsi_device *sdp; 2816 struct gendisk *gd; 2817 u32 index; 2818 struct device *dev; 2819 2820 sdp = sdkp->device; 2821 gd = sdkp->disk; 2822 index = sdkp->index; 2823 dev = &sdp->sdev_gendev; 2824 2825 gd->major = sd_major((index & 0xf0) >> 4); 2826 gd->first_minor = ((index & 0xf) << 4) | (index & 0xfff00); 2827 gd->minors = SD_MINORS; 2828 2829 gd->fops = &sd_fops; 2830 gd->private_data = &sdkp->driver; 2831 gd->queue = sdkp->device->request_queue; 2832 2833 /* defaults, until the device tells us otherwise */ 2834 sdp->sector_size = 512; 2835 sdkp->capacity = 0; 2836 sdkp->media_present = 1; 2837 sdkp->write_prot = 0; 2838 sdkp->cache_override = 0; 2839 sdkp->WCE = 0; 2840 sdkp->RCD = 0; 2841 sdkp->ATO = 0; 2842 sdkp->first_scan = 1; 2843 sdkp->max_medium_access_timeouts = SD_MAX_MEDIUM_TIMEOUTS; 2844 2845 sd_revalidate_disk(gd); 2846 2847 blk_queue_prep_rq(sdp->request_queue, sd_prep_fn); 2848 blk_queue_unprep_rq(sdp->request_queue, sd_unprep_fn); 2849 2850 gd->driverfs_dev = &sdp->sdev_gendev; 2851 gd->flags = GENHD_FL_EXT_DEVT; 2852 if (sdp->removable) { 2853 gd->flags |= GENHD_FL_REMOVABLE; 2854 gd->events |= DISK_EVENT_MEDIA_CHANGE; 2855 } 2856 2857 blk_pm_runtime_init(sdp->request_queue, dev); 2858 add_disk(gd); 2859 if (sdkp->capacity) 2860 sd_dif_config_host(sdkp); 2861 2862 sd_revalidate_disk(gd); 2863 2864 sd_printk(KERN_NOTICE, sdkp, "Attached SCSI %sdisk\n", 2865 sdp->removable ? "removable " : ""); 2866 scsi_autopm_put_device(sdp); 2867 put_device(&sdkp->dev); 2868 } 2869 2870 /** 2871 * sd_probe - called during driver initialization and whenever a 2872 * new scsi device is attached to the system. It is called once 2873 * for each scsi device (not just disks) present. 2874 * @dev: pointer to device object 2875 * 2876 * Returns 0 if successful (or not interested in this scsi device 2877 * (e.g. scanner)); 1 when there is an error. 2878 * 2879 * Note: this function is invoked from the scsi mid-level. 2880 * This function sets up the mapping between a given 2881 * <host,channel,id,lun> (found in sdp) and new device name 2882 * (e.g. /dev/sda). More precisely it is the block device major 2883 * and minor number that is chosen here. 2884 * 2885 * Assume sd_probe is not re-entrant (for time being) 2886 * Also think about sd_probe() and sd_remove() running coincidentally. 2887 **/ 2888 static int sd_probe(struct device *dev) 2889 { 2890 struct scsi_device *sdp = to_scsi_device(dev); 2891 struct scsi_disk *sdkp; 2892 struct gendisk *gd; 2893 int index; 2894 int error; 2895 2896 error = -ENODEV; 2897 if (sdp->type != TYPE_DISK && sdp->type != TYPE_MOD && sdp->type != TYPE_RBC) 2898 goto out; 2899 2900 SCSI_LOG_HLQUEUE(3, sdev_printk(KERN_INFO, sdp, 2901 "sd_probe\n")); 2902 2903 error = -ENOMEM; 2904 sdkp = kzalloc(sizeof(*sdkp), GFP_KERNEL); 2905 if (!sdkp) 2906 goto out; 2907 2908 gd = alloc_disk(SD_MINORS); 2909 if (!gd) 2910 goto out_free; 2911 2912 do { 2913 if (!ida_pre_get(&sd_index_ida, GFP_KERNEL)) 2914 goto out_put; 2915 2916 spin_lock(&sd_index_lock); 2917 error = ida_get_new(&sd_index_ida, &index); 2918 spin_unlock(&sd_index_lock); 2919 } while (error == -EAGAIN); 2920 2921 if (error) { 2922 sdev_printk(KERN_WARNING, sdp, "sd_probe: memory exhausted.\n"); 2923 goto out_put; 2924 } 2925 2926 error = sd_format_disk_name("sd", index, gd->disk_name, DISK_NAME_LEN); 2927 if (error) { 2928 sdev_printk(KERN_WARNING, sdp, "SCSI disk (sd) name length exceeded.\n"); 2929 goto out_free_index; 2930 } 2931 2932 sdkp->device = sdp; 2933 sdkp->driver = &sd_template; 2934 sdkp->disk = gd; 2935 sdkp->index = index; 2936 atomic_set(&sdkp->openers, 0); 2937 atomic_set(&sdkp->device->ioerr_cnt, 0); 2938 2939 if (!sdp->request_queue->rq_timeout) { 2940 if (sdp->type != TYPE_MOD) 2941 blk_queue_rq_timeout(sdp->request_queue, SD_TIMEOUT); 2942 else 2943 blk_queue_rq_timeout(sdp->request_queue, 2944 SD_MOD_TIMEOUT); 2945 } 2946 2947 device_initialize(&sdkp->dev); 2948 sdkp->dev.parent = dev; 2949 sdkp->dev.class = &sd_disk_class; 2950 dev_set_name(&sdkp->dev, "%s", dev_name(dev)); 2951 2952 if (device_add(&sdkp->dev)) 2953 goto out_free_index; 2954 2955 get_device(dev); 2956 dev_set_drvdata(dev, sdkp); 2957 2958 get_device(&sdkp->dev); /* prevent release before async_schedule */ 2959 async_schedule_domain(sd_probe_async, sdkp, &scsi_sd_probe_domain); 2960 2961 return 0; 2962 2963 out_free_index: 2964 spin_lock(&sd_index_lock); 2965 ida_remove(&sd_index_ida, index); 2966 spin_unlock(&sd_index_lock); 2967 out_put: 2968 put_disk(gd); 2969 out_free: 2970 kfree(sdkp); 2971 out: 2972 return error; 2973 } 2974 2975 /** 2976 * sd_remove - called whenever a scsi disk (previously recognized by 2977 * sd_probe) is detached from the system. It is called (potentially 2978 * multiple times) during sd module unload. 2979 * @sdp: pointer to mid level scsi device object 2980 * 2981 * Note: this function is invoked from the scsi mid-level. 2982 * This function potentially frees up a device name (e.g. /dev/sdc) 2983 * that could be re-used by a subsequent sd_probe(). 2984 * This function is not called when the built-in sd driver is "exit-ed". 2985 **/ 2986 static int sd_remove(struct device *dev) 2987 { 2988 struct scsi_disk *sdkp; 2989 dev_t devt; 2990 2991 sdkp = dev_get_drvdata(dev); 2992 devt = disk_devt(sdkp->disk); 2993 scsi_autopm_get_device(sdkp->device); 2994 2995 async_synchronize_full_domain(&scsi_sd_probe_domain); 2996 blk_queue_prep_rq(sdkp->device->request_queue, scsi_prep_fn); 2997 blk_queue_unprep_rq(sdkp->device->request_queue, NULL); 2998 device_del(&sdkp->dev); 2999 del_gendisk(sdkp->disk); 3000 sd_shutdown(dev); 3001 3002 blk_register_region(devt, SD_MINORS, NULL, 3003 sd_default_probe, NULL, NULL); 3004 3005 mutex_lock(&sd_ref_mutex); 3006 dev_set_drvdata(dev, NULL); 3007 put_device(&sdkp->dev); 3008 mutex_unlock(&sd_ref_mutex); 3009 3010 return 0; 3011 } 3012 3013 /** 3014 * scsi_disk_release - Called to free the scsi_disk structure 3015 * @dev: pointer to embedded class device 3016 * 3017 * sd_ref_mutex must be held entering this routine. Because it is 3018 * called on last put, you should always use the scsi_disk_get() 3019 * scsi_disk_put() helpers which manipulate the semaphore directly 3020 * and never do a direct put_device. 3021 **/ 3022 static void scsi_disk_release(struct device *dev) 3023 { 3024 struct scsi_disk *sdkp = to_scsi_disk(dev); 3025 struct gendisk *disk = sdkp->disk; 3026 3027 spin_lock(&sd_index_lock); 3028 ida_remove(&sd_index_ida, sdkp->index); 3029 spin_unlock(&sd_index_lock); 3030 3031 disk->private_data = NULL; 3032 put_disk(disk); 3033 put_device(&sdkp->device->sdev_gendev); 3034 3035 kfree(sdkp); 3036 } 3037 3038 static int sd_start_stop_device(struct scsi_disk *sdkp, int start) 3039 { 3040 unsigned char cmd[6] = { START_STOP }; /* START_VALID */ 3041 struct scsi_sense_hdr sshdr; 3042 struct scsi_device *sdp = sdkp->device; 3043 int res; 3044 3045 if (start) 3046 cmd[4] |= 1; /* START */ 3047 3048 if (sdp->start_stop_pwr_cond) 3049 cmd[4] |= start ? 1 << 4 : 3 << 4; /* Active or Standby */ 3050 3051 if (!scsi_device_online(sdp)) 3052 return -ENODEV; 3053 3054 res = scsi_execute_req_flags(sdp, cmd, DMA_NONE, NULL, 0, &sshdr, 3055 SD_TIMEOUT, SD_MAX_RETRIES, NULL, REQ_PM); 3056 if (res) { 3057 sd_printk(KERN_WARNING, sdkp, "START_STOP FAILED\n"); 3058 sd_print_result(sdkp, res); 3059 if (driver_byte(res) & DRIVER_SENSE) 3060 sd_print_sense_hdr(sdkp, &sshdr); 3061 } 3062 3063 return res; 3064 } 3065 3066 /* 3067 * Send a SYNCHRONIZE CACHE instruction down to the device through 3068 * the normal SCSI command structure. Wait for the command to 3069 * complete. 3070 */ 3071 static void sd_shutdown(struct device *dev) 3072 { 3073 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); 3074 3075 if (!sdkp) 3076 return; /* this can happen */ 3077 3078 if (pm_runtime_suspended(dev)) 3079 goto exit; 3080 3081 if (sdkp->WCE) { 3082 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3083 sd_sync_cache(sdkp); 3084 } 3085 3086 if (system_state != SYSTEM_RESTART && sdkp->device->manage_start_stop) { 3087 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3088 sd_start_stop_device(sdkp, 0); 3089 } 3090 3091 exit: 3092 scsi_disk_put(sdkp); 3093 } 3094 3095 static int sd_suspend(struct device *dev) 3096 { 3097 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); 3098 int ret = 0; 3099 3100 if (!sdkp) 3101 return 0; /* this can happen */ 3102 3103 if (sdkp->WCE) { 3104 sd_printk(KERN_NOTICE, sdkp, "Synchronizing SCSI cache\n"); 3105 ret = sd_sync_cache(sdkp); 3106 if (ret) 3107 goto done; 3108 } 3109 3110 if (sdkp->device->manage_start_stop) { 3111 sd_printk(KERN_NOTICE, sdkp, "Stopping disk\n"); 3112 ret = sd_start_stop_device(sdkp, 0); 3113 } 3114 3115 done: 3116 scsi_disk_put(sdkp); 3117 return ret; 3118 } 3119 3120 static int sd_resume(struct device *dev) 3121 { 3122 struct scsi_disk *sdkp = scsi_disk_get_from_dev(dev); 3123 int ret = 0; 3124 3125 if (!sdkp->device->manage_start_stop) 3126 goto done; 3127 3128 sd_printk(KERN_NOTICE, sdkp, "Starting disk\n"); 3129 ret = sd_start_stop_device(sdkp, 1); 3130 3131 done: 3132 scsi_disk_put(sdkp); 3133 return ret; 3134 } 3135 3136 /** 3137 * init_sd - entry point for this driver (both when built in or when 3138 * a module). 3139 * 3140 * Note: this function registers this driver with the scsi mid-level. 3141 **/ 3142 static int __init init_sd(void) 3143 { 3144 int majors = 0, i, err; 3145 3146 SCSI_LOG_HLQUEUE(3, printk("init_sd: sd driver entry point\n")); 3147 3148 for (i = 0; i < SD_MAJORS; i++) { 3149 if (register_blkdev(sd_major(i), "sd") != 0) 3150 continue; 3151 majors++; 3152 blk_register_region(sd_major(i), SD_MINORS, NULL, 3153 sd_default_probe, NULL, NULL); 3154 } 3155 3156 if (!majors) 3157 return -ENODEV; 3158 3159 err = class_register(&sd_disk_class); 3160 if (err) 3161 goto err_out; 3162 3163 sd_cdb_cache = kmem_cache_create("sd_ext_cdb", SD_EXT_CDB_SIZE, 3164 0, 0, NULL); 3165 if (!sd_cdb_cache) { 3166 printk(KERN_ERR "sd: can't init extended cdb cache\n"); 3167 goto err_out_class; 3168 } 3169 3170 sd_cdb_pool = mempool_create_slab_pool(SD_MEMPOOL_SIZE, sd_cdb_cache); 3171 if (!sd_cdb_pool) { 3172 printk(KERN_ERR "sd: can't init extended cdb pool\n"); 3173 goto err_out_cache; 3174 } 3175 3176 err = scsi_register_driver(&sd_template.gendrv); 3177 if (err) 3178 goto err_out_driver; 3179 3180 return 0; 3181 3182 err_out_driver: 3183 mempool_destroy(sd_cdb_pool); 3184 3185 err_out_cache: 3186 kmem_cache_destroy(sd_cdb_cache); 3187 3188 err_out_class: 3189 class_unregister(&sd_disk_class); 3190 err_out: 3191 for (i = 0; i < SD_MAJORS; i++) 3192 unregister_blkdev(sd_major(i), "sd"); 3193 return err; 3194 } 3195 3196 /** 3197 * exit_sd - exit point for this driver (when it is a module). 3198 * 3199 * Note: this function unregisters this driver from the scsi mid-level. 3200 **/ 3201 static void __exit exit_sd(void) 3202 { 3203 int i; 3204 3205 SCSI_LOG_HLQUEUE(3, printk("exit_sd: exiting sd driver\n")); 3206 3207 scsi_unregister_driver(&sd_template.gendrv); 3208 mempool_destroy(sd_cdb_pool); 3209 kmem_cache_destroy(sd_cdb_cache); 3210 3211 class_unregister(&sd_disk_class); 3212 3213 for (i = 0; i < SD_MAJORS; i++) { 3214 blk_unregister_region(sd_major(i), SD_MINORS); 3215 unregister_blkdev(sd_major(i), "sd"); 3216 } 3217 } 3218 3219 module_init(init_sd); 3220 module_exit(exit_sd); 3221 3222 static void sd_print_sense_hdr(struct scsi_disk *sdkp, 3223 struct scsi_sense_hdr *sshdr) 3224 { 3225 sd_printk(KERN_INFO, sdkp, " "); 3226 scsi_show_sense_hdr(sshdr); 3227 sd_printk(KERN_INFO, sdkp, " "); 3228 scsi_show_extd_sense(sshdr->asc, sshdr->ascq); 3229 } 3230 3231 static void sd_print_result(struct scsi_disk *sdkp, int result) 3232 { 3233 sd_printk(KERN_INFO, sdkp, " "); 3234 scsi_show_result(result); 3235 } 3236 3237